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Abstract

Training agents to act in embodied environments typically requires vast training
data or access to accurate simulation, neither of which exists for many cases in
the real world. Instead, world models are emerging as an alternative—leveraging
offline, passively collected data, they make it possible to generate diverse worlds
for training agents in simulation. In this work, we harness world models to gen-
erate “imagined” environments to train robust agents capable of generalizing to
novel task variations. One of the challenges in doing this is ensuring the agent
trains on useful generated data. We thus propose a novel approach IMAC (Imag-
ined Autocurricula) leveraging Unsupervised Environment Design (UED), which
induces an automatic curriculum over generated worlds. In a series of challeng-
ing, procedurally generated environments, we show it is possible to achieve strong
transfer performance on held-out environments having trained only inside a world
model learned from a narrower dataset. We believe this opens the path to utilizing
larger-scale, foundation world models for generally capable agents.

1 Introduction

Despite significant advancements in Al, we remain far from generally capable agents [!]. In the
2010s, progress towards this goal was driven by breakthroughs in deep reinforcement learning (RL,
[2]) where agents such as AlphaGo [3] showed it was possible to discover new knowledge beyond
human capabilities, like the famous move37. However, scaling RL in simulation to produce a more
general intelligence remains bottlenecked by the lack of sufficiently diverse and real-world simula-
tors [4, 5]. By contrast, more recent years have been dominated by agents trained from vast quanti-
ties of Internet data. Here, agents have a broader knowledge of the real world but lack of ability to
discover new, superhuman behaviors since they are largely trained to mimic the training data.

World models are emerging as a promising approach to leverage the best of both. They “stand on the
shoulders of giants” by training on vast Internet data [6, 7, 8, 9, 10], but then enable agents to train
with RL inside their generated (or imagined) environments. Thus, world models make it possible for
agents to imagine potential outcomes without direct environment interaction, allowing them to train
across diverse scenarios with substantially fewer real experiences [1 1, 12, 13, 14, 15, 16, 17]. In
theory, large foundation world models could then be used to generate sufficiently rich environments
for agents to learn superhuman behaviors for a swathe of embodied settings. Progress in world
models research has typically fallen into two categories.
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Figure 1: Architecture overview: (1) Offline Data Collection: Diverse state-action-reward-next state
tuples are collected via policy mg to form the dataset. (2) World Model Training: A state transition
denoiser and reward/termination predictor are trained on the dataset and frozen for consistency. (3)
Agent Training: The agent learns through an imagine-based autocurriculum using Prioritized Level
Replay, which balances between sampling from existing experiences and generating new rollouts to
update the buffer.

The first seeks to train world models from single (online or offline) environments, achieving strong
and sample-efficient performance [18, 19, 17]. The latter sees more general, so-called foundation
world models trained from large-scale internet data [0, 7, 9, 10], but these models have not been
shown to be useful for training generalist agents.

In this paper, we attempt to bridge this gap. We focus on the offline RL setting, where agents
must learn from pre-collected datasets without additional environment interaction [20]. We focus on
procedurally generated environments, meaning our offline data contains sequences (action labelled
videos) from a variety of different levels. We then seek to transfer the learned agents to new, unseen
levels from the same environment. This presents a significant challenge for existing methods, which
often fail to generalize to new tasks when training purely from offline data [2 1, 22]. We believe world
models can be the solution to this problem—we first train a diffusion world model from the offline
samples and then use it to generate new, imagined worlds. Crucially, naively generating data from
world models can lead to ineffective training data, making agent learning inefficient. This ineffi-
ciency stems from both the quality of the worlds themselves and the challenge of setting appropriate
hyperparameters like imagined episode length across diverse tasks. To address this challenge, we
leverage the Unsupervised Environment Design paradigm (UED) [23])—where a teacher proposes
levels that maximize student regret. Rather than training on fixed or random sets of imagined worlds,
we create an Imagined Autocurricula, or IMAC. Importantly, our framework is world-model agnos-
tic—while we use a diffusion world model as our foundation, our autocurriculum approach can be
applied to any world model architecture that provides reward and next-token predictions. Our con-
tribution lies not in advancing world model architectures, but in demonstrating how UED principles
can effectively guide agent training within learned world models from offline mixed dataset.

Our approach IMAC uses Prioritized Level Replay (PLR, [24]) as a UED algorithm, which we show
provides a natural complement to the learned world model-the world model generates diverse po-
tential training trajectories or "imagined environments," while PLR strategically selects subsequent
training tasks from these imagined rollouts. Figure 1 illustrates the overall architecture of our ap-
proach. As we show, this prioritization process naturally induces an automatic curriculum over the
generated, imagined worlds, meaning the agent is exposed to increasingly challenging training tasks.
As a testbed for this paradigm, we leverage seven Procgen environments with high-dimensional vi-
sual inputs, where both model-free [25] and model-based approaches [26] struggle to transfer knowl-
edge to unseen scenarios [21, 22]. The resulting agents have significantly stronger generalization
performance than state-of-the-art baselines, demonstrating strong transfer performance on held-out
environments having trained only inside a world model learned from a narrower dataset. We believe
this opens the path to utilizing larger-scale, foundation world models for generally capable agents.

Our primary contribution is the demonstration that world models offer the path to training on diverse
offline datasets and subsequently generalizing to new, unseen tasks. Importantly, this is made possi-
ble by training on an Imagined Autocurriculum; rather than fixing hyperparameters or randomizing
settings, each of which could be problematic for learning. We believe this is the first example of
open-ended learning in learned world models, and could enable significant progress towards gener-
alist agents with ever more powerful world models in the future.
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2 Preliminaries

2.1 (Offline) Reinforcement Learning

To model environments, we consider Partially Observable Markov Decision Processes (POMDPs)
[2], which are defined by a tuple (S, A, T, R,,0,). S, A, and ) respectively represent the set
of states, actions, and observations. T'(s;1|a¢, s¢) is the conditional transition distribution over the
next state s;11 € S given previous action a; € A and state s; € S. Each transition produces
an observation o,y; € (2 sampled from O(0441|8¢+1,a¢), and a reward r¢11 € R sampled from
R(re41]8t41, at, 5¢).

An agent interacting with the POMDP observes o, and maintains a belief state b; based on the
history of observations and actions. The agent then selects an action a; according to its policy. Re-
inforcement learning aims to find the optimal policy — a conditional distribution 7 (a¢|h:) that max-
imizes the expected discounted return E [Zfi o 'ytrt], where 7; is the reward received at time step ¢,
v € [0,1) is the discount factor, and h; represents the history of observations and actions up to time
t. In offline reinforcement learning, the agent cannot interact directly with the POMDP, but is given
a dataset D of previously recorded interactions (o¢, at, ++1, 0¢+1). There are no restrictions on how
D is collected, so it may include data from a mix of policies with varying levels of expertise and state
space coverage. Generalizing to states that differ from those in D is the main challenge of offline RL.

2.2 World Models

A world model [27] is a parameterized model of an environment that can be used to train rein-
forcement learning agents and autoregressively generate synthetic data. World models are able to
generate imaginary trajectories by sampling from the following joint distribution:

T-1
P(serre,rerrr, aprals) = [ [ w(ails)T(sigalsi, ai) R(rigalsi, ai). (D
i=t

Creating a world model for a POMDP requires modeling the transition and observation distributions
T and O, and reward distribution R. Given a dataset D of interactions, we optimize the model
parameters to minimize an expected loss

min E, [Lo(6¢,0¢) + Lr(7e,74)], ()
T,0,R

where 6; and 7, are the world model predictions of o, and r, given a, 0;—1, and Lo, L are appro-
priate loss functions. In practice, instead of predicting the next observation based on the prediction
for the next state, we can predict it directly from the previous observation and action buffer, learning
state transition dynamics implicitly via a hidden state (e.g., that of a recurrent neural network). Ad-
ditionally, it is common to predict the residual in the observation Ad; 1 = 6441 — 0¢, which biases
the world model towards temporal consistency in the autoregressive prediction.

2.3 Diffusion Models

Inspired by non-equilibrium thermodynamics, diffusion models [28] generate data by reversing a
gradual noising process. The forward process corrupts a data sample x ~ g(xg) into pure Gaussian
noise x7 ~ N (0,I) through a Markov chain of Gaussian transitions:

q(x¢ | xe-1) = N (x5 v/ 1 = Bexi—1, Bed), 3)

where {3;}Z_, is a fixed variance schedule. The generative model learns the reverse pro-
cess pyg(xX¢—1 | x¢) by approximating the score function, i.e., the gradient of the log posterior
Vi, logg(x: | x0). In practice, a neural network eg(xy,t) is trained to predict the noise added
during the forward process, and the training objective is typically:

‘Csimple - Exo,t,e |:||6 - 69(Xt7 t)H2:| ’ (4)

where € ~ N (0,1) and x; = /&; xo + /1 — @y € with &; = Hizl(l — Bs)-



This score matching framework, introduced by [29], enables estimation of score models directly
from empirical data without requiring explicit knowledge of the true underlying score function.
While standard diffusion models typically function as unconditional generators of a data distribution
Pdata (), adapting them for sequential decision-making requires conditioning on past information to
predict future states.

To employ diffusion models as world models, we extend €y to model the environment’s dynamics
p(xe41|T<i, a<y), where x,4q is the next observation, while x<; and a<; denote the history of
past observations and actions. This adaptation is particularly relevant for POMDPs, where the true
environmental state must be inferred from observation and action sequences. The modified score
model ¢y is trained by extending the standard diffusion objective to:
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where z{T! is the noised version of the next observation at noise level 7, and e is the noise added
during the forward process.

€

To generate a subsequent observation x;1, we iteratively solve the reverse-time Stochastic Dif-
ferential Equation (SDE)—or an equivalent Ordinary Differential Equation (ODE)—guided by our
history-conditioned score model. While various numerical solvers can be employed, there exists a
practical trade-off: sample quality typically improves with increased Number of Function Evalua-
tions (NFE), directly impacting the computational cost of the diffusion-based world model during
inference.

2.4 Prioritized Level Replay

When training agents to solve procedurally generated environments, previous methods have com-
monly relied on continuously and uniformly sampling new levels during training. This can be
sample-inefficient since many sampled levels do not contribute significantly to the agent’s learn-
ing progress. As an alternative, Prioritized Level Replay (PLR) [24] has been proposed, where
levels are replayed based on their potential to induce greater learning progress in the agent. In orig-
inal PLR implementation, it maintains a buffer of previously encountered levels, including a score
that represents an estimate of learning potential and a staleness factor that represents how long ago
that level was sampled. There are many possible choices for computing the score — a simple yet
effective one is given by the TD-error 6; = 1 + V(S¢4+1) — V (s¢). During training, we randomly
select between sampling a randomly generated level with a selected episode length range randomly
and sampling one from the buffer. When sampling from the buffer, a level [; is selected for replay
with probability

Iy ~ (1 - P) : PS(l | Asgeens S) +p- PC(l ‘ Ageen, C, C), (6)

which is a mixture distribution of Pg and P with parameter p. They prioritize levels with high
scores and high staleness, respectively. Here Ageen is the replay buffer, S is the level scores, C' is
the last time each level was sampled, and c is how many levels were sampled since the beginning
of training. In our world model setting, we save both the initial state sy and the desired imagination
horizon h in the buffer. When the algorithm samples an entry from the buffer, it uses the same initial
state sg to begin imagination and runs the world model forward for exactly h steps. By interpreting
world models as procedural generators of agent experience, we can directly apply PLR to prioritize
the most valuable imagined experiences. This yields a novel method for model-based offline RL
that efficiently leverages imagined trajectories.

3 Imagined Autocurricula

Our approach consists of three key components: (1) a diffusion world model trained from diverse
offline data, (2) using this model to generate imagined random episode length rollouts for agent
training, and (3) implementing an auto curriculum over these imagined environments.

3.1 Diffusion World Model Training

First, we collect a diverse visual offline dataset of different behaviors (expert, medium, and random)
via behavior policy as D = {(0;, a;,7;,0})},. Then we train the diffusion model as a conditional



generative model of environment dynamics, p(z¢4+1|Z<¢, a<¢), handling the POMDP setting where
the true Markovian state is unknown and must be approximated from history. Our training objec-
tive follows Equation 5. Following DIAMOND [ 1], we utilize the Elucidating Diffusion Models
(EDM) formulation [30] rather than the traditional DDPM [28] approach. This critical design choice
enables our world model to remain stable over long time horizons with significantly fewer denois-
ing steps. During training, we sample trajectory segments from our dataset and apply noise using a
T-level perturbation kernel to create training pairs. To incorporate temporal context, we maintain a
buffer containing L = 4 previous observations and actions as conditioning information. Our diffu-
sion world model implements a standard 2D U-Net architecture [31] as the core denoising network.
The temporal information flows through two pathways: past observations are concatenated channel-
wise with the noisy observation being denoised, while action information is integrated via adaptive
group normalization layers [32] within residual blocks [33]. We iteratively solve the reverse SDE
using Euler’s method with exactly 5 denoising steps. We also follow their approach of using full-
image observations (64x64 3-channel for Procgen) rather than discrete latent space representations,
as they demonstrated superior performance over other state-of-the-art world models that use discrete
latent space. Given the similar image dimensions between Atari and our Procgen environment, we
leveraged their extensively validated hyperparameter settings for our diffusion model. Their compre-
hensive ablation study showed these parameters achieve both notable image generation quality and
computational efficiency, making them an ideal foundation for our work. This approach allows our
diffusion model to capture fine visual details critical for reinforcement learning for Procgen agents,
such as small rewards and enemies, while maintaining temporal consistency across long sequences.

3.2 Agent Training in Imagined Environments

With our diffusion world model trained, we implement auxiliary predictors for reward and termi-
nation signals using an ensemble of E prediction heads to capture uncertainty during imagined
rollouts. While the base architecture follows Alonso et al. [11], employing a separate model 2,
with standard CNN [34] and LSTM [35] layers to handle partial observability, we extend their ap-
proach through our ensemble of prediction heads, which provides crucial uncertainty estimates dur-
ing long-horizon planning in our POMDP setting. This model is trained on the same offline dataset
used for the world model, optimizing for accurate reward and episode termination predictions, with
the agent using the mean of the ensemble predictions during training. Building upon these diffusion
and auxiliary models, the RL agent follows an actor-critic architecture parameterized by a shared
CNN-LSTM backbone with separate policy and value function heads. The agent is trained using
Advantage Actor-Critic (A2C) [36] with A-returns for advantage estimation as in [37]. The pol-
icy head 7y is optimized to maximize expected returns while the value network V; minimizes the
temporal difference error between predicted values and the computed A-returns.

During training, we generate imagined trajectories by first sampling an initial state sy from our di-
verse offline dataset, then autoregressively producing sequences of states, rewards, and termination
signals by rolling out our policy through the diffusion denoiser model and ensemble auxiliary pre-
dictors. Unlike the fixed horizon approach in [! 1], we randomly sample the imagined episode length
between minimum and maximum horizon bounds to incorporate greater diversity in training expe-
riences and prevent the agent from exploiting fixed-horizon dynamics. Finally, we compute policy
gradients and value updates based on these imagined experiences, enabling effective policy learning
without additional environment interaction.

3.3 Autocurriculum

Our IMAC implementation follows the PLR framework [24], maintaining a replay buffer of previ-
ously encountered initial states sy with associated priority scores. For each training iteration, with
probability 0.5, we train the agent using the current policy and world model on initial states sampled
from this prioritized buffer. With the remaining 0.5 probability, we select a random initial state and
a random imagined episode length, T, to explore the environment space and update the buffer. The
priority score for each initial state sg is computed using the agent’s temporal difference errors, dy,
which serve as a proxy for learning potential. The specific formula for the score is:

T T

score(sg) = % Z Z(’y)\)k_t max(0, dy,). (7

t=0 k=t

(9}



Here, T is the length of the imagined episode (which is randomly chosen during the exploration
phase), Jy is the temporal difference error at timestep k, -y is the discount factor, and X is the trace

decay parameter. The inner sum, ZZ:t (vA)k~t max(0, 0, ), represents a truncated, discounted, and
A-weighted sum of future positive TD errors from timestep ¢ to 7. We specifically focus on posi-
tive TD errors through the max(0, ;) operation because they indicate instances where the agent’s
value estimate was too low, suggesting unexpectedly good outcomes that are particularly valuable
for learning. The outer sum and division by 7" average this sum over all timesteps ¢ in the episode.
Based on this prioritization mechanism, we believe that our approach creates three key advantages
for generalization: First, by focusing on the scenarios with the highest learning potential, the agent
spends more computation on informative experiences rather than those where little can be learned.
Second, the random horizon setting creates diversity in training experiences, preventing the agent
from exploiting fixed-length dynamics. Finally, the prioritization mechanism naturally discovers
an emergent curriculum that gradually increases in difficulty as the agent improves. The emer-
gent curriculum effect is particularly important for procedurally generated environments, where the
difficulty distribution can be complex and unknown a priori. Our IMAC approach discovers this
difficult landscape dynamically during training, focusing on the boundary of the agent’s current
capabilities—what PLR authors call “threshold levels” that provide the highest learning signal. As
the agent improves, this boundary shifts to more challenging scenarios, creating a curriculum that
scales with the agent’s abilities without requiring manual design or environment-specific knowledge.
Importantly, unlike previous autocurriculum learning approaches that require direct control of the
environment generation process, our method works entirely within the imagined random-length roll-
outs from our world model, which we call our imagined autocurricula, making it applicable to any
environment where a world model can be trained, including those where the procedural generation
process is a black box. Details of model architecture, algorithm, training hyperparameters used, and
dataset details for this work are given in Appendices A and B, C, and D.

4 Experiments

4.1 Procgen Benchmark

For comprehensive evaluation of our approach, we use a challenging subset of the Procgen Bench-
mark [38], a collection of procedurally generated environments designed specifically to test general-
ization in reinforcement learning. Unlike the Atari benchmark used in previous world model studies
[11, 16, 15, 17, 39], Procgen environments are procedurally generated and thus inherently test an
agent’s ability to generalize to unseen levels with the same underlying mechanics.

We created a mixed offline dataset capturing diverse interaction patterns to represent the type of
diverse data we may see in Internet videos. Similar to “mixed” datasets in existing benchmarks
[40, 22] it consists of three complementary components: Expert trajectories (Dexperr) from fully
trained PPO agents, Medium-quality trajectories (Dpegium) from partially trained agents reaching
approximately 50% of expert performance, and Random exploration trajectories (Dyandom) tO €nsure
broad state space coverage. This mixture forms a dataset D = Dyangom U Dexpert U Dmedium totaling
1 million transitions per game across 200 training levels. We focus on seven environments from
Procgen: CoinRun, Ninja, Jumper, Maze, and CaveFlyer, selected based on their poor performance
in previous offline RL benchmarks [21] and their sparse reward structure. For each environment,
we use 200 levels for training our world model while evaluating generalization on unseen test lev-
els (201-00). After data collection, we trained the world model and reward/termination predictors
(requiring approximately 10 hours on an NVIDIA RTX 4090), then froze these components for gen-
erating imagined rollouts during agent training. Each agent seed’s training required approximately
4 days on a single RTX 4090, with experiments conducted across 3 random seeds for 5 million total
steps each, resulting in 180 GPU days of computation.

We compare our approach with several established offline RL methods including Behavior Cloning
(BC), Conservative Q-Learning (CQL) [4 1], Implicit Q-Learning (IQL) [42], Batch-Constrained Q-
learning (BCQ) [43], Behavior-Constrained Transformers (BCT), and Decision Transformers (DT)
[44]. We also conducted an ablation study comparing our approach against world model baselines,
evaluating the impact of both fixed (15 steps) and variable (between 5 and 22 steps) imagined episode
lengths.



4.2 Procgen Benchmark Results

Table 1: Generalization results: All values represent the mean return over three random seeds +
standard deviation when transferring agents to held out levels on the Procgen benchmark.

Method  CoinRun Ninja Jumper Maze CaveFlyer Heist Miner

BC 5.31+0.31 4.22+0.21 3.924+0.42 4.03+£0.29 3.124+0.17 2.14+0.22 4.68+0.11
CQL 512+£0.22 3.29+£0.32 2.24+£0.31 1.82+£0.12 1.89£0.27 0.3+0.09 0.32=£0.09
IQL 496+020 3.11£031 235£0.38 1.98+0.17 1.45+047 0.27+0.04 0.5+0.08
BCQ 4.33£0.14 3.14£0.26 2.29+0.18 1.83+0.14 2.21+0.61 044+0.12 0.42+0.13
BCT 511+£0.10 4.33+£0.28 3.72+£0.37 3.98+£0.19 2.76£0.22 1.5+0.23 1.08£0.10
DT 5.03+£0.18 4.03+£0.31 3.84+£0.24 4.32+£0.11 3.04£0.32 1.82£0.09 1.11£0.09
iMac 6.20+0.14 5.15+0.12 5.78 £0.21 5.41+0.19 3.87+0.22 2.91£0.15 5.61 +0.13

Table 2: World model ablation: Performance evaluation on the Procgen benchmark all values
represent mean return over three random seeds + standard deviation

Method CoinRun Ninja Jumper Maze CaveFlyer Heist Miner

WM Fixed 4.76 £0.19 3.78 £0.21 3.71£0.19 3.92+0.32 2.94+0.13 2.05+£0.14 3.18 £0.10
WM Random 5.36 £0.15 4.33£0.18 4.11 £0.11 4.62£0.15 3.02+0.19 2.19£0.18 4.55+0.15
iMac 6.20+0.14 5.15£0.12 5.78 £ 0.21 5.41 £ 0.19 3.87 £ 0.22 2.91 £ 0.15 5.61 £ 0.13

The results in Table 1 demonstrate that IMAC method consistently outperforms state-of-the-art of-
fline RL algorithms across all evaluated Procgen environments. Our approach achieves improve-
ments of 17% on CoinRun, 19% on Ninja, 48% on Jumper, 35% on Maze, 24% on CaveFlyer,
38% on Heist, and 19% on Miner compared to the best-performing model-free baseline for each
environment.

Table 2 further demonstrates IMAC’s effectiveness through ablation studies comparing different
horizon-setting strategies. While both fixed and random episode length world model approaches
show strong performance, our IMAC method incorporating prioritized initial state selection consis-
tently delivers improved results—achieving up to 56% improvement over the fixed horizon baseline
on Jumper and 38% on Maze. These results provide compelling evidence that procedural general-
ization in world models benefits significantly from our autocurriculum approach, which automati-
cally discovers and focuses training on the most informative scenarios. The substantial performance
advantage across diverse environments demonstrates that IMAC effectively addresses the core chal-
lenge of generalization from limited offline datasets in procedurally generated environments. We
provide all the hyperparameters used in model-free baseline algorithms in Appendix F.

To provide a comprehensive statistical analysis of our approach’s effectiveness, Figure 2 presents
the aggregated mean performance improvements across all evaluated environments, offering quan-
titative evidence of the consistent generalization benefits achieved by our method compared to the
baselines presented in both tables.
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Figure 2: Mean test performance across seven Procgen environments. Left: Comparison of model-
free baselines against our proposed IMAC method. Right: World model ablation study comparing
WM variants (Fixed and Random) against the full iMac approach
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Figure 3: Evolution of performance and episode length during training with our Imagined Autocur-
ricula approach. Left: Mean episodic return of the random baseline (Rgrgndom) showing steady
improvement over training steps. Right: The difference between PLR and Random approaches in
terms of both return (Rprr — RRrandom) and imagined episode length (Lprr — LRrandom)-

Our results provide compelling evidence for the effectiveness of the emergent curriculum created by
our Imagined Autocurricula approach. As shown in Figure 3, initially PLR selects similar episode
lengths as random sampling while achieving higher returns for CoinRun. However, after approxi-
mately 4M steps, a significant shift occurs—PLR begins prioritizing substantially longer episodes
while temporarily accepting lower comparative returns. This demonstrates the emergent curricu-
lum effect: our prioritization mechanism automatically discovers and focuses on more challenging,
temporally-extended scenarios aps the agent’s capabilities improve.

5
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1
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Imagined Length Difference

Figure 4: Left: Difference in imagined episode length between PLR and Random baselines across
seven Procgen environments. Right: Example frames from early ¢,, and late ¢y training stages, with
red boxes representing agents and orange boxes representing rewards.

The visual examples in Figure 4 further illustrate this curriculum effect across all environments.
Comparing initial states ¢y with later states ¢;, we observe a clear progression in complexity—from
simple, direct paths to complex obstacle arrangements for CoinRun, and from straightforward cor-
ridors to intricate maze structures requiring extended planning in Maze. The image pairs show
representative states from early and late training stages, illustrating the progression from simpler to
more complex scenarios. This progressive increase in horizon differences correlates directly with
our method’s performance on test environments, supporting our hypothesis that learning temporally
extended behaviors is crucial for generalization in procedurally generated environments. What’s
particularly notable is that this curriculum emerges naturally from our prioritization mechanism
without any explicit difficulty programming or environment-specific knowledge. Our method dis-
covers this effective learning progression while training exclusively on imagined rollouts from a
fixed world model trained on offline data, validating our core claim that prioritizing states based on
their learning potential substantially improves generalization capabilities.

5 Related Work

Generalization in Reinforcement Learning has been extensively studied, though primarily in on-
line settings where agents can actively collect new data during training [45, 46,47, 38, 48,49, 50, 51,
52,53, 54,55, 56, 57, 58, 59]. Benchmarks for evaluating generalization capabilities have evolved
from environment suites like Procgen [38] and NetHack [41] for online settings, to more recent
offline alternatives such as V-D4RL and OFFLINE PROCGEN [22, 21]. These offline benchmarks



present unique challenges, particularly in visual domains where balancing dataset scale and acces-
sibility becomes crucial—large-scale datasets like Atari, StarCraft, and MineRL contain millions of
samples but require substantial computational resources [60, 61, 62], while more accessible alterna-
tives offer 100,000 to 1 million samples per environment. Despite this progress, generalization in
offline RL remains relatively unexplored compared to its online counterpart, especially when dealing
with procedurally generated environments where model-free methods have shown significant limi-
tations. Our work addresses this gap by leveraging world models to improve generalization across
diverse procedurally generated environments without requiring additional environment interaction
beyond the initial offline dataset.

World Models have evolved significantly since the first introduction of the concept of reinforcement
learning within an imagined neural network environment [27]. Early applications to Atari games
through SimPLe [39] established the Atari 100k benchmark, highlighting the sample efficiency
benefits of model-based approaches. The field advanced substantially with DreamerV2 [17],
which pioneered learning directly from the latent space of a recurrent state space model (RSSM),
while DreamerV3 [12] achieved human-level performance across diverse domains using consistent
hyperparameters. Recent architectural innovations include transformer-based approaches such as
TWM [16] and STORM [32], which adapt DreamerV2’s and DreamerV3’s RSSM frameworks
respectively, employing different tokenization strategies. IRIS [I5] represents an alternative
approach, constructing a language of image tokens through a discrete autoencoder and composing
these tokens temporally using an autoregressive transformer. Most recently, DIAMOND [11]
introduced diffusion models as an alternative to discrete latent representations for world modeling,
demonstrating that improved visual fidelity can lead to better agent performance, particularly for
tasks where fine visual details are critical. Recent advances in video generation, including 3D DiT
architectures like CogVideoX [63], Cosmos [9], and realistic world generators like Genie 3 [&]
offer promising alternatives for world modeling. While we employ a 2D UNet for computational
efficiency, our curriculum learning framework is architecture- agnostic and could leverage these
more advanced architectures as they become computationally more feasible. There has also been
work using world models to generalize to unseen tasks [64, 65], however these were focused on a
domain randomization setting (e.g. our “random” baseline) rather than an automated curriculum.
By contrast, our work builds upon these foundations and leverages PLR to generate an emergent
curriculum, which subsequently improves generalization to unseen tasks.

Curriculum Learning in RL applies the principle of gradually increasing task difficulty to re-
inforcement learning, improving both training efficiency and generalization capabilities [66, 67].
Determining learning priorities is central to effective curriculum design, with various measures in-
cluding reward signals [68], learning progress [69], TD-errors [70], and state novelty [71]. Recent
advances in automated curriculum learning [72] have reduced reliance on manual design, with meth-
ods like Prioritized Level Replay (PLR) [24] demonstrating that targeting environments with the
highest learning potential creates an emergent curriculum that progressively challenges the agent
at the frontier of its capabilities. While we employ PLR in our implementation, our framework is
compatible with other UED algorithms including ACCEL [73], which uses evolution strategies for
curriculum design; ADD [74], which leverages diffusion models for adversarial environment genera-
tion. These methods could potentially be integrated into our framework, highlighting the modularity
of our approach. Our work applies this curriculum-based approach to world models, creating an
imagined autocurriculum that operates entirely within generated rollouts from a fixed world model
trained on offline data, enabling effective generalization without requiring explicit environment con-
trol or online interaction.

6 Limitations

While our approach demonstrates promising results, we acknowledge certain constraints inherent to
offline world modeling. The quality of generated scenarios naturally depends on training data diver-
sity, though our mixed-expertise dataset mitigates this concern in practical settings. Implementation
of IMAC requires substantial computational resources, and its effectiveness varies across environ-
ment types. Future work could address these limitations through efficiency optimizations, domain-
adaptive world modeling techniques, automated parameter tuning, and improved uncertainty quan-
tification. Additional promising directions include innovative data augmentation strategies and ex-
tensions to continuous control domains with higher-dimensional state spaces—all building upon our
demonstrated foundation. We provide computational cost analysis for our method in Appendix G.



7 Conclusion

We introduced IMAC, a novel approach combining diffusion-based world models with automatic
curriculum learning to train general agents. Our method leverages offline data to generate diverse
imagined environments and employs Prioritized Level Replay to create an emergent curriculum that
adapts to the agent’s capabilities. Experimental results across seven Procgen environments demon-
strate that IMAC consistently outperforms state-of-the-art offline RL algorithms and world model
baselines, achieving improvements of up to 48% compared to model-free approaches and 56% over
fixed-horizon world models. The emergent curriculum proves particularly effective for environ-
ments requiring extended planning horizons and complex navigation. Our work demonstrates that
strong transfer performance on held-out environments is possible using only imagined trajectories
from a world model trained on a limited dataset. This finding opens a promising path toward uti-
lizing larger-scale foundation world models for developing generally capable agents that can handle
novel task variations.

Future work should address the current limitations of our approach by exploring techniques to
reduce computational requirements, investigating novel curriculum learning methodologies with
world model architectures with stronger uncertainty quantification, and developing methods to au-
tomatically adapt prioritization parameters based on environment characteristics. Additionally, ex-
tending IMAC to continuous control domains and environments with higher complexity or extremely
sparse rewards represents an important direction for expanding the applicability of our method.
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Justification: The contributions outlined in the introduction are fully demonstrated through
our experimental results.

. Limitations

Question: Does the paper discuss the limitations of the work performed by the authors?
Answer: [Yes]
Justification: Limitations of our work are discussed in Section 6.
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. Experimental Result Reproducibility
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sions of the paper (regardless of whether the code and data are provided or not)?
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Justification: Our introduced domain is fully detailed in Section 3, while all hyperparame-
ters used are provided in the Supplemantary Material.

. Open access to data and code
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results?
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Question: For each experiment, does the paper provide sufficient information on the com-
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A Model Architectures

Diffusion World Model The diffusion model Dy employs a standard 2D U-Net architecture [31]
for next-frame prediction. The model conditions on a history window of 4 previous frames and their
corresponding actions, along with the diffusion timestep 7. We implement observation conditioning
through frame stacking along the channel dimension, while action and diffusion time conditioning
are incorporated via adaptive group normalization layers [32] within the U-Net’s residual blocks.

Reward and Termination Predictor The reward/termination model Ry, utilizes a shared back-
bone architecture with separate prediction heads for reward and termination signals. Crucially, we
employ an ensemble of 10 prediction heads to enable uncertainty quantification during imagina-
tion rollouts. The model processes sequences of frames and actions through convolutional residual
blocks [33] followed by an LSTM cell [36, 35]. During inference, the ensemble predictions are
aggregated to compute both mean estimates and uncertainty measures, providing robustness against
prediction errors in long-horizon imagined trajectories. Prior to imagination, we perform burn-in
[75] using the conditioning frames and actions to properly initialize the LSTM’s hidden and cell
states.

Actor-Critic Network The policy 74 and value network V4 share a common feature extraction
backbone with separate output layers. We refer to this combined architecture as the actor-critic
network (7, V') 4, though technically V' represents a state-value function rather than an action-value
critic. The network processes individual frames through a convolutional encoder consisting of four
residual blocks with 2x2 max-pooling (stride 2) between blocks. Each residual block contains
a main path with group normalization [76], SiLU activation [77], and 3x3 convolution (stride 1,
padding 1). The convolutional features are then processed by an LSTM cell to maintain temporal
context. Similar to the reward model, we initialize the LSTM states through burn-in on conditioning
frames before beginning the imagination procedure.

Please refer to Table 3 below for hyperparameter values.

Table 3: Architecture Parameters for iMAC.

Hyperparameter

Value

Diffusion Model (Dy)

Observation conditioning mechanism
Action conditioning mechanism
Diffusion time conditioning mechanism
Residual blocks layers

Residual blocks channels

Residual blocks conditioning dimension

Frame stacking

Adaptive Group Normalization
Adaptive Group Normalization
[2,2,2,2]

[64, 64, 64, 64]

256

Reward/Termination Model (12,,)
Action conditioning mechanism
Residual blocks layers

Residual blocks channels

Adaptive Group Normalization
[2,2,2,2]
[32, 32, 32, 32]

Residual blocks conditioning dimension 128

LSTM dimension 512
Actor-Critic Model (7 and V)

Residual blocks layers [1,1,1,1]
Residual blocks channels [32, 32, 64, 64]
LSTM dimension 512
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B World Model Training Parameters

Table 4: Hyperparameters for IMAC.

Hyperparameter Value
Training loop

Number of epochs 1000
Training steps per epoch 100
Batch size 32
Environment steps per epoch 100
Epsilon (greedy) for collection 0.01
RL hyperparameters

Imagination horizon (H) Fixed:15, Random:[5-22]
Discount factor () 0.985
Entropy weight (17) 0.001
A-returns coefficient (\) 0.95

Sequence construction during training
For Dy, number of conditioning observations and actions (L) 4

For R, burn-in length (BRr), set to L in practice 4

For Ry, training sequence length (B + H) Fixed:19, Random[9-26]
For mg and Vg, burn-in length (B v/), set to L in practice 4
Optimization

Optimizer AdamW
Learning rate 4e-5
Epsilon le-8
Weight decay (Dy) le-2
Weight decay (12) le-2
Weight decay (mg and V) Se-5
Diffusion Sampling

Method Euler
Number of steps 5
Environment

Image observation dimensions 64 x64 %3
Action space Discrete (up to 18 actions)
Frameskip 4

Max noop 30
Termination on life loss True
Reward clipping {0,1}
PLR

Stalaness Factor 0.1
Buffer Size 2500
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C Baseline World Model and Actor-Critic Training Algorithm

Algorithm 1: iMac (Sequential Offline Training)

Procedure training_loop(D)

// D is a fixed offline dataset;

Phase 1: Train Diffusion Model;

for epochs_diffusion do do

for steps_diffusion_model do do
| update_diffusion_model(D);

end

end
/! Freeze Diffusion Model Dy;
Phase 2: Train Reward/Termination Model;
for epochs_reward do do
for steps_reward_end_model do do
\ update_reward_end_model(D);
end

end
/I Freeze Reward/Termination Model R ;
Phase 3: Train Actor-Critic with Frozen Models;
for epochs_actor_critic do do
for steps_actor_critic do do
update_actor_critic(D);
// Uses frozen Dy and Ry,
end
end
Procedure update_diffusion_model(D)
Sample sequence (2§_; 1, at—41,.--, 27, ap,27,) ~ D;
Sample log(a) ~ N (Fyean, F2,) / log-normal sigma distribution from EDM;
Define 7 := o // default identity schedule from EDM;
Sample x|, ~ N (29, ,,02I) // Add independent Gaussian noise;

0o _ 1 0 0,
Compute z7, | = Do(Z¢y 1, T, Ty 1, Q—Li1,-- -, T7,01);
Compute reconstruction loss £(0) = |[z),; — z} [|%
Update Dy;

Procedure update_reward_end_model(D)

Sample indices I := {¢t,...,t + L + H — 1} // burn-in + imagination horizon;
Sample sequence (2¥, a;, 74, d;)icr ~ D;

Initialize h = ¢ = 0 // LSTM hidden and cell states;

for i € I do do

Compute 7;, Cii, h,c= Rw (l‘i7 a;, h, C);

end
Compute L(vp) = >, CE(ry, sign(r;)) 4 CE(d;, d;) Il CE: cross-entropy loss;
Update R,;
Procedure update_actor_critic(D)
Sample initial buffer (zy_, 1, a—r41,...,27) ~ D;

Burn-in buffer with Ry, w4 and Vj to initialize LSTM states;
fori=ttot+ H —1dodo

Sample a; ~ m4(a;|z?);

Sample reward r; and termination d; with frozen Ry;

Sample next observation ¥ 1 by simulating reverse diffusion process with frozen Dy;
end
Compute Vy(x;) fori =t¢,...,t + H;
Compute RL losses Ly (¢) and L (¢);
Update 7y and Vig;
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Algorithm 2: iMac: Actor-Critic Training with PLR (Prioritized Level Replay)

Procedure train_actor_critic_PLR(D, B)

/I D is the offline dataset, B is the prioritized buffer;

for epochs_actor_critic do do

// Update buffer with probability 0.5;

if random() < 0.5 then then

| update_PLR_buffer(D, B);

end

for steps_actor_critic do do
// Train actor-critic using only buffer data;
update_actor_critic_from_buffer(B);

end

end
Procedure update_PLR_buffer(D, B)
// Sample horizon length randomly;
Sample initial sequence () _; 1, a¢—r41,...,27) ~ D;
Burn-in buffer with R, 4 and Vi to initialize LSTM states;
// Imagine trajectory using frozen models;
Initialize trajectory 7 = {};
fori=ttot+ H —1dodo
Sample a; ~ m4(a;|z?);
Sample reward 7; and termination d; with frozen I;
Sample next observation z 1 by simulating reverse diffusion process with frozen Dy;
Compute TD-error §; = 7; + YVy(2?, 1) — Vi (a?);
7+ 7U{(29, a7, di,x?H, di)}s
if d; = 1 then then
| break;
end

end
// Calculate PLR score as positive mean TD-error;
Compute PLR score s, = mean(max(d;, 0) for d; in 7);
// Update buffer if score is higher than any existing entry;
if s; > min(sy for b € B) then then

| Replace lowest-scoring entry in B with (7, s;);
end
Procedure update_actor_critic_from_buffer(B)
// Sample trajectory from buffer based on priorities;
Sample trajectory 7 ~ B according to PLR scores;
// Extract states, actions, rewards, etc.;
Extract (2, a;, 5, d;, 9, ;) from 7;
// Compute values for all states in trajectory;
Compute Vy(2?) for all states in 7;
// Compute advantage estimates and returns;
Compute advantages A; and returns G; for all transitions;
// Update actor and critic;
Compute RL losses Ly (¢) = >, (Vs (29) — G;)?%;
Compute L (¢) = — >, log my(a;|2?) - Ay
Update 7y and Vig;
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D Dataset Collection Details

We constructed our offline dataset by collecting trajectories from 200 procedurally generated levels
for each of the five Procgen environments (CoinRun, Ninja, Jumper, Maze, and CaveFlyer), totaling
1 million environment steps per game. We explicitly constrained data collection to levels 0-199
for each environment, ensuring complete isolation from the test levels (200+) used for evaluation,
thereby preventing any potential data leakage and maintaining a strict train-test split that properly
assesses generalization to truly unseen procedurally generated scenarios.Following and extending
the benchmark protocol from the latest work [21], we created a mixed-quality dataset with equal
proportions (1/3 each) of expert, medium, and random trajectories. Expert trajectories were col-
lected from fully-trained PPO agents [36], medium trajectories from agents achieving 50% of expert
performance, and random trajectories from uniformly random action selection. Expert trajectories
were collected from PPO agents trained until convergence (when learning plateaued) rather than for
a fixed number of steps, ensuring optimal performance for each game’s unique characteristics.This
mixed composition introduces additional challenges compared to standard offline RL benchmark
[21] by reducing the proportion of successful episodes. The dataset is stored in standard (s, a, r,
s’) format where observations s are 64x64x3 RGB images, actions a vary by environment-specific
action spaces, and rewards are sparse—appearing only at episode termination in all five selected en-
vironments. This extreme sparsity in reward signals presents a particularly challenging scenario for
world model learning, as the model must learn long-horizon dynamics without intermediate reward
guidance. The hyperparameters of behavior policy are provided at Appendix F.

E Analysis

E.1 Emergent Curriculum Effect

Our results demonstrate a clear emergent curriculum effect through the Prioritized Level Replay
mechanism. As shown in Figure 2, the PLR approach initially selects similar episode lengths to
random sampling while achieving higher returns. However, after approximately 4M training steps,
a significant shift occurs where PLR begins prioritizing substantially longer episodes (up to 2.4 x
longer in some environments) while temporarily accepting lower comparative returns. This behavior
indicates that the autocurriculum naturally discovers and focuses on more challenging, temporally-
extended scenarios as the agent’s capabilities improve, without requiring any manual curriculum
design or environment-specific knowledge.

E.2 Component Contributions

The ablation study in Table 2 reveals the critical importance of combining both PLR and random
horizon sampling. While fixed-horizon world models show reasonable performance (e.g., 3.71 on
Jumper), incorporating random horizons improves results by 11% (4.11), and adding PLR-based
prioritization yields an additional 41% improvement (5.78). This suggests that the success of IMAC
stems from the synergistic effect of (1) diverse training experiences through random horizons pre-
venting overfitting to fixed-length dynamics, and (2) intelligent prioritization that focuses computa-
tional resources on the most informative imagined trajectories.

E.3 Generalization Mechanisms

The superior generalization of IMAC can be attributed to its ability to generate and prioritize diverse
imagined experiences beyond the offline dataset distribution. By training exclusively on imagined
rollouts from a world model learned on 200 levels, our agents achieve strong performance on unseen
test levels (201+), with improvements ranging from 17% to 48% over model-free baselines. This
suggests that the combination of world models and autocurricula enables agents to explore a richer
space of potential scenarios than what exists in the original offline data, effectively augmenting the
training distribution in a principled manner.
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F Baseline Algorithm Hyperparameters

We conducted comprehensive hyperparameter optimization for all baseline algorithms using grid
search following the previous benchmark work [21]. All model-free offline RL methods (BCQ,
CQL, IQL) and behavior cloning (BC) shared identical encoder architectures, utilizing ResNet for
visual feature extraction from the 64x64x3 Procgen observations. Experiments were executed on
NVIDIA RTX 4090 GPUs with 24GB memory. For behavior cloning (BC), we explored batch sizes
€ {64,128,256,512} and learning rates € {5x 1073, 1x 1074, 5x10~%,6x 10~°}. The Q-learning
based methods (BCQ, CQL, IQL) employed dual-network architectures with target networks, where
we investigated both Polyak averaging and direct weight copying strategies. For direct copying,
we tested update frequencies € {1,100,1000}, while for Polyak averaging, we examined 7 €
{0.005,0.5,0.99}. Algorithm-specific hyperparameters included: BCQ’s action selection threshold
€ {0.3,0.5,0.7}; CQL’s regularization coefficient « € {0.5,1.0,4.0,8.0}; and IQL’s temperature
€ {3.0,7.0,10.0} with expectile weights € {0.7,0.8,0.9}. For sequence modeling approaches (DT,
BCT), we additionally optimized context lengths € {5, 10, 30, 50}. Decision Transformer utilized
return-to-go multipliers € {1, 5}, where the maximum return was determined from training data and
scaled accordingly. Both DT and BCT maintained a dropout rate of 0.1 following [44]. Table 5
presents the final selected hyperparameters achieving optimal performance on our 1M-step mixed
dataset.

Table 5: Final hyperparameter configurations for baseline algorithms on 1M mixed dataset

Algorithm  Hyperparameter Value

BC Learning Rate 0.0005
Batch Size 256
Learning Rate 0.0005
Batch Size 512

BCT Context Length 30
Eval Return Multiplier 0
Learning Rate 0.0005

DT Batch Size 512
Context Length 10
Eval Return Multiplier 5
Learning Rate 0.0005

BCQ Batch Size 256
Target Model Weight Update  Direct copy
r -
Target Update Frequency 1000
Threshold 0.5
Learning Rate 0.0005
Batch Size 256

CQL Target Model Weight Update  Direct copy
- -
Target Update Frequency 1000
Alpha 4.0
Learning Rate 0.0005
Target Model Weight Update  Direct copy

IQL Eatch Size ;5 12
Target Update Frequency 100
Temperature 3.0
Expectile 0.8
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G Training Time Profile

Table 6 presents a comprehensive breakdown of computational time requirements for training IMAC
1 game per seed.

Table 6: Detailed computational time analysis for IMAC training pipeline. Measurements were
obtained using an NVIDIA RTX 4090 GPU with hyperparameters detailed in previous sections.
These timing results serve as representative benchmarks, with actual runtimes varying based on
hardware configuration, environment setup, and specific training conditions.

Component Time (hours)
World Model Training (Offline)
Diffusion model 6.8
Reward/Termination model 54

Agent Training

Total (1000 epochs) 75.0
Per epoch (avg) 0.075
Total Training Time 87.2
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