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Abstract

Masked Diffusion Models (MDMs) have emerged as one of the most promising
paradigms for generative modeling over discrete domains. It is known that MDMs
effectively train to decode tokens in a uniformly random order, and that this
ordering has significant performance implications in practice. This observation
raises a fundamental question: can we design a training framework that optimizes
for a favorable decoding order? We answer this in the affirmative, showing that the
continuous-time variational objective of MDMs, when equipped with multivariate
noise schedules, can identify and optimize for a decoding order during training.
We establish a direct correspondence between decoding order and the multivariate
noise schedule and show that this setting breaks invariance of the MDM objective
to the noise schedule. Furthermore, we prove that the MDM objective decomposes
precisely into a weighted auto-regressive losses over these orders, which establishes
them as auto-regressive models with learnable orders.

1 Introduction

Autoregressive models (ARMs) remain the dominant paradigm for sequential data generation, largely
due to their natural alignment with next-token prediction tasks on domains such as text. While
text data possesses an inherent left-to-right sequential structure, many other discrete modalities of
interest lack such canonical orderings. For example, tabular data (Zhu et al., 2022), graphs (Bu
et al., 2023), 1D tokenized images (Yu et al., 2024) present ambiguity in how dimensions should
be ordered for ARMs. This limitation of ARMs has also motivated research in model classes based
on diffusion (Sohl-Dickstein et al., 2015; Ho & Salimans, 2022; Dhariwal & Nichol, 2021; Ho
et al., 2020; Song et al., 2021; Kingma et al., 2021; Karras et al., 2022). While diffusion models
have demonstrated remarkable success in continuous domains—including image synthesis, video
generation, and speech processing—their application to discrete structures remains an active research
area (Austin et al., 2021; Shi et al., 2025a; Yu et al., 2025a; Gat et al., 2024; Lou et al., 2024; Riitte
et al., 2025; Sahoo et al., 2025a). Extending diffusion-like dynamics to discrete data modalities
such as natural language, molecular structures, and protein sequences is a compelling alternative to
ARMs which can potentially enable parallel generation and provide trade-offs between quality and
sampling speed. Recent research (Sahoo et al., 2024b; Shi et al., 2025a) has positioned one variant of
discrete diffusion, Masked Diffusion Models (MDMs) as particularly promising, by extending their
formulations to continuous time, combining the theoretical grounding of diffusion processes with the
simplicity of masked token modeling.

Recent theoretical analyses (Zheng et al., 2025; Ou et al., 2025) have revealed a fundamental
equivalence: the learning objective of MDMs corresponds exactly to masked language modeling
and can be interpreted as any-order autoregressive models (AO-ARMs) (Hoogeboom et al., 2022).
In other words, the MDM training objective optimizes equally over all possible orders. Kim et al.
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(2025) introduces inference-time heuristics to select a state-dependent ordering which achieves
improvements on reasoning tasks such as sudoku. This observation suggests that MDMs possess the
capacity to discover and exploit ordering structures during training, with certain orderings proving
more advantageous than others even when the training objective weighs each ordering equally. This is
an instance of train-test mismatch, while training weighs all the ordering equally, inference does not.
This motivates us to extend the MDM objective, which can discover the order during training and thus
optimize for that order. Concurrently, recent work (Wang et al., 2025) investigates Learned-Order
Autoregressive Models (LO-ARMs) which attempts to learn a state-dependent order distribution.
We instead pose a simpler question: Can the masked diffusion training objective be extended in a
principled manner to learn optimal state-independent orderings?

Our Contributions We prove that when extended with multivariate noise schedules, the masked
diffusion objective decomposes exactly as the expectation over possible orderings (Proposition 3.1),
where the probability of sampling orders is defined by the noise schedule. We establish an exact
correspondence of token ordering and multivariate noise schedule at inference time (Proposition 3.2).
In Section 4, we validate our theoretical claims with experimental results on tabular generative
modeling.

2 Background

Figure 1: Forward process of masked diffusion, masks variables in a order. While for univariate noise
schedules, this order is uniformly random, multivariate noise schedule makes some order more likely
than others.
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Masked diffusion assumes a forward process where a token x transitions to a special mask state m
at a random time defined by a noise schedule a;. For time ¢ > s,
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where a; € [0, 1] is a strictly decreasing function in ¢, with ag ~ 1, @ &~ 0, and a5 = a¢/cvs. The
forward process can be interpreted as follows: Between timestep s and ¢, we transition to a masked
state with probability 1 — ay. Once masked, a token stays masked with probability 1. This forward
process admits a closed form posterior. For s < ¢,
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The reverse process conditioned on x( also has a simple interpretation—if x; is masked, it will jump
to the state x, at time s with probability 5*—>*, and stay masked otherwise. Once X; is unmasked,
it remains unchanged until ¢ = 0. To learn a reverse model py, we optimize a variational bound
(ELBO) on likelihoods. For a given a number of discretization steps 7', we define s(¢) := (¢ — 1)/T

and t(7) := /T, then we can write the discrete time ELBO as:
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Under mean-parameterization (Sahoo et al., 2024a; Shi et al., 2025a), the reverse model learns a
distribution over x¢ given x;; Xo ~ fg(X¢, t; #) and plugs into the closed form expression (2). For a
sequence x " consisting of L tokens, such a reverse model can be optimized with the continuous



time loss:
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where 115° refers to the probability corresponding to the specific token x¢ from a distribution defined
over the space of all possible values of xg.
3 Equivalence of Masked Diffusion and Learned-Order Autoregression

In this section, we will explore the behavior of masked diffusion when each position has a different
noise schedule o ¢, which we refer to as a multivariate noise schedule.

3.1 Reframing ELBO as Loss over Orders

Proposition 3.1 The diffusion loss (Equation 3) can be decomposed over the orders as follows:

L(xpt) = —E,
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where (X (i) [Xr(<i), t:—(i); 0) = “:?i) (Xr(<i)s t:‘r(i); 0), X (<) is a sequence obtained by masking
the (> 4) indices of x¢ and ¢, is the transition time of position (7). Under a time-independent
network parameterization,

L(xF) = —E,
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where L L, is the auto-regressive log-likelihood computed under order 7 and expectation is taken
over all orders 7, where the corresponding probabilities are given as
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This expression can be interpreted as Learning-Order Autoregressive Models (Wang et al., 2025),
with the key difference that our distribution over orders is state-independent (Equation 25)

3.2 Relationship between Decoding Order and Noise Schedules

Proposition 3.2 Let ¢* be the time left in the reverse process with schedule o; when a token
transitions to a non-mask state, then P(¢t* < t) =1 — oy

Corollary 3.1 For the (-th variable, the transition time tj is distributed according to the p.d.f —a;_[

This gives us a way to sample an order 7 given the schedule. We have outlined the sampling process
in Algorithm 1.

Algorithm 1 Order Sampler

Require: Noise schedules {av; ¢ }7,
Ensure: Sampled order 7
1: Initialize an empty list 7 + &.
2: for¢{=1to L do
3: Sample u ~ Uniform(0, 1)
4 Compute t, < a; " (u) > sample ¢;
5: Append t, to T
6: end for
7: 7 < SORTED(T)
8: return m




This algorithm when used with univariate schedule also simplifies FHS sampler proposed by Zheng
et al. (2025) and “diffusion denoising schedule” used in Sahoo et al. (2025b) for univariate schedules.

4 Experiments

In this section, we apply a masked diffusion with feature wise schedules to the task of tabular data
generation. The forward process is applied independently across the sequence but with different noise
schedules o ¢ across the sequence. The loss we use is:
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Note the difference with Equation 4, each dimension is weight defined by corresponding schedules.

We parameterize oy o = 1 —t™*. To differentiate through the masking process we use RLOO gradient

estimation by Kool et al. (2019), denoted by MDM(LS), and compare it with a masked diffusion
model trained with fixed linear schedule (denoted MDM).

4.1 Results

In this section, and in Appendix C.1, we compare the performance of well established tabular synthesis
baselines on several data fidelity metrics. We refer readers to Shi et al. (2025b) for descriptions of
the baselines and metrics used. For all the datasets, we implement MDM and MDM(LS) using the
same hyperparameter set. All models trained by us have around 86K parameters. We also note that
many of the baseline methods make use of gaussian diffusion which typically requires a much higher
number of steps than MDMs, whereas in our case the max number of steps is simply the number of
columns.

In Tables 1-3, Underlined numbers denote the best performing method for each dataset. In Table 1,
specifically for the Trend metric, we see that while not the best, both MDM and MDM(LS) are very
competitive with state of the art baselines while having a fraction of the parameters—for example,
TabDiff utilises models with 10M parameters. We note similar performance comparisons on the other
metrics. We also report additional metrics with standard deviations across runs in Appendix C.1.

Table 1: Performance comparison of our models on Trend against baselines across six datasets. The
Trend metric measures the quality of pairwise correlations.

Method Adult Default Beijing Shoppers Magic  News
STaSy 0.8549 0.9404 0.9151 0.9339 0.9200 0.9693
CoDi 0.7751  0.3159  0.8222 0.9347 0.9293 0.8890

TabDDPM  0.9699 0.9511 0.9339 0.9830 0.9729 0.8684
TabSYN 0.9807 0.9719 0.9787 0.9912 0.9687 0.9848
TabDIFF 0.9851 0.9745 0.9826 0.9924 0.9741 0.9872

MDM(LS) 0.9778 0.9705 0.9743 0.9710 0.9628 0.9781
MDM 0.9747  0.9642 0.9773 0.9703 0.9724 0.9766

Table 2: Performance comparison of our models on Shape against baselines across six datasets. The
Shape metric measures how well synthetic data captures each column’s marginal density.

Method Adult Default Beijing Shoppers Magic  News
STaSy 0.8871 0.9423  0.9063 0.9371  0.9329 0.9311
CoDi 0.7862  0.8423 0.6816 0.8844 0.8306 0.6773
TabDDPM  0.9825 0.9843 0.9728 0.9899 0.9870 0.2125
TabSyn 0.9919 0.9899 0.9856 0.9897 0.9874 0.9794

TabDiff 0.9937 0.9876  0.9872 0.9922 0.9897 0.9765

MDM(LS) 0.9878  0.9830 0.9841 0.9832 0.9750 0.9787
MDM 0.9851 0.9787  0.9866 0.9829 0.9822 0.9785




Table 3: Performance comparison of our models on the data fidelity metrics a-Precision and 3-Recall,
across the six datasets.

Method a-Precision -Recall
etho

Adult  Default Beijing Shoppers Magic News  Adult Default Beijing Shoppers Magic  News
STaSy 0.8287 0.9048 0.8965  0.8656  0.8916 0.9476 0.2921 0.3931 0.3724  0.5397  0.5479 0.3942
CoDi 0.7758 0.8238 0.9495  0.8501  0.9813 0.8715 0.0920 0.1994 0.2082  0.5056  0.5219 0.3440
TabDDPM  0.9636 0.9759 0.8855  0.9859  0.9793 0.0000 0.4705 0.4783 0.4779  0.4846  0.5692 0.0000
TabSyn 0.9939 0.9865 0.9836  0.9942  0.9751 0.9505 0.4792 0.4645 0.4910  0.4803  0.5915 0.4301

TabDiff 0.9902 0.9849 0.9911 0.9947  0.9806 0.9736 0.5164 0.5109 0.4975  0.4801  0.5963 0.4210

MDM(LS) 0.9909 0.9839 0.9744  0.9818 0.9623 0.9872 0.4534 0.3781 0.5162  0.4435  0.3852 0.3473
MDM 0.9756  0.9717 0.9592  0.9827  0.9804 0.9779 0.4595 0.3810 0.5309  0.4583  0.3894 0.3405

Figure 2: Comparing the best validation losses for MDM(LS) and MDM and visualizing the noise
schedules learned by MDM(LS) on the Adult dataset.
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From Table 2a, we see that MDM(LS) leads to lower validation losses, although the performance
gains are limited, as can be seen from Table 1. Among the baselines, TabDiff (Shi et al., 2025b)
also utilises learned schedules. In Figure 2b, we visualize the schedules learned by MDM(LS) for
the Adult dataset (Other datasets are provided in Figure 5). In contrast, TabDiff fails to learn any
schedules as seen in Appendix C.2.

5 Discussion and Future Work

While we observe that masked diffusion models with learned schedules lead to lower validation
losses, we do not observe significant gains in downstream data fidelity metrics. A possible reason for
this observation is that learned schedulers increase the loss variance during training. For example,
even in the univariate case where loss is invariant to the noise schedule, Shi et al. (2024) observe
that the linear schedule leads to best likelihood performance and attribute it to low loss variance
from linear schedule. Since our schedules are learned and different for each column, it might be
possible that loss variance is high. Future work should focus on how these effects can be mitigated
for multivariate schedules. An interesting open question is whether masked diffusion with learned
schedules can discover independencies and structures in tabular data.
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Masked Diffusion Models are Secretly Learned-Order Autoregressive Models
(Appendix)

A Related Work

Diffusion models have transformed generative modeling (Sohl-Dickstein et al., 2015; Ho & Salimans,
2022; Dhariwal & Nichol, 2021; Ho et al., 2020; Song et al., 2021; Kingma et al., 2021; Karras et al.,
2022), and recent work has adapted them to discrete domains such as language, graphs, and proteins
(Austin et al., 2021; Vignac et al., 2023; Gat et al., 2024; Stark et al., 2024; Shaul et al., 2024; Boget,
2025; Han et al., 2025; Zhao et al., 2025; Yu et al., 2025a). Discrete diffusion has been applied to
diverse structured data types, including categorical modeling (Hoogeboom et al., 2021; Dieleman
et al., 2022), text (Lou et al., 2024; Sahoo et al., 2025a; Amin et al., 2025), and multimodal setups
(Yu et al., 2025b; Shi et al., 2025¢c; Campbell et al., 2024). Recent work by Sahoo et al. (2024c)
applies multivariate in continuous diffusion setting. We instead focus on discrete diffusion processes
elucidating a direct connections to decoding orders. Shi et al. (2024) also introduces GenMD4, where
instead of token position, token values dictate the noise schedules which results in a significantly
complicated objective. We instead show that a simple extension to the MDM objective works for
token position dependent schedules.

The role of ordering and masking schedules in discrete diffusion has only recently received attention.
Recent studies investigate inference heuristic or learned sampler for improved sample quality (Peng
et al., 2025; Kim et al., 2025). Findings suggest that ordering choices significantly influence model
inference quality. Wang et al. (2025) do not proceed from a diffusion setup, rather models decoding
orders as a latent variable. Our work instead approaches this from discrete point of view, connecting
them to learned-order autoregressive model.

B Proofs

Proposition 3.2 Let ¢* be the time left in the reverse process with schedule o, when a token
transitions to a non-mask state, then P(¢t* <t) =1 — oy

Proof of Proposition 3.2: Consider a discretization of time interval [0, 1] into T steps. We define
s(i) = %7 and ¢(i) = 4%, Let E; be the event that the token transition to a non-mask state for the

first time when transitioning from ¢(¢) to s(z) We denote the event that it transition in the i-th with

E!. We know that from the definition of reverse process, P(—E}) =1 — asff;::f;“ = i:if(“))
P(E) = P(E) [[ P(-E)) ©
i<j
— (- PEN ][ PE) (10)
i<j
=[[P-E) -] P-E) (11)
i<j i<j
“11 1-asG 11 1 - a4 (12)
ol 10 sl a0
_ 1oy 1—as (13)
1— at(T) 1-— at(T)
1-0 1-0
= (i) ~ () (15)
i"(t)
Pir<t)y=P U E; (16)
=0



i*(t) = argmax; s(i) <t < t(¢). Since E;’s are disjoint events, we have,

i (t)
P(r<t)=Y_ P(E) (17)

i=0

i (t)
= Z Qs (i) — (i) (18)

i=1

AsT — oo, t(i*) — t, so we get,

Plr<t)=1-a (20)

Proposition 3.1 The diffusion loss (Equation 3) can be decomposed over the orders as follows:

L(x§h) = —E,

ZEt;(i)hr {log B(X (i) | X (<)o Trgas 9)}] )

xW(L) . . .
where p4(Xx (i) [Xr(<iy s t;(m 0) = [,Lﬂ[(]i) (X (<i)s tjr(i); 6), X (i) is a sequence obtained by masking
the (> i) indices of xo and ¢, is the transition time of position (7). Under a time-independent
network parameterization,

L(xF) = —B,

> " log g% (i) X (<i); 9)1 = —Ex [LLx(xo,0)] (©)

Proof of Proposition 3.1 We will analyse the expression in 3

L(x0) = Eq | —logp(xr) — > (log po (%) | Xe(s)) — log q(Xe(i) | Xs(s))) 1)

t>1

Crucial thing to note is that this expectation is taken over all possible trajectories as shown in Figure 1

With ;s = === we define the pp(X.(;) | Xi(5)) and ¢(X4(iy | Xs(5) in the table below
| T—oy (@) (@) (4) (4)
S t p q
m m 1 Bi|s
m X 0 0
X X Qs 1
X m (1 _at\s) Mx(mat*) 1 _Bt|s

where t* is the time token transitions in the reverse process. We can safely ignore the case m, x
because it happens with probability 0. Consider a discretization of time interval [0, 1] into T steps.
We define s(i) = ‘=t and ¢(i) = =,

—log(Bys(4)) i< i*
log po(Xs(s) | Xe(iy) — log q(X¢(s) | Xs(i)) = { 1og(1 — ay)s(4)) + log pu® (m, £(i*)) — log(1 — Bys(4)) i =i*
log ays(i) i > "
(22)

1" refers to the discrete step where the transition happens. Summing it up, it reduces to telescopic
sums and the only term which remains is log *(m, t(¢*)). So, rewriting Equation 21, we have,

L(x0) = Eq[log " (m, £(i"))] (23)
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For a sequence of token x'*¥, it will have corresponding transition times {¢(i), }%_,. In continuous
time limit, two tokens do not transition at the same time (p(t(i); = t(z)jz # j) = 0). For given
transition times we define a map 7 such that t;*r(l) < t;(2) < e t;“r(L), it is easy to see that w
is a permutation. Corresponding x;’s at these transition time will have the corresponding masks
(specifically at £ (i) all the indices corresponding to 7(< 4), would be masked, and rest will be same
as xq)

AC(X()) = Eq Z IOg ,uxn(é) (Xt" £)*>» t:(e)))] (24)
¢
Given an order 7, we can define joint distribution over {¢} }, using Proposition 3.2.
P(m) = / (H ai,e> (25)
O \'g
where 2, = {t: lr(n) <lpe) <--- < tn(L)}
[I, —ot
1. =——=)I[t" € Q, 2
i | ) = (St ) 1 < 0] 26)

We can collect all the trajectories which result in permutation 7 and thus we arrive at the result,

E(Xé:L

= —Eﬂ_

C Experiments Details and Additional Results

C.1 Performance Metrics and Baseline Comparisons

D B, w108 (Kn (i) [ X (<) Eri); 9)}]

For the tables below, results for MDM(LS) and MDM are averaged over 10 runs
other baselines are taken from Shi et al. (2025b).

Table 4: Trend

27)

. The results of

Method Adult Default Beijing Shoppers Magic News

STaSy 0.8549+0.0025  0.9404+0.0026  0.9151+0.0015 0.9339+0.0053  0.9200+0.0010  0.9693+0.0004
CoDi 0.7751+0.0008  0.3159+0.0005  0.8222+0.0011  0.9347+0.0025 0.9293+0.0015  0.8890=0.0001
TabDDPM  0.9699+0.0025 0.9511+0.0010 0.9339+0.0016 0.9830+0.0022 0.9729+0.0009 0.8684+0.0011
TabSyn 0.9807+0.0007  0.9719+0.004¢  0.9787+0.0010 0.9912+0.0018 0.9687+0.0034 0.9848+0.0003
TabDiff 0.9851+0.0016 0.9745+0.0075 0.9826+0.0008 0.9924+0.0012 0.9741+0.0015 0.9872+0.0004
MDM(LS) 0.9778+0.0023 0.9705+0.0028 0.9743+0.0038 0.9710+0.0038 0.9628+0.0070  0.9781+0.0017
MDM 0.9747+0.0020 0.9642+0.0016 0.9773+0.0034 0.9703+0.0027 0.9724+0.0026 0.9766-+0.0016

Table 5: Shape

Method Adult Default Beijing Shoppers Magic News

STaSy 0.8871+0.0006 0.9423+0.0006 0.9063+0.0000 0.9371+0.0013  0.9329+0.0003 0.9311+0.0003
CoDi 0.7862+0.0006 0.8423+0.0007 0.6816+0.0005 0.8844+0.0026 0.8306+0.0002 0.6773+0.0004
TabDDPM  0.9825+0.0003 0.9843+0.000s 0.9728+0.0013 0.9899+0.0009 0.9870+0.0003 0.2125+0.0001
TabSyn 0.9919+0.0005  0.9899+0.0008  0.9856+0.0007 0.9897+0.0014  0.9874+0.0005  0.9794+0.0004
TabDiff 0.9937+0.0005 0.9876+0.0007 0.9872+0.0000 0.9922+0.0008 0.9897+0.0005 0.9765+0.0003
MDM(LS) 0.9878+0.0016 0.9830+0.0007 0.9841+0.0000 0.9832+0.0018 0.9750+0.0044 0.9787+0.0004
MDM 0.9851+0.0015  0.9787+0.0010  0.9866+0.0006 0.9829+0.0011  0.9822+0.0018  0.9785+0.0004
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Table 6: a-Precision

Method Adult Default Beijing Shoppers Magic News

STaSy 0.8287+0.0026  0.9048+0.0011  0.8965+0.0025 0.8656+0.0019  0.8916+0.0012  0.9476+0.0033
CoDi 0.7758+0.0045  0.8238+0.0015  0.9495+0.0035  0.8501+0.0036 0.9813+0.0038 0.8715+0.0012
TabDDPM  0.9636+0.0020 0.9759+0.0036  0.8855+0.0068 0.9859+0.0017  0.9793+0.0030  0.0000+0.0000
TabSyn 0.9939+0.0018  0.9865+0.0023  0.9836+0.0052  0.9942+0.0028 0.9751+0.0024  0.9505+0.0030

TabDiff 0.9902+0.0020 0.9849+0.0028 0.9911+0.0034 0.9947+0.0021 0.9806+0.0024 0.9736-+0.0017

MDM(LS) 0.9909+0.0028 0.9839+0.0019 0.9744+0.0034 0.9818+0.0048 0.9623+0.0034 0.9872+0.0012
MDM 0.9756+0.0032  0.9717+0.0030  0.9592+0.0022 0.9827+0.0033 0.9804+0.0023 0.9779+0.0016

Table 7: 3-Recall

Method Adult Default Beijing Shoppers Magic News

STaSy 0.2921+0.0034  0.3931+0.0030  0.372440.0045 0.5397+0.0057  0.5479+0.0018  0.3942+0.0032
CoDi 0.0920+0.0015  0.1994+0.0022  0.2082+0.0023  0.5056+0.0031  0.5219+0.0012  0.3440-+0.0031
TabDDPM  0.4705+0.0025 0.4783+0.0035 0.4779+0.0025 0.4846+0.0042 0.5692+0.0013  0.0000+0.0000
TabSyn 0.4792+0.0023  0.4645+0.0035  0.4910+0.0060 0.4803+0.0050 0.5915+0.0022  0.4301+0.0028

TabDiff 0.5164+0.0020 0.5109+0.0025 0.4975+0.0064 0.4801+0.0031 0.5963+0.0023 0.4210+0.0032

MDM(LS) 0.4534+0.0020 0.3781+0.0012 0.5162+0.0027 0.4435+0.0060 0.3852+0.0057 0.3473+0.0033
MDM 0.4595+0.0022  0.3810+0.0030  0.5309+0.0031  0.4583+0.0067 0.3894+0.0042 0.3405+0.0022

C.2 Visualisation of Learned Schedules

Figure 3: Schedules learned by TabDiff, reproduced from original implementation
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Figure 4: Tabdiff fails to learn schedules even with random initialization
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Figure 5: Schedules learned by our implementation of MDM(LS). Note that our implementation
uses masked diffusion for all feature columns and not just for categorical features.
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TabDiff makes use of a hybrid setup with masked diffusion for categorical columns with column wise
learnable schedules. From our reproduction, we see that it fails to learn the schedules In Figure 3, we
train the models from the implementation provided by the authors? and plot the schedules learned at
the end of training. In Figure 4, we attempt to break symmetry by randomizing the initialization of
the noise schedule, which unfortunately leads to the same result. For comparison, we include the
schedules learned by our MDM(LS) models in Figure 5.

“https://github.com/MinkaiXu/TabDiff
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