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ABSTRACT

Are Multi-modal Large Language Models (MLLMs) stochastic parrots? Do they
genuinely understand? This paper aims to explore the core cognitive abilities that
human intelligence builds upon to perceive, comprehend, and reason in MLLMs.
To this end, we propose CogDevelop2K, a comprehensive benchmark that spans
12 sub-concepts from primitive knowledge like object permanence and boundary
to more complex abilities like intentionality understanding, structured via the de-
velopmental trajectory of a human mind. We evaluate 46 MLLMs on our bench-
marks. Surprisingly, we observe a reversed cognitive developmental trajectory
compared to humans. Comprehensively, we further evaluate the influence of eval-
uation strategies and prompting techniques.

1 INTRODUCTION

Building on the foundation of advanced large language models (LLMs), multi-modal large language
models (MLLMs) have recently demonstrated human-level performance in complex tasks involving
high-level reasoning, perception, and cognition (Li et al.,[2024a; |Liu et al., 2024; Gemini, [2023}; [Fu
et al.| 2023} |OpenAl, 2023), such as Spatial Reasoning (Chen et al., 2024; |Cai et al., [2024), OCR
(Mori et al., |1999), Scene Understanding (Cordts et al., 2016} |Chen et al., 2017), Action Recogni-
tion (Jhuang et al., 2013; |[Herath et al., 2017) and Prediction (Lan et al., 2014; |Kong & Fu, [2022).
The progress in MLLMs has reignited hopes for achieving Artificial General Intelligence (AGI).
However, recent studies have shown that even state-of-the-art MLLMs face critical limitations as
compared to human intelligence. On the one hand, they perform poorly on rudimentary reasoning
tasks like counting Paiss et al.|(2023)), compositional reasoning|Yuksekgonul et al.|(2022) and spatial
reasoning |[Hoehing et al.| (2023) despite their excellence at high-level reasoning tasks on similar do-
mains (Paiss et al., 2023; [Rahmanzadehgervi et al., [2024)). On the other hand, said excellency often
does not appear to translate to more generalized and real-world contexts (Shiffrin & Mitchell, 2023
Zhang et al.l 2024). To explore the underlying reason for these limitations, we draw inspirations
from human cognitive development.

Past research has shown that humans exhibit a series of rudimentary yet robust abilities in domains
such as object, number, space, action, and social cognition at a very young age. Such abilities,
often known as “core” cognition, grounds the set of diverse and complex abilities of human intel-
ligence that develop later (Spelke et al., [1992; [1994; 1995} Spelke & Kinzler, 2007; Baillargeon &
Carey, 2012 Mitchell| [2020; |2021). From infancy to early adulthood, human cognition develops
along a structured trajectory, with interdependent relations between early, simple abilities and late,
complex abilities. For instance, the ability to imagine the perspectives of others typically develops
between the ages of 3 and 6 (Piaget & Inhelder, |1969), while the capacity to fully comprehend oth-
ers’ intentions matures around age 12 (Wimmer & Perner, 1983} Wellman et al., 2001} [Liu et al.,
2008). At the same time, the ability to understand other people’s intentions largely depends on the
the ability to understand other people’s perspectives (lacoboni, |2009; De Waal & Preston) 2017}
Liu et al., 2017 |Caviola et al., 2021} [Ninomiya et al., 2020). An influential account of human
learning has suggested that cognitive development is fundamentally driven by the increase of com-
putational/representational power of the system, which allows for more complex mental operations
to be performed on external data (Fodor, |1975}; [Pylyshyn, |1980; Halford et al., {1998} |Fodor, [2008)).
However, while high-level abilities emerge directly due to enhanced operational resources, these op-
erations are critically guided by the “core” cognition system that has enabled the system to possess a
rudimentary understanding of each cognitive domain. This early-stage grounding not only empow-
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ers humans to achieve a reliable performance at basic yet widely-applicable tasks starting from very
young ages, but is also precisely what supports high-level abilities to robustly direct task-relevant
behaviors despite the nuanced signals exist in the environment (Mitchell, 2021).

Given this line of evidence, we suggest that the absence of a core cognition system may provide
a joint account of the two limitations faced by current MLLMs: poor performance on basic rea-
soning and the lack of robustness with high-level reasoning. In order to assess this hypothesis, We
draw on theoretical and empirical approaches from developmental science to create benchmarks
that evaluate simple and complex cognitive abilities in large vision-language models that are in-
terrelated along the developmental trajectory. On a high level, we follow Jean Piaget’s theory of
cognitive development, which identifies four stages in children: sensorimotor, preoperational, con-
crete operational, and formal operational (Piaget, |1950; |Piaget & Inhelder, [1969;|1974). During the
sensorimotor stage, infants acquire knowledge through sensory experiences and actions, developing
an understanding of basic object properties, such as permanence, continuity, and boundaries. In the
preoperational stage, symbolic representation emerges, along with a grasp of basic physical proper-
ties. The concrete operational stage is characterized by the development of logical thinking and an
understanding of intuitive physics. Finally, the formal operational stage introduces more advanced
cognitive abilities, including abstraction, hypothetical reasoning, counterfactual thinking, and tool
use. The interdependence and developmental trajectories of these abilities can be mapped in terms
of a tree-like structure (as illustrated in Fig. [I).

To evaluate the performance of MLLMs on the core cognitive abilities, we curate the first-ever vision
cognitive development benchmark, termed as CogDeveop2K, which consists of a total of 2519 ques-
tions with 2517 images and 455 videos. Then, we evaluate 46 MLLM models on our benchmark that
spans all four stages of cognitive development. We introduce a novel multi-frame question format
to evaluate models’ co-reference, cognitive reasoning and temporal understanding capability simul-
taneously. Forty-seven models are compared against a human baseline under zero-shot conditions
using 11 different prompts (including no prompt). Surprisingly, while prompts can boost model per-
formance by 8.1%, models still demonstrate reversed trends in cognitive development against those
observed in children.

Human Cognitive Development
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Figure 1: Map of core cognitive concepts during human developmental stages

2 COGDEVELOP2K

2.1 MULTI-MODAL LARGE LANGUAGE MODELS

The Vision Language Model (VLM) has a long history from Convolution Neural Networks (CNN)
and Recurrent Neural Networks (RNN) (Karpathy & Fei-Feil 2014} [Vinyals et al.,|2015) to unified
modeling of visual and text modality with transformers (Li et al., [2019; Xu et al., 2023} Tan &
Bansall 2019; |Alayrac et al.,|2022; |[Radford et al., [2021). With the advancement of Large Language
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Multi-Interleaved Media Stage: Sensorimotor  Concept: Continuity
Question: The bottle in the video will become: [B]

Figure 2: A video-image interleaved example of multi-frame questions. To correctly infer the an-
swer, model needs to understand the question by mapping each image (co-reference) to its option
letter, to understand correlation between frames (temporal understanding) and to infer the possible
trajectory of the bottle (reasoning).

Models (LLMs), existing state-of-the-art MLLMs (Liu et al. 2024; [Li et al., |2023) adopt open-
sourced Large Language Models such as Llama (Touvron et al., 2023), Mistral (Jiang et al., |2023).
Instruction tuning is also introduced to further improve the task generalization ability of MLLMs
(Liu et al.l 2024} Dai et al.,[2023)). To acquire open-ended conversation abilities, LLaVA (Liu et al.,
2024) proposes to distill the conversational abilities of ChatGPT to MLLMs, boosting performance
by a large margin, which becomes a defacto procedure in the area (Wang et al., [2023; Bai et al.,
2023 |Gemini, 2023} Team, 2024} Sun et al., 2023} |Li et al., [2022]).

2.2 HUMAN COGNITIVE DEVELOPMENT

The sensorimotor stage is the first stage of cognitive development proposed by Jean Piaget (Piaget,
1952} [Piaget & Inhelder, [1974). Spanning from birth to approximately 2 years of age, this stage is
characterized by infants’ understanding of the world through their sensory experiences and motor
actions. Several prominent features of human intelligence develop during this period. First, infants
develop object permanence, that they realize objects and people continue to exist even when not in
direct sight, or being heard or touched (Baillargeon et al.,|1985)). They start to understand that there is
a sense of continuity for the ways that objects exist, and the inductive bias of continuity is essential,
e.g., for recognizing objects when occluded or for continuously tracking objects (Spelke et al., {1995}
Le Poidevin, 2000). Infants also develop the sense of boundary during this stage, namely, the ability
to recognize where one object ends and another begins (Kestenbaum et al., |1987; Jackendoff] |{1991).
Lastly, infants develop spatial and perceptual constancy by the end of sensorimotor stage. Spatiality
refers to the ability to perceive the position and distance of objects relative to oneself and each other,
and recognize the spatial invariance between them when presented by various sensory experiences
(Hermer & Spelke, 1996; |Bell & Adams,|1999).

Preoperational and concrete operational stage are the second and third stage of Piaget’s cognitive
development. Typically spanning over 2 to 7 years of age, preoperational stage is the transitional
stage to concrete operational stage, which children enter around 7 years of age. During this period,
children begin to develop internalized mental actions supported by organized structures that can be
manipulated and reversed in systematic ways, known as mental operations (Janet, 1905} Kirkpatrick,
1908 [Piaget, 19505 Piaget & Inhelder, |2014; Miller, 2016). Through mental operations, children
are then able to rigidly perform tasks that are previously unreachable, such as thinking from other
people’s perspectives, understanding hierarchical relations of objects, and reasoning about physical
events in the world. These tasks require not only rudimentary understandings of physical con-
cepts, which gradually became in place during preoperational stage, but also relational and trans-
formational reasoning that can only be done through mental operations (Piaget & Inhelder, [1974;
Church & Goldin-Meadowl |1986;|Houdé| [1997). Since preoperational stage is mostly meaningful as
the transitional period preceding concrete operational stage, we do not have evaluation dimensions
specifically targeting the stage. However, tasks targeting concrete operational stage could assess the
existence of knowledge associated with preoperational stage, such as law of conservation (Piaget,
1952; |Halford, 2011} [Houdél, [{1997).

The formal operational stage is the fourth and final stage in Piaget’s theory of cognitive development,
typically emerging around 11 or 12 years of age and continuing into adulthood (Inhelder & Piaget,
1958). Starting in this stage, one is able to systematic and flexibly apply mental operations to
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not only concrete, physical domains but also abstract, formal domains (Kuhn & Angelev, [1976;
Shayer} |1979; [Huitt & Hummel, [2003)). Foremost, this stage is characterized by the development of
complex thinking and reasoning abilities, such as abstraction, pattern recognition, the employment
of logic, and hypothetical and counterfactual reasoning (Piaget, [1950; Inhelder & Piaget, [1958).
These cognitive advancements pave the way for more sophisticated abilities to interact with the
physical world, marked by mechanical reasoning and tool use (O’Brien & Shapiro| |1968). Together,
there is the advancement in social cognition, characterized by a deeper understanding of intentions,
actions, and the reasoning behind them (Meltzoft} |1999).

2.3  EVALUATION DIMENSION

Boundary Boundary refers to the cognitive understanding of where one object ends and another
begins, an essential aspect of perceiving and understanding the physical world (Kestenbaum et al.|
1987). Without understanding boundary, it seems very hard to construct a concept of object (Berke-
ley} |1709; Jackendoff, [1991).

Spatiality Spatiality, particularly demonstrated through the A-not-B task, involves a child’s under-
standing of the location of objects in relation to their environment (Bell & Adams| 1999)). In a classic
A-not-B task, an object is hidden at location A (such as under a cup) and the child successfully finds
it several times. Then, the object is visibly moved to a different location B (under a different cup), in
full view of the child. Younger infants often make the error of searching for the object at the original
location A, indicating a developmental stage where their understanding of object spatiality is still
forming.

Perceptual Constancy Perceptual constancy is the cognitive ability to perceive objects as being
constant in their properties, such as size, shape, and color, despite changes in perspective, distance,
or lighting (Rutherford & Brainard, 2002 Khang & Zaidi, 2004} (Greenl [2023)). For instance, con-
sider a red ball being thrown in a park. To an observer, the ball appears smaller as it moves farther
away, yet the observer understands it remains the same size throughout its trajectory.

Object Permanence Permanence, or specifically object permanence, is the idea that objects con-
tinue to exist even when they are not visible (Baillargeon, |1986; Spelke et al., [1992). Imagine a
simple scene: a small child playing peek-a-boo. In the beginning, when the caregiver covers their
face with their hands, the child might seem surprised or even distressed, thinking the person has
disappeared. However, as children’s understanding of permanence develops, they begin to realize
that just because they can’t see the person’s face, it doesn’t mean the person is gone.

Continuity Continuity is the cognitive prior in humans that in our world, objects usually exist in a
consistent and continuous manner, even moving out of sight (Spelke et al., [1995; Le Poidevin, 2000;
Spelke et al.| [1994} | Yantis, [1995; |Y1 et al., 2008; [Bertenthal et al., [2013). Picture a train moving
through a tunnel: as it enters one end, yet we naturally expect it to emerge from the other end, if the
train is long enough. This expectation demonstrates our understanding of object continuity. Even
though the train is not visible while it’s inside the tunnel, we know it continues to exist.

Conservation Conservation refers to the ability to understand that certain properties of physical
entities are conserved after an object undergoes physical transformation (Piaget & Inhelder, |{1974).
This is instantiated in their ability to tell that quantities of physical entities across different domains,
such as number, length, solid quantity and liquid volume, will remain the same despite adjustments
of their arrangement, positioning, shapes, and containers (Halford, [2011} |Craig et al., |1973} [Piaget.
& Inhelder, [1974; Houdé et al.l 2011; [Poirel et al., 2012; Marwaha et al.| 2017; |Viarouge et al.,
2019). For example, when a child watches water being poured from a tall, narrow glass into a short,
wide one, a grasp of liquid conservation would lead them to understand that the amount of water
remains the same even though its appearance has changed.

Perspective-taking Perspective-taking is the ability to view things from another’s perspective.
This ability has seminal importance both to the understanding of the physical world as well as to
the competence in social interactions (Wimmer & Perner} [1983; [Wellmanl, [1992; |Liu et al., 2008;
Barnes-Holmes et al.,|2004). The Three Mountain Task first invented by Jean Piaget is widely used
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Figure 3: We demonstrate examples of different sub-concepts from the three stages.
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Figure 4: Reversed Cognitive Development in Advanced Models

in developmental psychology laboratories as the gold standard for testing perspective-taking abilities
in children (Piaget & Inhelder} [1969)




Under review as a conference paper at ICLR 2025

GPT4V-TURBO-HIGH

GPT4o-MINI
InternVL-Chat-V1-1
InternVL2- 18

InternVL2-2B
InternVL2-4B
Mantis-8B-Fuyu
Mantis-8B-clip-li

lama3d
Mantis-8B-siglip-llama3
Mini-InternVL-Chat-2B-V1-5
Mini-InternVL-Chat-4B-V1-5

-0
MiniCPM-V
MiniCPM-V-2
OmChat
Qvis1.5-Llama3-88

-06
Qwen2-VL-2B-Instruct
Qwen2-VL-7B-Instruct
ime-1
Slime-78
Slime-88
chameleon-7b
daude-3-haiku-20240307
deepseek-vl-1.3b -04
deepseek-vi-7b
ﬁamlr\?ov?
gemini-1.5-flash
gemini-1.5-pro
idefics2-8b
idefics-9b-instruct
llava-next-interleave-7b
llava-next-interleave-7b-dpo
| llava-next-llama3

ava-next-mistral-7b
llava-onevision-qwen2-0.5b-si

llava-onevision-qwen2-7b-ov

-0z
llava-v1.5-13b
llava-v1.5-7Tb
mPLUG-OwI3
qwen-chat
shareﬁpmv-?b
uman .| — | oo
Se 0, 2 9 v 9 03 T T o 3z 3,
Ty s, org, My £93%9258¢28%F %
] 3 = Q =z Z 9 B o - 5 2
fooﬁeefep a%%w¢<;®o%wg
o~ ,.at o, 2 Z 2> 2 g o0 F 5 2 ¢ 309
” 2253%32%2%53 3%
2 2 S 3 © Z
g * 3 T
Y %
5
2

Figure 5: Multimodal Large Language Models and Human Performances

Hierarchical Relation Hierarchical relation refers to the ability to organize objects or concepts
into structured categories and subcategories, which are supported by the development of mental
operations marked by class inclusion and transitivity (Shipley, [1979; Winer, |1980; (Chapman &
McBride, [1992). Class inclusion refers to the ability to recognize that some classes or groups of
objects are subsets of a larger class. For example, a child in the concrete operational stage is able to

understand that all roses are flowers, but not all flowers are roses (Borst et al., 2013} |Politzer, 2016).
This concept is essential for one’s systematic and logical organizations of conceptual knowledge.
Transitivity refers to the ability to understand logical sequences and relationships between objects

(Andrews & Halford, |1998}; [Wright & Smailes,|2015)). For instance, if a child knows that Stick A is

longer than Stick B, and Stick B is longer than Stick C, they can deduce that Stick A is longer than

Stick C.

Intuitive Physics Intuitive physics refers to the ability of humans to predict, interact with, and
make assumptions about the physical behavior of objects in their world (Michottel |1963). As chil-
dren grow, they transition from simplistic understandings, such as expecting unsupported objects to

fall, to more complex theories, such as grasping the principles of inertia (Spelke et al.| {1994} |Kim &
Spelkel [1999) and gravity (Vasta & Liben, 1996} [Kim & Spelke, |1999; |Li1 et al., |1999).

Intention Understanding Intention understanding involves recognizing and interpreting the ac-
tions of others (Searlel [1979; Rosenthall, [1991). This process is not just about observing a behavior

but also about understanding the goal behind it (Baker et al., |2009; |Gandhi et al., |2021)). For ex-

ample, seeing someone reaching for a cup is not just about recognizing the physical action but
understanding the intention behind it (e.g., they want to drink).

Mechanical Reasoning Mechanical reasoning refers to the ability to understand and apply me-
chanical concepts and logical principles to solve problems (Allen et al., [2020). This cognitive con-
cept first involves the ability to interpret and predict the behaviors of complex physical systems and
understand how different mechanisms of the systems work. Second, mechanical reasoning requires
the ability to apply logic rules, such as induction, abduction, syllogism (O’Brien & Shapiro, |1968];
Cesana-Arlotti et al.| 2018)), and reasoning forms, such as hypotheticals and counterfactual (Byrne,
2016)), to figure out how to manipulate these systems to achieve a desired outcome (Hegarty, [2004).
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Table 1: Main statistics in CogDevelop2k. All the questions are image/video-text interleaved.

Statistic Number
single-frame 1677
multi-frame 842

* multiple images 200
* single video 401

* multiple videos 124
* video-image-text 117

total 2519

Tool Using Tool using refers to the ability to manipulate tool objects in its environment as aids in
achieving a specific goal, such as obtaining food or modifying the surroundings. A lot of cognitive
components involved in tool using ability, such as affordances, referring to computing the action
possibilities offered to the agent by the tool with reference to the agent’s sensorimotor capabilities
(Gibson, [1979). For example, a door handle affords pulling or pushing, as how the door should be
operated by a human agent.

2.4 DATA SOURCE

CogDevelop2K comprises 2517 images and 445 videos with multimodal options and questions,
crawled primarily from networks as well as self-recorded content. Our targeted platforms in-
clude Wikipedia, Reddit, Twitter, Quora, and TieBa. Some of the captions were adapted from
user comments to ensure content diversity and relevance. Videos for intuitive physics were either
self-recorded or produced using PhysiorEf,

All concept questions were annotated by four researchers with cognitive science and computer sci-
ence background, then reviewed by two independent researchers. For a question to pass the screen-
ing stage, a minimum correctness rate of 95% was required from both reviewers.

2.5 DATASET DESIGN

Existing datasets typically support only one question-answer format or single modality type, which
hinders the assessment of reasoning capabilities across different modalities within the same domain.
For instance, current interleaved image understanding and video understanding models cannot be
effectively compared on the same question. To address this limitation, we include multiple Q&A
formats (e.g., multiple-choice, true/false, and numeric question-answer) and complicate question-
answering by incorporating a new image-video-text interleave format as shown in Fig. [2| To further
explore the cognitive development capabilities of models across these modalities, we optimize our
formality as follows:

Addressing Weak Image-Text Correlation and Imbalance In existing interleaved image-text
datasets, the correspondence between images and text is often loose, and text provides marginal
information for image modeling. This imbalance can cause models to over-rely on textual informa-
tion, especially when text segments are lengthy (Lin et al., [2023)) . To address this issue and focus
on the image understanding abilities of the model, we eliminate sentences that describe the image.
This ensures that the textual information is highly relevant to but does not overlap with the image
content.

Testing Co-Reference, Reasoning, and Temporal Understanding with novel Multi-Frame
Questions Multi-frame questions can simultaneously evaluate a model’s three inference ability:
Co-Reference, Reasoning, and Temporal Understanding (Jiang et al., 2024)). Co-reference involves
linking natural language descriptions with specific image inputs (e.g., ’the first image” or ”A.<img
1>""). Reasoning requires models to make decisions based on cognitive knowledge, such as describ-
ing spatial relationships. Temporal Understanding, on the other hand, tests the model’s capability to

'https://physion.net/
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Q1: The above three images represent a continu- Q2: Is the number of coins in the upper
ous process from time frame 1to 3. Please row and lower row the same?

answer, is the number of coins in the upper row )

and lower row in the third image the same? A Yes @ No

Q Yes @ Yes

Same Question Different Answer

Figure 6: MLLMSs’ Dissociation Between Law of Conservation and Rudimentary Quantity Under-
standing as Exemplified by GPT-40

comprehend sequences of frames in terms of temporal order (multi-frame) and correlation (multi-
view) (L1 et al.l 2024b). Existing interleaved multi-image datasets can not adequately test all three
properties simultaneously. For example, video datasets with temporal information often include
only a single video, while multi-image datasets that require co-reference lack temporal dependen-
cies. To address this, we introduce multi-video interleaving and video-image interleave formats
(multi-frame) to evaluate all three properties concurrently. The statistics of the dataset are presented
in Table 1.

2.6 EVALUATION STRATEGY

We comprehensively evaluate models’ capability of cognitive reasoning using 46 multi-image in-
terleave MLLMs with 11 different promopts. The two evaluation baselines are outlined as follows:

Human baseline We recruit 22 participants, all of whom are college students proficient in En-
glish. Participants are instructed to skip a question if the question is phrased ambiguously or is too
complicated to answer in 90 seconds. This question is marked as failed if the human participant
does not provide an answer.

Zero-Shot-4482-Circular Baseline Similar to previous studies (Lu et al., [2022), the zero-shot
setup follows the format of Q(M)T — A, where the input includes the question text (Q), task
description (T), and multiple options (M) concatenated as tokens, with the output being the pre-
dicted answer (A). Given that model predictions can exhibit bias in multiple-choice settings, we
implemented circular evaluation as baseline. In circular evaluation, all answer options are shifted
one position at a time, ensuring that the correct answer appears in each option slot. Only when the
model correctly predicts all shifted answers is it considered accurate (Liu et al.,|2023). All images
and videos were resized to 4882.

Prompts Strategically crafted prompts can enhance model performance, regardless of whether
fine-tuning is applied (Bsharat et al., [2023} |Yang et al., [2023)). To mitigate this, we use image-
independent contexts, such as relevant concept introductions and character assignments, which en-
courage models to reason beyond the provided textual information. The prompts we used can be
categorized into leading words, deeper thing, role assignment, reward or penalty, and explanation.

3 RESULTS

We systematically evaluate 48 Multi-modal Large Language Models on the CogDevelop2K bench-
mark, which spans 12 cognitive concepts designed to assess a broad range of the developmental tra-
jectory of Multi-modal Large Language Models. These abilities substantiate core cognition ranging
from object permanence and boundary to mechanical reasoning and intentionality understanding.
The models were tested across multiple question formats and ten prompt variations, yielding a com-
prehensive assessment of their core cognition. For example, in the sensorimotor stage, GPT families
show moderate performance, with accuracy scores between 0.4 and 0.6. In the concrete operational
stage, GPT families show lower performance, with accuracy scores between 0.2 and 0.4. Neverthe-
less, in the formal operational stage, GPT families show stronger performance, with accuracy scores
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Table 2: Evaluation of different prompting techniques. The best result is achieved when the concept
explanation is provided to the model. We highlight the improvement over empty string in red.

Category  Prompt GPT4V GPT40  GPT4o

Turbo High High Mini
Empty String 0.519 0.555 0.487
Leading 1. Let’s think step by step. 0.531 0.577 0.489

2. Take a deep breath and

o Word ___ answer this question carefully. e e
Deeper 3. Please answer the question 0518 0.562 0.499
and provide an explanation.

Thinking 4.Please answer the question and 0.476 0.569 0.501

explain to me in simple terms.
5. Please answer the question
and ensure that your answer is 0.522 0.575 0.478
unbiased and doesn’t rely on stereotypes.
6. (Assignassistance’s role) Youarean
Role expert on cognitive science and 0.565 0.617 0.545
are familiar with [Concept name]
Assignment 7. (Assign audiance’s role) Please answer
the question and explain it to me 0.538 0.564 0.496
like I am 11 years old.

8. Please answer the question carefully.

Reward I’m going to tip you 200 dollars 0.528 0.563 0.487
& for a better solution.
Penalty 9. Please answer the question carefully.
You will be penalized if your answer 0.522 0.566 0.491

is incorrect.
- 10. Please read the concept exp lanation o e 0eam
Explanation Oandet?ls:nrzi(si“t/e: tC};an:lI;tt:g Fc)ll?gsa}[tiloor? 0.586 0.636 0.547
) (+0.067)  (+0.081) (+0.06)

Concept: [concept description].

between 0.6 and 0.8. Surprisingly, we find an inverse cognitive developmental trajectory compared
to humans in more advanced models, which are typically regarded as state-of-the-art (Fig. [3| and

Fig. [).

Influence of Prompts. We investigate the influence of different prompting techniques on the perfor-
mance of MLLMs on our benchmark. As illustrated in Table [2) we explore 10 different prompting
techniques (divided into 5 categories). We observe that most prompts are useful on our benchmark,
increasing the averaged performance by at least 1%. Concept explanation, which offers a clearer
context of the question to the MLLMs, surpasses all the other prompts by at least 6%.

4 DISCUSSION

Our results demonstrate that MLLMs exhibit an intriguing reverse cognitive development pattern.
Namely, they are systematically proficient at complex tasks that are typically understood to require
abilities underlying simple tasks that they perform poorly. This finding supports the hypothesis that
MLLMs lack a “core” cognition system, which, as we suggested, could appear as challenge to the
current foundational architecture of MLLM:s as a long-term solution to achieve human-like general
intelligence (Summerfield, 2022). Specifically, the inability to implement core knowledge in artifi-
cial intelligence models prevent them from achieving human-level robustness in performances, even
if such models seem to excel at certain complex cognitive reasoning tasks (Mitchell, 2020; 2021}
Shiffrin & Mitchelll 2023}, Palmarini & Mitchell, [2024). MLLMSs’ poor performances on founda-
tional concepts like spatiality, permanence, continuity, and perspective-taking, which directly reflect
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upon grasps of core knowledge, while achieve proficiency in complex concepts like tool using and
intention understanding exactly exemplifies this concern.Specifically, the developmental trajectory
of human cognition is marked by complex cognitive abilities being grounded upon extremely robust
understandings of a series of foundational concepts, namely core knowledge (Spelkel, [2000; [Spelke
& Kinzler, |2007). Through early stages of development, children exhibit rudimentary yet stable
understandings of objects, actions, number, space, and social partners, each dimension laying the
foundations for the acquisitions of complex abilities in later life.

While a straightforward explanation of this intriguing reverse cognitive development pattern is the
absence of ’core” cognitive abilities, further research is needed in order to arrive at a comprehen-
sive explanation for the mechanistic details of why such abilities fails to emerge as opposed to the
case in humans. At the same time, existing theories may provide some preliminary insights into
this question. In particular, it is likely that scaling of parameters and training data mainly enhanced
the operational resources available to MLLMs but not necessarily allow the grasp of core knowl-
edge (Fodor & Pylyshynl 1988 Kello et al., 2010; [von der Malsburg, |2024). This is because neural
networks do not themselves contain built-in domain-specific information but are only capable of
representing such knowledge through the topological structures of the connection units and the val-
ues of their corresponding weights. Therefore, while MLLMs may have gathered all the information
needed for constructing a system of core knowledge from the training data , it is likely represented
in an extremely distributed fashion that prevents reliable tracing and retrieval (Hinton et al., [1986;
Fodor & Pylyshyn,|1988; Yang et al.|[2022). If the task condition do not offer enough cues to trigger
the required aspect of the system, then MLLMSs may fail at the task even if they "know” the concept
that is needed for providing the correct answer.

An initial validation of this explanation is that the best model performance on our benchmarks are
achieved when the prompts contain an explanation of the concept tested by the experiment (see Table
[2). Such an effect is notable given that unlike regular in-context learning prompts, concept expla-
nations contain mainly high-level, abstract information that has no direct relevance to the context of
the task. Opposingly, it may be seen as a rather immediate attempt of conceptual pre-training that
facilitates the retrieval and synthesis of “core” conceptual resources distributed throughout the net-
works. The effectiveness of such an attempt calls for the attention to training measures for MLLMs
aiming at bettering the implementation and use of core cognition, which appears to be a promising
approach toward more robust and comprehensive foundational models.

5 CONCLUSION

In this paper, we explored the cognitive capabilities of Multi-modal Large Language Models
(MLLMs) through the lens of core cognitive abilities that underpin human intelligence. By introduc-
ing CogDevelop2K, a novel benchmark that spans 12 subconcepts across developmental stages, we
aimed to assess the fundamental understanding and reasoning capacities of MLLMs. Our evaluation
of 46 models revealed intriguing insights, including a reversed cognitive developmental trajectory
compared to humans. This finding raises questions about whether MLLMs truly comprehend tasks
or simply exhibit performance without genuine understanding. These results underscore the need
for further investigation into the cognitive foundations of MLLMs, as well as the influence of evalu-
ation strategies and prompting techniques in shaping their outcomes. Ultimately, this study serves as
a step toward unraveling the nature of MLLM intelligence and their potential limitations in mirroring
human cognition.
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