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Abstract

The infinite width limit of random neural networks is known to result in Neural
Networks as Gaussian Process (NNGP) (Lee et al. [2018]), characterized by task-
independent kernels. It is widely accepted that larger network widths contribute
to improved generalization (Park et al. [2019]). However, this work challenges
this notion by investigating the narrow width limit of the Bayesian Parallel Branch-
ing Graph Neural Network (BPB-GNN), an architecture that resembles residual
networks. We demonstrate that when the width of a BPB-GNN is significantly
smaller compared to the number of training examples, each branch exhibits more
robust learning due to a symmetry breaking of branches in kernel renormalization.
Surprisingly, the performance of a BPB-GNN in the narrow width limit is generally
superior or comparable to that achieved in the wide width limit in bias-limited
scenarios. Furthermore, the readout norms of each branch in the narrow width limit
are mostly independent of the architectural hyperparameters but generally reflective
of the nature of the data. Our results characterize a newly defined narrow-width
regime for parallel branching networks in general.

1 Introduction

The study of neural network architectures has seen substantial growth, particularly in understanding
how network width impacts learning and generalization. It is generally believed that wider networks
generally perform better (Allen-Zhu et al. [2019], Jacot et al. [2018], Gao et al. [2024]). However,
this work challenges the prevailing assumption by exploring the narrow width limit of Bayesian
Parallel Branching Graph Neural Networks (BPB-GNNs), an architecture inspired by residual GCN
networks (Chen et al. [2020a, 2022]). We show theoretically and empirically that narrow-width
networks can perform better than their wider counterparts due to a symmetry-breaking effect in kernel
renormalization, in bias-limited scenarios. This paper presents a detailed theoretical analysis of
BPB-GNNs in the narrow-width regime, highlighting realistic conditions under which these networks
demonstrate robust learning and comparable generalization.

Contributions :

1. We introduce a novel yet simple GCN architecture with parallel independent branches, and
derive the exact generalization error for node regression in the statistical limit as the sample
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size P → ∞ and network width N → ∞, with their ratio a finite number α = P/N , in the
over-parametrized regime.

2. We show that in the Bayesian setting, the bias will decrease and saturate at narrow hidden
layer width, a surprising phenomenon due to kernel renormalization. We demonstrate that
this can be understood as a robust learning effect of each branch in the student-teacher task,
where each student branch is learning the teacher’s branch.

3. We demonstrate this narrow-width limit in real-world dataset Cora and understand each
branch’s importance as a nature of the dataset.

2 BPB-GNN

We are motivated to study the parallel branching networks as they resemble residual blocks in
commonly used architectures and tractable to study analytically with our Bayesian framework. Given
graph G = (A,X), where A is the adjacency matrix and X the node feature matrix, the final readout
for node µ is a scalar fµ(G; Θ) which depends on the graph and network parameters Θ.

2.1 Parallel branching GNN architecture

Concretely, the overall readout fµ(G; Θ) for node µ is a sum of the branch readouts

fµ(G; Θ) =

L−1∑
l=0

fµ
l (G; Θl = {W (l), a(l)}), (1)

where

fµ
l (G,Θl) =

1√
L

N∑
i=1

1√
N

a
(l)
i

N0∑
j=1

1√
N0

W
(l)
ij

n∑
ν=1

(Al)µνx
ν
j (2)

Note that when L = 2, the BPB-GNN reduces exactly to a 2-layer residual GCN (Chen et al. [2020b]).

2.2 Bayesian node regression

We consider a Bayesian semi-supervised node regression problem, for which the posterior probability
for the weight parameters is given by

P (Θ) =
1

Z
e−E(Θ;G,Y )/T =

1

Z
exp(− 1

2T

P∑
µ=1

(fµ(G,Θ)− yµ)2 − 1

2σ2
w

ΘTΘ), (3)

where the first term in the exponent corresponds to the likelihood term induced by learning P node
labels yµ with squared loss and the second term corresponds to the Gaussian prior with variance
σ2
w. Z =

∫
e−E(Θ)/T dΘ is the normalization constant. In the following theoretical derivations,

our working regime is in the overparametrizing high dimensional limit (Li and Sompolinsky [2021],
Montanari and Subag [2023], Bordelon and Pehlevan [2022], Howard et al. [2024]): P,N,N0 → ∞,
P
N = α finite, and the capacity α0 = P

LN0
<1. As we will show later, this limit is practically true

even with P,N not so large (our smallest N is 4). We will also use near 0 temperature in which case
the training error will be near 0 and the prior L2 regularization has an inductive bias on the solution
space that will influence the generalization properties.

2.3 Kernel renormalization and order parameters

As shown in Appendix B.2, we can integrate out the weights in the partition function and get
Z =

∫
Due−H(u) described by a final effective Hamiltonian independent of weights

H(u) = S(u) + E(u), (4)

where we call S(u) the entropic term

S(u) = −
∑
l

N

2
log ul +

∑
l

N

2σ2
w

ul (5)

2
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Figure 1: Overview of the main takeaway: BPB-GNN learns robust representations for each branch
at narrow width. (a) The parallel branching GNN architecture, with 2 branches. The independent
branches have non-sharing weights and produce the final output f as a sum of branch-level readouts fl.
(b) Student and teacher readout norms squared for wide and narrow student BPB-GNN networks. The
student network with width N is trained with the teacher network’s output. Histograms correspond
to the samples from Hamiltonian Monte Carlo simulations and solid lines correspond to the order
parameters calculated theoretically. σt = σw = 1. At N = 4, the HMC samples of branch readout
norms squared (orange and red histograms) for the student network ∥al∥2

N σ2
w concentrate at their

respective theoretical values ulσ
2
w and overlap with the teacher’s readout norms squared ∥Al∥2

N σ2
t

(orange and red dashed lines) for corresponding branches. At N = 1024 the samples for the student
network (blue and green histograms) concentrate at their respective theoretical values but remain far
from the teacher’s values, instead approaching the GP limit σ4

w (blue dashed line).

and E(u) the energetic term

E(u) =
Nα

2P
Y T (

∑
l

1

L
ulKl + TI)−1Y +

Nα

2P
log det(

∑
l

1

L
ulKl + TI), (6)

where Kl =
σ2

N0
[AlXXTAl]|P is the (P × P ) input node feature kernel.

Therefore, the final effective Hamiltonian has the overall kernel

K =
∑
l

1

L
ulKl, (7)

where ul’s are order parameters which is the minimum of the effective Hamiltonian Eq. 4 by saddle
point methods, which correspond to the statistical average of each branch’s readout norm squared
(Appendix B.4)

ul = ⟨∥al∥2⟩/N (8)

3 The narrow width limit experiments

As we discussed briefly in 2.3, the kernel becomes highly renormalized at narrow width. In fact,
in the other extreme scenario when N/P → 0, the energetic term in the Hamiltonian completely
dominates, and we would expect that the generalization performance saturates as the order parameters
in the energetic terms become independent of width N . Therefore, just as infinitely wide networks
correspond to the GP limit, we propose that there exists a narrow width limit when the network width
is extremely small compared to the number of training samples. We briefly showcase the narrow
width limit for the student-teacher and Cora experiments, with more details discussed in the appendix.
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Figure 2: Student network generalization performance as a function of network width N and
regularization strength σw. Generalization is normalized over the average true readout labels.

3.1 Student-Teacher experiment on robust branch learning

We demonstrate this robust learning phenomenon and provide a first evidence of the equipartition
conjecture with the student-teacher experiment, where a student BPB-GNN network with varying
hidden layer width N learns from the lables generated by a teacher network with fixed layer width
(Appendix B.5,D.1).

As shown in Figure 1(b), an extremely narrow student network learns the teacher’s branch readout
norms very robustly, despite having a large variance; on the other hand, a much wider network fails
to learn the teachers’ norms and approaches the GP limit, while having a smaller variance.

Using the mean predictor and variance from the theory (Appendix B.3), we can determine the
generalization error of the student network as a function of network width N , as shown in Figure 2.
At narrow width, we expect individual branch to learn the teacher’s branch output yl independently,
causing the bias to increase with network width. This is observed for both branches, with a transition
from the narrow-width regime to the GP regime. The regularization strength σ2 controls the transition
window, with larger σ’s leading to sharper transitions. This aligns with our analysis of the entropic
and energetic contributions, where larger σ amplifies the distinction between the two terms. In
contrast, the variance decreases with network width for small σw’s, resulting in a trade-off between
the contributions of bias and variance to overall generalization performance.

4 BPB-GNN on Cora

We also perform experiments on the Cora benchmark dataset by training the BPB-GNN with binary
node regression, for a range of L,N, σw values (Appendix D.2). We observe a similar narrow-to-wide
width transition for the bias term. As shown in Figure 3, the bias increases with network width,
transitioning to the GP regime, and we observe the trend extending to a potential narrow width limit.1
Additionally, it is demonstrated that using more branches that involve higher-order convolutions
improves performance.

5 Conclusion

In conclusion, this paper introduces and investigates the concept of narrow width limits in Bayesian
Parallel Branching Graph Neural Networks. Contrary to the common belief that wider networks
inherently generalize better, our results indicate that BPB-GNNs with significantly narrower widths
can achieve better or competitive performance. This is attributed to effective symmetry breaking and
kernel renormalization in the narrow-width limit, which lead to robust learning.

1In this case, the narrow width limit is hard to demonstrate as the transition window is below realistic
minimum of network width.
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Figure 3: Cora generalization performance vs. network width N and branch number L, for various
regularization strength σw’s. The accuracy is computed by turning the mean predictor from HMC
samples into a class label using its sign.
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A Related works

Infinitely wide neural networks: Our work follows a long tradition of mathematical analysis of
infinitely-wide neural networks (?Jacot et al. [2018], Lee et al. [2018], Bahri et al. [2024]), resulting
in NTK or NNGP kernels. Recently, such analysis has been extended to structured neural networks,
including GNNs (Du et al. [2019], Walker and Glocker [2019]). However, they do not provide an
analysis of feature learning in which the kernel depends on the tasks.

Kernel renormalization and feature learning: There has been progress in understanding simple
MLPs in the feature-learning regime as the shape of the kernel changes with task or time (Li and
Sompolinsky [2021], Atanasov et al. [2021], Avidan et al. [2023], Wang and Jacot [2023]). We
develop such understanding in graph-based networks.

Theoretical analysis of GCN: There is a long line of works that theoretically analyze the expres-
siveness (Xu et al. [2018], Geerts and Reutter [2022]) and generalization performance (Tang and Liu
[2023], Garg et al. [2020], Aminian et al. [2024]) of GNN. However, it is challenging to calculate the
dependence of generalization errors on tasks. To our knowledge, our work is first to provide a tight
bound of the generalization error for GNN with residual-like structures. The architecture closest to
our linear BPB-GCN is the linearly decoupled GCN proposed by Cong et al. [2021]; however, the
overall readout vector is shared for all branches, which will not result in kernel renormalization for
different branches.

B Details on Theory of BPB-GNN

B.1 Summary of Notations

Hyperparameters and Dimensions

P Number of training nodes

n Total number of nodes for a graph

N0 Input node feature dimension

N BPB-GNN hidden layer width

L Total number of branches

σw L2 prior regularization strength

T Temperature

α0 =
P

LN0
Network capacity

α =
P

N
Width ratio

Network Architecture and Input/Output
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Â ∈ Rn×n Adjacency matrix

A ∈ Rn×n Normalized adjacency matrix by its degree matrix D

X ∈ Rn×N0 Input node feature matrix

G = (X,A) Graph

W (l) ∈ RN0×N Hidden layer weight for branch l

a(l), al ∈ RN Readout vector for branch l

Θl = (Wl, al) Collection of parameters for branch l

hµ
l ∈ RN Activation vector for branch l and node µ

fµ
l ∈ R Readout prediction for branch l and node µ

fµ ∈ R Overall readout prediction for node µ

yµ ∈ R Overall node label for node µ

Hl(Wl) ∈ RP×N Activation feature matrix for branch l

Y ∈ RP Training node labels

F ∈ RP Readout predictions

Statistical Theory

E(Θ;G, Y ) Energy loss function

Z Partition function

I ∈ RP×P Identity matrix

H(W ) Hamiltonian after integrating out readout al’s

u ∈ RL Order parameters as saddle point solution

ul ∈ R Order parameter for branch l

H(u) Hamiltonian as a function of order parameters

S(u) Entropy as a function of order parameters

E(u) Energy as a function of order parameters

rl Mean squared readout

Trl Variance-related of readout

Kernels

K(W ) ∈ RP×P Hidden layer weight dependent overall kernel

Kl Branch l kernel

K ∈ RP×P Overall kernel averaged over W ’s, K =
∑

l
ulKl

L

kνl ∈ RP×1 Branch l kernel column for the P training nodes against test node ν

kν ∈ RP×1 Overall kernel column for the P training nodes against test node ν

|P Kernel restricted to the P training nodes against P training nodes

|(P,ν) Kernel restricted to P training nodes against the test node ν

|(ν,ν) Kernel restricted to the test node ν against test node ν

Student-teacher Setup
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Y ∗
l ∈ RP Teacher network readout prediction for branch l for P nodes

Y ∗ ∈ RP Teacher network overall readout for P nodes

W ∗
l ∈ RN0×N Teacher hidden layer weight for branch l

A∗
l ∈ RN Teacher readout vector for branch l

β2
l Teacher readout variance

σ2
t Teacher hidden layer weight variance

B.2 Kernel renormalization

Following similar derivations as the first kernel renormalization work Li and Sompolinsky [2021], we
will integrate out the weights in the partition function Z =

∫
dθ exp(−E(Θ)/T ), from the readout

layer weights al’s to the hidden layer weights Wl’s and arrive at an effective Hamiltonian shown in
the main text.

First, we linearize the energy in terms of al’s by introducing the auxiliary variables tµ, µ = 1, . . . , P .

Z =

∫
dΘ

∫ P∏
µ=1

dtµ exp

− 1

2σ2
w

Θ⊤Θ−
P∑

µ=1

itµ

(
1√
LN

N∑
i=1

L−1∑
l=0

a
(l)
i hµ

i (G)− Y µ

)2

− T

2
t⊤t


(9)

Now we can integrate out al’s as they are linearized and the partition function becomes

Z =

∫
DWe−H(W ), (10)

with effective Hamiltonian

H(W ) =
1

2σ2
w

L−1∑
l=0

TrWT
l Wl +

1

2
Y T (K(W ) + TI)−1Y +

1

2
log det(K(W ) + TI), (11)

where

K(W ) =
1

L

∑
l

σ2
w

N
(Hl(Wl)Hl(Wl)

T )|P (12)

is the P × P kernel matrix dependent on the observed P nodes with node features Hl = AlXWl

and denote |P as the matrix restricting to the elements generated by the training nodes.

Now we perform the integration on Wl’s, and get a Fourier representation of Z with hl,ul as auxiliary
variables after inserting t:

Z =

∫ L∏
l=0

dhlduldt exp
(
itTY −

∑
l

N

2
log(1 + hl) +

∑
l

N

2σ2
w

ulhl −
1

2
tT
(∑

l

1

L
ulKl + TI

)
t
)

=

∫ L∏
l=0

dhldul exp
(
−
∑
l

N

2
log(1 + hl) +

∑
l

N

2σ2
w

ulhl
1

2
Y T
(∑

l

1

L
ulKl + TI

)−1

Y
)
(13)

where

Kl =
σ2
w

N0
[AlXXTAlT ]|P (14)

is the input kernel for branch l. Now as N → ∞ and α = P
N fixed, we can perform the saddle point

approximation and get the saddle points for hl as

1 + hl =
σ2
w

ul
(15)
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Plugging this back to the equation, we get

Z =

∫
Πl dule

−Heff (u), (16)

with the effective Hamiltonian
Heff (u) = S(u) + E(u), (17)

where we call S(u) the entropic term

S(u) = −
∑
l

N

2
log ul +

∑
l

N

2σ2
w

ul (18)

and E(u) the energetic term

E(u) =
1

2
Y T (

∑
l

1

L
ulKl + TI)−1Y +

1

2
log det(

∑
l

1

L
ulKl + TI) (19)

Therefore, after integrating out Wl, the effective kernel is given by

K =
∑
l

1

L
ulKl, (20)

where Kl is

Kl =
σ2
w

N0
[AlXXTAl]|P (21)

And the saddle point equations for ul’s are determined by

N(1− ul

σ2
w

) = −Y T (K + TI)−1ulKl

L
(K + TI)−1Y +Tr[K−1ulKl

L
], (22)

where we call
rl = Y T (K + TI)−1ulKl

L
(K + TI)−1Y (23)

and
Trl = Tr[K−1ulKl

L
] (24)

As we will show later, these represent the mean and variance of the readout norm squared respectively.
In the T = 0 case, the saddle point equation becomes

N(1− ul

σ2
w

) = −Y TK−1ulKl

L
K−1Y +Tr[K−1ulKl

L
] (25)

B.3 Predictor statistics and generalization

We can get the predictor statistics of each branch readout yνl (G) on a new test node ν by considering
the generating function:

Z(η1, . . . , ηL) =

∫
DΘexp

{
−β

2

∑
µ

(fµ(G; Θ)− yµ)2

+
∑
l

iηl
1√
NL

∑
i

a
(l)
i h

(l),ν
i (G,Wl)−

T

2σ2
w

ΘTΘ

} (26)

Therefore, by taking the derivative with respect to each ηl, we arrive at the statistics for yl(x) as:

⟨fν
l (G)⟩ = ∂iηl

logZ
∣∣
η⃗=0

(27)

⟨δf2
l,ν(G)⟩ = ∂2

iηl
logZ

∣∣
η⃗=0

(28)
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After integrating out the weights Θ layer by layer, we have:

Z(η1, . . . , ηL) =

∫
Πldul exp

{∑
l

(
N

2
log ul −

N

2σ2
w

ul

)
+

1

2
(iY +

∑
l

1

L
ηlulk

ν
l )

T (
∑
l

1

L
ulKl + TI)−1(iY +

∑
l

ηl
1

L
ulk

ν
l

− 1

2
log det(

∑
l

1

L
ulKl + TI)− 1

2

∑
l

η2l
1

L
Kν,ν

l

}
. (29)

Here

kνl =
σ2
w

N0
[AlXXTAl]|(P,ν) (30)

is the P × 1 column kernel matrix for test node ν and all training nodes, and

Kν,ν
l =

σ2
w

N0
[AlXXTAl]|(ν,ν) (31)

is the single matrix element for the test node. Therefore, eventually, we have:

⟨fν
l ⟩ =

ulk
T
l,ν

L
(K + TI)−1Y (32)

and

⟨δf2
l,ν⟩ =

ulK
ν,ν
l

L
−

ulk
T
l,ν

L
(K + TI)−1ulkl,ν

L
(33)

The predictor statistics of the overall readout f =
∑

l fl is given by:

⟨fν(G)⟩ =
∑
l

ulk
T
l,ν

L
(K + TI)−1Y = kTν (K + TI)−1Y (34)

⟨δf(G)2ν⟩ =
∑
l

ulK
ν,ν
l −

∑
l,l′

ulk
T
l,ν(K + TI)−1ul′kl′,ν = Kν,ν − kTν (K + TI)−1kν (35)

B.4 Statistics of branch readout norms

From the partition function Eq.9, we can relate the mean of readout weights al to the auxiliary
variable t by

⟨al⟩W = −i
σ2
w√
N

ΦT
l ⟨t⟩ = − σ2

w√
NL

ΦT
l (K + TI)−1Y, (36)

where Φl is the node feature matrix for the hidden layer nodes. We have

⟨aTl ⟩⟨al⟩ = σ2
wY

T (K + TI)−1ulKl

L
(K + TI)−1Y = rlσ

2
w (37)

We can calculate the second-order statistics of al: the variance is

⟨δaTl δal⟩ = σ2
wTr(I +

σ2
wβ

NL
ΦlΦ

T
l )

−1 = σ2
w(N − Tr(K + TI)−1ulKl

L
) = σ2

w(N − Trl) (38)

Therefore,
⟨a2l ⟩ = ⟨δaTl δal⟩+ ⟨δaTl δal⟩ = Nσ2

w + σ2
wrl + 1− σ2

wTrl = Nul (39)

Therefore, we have proved the main text claim that the order parameter ul’s are really the mean
squared readout norms of the branches.
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B.5 Robust learning of branches: the equipartition conjecture

What happens in the narrow width limit? In the following, we demonstrate that each branch will learn
robustly at narrow width.

The equipartition conjecture Consider a student-teacher network setup, where the teacher network
is given by

f∗(G; Θ∗) =
∑
l

f∗
l (G;W ∗

l ) =
∑
l

1√
NtL

∑
i

Ai,lh
l
i(G;W ∗

l ). (40)

W ∗
ij ∼ N (0, σ2

t ) and Ai,l ∼ N (0, β2
l ), where β2

l is the variance assigned to the readout weight
for the teacher branch l and Nt is the width of the hidden layer. Similarly, the student network is
given by the same architecture, with layer width N and learns from P node lables from the teacher
Y ∗P
µ=1 = f∗(G,Θ∗)µ in the Bayesian regression setup of Eq. 3 with prior variance σ2

w. We conjecture
that as α = P/N → ∞ the posterior distribution of the student network readout vector al satisfies

σ2
w⟨∥al∥2⟩ = σ2

t ∥Al∥2. (41)

Sketch of proof :

At narrow width, the saddle equation 22 becomes rl = Trl. Now consider (Y ∗Y ∗T )µ,ν =∑
i,j,l1,l2

1
NtL

Ai,l1Aj,l2h
l1,µ
i (G)hl2,ν

j (G); we conjecture that this quantity concentrates at its ex-
pectation value Y ∗Y ∗T ≈ Ea∗,W∗(Y Y T ) =

∑
l β

2
l Kl/L. Given this assumption, rl becomes

rl = Y ∗TK−1ulKl

L
K−1Y ∗ = Tr(K−1ulKl

L
Y ∗Y ∗T ) ≈ Trl(K

−1
∑
l

β2
l

Kl

L
) (42)

The solution that satisfies the saddle point equations is

ulσ
2
w = β2

l σ
2
t . (43)

Therefore, by Eq.8, we proved the conjecture given Nt is also large enough. We call this equipartition
conjecture, as the mean-squared readout and the variance (B.4) have to exactly balance each other,
which contribute to the energy term in the Hamiltonian. This is only a conjecture, as it relies on the
concentration equality assumption made in the proof. However, as we demonstrate in the experiments,
the equipartition conjecture holds empirically.

Furthermore, writing ulKl/L ≈ Y ∗
l Y

∗T , at narrow width, the predictor statistics for each stream for
the training data from the teacher becomes

⟨fl(X)⟩ = ulKl

L
(K + TI)−1Y ∗ ≈ Y ∗

l , (44)

ie. not only do we recover the statistics for the teacher Al’s, we have also recovered the feature
learned by each branch.

C Further results

C.1 Symmetry Breaking and Convergence of Branches

We perform theoretical calculations and HMC sampling for the student branch squared readout norms
as we vary the student network width N and the prior regularization strength σw. Figure 4(a) shows
the statistical average of the student branch squared readout norms, ie. ⟨∥al∥2⟩σ2

w/N as a function of
the network width N , where the branch norms split as the network width gets smaller, which we call
symmetry breaking. The symmetry breaking of branch norms from the GP limit to the narrow width
limit accompanies the convergence to learning teacher’s norms at narrow width for different σw’s as
shown in Figure 4(b)(c), supporting Eq. 41.

In addition, we show the bias and variance for individual branches of the student network in Figure 5.
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Figure 4: Statistical average of student readout norms squared as a function of network width from
theory and HMC sampling, for student-teacher tasks described in Section 3.1. (a): ⟨∥al∥2⟩σ2

w/N as a
function of network width N for a fixed σw. The branch norms break the GP symmetry as it goes
to the narrow width limit. (b)(c): Branch 0 and branch 1 readout norm squared respectively for a
range of σw regularization values. The student branch norms with different regularization strengths
all converge to the same teacher readout norm values at narrow width.

Figure 5: Student network squared bias and variance for individual branches as a function of network
width N and regularization strength σw. The mean and variance of branch l readout fµ

l for node µ is
calculated in B.3. Generalization values are normalized over the average true readout labels.

C.2 Convergence of Branch Importance at Narrow Width

An interesting aspect of the BPB-GNN network is that the branch readout norms converge at the
narrow width for different hyperparameters σw and L, reflecting the natural branch importance for
the task.

As shown in Figure 6, the BPB-GNN with branches L = 6 robustly learns the readout norms at
narrow width independently of σw’ s, consistent with the student-teacher results. This suggests
that we can recast the data as generated from a ground-truth teacher network even for real-world
datasets. The last branch of the BPB-GNN network has a larger contribution, reflecting the presence
of higher-order convolutions in the Cora dataset. From a kernel perspective, increasing branches better
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Figure 6: Cora experiment: statistical average of squared readout norms ⟨∥al∥2⟩σ2
w/N for each

branch l as a function of the network width N , and regularization strength σw. The BPB-GNN has
L = 6 branches.

Figure 7: Kernel Kl =
σ2
w

N0
AlX0X

T
0 A

l for each branch l shown for the first 8 branches on Cora
dataset, sorted by node labels. A is the normalized adjacency matrix of the Cora graph, X0 the node
feature matrix and N0 the node feature dimension. Initialization variance σ2

w = 1 and total node
number n = 2708.

distinguish the nodes, as shown in Figure 7. This could explain the selective turn-off of intermediate
branches and the increased contribution of the last branch.

Furthermore, the first two branches are learned most robustly at narrow width, as shown in Figure 8,
where the branch norms converge for the first two branches even for BPB-GNNs with different L.
This suggests that the branch importance, as reflected by the norms learned at narrow width, indicates
the contribution of the bare data and the first convolution layer.

D Experimental details

D.1 Student-teacher CSBM

For the student-teacher task, we use the contextual stochastic block model introduced by Deshpande
et al. [2018] to generate the graph G. The adjacency matrix is given by

Aij =


1 with probability p = cin/n, if i, j ≤ n/2

1 with probability p = cin/n, if i, j ≥ n/2

1 with probability q = cout/n, otherwise
(45)

where
cin,out = d±

√
dλ (46)

d is the average degree and λ the homophily factor.

The feature vector x⃗µ for a particular node µ is given by

x⃗µ =

√
µ

n
yµu⃗+ ξ⃗µ, (47)
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Figure 8: Branch Importance vs. branch number l on Cora. Legends represent different total number
of branches L. The branch importance is defined as the statistical average of branch squared readout
norms ⟨∥al∥2⟩σ2

w/N at the narrow width limit; here we take the empirical branch norm values at
N = 4 and fixed σw = 1.4.

where
u⃗ ∼ N (0, IN0

), ξ⃗µ ∼ N (0, IN0
) (48)

In the experiment, we use N0 = 950,d = 20,λ = 4 and µ = 4. The teacher network parameters are
variance σ2

t = 1, width Nt = 1024, branch norms variance β2
0 = 0.4, β2

1 = 2 for individual element
of the readout vector al. Temperature T = 0.0005σ2

w for each σw value.

D.2 Cora

For the Cora dataset, we use a random split of the data into 21% as training set and 79% as test
set. We group the classes (1, 2, 4) into one group and the rest for the other group for binary node
regression, with labels as ±1’s. The Bayesian theory and HMC sampling follows the same design
as in the student-teacher setup. We use temperature T = 0.01 for both theory and sampling as the
sampling becomes more difficult for smaller temperature. This explains the discrepancy of the GP
limit bias for different σw values.

D.3 Hamiltonian Monte Carlo

The sampling experiments in the paper are all done with Hamiltonian Monte Carlo simulations, a
popular method for sampling a probability distribution. HMC has faster convergence to the posterior
distribution compared to Langevin dynamics. We used Numpyrho to set up chains and run the
simulations on the GPU cluster. Due to memory constraint, we only sampled up to N = 1024 hidden
layer width for the student-teacher CSBM experiment and N = 64 for the Cora experiment. Since
we mainly aim to demonstrate the narrow width effect in this paper, this suffices the purpose.
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E Debunking Challenge Submission

E.1 What commonly-held position or belief are you challenging?

Provide a short summary of the body of work challenged by your results. Good summaries should
outline the state of the literature and be reasonable, e.g. the people working in this area will agree
with your overview. You can cite sources beside published work (e.g., blogs, talks, etc).

There is a common heuristics/belief that wider network generally does better both in the Bayesian
setting and in DNNs trained with SGD ((Jacot et al. [2018], Lee et al. [2018], Bahri et al. [2024]).

E.2 How are your results in tension with this commonly-held position?

Detail how your submission challenges the belief described in (1). You may cite or synthesize results
(e.g. figures, derivations, etc) from the main body of your submission and/or the literature.

We characterize a new regime that we call the narrow width limit in the Bayesian setting, such that
when each kernel from parallel branches is sufficiently different, the kernel is re-normalized by an
order parameter u that depends on the data and task. We demonstrate empirically that the overall bias
is smaller at the narrow width limit (Figure 23), an "inverse scaling law" if you will.

E.3 How do you expect your submission to affect future work?

We expect and hope more work to explore the narrow width limit; in particular, the attention network
resembles the BPB-GNN with different attention heads as the parallel branches. There will be a
narrow width limit for the attention network in the Bayesian setting, but more interestingly we would
like to see if they hold with SGD or Adam training.
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