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Heteroscedasticity

Homoscedastic Data

yi = xi + ε s.t. ε ∼ N (0, νI)
Heteroscedastic Data

yi = xi + εi s.t. εi ∼ N (0, νiI)

PCAmethods like Robust PCA [2] and PCAwork well in the homoscedastic setting,

i.e., when the data is the same quality, but fail to accurately estimate the basis when

the data varies in quality, i.e., in the heteroscedastic setting.
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This paper develops a PCA method

named ALPCAH that can estimate the

sample-wise noise variances and use this

information in the model to improve the

estimate of the subspace basis associ-

ated with the low-rank structure of the

data. This is done without distributional

assumptions of the low-rank component

and without assuming the noise variances are known which are some of the limi-

tations of current methods like HePPCAT [4] and Weighted PCA [3] respectively.

Applications

Lesion Detection [1] Dynamic MRI Reconstruction [1]

Motion Estimation [1] Image/Video Denoising [1]

Many modern data science problems require learning an approximate subspace

basis for some data. This is useful for key tasks like dimensionality reduction.
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ALPCAH
Algorithm for Low-rank PCA for Heteroscedastic data

Let yi ∈ RD represent the data samples for index i ∈ {1, . . . , N} given N to-

tal samples and D represent the ambient dimension. Let xi represent the low-

dimensional data sample generated by xi = Uzi where U ∈ RD×k is an orthog-

onal basis of dimension k and zi ∈ Rk are basis coordinates. Then the het-

eroscedastic model is described as follows assuming Gaussian noise:

yi = xi + εi where εi ∼ N (0, νiI) (1)

for noise variances νi. For the measurement model yi ∼ N (xi, νiI), the proba-

bility density function for a single point is

1√
(2π)k|νiI|

exp [−1
2
(yi − xi)T (νiI)−1(yi − xi)]. (2)

For uncorrelated samples, the joint log likelihood of all yi is the following after

dropping constants

N∑
i=1

−1
2

log |νiI| − 1
2
(yi − xi)T (νiI)−1(yi − xi). (3)

Let Π = diag(ν1, . . . , νN) ∈ RN×N be a diagonal matrix representing the (typically

unknown) noise variances. Let Y = [y1, . . . , yN ] ∈ RD×N represent all of the data

samples. Then, the log likelihood in matrix form is

−D

2
log |Π| − 1

2
Trace[(Y − X)TΠ−1(Y − X)]. (4)

Using trace properties, the optimization problem we pose for the heteroscedas-

tic model is

arg min
X,Π

λfk(X) + 1
2
‖(Y − X)Π−1/2‖2

F + D

2
log |Π|︸︷︷︸
determinant

(5)

where fk(X) is a relatively new functional in the literature [5] that promotes low-

rank structure in X by penalizing the tail singular values:

fk(X) ,
min(D,N)∑

i=k+1

σi(X) = ‖X‖∗ − ‖X‖Ky-Fan(k), (6)

where σi(X) is the ith singular value ofX , ‖·‖∗ is the nuclear norm, and ‖·‖Ky-Fan(k)
is the Ky-Fan norm defined as the sum of the first k singular values. For k = 0,
f0(X) = ‖X‖∗. For a general k > 0, fk(X) is a nonconvex difference of convex

functions. When k > 0 and λ → ∞, then the solution of the optimization

problem approaches X̂ =
∑k

i=1 σiuiv
′
i ∈ RD×k meaning the solution becomes

identical to a singular value projection approach.

Simulation Study

LetU ∈ R100×10 represent a 10 dimensional subspace generated by random uniform

matrices such that UΣV T = svd(A), where Ai,j ∼ U [0, 1]. The low-rank data xi

we simulated as xi = Uzi where the coordinates zi ∈ R10 were generated from

U [−100, 100] for each element in the vector. Then, we generated yi = Uzi + εi

where εi ∈ R100 is drawn from N (0, νiI). The noise variance for group 1 (ν1) was

fixed to 1 and we varied group 2 noise variances (ν2). The error metric used is

subspace affinity error that compares the difference in projection matrices ‖UU ′ −
Û Û ′‖F/‖UU ′‖F so that a low error signifies a closer estimate of the true subspace.
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Simulation Results

(a) Ratio of subspace affinity errors

ALPCAH/PCA (known variance, no

cross-validation required)

(b) Ratio of subspace affinity errors

ALPCAH/PCA-GOOD (PCA using good data

only and ALPCAH using all of the data)

(c) Ratio of subspace affinity errors

ALPCAH/RPCA (unknown variance, no group

knowledge, cross-validated λ for both methods)

(d) Ratio of subspace affinity errors

ALPCAH/HePPCAT (unknown variance, no

group knowledge, cross-validated λ for ALPCAH)

(e) Subspace affinity error of various PCA

methods as the regularization parameter is

adjusted (known variance)

(f) Subspace affinity error of various PCA

methods as λ is adjusted (unknown variance, no

group knowledge)

Figure 1. Heatmaps and plots of ALPCAH results on synthetic data to explore heteroscedasticity

effects on subspace basis approximation

Key Findings

In the known variance case, Figure 1a shows thatALPCAH performswell relative to

PCA in noisy situations and can improve estimation by up to 50% or 20% in more

tame situations. From Figure 1b, clearly it is beneficial to collect and use all of

the data, since the noisy points offer meaningful information that can improve the

estimate of the basis versus using good data alone. For the unknown variance case,

Figure 1d generally shows that on average there was a 20% improvement over

HePPCAT. Since HePPCAT is a hard rank constraint method, it seems beneficial to

not completely shrink the tail singular values but rather to retain them as they seem

to improve the estimation process. Moreover, since we make no distributional

assumptions about X itself besides low-rank assumptions, then this assumption

relaxation helps us achieve lower error in settings where the basis coordinates are

not Gaussian, whereas HePPCAT makes Gaussian assumptions about the basis

coordinates themselves.
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