
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2026

TREAT : A CODE LLMS TRUSTWORTHINESS / RELIA-
BILITY EVALUATION AND TESTING FRAMEWORK

Anonymous authors
Paper under double-blind review

ABSTRACT

Large foundation models are fundamentally transforming the software engineer-
ing landscape, demonstrating exceptional capabilities across diverse tasks such as
code generation, debugging, and testing. Despite this rapid progress, a signifi-
cant gap remains in how to comprehensively evaluate these models’ trustworthi-
ness in real-world software engineering scenarios. Existing benchmarks suffer
from limited task scope and fail to incorporate critical evaluation aspects such
as the robustness and reliability of models. To bridge this gap, we present an
evaluation framework called TREAT (Code LLMs Trustworthiness / Reliability
Evaluation And Testing) that provides a holistic assessment of model perfor-
mance in code intelligence tasks. Our evaluation framework addresses key limita-
tions in existing approaches with four main improvements: (1) Multi-Task Holis-
tic Evaluation that spans diverse software engineering activities rather than lim-
ited coding tasks; (2) Multi-Language and Multi-Modality Assessment that ex-
tends beyond traditional single-language, text-only benchmarks to include multi-
modality coding tasks; (3) Robustness Assessment that evaluates model reliability
under semantically-preserving code transformations; and (4) Rigorous Evalua-
tion Methodology that enhances the trustworthiness of evaluation results through
diverse evaluation prompts and adaptive solution extraction. Based on this eval-
uation framework, we assess 26 state-of-the-art models and uncover both their
strengths and limitations, yielding several key insights: ❶ Current models show
substantial performance variation across programming tasks; ❷ Multi-modal lan-
guage models demonstrate specific performance limitations in UI code generation
and edit; ❸ Existing models exhibit severe robustness issues on coding tasks; ❹
Our multi-prompt evaluation method can mitigate potential evaluation bias from
single prompts and obtain more reliable results. Our project page is available at
https://code-treat.vercel.app/.

1 INTRODUCTION

The landscape of software engineering is being fundamentally reshaped by large foundation
models, particularly Large Language Models (LLMs) and Multimodal Large Language Models
(MLLM) (Hou et al., 2024; Lyu et al., 2025). These models can understand natural language instruc-
tions and convert them into executable code, bridging the gap between human intent and software
implementation. Advanced models like OpenAI’s GPT series (Hurst et al., 2024) and Anthropic’s
Claude (Anthropic, 2024) have demonstrated remarkable proficiency across diverse software engi-
neering tasks, from code generation and debugging (Li et al., 2024a; Wang et al., 2025a) to docu-
mentation and testing (Gao et al., 2023; Xie et al., 2023). This evolution is driving the development
of intelligent tools that are transforming software engineering practices. As these models become
increasingly integrated into critical software development workflows, understanding their trustwor-
thiness and reliability has become increasingly critical.

Despite these impressive achievements, the rapid advancement of LLMs in software engineering
has created substantial challenges for model evaluation. Although numerous models have emerged
in both academia and industry, there is a lack of comprehensive evaluation methodologies that can
assess model capabilities across diverse real-world software engineering scenarios. Existing evalu-
ation approaches (Jain et al., 2025; Yang et al., 2024c) are often constrained to narrow, task-specific
benchmarks that fail to capture the complexity and diversity of practical software development work-

1

https://code-treat.vercel.app/

054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2026

Robustness
Evaluation

Multi-
modality

Tasks

Tasks

General

Coding

Code
Generation

Code

Sum
m

arization

Code

Translation

In
pu

t
Pr

ed
ic

tio
n

Out
pu

t
Pr

ed
ict

io
n

Test
Generation

Code

Review

Vulnerability
DetectionMisleading

Hints

UI CodeGeneration

St
ru

ct
ur

al

Pe
rtu

rb
at

io
n M

isleading

Statem
ents

M
isleading

C
om

m
ents

UI Code

 Edit

UI C
ode

 Repair

(a) Evaluation Tasks in TREAT

(b) Evaluation Languages in TREAT

(c) Multi-prompt Evaluation in TREAT

Prompt 1 Prompt n

Model 1

Model 2

Model 3

Model 3

Model 1

Model 2

Average

Final rank

Model 1

Model 3

Model 2

...

Figure 1: Overview of the TREAT evaluation framework.

flows. Specifically, these benchmarks lack assessments for some critical software quality assurance
tasks such as code review and code vulnerability detection. Moreover, existing benchmarks of-
ten focus solely on single-modal and normal inputs, failing to incorporate important aspects such as
multi-modality processing capabilities and the mode’s robustness and reliability. These gaps make it
difficult to assess model’s trustworthiness in real-world development scenarios, posting major chal-
lenges for researchers and practitioners to determine optimal model selection for specific software
engineering scenarios.

To address the challenges, we present TREAT, the first holistic evaluation framework for LLMs
in code intelligence tasks. It tackles the aforementioned problems with the following features: ❶
Multi-Task Holistic Evaluation. Unlike existing benchmarks that focus on narrow and task-specific
assessments such as code generation, as shown in Figure 1 (a), TREAT provides a holistic bench-
mark spanning the software engineering activities in the development lifecycle. It encompasses mul-
tiple task categories, which enables researchers to assess model capabilities across diverse scenarios.
❷ Multi-Language and Multi-Modality Assessment. TREAT expands evaluation scope beyond
traditional single-language, text-only benchmarks. As shown in Figure 1 (b), our framework system-
atically evaluates models across multiple programming languages and incorporates multi-modality
tasks that bridge visual design and software implementation. We incorporate tasks such as UI code
generation and edit, which are essential given the multimodal environment of modern software de-
velopment environments. ❸ Robustness Evaluation. Considering the importance of trustworthy
Code LLMs in software engineering, as shown in Figure 1 (a), TREAT also incorporates systematic
robustness evaluation through various code transformation methods, which evaluates model stability
under semantically-preserving perturbations. ❹ Rigorous Evaluation Methodology. We establish
a rigorous evaluation methodology that enhances the fairness and reliability of the evaluation results.
As shown in Figure 1 (c), we employ a multi-prompt evaluation strategy to reduce potential evalua-
tion bias. Additionally, we employ an adaptive answer extraction method to better align benchmark
evaluation with real-world developer usage.

Based on our evaluation framework, we have assessed 26 state-of-the-art models including both
open-source and commercial models across different sizes. Based on this study and following anal-
ysis, we present the following novel empirical findings:

1. Current state-of-the-art models exhibit substantial performance variation and specialization across
different programming tasks (Figure 2), with no single model achieving consistent best perfor-
mance across all coding scenarios.

2. MLLMs exhibit different performance bottlenecks across different UI tasks, with UI code gen-
eration primarily limited by syntactic compilation issues while code edit and repair tasks are
constrained by insufficient visual understanding and precise modification capabilities.

3. Existing large language models exhibit severe robustness issues on coding tasks, with an average
performance decline of 14.1% under semantically-preserving code perturbations.

2

108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2026

General Coding Tasks Multi-modality Tasks Robustness Evaluation

Claude-Sonnet-4 Claude-Sonnet-3.7

o4-mini

Gemini-2.5-Pro

DeepSeek-R1 Qwen3-235B GPT-4o

GPT-5

Qwen2.5-72B

Figure 2: Performance comparison of leading models on TREAT. The results of multi-modality
tasks are normalized for visualization.

4. Our multi-prompt evaluation method can effectively mitigate evaluation bias caused by single
prompts, providing more reliable and trustworthy assessment results.

The main contributions of this paper can be summarized as follows:

1. Comprehensive Benchmark. We introduce TREAT, the first holistic evaluation framework span-
ning the software development lifecycle. It encompasses over 10+ tasks and languages, enabling
a comprehensive assessment of LLM’s generalization capabilities across diverse settings.

2. Holistic and Rigorous Evaluation. We establish a holistic evaluation methodology that incorpo-
rates multi-modality assessment and robustness evaluation through semantically-preserving code
transformations. The evaluation process employs multiple diverse prompts to reduce potential
evaluation bias.

3. Empirical Analysis. Through evaluation of 25+ state-of-the-art models, we reveal novel find-
ings such as significant performance variations across tasks and unreliable performance under
robustness assessment.

2 RELATED WORK

2.1 LARGE LANGUAGE MODELS FOR CODE

Large language models (LLMs) for code have rapidly advanced tasks such as code generation, com-
pletion, and reasoning. Several prominent models have emerged in this domain. For example,
OpenAI’s GPT series has garnered recognition for its proficiency in code generation and debug-
ging capabilities, while Google’s Gemini models excel at tackling complex algorithmic problems.
Anthropic’s Claude (Anthropic, 2024) has achieved impressive performance, exhibiting exceptional
aptitude for tasks demanding sophisticated code reasoning. More recent models like DeepSeek-
V3 (DeepSeek-AI et al., 2025b) and DeepSeek-R1 (DeepSeek-AI et al., 2025a) have reached per-
formance levels that rival leading closed-source models. Qwen3 (Yang et al., 2025a) series features
powerful agentic coding capabilities and is designed to handle complex software development work-
flows.

2.2 CODE INTELLIGENCE EVALUATION FOR LARGE LANGUAGE MODELS

The evaluation of Code LLMs has undergone significant evolution, transforming from simple code
generation benchmarks such as HumanEval (Chen et al., 2021) and MBPP (Austin et al., 2021)
to more sophisticated and realistic benchmarks. For example, LiveCodeBench (Jain et al., 2025)
deals with the data contamination problem through the use of contemporary contest problems; Big-
CodeBench (Zhuo et al., 2024) focuses on library-aware code generation capabilities. Although
some recent benchmarks have expanded to include additional evaluation tasks, they remain con-
strained in scope and scale. Different from these benchmarks, our TREAT evaluation framework

3

162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2026

Table 1: Comparison with existing evaluation benchmarks.

Benchmark Size Languages Evaluation Tasks Multi
Prompt

Multi
Modality

Robustness
Evaluation

MBPP (Austin et al., 2021) 378 Python Code Gen ✗ ✗ ✗

HumanEval (Chen et al., 2021) 164 Python Code Gen ✗ ✗ ✗

LiveCodeBench (Jain et al., 2025) 1,055 Python Code Gen, Input Pre,
Output Pre, Code Rep

✗ ✗ ✗

BigcodeBench (Zhuo et al., 2024) 1,140 Python Code Gen ✗ ✗ ✗

FullstackBench (Cheng et al., 2024) 3,374 16 languages Code Gen ✗ ✗ ✗

CoCo-Bench (Yin et al., 2025) 705 Python, Java,
C++, SQL

Code Gen, Code Rev,
Code Und, Code Mod

✗ ✗ ✗

AutoCodeBench (Chou et al., 2025) 3,920 20 languages Code Gen ✗ ✗ ✗

TREAT 9,568 12 languages Code Gen, Code Rev,
Test Gen, etc. (10+
tasks)

✓ ✓ ✓

provides a holistic evaluation of model performance encompassing multi-language support, multi-
task evaluation, multi-modality capabilities, and robustness assessment.

3 TREAT BENCHMARK CONSTRUCTION METHODOLOGY

To comprehensively evaluate code intelligence tasks, we construct our TREAT evaluation frame-
work with a generic methodology based on the software development lifecycle. As shown in Ta-
ble 1, compared with existing benchmarks, TREAT encompasses over 10 evaluation tasks and is the
only benchmark that employs multiple-prompt evaluation, multi-modality capabilities assessment,
and robustness evaluation.

As illustrated in Figure 3, our benchmark construction process employs a structured pipeline that
begins with data collection from diverse sources. This raw data undergoes filtering and systematic
metric design processes to provide a rigorous and comprehensive evaluation for each task. The
TREAT benchmark encompasses three key components. The General Coding Tasks Evaluation
(Section 3.1) assesses fundamental software development capabilities across seven core areas in-
cluding code generation, code summarization, code translation, code reasoning, code review, test
generation, and vulnerability detection. The Multi-Modality Tasks Evaluation (Section 3.2) extends
beyond traditional text-based programming to evaluate capabilities in UI-based code generation, edit
and repair tasks. Finally, the Robustness Evaluation Tasks (Section 3.3) assesses various models’
reliability under various code transformation methods such as program structure transformation and
providing misleading comments. We present the core workflow in building the benchmark in this
section, and the detailed construction process for each task can be found in the Appendix A

3.1 GENERAL CODING TASKS EVALUATION

3.1.1 DATA COLLECTION AND SELECTION

For general coding tasks, we construct our evaluation benchmark across seven important software
engineering activities from software development to quality assurance. Our dataset spans multiple
programming languages, with primary focus on Python and Java for most tasks, while extending to
ten popular languages (C, C++, C#, Go, Java, JavaScript, TypeScript, PHP, Python, Ruby) for code
summarization and code review to provide broad applicability.

To provide a comprehensive evaluation while reducing annotation costs, we employ a hybrid data
crawling strategy that combines automated crawling from GitHub repositories and coding platforms
with resampling from established public datasets. For tasks that can be automatically crawled and
annotated, we actively crawl from public and continuously updated coding platforms and GitHub
repositories, enabling to capture the most recent and comprehensive evaluation data; while for
datasets that require manual checks or annotations, we sample data from recent representative
benchmarks. The automated collection part of our hybrid strategy contains two primary sources.
We extract high-quality algorithmic problems from popular competitive coding platforms, including
GEEKSFORGEEKS and HACKERRANK, as they are continuously updated platforms with enormous

4

216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2026

Robustness Evaluation Tasks (Section 3.3)

Code Generation Code Translation Code Summarization Code Reasoning Test generation Code Review Vulnerability Detection

General Coding Tasks (Section 3.1)

Multi-Modality Tasks (Section 3.2)

UI2Code Design Edit Design Repair

V0 and Vue0

GitHub Data Platform Data

Data Collection

Internet Data

Data Filtering Metric Design Data Tranformation

Structural Perturbation Contextual Perturbation Reasoning Perturbation

Figure 3: Evaluation methods of TREAT.

coding problems. Additionally, we collect real-world code samples from GitHub repositories that
meet the quality criteria: repositories with ≥100 stars and permissive open-source licenses (Apache-
2.0, MIT).

3.1.2 SCENARIO-SPECIFIC DATA COLLECTION METHODS

Code Generation (CG): For code generation, we utilize the algorithmic problems from GEEKS-
FORGEEKS and HACKERRANK, with data up to 2025 and spanning easy, medium, and hard diffi-
culty levels. We augment their existing test cases following the EvalPlus (Liu et al., 2023) method-
ology, with all generated test cases validated against ground-truth solutions to ensure accuracy.

Code Summarization (CS): For code summarization, we leverage the crawled GitHub repositories
and use the Tree-sitter (Tree-sitter, 2025) parser to extract function-docstring pairs from each file.
Then we apply Shi et al. (Shi et al., 2022)’s data cleaning methods to remove noisy samples.

Code Translation (CT): We focus on Python-Java bidirectional translation using our collected
GEEKSFORGEEKS problems and the existing PolyHumanEval datasets. We also augment the test
suites following the EvalPlus (Liu et al., 2023) to ensure rigorous evaluation.

Code Reasoning (CR): For code reasoning, we follow previous work (Gu et al., 2024) and cre-
ate two sub-tasks input prediction and output prediction. We leverage the crawled problems from
GEEKSFORGEEKS and HACKERRANK and employ Tree-sitter to mask function names and generate
candidate input-output-assertion triples for both sub-tasks.

Code Review (CRv): To construct a real-world code review dataset, we use the crawled GitHub
repositories and extract diff hunk and review comment pairs from each pull request. We follow the
filtering criteria in previous work (Li et al., 2022) to remove noisy review comments and construct
evaluation data.

Test Generation (TG): For test generation evaluation, we follow SYMPROMPT (Ryan et al., 2024)
and leverage its context augmentation technique on 24 projects used in CODAMOSA (Lemieux
et al., 2023) to construct our dataset.

Vulnerability Detection (VD): For vulnerability detection, we adopt the PRIMEVUL bench-
mark (Ding et al., 2024) containing 6,968 expert-verified vulnerable functions and 228,800 benign
functions across 140 CWEs.

3.2 MULTI-MODALITY BENCHMARK CONSTRUCTION

Evaluating code models on multi-modality tasks is crucial for understanding their ability to interpret
and generate code from diverse input formats such as images or layouts. We evaluate code mod-
els on multi-modality tasks using the data from the DESIGNBENCH datasets (Xiao et al., 2025). It

5

270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2026

encompasses three tasks collected through GitHub repository mining of framework-based websites
and analysis of top global websites, combined with real-world user modification requests from de-
velopment platforms like Vercel’s V0. Based on this, we construct the multi-modality benchmark
containing three core tasks: UI code generation, UI code edit, and UI code repair.

3.3 ROBUSTNESS BENCHMARK CONSTRUCTION

Robustness is crucial for evaluating models’ reliability and performance in real-world programming
scenarios, especially in code reasoning, where models must follow program logic rather than pattern
matching. Hence, we adopt the perturbation strategies from CODECRASH (Lam et al., 2025), which
include structural and semantic perturbations, to stress-test code reasoning under extreme and non-
ideal programs using output prediction (Gu et al., 2024). We use an aggregated program structure-
consistent perturbation (PSC-ALL) that integrates identifier renaming, conditional reformatting, and
garbage code insertion, reconstructing the program structure while preserving functionality. Beyond
structure, we adopt two levels of NL-embedded perturbations: contextual-level, where we inject
manifestly misleading cues to the program context through code comments (MCC) or print state-
ments (MPS), and reasoning-level, where it injects plausible but incorrect hints (MHC) to trigger
rationalization. In our work, we use data from the CR collection (Section 3.1.2) and apply the above
perturbation strategies to evaluate models’ robustness.

4 EVALUATION SETUP

In this section, we provide the overall experimental setup. The detailed setup, such as the used
prompt and metrics for each scenario, could be found in the Appendix B.

4.1 MODEL SELECTION

To provide a comprehensive evaluation across various LLMs, we evaluate over 26 state-of-the-art
models of varying sizes and versions, including both open-source and closed-source LLMs: GPT
family (Hurst et al., 2024; OpenAI, 2025a;b;c), Anthropic Claude series (Anthropic, 2024), Google
Gemini (Google AI, 2024), DeepSeek family (DeepSeek-AI et al., 2025b;a), Alibaba Qwen (Yang
et al., 2025b; Hui et al., 2024; Yang et al., 2025a), Meta LLaMA (Meta, 2024), and xAI Grok (Grok-
3-Mini) (xAI, 2025). For multi-modality evaluation, we exclude models that cannot accept visual
inputs and replace models that have multi-modality versions with their corresponding multi-modal
variants (e.g., replacing Qwen2.5-72B-Instruct with Qwen2.5-72B-VL-Instruct (Qwen, 2025)). The
detailed model list and their configuration are presented in the Appendix B.

4.2 ENHANCED EVALUATION METHOD

To avoid potential evaluation bias caused by using only one prompt, we employ the multi-prompt
evaluation strategies tailored to each task’s requirements for a more comprehensive and fair eval-
uation. For all tasks, we first adopt established prompt templates from recent benchmarks such
as BIGCODEBENCH (Zhuo et al., 2024) and OCTOPACK (Muennighoff et al., 2023) as the seed
prompt. To enhance prompt diversity and reduce potential bias, we use GPT-4o (Hurst et al., 2024)
to generate two paraphrased variants of each base template and check their validity manually. Be-
sides, we employ an adaptive solution extraction method that uses LLMs to extract solutions from
LLM responses when Markdown parsing is ambiguous or fails (details in Appendix B.2).

4.3 EVALUATION METRICS

We select the most popular evaluation metrics for each task. For code generation, translation, and
reasoning tasks, we adopt pass@1 accuracy (Chen et al., 2021). For code summarization and re-
view tasks, we follow (Jiang et al., 2025; Sun et al., 2025) and employ LLM-as-judge evaluation
using GPT-4o (Hurst et al., 2024) to assess quality on a 1-5 scale, which we convert to percentages
for consistency. The test generation task is evaluated using compilation success rate and coverage
metrics (line and branch coverage). Vulnerability detection employs standard classification met-
rics including accuracy, precision, recall, and F1-score. For multi-modality tasks, apart from code

6

324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2026

Table 2: Overall model performance (%) on general coding tasks. The top three results on each task
are highlighted in green (1st) , orange (2nd) , and blue (3rd) backgrounds, respectively.

Model Name
Tasks CG CS CT CR CRv TG VD Avg. Rank

GPT-5 89.9 98.4 97.9 97.8 26.9 82.6 67.3 1
Claude-Sonnet-4 74.0 93.8 86.0 87.9 30.9 77.0 69.5 2
DeepSeek-R1 (0528) 68.8 90.6 87.0 96.7 31.1 67.4 56.0 3
o3-mini 79.9 79.5 92.8 97.0 31.1 69.7 50.5 4
Claude-3.7-Sonnet 70.0 88.1 85.1 57.6 30.4 75.3 61.8 5
Qwen3-235B-A22B 63.2 95.3 87.1 94.1 30.9 66.7 55.5 6
o4-mini 74.2 84.6 81.0 98.1 29.0 81.1 56.3 7
GPT-4.1 76.8 80.2 87.6 63.5 29.4 75.4 59.8 8
DeepSeek-R1 59.9 90.6 89.2 95.1 27.3 69.0 56.5 9
Grok-3-Mini 73.4 85.1 87.7 96.4 30.9 65.9 51.2 10
GPT-4o 66.4 87.7 82.0 57.7 30.3 69.3 60.3 11
DeepSeek-V3 65.2 92.8 82.1 57.7 30.9 68.6 51.5 12
Gemini-2.5-Pro 61.1 78.7 90.3 97.2 31.5 32.6 54.5 13
Qwen3-30B-A3B 69.0 81.4 80.1 92.3 31.6 64.9 54.0 14
Qwen3-32B 63.1 90.2 86.0 94.0 30.4 65.2 53.5 15
Claude-3.5-Sonnet 59.5 96.5 81.7 60.1 30.0 73.2 47.7 16
LLaMA-3.3-70B 40.7 96.0 70.0 47.2 30.7 66.7 62.3 17
GPT-4-turbo 59.5 90.0 80.1 53.6 29.7 67.7 59.8 18
Qwen2.5-72B 63.8 86.5 72.5 48.2 31.3 64.8 52.3 19
Qwen2.5-Coder-32B 62.5 86.8 74.6 56.2 31.1 65.0 51.7 20
Gemma-3-27B 51.3 83.0 65.9 41.6 31.7 64.7 62.0 21
Claude-3.5-Haiku 50.9 85.2 75.0 46.1 30.6 44.6 61.2 22
LLaMA-3.1-70B 48.7 74.5 67.7 41.5 30.2 66.3 57.2 23
LLaMA-4-Scout 51.2 74.4 64.4 48.4 30.1 68.7 49.0 24
GPT-3.5-turbo 50.6 71.2 66.5 34.8 30.4 67.5 45.8 25
LLaMA-3.1-8B 31.8 64.2 49.6 28.8 30.2 46.0 54.5 26

complication rate and code modification similarity (CMS), we also utilize visual specialized metrics
including CLIP score and MLLM-as-Judge score (Xiao et al., 2025).

5 EXPERIMENT RESULTS

5.1 MULTI-TASK PERFORMANCE COMPARISON

Table 2 presents the performance comparison across different general coding tasks. Due to space
limitation, we report only the most popular metric for each task, with full results provided in the
Appendix C. The results show that current state-of-the-art models achieve strong performance on
some tasks such as code summarization and code reasoning, but exhibit notable weaknesses in others
like code review and test generation. Many models show large performance gaps across different
task categories, suggesting that existing LLMs have not achieved consistent proficiency across all
coding capabilities. Specifically, we could observe that:

Models exhibit substantial performance variation across different tasks. Current models tend to
specialize in specific domains rather than achieving uniform capabilities, with no single model per-
forming optimally across all evaluated tasks. For example, GPT-5 achieves exceptional performance
in code summarization with 98.4% accuracy and excels in test generation with 82.6% coverage rate,
yet performs poorly on code review tasks with only 26.9% score. Similarly, o3-mini demonstrates
strong reasoning capabilities, achieving 79.9% and 92.8% pass rate in code generation and code
reasoning, but struggles with vulnerability detection, reaching only 50.5% accuracy.

Different models lead different tasks. For example, o4-mini achieves the best results in code rea-
soning at 98.1%, while Claude-Sonnet-4 performs best in vulnerability detection at 69.5%. Other
models also show distinct areas of expertise. These results indicate that different models have devel-
oped specialized strengths in specific programming domains. This specialization reflects the diverse
nature of coding tasks, which require different skills from logical reasoning to code understanding.

7

378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2026

Figure 4: Multi-modality evaluation results.

5.2 MULTI-MODALITY EVALUATION

Figure 4 presents the multi-modality evaluation results of leading MLLMs. The detailed results of
more models and each framework are shown in the Appendix C.8. We observe substantial perfor-
mance variations and task-specific limitations across different tasks.

Models show different performance bottlenecks on different tasks. In UI code generation tasks,
models are hindered by syntactic errors, facing the challenge of compilation errors. Claude-Sonnet-
3.7 achieves the highest CLIP score of 77.6, demonstrating superior visual-semantic alignment, yet
its compilation success rate of 92.1% falls slightly behind Claude-Sonnet-4’s 92.8%. In contrast,
UI code edit and repair tasks are primarily constrained by inadequate visual understanding and
modification capabilities. We can find that the compilation rate of almost all models is higher than
95%, while both MLLM scores and CMS scores remain relatively modest, particularly in design
repair tasks where CMS scores consistently fall below 50% across all evaluated models. The high
compilation rates and lower functional accuracy scores indicate that while models can generate
syntactically correct code given the code to modify, they struggle with precise code localization and
targeted modifications.

5.3 ROBUSTNESS EVALUATION

Table 3: Robustness evaluation results. Darker red highlights represent more severe degradation
under robustness testing.

Model Vanilla PSC-ALL MCC MPS MHC Avg ∆%
Large Reasoning Models (enable thinking)

GPT-5 99.5 +0.5% +0.0% +0.0% -0.5% +0.0%
Gemini-2.5-Pro 100.0 -1.0% -0.5% -0.5% -1.9% -1.0%
DeepSeek-R1 98.1 -1.5% -2.5% -1.5% -5.9% -2.8%
Qwen3-32B 98.6 -4.4% -4.9% -3.4% -3.4% -4.0%
o4-mini 99.0 -0.5% -13.6% -1.5% -6.8% -5.6%
Claude-Sonnet-4 94.7 -8.6% -2.5% -7.1% -7.6% -6.5%
Qwen3-235B-A22B 97.6 -2.5% -27.6% -10.8% -8.4% -12.3%

Large Language Models (under direct inference)
Claude-3.7-Sonnet 85.6 -7.9% -7.9% -7.3% -3.9% -6.7%
Claude-3.5-Sonnet 66.3 -4.3% -10.9% -12.3% -22.5% -12.5%
GPT-4o 73.1 -12.5% -21.1% -28.3% -21.1% -20.7%
LLaMA-3.3-70B 58.7 -20.5% -22.1% -32.8% -13.1% -22.1%
GPT-4.1 78.8 -12.8% -30.5% -27.4% -20.7% -22.9%
LLaMA-3.1-70B 56.7 -23.7% -16.1% -33.9% -17.8% -22.9%
Qwen2.5-32B-Coder 61.5 -12.5% -39.8% -32.8% -20.3% -26.4%
DeepSeek-V3 72.6 -21.2% -31.1% -27.2% -33.8% -28.3%
Qwen2.5-72B 63.5 -18.9% -25.0% -37.1% -42.4% -30.9%
Average 81.5 -9.5% -16.0% -16.5% -14.4% -14.1%

Table 3 presents the robustness evaluation results of different models under various perturbations.
The experimental results reveal severe robustness issues in current LLMs on coding tasks. Based on
the results, we have the following findings:

All models exhibit substantial performance degradation under code perturbations. With
semantically-preserving code perturbations, all tested models show varying degrees of performance
decline. On average, models experience performance drops of 9.5%, 16.0%, 16.5%, and 14.4%
under PSC-ALL, MCC, MPS, and MHC, respectively, resulting in an overall average performance

8

432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2026

(a) Code Review (b) Vulnerability Detection

Figure 5: The performance variation of top-10 models using different prompts.

decline of 14.1%. This widespread problem suggests that current LLMs lack a robust understanding
of code semantics and are easily misled by surface modifications.

Large reasoning models demonstrate better robustness. Models with advanced thinking capa-
bilities, such as GPT-5 and Gemini-2.5-Pro, exhibit markedly stronger robustness compared to non-
reasoning LLMs. These models show only minor performance fluctuations across most perturbation
scenarios, with average performance drops controlled within 3%. In contrast, traditional models
without reasoning exhibit considerable performance degradation, with models like DeepSeek-V3
and GPT-4o showing average performance decreases exceeding 20%.

Contextual-level perturbations cause the most severe impact. Models are more sensitive to
contextual-level perturbations (MCC and MPS), indicating that LLMs are easily influenced by mis-
leading natural language cues embedded in code. Misleading comments cause the largest perfor-
mance drop at 20.0%, suggesting that models overly rely on comment information for code under-
standing rather than analyzing the actual code logic.

5.4 EFFECT OF THE MULTI-PROMPT EVALUATION

Figure 5 demonstrates the substantial performance variation across different prompts for code re-
view and vulnerability detection tasks. The full results of all models on other tasks can be found
in the Appendix C.9. Our analysis indicates that model performance exhibits significant sensitivity
to prompt variations in some tasks. For example, Claude-3.5-Haiku shows remarkable fluctuations,
with performance ranks ranging from as high as 3 to as low as 18 depending on the specific prompt
used. These findings highlight the importance of employing multiple prompts to provide a more
comprehensive and reliable evaluation of model capabilities, especially for tasks where prompt sen-
sitivity is particularly evident.

6 CONCLUSION

This paper presents TREAT, a comprehensive evaluation framework that assesses the ability of
LLMs in code intelligence tasks. Through multi-task, multi-language, and multi-modality evaluation
of 26 state-of-the-art models, our framework reveals both their strengths and limitations, yielding
several key insights into current models’ ability to handle diverse coding scenarios and maintain
robustness under code transformations. TREAT provides researchers and practitioners with a stan-
dardized approach for model comparison across real-world software development contexts.

7 LIMITATION AND FUTURE WORK

While TREAT provides a comprehensive evaluation framework, several limitations should be ac-
knowledged. Our current evaluation mainly focus on the function level, which may not fully capture
the complexity of real-world software engineering that requires repository-level understanding. This
evaluation framework does not contains some aspects of code quality such as the security. Addition-
ally, TREAT faces the persistent challenge of potential data contamination. In the future, we will
continuously enhance the benchmark by expanding evaluation tasks, incorporating more evaluation
aspects, and regularly updating evaluation datasets to prevent data contamination.

9

486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2026

ETHICS STATEMENT

This work adheres to the ICLR Code of Ethics. We are dedicated to ensuring that TREAT serves
exclusively for academic research. Our plan includes the launch of a leaderboard website and the
provision of data and code access. During our data crawling process, we adhered to the regulations
of each website, and all the GitHub data we crawled has permissive open-source licenses (Apache-
2.0, MIT). TREAT does not contain any personal data or offensive content. No human subjects or
animal experimentation was involved in this work.

REPRODUCIBILITY STATEMENT

To encourage reproducibility, we release our code and benchmark data at https://
code-treat.vercel.app/. We describe the details of the benchmark construction in Sec-
tion 3 and the experimental setup in Section 4. Finally, we elaborate further details in Appendix
including the detailed data collection process for each task (Appendix A), the used LLMs and ex-
perimental setup (Appendix B) and further details of experiment results (Appendix C).

REFERENCES

Anthropic. Claude 3.5 sonnet. Anthropic News June 21, 2024, 2024. URL https://www.
anthropic.com/news/claude-3-5-sonnet.

Anthropic. Claude, 2024. URL https://www.anthropic.com/claude. Accessed: 2024-
06-06.

Anthropic. Claude 3.7 sonnet and claude code. Anthropic News February 25, 2025, 2025a. URL
https://www.anthropic.com/news/claude-3-7-sonnet.

Anthropic. Introducing claude 4. Anthropic News May 23, 2025, 2025b. URL https://www.
anthropic.com/news/claude-4.

Chetan Arora, John Grundy, and Mohamed Abdelrazek. Advancing requirements engineering
through generative ai: Assessing the role of llms. In Generative AI for Effective Software De-
velopment, pp. 129–148. Springer, 2024a.

Daman Arora, Atharv Sonwane, Nalin Wadhwa, Abhav Mehrotra, Saiteja Utpala, Ramakrishna
Bairi, Aditya Kanade, and Nagarajan Natarajan. Masai: Modular architecture for software-
engineering ai agents. arXiv preprint arXiv:2406.11638, 2024b.

Mohammadmehdi Ataei, Hyunmin Cheong, Daniele Grandi, Ye Wang, Nigel Morris, and Alexander
Tessier. Elicitron: A large language model agent-based simulation framework for design require-
ments elicitation. Journal of Computing and Information Science in Engineering, 25(2):021012,
2025.

Jacob Austin, Augustus Odena, Maxwell Nye, Maarten Bosma, Henryk Michalewski, David Dohan,
Ellen Jiang, Carrie Cai, Michael Terry, Quoc Le, and Charles Sutton. Program synthesis with large
language models. arXiv preprint arXiv:2108.07732, 2021.

Max Brunsfeld and GitHub. Tree-sitter: Incremental parsing system. https://tree-sitter.
github.io/tree-sitter/, 2018.

Dong Chen, Shaoxin Lin, Muhan Zeng, Daoguang Zan, Jian-Gang Wang, Anton Cheshkov, Jun
Sun, Hao Yu, Guoliang Dong, Artem Aliev, et al. Coder: Issue resolving with multi-agent and
task graphs. arXiv preprint arXiv:2406.01304, 2024a.

Dongping Chen, Ruoxi Chen, Shilin Zhang, Yaochen Wang, Yinuo Liu, Huichi Zhou, Qihui Zhang,
Yao Wan, Pan Zhou, and Lichao Sun. Mllm-as-a-judge: Assessing multimodal llm-as-a-judge
with vision-language benchmark. In Forty-first International Conference on Machine Learning
(ICLR), 2024b.

10

https://code-treat.vercel.app/
https://code-treat.vercel.app/
https://www.anthropic.com/news/claude-3-5-sonnet
https://www.anthropic.com/news/claude-3-5-sonnet
https://www.anthropic.com/claude
https://www.anthropic.com/news/claude-3-7-sonnet
https://www.anthropic.com/news/claude-4
https://www.anthropic.com/news/claude-4
https://tree-sitter.github.io/tree-sitter/
https://tree-sitter.github.io/tree-sitter/

540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2026

Mark Chen, Jerry Tworek, Heewoo Jun, Qiming Yuan, Henrique Ponde de Oliveira Pinto, Jared Ka-
plan, et al. Evaluating large language models trained on code. arXiv preprint arXiv:2107.03374,
2021.

Yao Cheng, Jianfeng Chen, Jie Chen, Li Chen, Liyu Chen, Wentao Chen, Zhengyu Chen, Shijie
Geng, Aoyan Li, Bo Li, et al. Fullstack bench: Evaluating llms as full stack coders. arXiv
preprint arXiv:2412.00535, 2024.

Jason Chou, Ao Liu, Yuchi Deng, Zhiying Zeng, Tao Zhang, Haotian Zhu, Jianwei Cai, Yue Mao,
Chenchen Zhang, Lingyun Tan, et al. Autocodebench: Large language models are automatic code
benchmark generators. arXiv preprint arXiv:2508.09101, 2025.

Arghavan Moradi Dakhel, Amin Nikanjam, Vahid Majdinasab, Foutse Khomh, and Michel C Des-
marais. Effective test generation using pre-trained large language models and mutation testing.
Information and Software Technology, 171:107468, 2024.

DeepSeek-AI, Daya Guo, Dejian Yang, Haowei Zhang, Junxiao Song, and Ruoyu Zhang et al.
Deepseek-r1: Incentivizing reasoning capability in llms via reinforcement learning. arXiv
preprint arXiv:2501.12948, 2025a.

DeepSeek-AI, Aixin Liu, Bei Feng, Bing Xue, Bingxuan Wang, and Bochao Wu et al. Deepseek-v3
technical report. arXiv preprint arXiv:2412.19437, 2025b.

Yangruibo Ding, Yanjun Fu, Omniyyah Ibrahim, Chawin Sitawarin, Xinyun Chen, Basel Alomair,
David Wagner, Baishakhi Ray, and Yizheng Chen. Vulnerability detection with code language
models: How far are we? arXiv preprint arXiv:2403.18624, 2024.

Yihong Dong, Xue Jiang, Zhi Jin, and Ge Li. Self-collaboration code generation via chatgpt. ACM
Transactions on Software Engineering and Methodology, 33(7):1–38, 2024.

Tulsee Doshi. Try the latest gemini 2.5 pro before general availability. Google
Blog June 5, 2025, 2025. URL https://blog.google/products/gemini/
gemini-2-5-pro-latest-preview/.

Zhuoyun Du, Chen Qian, Wei Liu, Zihao Xie, Yifei Wang, Yufan Dang, Weize Chen, and Cheng
Yang. Multi-agent software development through cross-team collaboration. arXiv preprint
arXiv:2406.08979, 2024.

Daniel Fried, Armen Aghajanyan, Jessy Lin, Sida Wang, Eric Wallace, Freda Shi, Ruiqi Zhong,
Wen-tau Yih, Luke Zettlemoyer, and Mike Lewis. Incoder: A generative model for code infilling
and synthesis. arXiv preprint arXiv:2204.05999, 2022. URL https://arxiv.org/abs/
2204.05999.

Shuzheng Gao, Xin-Cheng Wen, Cuiyun Gao, Wenxuan Wang, Hongyu Zhang, and Michael R Lyu.
What makes good in-context demonstrations for code intelligence tasks with llms? In 2023 38th
IEEE/ACM International Conference on Automated Software Engineering (ASE), pp. 761–773.
IEEE, 2023.

Google AI. Api overview, 2024. URL https://ai.google.dev/gemini-api/docs/
api-overview. Accessed: 2024-06-06.

Aaron Grattafiori, Abhimanyu Dubey, Abhinav Jauhri, Abhinav Pandey, Abhishek Kadian, Ahmad
Al-Dahle, Aiesha Letman, Akhil Mathur, Alan Schelten, Alex Vaughan, et al. The llama 3 herd
of models. arXiv preprint arXiv:2407.21783, 2024.

Alex Gu, Baptiste Rozière, Hugh Leather, Armando Solar-Lezama, Gabriel Synnaeve, and Sida I.
Wang. Cruxeval: a benchmark for code reasoning, understanding and execution. In Proceedings
of the 41st International Conference on Machine Learning, ICML’24. JMLR.org, 2024.

Yi Gui, Yao Wan, Zhen Li, Zhongyi Zhang, Dongping Chen, Hongyu Zhang, Yi Su, Bohua Chen,
Xing Zhou, Wenbin Jiang, and Xiangliang Zhang. Uicopilot: Automating ui synthesis via hier-
archical code generation from webpage designs. In Proceedings of the ACM on Web Conference
(WWW), pp. 1846–1855, New York, NY, USA, 2025. Association for Computing Machinery.
ISBN 9798400712746.

11

https://blog.google/products/gemini/gemini-2-5-pro-latest-preview/
https://blog.google/products/gemini/gemini-2-5-pro-latest-preview/
https://arxiv.org/abs/2204.05999
https://arxiv.org/abs/2204.05999
https://ai.google.dev/gemini-api/docs/api-overview
https://ai.google.dev/gemini-api/docs/api-overview

594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2026

Daya Guo, Qihao Zhu, Dejian Yang, Zhenda Xie, Kai Dong, Wentao Zhang, Guanting Chen, Xiao
Bi, Y. Wu, Y. K. Li, Fuli Luo, Yingfei Xiong, and Wenfeng Liang. Deepseek-coder: When
the large language model meets programming – the rise of code intelligence. arXiv preprint
arXiv:2401.14196, 2024. URL https://arxiv.org/abs/2401.14196.

Dan Hendrycks, Steven Basart, Saurav Kadavath, Mantas Mazeika, Akul Arora, Ethan Guo, Collin
Burns, Samir Puranik, Horace He, Dawn Song, and Jacob Steinhardt. Measuring coding challenge
competence with apps. arXiv preprint arXiv:2105.09938, 2021.

Sirui Hong, Mingchen Zhuge, Jonathan Chen, Xiawu Zheng, Yuheng Cheng, Jinlin Wang, Ceyao
Zhang, Zili Wang, Steven Ka Shing Yau, Zijuan Lin, et al. Metagpt: Meta programming for
a multi-agent collaborative framework. In The Twelfth International Conference on Learning
Representations, 2023.

Xinyi Hou, Yanjie Zhao, Yue Liu, Zhou Yang, Kailong Wang, Li Li, Xiapu Luo, David Lo, John
Grundy, and Haoyu Wang. Large language models for software engineering: A systematic litera-
ture review. ACM Transactions on Software Engineering and Methodology, 33(8):1–79, 2024.

Siming Huang, Tianhao Cheng, J. K. Liu, Jiaran Hao, Liuyihan Song, et al. Opencoder: The open
cookbook for top-tier code large language models. arXiv preprint arXiv:2411.04905, 2025. URL
https://arxiv.org/abs/2411.04905.

Binyuan Hui, Jian Yang, Zeyu Cui, Jiaxi Yang, Dayiheng Liu, Lei Zhang, Tianyu Liu, Jiajun Zhang,
Bowen Yu, Kai Dang, et al. Qwen2.5-coder technical report. arXiv preprint arXiv:2409.12186,
2024.

Aaron Hurst, Adam Lerer, Adam P. Goucher, Adam Perelman, Aditya Ramesh, Aidan Clark, AJ Os-
trow, Akila Welihinda, Alan Hayes, and Alec Radford et al. Gpt-4o system card. arXiv preprint
arXiv:2410.212764, 2024.

Naman Jain, King Han, Alex Gu, Wen-Ding Li, Fanjia Yan, Tianjun Zhang, Sida Wang, Armando
Solar-Lezama, Koushik Sen, and Ion Stoica. Livecodebench: Holistic and contamination free
evaluation of large language models for code. In The Thirteenth International Conference on
Learning Representations, 2025.

Yanjie Jiang, Hui Liu, Tianyi Chen, Fu Fan, Chunhao Dong, Kui Liu, and Lu Zhang. Deep
assessment of code review generation approaches: Beyond lexical similarity. arXiv preprint
arXiv:2501.05176, 2025.

Carlos E Jimenez, John Yang, Alexander Wettig, Shunyu Yao, Kexin Pei, Ofir Press, and Karthik
Narasimhan. Swe-bench: Can language models resolve real-world github issues? arXiv preprint
arXiv:2310.06770, 2023.

Dongming Jin, Zhi Jin, Xiaohong Chen, and Chunhui Wang. Mare: Multi-agents collaboration
framework for requirements engineering. arXiv preprint arXiv:2405.03256, 2024.

Man Ho Lam, Chaozheng Wang, Jen-tse Huang, and Michael R. Lyu. Codecrash: Stress testing llm
reasoning under structural and semantic perturbations. arXiv preprint arXiv:2504.14119, 2025.

Caroline Lemieux, Jeevana Priya Inala, Shuvendu K Lahiri, and Siddhartha Sen. Codamosa: Es-
caping coverage plateaus in test generation with pre-trained large language models. In 2023
IEEE/ACM 45th International Conference on Software Engineering (ICSE), pp. 919–931. IEEE,
2023.

Jia Li, Ge Li, Yunfei Zhao, Yongmin Li, Zhi Jin, Hao Zhu, Huanyu Liu, Kaibo Liu, Lecheng Wang,
Zheng Fang, et al. Deveval: Evaluating code generation in practical software projects. arXiv
preprint arXiv:2401.06401, 2024a.

Linyi Li, Shijie Geng, Zhenwen Li, Yibo He, Hao Yu, Ziyue Hua, Guanghan Ning, Siwei Wang,
Tao Xie, and Hongxia Yang. Infibench: Evaluating the question-answering capabilities of code
large language models. In The Thirty-eight Conference on Neural Information Processing Systems
Datasets and Benchmarks Track, 2024b.

12

https://arxiv.org/abs/2401.14196
https://arxiv.org/abs/2411.04905

648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2026

Raymond Li, Loubna Ben Allal, Yangtian Zi, Niklas Muennighoff, et al. Starcoder: May the source
be with you! arXiv preprint arXiv:2305.06161, 2023a. URL https://arxiv.org/abs/
2305.06161.

Zhiyu Li, Shuai Lu, Daya Guo, Nan Duan, Shailesh Jannu, Grant Jenks, Deep Majumder, Jared
Green, Alexey Svyatkovskiy, Shengyu Fu, et al. Automating code review activities by large-scale
pre-training. In Proceedings of the 30th ACM Joint European Software Engineering Conference
and Symposium on the Foundations of Software Engineering, pp. 1035–1047, 2022.

Zongjie Li, Chaozheng Wang, Zhibo Liu, Haoxuan Wang, Dong Chen, Shuai Wang, and Cuiyun
Gao. CCTEST: testing and repairing code completion systems. In 45th IEEE/ACM International
Conference on Software Engineering, ICSE 2023, Melbourne, Australia, May 14-20, 2023, pp.
1238–1250. IEEE, 2023b.

Feng Lin, Dong Jae Kim, and Tse-Hsun Chen. When llm-based code generation meets the software
development process. arXiv preprint arXiv:2403.15852, 2024.

Jiawei Liu, Chunqiu Steven Xia, Yuyao Wang, and LINGMING ZHANG. Is your code generated
by chatGPT really correct? rigorous evaluation of large language models for code generation. In
Thirty-seventh Conference on Neural Information Processing Systems, 2023.

Junyi Lu, Lei Yu, Xiaojia Li, Li Yang, and Chun Zuo. Llama-reviewer: Advancing code review
automation with large language models through parameter-efficient fine-tuning. In 2023 IEEE
34th International Symposium on Software Reliability Engineering (ISSRE), pp. 647–658. IEEE,
2023.

Ziyang Luo, Can Xu, Pu Zhao, Qingfeng Sun, Xiubo Geng, Wenxiang Hu, Chongyang Tao, Jing
Ma, Qingwei Lin, and Daxin Jiang. Wizardcoder: Empowering code large language models with
evol-instruct. arXiv preprint arXiv:2306.08568, 2024. URL https://arxiv.org/abs/
2306.08568.

Michael R Lyu, Baishakhi Ray, Abhik Roychoudhury, Shin Hwei Tan, and Patanamon Thongta-
nunam. Automatic programming: Large language models and beyond. ACM Transactions on
Software Engineering and Methodology, 34(5):1–33, 2025.

Lezhi Ma, Shangqing Liu, Yi Li, Xiaofei Xie, and Lei Bu. Specgen: Automated generation of formal
program specifications via large language models. arXiv preprint arXiv:2401.08807, 2024a.

Yingwei Ma, Qingping Yang, Rongyu Cao, Binhua Li, Fei Huang, and Yongbin Li. How to under-
stand whole software repository. arXiv preprint arXiv:2406.01422, 2024b.

Meta. Llama 3.2 vision, 2024. URL https://huggingface.co/meta-llama/Llama-3.
2-90B-Vision-Instruct. Accessed: 2025-02-06.

Niklas Muennighoff, Qian Liu, Armel Zebaze, Qinkai Zheng, Binyuan Hui, Terry Yue Zhuo,
Swayam Singh, Xiangru Tang, Leandro Von Werra, and Shayne Longpre. Octopack: Instruc-
tion tuning code large language models. In NeurIPS 2023 Workshop on Instruction Tuning and
Instruction Following, 2023.

Niklas Muennighoff, Qian Liu, Armel Zebaze, Qinkai Zheng, Binyuan Hui, Terry Yue Zhuo,
Swayam Singh, Xiangru Tang, Leandro von Werra, and Shayne Longpre. Octopack: In-
struction tuning code large language models. arXiv preprint arXiv:2308.07124, 2024. URL
https://arxiv.org/abs/2308.07124.

Minh Huynh Nguyen, Thang Phan Chau, Phong X Nguyen, and Nghi DQ Bui. Agilecoder: Dynamic
collaborative agents for software development based on agile methodology. In 2025 IEEE/ACM
Second International Conference on AI Foundation Models and Software Engineering (Forge),
pp. 156–167. IEEE, 2025.

Erik Nijkamp, Bo Pang, Hiroaki Hayashi, Lifu Tu, Huan Wang, Yingbo Zhou, Silvio Savarese,
and Caiming Xiong. Codegen: An open large language model for code with multi-turn program
synthesis. arXiv preprint arXiv:2203.13474, 2023. URL https://arxiv.org/abs/2203.
13474.

13

https://arxiv.org/abs/2305.06161
https://arxiv.org/abs/2305.06161
https://arxiv.org/abs/2306.08568
https://arxiv.org/abs/2306.08568
https://huggingface.co/meta-llama/Llama-3.2-90B-Vision-Instruct
https://huggingface.co/meta-llama/Llama-3.2-90B-Vision-Instruct
https://arxiv.org/abs/2308.07124
https://arxiv.org/abs/2203.13474
https://arxiv.org/abs/2203.13474

702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2026

OpenAI. Introducing gpt-4.1 in the api. OpenAI News April 14, 2025, 2025a. URL https:
//openai.com/index/gpt-4-1/.

OpenAI. Openai gpt-5. OpenAI News August 7, 2025, 2025b. URL https://openai.com/
index/introducing-gpt-5/.

OpenAI. Openai o3-mini. OpenAI News January 31, 2025, 2025c. URL https://openai.
com/index/openai-o3-mini/.

Yun Peng, Shuzheng Gao, Cuiyun Gao, Yintong Huo, and Michael Lyu. Domain knowledge matters:
Improving prompts with fix templates for repairing python type errors. In Proceedings of the 46th
ieee/acm international conference on software engineering, pp. 1–13, 2024.

Chen Qian, Xin Cong, Cheng Yang, Weize Chen, Yusheng Su, Juyuan Xu, Zhiyuan Liu,
and Maosong Sun. Communicative agents for software development. arXiv preprint
arXiv:2307.07924, 6(3):1, 2023.

Qwen. Qwen2.5-vl, January 2025. URL https://qwenlm.github.io/blog/qwen2.
5-vl/.

Alec Radford, Jong Wook Kim, Chris Hallacy, Aditya Ramesh, Gabriel Goh, Sandhini Agarwal,
Girish Sastry, Amanda Askell, Pamela Mishkin, Jack Clark, et al. Learning transferable visual
models from natural language supervision. In International conference on machine learning, pp.
8748–8763. PMLR, 2021.

Winston W Royce. Managing the development of large software systems: concepts and techniques.
In Proceedings of the 9th international conference on Software Engineering, pp. 328–338, 1987.

Baptiste Rozière, Jonas Gehring, Fabian Gloeckle, Sten Sootla, Itai Gat, Xiaoqing Ellen Tan, et al.
Code llama: Open foundation models for code. arXiv preprint arXiv:2308.12950, 2023. URL
https://arxiv.org/abs/2308.12950.

Gabriel Ryan, Siddhartha Jain, Mingyue Shang, Shiqi Wang, Xiaofei Ma, Murali Krishna Ra-
manathan, and Baishakhi Ray. Code-aware prompting: A study of coverage-guided test gen-
eration in regression setting using llm. Proceedings of the ACM on Software Engineering, 1
(FSE):951–971, 2024.

Lin Shi, Fangwen Mu, Xiao Chen, Song Wang, Junjie Wang, Ye Yang, Ge Li, Xin Xia, and Qing
Wang. Are we building on the rock? on the importance of data preprocessing for code summa-
rization. In Proceedings of the 30th ACM Joint European Software Engineering Conference and
Symposium on the Foundations of Software Engineering, pp. 107–119, 2022.

Weisong Sun, Yun Miao, Yuekang Li, Hongyu Zhang, Chunrong Fang, Yi Liu, Gelei Deng, Yang
Liu, and Zhenyu Chen. Source code summarization in the era of large language models. pp.
1882–1894, 2025.

Qingxiao Tao, Tingrui Yu, Xiaodong Gu, and Beijun Shen. Unraveling the potential of large lan-
guage models in code translation: How far are we? arXiv preprint arXiv:2410.09812, 2024a.

Wei Tao, Yucheng Zhou, Yanlin Wang, Wenqiang Zhang, Hongyu Zhang, and Yu Cheng. Magis:
Llm-based multi-agent framework for github issue resolution. Advances in Neural Information
Processing Systems, 37:51963–51993, 2024b.

Vikas Thada and Vivek Jaglan. Comparison of jaccard, dice, cosine similarity coefficient to find
best fitness value for web retrieved documents using genetic algorithm. International Journal of
Innovations in Engineering and Technology, 2(4):202–205, 2013.

Tree-sitter. Introduction, 2025. URL https://tree-sitter.github.io/
tree-sitter/. Accessed: 2025-09-24.

Yuxuan Wan, Chaozheng Wang, Yi Dong, Wenxuan Wang, Shuqing Li, Yintong Huo, and Michael R
Lyu. Automatically generating ui code from screenshot: A divide-and-conquer-based approach.
arXiv preprint arXiv:2406.16386, 2024.

14

https://openai.com/index/gpt-4-1/
https://openai.com/index/gpt-4-1/
https://openai.com/index/introducing-gpt-5/
https://openai.com/index/introducing-gpt-5/
https://openai.com/index/openai-o3-mini/
https://openai.com/index/openai-o3-mini/
https://qwenlm.github.io/blog/qwen2.5-vl/
https://qwenlm.github.io/blog/qwen2.5-vl/
https://arxiv.org/abs/2308.12950
https://tree-sitter.github.io/tree-sitter/
https://tree-sitter.github.io/tree-sitter/

756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2026

Junhao Wang, Daoguang Zan, Shulin Xin, Siyao Liu, Yurong Wu, and Kai Shen. Swe-
mirror: Scaling issue-resolving datasets by mirroring issues across repositories. arXiv preprint
arXiv:2509.08724, 2025a.

Ruiqi Wang, Jiyu Guo, Cuiyun Gao, Guodong Fan, Chun Yong Chong, and Xin Xia. Can llms
replace human evaluators? an empirical study of llm-as-a-judge in software engineering. In 2025
International Symposium on Software Testing and Analysis (ISSTA). ACM New York, Trondheim,
Norway, 2025b.

Yue Wang, Hung Le, Akhilesh Deepak Gotmare, Nghi D.Q. Bui, Junnan Li, and Steven C.H.
Hoi. Codet5+: Open code large language models for code understanding and generation. arXiv
preprint arXiv:2305.07922, 2023. URL https://arxiv.org/abs/2305.07922.

Jason Wei, Xuezhi Wang, Dale Schuurmans, Maarten Bosma, Fei Xia, Ed Chi, Quoc V Le, Denny
Zhou, et al. Chain-of-thought prompting elicits reasoning in large language models. Advances in
neural information processing systems, 35:24824–24837, 2022.

Wai Kin Wong, Huaijin Wang, Zongjie Li, and Shuai Wang. Binaug: Enhancing binary similar-
ity analysis with low-cost input repairing. In Proceedings of the IEEE/ACM 46th International
Conference on Software Engineering, ICSE ’24, New York, NY, USA, 2024. Association for
Computing Machinery.

Fan Wu, Cuiyun Gao, Shuqing Li, Xin-Cheng Wen, and Qing Liao. Mllm-based ui2code automation
guided by ui layout information. In 2025 International Symposium on Software Testing and
Analysis (ISSTA), pp. 1–23. ACM New York, Trondheim, Norway, 2025.

xAI. Grok-3-mini. https://x.ai/models/grok-3-mini, 2025.

Chunqiu Steven Xia, Yinlin Deng, Soren Dunn, and Lingming Zhang. Agentless: Demystifying
llm-based software engineering agents. arXiv preprint arXiv:2407.01489, 2024.

Jingyu Xiao, Yuxuan Wan, Yintong Huo, Zhiyao Xu, and Michael R Lyu. Interaction2code: How
far are we from automatic interactive webpage generation? arXiv preprint arXiv:2411.03292,
2024.

Jingyu Xiao, Ming Wang, Man Ho Lam, Yuxuan Wan, Junliang Liu, Yintong Huo, and Michael R
Lyu. Designbench: A comprehensive benchmark for mllm-based front-end code generation. arXiv
preprint arXiv:2506.06251, 2025.

Zhuokui Xie, Yinghao Chen, Chen Zhi, Shuiguang Deng, and Jianwei Yin. Chatunitest: a chatgpt-
based automated unit test generation tool. arXiv e-prints, pp. arXiv–2305, 2023.

An Yang, Anfeng Li, Baosong Yang, Beichen Zhang, Binyuan Hui, Bo Zheng, Bowen Yu,
Chang Gao, Chengen Huang, Chenxu Lv, et al. Qwen3 technical report. arXiv preprint
arXiv:2505.09388, 2025a.

An Yang, Baosong Yang, Beichen Zhang, Binyuan Hui, Bo Zheng, Bowen Yu, Chengyuan Li,
Dayiheng Liu, Fei Huang, Haoran Wei, et al. Qwen2.5 technical report. arXiv preprint
arXiv:2412.15115, 2025b.

Chen Yang, Junjie Chen, Bin Lin, Jianyi Zhou, and Ziqi Wang. Enhancing llm-based test generation
for hard-to-cover branches via program analysis. arXiv preprint arXiv:2404.04966, 2024a.

John Yang, Carlos E Jimenez, Alexander Wettig, Kilian Lieret, Shunyu Yao, Karthik Narasimhan,
and Ofir Press. Swe-agent: Agent-computer interfaces enable automated software engineering.
Advances in Neural Information Processing Systems, 37:50528–50652, 2024b.

Lin Yang, Chen Yang, Shutao Gao, Weijing Wang, Bo Wang, Qihao Zhu, Xiao Chu, Jianyi Zhou,
Guangtai Liang, Qianxiang Wang, et al. On the evaluation of large language models in unit
test generation. In Proceedings of the 39th IEEE/ACM International Conference on Automated
Software Engineering, pp. 1607–1619, 2024c.

15

https://arxiv.org/abs/2305.07922
https://x.ai/models/grok-3-mini

810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2026

Wenjing Yin, Tianze Sun, Yijiong Yu, Jiawei Fang, Guangyao Su, Jiancheng Wang, Zekun Wang,
Wei Wang, Ran Chen, Ziyun Dai, et al. Coco-bench: A comprehensive code benchmark for
multi-task large language model evaluation. arXiv preprint arXiv:2504.20673, 2025.

Mingyue Yuan, Jieshan Chen, Zhenchang Xing, Aaron Quigley, Yuyu Luo, Tianqi Luo, Gelareh Mo-
hammadi, Qinghua Lu, and Liming Zhu. DesignRepair: Dual-Stream Design Guideline-Aware
Frontend Repair with Large Language Models . In IEEE/ACM 47th International Conference on
Software Engineering (ICSE), pp. 646–646, Los Alamitos, CA, USA, May 2025. IEEE Computer
Society.

Zhiqiang Yuan, Yiling Lou, Mingwei Liu, Shiji Ding, Kaixin Wang, Yixuan Chen, and Xin Peng.
No more manual tests? evaluating and improving chatgpt for unit test generation. arXiv preprint
arXiv:2305.04207, 2023.

Linghao Zhang, Shilin He, Chaoyun Zhang, Yu Kang, Bowen Li, Chengxing Xie, Junhao Wang,
Maoquan Wang, Yufan Huang, Shengyu Fu, et al. Swe-bench goes live! arXiv preprint
arXiv:2505.23419, 2025.

Simiao Zhang, Jiaping Wang, Guoliang Dong, Jun Sun, Yueling Zhang, and Geguang Pu. Experi-
menting a new programming practice with llms. arXiv preprint arXiv:2401.01062, 2024a.

Yuntong Zhang, Haifeng Ruan, Zhiyu Fan, and Abhik Roychoudhury. Autocoderover: Autonomous
program improvement. In Proceedings of the 33rd ACM SIGSOFT International Symposium on
Software Testing and Analysis, pp. 1592–1604, 2024b.

Ting Zhou, Yanjie Zhao, Xinyi Hou, Xiaoyu Sun, Kai Chen, and Haoyu Wang. Bridging design and
development with automated declarative ui code generation. arXiv preprint arXiv:2409.11667,
2024.

Terry Yue Zhuo, Minh Chien Vu, Jenny Chim, Han Hu, Wenhao Yu, Ratnadira Widyasari,
Imam Nur Bani Yusuf, Haolan Zhan, Junda He, Indraneil Paul, et al. Bigcodebench: Bench-
marking code generation with diverse function calls and complex instructions. arXiv preprint
arXiv:2406.15877, 2024.

16

864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

Under review as a conference paper at ICLR 2026

APPENDIX

CONTENTS

1 Introduction 1

2 Related Work 3

2.1 Large Language Models for Code . 3

2.2 Code Intelligence Evaluation for Large Language Models 3

3 TREAT Benchmark Construction Methodology 4

3.1 General Coding Tasks Evaluation . 4

3.1.1 Data Collection and Selection . 4

3.1.2 Scenario-Specific Data Collection Methods 5

3.2 Multi-Modality Benchmark Construction . 5

3.3 Robustness Benchmark Construction . 6

4 Evaluation Setup 6

4.1 Model Selection . 6

4.2 Enhanced Evaluation Method . 6

4.3 Evaluation Metrics . 6

5 Experiment Results 7

5.1 Multi-task Performance Comparison . 7

5.2 Multi-modality Evaluation . 8

5.3 Robustness Evaluation . 8

5.4 Effect of the Multi-prompt Evaluation . 9

6 Conclusion 9

7 Limitation and Future Work 9

A Detailed Benchmark Construction Methods 20

A.1 Code Generation . 20

A.2 Code Summarization . 20

A.3 Code Translation . 21

A.4 Code Reasoning . 21

A.5 Code Review . 22

A.6 Test Generation . 22

A.7 Vulnerability Detection . 23

A.8 Multi-modality tasks . 23

A.9 Code Robustness . 23

17

918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971

Under review as a conference paper at ICLR 2026

A.10 Code-TREAT-lite . 23

B Detailed Experimental Setup 24

B.1 Evaluated Models . 24

B.2 Code Generation . 24

B.3 Code Summarization . 25

B.4 Code Translation . 25

B.5 Code Review . 26

B.6 Code Reasoning . 27

B.7 Test Generation . 27

B.8 Vulnerability Detection . 28

B.9 Multi-modality tasks . 29

B.10 Code Robustness . 29

C Detailed Experiment Results and Analysis 29

C.1 Code Generation . 29

C.2 Code Summarization . 30

C.3 Code Translation . 32

C.4 Code Review . 32

C.5 Code Reasoning . 34

C.6 Test Generation . 35

C.7 Vulnerability Detection . 36

C.8 Multi-modality Tasks . 37

C.9 Effect of Multi-prompt Evaluation . 38

D Extended Related Work 43

D.1 Large Language Models for Code . 43

D.2 Large Language Models for Software Engineering 43

D.3 Large Language Models Evaluation . 44

E Limitation and Future Work 45

F Online Leaderboard 45

G Prompt Details 47

G.1 Code Generation . 47

G.2 Code Summarization . 48

G.3 Code Translation . 49

G.4 Code Review Generation . 50

G.5 Code Reasoning . 52

G.5.1 Input Prediction . 52

18

972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025

Under review as a conference paper at ICLR 2026

G.5.2 Output Prediction . 54

G.6 Test Generation . 56

G.7 Vulnerability Detection . 57

H Large Language Models Usage Statement 60

19

1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079

Under review as a conference paper at ICLR 2026

A DETAILED BENCHMARK CONSTRUCTION METHODS

A.1 CODE GENERATION

Language Scope. In this paper, we concentrate our evaluation of code generation on Python and
Java—two languages that together span a wide range of programming paradigms, from scripting
and rapid prototyping to strongly-typed, object-oriented development.

Table 4: Dataset difficulty distribution

Dataset Total # # Easy # Medium # Hard
GEEKSFORGEEKS 1536 818 603 115
HACKERRANK 455 142 157 156

Problem Definition. Each problem is represented as a tuple (P, T, S) where P denotes the natural-
language problem statement, T the set of available test cases, and S = {Spython, Sjava, Scpp} the
set of ground-truth solutions in three languages.

Problem Collection. We construct benchmarks by scraping GEEKSFORGEEKS and HACKERRANK
using Python-based HTML scrapers. For each problem, we extracted the title, natural-language
description, difficulty level, release date, human-verified solutions in Python, Java, and C++, and
the sample test cases provided on the platform. We retain only those problems for which at least
one language-specific solution compiles and executes successfully, ensuring that every problem in
the dataset has a valid implementation and avoiding ambiguous or unsolvable tasks.

Test Collection. When official test suites are available, we adopt them in full, as they typically
exercise common edge cases. For problems with insufficient coverage, we follow the spirit of
EVALPLUS (Liu et al., 2023) and LIVECODEBENCH (Jain et al., 2025) by using a large language
model (LLM; GPT-4o in our implementation) to synthesize additional random and adversarial in-
puts. No auxiliary type signatures or annotations beyond the original problem description are pro-
vided. To standardize stdin/stdout evaluation across tasks and languages, we use a lightweight
Driver Code harness that parses inputs from standard input and emits outputs to standard output;
this harness is provided as part of our augmentation pipeline (Step 1).

Three-stage augmentation.

1. Constraint elicitation & Driver Code provisioning. Prompt the LLM to infer and state
preconditions, invariants, input domains, and corner cases implied solely by the problem
description (without external type information). In this stage, we also provide the Driver
Code that specifies the STDIN format and expected STDOUT schema.

2. Generator synthesis. Prompt the LLM to produce an input-constructor function that sam-
ples random and adversarial test cases consistent with the elicited constraints and compati-
ble with the provided Driver Code.

3. Validation and iteration. Use a second LLM to check whether the constructor violates
the elicited constraints or the I/O contract implied by the Driver Code; on violation, refine
and retry for up to three rounds. If validated, execute the ground-truth reference solution
via the same driver to derive expected outputs, and retain only synthesized tests that either
confirm correct behavior or expose faults, from which we compute TPR.

A.2 CODE SUMMARIZATION

Language Scope. Our summarization dataset comprises function–docstring pairs from ten widely
used languages on GitHub, including C, C++, C#, Go, Java, JavaScript, TypeScript, PHP, Python,
and Ruby, enabling evaluation of cross-language generalization in code summarization.

Project Selection and Data Collection. We assembled our corpus from publicly available GitHub
repositories created in 2023 and restricted to projects with permissive licenses (e.g., Apache-2.0,
MIT) and at least 100 stars.

Function Extraction and Cleaning. Using the Tree-sitter library (Brunsfeld & GitHub, 2018), we
parsed each repository to extract all function definitions along with their docstrings. We then applied

20

1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133

Under review as a conference paper at ICLR 2026

the cleaning methods proposed by Shi et al. (Shi et al., 2022) to isolate only the first sentence of each
docstring, producing concise description–function pairs (f,D).

Dataset Statistics. Table 5 summarizes the number of function–docstring pairs collected for each
language after filtering and cleaning.

Table 5: Function–Docstring Pair Counts by Language

Language Count
C 347,480
C++ 212,319
C# 28,862
Java 177,268
Go 680,785
JavaScript 188,309
TypeScript 70,917
PHP 90,312
Python 743,201
Ruby 2,140

Total 2,541,581

A.3 CODE TRANSLATION

Language Scope. We focus exclusively on translations between Python and Java, enabling direct
cross-language comparisons within two of the most widely used programming ecosystems.

Dataset Composition. Our Code Translation dataset is built atop the GEEKSFORGEEKS cor-
pus, chosen for its extensive problem coverage and community-verified solutions. To introduce
greater linguistic diversity and complexity, we integrate POLYHUMANEVAL (Tao et al., 2024a), a
14-language extension of HumanEval that has been rigorously validated across all target languages.

Test Collection. For GEEKSFORGEEKS code translation tasks, we reuse the generated test suites
described in our code generation evaluation to ensure comparability across settings. For POLYHU-
MANEVAL, whose native tests are limited in scope, we augment coverage using the comprehensive
LLM- and mutation-based test sets from EvalPlus’s HUMANEVALPLUS pipeline (Liu et al., 2023).
Before inclusion, we executed all EvalPlus-provided test cases and observed that some exhibit type
incompatibilities or overflow-related issues for Java; leveraging the reference Java solutions from
POLYHUMANEVAL, we detected and excluded such cases. The resulting corpus contains only exe-
cutable, type-consistent cases suitable for cross-language evaluation, while exercising both nominal
and corner-case behaviors of the translated programs.

A.4 CODE REASONING

Task Splitting. We follow previous work (Gu et al., 2024) and divide code reasoning into two
complementary tasks: input prediction and output prediction. In input prediction, the model must
infer the missing inputs that produce a given expected output, while in output prediction, it must
compute the correct output for supplied inputs. This dual setup probes both backward (from output
to input) and forward (from input to output) program comprehension.

Language Scope. Consistent with our code generation and translation evaluations, we evaluate
reasoning in both Python and Java, ensuring comparable cross-language insights.

Dataset Construction. From our HACKERRANK and GEEKSFORGEEKS corpora, we use
Tree-sitter to identify each focal function and normalize its name to f , preserving any helper rou-
tines that f invokes. For every masked function, an LLM (o3-mini) generates five candidate triples
⟨inputs, expected output, assertion⟩. The prompt indicates the prediction target by replacing the
corresponding element with the placeholder “??”: for input prediction we mask expected output,
and for output prediction we mask inputs. We exclude trivial or ill-posed instances by remov-

21

1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187

Under review as a conference paper at ICLR 2026

ing functions with no parameters and non-informative returns (e.g., None/void), and by discarding
triples that are inconsistent with the function interface or control-flow preconditions.

Assertion Statements. Each example is packaged with a language-appropriate executable check
that binds the predicted quantity to a verifiable oracle. In Python, we assert that invoking f on
the predicted inputs equals expected output. In Java, we use assertEquals to compare
the method’s return value against the expected result (with appropriate boxing and tolerance where
needed). These assertions serve both as a standardized harness for evaluation and as a safeguard
against malformed instances; any example that fails to execute or violates the assertion under the
reference implementation is discarded.

A.5 CODE REVIEW

Language Scope. Our code review dataset covers the same ten widely used programming lan-
guages—C, C++, C#, Go, Java, JavaScript, TypeScript, PHP, Python, and Ruby—to ensure broad
applicability of models in generating reviews.

Project Selection and Data Collection. Repositories created in 2023 were selected if they carried
a permissive license (e.g., Apache-2.0, MIT) and met a threshold of at least 100 stars at the 2025
crawl. Pull-request metadata and associated discussion threads for PRs opened in 2023 were then
harvested and filtered according to the CodeReviewer (Li et al., 2022) protocol; forks, and archived
projects were excluded.

Review pair extraction. For each pull request, we parsed the unified diff and decomposed it into
individual diff hunks D using GitHub’s default context length, grouping changes by file. For every
hunk we selected the earliest human-authored review comment C that was paired with that hunk;
comments authored by the commit author were excluded. If multiple comments addressed the same
hunk, only the earliest was retained. The resulting collection of (D,C) pairs—diff hunks annotated
with human reviewer feedback—was used to train and evaluate automated code-review systems.

Dataset Statistics. Table 6 summarizes the number of diff-review pairs collected for each language
after filtering and cleaning.

Table 6: Diff–review Pair Counts by Language

Language Count
C 4,138
C++ 43,648
C# 18,055
Java 23,493
Go 44,191
JavaScript 11,634
TypeScript 109,813
PHP 2,186
Python 145,981
Ruby 3,597

Total 406,736

A.6 TEST GENERATION

Dataset Selection. We relied on a publicly available pipeline that augments focal-method context
to improve test-synthesis precision. For Python, we followed SYMPROMPT’s methodology (Ryan
et al., 2024), applying its context augmentation to 24 projects drawn from CODAMOSA (Lemieux
et al., 2023) to enrich each target function with module-level context. Because SYMPROMPT does
not provide explicit branch-coverage metadata, and because relying on users or LLMs to infer
branching can lead to insufficient coverage, we augmented the pipeline with lightweight branch
annotations (e.g., has branches and expected branches) to assist test construction.

22

1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241

Under review as a conference paper at ICLR 2026

A.7 VULNERABILITY DETECTION

Dataset Selection. We adopted the PRIMEVUL benchmark (Ding et al., 2024), which com-
prises 6,968 expert-verified vulnerable functions and 228,800 benign functions spanning 140 Com-
mon Weakness Enumerations (CWEs). PRIMEVUL provides expert-guided labels, rigorous de-
duplication to eliminate near-duplicate fragments, and chronological splits designed to prevent
temporal leakage between training and test sets. We also used the PRIMEVUL-PAIRED dataset,
which pairs each vulnerable function with its patched counterpart, enabling pairwise evaluation of a
model’s sensitivity to semantic changes introduced by security fixes.

A.8 MULTI-MODALITY TASKS

To evaluate the model’s capability in handling multi-modality programming requirements, we adopt
the DESIGNBENCH (Xiao et al., 2025), which encompasses three distinct tasks: UI code generation,
UI code edit and UI code repair, defined as follows:

UI Code Generation (TG). The objective of UI code generation is to generate expected code based
on the UI Mockups. Formally, given a UI design image I , the task aims to generate corresponding
UI code C such that TG : I → C. The input contains the UI design image I , and the output is the
UI code C that accurately reproduces the visual layout and styling.

UI Code Edit (TE). The goal of the UI code edit is to generate front-end code that complies with
user modification instructions. Given the original UI design image Io, original UI code Co, and
user instruction T described in natural language, the task produces modified code Cnew such that
TE : (Io, Co, T) → Cnew. The input contains the original UI design image Io, original UI code
Co, and user instruction T , while the output is the updated code Cnew incorporating the requested
modifications.

UI Code Repair (TR). The goal of the UI code repair is to repair the UI code with display issues.
Given the problematic UI code Cp, the problematic UI image Ip, the task generates repaired UI code
Cr such that TR : (Cp, Ip) → Cr. The input contains the problematic UI code Cp and image Ip, the
output is the repaired code Cr that resolves visual design issues.

A.9 CODE ROBUSTNESS

To evaluate LLM robustness, we adopt the CodeCrash (Lam et al., 2025), a unified stress-testing
benchmark, to systematically evaluate model robustness in code reasoning under semantically pre-
served perturbations using output prediction tasks (Gu et al., 2024). Specifically, CodeCrash designs
four types of perturbations:

Aggregated Structural Perturbations (PSC-ALL). Combine variable renaming, expression re-
formatting, and garbage code injection to construct functionally equivalent but complex programs,
representing traditional transformations that expose whether LLMs rely on pattern matching.

Contextual-level Misleading Perturbations. (1) Misleading Code Comments (MCC): Insert
natural language comments that explicitly contradict the actual code logic, testing whether LLMs
can filter out shallow misleading cues. (2) Misleading Print Statements (MPS): Embed misleading
messages as print statements, probing whether the effect is tied to a specific injection format.

Reasoning-level Misleading Perturbations (MHC). Provide plausible but incorrect high-level
hints about the expected outputs, directly challenging model reasoning and highlighting potential
rationalization issues.

A.10 CODE-TREAT-LITE

We provide the complete benchmark dataset Code-TREAT as well as the sampled Code-TREAT-lite
(as described above) in an anonymous Hugging Face repository (https://huggingface.co/
Code-TREAT/datasets). All experimental results in this paper are based on Code-TREAT-lite.

23

https://huggingface.co/Code-TREAT/datasets
https://huggingface.co/Code-TREAT/datasets

1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295

Under review as a conference paper at ICLR 2026

Table 7: List of Evaluated LLMs

Model Name Abbreviation Size Open-source

GPT-3.5-Turbo-0125 GPT-3.5 Unknown ×
GPT-4-Turbo-2024-04-09 GPT-4 Unknown ×
GPT-4o-2024-11-20 GPT-4o Unknown ×
GPT-4.1-2025-04-14 GPT-4.1 Unknown ×
o3-Mini (Med) o3-mini Unknown ×
o4-Mini (Med) o4-mini Unknown ×
GPT-5 GPT-5 Unknown ×
Claude-3.5-Haiku Claude-3.5-Haiku Unknown ×
Claude-3.5-Sonnet Claude-3.5-Sonnet Unknown ×
Claude-3.7-Sonnet Claude-3.7-Sonnet Unknown ×
Claude-Sonnet-4 Claude-Sonnet-4 Unknown ×
Gemini-2.5-Pro-05-06 Gemini-2.5-Pro Unknown ×
Grok-3-Mini (High) Grok-3-Mini Unknown ×
DeepSeek-V3 DeepSeek-V3 671B (37B active) ✓
DeepSeek-R1 DeepSeek-R1 671B (37B active) ✓
DeepSeek-R1 (0528) DeepSeek-R1 (0528) 671B (37B active) ✓

Qwen2.5-72B-Instruct Qwen2.5-72B 72B ✓
Qwen2.5-Coder-32B-Instruct Qwen2.5-Coder-32B 32B ✓
Qwen3-32B Qwen3-32B 32B ✓
Qwen3-30B-A3B Qwen3-30B 30B (3B active) ✓
Qwen3-235B-A22B Qwen3-235B 235B (22B active) ✓

LLaMA-3.1-8B-Instruct LLaMA-3.1-8B 8B ✓
LLaMA-3.1-70B-Instruct LLaMA-3.1-70B 70B ✓
LLaMA-3.3-70B-Instruct LLaMA-3.3-70B 70B ✓
LLaMA-4-Scout-17B-16E-Instruct LLaMA-4-Scout 109B (17B active) ✓

Gemma-3-27B-Instruct Gemma-3-27B 27B ✓

B DETAILED EXPERIMENTAL SETUP

B.1 EVALUATED MODELS

As shown in Table 7, to provide a comprehensive evaluation across various LLMs, we evalu-
ate 26 models of varying sizes and versions for general coding tasks, including both open-source
and closed-source LLMs: GPT family (GPT-3.5-Turbo-0125, GPT-4-Turbo-2024-04-09, GPT-
4o-2024-11-20, GPT-4.1-2025-04-14, o3-mini, o4-mini, GPT-5) (Hurst et al., 2024), Anthropic
Claude (Claude-3.5-Haiku, Claude-3.5-Sonnet, Claude-3.7-Sonnet, Claude-Sonnet-4) (Anthropic,
2024), Google Gemini & Gemma (Gemini-2.5-Pro-05-06, Gemma-3-27B-Instruct) (Google AI,
2024), DeepSeek family (DeepSeek-V3, R1, R1-0528) (DeepSeek-AI et al., 2025b;a), Alibaba
Qwen (Qwen2.5-72B-Instruct, Qwen-32B-Coder-Instruct, Qwen3-32B, Qwen3-30B-A3B, Qwen3-
235B-A22B) (Yang et al., 2025b; Hui et al., 2024; Yang et al., 2025a), Meta LLaMA (LLaMA-
3.1-8B-Instruct, LLaMA-3.1-70B-Instruct, LLaMA-3.3-70B-Instruct, LLaMA-4-Scout-17B-16E-
Ins) (Meta, 2024), and xAI Grok (Grok-3-Mini) (xAI, 2025).

B.2 CODE GENERATION

Model Configuration. Following BIGCODEBENCH (Zhuo et al., 2024), we set the tempera-
ture to 0.8 and, where supported, use a top-p of 0.95. To accommodate both models limited
to 8,192 tokens and those with larger context windows, we cap the maximum output length at
min

(
Tokenmax, 16,384

)
, where Tokenmax denotes the maximum token allowance of each indi-

vidual model.

24

1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349

Under review as a conference paper at ICLR 2026

Prompt Design. We employ three zero-shot prompt templates from recent benchmarks: BIG-
CODEBENCH (Zhuo et al., 2024), OCTOPACK (Muennighoff et al., 2023), and LIVE-
CODEBENCH (Jain et al., 2025), and retain the models’ default system prompt settings. The detailed
system and user prompts are provided in Appendix G.1.

Data Sampling & Testing. Owing to the large size of our Code Generation dataset corpus, we con-
structed a balanced yet tractable evaluation suite by randomly sampling problems from two sources,
GEEKSFORGEEKS and HACKERRANK. For each language (Python and Java), we selected the same
set of problems, with approximately half drawn from each source, to ensure a representative mix of
difficulty levels and problem types. For every problem, the model receives only the natural-language
(NL) description and is prompted to produce a complete solution in Markdown.

Evaluation Process. Model outputs were parsed from Markdown. If a response contained exactly
one fenced code block, we extracted that block as the implementation; otherwise we invoked a
secondary LLM-based extraction step to identify the intended implementation. The resulting code
was passed to an automated pipeline that compiles/interprets and runs it against the reference test
suite; syntax errors, runtime errors, and timeouts were recorded as failures.

Evaluation Metrics. We adopt PASS@1 accuracy (Chen et al., 2021) as the primary evaluation
metric and scale all scores in [0, 1] to percentages by multiplying by 100 for readability.

B.3 CODE SUMMARIZATION

Model Configuration. Following BIGCODEBENCH (Zhuo et al., 2024), we set the tempera-
ture to 0.8 and, where supported, use a top-p of 0.95. To accommodate both models limited
to 8,192 tokens and those with larger context windows, we cap the maximum output length at
min

(
Tokenmax, 16,384

)
, where Tokenmax denotes the maximum token allowance of each indi-

vidual model.

Prompt Design. We adopt the zero-shot direct prompt template from Sun et al. (Sun et al., 2025).
To increase prompt diversity, we then ask GPT-4o (Hurst et al., 2024) to generate two paraphrased
variants of this template, yielding three distinct prompts for each test example. In our system prompt,
we require models to output their answers in JSON format, in addition to the default helpful assistant
instructions. Detailed system and user prompts, including those for the LLM-as-Judge setting, are
provided in Appendix G.2.

Data Sample & Testing. We randomly sample 200 function–docstring pairs to form a balanced
evaluation set. For each sample, the model was given only the function implementation and
prompted to produce a concise summary.

Evaluation Process. We parsed the model’s response and extracted the first sentence, mirroring
the procedure used to isolate human docstrings in Shi et al. (Shi et al., 2022). The extracted sentences
(both model-generated and human-written) were then passed through the same cleaning pipeline
described in Shi et al. to normalize formatting and remove spurious tokens. Finally, the cleaned
summaries were evaluated in batch using an LLM-based judging pipeline that assigns quality scores
(e.g., correctness, completeness, relevance) which we aggregate into the reported metrics.

Evaluation Metrics Recognizing BLEU’s inability to capture nuanced summaries and the vari-
ability of human annotations, we follow recent work (Sun et al., 2025) in using an LLM judge.
Specifically, we prompt GPT-4o (Hurst et al., 2024) to assign each generated summary a quality
score from 1 to 5, where higher values denote better accuracy, conciseness, and informativeness.
We include the human reference summaries in the judging pool to establish a baseline. Finally, we
scale all scores in [1, 5] to percentages by multiplying by 20 for readability.

B.4 CODE TRANSLATION

Model Configuration. Following BIGCODEBENCH (Zhuo et al., 2024), we set the tempera-
ture to 0.8 and, where supported, use a top-p of 0.95. To accommodate both models limited

25

1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403

Under review as a conference paper at ICLR 2026

to 8,192 tokens and those with larger context windows, we cap the maximum output length at
min

(
Tokenmax, 16,384

)
, where Tokenmax denotes the maximum token allowance of each indi-

vidual model.

Prompt Design. We employ the zero-shot direct prompt template from POLYHUMANEVAL (Sun
et al., 2025) and then use GPT-4o (Hurst et al., 2024) to generate two paraphrased variants, result-
ing in three prompts per example. In our system prompt, we instruct the models to act as a code
translation system. The detailed system and user prompts are provided in Appendix G.3.

Data Sampling & Testing. To ensure a fair evaluation of model coding capabilities, we use the
same sample data for HACKERRANK as in the CODE GENERATION task, and conduct compre-
hensive testing on the POLYHUMANEVAL benchmark. For each translation task, models receive
only the source-language implementation and are prompted to generate the corresponding target-
language implementation, which must be returned as a fenced code block in Markdown.

Evaluation Process. Model outputs were parsed from Markdown. If a response contained exactly
one fenced code block, we extracted that block as the implementation; otherwise we invoked a
secondary LLM-based extraction step to identify the intended implementation. The resulting code
was passed to an automated pipeline that compiles/interprets and runs it against the reference test
suite; syntax errors, runtime errors, and timeouts were recorded as failures.

Evaluation Metrics. We adopt PASS@1 accuracy (Chen et al., 2021) as the primary evaluation
metric and scale all scores in [0, 1] to percentages by multiplying by 100 for readability.

B.5 CODE REVIEW

Model Configuration. Following BIGCODEBENCH (Zhuo et al., 2024), we set the tempera-
ture to 0.8 and, where supported, use a top-p of 0.95. To accommodate both models limited
to 8,192 tokens and those with larger context windows, we cap the maximum output length at
min

(
Tokenmax, 16,384

)
, where Tokenmax denotes the maximum token allowance of each indi-

vidual model.

Prompt Design. We adopt the zero-shot prompt template from LLAMA-REVIEWER (Lu et al.,
2023) and use GPT-4o-2024-11-20 (Hurst et al., 2024) to generate two paraphrased variants, yield-
ing three prompts per example. In our system prompt, we instruct the models to act as special-
ized code reviewers and to produce comments in JSON format. The detailed system and user
prompts—including those used for LLM-as-Judge—are provided in Appendix G.4.

Data Sampling & Testing. For each language we randomly sampled 200 diff–review pairs from
the union dataset, maintaining diversity by stratifying on change size and file type. Each example
consists of a single diff hunk; models were provided only the hunk and asked to generate a review
comment in the prescribed JSON format.

Evaluation Process. We parse the model’s JSON response to extract the "comments" field.
Parsed comments are then scored using an LLM-as-judge procedure (GPT-4o), which rates lexical
similarity to the human reference review comment.

Evaluation Metrics. Because BLEU scores are low and uninformative when comparing detailed
LLM reviews against human review comments, we follow Jiang et al. (Jiang et al., 2025) in using an
LLM as judge. We use an GPT-4o (Hurst et al., 2024) as the judge to rate each generated review’s
lexical similarity to the human reference on a 1–5 scale according to the following detailed setup:

• Judge Messages. Judge model is prompted with a system message that instructs it to “grade a
generated code review,” mimic grading ten times internally, and then output only the final JSON
grade:

{"grade":<integer 1-5>}

26

1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457

Under review as a conference paper at ICLR 2026

• Grading Criteria. The judge prompt presents both the generated and reference reviews and
specifies:

1. Grade = 5 if the review is identical to the reference.
2. Grade = 4 if it is semantically equivalent despite wording differences.
3. Grade = 3 if it correctly covers some reference comments.
4. Grade = 2 if only loosely related in content.
5. Grade = 1 if completely unrelated.

• Aggregation. We collect the JSON grades for all 200 samples per language and report (1) the
mean grade, and (2) the distribution of grades 1 through 5 to analyze model performance and
error modes. we scale all scores in [1, 5] to percentages by multiplying by 20 for readability.

B.6 CODE REASONING

Model Configuration. Following BIGCODEBENCH (Zhuo et al., 2024), we set the tempera-
ture to 0.8 and, where supported, use a top-p of 0.95. To accommodate both models limited
to 8,192 tokens and those with larger context windows, we cap the maximum output length at
min

(
Tokenmax, 16,384

)
, where Tokenmax denotes the maximum token allowance of each indi-

vidual model.

Prompt Design. We adopt the zero-shot direct prompt template from CRUX (Gu et al., 2024)
and use GPT-4o (Hurst et al., 2024) to generate two paraphrased variants, yielding three prompts
per example. In our system prompt, we require models to output their answers in JSON format,
in addition to the default helpful assistant instructions. The detailed system and user prompts are
provided in Appendix G.5.

Data sampling & Testing. We randomly sampled 200 problems from the union of HACKERRANK
and GEEKSFORGEEKS. For each problem we constructed two task variants: (1) input prediction —
the models receive the function and a masked input placeholder and are asked to produce concrete
input values; and (2) output prediction — the models receive the function and specific input(s) and
are asked to produce the expected output. Models were instructed to return answers in a compact,
programmatically parsable form (e.g., Python/Java literals or comma-separated values).

Evaluation process. We use a simple, regex-first parsing pipeline: when a model reply clearly
contains the needed values we extract them with lightweight patterns and substitute them into the
masked assertion (e.g., assert f(*inputs) == expected output). If the regex extrac-
tion fails or is ambiguous, we fall back to a secondary LLM (GPT-4o-mini) to produce a canonical
representation for the assertion. The resulting assertions are executed; compilation errors, runtime
exceptions, and timeouts are recorded as failures.

Evaluation Metrics. We use pass@1 accuracy (Chen et al., 2021) as our primary metric, where
each example is scored as 1 if the model’s prediction satisfies the assertion and 0 otherwise. We
report the average pass@1 over the evaluation set and and scale all score in [0, 1] to percentage by
multiplying 100 for improved readability.

B.7 TEST GENERATION

Model Configuration. Following BIGCODEBENCH (Zhuo et al., 2024), we set the tempera-
ture to 0.8 and, where supported, use a top-p of 0.95. To accommodate both models limited
to 8,192 tokens and those with larger context windows, we cap the maximum output length at
min

(
Tokenmax, 16,384

)
, where Tokenmax denotes the maximum token allowance of each indi-

vidual model.

Prompt Design. We adopt the zero-shot direct prompt templates from SymPrompt (Ryan et al.,
2024) for Python. To enhance diversity, we ask GPT-4o (Hurst et al., 2024) to paraphrase each
template into two additional variants, yielding three distinct prompts. In our system prompt, we
instruct the models to act as a professional unit test writer. The detailed system prompt and user
prompts are provided in Appendix G.6.

27

1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511

Under review as a conference paper at ICLR 2026

Data Sampling & Testing. We randomly sample 200 functions from the CODAMOSA
dataset (Lemieux et al., 2023) with the context-assistant annotations provided by SYM-
PROMPT (Ryan et al., 2024).

Evaluation Process. Model outputs were parsed from Markdown. The extracted test suite is ex-
ecuted with pytest (using pytest-cov) in a sandboxed environment; we record syntax errors,
runtime failures, test outcomes, timeouts, and per-example coverage.

Evaluation Metrics. Following prior works (Yuan et al., 2023; Xie et al., 2023; Yang et al.,
2024c), we assess test quality using three metrics:

• Compilation Success Rate (CSR): code executing successfully or not.

• Line Coverage (CovL): the percentage of source-code lines exercised by the test suite.

• Branch Coverage (CovB): the percentage of control-flow branches executed by the test
suite.

B.8 VULNERABILITY DETECTION

Model Configuration. Following BigCodeBench (Zhuo et al., 2024), we set the temperature to 0.8
and, where supported, use a top-p of 0.95. To accommodate both models limited to 8,192 tokens and
those with larger context windows, we cap the maximum output length at min

(
Tokenmax, 16,384

)
,

where Tokenmax denotes the maximum token allowance of each individual model.

Prompt Design. We adopt the zero-shot direct prompt templates from Ding et al. (Ding et al.,
2024) for both PRIMEVUL and PRIMEVUL-PAIRED. To increase prompt diversity, we ask GPT-
4o (Hurst et al., 2024) to generate two paraphrased variants of each template, yielding three prompts
per example. In our system prompt, we instruct the models to act as a security expert in analyzing
code for vulnerabliity. The detailed system prompt and user prompts are provided in Appendix G.7.

Data Sampling & Tesing. We randomly sampled 200 single-function examples from PRIMEVUL
and 200 function pairs from PRIMEVUL-PAIRED. For the single-function set we enforced a class-
balance constraint so that the absolute difference between the number of vulnerable and benign
examples is < 10 to avoid skewed metrics and ensure stable comparisons.

Evaluation Process. For PRIMEVUL, each model receives a single function and predicts either
vulnerable or benign. For PRIMEVUL-PAIRED, the model is shown both the vulnerable and patched
versions of a function and returns a pair of labels. Predictions are compared against ground-truth
annotations to produce per-example outcomes; we aggregate these outcomes to compute the reported
metrics.

Evaluation Metrics. We evaluate the model performance using the following metrics:

• PRIMEVUL Metrics.

– Accuracy: the fraction of correct predictions over all examples
– Precision: the proportion of predicted vulnerabilities that are true vulnerabilities
– Recall: the proportion proportion of actual vulnerabilities correctly identified
– F1-Score: the harmonic mean of precision and recall

• PRIMEVUL-PAIRED Metrics. We treat each vulnerable–patched pair as a single instance, clas-
sifying the model’s joint prediction into one of four categories (Ding et al., 2024):

– Pair-wise Correct (P-C): both functions labeled correctly.
– Pair-wise Vulnerable (P-V): both functions (incorrectly) labeled vulnerable.
– Pair-wise Benign (P-B): both functions (incorrectly) labeled benign.
– Pair-wise Reversed (P-R): labels swapped between vulnerable and patched versions.

28

1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565

Under review as a conference paper at ICLR 2026

B.9 MULTI-MODALITY TASKS

Model Configuration. We evaluate eight MLLMs that have been widely explored in multi-
modal tasks, namely GPT-4o-2024-11-20 (Hurst et al., 2024), GPT-5 (OpenAI, 2025b), Claude-3.7-
Sonnet (Anthropic, 2024), Claude-Sonnet-4 (Anthropic, 2025b), Gemini-2.5, Gemini-2.0 (Doshi,
2025), Qwen2.5-VL-72B-Instruct (Qwen, 2025), LLaMA-3.2-90B-Vision (Meta, 2024).

In configuring the MLLMs, we set the temperature to 0 and the maximum number of tokens output
to 16,384.

Evaluation Metrics. We evaluate the model performance using the following metrics:

• Visual Metrics. CLIP (Radford et al., 2021) is applied to measure the semantic similarity be-
tween the generated and original webpages.

• Code Metrics. (1) Compilation Success Rate (CSR) represents the percentage of generated code
that compiles successfully without errors. Assume that the total number of samples is N and
the number of samples compiled successfully is S, then CSR = S

N . (2) Code Modification
Similarity (CMS). We employ the Jaccard similarity (Thada & Jaglan, 2013) to quantify the
precision of code modifications on design edit and design repair tasks by comparing the sets of
modified line numbers between the ground truth and generated code. Let A represent the set of
line numbers modified in the ground truth code and B represent the set of line numbers modified
in the generated code. The CMS is formally defined as: CMS(A,B) = |A∩B|

|A∪B| .

• MLLM-as-Judge Metrics. MLLMs have shown great performance in assisting judges across
diverse modalities (Chen et al., 2024b; Wang et al., 2025b). Therefore, we prompt GPT-4o (Hurst
et al., 2024) to determine whether the model meets the user’s requirements on the design edit task
and resolve the design issues on the design repair task, and output an MLLM score between 0
and 10 with detailed explanations (0-3 denotes the poor edit/repair, 4-6 denotes partial edit/repair,
7-8 denotes good edit/repair and 9-10 denotes excellent edit/repair).

B.10 CODE ROBUSTNESS

Model Configuration. We evaluate multiple models of varying sizes and versions, including
both open-source and closed-source LLMs: GPT family (GPT-4o, GPT-4o-mini, GPT-4.1, 5, o4-
mini) (Hurst et al., 2024; OpenAI, 2025a;b), Anthropic Claude (Claude-3.5-Sonnet, 3.7-Sonnet,
Claude-Sonnet-4) (Anthropic, 2024; 2025a;b), Google Gemini (Gemini-2.5-Pro) (Doshi, 2025),
DeepSeek (DeepSeek-V3, R1) (DeepSeek-AI et al., 2025b), Alibaba Qwen (Qwen2.5-32B-Coder-
Instruct, Qwen2.5-72B-Instruct, Qwen3-32B, 235B-A22B) (Hui et al., 2024; Yang et al., 2025b;a),
and Meta LLaMA (LLaMA-3.1-70B-Instruct, LLaMA-3.3-70B-Instruct) (Grattafiori et al., 2024).

Evaluation Metrics. We adopt PASS@1 accuracy (Chen et al., 2021) as the primary evaluation
metric and scale all scores in [0, 1] to percentages by multiplying by 100 for readability. All per-
turbed results are reported as relative (∆% = Perturbed−VAN

VAN ×100%) differences from the correspond-
ing vanilla baseline.

C DETAILED EXPERIMENT RESULTS AND ANALYSIS

C.1 CODE GENERATION

Model Performance and Language Effects. Table 8 summarizes Pass@1 accuracy on code gen-
eration tasks, split by model, language (Python, Java), and dataset (GeeksforGeeks, HackerRank).
GPT-5 establishes itself as the clear leader, achieving the highest accuracy across all splits, including
an overall Pass@1 of 89.9%, with 91.5% on GeeksforGeeks and 85.3% on HackerRank. Its perfor-
mance is robust across both Python (89.1%) and Java (90.8%), suggesting strong cross-language
capability and minimal bias between these languages at the frontier of model capabilities. Second-
tier models, such as o3-mini at 79.9% and GPT-4.1 at 76.8%, lag behind GPT-5 by a significant
margin—over 10 percentage points in most splits. Among all evaluated models, there is a rapid
drop-off after the top performers, with accuracy for the majority of models clustering in the 50–70%
range, indicating a clear stratification in current code generation capabilities.

29

1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619

Under review as a conference paper at ICLR 2026

Table 8: Model Performance on Code Generation. The top three results on each task are highlighted
in green (1st) , orange (2nd) , and blue (3rd) backgrounds, respectively.

Model Overall Python Java

Overall GeeksforGeeks HackerRank Overall GeeksforGeeks HackerRank Overall GeeksforGeeks HackerRank

GPT-5 89.9 91.5 85.3 89.1 90.4 84.9 90.8 92.5 85.7
o3-mini (Med) 79.9 81.4 75.6 82.2 84.0 76.9 77.6 78.7 74.4

GPT-4.1-2025-04-14 76.8 79.4 68.8 77.8 81.2 67.5 75.7 77.6 70.0
o4-mini (Med) 74.2 76.9 65.9 79.5 81.7 72.8 68.8 72.1 59.0

Claude-Sonnet-4 74.0 75.4 69.7 75.0 76.9 69.2 73.0 73.9 70.2
Grok-3-Mini (High) 73.4 73.9 71.8 70.6 71.8 67.1 76.1 76.0 76.4
Claude-3.7-Sonnet 70.0 70.1 69.6 68.2 67.3 71.0 71.7 72.9 68.3
Qwen3-30B-A3B 69.0 74.3 53.0 70.6 77.7 49.0 67.4 70.8 57.1

DeepSeek-R1 (0528) 68.8 68.0 71.0 70.3 70.8 68.8 67.2 65.2 73.2
GPT-4o-2024-11-20 66.4 68.4 60.4 71.0 73.3 63.8 61.8 63.4 57.1

DeepSeek-V3 65.2 66.2 62.5 75.3 77.7 68.3 55.2 54.6 56.7
Qwen2.5-72B-Instruct 63.8 65.3 59.2 65.2 66.1 62.5 62.3 64.4 55.9
Qwen3-235B-A22B 63.2 63.1 63.8 64.7 65.4 62.7 61.8 60.7 64.9

Qwen3-32B 63.1 64.5 58.8 66.3 69.6 56.4 59.9 59.5 61.2
Qwen2.5-Coder-32B-Instruct 62.5 64.4 57.0 64.4 66.9 56.9 60.7 61.9 57.1

Gemini-2.5-Pro-05-06 61.1 60.7 62.3 68.1 65.4 76.3 54.1 56.0 48.4
DeepSeek-R1 59.9 55.6 72.7 61.0 57.9 70.5 58.8 53.4 74.8

Claude-3.5-Sonnet 59.5 62.4 50.6 60.0 62.4 52.9 58.9 62.5 48.2
GPT-4-turbo-2024-04-09 59.5 60.4 56.6 65.1 66.4 61.1 53.8 54.4 52.1
Gemma-3-27B-Instruct 51.3 52.1 48.7 57.7 59.3 52.9 44.9 45.0 44.6

Llama-4-Scout-17B-16E-Instruct 51.2 51.3 51.0 52.8 53.8 49.7 49.6 48.7 52.4
Claude-3.5-Haiku 50.9 55.8 36.0 60.6 65.7 45.4 41.1 46.0 26.6

GPT-3.5-turbo-0125 50.6 51.7 47.0 53.8 55.7 48.1 47.4 47.8 46.0
Llama-3.1-70B-Instruct 48.7 50.3 43.9 49.8 51.7 43.9 47.6 48.9 43.9
Llama-3.3-70B-Instruct 40.7 37.9 49.1 39.7 37.3 46.8 41.7 38.5 51.4
Llama-3.1-8B-Instruct 31.8 33.1 27.7 33.1 34.6 28.8 30.4 31.6 26.6

One notable observation is the prevalence of instruction drift: models sometimes generate unso-
licited usage examples or disregard required code templates. This behavior results in outputs that
are incompatible with automated evaluation harnesses, leading to an underestimation of their actual
coding ability in certain cases. Despite such issues, the overall rankings remain consistent and robust
across different benchmarks and codebases.

Task-Specific Limitations and Performance Bottlenecks. The analysis highlights several persis-
tent challenges in current model performance. Most prominently, there is a systematic bias toward
Python across almost all models except GPT-5, as evidenced by a consistent 10–20 percentage point
performance gap in favor of Python over Java. This bias likely stems from imbalances in pre-
training and fine-tuning datasets, which tend to heavily favor Python, thus equipping models with
stronger priors for Python syntax, idioms, and library usage. Additionally, prompt misinterpretation
emerges as a recurring bottleneck, particularly for Java. When prompts use phrasings such as “write
a {lang} script” and lang is set to Java, several models mistakenly generate JavaScript code. This
systematic evaluation artifact results in unconditional failures for affected Java test cases and re-
veals a vulnerability in current prompt understanding, especially when language names overlap with
other widely-used programming languages. Together, these findings underscore the need for more
balanced and robust instruction-following, as well as improved prompt disambiguation and better
handling of language-specific conventions in next-generation code models.

C.2 CODE SUMMARIZATION

Model Performance and Language Effects. Table 9 summarizes model performance on code sum-
marization tasks, as measured by GPT-4o judge scores across a variety of programming languages.
GPT-5 leads with an exceptional overall quality score of 98.4%, consistently outperforming all com-
petitors across nearly every language, including C, C++, Java, Python, and JavaScript, where scores
frequently exceed 98%. Claude-3.5-Sonnet and LLaMA-3.3-70B also demonstrate strong capabil-
ities, achieving overall scores of 96.5% and 96.0%, respectively, with their best results clustering
closely to the top performer. Across the board, most large and instruction-tuned models maintain
remarkably high summarization quality, often in the 95–99% range for mainstream languages, and
all substantially exceed the human baseline of 44.6%. This wide margin highlights the brevity and
sparsity typical of organic docstrings, which the LLMs’ outputs decisively surpass in both complete-
ness and style. Notably, model scale and instruction quality are primary drivers of performance,
as reasoning-oriented models such as DeepSeek-R1 and Gemini-2.5-Pro do not exhibit any con-
sistent advantage in this task. Instead, their results underscore the importance of fine-tuning and

30

1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673

Under review as a conference paper at ICLR 2026

Table 9: Model Performance on Code Summarization (%). The top three results on each task are
highlighted in green (1st) , orange (2nd) , and blue (3rd) backgrounds, respectively.

*JS = JavaScript, TS = TypeScript

Model Overall C C++ C# Go Java JS TS PHP Python Ruby

GPT-5 98.4 99.0 99.0 99.0 99.6 99.2 98.3 99.2 98.4 98.6 93.8
Claude-3.5-Sonnet 96.5 97.2 95.8 96.0 96.0 95.5 97.4 97.5 96.9 95.9 97.2

LLaMA-3.3-70B-Instruct 96.0 94.6 96.1 95.8 96.7 96.5 95.7 96.6 97.1 95.6 95.4
Qwen3-235B-A22B 95.3 95.6 94.7 95.1 95.5 95.7 95.8 94.7 95.6 96.1 94.3

Claude-Sonnet-4 93.8 91.8 93.8 94.1 93.1 94.4 94.2 93.7 95.1 93.2 94.3
DeepSeek-V3 92.8 94.3 93.4 92.6 92.0 91.6 92.5 92.4 91.8 94.4 93.2

DeepSeek-R1 (0528) 90.6 92.3 91.5 90.8 88.8 89.5 90.3 91.0 88.7 94.5 88.9
Qwen3-32B 90.2 92.6 90.3 90.0 88.0 86.7 91.4 90.0 90.1 93.6 89.2

GPT-4-turbo-2024-04-09 90.0 91.4 90.3 89.8 91.3 87.8 89.7 89.3 87.6 91.2 91.1
Claude-3.7-Sonnet 88.1 87.4 88.0 86.4 87.7 83.6 88.9 87.8 88.9 90.4 91.9

GPT-4o-2024-11-20 87.7 86.7 86.9 90.0 86.9 86.5 87.1 87.2 86.8 87.8 91.2
Qwen2.5-Coder-32B-Instruct 86.8 87.0 86.0 85.3 88.9 85.2 89.0 87.3 86.0 87.6 85.6

Qwen2.5-72B-Instruct 86.5 87.4 86.8 87.7 86.0 84.4 86.6 86.8 84.7 87.7 87.3
Claude-3.5-Haiku 85.2 87.0 85.5 82.9 88.1 86.8 87.0 86.5 85.2 87.3 76.0

Grok-3-Mini (High) 85.1 85.8 85.4 83.9 85.6 84.1 85.8 86.6 84.7 85.4 83.7
o4-mini (Med) 84.6 84.3 85.3 83.7 87.7 83.3 85.6 86.0 83.7 87.9 78.5

Gemma-3-27B-Instruct 83.0 80.6 81.5 83.1 82.6 82.3 83.5 82.3 84.3 84.7 84.6
Qwen3-30B-A3B 81.4 82.5 80.1 81.3 81.7 77.5 81.8 82.0 80.3 84.1 83.1

GPT-4.1-2025-04-14 80.2 79.0 79.8 78.8 82.1 80.5 80.9 80.3 80.5 80.0 80.4
o3-mini (Med) 79.5 86.7 87.0 86.1 87.2 82.9 86.7 84.8 85.5 23.0 85.4

Gemini-2.5-Pro-05-06 78.7 78.1 77.4 79.7 79.9 74.2 82.0 80.2 80.3 77.1 78.3
LLaMA-3.1-70B-Instruct 74.5 74.2 75.4 78.5 73.3 74.9 75.9 75.2 79.0 67.8 71.1

LLaMA-4-Scout-17B-16E-Instruct 74.4 70.6 71.7 79.6 75.9 77.2 73.7 72.5 77.0 70.3 75.2
GPT-3.5-turbo-0125 71.2 71.9 70.4 72.9 70.3 70.2 69.2 71.3 72.2 71.3 72.2

LLaMA-3.1-8B-Instruct 64.2 59.9 64.0 64.9 66.7 63.8 64.5 64.2 64.6 61.7 67.6
Human Baseline 44.6 44.1 38.2 41.8 54.3 34.8 45.4 40.1 48.3 48.8 50.7

high-quality, language-specific training data for code summarization. There is minimal variation
across programming languages, with even lower-resource languages such as Ruby and PHP receiv-
ing high-quality summaries from the top models, further confirming the strong generalization of
frontier LLMs.

Task-Specific Limitations and Performance Bottlenecks. Despite near-ceiling performance from
leading models, while our evaluation setup follows the most widely adopted practices in the
field (Sun et al., 2025), our experimental observations reveal that this methodology may still present
several issues for further resolution. The use of a single LLM judge, such as GPT-4o, may introduce
bias and style sensitivity, as its preferences for certain phrasings or lengths can influence scores
independently of semantic correctness. Minor formatting differences or stylistic choices may there-
fore yield notable score shifts, even in cases where the underlying summary remains unchanged.
Furthermore, although efforts are made to ensure the judge differs from the evaluated models, there
remains a risk of cross-family self-preference, potentially inflating the scores for some model fam-
ilies. Pairwise comparisons mitigate but do not eliminate this concern. Another artifact of the
evaluation pipeline is the uniform truncation of outputs to the first sentence, which can inadvertently
penalize models that prepend reasoning or place their core summary at the end, this is observed,
for instance, in o3-mini’s Python summaries. This truncation policy is applied to all models with-
out model-specific adjustment, ensuring fairness but possibly underestimating some models’ true
summarization ability. Taken together, these factors highlight that while current models display ex-
traordinary summarization accuracy, subtle evaluation artifacts and judge-related biases represent
the main bottlenecks to further performance gains in this setting.

31

1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727

Under review as a conference paper at ICLR 2026

C.3 CODE TRANSLATION

Table 10: Model Performance on Code Translation (%). The top three results on each task are
highlighted in green (1st) , orange (2nd) , and blue (3rd) backgrounds, respectively.

Model Overall HackerRank PolyHumanEval

Overall Python→Java Java→Python Overall Python→Java Java→Python Overall Python→Java Java→Python

GPT-5 97.9 98.1 97.8 97.1 97.9 96.3 99.0 98.4 99.6
o3-mini (Med) 92.8 90.9 94.8 89.3 87.3 91.3 97.3 95.3 99.2

Gemini-2.5-Pro-05-06 90.3 92.6 88.0 84.9 88.9 80.9 97.1 97.2 97.0
DeepSeek-R1 89.2 87.0 91.4 84.2 82.5 85.9 95.5 92.7 98.4

Grok-3-Mini (High) 87.7 86.5 88.8 81.8 81.8 81.3 95.2 92.3 98.2
GPT-4.1-2025-04-14 87.6 86.6 88.6 80.0 79.6 80.4 97.2 95.3 99.0
Qwen3-235B-A22B 87.1 82.1 92.1 80.8 74.5 87.2 95.0 91.7 98.4
DeepSeek-R1 (0528) 87.0 84.7 89.2 83.5 83.5 83.5 91.4 86.2 96.5

Qwen3-32B 86.0 82.3 89.7 79.7 76.3 83.2 93.9 89.8 98.0
Claude-Sonnet-4 86.0 86.9 85.0 76.6 79.3 73.9 97.9 96.5 99.2

Claude-3.7-Sonnet 85.1 84.1 86.1 78.0 80.6 75.5 94.0 88.4 99.6
DeepSeek-V3 82.1 80.4 83.9 71.6 70.4 72.8 95.5 93.1 98.0

GPT-4o-2024-11-20 82.0 80.8 83.2 70.7 70.8 70.5 96.3 93.5 99.2
Claude-3.5-Sonnet 81.7 82.9 80.5 74.2 79.5 68.9 91.2 87.2 95.1

o4-mini (Med) 81.0 79.5 82.5 70.0 67.9 72.0 95.0 94.1 95.9
GPT-4-turbo-2024-04-09 80.1 78.0 82.2 69.4 68.3 70.5 93.7 90.4 97.0

Qwen3-30B-A3B 80.1 75.2 85.0 69.5 64.4 74.5 93.6 88.8 98.4
Claude-3.5-Haiku 75.0 72.7 77.2 61.5 61.1 61.9 92.1 87.4 96.7

Qwen2.5-Coder-32B-Instruct 74.6 74.7 74.5 58.4 59.9 56.9 95.1 93.5 96.7
Qwen2.5-72B-Instruct 72.5 75.9 69.1 56.2 59.8 52.6 93.2 96.3 90.0

Llama-3.3-70B-Instruct 70.0 68.8 71.1 57.1 58.2 55.9 86.4 82.3 90.4
Llama-3.1-70B-Instruct 67.7 68.2 67.2 51.8 54.3 49.2 87.9 85.8 90.0

GPT-3.5-turbo-0125 66.5 66.8 66.2 47.6 49.5 45.7 90.5 88.8 92.3
Gemma-3-27B-Instruct 65.9 65.4 66.3 46.6 49.8 43.4 90.2 85.2 95.3

Llama-4-Scout-17B-16E-Instruct 64.4 63.1 65.8 49.4 50.6 48.2 83.4 78.9 88.0
Llama-3.1-8B-Instruct 49.6 47.2 52.1 29.1 31.4 26.8 75.7 67.3 84.1

Model Performance and Dataset Effects. Table 10 presents a comprehensive comparison of
LLMs on Python↔Java code translation, reporting Pass@1 accuracy across both HACKERRANK
and POLYHUMANEVAL benchmarks. GPT-5 establishes a new state-of-the-art with 97.9% over-
all accuracy, maintaining exceptional results in both directions and across datasets, including up to
99.0% on PolyHumanEval. The next tier—o3-mini and Gemini-2.5-Pro—remains highly compet-
itive (≥90%), while most leading models cluster above 85%. Among the strongest models, trans-
lation is nearly symmetric in both directions, confirming balanced competence. Notably, Pass@1
scores are systematically higher on POLYHUMANEVAL than on HACKERRANK for all model tiers
and translation directions, indicating that POLYHUMANEVAL is an relative easier benchmark, likely
due to models’ greater exposure to HumanEval-style problems in pretraining. There is a sharp per-
formance drop beyond the frontier models, with accuracy falling into the 65–75% range for lower
tiers. Overall, the results reveal a clear capacity-performance scaling effect, with newer and larger
models outperforming smaller or earlier versions by a substantial margin.

Task-Specific Limitations and Performance Bottlenecks. Despite these advances, several chal-
lenges remain prominent, particularly among mid- and lower-tier models. While leading models
exhibit robust and symmetric performance, many smaller models show a tendency for higher accu-
racy in the Java→Python direction, benefiting from Python’s more permissive syntax and forgiving
I/O; however, this advantage is not universal, with some exceptions observed. The significant and
consistent gap between results on POLYHUMANEVAL and HACKERRANK underscores a broader
limitation in model generalization: most models achieve high performance on familiar, benchmark-
like problems but are less reliable on the stricter or more diverse scenarios found in HackerRank. For
less capable models, accuracy drops sharply, reflecting both a lack of robustness to new evaluation
harnesses and a persistent gap between surface-level correctness and deeper semantic understanding.
These findings highlight that, although state-of-the-art models now translate code between Python
and Java with near-perfect fidelity on established benchmarks, substantial room for improvement re-
mains in achieving robust and generalizable code translation across diverse datasets and real-world
settings.

C.4 CODE REVIEW

Model Performance and Language Effects. Table 11 presents the lexical similarity ratings of
contemporary large language models (LLMs) on code review generation, as evaluated by GPT-4o,
which assesses how closely model-generated reviews resemble human-written references in terms of

32

1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781

Under review as a conference paper at ICLR 2026

Table 11: Model Performance on Code Review Generation (%). The top three results on each task
are highlighted in green (1st) , orange (2nd) , and blue (3rd) backgrounds, respectively.

Model Overall C Cpp Csharp Go Java Javascript Php Python Ruby Typescript

Gemma-3-27B-Instruct 31.7 28.9 30.6 32.3 32.1 30.9 34.3 30.5 33.0 33.0 31.7
Qwen3-30B-A3B 31.6 29.9 31.9 31.1 33.0 30.9 32.9 31.1 32.7 31.4 30.8

Gemini-2.5-Pro-05-06 31.5 29.3 31.5 31.5 31.2 30.1 35.0 29.9 32.4 32.6 31.4
Qwen2.5-72B-Instruct 31.3 29.5 31.0 31.9 32.5 30.1 35.0 29.6 31.7 31.0 30.5
DeepSeek-R1 (0528) 31.1 28.5 30.9 31.4 31.9 30.9 34.4 29.3 31.5 31.4 31.3

o3-mini (Med) 31.1 28.6 31.5 31.0 31.7 30.2 34.8 29.9 31.6 31.3 30.7
Qwen2.5-Coder-32B-Instruct 31.1 29.0 31.1 31.5 31.1 30.3 34.7 29.1 31.9 31.1 31.0

Grok-3-Mini (High) 30.9 28.7 30.4 31.2 31.9 30.9 33.6 29.4 31.2 30.8 31.5
Qwen3-235B-A22B 30.9 28.9 30.3 30.9 32.0 29.4 34.4 29.3 31.6 31.2 31.5

Claude-Sonnet-4 30.9 28.7 30.6 31.3 31.4 29.6 34.1 30.1 31.2 31.4 31.0
DeepSeek-V3 30.9 28.1 29.9 31.1 31.9 30.4 33.5 30.4 32.0 30.2 31.4

LLaMA-3.3-70B-Instruct 30.7 28.4 29.4 31.9 31.2 29.8 32.9 29.3 31.8 31.6 30.7
Claude-3.5-Haiku 30.6 28.9 31.6 30.5 31.3 30.2 30.7 31.3 30.1 30.1 31.0
Claude-3.7-Sonnet 30.4 28.6 30.6 31.1 31.1 30.3 32.6 29.6 30.1 30.2 30.1

GPT-3.5-turbo-0125 30.4 30.5 31.6 29.7 31.6 30.7 29.6 29.0 32.4 29.2 29.8
Qwen3-32B 30.4 29.0 29.9 30.1 31.3 30.2 32.5 29.5 30.5 29.9 30.7

GPT-4o-2024-11-20 30.3 28.3 30.5 29.8 30.8 29.5 34.1 28.9 30.4 30.7 30.3
LLaMA-3.1-8B-Instruct 30.2 28.4 29.2 29.0 31.3 30.2 32.0 28.8 31.5 31.0 30.7

LLaMA-3.1-70B-Instruct 30.2 28.4 29.9 30.4 31.1 29.3 32.3 29.4 30.8 30.3 29.7
LLaMA-4-Scout-17B-16E-Instruct 30.1 28.3 29.7 30.2 30.7 29.5 32.3 29.1 30.7 30.2 30.4

Claude-3.5-Sonnet 30.0 28.7 29.0 30.0 30.8 29.4 33.2 28.3 30.0 30.1 30.1
GPT-4-turbo-2024-04-09 29.7 27.3 29.1 30.1 30.7 29.3 32.3 29.6 29.1 29.4 29.9

GPT-4.1-2025-04-14 29.4 27.3 28.5 29.0 30.2 29.2 32.6 28.7 29.8 28.8 30.4
o4-mini (Med) 29.0 26.9 28.5 28.8 29.6 28.3 32.5 28.0 28.8 29.3 29.4
DeepSeek-R1 27.3 24.9 27.0 26.4 27.9 27.2 30.6 25.7 28.0 26.6 28.2

GPT-5 26.9 24.3 26.6 26.9 26.7 25.8 30.5 25.7 26.9 26.9 28.4

wording, structure, and focus. In this evaluation, higher ratings indicate that a model’s review is lex-
ically and stylistically closer to the human reference, while lower ratings reflect greater divergence.
Gemma-3-27B achieves the highest overall similarity rating at 31.7%, closely followed by Qwen3-
30B (31.6%) and Gemini-2.5-Pro (31.5%), with leading models demonstrating robust performance
across a diverse set of programming languages. For instance, Gemma-3-27B obtains the top sim-
ilarity ratings in languages such as Java, Python, Ruby, and TypeScript, while Qwen3-30B and
Gemini-2.5-Pro excel in Cpp, Go, and JavaScript. Notably, in JavaScript, both Gemini-2.5-Pro and
Qwen2.5-72B attain the highest similarity rating (35.0%), underscoring the competitive landscape.
Despite these achievements, the overall ratings remain modest and tightly clustered, reflecting the
inherent challenge of matching human reviewer style and phrasing under this evaluation protocol.

Task-Specific Limitations and Performance Bottlenecks. The main limitation of this task lies
in the evaluation method. Although we follow the popular LLM-as-a-judge evaluation method in
this field, the dependence on a single human-written reference and lexical similarity as judged by
GPT-4o may pose some limitations. The metric inherently favors model outputs that closely mimic
the specific language and focus of the human review, rather than those that offer unique, alternative,
or equally valid critiques. Consequently, a higher similarity rating signals a closer match to the
reference in terms of phrasing and content, while a lower rating often indicates linguistic or stylistic
divergence, not necessarily a deficiency in review quality. Furthermore, even state-of-the-art models
that generate comprehensive or insightful comments may receive limited credit when the reference
review is incomplete, uninformative, or fails to address key issues in the code. This phenomenon is
particularly evident with models such as GPT-5, which perform strongly across most code-related
tasks and frequently generate high-quality, detailed review comments. Despite this, GPT-5 may still
obtain relatively modest similarity ratings if its suggestions differ from or go beyond those present
in the human reference, especially in cases where the reference itself is shallow or lacks substance.
This reliance on potentially limited human reviews as ground truth can obscure genuine advances in
model capability, and may penalize models that identify subtle bugs or offer substantive suggestions
overlooked by the reference. The constrained spread of similarity ratings among leading models
thus suggests that current progress is bounded by the ability to imitate the human reference rather
than provide substantively better reviews.

33

1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835

Under review as a conference paper at ICLR 2026

C.5 CODE REASONING

Table 12: Model Performance (%) on Code Reasoning. The top three results on each task are
highlighted in green (1st) , orange (2nd) , and blue (3rd) backgrounds, respectively.

Model Overall Input Output

Overall Python Java Overall Python Java Overall Python Java

o4-mini (Med) 98.1 96.6 99.5 97.7 96.1 99.3 98.4 97.1 99.7
GPT-5 97.8 95.7 100.0 98.2 96.4 100.0 97.5 94.9 100.0

Gemini-2.5-Pro-05-06 97.2 95.4 99.0 98.2 97.7 98.8 96.2 93.2 99.1
o3-mini (Med) 97.0 94.6 99.5 96.9 94.6 99.3 97.2 94.6 99.7

DeepSeek-R1 (0528) 96.7 94.7 98.7 97.0 95.3 98.6 96.3 94.0 98.7
Grok-3-Mini (High) 96.4 93.3 99.5 97.0 94.5 99.4 95.8 92.1 99.5

DeepSeek-R1 95.1 93.0 97.2 95.4 94.7 96.0 94.8 91.3 98.3
Qwen3-235B-A22B 94.1 90.5 97.6 93.4 89.9 96.9 94.8 91.2 98.3

Qwen3-32B 94.0 91.5 96.5 93.6 91.3 96.0 94.4 91.7 97.1
Qwen3-30B-A3B 92.3 89.6 95.0 91.5 89.0 93.9 93.2 90.2 96.1
Claude-Sonnet-4 87.8 85.7 90.0 85.2 83.8 86.7 90.5 87.6 93.3

GPT-4.1-2025-04-14 63.5 61.8 65.2 59.9 57.5 62.2 67.1 66.0 68.2
Claude-3.5-Sonnet 60.1 58.9 61.3 56.3 53.4 59.3 63.8 64.4 63.2

DeepSeek-V3 57.7 56.8 58.5 52.8 51.9 53.7 62.6 61.8 63.4
GPT-4o-2024-11-20 57.7 55.2 60.1 54.2 52.7 55.7 61.1 57.7 64.6
Claude-3.7-Sonnet 57.6 55.0 60.1 54.0 51.1 57.0 61.1 59.0 63.1

Qwen2.5-Coder-32B 56.2 52.6 59.7 50.8 45.3 56.3 61.5 59.9 63.2
GPT-4-turbo-2024-04-09 53.6 52.4 54.8 51.1 49.2 53.0 56.1 55.7 56.6

LLaMA-4-Scout 48.4 47.5 49.2 40.9 35.4 46.4 55.8 59.7 52.0
Qwen2.5-72B 48.2 48.2 48.3 43.5 41.9 45.1 53.0 54.5 51.4

LLaMA-3.3-70B 47.2 43.8 50.7 45.5 39.5 51.5 49.0 48.0 49.9
Claude-3.5-Haiku 46.1 45.4 46.7 42.7 40.0 45.3 49.5 50.7 48.2

Gemma-3-27B-Instruct 41.6 39.0 44.3 37.3 30.4 44.1 46.0 47.5 44.5
LLaMA-3.1-70B 41.5 38.1 45.0 38.7 33.5 43.9 44.4 42.6 46.1

GPT-3.5-turbo-0125 34.8 35.1 34.4 32.5 30.9 34.1 37.0 39.3 34.7
LLaMA-3.1-8B 28.8 32.6 25.0 26.7 29.9 23.6 30.8 35.2 26.4

Model Performance and Reasoning Effects. Table 12 provides a comprehensive overview of
model capabilities on code reasoning tasks, measured through input and output prediction accuracy
in both Python and Java. The results indicate a marked stratification among model families, with
GPT-5 and Gemini-2.5-Pro setting the state of the art. o4-mini achieves the highest overall Pass@1
accuracy of 98.1%, maintaining balanced strength across both Python and Java. GPT-5 excels par-
ticularly on Java, reaching perfect accuracy in both overall and output prediction, and maintaining a
strong position on Python. Gemini-2.5-Pro stands out for its superior input prediction in Python and
competitive results elsewhere. Other models such as o3-mini, DeepSeek-R1, and Grok-3-Mini also
demonstrate consistently high accuracy, illustrating that advances in architecture and scaling cor-
relate directly with improved reasoning performance. Notably, this capacity-reasoning relationship
becomes increasingly evident in more complex settings; larger and more recent models consistently
outperform earlier or smaller counterparts, particularly in Python where the task demands more so-
phisticated reasoning. In contrast, models like Claude-Sonnet-4, which perform well in web-based
evaluations, do not transfer this advantage fully to code reasoning, as evidenced by a lower overall
accuracy of 87.8%. The trailing group of models, including GPT-3.5, LLaMA-3.1-8B, and compact
Qwen or Gemma variants, remain limited in their reasoning capabilities, frequently falling below
50% overall accuracy. This sharp divide underscores the importance of both model scale and design
in supporting complex reasoning tasks across programming languages.

Task-Specific Limitations and Performance Bottlenecks. Further examination of the results high-
lights persistent bottlenecks that inhibit optimal model performance, particularly in input reasoning

34

1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889

Under review as a conference paper at ICLR 2026

for Python. Even among top-performing models, there is a clear and recurring gap between Python
and Java, with input prediction in Python proving more challenging and less consistent. A key fac-
tor underlying this discrepancy appears to be the inherent flexibility and less rigid syntax of Python,
which increases the potential for subtle formatting and representation errors in predicted inputs or
outputs. Models frequently struggle with faithfully preserving the expected structure of string liter-
als and variable representations in Python, leading to a measurable drop in accuracy, whereas Java’s
stricter and more explicit syntax mitigates such issues and enables higher reliability in both input and
output prediction. This trend is further accentuated among mid- and lower-tier models, where input
reasoning accuracy for Python can fall below 60% or even lower, in stark contrast to the consistently
higher performance observed in Java. These results suggest that despite recent progress, current
architectures still face significant obstacles in capturing and generalizing language-specific conven-
tions, particularly in the more flexible and variable Python setting. Addressing these bottlenecks
will require not only continued scaling but also more targeted innovations in code understanding
and syntactic reasoning across diverse programming paradigms.

C.6 TEST GENERATION

Table 13: Model Performance (%) on Test Generation. The top three results on each task are high-
lighted in green (1st) , orange (2nd) , and blue (3rd) backgrounds, respectively.

Model SymPrompt

CSR CovL CovBr

Claude-3.5-Sonnet 99.8 73.2 70.3
o4-mini (Med) 99.8 81.1 77.3

Claude-3.5-Haiku 99.7 44.6 38.2
Qwen3-235B-A22B 99.7 66.7 58.9
Claude-3.7-Sonnet 99.3 75.3 71.0

GPT-4-turbo-2024-04-09 99.3 67.7 60.3
Qwen2.5-Coder-32B-Instruct 99.3 65.0 58.1

Qwen3-30B-A3B 99.3 64.9 59.4
o3-mini (Med) 99.3 69.7 66.7

Claude-Sonnet-4 99.2 77.0 73.5
GPT-4.1-2025-04-14 99.2 75.4 72.3

GPT-5 99.2 82.6 81.8
Gemini-2.5-Pro-05-06 99.0 32.6 25.1
Qwen2.5-72B-Instruct 99.0 64.8 56.0

Qwen3-32B 99.0 65.2 58.2
DeepSeek-V3 98.8 68.6 63.5

GPT-3.5-turbo-0125 98.8 67.5 55.4
DeepSeek-R1 (0528) 98.7 67.4 58.8

DeepSeek-R1 98.5 69.0 62.8
GPT-4o-2024-11-20 98.5 69.3 63.6

LLaMA-3.1-70B-Instruct 98.5 66.3 56.2
Grok-3-Mini (High) 98.3 65.9 62.5

LLaMA-3.3-70B-Instruct 98.3 66.7 58.0
LLaMA-4-Scout-17B-16E-Instruct 97.7 68.7 58.3

Gemma-3-27B-Instruct 97.5 64.7 56.3
LLaMA-3.1-8B-Instruct 96.0 46.0 33.7

Model Performance and Capacity Effects. Table 13 summarizes model performance on the
SymPrompt-Python unit test generation benchmark, reporting comprehensive success rate (CSR),
line coverage (CovL), and branch coverage (CovBr). Both Claude-3.5-Sonnet and achieve the highest
CSR of 99.8%, establishing a clear upper bound in reliability for input/output prediction. However,
when considering code coverage metrics, GPT-5 distinguishes itself with leading results in both line
coverage (82.6%) and branch coverage (81.8%), closely followed by and Claude-Sonnet-4. Notably,
Claude-3.5-Sonnet, while excelling in CSR, demonstrates moderate coverage (73.2% and 70.3% for
CovL and CovBr, respectively), suggesting some limitation in generating tests that comprehensively
explore program logic.

35

1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943

Under review as a conference paper at ICLR 2026

Performance varies substantially across model families and sizes. The latest Claude, GPT, and
Qwen variants consistently surpass earlier versions and smaller-scale models, underscoring a strong
capacity-performance relationship in unit test generation. Larger models such as Claude-3.7-Sonnet,
Qwen3-235B, and GPT-4.1 approach top-tier results in coverage, while smaller or prior-generation
models like Gemini-2.5-Pro and LLaMA-3.1-8B lag considerably, particularly in coverage metrics.
This performance stratification reinforces that scaling and architectural improvements yield measur-
able gains, especially on the more demanding aspects of code analysis and test completeness.

Task-Specific Limitations and Performance Bottlenecks. Despite high comprehensive success
rates across most frontier models, coverage remains a persistent bottleneck. Many models maintain
near-ceiling CSR yet fall short in coverage, revealing a discrepancy between producing minimal
passing tests and generating diverse cases that robustly validate program behavior. For instance,
and Claude-3.7-Sonnet, while highly reliable, are still outperformed by GPT-5 in both line and
branch coverage, highlighting a gap in the ability to exercise complex code paths. Lower coverage
by models such as Gemini-2.5-Pro and Claude-3.5-Haiku further underscores challenges in code
reasoning and exploration, likely attributable to limited contextual understanding or training focus.

A particularly striking phenomenon is observed in Gemini-2.5-Pro, which, despite achieving a com-
petitive CSR of 99.0%, exhibits extremely low coverage rates for both line (32.6%) and branch
(25.1%) metrics. This suggests a fundamental shortcoming in the model’s ability to generate tests
that adequately explore program execution paths. Qualitative inspection reveals that Gemini-2.5-Pro
frequently produces tests that either redundantly mock dependencies or even reimplement the focal
method itself within the test suite, behaviors which are inconsistent with standard unit testing prac-
tice. This pattern likely reflects a lack of exposure to unit test generation tasks during model training,
resulting in overgeneralized or misaligned output that fails to capture the intended testing objectives.
Such findings highlight the importance of task-specific fine-tuning and exposure for robust coding
capabilities in automated test generation.

C.7 VULNERABILITY DETECTION

Model Performance and Comparative Effects.

Table 14 reports the performance of LLMs on vulnerability detection across both single-function
and paired-function scenarios, highlighting significant contrasts between models and task setups. In
the single-function PRIMEVUL setting, Claude-Sonnet-4 achieves the highest accuracy (69.5%) and
F1 score (73.7%), setting a new state of the art for this benchmark. GPT-5 and GPT-4-turbo closely
follow, with F1 scores of 69.2% and 69.9% respectively, underscoring consistent improvements
from recent GPT-family advances. Gemini-2.5-Pro and GPT-4o also demonstrate robust recall, with
Gemini-2.5-Pro achieving the highest recall (92.9%) yet comparatively lower precision, resulting
in moderate overall F1. Notably, models like Qwen2.5-72B and Qwen2.5-Coder-32B demonstrate
unusually high precision (73.2% and 70.4%), but this comes at the cost of extremely low recall,
indicating a tendency toward conservative positive predictions while missing many actual vulnera-
bilities.

In the more challenging PRIMEVUL-PAIRED task, model performance diverges sharply. GPT-4.1
attains the highest P-C score (90.8%), evidencing an exceptional ability to simultaneously label
both vulnerable and patched variants correctly. In contrast, Gemini-2.5-Pro leads in P-V (72.4%),
indicating a strong bias toward labeling both functions as vulnerable, which maximizes recall but
inflates false positives. Certain models, including Qwen2.5-72B and LLaMA-3.3-70B, stand out
with strong P-B scores (81.3% and 79.3%, respectively), reflecting a pronounced preference for
benign classification. Across most models, however, the P-R metric remains relatively low, suggest-
ing that catastrophic reversals—where patched code is labeled vulnerable and vice versa—are still
infrequent but not eliminated. These results reinforce that while LLMs have made strides in detect-
ing vulnerabilities in isolation, comparative reasoning between functionally similar but semantically
divergent code remains a significant obstacle.

Task-Specific Limitations and Performance Bottlenecks.

Analysis of the results reveals persistent task-specific bottlenecks that constrain model effective-
ness on vulnerability detection. In the single-function scenario, several models achieve respectable
accuracy and F1 scores by leveraging recognizable vulnerability patterns or established coding anti-

36

1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997

Under review as a conference paper at ICLR 2026

Table 14: Model Performance on Vulnerability Detection. The top three results on each task are
highlighted in green (1st) , orange (2nd) , and blue (3rd) backgrounds, respectively.

PrimeVul PrimeVul-Paired

Model Acc Prec Recall F1 P-C P-V P-B P-R

Claude-Sonnet-4 69.5 66.8 82.1 73.7 73.3 18.0 2.8 5.8
GPT-4-turbo-2024-04-09 59.8 57.3 89.7 69.9 49.5 10.7 33.0 6.8

GPT-5 67.3 67.9 70.5 69.2 80.3 13.5 2.5 3.7
GPT-4o 60.3 58.3 83.3 68.6 41.5 28.2 14.2 16.2

LLaMA-3.1-70B-Instruct 57.2 55.5 89.1 68.4 18.3 0.3 59.7 21.7
Claude-3.5-Haiku 61.2 59.3 80.8 68.4 32.8 3.8 35.0 28.3

Gemini-2.5-Pro-05-06 54.5 53.7 92.9 68.1 25.6 72.4 0.5 1.5
Gemma-3-27B-Instruct 62.0 60.6 76.9 67.8 35.8 8.2 30.2 25.8

LLaMA-3.3-70B-Instruct 62.3 61.6 73.4 67.0 12.8 0.5 79.3 7.4
GPT-4.1-2025-04-14 59.8 61.2 62.2 61.7 90.8 2.2 0.0 7.0

DeepSeek-R1 56.5 56.9 67.0 61.6 81.7 12.0 2.2 4.2
Qwen3-235B-A22B 55.5 56.9 59.6 58.2 85.2 6.8 2.9 5.1
Claude-3.5-Sonnet 47.7 49.9 68.9 57.9 77.7 9.2 5.2 8.0

Grok-3-Mini (High) 51.2 52.6 62.5 57.1 78.3 12.3 3.0 6.3
Claude-3.7-Sonnet 61.8 69.1 48.1 56.7 80.6 5.7 7.7 6.0

DeepSeek-R1 (0528) 56.0 58.1 55.1 56.6 72.5 19.7 2.2 5.7
Qwen3-32B 53.5 56.5 46.2 50.8 69.0 10.2 14.6 6.1

o4-mini (Med) 56.3 64.6 36.2 46.4 75.3 3.7 8.3 12.7
LLaMA-3.1-8B-Instruct 54.5 61.5 33.3 43.2 9.3 6.5 50.7 33.5

Qwen3-30B-A3B 54.0 61.5 30.8 41.0 60.9 9.9 20.4 8.8
DeepSeek-V3 51.5 63.6 15.7 25.2 39.8 0.2 52.0 8.0

Qwen2.5-72B-Instruct 52.3 73.2 13.1 22.3 14.5 1.5 81.3 2.7
o3-mini (Med) 50.5 61.5 12.8 21.2 54.7 3.5 35.8 6.0

Qwen2.5-Coder-32B-Instruct 51.7 70.4 12.2 20.8 24.0 8.0 49.0 19.0
LLaMA-4-Scout-17B-16E-Instruct 49.0 55.1 12.2 19.9 19.8 2.2 58.5 19.5

GPT-3.5-turbo-0125 45.8 40.8 9.3 15.1 13.0 1.8 37.4 47.9

patterns; however, this approach is often brittle and susceptible to overfitting, as evidenced by the
trade-off between high precision and low recall in several models. The paired-function setting, by
contrast, exposes the models’ limited capacity for nuanced semantic reasoning. Here, even top mod-
els show a marked drop in balanced accuracy and struggle to consistently distinguish patched from
vulnerable functions when differences are subtle and syntactic cues are minimal. This performance
gap highlights that the comparative nature of the paired task demands deeper understanding of code
semantics, intent of changes, and implications for program security.

Underlying these limitations are two interrelated challenges. First, models that excel in isolated
detection frequently rely on surface-level cues, which do not transfer to the more complex com-
parative setting where semantic intent is crucial. Second, minor syntactic edits in code pairs often
correspond to major shifts in vulnerability status, requiring the model to move beyond superficial
pattern matching toward genuine comprehension of control flow, data dependencies, and defensive
programming practices. The generally low P-C scores across the board reinforce the difficulty of
this task, suggesting that even state-of-the-art models have not yet closed the gap between local
vulnerability recognition and robust, context-aware reasoning about code security. Addressing these
challenges will require the development of models with stronger program analysis capabilities and
targeted training on semantically-rich vulnerability patterns.

C.8 MULTI-MODALITY TASKS

Model Performance and Capacity Effects. Table 15 presents the performance of MLLMs on web
development tasks across front-end frameworks, including React, Vue, Angular, and vanilla HTM-
L/CSS. Claude-Sonnet-4, Claude-3.7-Sonnet, GPT-5 and Gemini-2.5 emerge as top performers,
with Claude-Sonnet-4 achieving the highest overall performance, including superior CLIP scores
(0.6907-0.8385) for Design Generation and exceptional MLLM scores for Design Edit (7.69-9.43)
and Design Repair (7.37-8.14). Claude-3.7-Sonnet demonstrates strong compilation rates (0.6867-

37

1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051

Under review as a conference paper at ICLR 2026

0.9746) alongside competitive performance across all tasks, while Gemini-2.5-Flash exhibits robust
performance with reliable compilation success rates consistently exceeding 0.68. A clear capacity-
performance relationship emerges across model families, with larger variants consistently outper-
forming their smaller counterparts, particularly on complex tasks requiring code localization and
visual understanding capabilities.

Task-Specific Limitations and Performance Bottlenecks. Our analysis reveals distinct task-
specific bottlenecks that constrain MLLM effectiveness in web development scenarios. For Design
Generation tasks, models encounter dual challenges: compilation errors and visual inaccuracies.
Angular exhibits the lowest compilation success rates (0.6747-0.7590) compared to React and Vue
(>0.83), while moderate CLIP scores (around 0.6) indicate substantial opportunities for improve-
ment in visual fidelity. Conversely, Design Edit and Design Repair tasks are primarily limited by
code localization deficiencies, as evidenced by CMS scores significantly below compilation rates.
Even top-performing models like Claude-Sonnet-4 achieve CMS scores of only 0.2992-0.6588 for
Design Edit and 0.3795-0.6772 for Design Repair, despite maintaining compilation rates above 0.9.
These findings underscore the critical need for enhanced code understanding and precise localization
capabilities in MLLMs to enable more effective web development assistance.

Table 15: Model Performance on Multi-modality Tasks under different tasks and frameworks. The
top two performing results are highlighted in green (1st) and orange (2nd) .

Metric Framework Claude GPT Gemini LLaMA Qwen

Claude-4 Claude-3.7 GPT-5 GPT-4o Gemini-2.5 Gemini-2.0 LLaMA-90B Qwen-72B
Design Generation

CLIP (%)

React 83.9 80.8 83.7 76.4 79.4 76.1 70.4 77.9
Vue 81.2 83.2 79.0 77.3 77.8 69.0 53.2 68.4

Angular 59.1 60.2 59.6 59.6 60.0 60.1 53.3 51.5
Vanilla 81.2 81.3 80.6 76.8 80.2 75.9 64.0 76.0

Compilation (%)
React 99.1 95.4 97.2 97.2 91.7 90.8 94.5 95.4
Vue 97.5 97.5 96.6 94.9 93.2 83.9 74.6 85.6

Angular 67.5 68.7 67.5 71.1 68.7 71.1 73.5 62.6
Design Edit

MLLM Score

React 7.7 8.2 8.3 8.0 8.4 7.8 6.2 8.1
Vue 8.0 8.4 7.5 8.2 8.1 8.1 6.3 7.6

Angular 8.3 8.0 8.6 8.3 8.2 9.1 5.7 8.2
Vanilla 9.4 9.2 9.3 9.2 9.2 9.0 7.7 9.1

CMS (%)

React 42.1 46.6 35.1 52.5 36.6 37.1 26.4 44.0
Vue 29.9 40.5 26.9 37.0 30.3 32.8 21.0 32.8

Angular 65.9 68.3 59.6 61.0 58.2 63.9 47.0 60.2
Vanilla 34.0 34.4 30.2 33.9 35.8 29.1 19.5 32.1

Compilation (%)
React 97.2 100.0 91.7 98.1 97.2 100.0 91.7 99.1
Vue 98.1 98.1 88.6 94.3 97.1 95.2 91.4 93.3

Angular 92.4 90.9 97.0 90.9 90.9 100.0 86.4 90.9
Design Repair

MLLM Score

React 7.6 6.8 7.4 6.4 7.7 6.3 4.2 5.6
Vue 7.4 6.6 7.0 6.3 7.4 6.1 4.8 6.0

Angular 8.1 6.9 7.8 5.9 8.0 5.3 4.6 6.5
Vanilla 7.8 7.2 7.8 7.1 7.7 7.3 5.7 6.9

CMS (%)

React 55.7 48.3 29.7 27.5 33.7 17.6 4.5 18.7
Vue 40.0 30.7 31.6 25.2 36.2 17.8 5.0 11.3

Angular 67.7 57.2 51.0 50.7 56.7 39.7 31.0 55.6
Vanilla 38.0 22.9 10.6 16.4 19.0 16.3 3.7 14.5

Compilation (%)
React 100.0 100.0 100.0 100.0 100.0 100.0 92.9 92.9
Vue 100.0 100.0 96.3 100.0 100.0 96.3 100.0 100.0

Angular 100.0 92.9 100.0 100.0 100.0 100.0 78.6 92.9

C.9 EFFECT OF MULTI-PROMPT EVALUATION

We present the evaluation of using different prompts and their average performance in Figure 6 to
Figure 13. We observe substantial prompt sensitivity with varying degrees of impact across different
task categories. Specifically, we can achieve the following findings:

Prompt sensitivity exhibits task-specific patterns with varying magnitudes of impact. Tasks
such as vulnerability detection, test generation, and code review demonstrate observational perfor-
mance fluctuations across different prompts. For instance, in vulnerability detection tasks, when
using prompt 1, GPT-4.1 achieve much higher performance than using prompt 2 and prompt 3;
while for Claude-3.5-Haiku, the performance of prompt 1 is 10 ranks lower than prompt 2. In
contrast, tasks like code reasoning and code translation exhibit relatively stable performance across
different prompting approaches. The vast majority of models maintain the same ranking across dif-

38

2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105

Under review as a conference paper at ICLR 2026

Figure 6: The performance variation of different prompt on code generation.

Figure 7: The performance variation of different prompt on code review.

ferent prompts, and even for the few inconsistencies, the maximum difference does not exceed 5.
This suggests that different tasks are affected by evaluation prompts to varying degrees. For some
tasks such as vulnerability detection, test generation, and code review, using a single prompt may
introduce evaluation bias.

Multi-prompt evaluation provides more reliable and robust assessment results. Given the con-
siderable performance disparities observed across prompts, our multi-prompt evaluation approach
offers enhanced reliability compared to single-prompt assessments. To obtain comprehensive and

39

2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159

Under review as a conference paper at ICLR 2026

Figure 8: The performance variation of different prompt on code summarization.

Figure 9: The performance variation of different prompt on code translation.

unbiased evaluation results, we employ multiple diverse prompts and report the averaged perfor-
mance scores across all prompt variations. This methodology mitigates the potential bias introduced
by any individual prompt design and provides a more accurate assessment of the models’ capabilities
across different programming tasks.

40

2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
2170
2171
2172
2173
2174
2175
2176
2177
2178
2179
2180
2181
2182
2183
2184
2185
2186
2187
2188
2189
2190
2191
2192
2193
2194
2195
2196
2197
2198
2199
2200
2201
2202
2203
2204
2205
2206
2207
2208
2209
2210
2211
2212
2213

Under review as a conference paper at ICLR 2026

Figure 10: The performance variation of different prompt on input prediction.

Figure 11: The performance variation of different prompt on output prediction.

41

2214
2215
2216
2217
2218
2219
2220
2221
2222
2223
2224
2225
2226
2227
2228
2229
2230
2231
2232
2233
2234
2235
2236
2237
2238
2239
2240
2241
2242
2243
2244
2245
2246
2247
2248
2249
2250
2251
2252
2253
2254
2255
2256
2257
2258
2259
2260
2261
2262
2263
2264
2265
2266
2267

Under review as a conference paper at ICLR 2026

Figure 12: The performance variation of different prompt on unit test generation.

Figure 13: The performance variation of different prompt on vulnerability detection.

42

2268
2269
2270
2271
2272
2273
2274
2275
2276
2277
2278
2279
2280
2281
2282
2283
2284
2285
2286
2287
2288
2289
2290
2291
2292
2293
2294
2295
2296
2297
2298
2299
2300
2301
2302
2303
2304
2305
2306
2307
2308
2309
2310
2311
2312
2313
2314
2315
2316
2317
2318
2319
2320
2321

Under review as a conference paper at ICLR 2026

D EXTENDED RELATED WORK

D.1 LARGE LANGUAGE MODELS FOR CODE

Large language models (LLMs) for code have rapidly advanced tasks such as code generation, com-
pletion, and reasoning. Incoder (Fried et al., 2022) unify code synthesis and editing by training
on masked code segments that are moved to the end of files, enabling zero-shot code infilling and
improved performance on tasks like type inference, comment generation, and variable renaming.
CodeGen (Nijkamp et al., 2023) open-sources a family of models up to 16.1B parameters together
with the JAXFORMER training library and shows that multi-turn prompts substantially improve
program synthesis. The StarCoder model (Li et al., 2023a) with 15.5B parameters models trained
on one trillion tokens and fine-tuned on Python yields StarCoder, which outperforms many prede-
cessors. CodeT5+ (Wang et al., 2023) improves upon existing architectures by combining encoder
and decoder modules and employs a mixture of pretraining objectives. CodeLLaMA (Rozière et al.,
2023) extends LLaMA2 to code and emphasizes open foundational models for code. OCTOPACK
(Muennighoff et al., 2024) highlights instruction tuning in large code models, utilizing a vast dataset
of Git commits, which pair code changes with human instructions, for comprehensive code un-
derstanding. WizardCoder (Luo et al., 2024) proposed the Evol-Instruct method, which rewrites
simple instructions into more complex instructions, pushing performance beyond both open and
closed models. DeepSeek Coder (Guo et al., 2024) introduces a family of open models trained on
a 2 trillion-token corpus using a fill-in-the-blank objective and reports state-of-the-art performance
among open models, even surpassing some closed models. OpenCoder (Huang et al., 2025) releases
a top-tier open code LLM together with transparent training data, a complete processing pipeline,
and ablation experiments.

D.2 LARGE LANGUAGE MODELS FOR SOFTWARE ENGINEERING

Large language models play an important role in various processes of software engineering, from
requirement engineering to software development, testing and maintenance.

Requirement Engineering. LLMs enhance requirements engineering by automating elicitation,
analysis, specification, and verification processes through multi-agent frameworks. Elicitation(Ataei
et al., 2025) uses multiple persona-based agents to simulate user interactions and mine requirements
comprehensively, reducing costs compared to traditional user studies. SpecGen(Ma et al., 2024a)
automates specification generation through conversation-driven and mutation-based approaches.
Multi-phase systems like Arora et al.(Arora et al., 2024a) cover all four RE phases using specialized
agents: stakeholder/engineer agents for elicitation, formatting agents for specification, evaluator
agents for analysis, and validator agents for final validation. MARE(Jin et al., 2024) similarly em-
ploys stakeholder agents for elicitation, modeler agents for requirement modeling, checker agents
for verification, and documenter agents for specification writing, all communicating within a shared
workspace for seamless information exchange.

Software Development. In the realm of front-end development, MLLMs have revolutionized
creative designand web development practices.DCGen (Wan et al., 2024) proposes a divide-and-
conquer strategy that generates submodule code separately before assembling complete webpages.
DeclarUI (Zhou et al., 2024) combines element segmentation with page transition graphs to prompt
MLLMs for mobile app UI generation with navigation logic. UICopilot (Gui et al., 2025) adopts
a hierarchical approach by first generating HTML tree structures, then progressively generating UI
components. LayoutCoder (Wu et al., 2025) introduces a layout-aware MLLM framework specif-
ically designed to comprehend complex UI layouts and preserve layout fidelity in generated code.
DesignRepair (Yuan et al., 2025) presents a dual-stream, knowledge-driven approach that lever-
ages LLMs to detect and repair design quality issues in front-end code. Interaction2Code (Xiao
et al., 2024) and DESIGNBENCH (Xiao et al., 2025) add interaction-aware generation and repair.
LLM-based agents for end-to-end software development adopt classic software process models
to standardize development workflows: (A) Waterfall Process Model:Most existing agents (e.g.,
AISD (Zhang et al., 2024a), LCG (Lin et al., 2024), ChatDev (Qian et al., 2023), CTC (Du et al.,
2024), Self-Collaboration (Dong et al., 2024)) follow the linear waterfall model (Royce, 1987) with
sequential phases (requirements engineering, design, implementation, testing, deployment, mainte-
nance), while some extend it with iterative feedback loops for quality assurance and MetaGPT (Hong
et al., 2023) integrates human-like Standardized Operating Procedures (SOPs) for role-based collab-

43

2322
2323
2324
2325
2326
2327
2328
2329
2330
2331
2332
2333
2334
2335
2336
2337
2338
2339
2340
2341
2342
2343
2344
2345
2346
2347
2348
2349
2350
2351
2352
2353
2354
2355
2356
2357
2358
2359
2360
2361
2362
2363
2364
2365
2366
2367
2368
2369
2370
2371
2372
2373
2374
2375

Under review as a conference paper at ICLR 2026

oration; (B) Agile Development: Some agents explore agile methodologies including Test-Driven
Development (TDD) (Lin et al., 2024), which prioritizes writing tests before coding through test-
implement-refine cycles, and Scrum (Lin et al., 2024; Nguyen et al., 2025), which breaks devel-
opment into iterative sprints, with experiments showing Scrum achieves the best and most stable
performance on function-level code generation benchmarks, followed by TDD (Lin et al., 2024).

Software Testing. Software testing checks isolated software units (e.g., methods or classes) to
quickly identify and localize bugs (Yang et al., 2024a). While LLMs like ChatGPT can generate
unit tests with decent readability and usability (Yuan et al., 2023), they still exhibit compilation/ex-
ecution errors and limited coverage. Recent LLM-based agents address these issues through iter-
ative refinement: (A) Fixing Compilation/Execution Errors. ChatTester (Yuan et al., 2023) and
ChatUniTest (Xie et al., 2023) iteratively collect error messages and refine buggy test code; (B) In-
creasing Coverage. TELPA (Yang et al., 2024a) employs backward/forward program analysis and
counter-example sampling with CoT strategy to enhance coverage of hard-to-reach branches; (C)
Enhancing Fault Detection. MuTAP (Dakhel et al., 2024) uses mutation testing feedback, where
surviving mutants guide LLM refinement to improve test cases’ bug detection capabilities.

Software Operation and Maintenance. LLM-based agents for end-to-end software maintenance
follow a common pipeline to automatically resolve real-world GitHub issues through multiple
phases: (A) Preprocessing – agents prepare repository knowledge (e.g., RepoUnderstander (Ma
et al., 2024b) builds knowledge graphs, Agentless (Xia et al., 2024) creates hierarchical struc-
tures); (B) Issue Reproduction – agents generate test scripts to trigger unexpected behaviors when
reproduction tests are unavailable (e.g., SWE-agent (Yang et al., 2024b), MASAI (Arora et al.,
2024b) with two-stage template-based approach); (C) Issue Localization – agents identify relevant
code elements using: (C.1) retrieval-based strategies via BM25 similarity (Tao et al., 2024b), (C.2)
navigation-based approaches with search interfaces (Yang et al., 2024b; Arora et al., 2024b; Zhang
et al., 2024b; Xia et al., 2024), (C.3) spectrum-based fault localization calculating suspiciousness
scores from test coverage (Zhang et al., 2024b; Chen et al., 2024a), and (C.4) simulation using
Monte Carlo Tree Search (Ma et al., 2024b); (D) Task Decomposition – breaking issues into fine-
grained sub-tasks (Tao et al., 2024b; Ma et al., 2024b); (E) Patch Generation – creating fixes for
localized suspicious code elements (Xia et al., 2024); (F) Patch Verification – validating correct-
ness through code review (Tao et al., 2024b), static checking for syntax (Zhang et al., 2024b; Ma
et al., 2024b; Arora et al., 2024b; Xia et al., 2024; Yang et al., 2024b), and dynamic checking via
test execution (Chen et al., 2024a; Arora et al., 2024b; Xia et al., 2024); (G) Patch Ranking –
identifying highest-probability correct patches using ranker agents (Arora et al., 2024b) or majority
voting (Xia et al., 2024). These approaches are evaluated on benchmarks like SWE-bench (Jimenez
et al., 2023) containing real-world GitHub issues across popular Python repositories.

D.3 LARGE LANGUAGE MODELS EVALUATION

Recent years have witnessed substantial efforts in building benchmarks to evaluate the capabili-
ties of LLMs on code-related tasks. Early benchmarks such as HUMANEVAL (Chen et al., 2021),
MBPP (Austin et al., 2021), and APPS (Hendrycks et al., 2021), as well as extensions like HU-
MANEVAL+ (Liu et al., 2023), focused on evaluating function-level code generation performance.
Due to the rapid advancement of code-oriented LLMs, more challenging and realistic benchmarks
have been proposed. LIVECODEBENCH (Jain et al., 2025) continuously collects new contest prob-
lems from LEETCODE, ATCODER, AND CODEFORCES, offering a contamination-free setting for
evaluating code generation. CCTEST (Li et al., 2023b) focuses on real-world code completion
tasks, efficiently testing and fixing inconsistency bugs in real products including Github copilot.
BIGCODEBENCH (Zhuo et al., 2024) focuses on library-aware code generation, assessing models’
ability to handle diverse libraries across multiple domains. INFIBENCH (Li et al., 2024b) provides
the first large-scale QA benchmark curated from Stack Overflow questions, challenging LLM ca-
pability in realistic software engineering contexts. SWE-BENCH (Jimenez et al., 2023) evaluates
models on practical software engineering tasks by requiring them to resolve GitHub issues through
multi-file code modifications in realistic repositories.

44

2376
2377
2378
2379
2380
2381
2382
2383
2384
2385
2386
2387
2388
2389
2390
2391
2392
2393
2394
2395
2396
2397
2398
2399
2400
2401
2402
2403
2404
2405
2406
2407
2408
2409
2410
2411
2412
2413
2414
2415
2416
2417
2418
2419
2420
2421
2422
2423
2424
2425
2426
2427
2428
2429

Under review as a conference paper at ICLR 2026

E LIMITATION AND FUTURE WORK

To further enhance the comprehensiveness and practical implication of this benchmark, we have
planned several key directions for future work.

Expanding Task Diversity: While our current benchmark covers a range of fundamental tasks, we
plan to introduce more complex and realistic challenges to better assess the advanced capabilities
of LLMs (Jimenez et al., 2023; Wong et al., 2024; Peng et al., 2024). For example, code debug-
ging which evaluate a model’s ability to not only identify and locate errors but also to explain the
underlying logic flaws in the code moves beyond simple code correction to test a model’s deeper
reasoning and diagnostic skills. Furthermore, tasks like issue resolution tasks (Jimenez et al., 2023;
Yang et al., 2024b), require models to analyze entire problem contexts from sources like GitHub
issues—including natural language descriptions, error logs, and user comments—and then propose
and justify a complete code-based solution. This will measure a model’s ability to handle repository-
level software maintenance challenges that are common in real-world development.

Introducing Multi-Level Granularity Evaluation: Currently, our evaluation such as code gen-
eration and translation are primarily assessed at the function level. However, real-world software
engineering operates on much larger scales. We plan to extend our evaluation to higher levels of
abstraction to address this gap. This includes introducing repository-level tasks (Li et al., 2024a),
which will require models to generate or translate complete source files containing multiple classes
and functions. In future work, we aim to evaluate performance at multiple levels, challenging mod-
els to perform complex operations like implementing new features based on high-level requirements
or executing large-scale refactoring across an entire codebase.

Evaluating Diverse Prompting Strategies: The effectiveness of a large language model is signif-
icantly influenced by the prompting strategy used. We will conduct a more systematic investiga-
tion into the impact of various prompting techniques—from straightforward zero-shot and few-shot
methods (Gao et al., 2023) to more complex approaches like Chain-of-Thought (Wei et al., 2022)
and agentic workflows (Xia et al., 2024). This will provide valuable, practical guidance on how
to most effectively elicit high-quality outputs from models for different coding tasks, ultimately
helping to define best practices for their application.

Enhancing Security Evaluation: Given the increasing deployment of LLMs in production environ-
ments, we plan to expand our security evaluation framework beyond current vulnerability detection
tasks. Our assessment will cover various critical dimensions such as vulnerability assessment of se-
curity flaws in generated code, privacy protection evaluation to prevent sensitive data exposure and
regulatory violations, bias detection and mitigation in generated algorithms, authorship and intellec-
tual property compliance. This will establish essential safeguards for responsible LLM deployment
in software engineering practices.

Establishing a Regularly Update: To combat the persistent issue of data contamination, where a
model’s training data may inadvertently include benchmark samples, we will implement a dynamic
data collection and refreshment process (Jain et al., 2025; Zhang et al., 2025). By periodically
sourcing new data from the latest open-source projects and programming platforms, we can ensure
the benchmark remains fair and relevant. This regularly updating will help guarantee that we are
assessing a model’s true generalization capabilities on previously unseen code, thereby maintaining
the long-term integrity and credibility of our evaluation.

F ONLINE LEADERBOARD

Our online leaderboard is available at https://code-treat.vercel.app/.

In the leaderboard, we provide an interactive interface to view detailed results of each task, visualize
the model performance with timeline and compare the ability of different models.

As shown in Figure 14, the leaderboard page displays a comprehensive ranking table of each task.
Users can view model performance across multiple evaluation metrics for each task. The interface
allows users to filter results by different time periods and switch between various tasks such as
vulnerability detection. Each model entry shows detailed performance statistics.

45

https://code-treat.vercel.app/

2430
2431
2432
2433
2434
2435
2436
2437
2438
2439
2440
2441
2442
2443
2444
2445
2446
2447
2448
2449
2450
2451
2452
2453
2454
2455
2456
2457
2458
2459
2460
2461
2462
2463
2464
2465
2466
2467
2468
2469
2470
2471
2472
2473
2474
2475
2476
2477
2478
2479
2480
2481
2482
2483

Under review as a conference paper at ICLR 2026

Figure 14: The leaderboard page for different tasks.

Figure 15: The model performance timeline page.

Figure 15 shows the model performance timeline comparison page, which provides a temporal view
of how different models have evolved and improved over time. This scatter plot visualization plots
model accuracy against release dates, with different colored points representing various model fam-
ilies. Users can interact with the timeline to explore historical trends and identify breakthrough
moments in model development, making it easier to understand the progression of the field.

For more detailed analysis, Figure 16 shows our model comparison interface, which allows users
to select different models for side-by-side comparison. The radar chart visualization displays mul-
tiple performance metrics simultaneously, including accuracy, precision, recall, F1 score, and other

46

2484
2485
2486
2487
2488
2489
2490
2491
2492
2493
2494
2495
2496
2497
2498
2499
2500
2501
2502
2503
2504
2505
2506
2507
2508
2509
2510
2511
2512
2513
2514
2515
2516
2517
2518
2519
2520
2521
2522
2523
2524
2525
2526
2527
2528
2529
2530
2531
2532
2533
2534
2535
2536
2537

Under review as a conference paper at ICLR 2026

Figure 16: The leaderboard page for different tasks.

relevant measures. This enables researchers to conduct comprehensive comparative analysis and
identify the strengths and weaknesses of different approaches across various evaluation dimensions.

G PROMPT DETAILS

G.1 CODE GENERATION

CODE GENERATION

SYSTEM PROMPT

You are a helpful assistant.

User Prompt Prompts 1

Please provide a self-contained {PL} script that solves the
following problem in a markdown codeblock:{problem_description}
Your task is to complete the function {function_signatures} {
class_msg}

47

2538
2539
2540
2541
2542
2543
2544
2545
2546
2547
2548
2549
2550
2551
2552
2553
2554
2555
2556
2557
2558
2559
2560
2561
2562
2563
2564
2565
2566
2567
2568
2569
2570
2571
2572
2573
2574
2575
2576
2577
2578
2579
2580
2581
2582
2583
2584
2585
2586
2587
2588
2589
2590
2591

Under review as a conference paper at ICLR 2026

USER PROMPT 2

Write a {PL} function {function_signatures} {class_msg} to
solve the following problem:{problem_description}

USER PROMPT 3

You are an expert {PL} programmer. You will be given a question
(problem_description) and will generate a correct {PL} program
that matches the specification and passes all tests, You will

NOT return anything except for the program.
Question
{problem_description}
{starter_code_msg}
Answer:
(use the provided format with backticks)

G.2 CODE SUMMARIZATION

CODE SUMMARIZATION

SYSTEM PROMPT

You are a helpful assistant.

USER PROMPT 1

Please generate a short comment in one sentence for the
following function:
{code}

USER PROMPT 2

Please write a brief comment in one sentence for the following
function:
{code}

USER PROMPT 3

Kindly provide a concise comment in one sentence for the
following function:
{code}

48

2592
2593
2594
2595
2596
2597
2598
2599
2600
2601
2602
2603
2604
2605
2606
2607
2608
2609
2610
2611
2612
2613
2614
2615
2616
2617
2618
2619
2620
2621
2622
2623
2624
2625
2626
2627
2628
2629
2630
2631
2632
2633
2634
2635
2636
2637
2638
2639
2640
2641
2642
2643
2644
2645

Under review as a conference paper at ICLR 2026

CODE SUMMARIZATION – LLM AS JUDGE

SYSTEM PROMPT

You are a helpful assistant.

USER PROMPT

Here is a piece of code with corresponding comments. Please
rate each comment on a scale from 1 to 5, where a higher score
indicates better quality. A good comment should: 1) accurately
summarize the function of the code; 2) be expressed naturally
and concisely, without burdening the developer with reading; 3)
help the developer understand the code quickly: Your answer

should be in the JSON format JSON: {"Comment 0": {your rating},
"Comment 1": {your rating}, ..., "Comment n": {your rating}}.

Code:
<code>
Commnet 0: <human baseline summary>
Comment 1: <summary written by LLM_1>
Comment 2: <summary written by LLM_2>
...
Comment n: <summary written by LLM_3>

G.3 CODE TRANSLATION

CODE TRANSLATION

SYSTEM PROMPT

You are a code translation system.

USER PROMPT 1

Translate {SL} To {TL}:
{SC}

USER PROMPT 2

Translating {SL} To {TL} ensures that {TL} code can be executed
:
{SC}

49

2646
2647
2648
2649
2650
2651
2652
2653
2654
2655
2656
2657
2658
2659
2660
2661
2662
2663
2664
2665
2666
2667
2668
2669
2670
2671
2672
2673
2674
2675
2676
2677
2678
2679
2680
2681
2682
2683
2684
2685
2686
2687
2688
2689
2690
2691
2692
2693
2694
2695
2696
2697
2698
2699

Under review as a conference paper at ICLR 2026

USER PROMPT 3

Please provide the {TL} translation for the following {SL} code
:
{SC}

G.4 CODE REVIEW GENERATION

CODE REVIEW GENERATION

SYSTEM PROMPT

You are a code reviewer specializing in analyzing and providing
feedback on code. Please provide your review comments in the

following JSON format: {"comments": "<your comments>"}.

USER PROMPT 1

Below is an instruction that describes a task, paired with an
input that provides further context. Write a response that
appropriately completes the request.
Instruction:
Review the given code and provide a constructive code review
comment.
Input:
The code/diff hunk is:
‘{diff_hunk}’
Response:
{{comment}}

USER PROMPT 2

Below is an instruction describing a task, along with
additional context. Your job is to generate a complete response
based on the following request:

Instruction:
Examine the provided code and offer constructive feedback.
Input:
The code or diff hunk is:‘{diff_hunk}’
Response:
{{comment}}

50

2700
2701
2702
2703
2704
2705
2706
2707
2708
2709
2710
2711
2712
2713
2714
2715
2716
2717
2718
2719
2720
2721
2722
2723
2724
2725
2726
2727
2728
2729
2730
2731
2732
2733
2734
2735
2736
2737
2738
2739
2740
2741
2742
2743
2744
2745
2746
2747
2748
2749
2750
2751
2752
2753

Under review as a conference paper at ICLR 2026

USER PROMPT 3

Below is a task description along with additional context.
Provide an answer that fulfills the request.
Instruction:
Examine the given code and deliver a helpful code review
comment.
Input:
The code (or diff snippet) is:
‘{diff_hunk}’
Answer:
{{comment}}

CODE REVIEW GENRATION – LLM AS JUDGE

SYSTEM PROMPT

You are a smart code reviewer. You will be asked to grade a
generated code review. You can mimic answering them in the
background 10 times and provide me with the most frequently
appearing answer. Furthermore, please strictly adhere to the
output format specified in the question. There is no need to
explain your answer. Please output your final answer in the
following JSON format: {"grade": <your grade>}. The grade
should be an integer between 1 and 5, inclusive.

USER PROMPT

I am going to give you a generated code review as well as its
reference review. You should grade the generated review by
comparing it to the reference review, and output a grade based
on the following criteria:
1. If the generated review is identical to the reference review
, Grade=5;
2. If the generated review is essential equivalent to the
reference review although their expressions are not identical,
Grade=4;
3. lf the generated review explicitly and correctly specifies
some comments/suggestions presented in the reference review,
Grade=3;
4. If the generated review is only loosely related to the
reference review, Grade=2;
5. If the generated review is completely unrelated to the
reference review in semantics, Grade=1.
Please NOTE that you should only output a grade without any
explanation.
Generated Code Review:
<LLM generated-review>
Reference Code Review:
<human ground truth reference-review>

51

2754
2755
2756
2757
2758
2759
2760
2761
2762
2763
2764
2765
2766
2767
2768
2769
2770
2771
2772
2773
2774
2775
2776
2777
2778
2779
2780
2781
2782
2783
2784
2785
2786
2787
2788
2789
2790
2791
2792
2793
2794
2795
2796
2797
2798
2799
2800
2801
2802
2803
2804
2805
2806
2807

Under review as a conference paper at ICLR 2026

G.5 CODE REASONING

G.5.1 INPUT PREDICTION

INPUT PREDICTION

SYSTEM PROMPT

You are a helpful assistant. Please provide your input
prediction in the following JSON format: {"input_prediction":
"<your input prediction>"}.

USER PROMPT 1 – JAVA

You are given a piece of code containing Java method ‘f‘ (
already defined elsewhere) and a masked ‘public static void
main‘ template where all inputs are ‘??‘. Your task is to
identify suitable inputs for each ‘??‘ with concrete, valid
values so that, when combined with the existing class that
contains ‘f‘, the program compiles and the assertion in ‘main‘
holds true. No extra information except the filled ‘public
static void main‘ code should be included in your submission.
Code:
{function}
Masked main template:
{assertion_query}

USER PROMPT 2 – JAVA

You are provided with a Java method ‘f‘ (defined elsewhere) and
a ‘public static void main‘ template with input placeholders

marked as ‘??‘. Your task is to replace each ‘??‘ with concrete
, valid values so that the program compiles and the assertion
in ‘main‘ passes when run together with the class containing ‘f
‘. Submit only the completed ‘public static void main‘ code
no additional explanation or information.

Code:
{function}
Masked main template:
{assertion_query}

52

2808
2809
2810
2811
2812
2813
2814
2815
2816
2817
2818
2819
2820
2821
2822
2823
2824
2825
2826
2827
2828
2829
2830
2831
2832
2833
2834
2835
2836
2837
2838
2839
2840
2841
2842
2843
2844
2845
2846
2847
2848
2849
2850
2851
2852
2853
2854
2855
2856
2857
2858
2859
2860
2861

Under review as a conference paper at ICLR 2026

USER PROMPT 3 – JAVA

You are given a piece of code that includes a Java method ‘f‘ (
defined elsewhere) and a ‘public static void main‘ template
with masked inputs marked as ‘??‘. Your task is to replace each
‘??‘ with concrete, valid input values such that, when

combined with the existing class containing ‘f‘, the program
compiles successfully and the assertion in ‘main‘ passes. Your
response must include **only** the completed ‘public static
void main‘ code no additional explanation or information.
Code:
{function}
Masked main template:
{assertion_query}
Code:
{function}
Masked Main Template:
{assertion_query}

USER PROMPT 1 – PYTHON

You will be provided with a function ‘f‘ and a specified input
format ‘inputs = ??‘. Your task is to identify a suitable input
for the function ‘f‘ that, when passed, results in the

specified output. The solution should complete the final line
of code to ensure the program executes error-free. Feel free to
use any correct input, and note that the function f may

incorporate predefined classes or data types. No extra
information should be included in your submission.
{function}
{assertion_query}

USER PROMPT 2 – PYTHON

You will be provided with a function ‘f‘ and a specified output
in the format ‘inputs = ??‘. Your task is to complete the

final line of code so that the program executes error-free by
identifying an input that, when passed to ‘f‘, results in the
specified output. There could be several correct inputs, and
you may choose any one of them to complete the line. Do not
include any extra information.
{function}
{assertion_query}

53

2862
2863
2864
2865
2866
2867
2868
2869
2870
2871
2872
2873
2874
2875
2876
2877
2878
2879
2880
2881
2882
2883
2884
2885
2886
2887
2888
2889
2890
2891
2892
2893
2894
2895
2896
2897
2898
2899
2900
2901
2902
2903
2904
2905
2906
2907
2908
2909
2910
2911
2912
2913
2914
2915

Under review as a conference paper at ICLR 2026

USER PROMPT 3 – PYTHON

You are provided with a function named ‘f‘ and an expression
formatted as ‘inputs = ??‘. Complete the expression by
determining any possible input that, when passed to function ‘f
‘, will produce the specified output. Ensure the final line of
code runs error-free. Note that there might be several valid
inputs; you only need to provide one. Avoid including any extra
information.

{function}
{assertion_query}

G.5.2 OUTPUT PREDICTION

OUTPUT PREDICTION

SYSTEM PROMPT

You are a helpful assistant. Please provide your output
prediction in the following JSON format: {"output_prediction":
"<your output prediction>"}.

USER PROMPT 1 – JAVA

You are given a piece of code containing Java method ‘f‘ (
already defined elsewhere) and a masked ‘public static void
main‘ template where the assertion’s expected output(s) is/are
‘??‘. Your task is to replace that ‘??‘ with concrete, valid
value(s) so that, when combined with the existing class
containing ‘f‘, the program compiles and the assertion in ‘main
‘ holds true. No extra information except the filled ‘public
static void main‘ code should be included in your submission.
Code:
{function}
Masked main template:
{assertion_query}

54

2916
2917
2918
2919
2920
2921
2922
2923
2924
2925
2926
2927
2928
2929
2930
2931
2932
2933
2934
2935
2936
2937
2938
2939
2940
2941
2942
2943
2944
2945
2946
2947
2948
2949
2950
2951
2952
2953
2954
2955
2956
2957
2958
2959
2960
2961
2962
2963
2964
2965
2966
2967
2968
2969

Under review as a conference paper at ICLR 2026

USER PROMPT 2 – JAVA

You are given a Java code snippet containing a method ‘f‘ (
defined elsewhere) and a ‘public static void main‘ template in
which the expected output for an assertion is represented by
‘??‘. Your task is to replace each ‘??‘ with specific, valid
value(s) so that the program compiles successfully and the
assertion in ‘main‘ passes. Your submission must include only
the completed ‘public static void main‘ code do not add any
extra explanation or content.

Code:
{function}
Masked main template:
{assertion_query}

USER PROMPT 3 – JAVA

You are provided with a piece of code that includes a Java
method ‘f‘ (already defined elsewhere) and a ‘public static
void main‘ template where the expected output(s) in the
assertion is/are marked as ‘??‘. Your task is to replace each
‘??‘ with concrete, valid value(s) such that the program
compiles and the assertion in ‘main‘ evaluates to true when
combined with the given class containing ‘f‘. Submit only the
completed ‘public static void main‘ code no additional
information.
Code:
{function}
Masked main template:
{assertion_query}

USER PROMPT 1 – PYTHON

Based on the given code, which may contain errors, complete the
assert statement with the output when executing the code on

the given test case. Do not output any extra information, even
if the function is incorrect or incomplete.
{function}
{assertion_query}

USER PROMPT 2 – PYTHON

Please analyze the provided code, which might have errors, and
finish the assert statement by specifying the expected result
when the code is run with the specified test case. Ensure your
response includes only the necessary information, without any
additional comments about possible inaccuracies or
incompleteness in the function.
{function}
{assertion_query}

55

2970
2971
2972
2973
2974
2975
2976
2977
2978
2979
2980
2981
2982
2983
2984
2985
2986
2987
2988
2989
2990
2991
2992
2993
2994
2995
2996
2997
2998
2999
3000
3001
3002
3003
3004
3005
3006
3007
3008
3009
3010
3011
3012
3013
3014
3015
3016
3017
3018
3019
3020
3021
3022
3023

Under review as a conference paper at ICLR 2026

USER PROMPT 3 – PYTHON

Given the function below, which may have errors, complete the
assert statement to reflect the output when running the
function with the provided test case. Only include the
necessary information in your response; do not add anything
extra, regardless of the function’s correctness or completion
status.
{function}
{assertion_query}

G.6 TEST GENERATION

UNIT TEST GENERATION

SYSTEM PROMPT

You are a professional Python unit test writer. Always output
valid pytest test code wrapped in
‘‘‘python
{unit_test_code}
‘‘‘
Cover normal cases, invalid ts, boundary conditions, and
exception paths.

USER PROMPT 1

‘‘‘
{focal_method_code_with_context}
‘‘‘
Write pytest unit tests for the focal method ‘{
focal_method_name}‘ from the module ‘{module_name}‘.

USER PROMPT 2

Here is the relevant code:
‘‘‘
{focal_method_code_with_context}
‘‘‘
Your task is to create pytest unit tests that thoroughly test
the method ‘{focal_method_name}‘ defined in module ‘{
module_name}‘.

56

3024
3025
3026
3027
3028
3029
3030
3031
3032
3033
3034
3035
3036
3037
3038
3039
3040
3041
3042
3043
3044
3045
3046
3047
3048
3049
3050
3051
3052
3053
3054
3055
3056
3057
3058
3059
3060
3061
3062
3063
3064
3065
3066
3067
3068
3069
3070
3071
3072
3073
3074
3075
3076
3077

Under review as a conference paper at ICLR 2026

USER PROMPT 3

‘‘‘
{focal_method_code_with_context}
‘‘‘
Generate a set of pytest unit tests for ‘{focal_method_name}‘.
The method comes from the module ‘{module_name}‘. Ensure
coverage of normal cases, edge cases, and error handling.

G.7 VULNERABILITY DETECTION

VULNERABILITY DETECTION

SYSTEM PROMPT

You are a security expert analyzing code for vulnerabilities.
Be precise and accurate in your analysis.

USER PROMPT 1 – SINGLE FUNCTION

Please analyze the following code:
‘‘‘
{code}
‘‘‘
Please indicate your analysis result with one of the options:
(1) YES: A security vulnerability detected.
(2) NO: No security vulnerability.

Only reply with one of the options above. Do not include any
further information.

USER PROMPT 2 – SINGLE FUNCTION

Kindly review the code snippet below:
‘‘‘
{code}
‘‘‘
Then, respond exclusively with one of the following options:
(1) YES: A Security Vulnerability Detected.
(2) NO: No Security Vulnerability.

Please provide only one of the two responses, without any extra
details.

57

3078
3079
3080
3081
3082
3083
3084
3085
3086
3087
3088
3089
3090
3091
3092
3093
3094
3095
3096
3097
3098
3099
3100
3101
3102
3103
3104
3105
3106
3107
3108
3109
3110
3111
3112
3113
3114
3115
3116
3117
3118
3119
3120
3121
3122
3123
3124
3125
3126
3127
3128
3129
3130
3131

Under review as a conference paper at ICLR 2026

USER PROMPT 3 – SINGLE FUNCTION

Analyze the code snippet below:
‘‘‘
{code}
‘‘‘
After reviewing, choose exactly one of the following responses:
(1) YES: A security vulnerability detected.
(2) NO: No security vulnerability.

Respond only with one of these options and no additional
information.

USER PROMPT 1 – PAIRED FUNCTIONS

Please analyze the following two code snippets separately. For
each snippet, provide exactly one answer either (1) or (2) from
the options below:

For ‘code1‘:
- (1) YES: A security vulnerability detected.
- (2) NO: No security vulnerability.

For ‘code2‘:
- (1) YES: A security vulnerability detected.
- (2) NO: No security vulnerability.

Ensure that your reply consists of two separate lines, one for
‘code1‘ and one for ‘code2‘, with no additional information.

Code snippet for ‘code1‘:
‘‘‘
{code1}
‘‘‘

Code snippet for ‘code2‘:
‘‘‘
{code2}
‘‘‘

Please output in the following JSON format:
‘‘‘json
{{"code1": "<YES / NO>",
"code2": "<YES / NO>"}}

‘‘‘

58

3132
3133
3134
3135
3136
3137
3138
3139
3140
3141
3142
3143
3144
3145
3146
3147
3148
3149
3150
3151
3152
3153
3154
3155
3156
3157
3158
3159
3160
3161
3162
3163
3164
3165
3166
3167
3168
3169
3170
3171
3172
3173
3174
3175
3176
3177
3178
3179
3180
3181
3182
3183
3184
3185

Under review as a conference paper at ICLR 2026

USER PROMPT 2 – PAIRED FUNCTIONS

Analyze the two provided code snippets individually. For each
snippet, choose one answer from the following options:

For ‘code1‘:
- (1) YES: A security vulnerability detected.
- (2) NO: No security vulnerability.
For ‘code2‘:
- (1) YES: A security vulnerability detected.
- (2) NO: No security vulnerability.

Your response should consist of two separate lines one for ‘
code1‘ and one for ‘code2‘ with no extra details. Use the
following JSON format for your output:

‘‘‘json
{{"code1": "<YES / NO>",
"code2": "<YES / NO>"}}

‘‘‘

Here are the code snippets:

Code snippet for ‘code1‘:
‘‘‘
{code1}
‘‘‘

Code snippet for ‘code2‘:
‘‘‘
{code2}
‘‘‘

59

3186
3187
3188
3189
3190
3191
3192
3193
3194
3195
3196
3197
3198
3199
3200
3201
3202
3203
3204
3205
3206
3207
3208
3209
3210
3211
3212
3213
3214
3215
3216
3217
3218
3219
3220
3221
3222
3223
3224
3225
3226
3227
3228
3229
3230
3231
3232
3233
3234
3235
3236
3237
3238
3239

Under review as a conference paper at ICLR 2026

USER PROMPT 3 – PAIRED FUNCTIONS

Examine the two provided code snippets independently. For each
snippet, select one answer either (1) or (2) from the choices
below:

For ‘code1‘:
- (1) YES: A security vulnerability was detected.
- (2) NO: No security vulnerability found.

For ‘code2‘:
- (1) YES: A security vulnerability was detected.
- (2) NO: No security vulnerability found.

Your response should include exactly two lines: one for ‘code1‘
and one for ‘code2‘, without any extra details.

Here are the code snippets:

For ‘code1‘:
‘‘‘
{code1}
‘‘‘

For ‘code2‘:
‘‘‘
{code2}
‘‘‘

Return your answer in this JSON structure:
‘‘‘json
{{"code1": "<YES / NO>",
"code2": "<YES / NO>"}}

‘‘‘

H LARGE LANGUAGE MODELS USAGE STATEMENT

In this paper, we employed LLMs to support the polish and refinement of this manuscript. The
LLM was utilized to enhance linguistic expression and boost text comprehensibility. The model’s
assistance encompassed activities including sentence restructuring and grammatical checks.

We emphasize that the LLMs are not used for conceptual development or experimental framework
design. The authors assume complete accountability for all manuscript content, including portions
that were refined through LLM assistance. We have verified that all LLM-produced content complies
with academic integrity standards and does not constitute plagiarism or scholarly misconduct.

60

	Introduction
	Related Work
	Large Language Models for Code
	Code Intelligence Evaluation for Large Language Models

	TREAT Benchmark Construction Methodology
	General Coding Tasks Evaluation
	Data Collection and Selection
	Scenario-Specific Data Collection Methods

	Multi-Modality Benchmark Construction
	Robustness Benchmark Construction

	Evaluation Setup
	Model Selection
	Enhanced Evaluation Method
	Evaluation Metrics

	Experiment Results
	Multi-task Performance Comparison
	Multi-modality Evaluation
	Robustness Evaluation
	Effect of the Multi-prompt Evaluation

	Conclusion
	Limitation and Future Work
	Detailed Benchmark Construction Methods
	Code Generation
	Code Summarization
	Code Translation
	Code Reasoning
	Code Review
	Test Generation
	Vulnerability Detection
	Multi-modality tasks
	Code Robustness
	Code-TREAT-lite

	Detailed Experimental Setup
	Evaluated Models
	Code Generation
	Code Summarization
	Code Translation
	Code Review
	Code Reasoning
	Test Generation
	Vulnerability Detection
	Multi-modality tasks
	Code Robustness

	Detailed Experiment Results and Analysis
	Code Generation
	Code Summarization
	Code Translation
	Code Review
	Code Reasoning
	Test Generation
	Vulnerability Detection
	Multi-modality Tasks
	Effect of Multi-prompt Evaluation

	Extended Related Work
	Large Language Models for Code
	Large Language Models for Software Engineering
	Large Language Models Evaluation

	Limitation and Future Work
	Online Leaderboard
	Prompt Details
	Code Generation
	Code Summarization
	Code Translation
	Code Review Generation
	Code Reasoning
	Input Prediction
	Output Prediction

	Test Generation
	Vulnerability Detection

	Large Language Models Usage Statement

