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ABSTRACT

Large foundation models are fundamentally transforming the software engineer-
ing landscape, demonstrating exceptional capabilities across diverse tasks such as
code generation, debugging, and testing. Despite this rapid progress, a signifi-
cant gap remains in how to comprehensively evaluate these models’ trustworthi-
ness in real-world software engineering scenarios. Existing benchmarks suffer
from limited task scope and fail to incorporate critical evaluation aspects such
as the robustness and reliability of models. To bridge this gap, we present an
evaluation framework called TREAT (Code LLMs Trustworthiness / Reliability
Evaluation And Testing) that provides a holistic assessment of model perfor-
mance in code intelligence tasks. Our evaluation framework addresses key limita-
tions in existing approaches with four main improvements: (1) Multi-Task Holis-
tic Evaluation that spans diverse software engineering activities rather than lim-
ited coding tasks; (2) Multi-Language and Multi-Modality Assessment that ex-
tends beyond traditional single-language, text-only benchmarks to include multi-
modality coding tasks; (3) Robustness Assessment that evaluates model reliability
under semantically-preserving code transformations; and (4) Rigorous Evalua-
tion Methodology that enhances the trustworthiness of evaluation results through
diverse evaluation prompts and adaptive solution extraction. Based on this eval-
uation framework, we assess 26 state-of-the-art models and uncover both their
strengths and limitations, yielding several key insights: ❶ Current models show
substantial performance variation across programming tasks, especially on tasks
like code review and vulnerability detection; ❷ Multi-modal language models
demonstrate specific performance limitations in UI code generation and edit;
❸ Existing models exhibit severe robustness issues on coding tasks; ❹ Our
multi-prompt evaluation method can mitigate potential evaluation bias from sin-
gle prompts and obtain more reliable results. Our project page is available at
https://code-treat.vercel.app/.

1 INTRODUCTION

The landscape of software engineering is being fundamentally reshaped by large foundation
models, particularly Large Language Models (LLMs) and Multimodal Large Language Models
(MLLM) (Hou et al., 2024; Lyu et al., 2025). These models can understand natural language instruc-
tions and convert them into executable code, bridging the gap between human intent and software
implementation. Advanced models like OpenAI’s GPT series (Hurst et al., 2024) and Anthropic’s
Claude (Anthropic, 2024) have demonstrated remarkable proficiency across diverse software engi-
neering tasks, from code generation and debugging (Li et al., 2024b; Wang et al., 2025a) to docu-
mentation and testing (Gao et al., 2023; Xie et al., 2023). This evolution is driving the development
of intelligent tools that are transforming software engineering practices. As these models become
increasingly integrated into critical software development workflows, understanding their trustwor-
thiness and reliability has become increasingly critical.

Despite these impressive achievements, the rapid advancement of LLMs in software engineering
has created substantial challenges for model evaluation. Although numerous models have emerged
in both academia and industry, there is a lack of comprehensive evaluation methodologies that can
assess model capabilities across diverse real-world software engineering scenarios. Existing evalu-
ation approaches (Jain et al., 2025; Yang et al., 2024d) are often constrained to narrow, task-specific
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Figure 1: Overview of the TREAT evaluation framework.

benchmarks that fail to capture the complexity and diversity of practical software development work-
flows. Specifically, these benchmarks lack assessments for some critical software quality assurance
tasks such as code review and code vulnerability detection. Moreover, existing benchmarks of-
ten focus solely on single-modal and normal inputs, failing to incorporate important aspects such as
multi-modality processing capabilities and the mode’s robustness and reliability. These gaps make it
difficult to assess model’s trustworthiness in real-world development scenarios, posting major chal-
lenges for researchers and practitioners to determine optimal model selection for specific software
engineering scenarios.

To address the challenges, we present TREAT, the first holistic evaluation framework for LLMs
in code intelligence tasks. It tackles the aforementioned problems with the following features: ❶
Multi-Task Holistic Evaluation. Unlike existing benchmarks that focus on narrow and task-specific
assessments such as code generation, as shown in Figure 1 (a), TREAT provides a holistic bench-
mark spanning the software engineering activities in the development lifecycle. It encompasses mul-
tiple task categories, which enables researchers to assess model capabilities across diverse scenarios.
❷ Multi-Language and Multi-Modality Assessment. TREAT expands evaluation scope beyond
traditional single-language, text-only benchmarks. As shown in Figure 1 (b), our framework system-
atically evaluates models across multiple programming languages and incorporates multi-modality
tasks that bridge visual design and software implementation. We incorporate tasks such as UI code
generation and edit, which are essential given the multimodal environment of modern software de-
velopment environments. ❸ Robustness Evaluation. Considering the importance of trustworthy
Code LLMs in software engineering, as shown in Figure 1 (a), TREAT also incorporates systematic
robustness evaluation through various code transformation methods, which evaluates model stability
under semantically-preserving perturbations. ❹ Rigorous Evaluation Methodology. We establish
a rigorous evaluation methodology that enhances the fairness and reliability of the evaluation results.
As shown in Figure 1 (c), we employ a multi-prompt evaluation strategy to reduce potential evalua-
tion bias. Additionally, we employ an adaptive answer extraction method to better align benchmark
evaluation with real-world developer usage.

Based on our evaluation framework, we have assessed 26 state-of-the-art models including both
open-source and commercial models across different sizes. Based on this study and following anal-
ysis, we present the following novel empirical findings:

1. Current state-of-the-art models exhibit substantial performance variation and specialization across
different programming tasks (Figure 2), with no single model achieving consistent best perfor-
mance across all coding scenarios.

2. MLLMs exhibit different performance bottlenecks across different UI tasks, with UI code gen-
eration primarily limited by syntactic compilation issues while code edit and repair tasks are
constrained by insufficient visual understanding and precise modification capabilities.

3. Existing large language models exhibit severe robustness issues on coding tasks, with an average
performance decline of 14.1% under semantically-preserving code perturbations.
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General Coding Tasks Multi-modality Tasks Robustness Evaluation

Claude-Sonnet-4 Claude-Sonnet-3.7

o4-mini

Gemini-2.5-Pro

DeepSeek-R1 Qwen3-235B GPT-4o

GPT-5

Qwen2.5-72B

Figure 2: Performance comparison of leading models on TREAT. The results of multi-modality
tasks are normalized for visualization.

4. Our multi-prompt evaluation method can effectively mitigate evaluation bias caused by single
prompts, providing more reliable and trustworthy assessment results.

The main contributions of this paper can be summarized as follows:

1. Comprehensive Benchmark. We introduce TREAT, the first holistic evaluation framework span-
ning the software development lifecycle. It encompasses over 10+ tasks and languages, enabling
a comprehensive assessment of LLM’s generalization capabilities across diverse settings.

2. Holistic and Rigorous Evaluation. We establish a holistic evaluation methodology that incorpo-
rates multi-modality assessment and robustness evaluation through semantically-preserving code
transformations. The evaluation process employs multiple diverse prompts to reduce potential
evaluation bias.

3. Empirical Analysis. Through evaluation of 25+ state-of-the-art models, we reveal novel find-
ings such as significant performance variations across tasks and unreliable performance under
robustness assessment.

2 RELATED WORK

2.1 LARGE LANGUAGE MODELS FOR CODE

Large language models (LLMs) for code have rapidly advanced tasks such as code generation, com-
pletion, and reasoning. Several prominent models have emerged in this domain. For example,
OpenAI’s GPT series has garnered recognition for its proficiency in code generation and debug-
ging capabilities, while Google’s Gemini models excel at tackling complex algorithmic problems.
Anthropic’s Claude (Anthropic, 2024) has achieved impressive performance, exhibiting exceptional
aptitude for tasks demanding sophisticated code reasoning. More recent models like DeepSeek-
V3 (DeepSeek-AI et al., 2025b) and DeepSeek-R1 (DeepSeek-AI et al., 2025a) have reached per-
formance levels that rival leading closed-source models. Qwen3 (Yang et al., 2025a) series features
powerful agentic coding capabilities and is designed to handle complex software development work-
flows.

2.2 CODE INTELLIGENCE EVALUATION FOR LARGE LANGUAGE MODELS

The evaluation of Code LLMs has undergone significant evolution, transforming from simple code
generation benchmarks such as HumanEval (Chen et al., 2021) and MBPP (Austin et al., 2021)
to more sophisticated and realistic benchmarks. For example, LiveCodeBench (Jain et al., 2025)
deals with the data contamination problem through the use of contemporary contest problems; Big-
CodeBench (Zhuo et al., 2024) focuses on library-aware code generation capabilities. Although
some recent benchmarks have expanded to include additional evaluation tasks, they remain con-
strained in scope and scale. Different from these benchmarks, our TREAT evaluation framework
provides a holistic evaluation of model performance encompassing multi-language support, multi-
task evaluation, multi-modality capabilities, and robustness assessment.
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Table 1: Comparison with existing evaluation benchmarks.

Benchmark Size Languages Evaluation Tasks Multi
Prompt

Multi
Modality

MBPP (Austin et al., 2021) 378 Python Code Gen ✗ ✗

HumanEval (Chen et al., 2021) 164 Python Code Gen ✗ ✗

LiveCodeBench (Jain et al., 2025) 1,055 Python Code Gen, Input Pre,
Output Pre, Code Rep

✗ ✗

BigcodeBench (Zhuo et al., 2024) 1,140 Python Code Gen ✗ ✗

FullstackBench (Cheng et al., 2024) 3,374 16 languages Code Gen ✗ ✗

CoCo-Bench (Yin et al., 2025) 705 Python, Java,
C++, SQL

Code Gen, Code Rev,
Code Und, Code Mod

✗ ✗

AutoCodeBench (Chou et al., 2025) 3,920 20 languages Code Gen ✗ ✗

SWE-Bench Multimodal (Yang
et al., 2024c)

517 JavaScript Issue Resolution ✗ ✓

DyCodeEval (Chen et al.) 8,070 Python Code Gen ✓ ✗

TREAT 9,908 12 languages Code Gen, Code Rev,
Test Gen, etc. (10+
tasks)

✓ ✓

3 TREAT BENCHMARK CONSTRUCTION METHODOLOGY

To comprehensively evaluate code intelligence tasks, we construct our TREAT evaluation frame-
work with a generic methodology based on the software development lifecycle. As shown in Ta-
ble 1, compared with existing benchmarks, TREAT encompasses over 10 evaluation tasks and is the
only benchmark that employs multiple-prompt evaluation, multi-modality capabilities assessment,
and robustness evaluation.

As illustrated in Figure 3, our benchmark construction process employs a structured pipeline that
begins with data collection from diverse sources. This raw data undergoes filtering and systematic
metric design processes to provide a rigorous and comprehensive evaluation for each task. The
TREAT benchmark encompasses three key components. The General Coding Tasks Evaluation
(Section 3.1) assesses fundamental software development capabilities across seven core areas in-
cluding code generation, code summarization, code translation, code reasoning, code review, test
generation, and vulnerability detection. The Multi-Modality Tasks Evaluation (Section 3.2) extends
beyond traditional text-based programming to evaluate capabilities in UI-based code generation, edit
and repair tasks. Finally, the Robustness Evaluation Tasks (Section 3.3) assesses various models’
reliability under various code transformation methods such as program structure transformation and
providing misleading comments. We present the core workflow in building the benchmark in this
section, and the detailed construction process for each task can be found in the Appendix A

3.1 GENERAL CODING TASKS EVALUATION

3.1.1 DATA COLLECTION AND SELECTION

For general coding tasks, we construct our evaluation benchmark across seven important software
engineering activities from software development to quality assurance. Our dataset spans multiple
programming languages, with primary focus on Python and Java for most tasks, while extending to
ten popular languages (C, C++, C#, Go, Java, JavaScript, TypeScript, PHP, Python, Ruby) for code
summarization and code review to provide broad applicability.

To provide a comprehensive evaluation while reducing annotation costs, we employ a hybrid data
crawling strategy that combines automated crawling from GitHub repositories and coding platforms
with resampling from established public datasets. For tasks that can be automatically crawled and
annotated, we actively crawl from public and continuously updated coding platforms and GitHub
repositories, enabling to capture the most recent and comprehensive evaluation data; while for
datasets that require manual checks or annotations, we sample data from recent representative bench-
marks. For data collection, we collect high-quality data from two primary categories of reliable
sources: continuously updated competitive coding platforms (e.g., GEEKSFORGEEKS, HACKER-
RANK) that provide a large volume of algorithmic problems for evaluating model performance on
algorithmic reasoning tasks, and GitHub repositories meeting strict quality criteria (≥100 stars and
permissive open-source licenses such as Apache-2.0 and MIT) to gather real-world code samples

4
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Robustness Evaluation Tasks (Section 3.3)

Code Generation Code Translation Code Summarization Code Reasoning Test generation Code Review Vulnerability Detection 

General Coding Tasks (Section 3.1)

Multi-Modality Tasks (Section 3.2)
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GitHub Data Platform Data 
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Figure 3: Evaluation methods of TREAT.

reflecting practical software development scenarios. To guarantee data integrity and eliminate re-
dundant or low-quality samples, we first eliminate exact duplicates through string matching to avoid
data redundancy, then follow established data cleaning method in each task to apply task-adaptive
cleaning pipelines for filtering out irrelevant or invalid data (e.g., syntax errors, incomplete code
snippets), and for selected aggregated benchmarks, we verify that they have undergone rigorous
filtering and deduplication in their original publications to ensure reliability.

3.1.2 SCENARIO-SPECIFIC DATA COLLECTION METHODS

Code Generation (CG): For code generation, we utilize the algorithmic problems from GEEKS-
FORGEEKS and HACKERRANK, with data up to 2025 and spanning easy, medium, and hard diffi-
culty levels. We augment their existing test cases following the EvalPlus (Liu et al., 2023) method-
ology, with all generated test cases validated against ground-truth solutions to ensure accuracy.

Code Summarization (CS): For code summarization, we leverage the crawled GitHub repositories
and use the Tree-sitter (Tree-sitter, 2025) parser to extract function-docstring pairs from each file.
Then we apply Shi et al. (Shi et al., 2022)’s data cleaning methods to remove noisy samples.

Code Translation (CT): We focus on Python-Java bidirectional translation using our collected
GEEKSFORGEEKS problems and the existing PolyHumanEval datasets. We also augment the test
suites following the EvalPlus (Liu et al., 2023) to ensure rigorous evaluation.

Code Reasoning (CR): For code reasoning, we follow previous work (Gu et al., 2024) and cre-
ate two sub-tasks input prediction and output prediction. We leverage the crawled problems from
GEEKSFORGEEKS and HACKERRANK and employ Tree-sitter to mask function names and generate
candidate input-output-assertion triples for both sub-tasks.

Code Review (CRv): To construct a real-world code review dataset, we use the crawled GitHub
repositories and extract diff hunk and review comment pairs from each pull request. We follow the
filtering criteria in previous work (Li et al., 2022) to remove noisy review comments and construct
evaluation data.

Test Generation (TG): For test generation evaluation, we follow SYMPROMPT (Ryan et al., 2024)
and leverage its context augmentation technique on 24 projects used in CODAMOSA (Lemieux
et al., 2023) to construct our dataset.

Vulnerability Detection (VD): For vulnerability detection, we adopt the PRIMEVUL bench-
mark (Ding et al., 2024) containing 6,968 expert-verified vulnerable functions and 228,800 benign
functions across 140 CWEs.

3.2 MULTI-MODALITY BENCHMARK CONSTRUCTION

Evaluating code models on multi-modality tasks is crucial for understanding their ability to interpret
and generate code from diverse input formats such as images or layouts. We evaluate code mod-
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els on multi-modality tasks using the data from the DESIGNBENCH datasets (Xiao et al., 2025). It
encompasses three tasks collected through GitHub repository mining of framework-based websites
and analysis of top global websites, combined with real-world user modification requests from de-
velopment platforms like Vercel’s V0. Based on this, we construct the multi-modality benchmark
containing three core tasks: UI code generation, UI code edit, and UI code repair.

3.3 ROBUSTNESS BENCHMARK CONSTRUCTION

Robustness is crucial for evaluating models’ reliability and performance in real-world programming
scenarios, especially in code reasoning, where models must follow program logic rather than pattern
matching. Hence, we adopt the perturbation strategies from CODECRASH (Lam et al., 2025), which
include structural and semantic perturbations, to stress-test code reasoning under extreme and non-
ideal programs using output prediction (Gu et al., 2024). We use an aggregated program structure-
consistent perturbation (PSC-ALL) that integrates identifier renaming, conditional reformatting, and
garbage code insertion, reconstructing the program structure while preserving functionality. Beyond
structure, we adopt two levels of NL-embedded perturbations: contextual-level, where we inject
manifestly misleading cues to the program context through code comments (MCC) or print state-
ments (MPS), and reasoning-level, where it injects plausible but incorrect hints (MHC) to trigger
rationalization. In our work, we use data from the CR collection (Section 3.1.2) and apply the above
perturbation strategies to evaluate models’ robustness.

4 EVALUATION SETUP

In this section, we provide the overall experimental setup. The detailed setup, such as the used
prompt and metrics for each scenario, could be found in the Appendix B.

4.1 MODEL SELECTION

To provide a comprehensive evaluation across various LLMs, we evaluate over 26 state-of-the-art
models of varying sizes and versions, including both open-source and closed-source LLMs: GPT
family (Hurst et al., 2024; OpenAI, 2025a;b;c), Anthropic Claude series (Anthropic, 2024), Google
Gemini (Google AI, 2024), DeepSeek family (DeepSeek-AI et al., 2025b;a), Alibaba Qwen (Yang
et al., 2025b; Hui et al., 2024; Yang et al., 2025a), Meta LLaMA (Meta, 2024), and xAI Grok (Grok-
3-Mini) (xAI, 2025). For multi-modality evaluation, we exclude models that cannot accept visual
inputs and replace models that have multi-modality versions with their corresponding multi-modal
variants (e.g., replacing Qwen2.5-72B-Instruct with Qwen2.5-72B-VL-Instruct (Qwen, 2025)). The
detailed model list and their configuration are presented in the Appendix B.

4.2 ENHANCED EVALUATION METHOD

To avoid potential evaluation bias caused by using only one prompt, we employ the multi-prompt
evaluation strategies tailored to each task’s requirements for a more comprehensive and fair eval-
uation. For all tasks, we first adopt established prompt templates from recent benchmarks such
as BIGCODEBENCH (Zhuo et al., 2024) and OCTOPACK (Muennighoff et al., 2023) as the seed
prompt. To enhance prompt diversity and reduce potential bias, we use GPT-4o (Hurst et al., 2024)
to generate two paraphrased variants of each base template and check their validity manually. Be-
sides, we employ an adaptive solution extraction method that uses LLMs to extract solutions from
LLM responses when Markdown parsing is ambiguous or fails (details in Appendix B.2).

4.3 EVALUATION METRICS

We select the most popular evaluation metrics for each task. For code generation, translation, and
reasoning tasks, we adopt pass@1 accuracy (Chen et al., 2021). For code summarization and re-
view tasks, we follow (Jiang et al., 2025; Sun et al., 2025) and employ LLM-as-judge evaluation
using GPT-4o (Hurst et al., 2024) to assess quality on a 1-5 scale, which we convert to percentages
for consistency. The test generation task is evaluated using compilation success rate and coverage
metrics (line and branch coverage). Vulnerability detection employs standard classification met-
rics including accuracy, precision, recall, and F1-score. For multi-modality tasks, apart from code
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Table 2: Overall model performance (%) on general coding tasks. The top three results on each task
are highlighted in green (1st) , orange (2nd) , and blue (3rd) backgrounds, respectively.

Model Name
Tasks CG CS CT CR CRv TG VD Avg. Rank

GPT-5 89.9 65.7 97.9 97.8 33.1 82.6 67.3 1
Claude-Sonnet-4 74.0 65.9 86.0 87.9 35.0 77.0 69.5 2
Claude-3.7-Sonnet 70.0 63.7 85.1 57.6 34.8 75.3 61.8 3
DeepSeek-R1 (0528) 68.8 63.8 87.0 96.7 34.9 67.4 56.0 4
o3-mini 79.9 60.4 92.8 97.0 34.6 69.7 50.5 5
GPT-4.1 76.8 60.0 87.6 63.5 34.4 75.4 59.8 6
Qwen3-235B-A22B 63.2 64.3 87.1 94.1 34.5 66.7 55.5 7
o4-mini 74.2 61.1 81.0 98.1 33.5 81.1 56.3 8
Grok-3-Mini 73.4 62.5 87.7 96.4 35.3 65.9 51.2 9
DeepSeek-R1 59.9 63.8 89.2 95.1 33.4 69.0 56.5 10
GPT-4o 66.4 62.8 82.0 57.7 33.8 69.3 60.3 11
Claude-3.5-Sonnet 59.5 66.2 81.7 60.1 34.6 73.2 47.7 12
DeepSeek-V3 65.2 64.3 82.1 57.7 34.2 68.6 51.5 13
Gemini-2.5-Pro 61.1 60.3 90.3 97.2 34.8 32.6 54.5 14
Qwen3-32B 63.1 63.1 86.0 94.0 34.2 65.2 53.5 15
Qwen3-30B-A3B 69.0 59.7 80.1 92.3 34.6 64.9 54.0 16
GPT-4-turbo 59.5 63.2 80.1 53.6 33.8 67.7 59.8 17
LLaMA-3.3-70B 40.7 65.9 70.0 47.2 33.9 66.7 62.3 18
Gemma-3-27B 51.3 61.3 65.9 41.6 35.0 64.7 62.0 19
Qwen2.5-72B 63.8 62.6 72.5 48.2 34.4 64.8 52.3 20
Qwen2.5-Coder-32B 62.5 62.6 74.6 56.2 34.2 65.0 51.7 21
Claude-3.5-Haiku 50.9 61.6 75.0 46.1 34.1 44.6 61.2 22
LLaMA-4-Scout 51.2 59.6 64.4 48.4 34.1 68.7 49.0 23
LLaMA-3.1-70B 48.7 58.6 67.7 41.5 33.4 66.3 57.2 24
GPT-3.5-turbo 50.6 56.3 66.5 34.8 31.3 67.5 45.8 25
LLaMA-3.1-8B 31.8 54.3 49.6 28.8 32.7 46.0 54.5 26

complication rate and code modification similarity (CMS), we also utilize visual specialized metrics
including CLIP score and MLLM-as-Judge score (Xiao et al., 2025).

5 EXPERIMENT RESULTS

5.1 MULTI-TASK PERFORMANCE COMPARISON

Table 2 presents the performance comparison across different general coding tasks. Due to space
limitation, we report only the most popular metric for each task, with full results provided in the
Appendix C. The results show that current state-of-the-art models achieve strong performance on
some tasks such as code summarization and code reasoning, but exhibit notable weaknesses in others
like code review and test generation. Many models show large performance gaps across different
task categories, suggesting that existing LLMs have not achieved consistent proficiency across all
coding capabilities. Specifically, we could observe that:

Models exhibit substantial performance variation across different tasks. Current models tend
to specialize in specific domains rather than achieving uniform capabilities, with no single model
performing optimally across all evaluated tasks. For example, GPT-5 achieves exceptional perfor-
mance in code generation with 89.9% accuracy and excels in test generation with 82.6% coverage
rate, yet performs poorly on code review tasks with only 33.1% score. Similarly, o3-mini demon-
strates strong reasoning capabilities, achieving 79.9% and 92.8% pass rate in code generation and
code reasoning, but struggles with vulnerability detection, reaching only 50.5% accuracy.

Different models lead different tasks. For example, o4-mini achieves the best results in code rea-
soning at 98.1%, while Claude-Sonnet-4 performs best in vulnerability detection at 69.5%. Other
models also show distinct areas of expertise. These results indicate that different models have devel-
oped specialized strengths in specific programming domains. This specialization reflects the diverse
nature of coding tasks, which require different skills from logical reasoning to code understanding.
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Figure 4: Multi-modality evaluation results.

5.2 MULTI-MODALITY EVALUATION

Figure 4 presents the multi-modality evaluation results of leading MLLMs. The detailed results of
more models and each framework are shown in the Appendix C.8. We observe substantial perfor-
mance variations and task-specific limitations across different tasks.

Models show different performance bottlenecks on different tasks. In UI code generation tasks,
models are hindered by syntactic errors, facing the challenge of compilation errors. Claude-Sonnet-
3.7 achieves the highest CLIP score of 77.6, demonstrating superior visual-semantic alignment, yet
its compilation success rate of 92.1% falls slightly behind Claude-Sonnet-4’s 92.8%. In contrast,
UI code edit and repair tasks are primarily constrained by inadequate visual understanding and
modification capabilities. We can find that the compilation rate of almost all models is higher than
95%, while both MLLM scores and CMS scores remain relatively modest, particularly in design
repair tasks where CMS scores consistently fall below 50% across all evaluated models. The high
compilation rates and lower functional accuracy scores indicate that while models can generate
syntactically correct code given the code to modify, they struggle with precise code localization and
targeted modifications.

5.3 ROBUSTNESS EVALUATION

Table 3: Robustness evaluation results. Darker red highlights represent more severe degradation
under robustness testing.

Model Vanilla PSC-ALL MCC MPS MHC Avg ∆%
Large Reasoning Models (enable thinking)

GPT-5 99.5 +0.5% +0.0% +0.0% -0.5% +0.0%
Gemini-2.5-Pro 100.0 -1.0% -0.5% -0.5% -1.9% -1.0%
DeepSeek-R1 98.1 -1.5% -2.5% -1.5% -5.9% -2.8%
Qwen3-32B 98.6 -4.4% -4.9% -3.4% -3.4% -4.0%
o4-mini 99.0 -0.5% -13.6% -1.5% -6.8% -5.6%
Claude-Sonnet-4 94.7 -8.6% -2.5% -7.1% -7.6% -6.5%
Qwen3-235B-A22B 97.6 -2.5% -27.6% -10.8% -8.4% -12.3%

Large Language Models (under direct inference)
Claude-3.7-Sonnet 85.6 -7.9% -7.9% -7.3% -3.9% -6.7%
Claude-3.5-Sonnet 66.3 -4.3% -10.9% -12.3% -22.5% -12.5%
GPT-4o 73.1 -12.5% -21.1% -28.3% -21.1% -20.7%
LLaMA-3.3-70B 58.7 -20.5% -22.1% -32.8% -13.1% -22.1%
GPT-4.1 78.8 -12.8% -30.5% -27.4% -20.7% -22.9%
LLaMA-3.1-70B 56.7 -23.7% -16.1% -33.9% -17.8% -22.9%
Qwen2.5-32B-Coder 61.5 -12.5% -39.8% -32.8% -20.3% -26.4%
DeepSeek-V3 72.6 -21.2% -31.1% -27.2% -33.8% -28.3%
Qwen2.5-72B 63.5 -18.9% -25.0% -37.1% -42.4% -30.9%
Average 81.5 -9.5% -16.0% -16.5% -14.4% -14.1%

Table 3 presents the robustness evaluation results of different models under various perturbations.
The experimental results reveal severe robustness issues in current LLMs on coding tasks. Based on
the results, we have the following findings:

All models exhibit substantial performance degradation under code perturbations. With
semantically-preserving code perturbations, all tested models show varying degrees of performance
decline. On average, models experience performance drops of 9.5%, 16.0%, 16.5%, and 14.4%
under PSC-ALL, MCC, MPS, and MHC, respectively, resulting in an overall average performance
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(a) Code Review (b) Vulnerability Detection

Figure 5: The performance variation of top-10 models using different prompts.

decline of 14.1%. This widespread problem suggests that current LLMs lack a robust understanding
of code semantics and are easily misled by surface modifications.

Large reasoning models demonstrate better robustness. Models with advanced thinking capa-
bilities, such as GPT-5 and Gemini-2.5-Pro, exhibit markedly stronger robustness compared to non-
reasoning LLMs. These models show only minor performance fluctuations across most perturbation
scenarios, with average performance drops controlled within 3%. In contrast, traditional models
without reasoning exhibit considerable performance degradation, with models like DeepSeek-V3
and GPT-4o showing average performance decreases exceeding 20%.

Contextual-level perturbations cause the most severe impact. Models are more sensitive to
contextual-level perturbations (MCC and MPS), indicating that LLMs are easily influenced by mis-
leading natural language cues embedded in code. Misleading comments cause the largest perfor-
mance drop at 20.0%, suggesting that models overly rely on comment information for code under-
standing rather than analyzing the actual code logic.

5.4 EFFECT OF THE MULTI-PROMPT EVALUATION

Figure 5 demonstrates the substantial performance variation across different prompts for code re-
view and vulnerability detection tasks. The full results of all models on other tasks can be found
in the Appendix C.9. Our analysis indicates that model performance exhibits significant sensitivity
to prompt variations in some tasks. For example, Claude-3.5-Haiku shows remarkable fluctuations,
with performance ranks ranging from as high as 3 to as low as 18 depending on the specific prompt
used. These findings highlight the importance of employing multiple prompts to provide a more
comprehensive and reliable evaluation of model capabilities, especially for tasks where prompt sen-
sitivity is particularly evident.

6 CONCLUSION

This paper presents TREAT, a comprehensive evaluation framework that assesses the ability of
LLMs in code intelligence tasks. Through multi-task, multi-language, and multi-modality evaluation
of 26 state-of-the-art models, our framework reveals both their strengths and limitations, yielding
several key insights into current models’ ability to handle diverse coding scenarios and maintain
robustness under code transformations. TREAT provides researchers and practitioners with a stan-
dardized approach for model comparison across real-world software development contexts.

7 LIMITATION AND FUTURE WORK

While TREAT provides a comprehensive evaluation framework, several limitations should be ac-
knowledged. Our current evaluation mainly focus on the function level, which may not fully capture
the complexity of real-world software engineering that requires repository-level understanding. This
evaluation framework does not contains some aspects of code quality such as the security. Addition-
ally, TREAT faces the persistent challenge of potential data contamination. In the future, we will
continuously enhance the benchmark by expanding evaluation tasks, incorporating more evaluation
aspects, and regularly updating evaluation datasets to prevent data contamination.
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ETHICS STATEMENT

This work adheres to the ICLR Code of Ethics. We are dedicated to ensuring that TREAT serves
exclusively for academic research. Our plan includes the launch of a leaderboard website and the
provision of data and code access. During our data crawling process, we adhered to the regulations
of each website, and all the GitHub data we crawled has permissive open-source licenses (Apache-
2.0, MIT). TREAT does not contain any personal data or offensive content. No human subjects or
animal experimentation was involved in this work.

REPRODUCIBILITY STATEMENT

To encourage reproducibility, we release our code and benchmark data at https://
code-treat.vercel.app/. We describe the details of the benchmark construction in Sec-
tion 3 and the experimental setup in Section 4. Finally, we elaborate further details in Appendix
including the detailed data collection process for each task (Appendix A), the used LLMs and ex-
perimental setup (Appendix B) and further details of experiment results (Appendix C).
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A DETAILED BENCHMARK CONSTRUCTION METHODS

A.1 CODE GENERATION

Language Scope. In this paper, we concentrate our evaluation of code generation on Python and
Java—two languages that together span a wide range of programming paradigms, from scripting
and rapid prototyping to strongly-typed, object-oriented development.

Table 4: Dataset difficulty distribution

Dataset Total # # Easy # Medium # Hard
GEEKSFORGEEKS 1536 818 603 115
HACKERRANK 455 142 157 156

Problem Definition. Each problem is represented as a tuple (P, T, S) where P denotes the natural-
language problem statement, T the set of available test cases, and S = {Spython, Sjava, Scpp} the
set of ground-truth solutions in three languages.

Problem Collection. We construct benchmarks by scraping GEEKSFORGEEKS and HACKERRANK
using Python-based HTML scrapers. For each problem, we extracted the title, natural-language
description, difficulty level, release date, human-verified solutions in Python, Java, and C++, and
the sample test cases provided on the platform. We retain only those problems for which at least
one language-specific solution compiles and executes successfully, ensuring that every problem in
the dataset has a valid implementation and avoiding ambiguous or unsolvable tasks.

Test Collection. When official test suites are available, we adopt them in full, as they typically
exercise common edge cases. For problems with insufficient coverage, we follow the spirit of
EVALPLUS (Liu et al., 2023) and LIVECODEBENCH (Jain et al., 2025) by using a large language
model (LLM; GPT-4o in our implementation) to synthesize additional random and adversarial in-
puts. No auxiliary type signatures or annotations beyond the original problem description are pro-
vided. To standardize stdin/stdout evaluation across tasks and languages, we use a lightweight
Driver Code harness that parses inputs from standard input and emits outputs to standard output;
this harness is provided as part of our augmentation pipeline (Step 1).

Three-stage augmentation.

1. Constraint elicitation & Driver Code provisioning. Prompt the LLM to infer and state
preconditions, invariants, input domains, and corner cases implied solely by the problem
description (without external type information). In this stage, we also provide the Driver
Code that specifies the STDIN format and expected STDOUT schema.

2. Generator synthesis. Prompt the LLM to produce an input-constructor function that sam-
ples random and adversarial test cases consistent with the elicited constraints and compati-
ble with the provided Driver Code.

3. Validation and iteration. Use a second LLM to check whether the constructor violates
the elicited constraints or the I/O contract implied by the Driver Code; on violation, refine
and retry for up to three rounds. If validated, execute the ground-truth reference solution
via the same driver to derive expected outputs, and retain only synthesized tests that either
confirm correct behavior or expose faults, from which we compute TPR.

A.2 CODE SUMMARIZATION

Language Scope. Our summarization dataset comprises function–docstring pairs from ten widely
used languages on GitHub, including C, C++, C#, Go, Java, JavaScript, TypeScript, PHP, Python,
and Ruby, enabling evaluation of cross-language generalization in code summarization.

Project Selection and Data Collection. We assembled our corpus from publicly available GitHub
repositories created in 2023 and restricted to projects with permissive licenses (e.g., Apache-2.0,
MIT) and at least 100 stars.

Function Extraction and Cleaning. Using the Tree-sitter library (Brunsfeld & GitHub, 2018), we
parsed each repository to extract all function definitions along with their docstrings. We then applied
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the cleaning methods proposed by Shi et al. (Shi et al., 2022) to isolate only the first sentence of each
docstring, producing concise description–function pairs (f,D).

Dataset Statistics. Table 5 summarizes the number of function–docstring pairs collected for each
language after filtering and cleaning.

Table 5: Function–Docstring Pair Counts by Language

Language Count
C 347,480
C++ 212,319
C# 28,862
Java 177,268
Go 680,785
JavaScript 188,309
TypeScript 70,917
PHP 90,312
Python 743,201
Ruby 2,140

Total 2,541,581

A.3 CODE TRANSLATION

Language Scope. We focus exclusively on translations between Python and Java, enabling direct
cross-language comparisons within two of the most widely used programming ecosystems.

Dataset Composition. Our Code Translation dataset is built atop the GEEKSFORGEEKS cor-
pus, chosen for its extensive problem coverage and community-verified solutions. To introduce
greater linguistic diversity and complexity, we integrate POLYHUMANEVAL (Tao et al., 2024a), a
14-language extension of HumanEval that has been rigorously validated across all target languages.

Test Collection. For GEEKSFORGEEKS code translation tasks, we reuse the generated test suites
described in our code generation evaluation to ensure comparability across settings. For POLYHU-
MANEVAL, whose native tests are limited in scope, we augment coverage using the comprehensive
LLM- and mutation-based test sets from EvalPlus’s HUMANEVALPLUS pipeline (Liu et al., 2023).
Before inclusion, we executed all EvalPlus-provided test cases and observed that some exhibit type
incompatibilities or overflow-related issues for Java; leveraging the reference Java solutions from
POLYHUMANEVAL, we detected and excluded such cases. The resulting corpus contains only exe-
cutable, type-consistent cases suitable for cross-language evaluation, while exercising both nominal
and corner-case behaviors of the translated programs.

A.4 CODE REASONING

Task Splitting. We follow previous work (Gu et al., 2024) and divide code reasoning into two
complementary tasks: input prediction and output prediction. In input prediction, the model must
infer the missing inputs that produce a given expected output, while in output prediction, it must
compute the correct output for supplied inputs. This dual setup probes both backward (from output
to input) and forward (from input to output) program comprehension.

Language Scope. Consistent with our code generation and translation evaluations, we evaluate
reasoning in both Python and Java, ensuring comparable cross-language insights.

Dataset Construction. From our HACKERRANK and GEEKSFORGEEKS corpora, we use
Tree-sitter to identify each focal function and normalize its name to f , preserving any helper rou-
tines that f invokes. For every masked function, an LLM (o3-mini) generates five candidate triples
⟨inputs, expected output, assertion⟩. The prompt indicates the prediction target by replacing the
corresponding element with the placeholder “??”: for input prediction we mask expected output,
and for output prediction we mask inputs. We exclude trivial or ill-posed instances by remov-
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ing functions with no parameters and non-informative returns (e.g., None/void), and by discarding
triples that are inconsistent with the function interface or control-flow preconditions.

Assertion Statements. Each example is packaged with a language-appropriate executable check
that binds the predicted quantity to a verifiable oracle. In Python, we assert that invoking f on
the predicted inputs equals expected output. In Java, we use assertEquals to compare
the method’s return value against the expected result (with appropriate boxing and tolerance where
needed). These assertions serve both as a standardized harness for evaluation and as a safeguard
against malformed instances; any example that fails to execute or violates the assertion under the
reference implementation is discarded.

A.5 CODE REVIEW

Language Scope. Our code review dataset covers the same ten widely used programming lan-
guages—C, C++, C#, Go, Java, JavaScript, TypeScript, PHP, Python, and Ruby—to ensure broad
applicability of models in generating reviews.

Project Selection and Data Collection. Repositories created in 2023 were selected if they carried
a permissive license (e.g., Apache-2.0, MIT) and met a threshold of at least 100 stars at the 2025
crawl. Pull-request metadata and associated discussion threads for PRs opened in 2023 were then
harvested and filtered according to the CodeReviewer (Li et al., 2022) protocol; forks, and archived
projects were excluded.

Review pair extraction. For each pull request, we parsed the unified diff and decomposed it into
individual diff hunks D using GitHub’s default context length, grouping changes by file. For every
hunk we selected the earliest human-authored review comment C that was paired with that hunk;
comments authored by the commit author were excluded. If multiple comments addressed the same
hunk, only the earliest was retained. The resulting collection of (D,C) pairs—diff hunks annotated
with human reviewer feedback—was used to train and evaluate automated code-review systems.

Dataset Statistics. Table 6 summarizes the number of diff-review pairs collected for each language
after filtering and cleaning.

Table 6: Diff–review Pair Counts by Language

Language Count
C 4,138
C++ 43,648
C# 18,055
Java 23,493
Go 44,191
JavaScript 11,634
TypeScript 109,813
PHP 2,186
Python 145,981
Ruby 3,597

Total 406,736

A.6 TEST GENERATION

Dataset Selection. We relied on a publicly available pipeline that augments focal-method context
to improve test-synthesis precision. For Python, we followed SYMPROMPT’s methodology (Ryan
et al., 2024), applying its context augmentation to 24 projects drawn from CODAMOSA (Lemieux
et al., 2023) to enrich each target function with module-level context. Because SYMPROMPT does
not provide explicit branch-coverage metadata, and because relying on users or LLMs to infer
branching can lead to insufficient coverage, we augmented the pipeline with lightweight branch
annotations (e.g., has branches and expected branches) to assist test construction.
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A.7 VULNERABILITY DETECTION

Dataset Selection. We adopted the PRIMEVUL benchmark (Ding et al., 2024), which com-
prises 6,968 expert-verified vulnerable functions and 228,800 benign functions spanning 140 Com-
mon Weakness Enumerations (CWEs). PRIMEVUL provides expert-guided labels, rigorous de-
duplication to eliminate near-duplicate fragments, and chronological splits designed to prevent
temporal leakage between training and test sets. We also used the PRIMEVUL-PAIRED dataset,
which pairs each vulnerable function with its patched counterpart, enabling pairwise evaluation of a
model’s sensitivity to semantic changes introduced by security fixes.

A.8 MULTI-MODALITY TASKS

To evaluate the model’s capability in handling multi-modality programming requirements, we adopt
the DESIGNBENCH (Xiao et al., 2025), which encompasses three distinct tasks: UI code generation,
UI code edit and UI code repair, defined as follows:

UI Code Generation (TG). The objective of UI code generation is to generate expected code based
on the UI Mockups. Formally, given a UI design image I , the task aims to generate corresponding
UI code C such that TG : I → C. The input contains the UI design image I , and the output is the
UI code C that accurately reproduces the visual layout and styling.

UI Code Edit (TE). The goal of the UI code edit is to generate front-end code that complies with
user modification instructions. Given the original UI design image Io, original UI code Co, and
user instruction T described in natural language, the task produces modified code Cnew such that
TE : (Io, Co, T ) → Cnew. The input contains the original UI design image Io, original UI code
Co, and user instruction T , while the output is the updated code Cnew incorporating the requested
modifications.

UI Code Repair (TR). The goal of the UI code repair is to repair the UI code with display issues.
Given the problematic UI code Cp, the problematic UI image Ip, the task generates repaired UI code
Cr such that TR : (Cp, Ip) → Cr. The input contains the problematic UI code Cp and image Ip, the
output is the repaired code Cr that resolves visual design issues.

A.9 CODE ROBUSTNESS

To evaluate LLM robustness, we adopt the CodeCrash (Lam et al., 2025), a unified stress-testing
benchmark, to systematically evaluate model robustness in code reasoning under semantically pre-
served perturbations using output prediction tasks (Gu et al., 2024). Specifically, CodeCrash designs
four types of perturbations:

Aggregated Structural Perturbations (PSC-ALL). Combine variable renaming, expression re-
formatting, and garbage code injection to construct functionally equivalent but complex programs,
representing traditional transformations that expose whether LLMs rely on pattern matching.

Contextual-level Misleading Perturbations. (1) Misleading Code Comments (MCC): Insert
natural language comments that explicitly contradict the actual code logic, testing whether LLMs
can filter out shallow misleading cues. (2) Misleading Print Statements (MPS): Embed misleading
messages as print statements, probing whether the effect is tied to a specific injection format.

Reasoning-level Misleading Perturbations (MHC). Provide plausible but incorrect high-level
hints about the expected outputs, directly challenging model reasoning and highlighting potential
rationalization issues.

A.10 CODE-TREAT-LITE

We provide the complete benchmark dataset Code-TREAT as well as the sampled Code-TREAT-lite
(as described above) in an anonymous Hugging Face repository (https://huggingface.co/
Code-TREAT/datasets). All experimental results in this paper are based on Code-TREAT-lite.
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Table 7: List of Evaluated LLMs

Model Name Abbreviation Size Open-source

GPT-3.5-Turbo-0125 GPT-3.5 Unknown ×
GPT-4-Turbo-2024-04-09 GPT-4 Unknown ×
GPT-4o-2024-11-20 GPT-4o Unknown ×
GPT-4.1-2025-04-14 GPT-4.1 Unknown ×
o3-Mini (Med) o3-mini Unknown ×
o4-Mini (Med) o4-mini Unknown ×
GPT-5 GPT-5 Unknown ×
Claude-3.5-Haiku Claude-3.5-Haiku Unknown ×
Claude-3.5-Sonnet Claude-3.5-Sonnet Unknown ×
Claude-3.7-Sonnet Claude-3.7-Sonnet Unknown ×
Claude-Sonnet-4 Claude-Sonnet-4 Unknown ×
Gemini-2.5-Pro-05-06 Gemini-2.5-Pro Unknown ×
Grok-3-Mini (High) Grok-3-Mini Unknown ×
DeepSeek-V3 DeepSeek-V3 671B (37B active) ✓
DeepSeek-R1 DeepSeek-R1 671B (37B active) ✓
DeepSeek-R1 (0528) DeepSeek-R1 (0528) 671B (37B active) ✓

Qwen2.5-72B-Instruct Qwen2.5-72B 72B ✓
Qwen2.5-Coder-32B-Instruct Qwen2.5-Coder-32B 32B ✓
Qwen3-32B Qwen3-32B 32B ✓
Qwen3-30B-A3B Qwen3-30B 30B (3B active) ✓
Qwen3-235B-A22B Qwen3-235B 235B (22B active) ✓

LLaMA-3.1-8B-Instruct LLaMA-3.1-8B 8B ✓
LLaMA-3.1-70B-Instruct LLaMA-3.1-70B 70B ✓
LLaMA-3.3-70B-Instruct LLaMA-3.3-70B 70B ✓
LLaMA-4-Scout-17B-16E-Instruct LLaMA-4-Scout 109B (17B active) ✓

Gemma-3-27B-Instruct Gemma-3-27B 27B ✓

B DETAILED EXPERIMENTAL SETUP

B.1 EVALUATED MODELS

As shown in Table 7, to provide a comprehensive evaluation across various LLMs, we evalu-
ate 26 models of varying sizes and versions for general coding tasks, including both open-source
and closed-source LLMs: GPT family (GPT-3.5-Turbo-0125, GPT-4-Turbo-2024-04-09, GPT-
4o-2024-11-20, GPT-4.1-2025-04-14, o3-mini, o4-mini, GPT-5) (Hurst et al., 2024), Anthropic
Claude (Claude-3.5-Haiku, Claude-3.5-Sonnet, Claude-3.7-Sonnet, Claude-Sonnet-4) (Anthropic,
2024), Google Gemini & Gemma (Gemini-2.5-Pro-05-06, Gemma-3-27B-Instruct) (Google AI,
2024), DeepSeek family (DeepSeek-V3, R1, R1-0528) (DeepSeek-AI et al., 2025b;a), Alibaba
Qwen (Qwen2.5-72B-Instruct, Qwen-32B-Coder-Instruct, Qwen3-32B, Qwen3-30B-A3B, Qwen3-
235B-A22B) (Yang et al., 2025b; Hui et al., 2024; Yang et al., 2025a), Meta LLaMA (LLaMA-
3.1-8B-Instruct, LLaMA-3.1-70B-Instruct, LLaMA-3.3-70B-Instruct, LLaMA-4-Scout-17B-16E-
Ins) (Meta, 2024), and xAI Grok (Grok-3-Mini) (xAI, 2025).

B.2 CODE GENERATION

Model Configuration. Following BIGCODEBENCH (Zhuo et al., 2024), we set the tempera-
ture to 0.8 and, where supported, use a top-p of 0.95. To accommodate both models limited
to 8,192 tokens and those with larger context windows, we cap the maximum output length at
min

(
Tokenmax, 16,384

)
, where Tokenmax denotes the maximum token allowance of each indi-

vidual model.
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Prompt Design. We employ three zero-shot prompt templates from recent benchmarks: BIG-
CODEBENCH (Zhuo et al., 2024), OCTOPACK (Muennighoff et al., 2023), and LIVE-
CODEBENCH (Jain et al., 2025), and retain the models’ default system prompt settings. The detailed
system and user prompts are provided in Appendix G.1.

Data Sampling & Testing. Owing to the large size of our Code Generation dataset corpus, we con-
structed a balanced yet tractable evaluation suite by randomly sampling problems from two sources,
GEEKSFORGEEKS and HACKERRANK. For each language (Python and Java), we selected the same
set of problems, with approximately half drawn from each source, to ensure a representative mix of
difficulty levels and problem types. For every problem, the model receives only the natural-language
(NL) description and is prompted to produce a complete solution in Markdown.

Evaluation Process. Model outputs were parsed from Markdown. If a response contained exactly
one fenced code block, we extracted that block as the implementation; otherwise we invoked a
secondary LLM-based extraction step to identify the intended implementation. The resulting code
was passed to an automated pipeline that compiles/interprets and runs it against the reference test
suite; syntax errors, runtime errors, and timeouts were recorded as failures.

Evaluation Metrics. We adopt PASS@1 accuracy (Chen et al., 2021) as the primary evaluation
metric and scale all scores in [0, 1] to percentages by multiplying by 100 for readability.

B.3 CODE SUMMARIZATION

Model Configuration. Following BIGCODEBENCH (Zhuo et al., 2024), we set the tempera-
ture to 0.8 and, where supported, use a top-p of 0.95. To accommodate both models limited
to 8,192 tokens and those with larger context windows, we cap the maximum output length at
min

(
Tokenmax, 16,384

)
, where Tokenmax denotes the maximum token allowance of each indi-

vidual model.

Prompt Design. We adopt the zero-shot direct prompt template from Sun et al. (Sun et al., 2025).
To increase prompt diversity, we then ask GPT-4o (Hurst et al., 2024) to generate two paraphrased
variants of this template, yielding three distinct prompts for each test example. In our system prompt,
we require models to output their answers in JSON format, in addition to the default helpful assistant
instructions. Detailed system and user prompts, including those for the LLM-as-Judge setting, are
provided in Appendix G.2.

Data Sample & Testing. We randomly sample 200 function–docstring pairs to form a balanced
evaluation set. For each sample, the model was given only the function implementation and
prompted to produce a concise summary.

Evaluation Process. We parsed the model’s response and extracted the first sentence, mirroring
the procedure used to isolate human docstrings in Shi et al. (Shi et al., 2022). The extracted sentences
(both model-generated and human-written) were then passed through the same cleaning pipeline
described in Shi et al. to normalize formatting and remove spurious tokens. Finally, the cleaned
summaries were evaluated in batch using an LLM-based judging pipeline that assigns quality scores
(e.g., correctness, completeness, relevance) which we aggregate into the reported metrics.

Evaluation Metrics Recognizing BLEU’s inability to capture nuanced summaries and the vari-
ability of human annotations, we follow recent work (Sun et al., 2025) in using an LLM judge.
Specifically, we prompt GPT-4o (Hurst et al., 2024) to assign each generated summary a quality
score from 1 to 5, where higher values denote better accuracy, conciseness, and informativeness.
We include the human reference summaries in the judging pool to establish a baseline. Finally, we
scale all scores in [1, 5] to percentages by multiplying by 20 for readability.

B.4 CODE TRANSLATION

Model Configuration. Following BIGCODEBENCH (Zhuo et al., 2024), we set the tempera-
ture to 0.8 and, where supported, use a top-p of 0.95. To accommodate both models limited
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to 8,192 tokens and those with larger context windows, we cap the maximum output length at
min

(
Tokenmax, 16,384

)
, where Tokenmax denotes the maximum token allowance of each indi-

vidual model.

Prompt Design. We employ the zero-shot direct prompt template from POLYHUMANEVAL (Sun
et al., 2025) and then use GPT-4o (Hurst et al., 2024) to generate two paraphrased variants, result-
ing in three prompts per example. In our system prompt, we instruct the models to act as a code
translation system. The detailed system and user prompts are provided in Appendix G.3.

Data Sampling & Testing. To ensure a fair evaluation of model coding capabilities, we use the
same sample data for HACKERRANK as in the CODE GENERATION task, and conduct compre-
hensive testing on the POLYHUMANEVAL benchmark. For each translation task, models receive
only the source-language implementation and are prompted to generate the corresponding target-
language implementation, which must be returned as a fenced code block in Markdown.

Evaluation Process. Model outputs were parsed from Markdown. If a response contained exactly
one fenced code block, we extracted that block as the implementation; otherwise we invoked a
secondary LLM-based extraction step to identify the intended implementation. The resulting code
was passed to an automated pipeline that compiles/interprets and runs it against the reference test
suite; syntax errors, runtime errors, and timeouts were recorded as failures.

Evaluation Metrics. We adopt PASS@1 accuracy (Chen et al., 2021) as the primary evaluation
metric and scale all scores in [0, 1] to percentages by multiplying by 100 for readability.

B.5 CODE REVIEW

Model Configuration. Following BIGCODEBENCH (Zhuo et al., 2024), we set the tempera-
ture to 0.8 and, where supported, use a top-p of 0.95. To accommodate both models limited
to 8,192 tokens and those with larger context windows, we cap the maximum output length at
min

(
Tokenmax, 16,384

)
, where Tokenmax denotes the maximum token allowance of each indi-

vidual model.

Prompt Design. We adopt the zero-shot prompt template from LLAMA-REVIEWER (Lu et al.,
2023) and use GPT-4o-2024-11-20 (Hurst et al., 2024) to generate two paraphrased variants, yield-
ing three prompts per example. In our system prompt, we instruct the models to act as special-
ized code reviewers and to produce comments in JSON format. The detailed system and user
prompts—including those used for LLM-as-Judge—are provided in Appendix G.4.

Data Sampling & Testing. For each language we randomly sampled 200 diff–review pairs from
the union dataset, maintaining diversity by stratifying on change size and file type. Each example
consists of a single diff hunk; models were provided only the hunk and asked to generate a review
comment in the prescribed JSON format.

Evaluation Process. We parse the model’s JSON response to extract the "comments" field.
Parsed comments are then scored using an LLM-as-judge procedure (GPT-4o), which rates lexical
similarity to the human reference review comment.

Evaluation Metrics. Because BLEU scores are low and uninformative when comparing detailed
LLM reviews against human review comments, we follow Jiang et al. (Jiang et al., 2025) in using an
LLM as judge. We use an GPT-4o (Hurst et al., 2024) as the judge to rate each generated review’s
lexical similarity to the human reference on a 1–5 scale according to the following detailed setup:

• Judge Messages. Judge model is prompted with a system message that instructs it to “grade a
generated code review,” mimic grading ten times internally, and then output only the final JSON
grade:

{"grade":<integer 1-5>}
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• Grading Criteria. The judge prompt presents both the generated and reference reviews and
specifies:

1. Grade = 5 if the review is identical to the reference.
2. Grade = 4 if it is semantically equivalent despite wording differences.
3. Grade = 3 if it correctly covers some reference comments.
4. Grade = 2 if only loosely related in content.
5. Grade = 1 if completely unrelated.

• Aggregation. We collect the JSON grades for all 200 samples per language and report (1) the
mean grade, and (2) the distribution of grades 1 through 5 to analyze model performance and
error modes. we scale all scores in [1, 5] to percentages by multiplying by 20 for readability.

B.6 CODE REASONING

Model Configuration. Following BIGCODEBENCH (Zhuo et al., 2024), we set the tempera-
ture to 0.8 and, where supported, use a top-p of 0.95. To accommodate both models limited
to 8,192 tokens and those with larger context windows, we cap the maximum output length at
min

(
Tokenmax, 16,384

)
, where Tokenmax denotes the maximum token allowance of each indi-

vidual model.

Prompt Design. We adopt the zero-shot direct prompt template from CRUX (Gu et al., 2024)
and use GPT-4o (Hurst et al., 2024) to generate two paraphrased variants, yielding three prompts
per example. In our system prompt, we require models to output their answers in JSON format,
in addition to the default helpful assistant instructions. The detailed system and user prompts are
provided in Appendix G.5.

Data sampling & Testing. We randomly sampled 200 problems from the union of HACKERRANK
and GEEKSFORGEEKS. For each problem we constructed two task variants: (1) input prediction —
the models receive the function and a masked input placeholder and are asked to produce concrete
input values; and (2) output prediction — the models receive the function and specific input(s) and
are asked to produce the expected output. Models were instructed to return answers in a compact,
programmatically parsable form (e.g., Python/Java literals or comma-separated values).

Evaluation process. We use a simple, regex-first parsing pipeline: when a model reply clearly
contains the needed values we extract them with lightweight patterns and substitute them into the
masked assertion (e.g., assert f(*inputs) == expected output). If the regex extrac-
tion fails or is ambiguous, we fall back to a secondary LLM (GPT-4o-mini) to produce a canonical
representation for the assertion. The resulting assertions are executed; compilation errors, runtime
exceptions, and timeouts are recorded as failures.

Evaluation Metrics. We use pass@1 accuracy (Chen et al., 2021) as our primary metric, where
each example is scored as 1 if the model’s prediction satisfies the assertion and 0 otherwise. We
report the average pass@1 over the evaluation set and and scale all score in [0, 1] to percentage by
multiplying 100 for improved readability.

B.7 TEST GENERATION

Model Configuration. Following BIGCODEBENCH (Zhuo et al., 2024), we set the tempera-
ture to 0.8 and, where supported, use a top-p of 0.95. To accommodate both models limited
to 8,192 tokens and those with larger context windows, we cap the maximum output length at
min

(
Tokenmax, 16,384

)
, where Tokenmax denotes the maximum token allowance of each indi-

vidual model.

Prompt Design. We adopt the zero-shot direct prompt templates from SymPrompt (Ryan et al.,
2024) for Python. To enhance diversity, we ask GPT-4o (Hurst et al., 2024) to paraphrase each
template into two additional variants, yielding three distinct prompts. In our system prompt, we
instruct the models to act as a professional unit test writer. The detailed system prompt and user
prompts are provided in Appendix G.6.
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Data Sampling & Testing. We randomly sample 200 functions from the CODAMOSA
dataset (Lemieux et al., 2023) with the context-assistant annotations provided by SYM-
PROMPT (Ryan et al., 2024).

Evaluation Process. Model outputs were parsed from Markdown. The extracted test suite is ex-
ecuted with pytest (using pytest-cov) in a sandboxed environment; we record syntax errors,
runtime failures, test outcomes, timeouts, and per-example coverage.

Evaluation Metrics. Following prior works (Yuan et al., 2023; Xie et al., 2023; Yang et al.,
2024d), we assess test quality using three metrics:

• Compilation Success Rate (CSR): code executing successfully or not.

• Line Coverage (CovL): the percentage of source-code lines exercised by the test suite.

• Branch Coverage (CovB): the percentage of control-flow branches executed by the test
suite.

B.8 VULNERABILITY DETECTION

Model Configuration. Following BigCodeBench (Zhuo et al., 2024), we set the temperature to 0.8
and, where supported, use a top-p of 0.95. To accommodate both models limited to 8,192 tokens and
those with larger context windows, we cap the maximum output length at min

(
Tokenmax, 16,384

)
,

where Tokenmax denotes the maximum token allowance of each individual model.

Prompt Design. We adopt the zero-shot direct prompt templates from Ding et al. (Ding et al.,
2024) for both PRIMEVUL and PRIMEVUL-PAIRED. To increase prompt diversity, we ask GPT-
4o (Hurst et al., 2024) to generate two paraphrased variants of each template, yielding three prompts
per example. In our system prompt, we instruct the models to act as a security expert in analyzing
code for vulnerabliity. The detailed system prompt and user prompts are provided in Appendix G.7.

Data Sampling & Tesing. We randomly sampled 200 single-function examples from PRIMEVUL
and 200 function pairs from PRIMEVUL-PAIRED. For the single-function set we enforced a class-
balance constraint so that the absolute difference between the number of vulnerable and benign
examples is < 10 to avoid skewed metrics and ensure stable comparisons.

Evaluation Process. For PRIMEVUL, each model receives a single function and predicts either
vulnerable or benign. For PRIMEVUL-PAIRED, the model is shown both the vulnerable and patched
versions of a function and returns a pair of labels. Predictions are compared against ground-truth
annotations to produce per-example outcomes; we aggregate these outcomes to compute the reported
metrics.

Evaluation Metrics. We evaluate the model performance using the following metrics:

• PRIMEVUL Metrics.

– Accuracy: the fraction of correct predictions over all examples
– Precision: the proportion of predicted vulnerabilities that are true vulnerabilities
– Recall: the proportion proportion of actual vulnerabilities correctly identified
– F1-Score: the harmonic mean of precision and recall

• PRIMEVUL-PAIRED Metrics. We treat each vulnerable–patched pair as a single instance, clas-
sifying the model’s joint prediction into one of four categories (Ding et al., 2024):

– Pair-wise Correct (P-C): both functions labeled correctly.
– Pair-wise Vulnerable (P-V): both functions (incorrectly) labeled vulnerable.
– Pair-wise Benign (P-B): both functions (incorrectly) labeled benign.
– Pair-wise Reversed (P-R): labels swapped between vulnerable and patched versions.
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B.9 MULTI-MODALITY TASKS

Model Configuration. We evaluate eight MLLMs that have been widely explored in multi-
modal tasks, namely GPT-4o-2024-11-20 (Hurst et al., 2024), GPT-5 (OpenAI, 2025b), Claude-3.7-
Sonnet (Anthropic, 2024), Claude-Sonnet-4 (Anthropic, 2025b), Gemini-2.5, Gemini-2.0 (Doshi,
2025), Qwen2.5-VL-72B-Instruct (Qwen, 2025), LLaMA-3.2-90B-Vision (Meta, 2024).

In configuring the MLLMs, we set the temperature to 0 and the maximum number of tokens output
to 16,384.

Evaluation Metrics. We evaluate the model performance using the following metrics:

• Visual Metrics. CLIP (Radford et al., 2021) is applied to measure the semantic similarity be-
tween the generated and original webpages.

• Code Metrics. (1) Compilation Success Rate (CSR) represents the percentage of generated code
that compiles successfully without errors. Assume that the total number of samples is N and
the number of samples compiled successfully is S, then CSR = S

N . (2) Code Modification
Similarity (CMS). We employ the Jaccard similarity (Thada & Jaglan, 2013) to quantify the
precision of code modifications on design edit and design repair tasks by comparing the sets of
modified line numbers between the ground truth and generated code. Let A represent the set of
line numbers modified in the ground truth code and B represent the set of line numbers modified
in the generated code. The CMS is formally defined as: CMS(A,B) = |A∩B|

|A∪B| .

• MLLM-as-Judge Metrics. MLLMs have shown great performance in assisting judges across
diverse modalities (Chen et al., 2024b; Wang et al., 2025b). Therefore, we prompt GPT-4o (Hurst
et al., 2024) to determine whether the model meets the user’s requirements on the design edit task
and resolve the design issues on the design repair task, and output an MLLM score between 0
and 10 with detailed explanations (0-3 denotes the poor edit/repair, 4-6 denotes partial edit/repair,
7-8 denotes good edit/repair and 9-10 denotes excellent edit/repair).

B.10 CODE ROBUSTNESS

Model Configuration. We evaluate multiple models of varying sizes and versions, including
both open-source and closed-source LLMs: GPT family (GPT-4o, GPT-4o-mini, GPT-4.1, 5, o4-
mini) (Hurst et al., 2024; OpenAI, 2025a;b), Anthropic Claude (Claude-3.5-Sonnet, 3.7-Sonnet,
Claude-Sonnet-4) (Anthropic, 2024; 2025a;b), Google Gemini (Gemini-2.5-Pro) (Doshi, 2025),
DeepSeek (DeepSeek-V3, R1) (DeepSeek-AI et al., 2025b), Alibaba Qwen (Qwen2.5-32B-Coder-
Instruct, Qwen2.5-72B-Instruct, Qwen3-32B, 235B-A22B) (Hui et al., 2024; Yang et al., 2025b;a),
and Meta LLaMA (LLaMA-3.1-70B-Instruct, LLaMA-3.3-70B-Instruct) (Grattafiori et al., 2024).

Evaluation Metrics. We adopt PASS@1 accuracy (Chen et al., 2021) as the primary evaluation
metric and scale all scores in [0, 1] to percentages by multiplying by 100 for readability. All per-
turbed results are reported as relative (∆% = Perturbed−VAN

VAN ×100%) differences from the correspond-
ing vanilla baseline.

C DETAILED EXPERIMENT RESULTS AND ANALYSIS

C.1 CODE GENERATION

Model Performance and Language Effects. Table 8 summarizes Pass@1 accuracy on code gen-
eration tasks, split by model, language (Python, Java), and dataset (GeeksforGeeks, HackerRank).
GPT-5 establishes itself as the clear leader, achieving the highest accuracy across all splits, including
an overall Pass@1 of 89.9%, with 91.5% on GeeksforGeeks and 85.3% on HackerRank. Its perfor-
mance is robust across both Python (89.1%) and Java (90.8%), suggesting strong cross-language
capability and minimal bias between these languages at the frontier of model capabilities. Second-
tier models, such as o3-mini at 79.9% and GPT-4.1 at 76.8%, lag behind GPT-5 by a significant
margin—over 10 percentage points in most splits. Among all evaluated models, there is a rapid
drop-off after the top performers, with accuracy for the majority of models clustering in the 50–70%
range, indicating a clear stratification in current code generation capabilities.
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Table 8: Model Performance on Code Generation. The top three results on each task are highlighted
in green (1st) , orange (2nd) , and blue (3rd) backgrounds, respectively.

Model Overall Python Java

Overall GeeksforGeeks HackerRank Overall GeeksforGeeks HackerRank Overall GeeksforGeeks HackerRank

GPT-5 89.9 91.5 85.3 89.1 90.4 84.9 90.8 92.5 85.7
o3-mini (Med) 79.9 81.4 75.6 82.2 84.0 76.9 77.6 78.7 74.4

GPT-4.1-2025-04-14 76.8 79.4 68.8 77.8 81.2 67.5 75.7 77.6 70.0
o4-mini (Med) 74.2 76.9 65.9 79.5 81.7 72.8 68.8 72.1 59.0

Claude-Sonnet-4 74.0 75.4 69.7 75.0 76.9 69.2 73.0 73.9 70.2
Grok-3-Mini (High) 73.4 73.9 71.8 70.6 71.8 67.1 76.1 76.0 76.4
Claude-3.7-Sonnet 70.0 70.1 69.6 68.2 67.3 71.0 71.7 72.9 68.3
Qwen3-30B-A3B 69.0 74.3 53.0 70.6 77.7 49.0 67.4 70.8 57.1

DeepSeek-R1 (0528) 68.8 68.0 71.0 70.3 70.8 68.8 67.2 65.2 73.2
GPT-4o-2024-11-20 66.4 68.4 60.4 71.0 73.3 63.8 61.8 63.4 57.1

DeepSeek-V3 65.2 66.2 62.5 75.3 77.7 68.3 55.2 54.6 56.7
Qwen2.5-72B-Instruct 63.8 65.3 59.2 65.2 66.1 62.5 62.3 64.4 55.9
Qwen3-235B-A22B 63.2 63.1 63.8 64.7 65.4 62.7 61.8 60.7 64.9

Qwen3-32B 63.1 64.5 58.8 66.3 69.6 56.4 59.9 59.5 61.2
Qwen2.5-Coder-32B-Instruct 62.5 64.4 57.0 64.4 66.9 56.9 60.7 61.9 57.1

Gemini-2.5-Pro-05-06 61.1 60.7 62.3 68.1 65.4 76.3 54.1 56.0 48.4
DeepSeek-R1 59.9 55.6 72.7 61.0 57.9 70.5 58.8 53.4 74.8

Claude-3.5-Sonnet 59.5 62.4 50.6 60.0 62.4 52.9 58.9 62.5 48.2
GPT-4-turbo-2024-04-09 59.5 60.4 56.6 65.1 66.4 61.1 53.8 54.4 52.1
Gemma-3-27B-Instruct 51.3 52.1 48.7 57.7 59.3 52.9 44.9 45.0 44.6

Llama-4-Scout-17B-16E-Instruct 51.2 51.3 51.0 52.8 53.8 49.7 49.6 48.7 52.4
Claude-3.5-Haiku 50.9 55.8 36.0 60.6 65.7 45.4 41.1 46.0 26.6

GPT-3.5-turbo-0125 50.6 51.7 47.0 53.8 55.7 48.1 47.4 47.8 46.0
Llama-3.1-70B-Instruct 48.7 50.3 43.9 49.8 51.7 43.9 47.6 48.9 43.9
Llama-3.3-70B-Instruct 40.7 37.9 49.1 39.7 37.3 46.8 41.7 38.5 51.4
Llama-3.1-8B-Instruct 31.8 33.1 27.7 33.1 34.6 28.8 30.4 31.6 26.6

One notable observation is the prevalence of instruction drift: models sometimes generate unso-
licited usage examples or disregard required code templates. This behavior results in outputs that
are incompatible with automated evaluation harnesses, leading to an underestimation of their actual
coding ability in certain cases. Despite such issues, the overall rankings remain consistent and robust
across different benchmarks and codebases.

Task-Specific Limitations and Performance Bottlenecks. The analysis highlights several persis-
tent challenges in current model performance. Most prominently, there is a systematic bias toward
Python across almost all models except GPT-5, as evidenced by a consistent 10–20 percentage point
performance gap in favor of Python over Java. This bias likely stems from imbalances in pre-
training and fine-tuning datasets, which tend to heavily favor Python, thus equipping models with
stronger priors for Python syntax, idioms, and library usage. Additionally, prompt misinterpretation
emerges as a recurring bottleneck, particularly for Java. When prompts use phrasings such as “write
a {lang} script” and lang is set to Java, several models mistakenly generate JavaScript code. This
systematic evaluation artifact results in unconditional failures for affected Java test cases and re-
veals a vulnerability in current prompt understanding, especially when language names overlap with
other widely-used programming languages. Together, these findings underscore the need for more
balanced and robust instruction-following, as well as improved prompt disambiguation and better
handling of language-specific conventions in next-generation code models.

C.2 CODE SUMMARIZATION

Model Performance and Language Effects. Table 9 summarizes model performance on code sum-
marization tasks, as measured by GPT-4o judge scores across a variety of programming languages.
GPT-5 leads with an exceptional overall quality score of 98.4%, consistently outperforming all com-
petitors across nearly every language, including C, C++, Java, Python, and JavaScript, where scores
frequently exceed 98%. Claude-3.5-Sonnet and LLaMA-3.3-70B also demonstrate strong capabil-
ities, achieving overall scores of 96.5% and 96.0%, respectively, with their best results clustering
closely to the top performer. Across the board, most large and instruction-tuned models maintain
remarkably high summarization quality, often in the 95–99% range for mainstream languages, and
all substantially exceed the human baseline of 44.6%. This wide margin highlights the brevity and
sparsity typical of organic docstrings, which the LLMs’ outputs decisively surpass in both complete-
ness and style. Notably, model scale and instruction quality are primary drivers of performance,
as reasoning-oriented models such as DeepSeek-R1 and Gemini-2.5-Pro do not exhibit any con-
sistent advantage in this task. Instead, their results underscore the importance of fine-tuning and
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Table 9: Model Performance on Code Summarization (%). The top three results on each task are
highlighted in green (1st) , orange (2nd) , and blue (3rd) backgrounds, respectively.

*JS = JavaScript, TS = TypeScript

Model Overall C C++ C# Go Java JS TS PHP Python Ruby

GPT-5 98.4 99.0 99.0 99.0 99.6 99.2 98.3 99.2 98.4 98.6 93.8
Claude-3.5-Sonnet 96.5 97.2 95.8 96.0 96.0 95.5 97.4 97.5 96.9 95.9 97.2

LLaMA-3.3-70B-Instruct 96.0 94.6 96.1 95.8 96.7 96.5 95.7 96.6 97.1 95.6 95.4
Qwen3-235B-A22B 95.3 95.6 94.7 95.1 95.5 95.7 95.8 94.7 95.6 96.1 94.3

Claude-Sonnet-4 93.8 91.8 93.8 94.1 93.1 94.4 94.2 93.7 95.1 93.2 94.3
DeepSeek-V3 92.8 94.3 93.4 92.6 92.0 91.6 92.5 92.4 91.8 94.4 93.2

DeepSeek-R1 (0528) 90.6 92.3 91.5 90.8 88.8 89.5 90.3 91.0 88.7 94.5 88.9
Qwen3-32B 90.2 92.6 90.3 90.0 88.0 86.7 91.4 90.0 90.1 93.6 89.2

GPT-4-turbo-2024-04-09 90.0 91.4 90.3 89.8 91.3 87.8 89.7 89.3 87.6 91.2 91.1
Claude-3.7-Sonnet 88.1 87.4 88.0 86.4 87.7 83.6 88.9 87.8 88.9 90.4 91.9

GPT-4o-2024-11-20 87.7 86.7 86.9 90.0 86.9 86.5 87.1 87.2 86.8 87.8 91.2
Qwen2.5-Coder-32B-Instruct 86.8 87.0 86.0 85.3 88.9 85.2 89.0 87.3 86.0 87.6 85.6

Qwen2.5-72B-Instruct 86.5 87.4 86.8 87.7 86.0 84.4 86.6 86.8 84.7 87.7 87.3
Claude-3.5-Haiku 85.2 87.0 85.5 82.9 88.1 86.8 87.0 86.5 85.2 87.3 76.0

Grok-3-Mini (High) 85.1 85.8 85.4 83.9 85.6 84.1 85.8 86.6 84.7 85.4 83.7
o4-mini (Med) 84.6 84.3 85.3 83.7 87.7 83.3 85.6 86.0 83.7 87.9 78.5

Gemma-3-27B-Instruct 83.0 80.6 81.5 83.1 82.6 82.3 83.5 82.3 84.3 84.7 84.6
Qwen3-30B-A3B 81.4 82.5 80.1 81.3 81.7 77.5 81.8 82.0 80.3 84.1 83.1

GPT-4.1-2025-04-14 80.2 79.0 79.8 78.8 82.1 80.5 80.9 80.3 80.5 80.0 80.4
o3-mini (Med) 79.5 86.7 87.0 86.1 87.2 82.9 86.7 84.8 85.5 23.0 85.4

Gemini-2.5-Pro-05-06 78.7 78.1 77.4 79.7 79.9 74.2 82.0 80.2 80.3 77.1 78.3
LLaMA-3.1-70B-Instruct 74.5 74.2 75.4 78.5 73.3 74.9 75.9 75.2 79.0 67.8 71.1

LLaMA-4-Scout-17B-16E-Instruct 74.4 70.6 71.7 79.6 75.9 77.2 73.7 72.5 77.0 70.3 75.2
GPT-3.5-turbo-0125 71.2 71.9 70.4 72.9 70.3 70.2 69.2 71.3 72.2 71.3 72.2

LLaMA-3.1-8B-Instruct 64.2 59.9 64.0 64.9 66.7 63.8 64.5 64.2 64.6 61.7 67.6
Human Baseline 44.6 44.1 38.2 41.8 54.3 34.8 45.4 40.1 48.3 48.8 50.7

high-quality, language-specific training data for code summarization. There is minimal variation
across programming languages, with even lower-resource languages such as Ruby and PHP receiv-
ing high-quality summaries from the top models, further confirming the strong generalization of
frontier LLMs.

Task-Specific Limitations and Performance Bottlenecks. Despite near-ceiling performance from
leading models, while our evaluation setup follows the most widely adopted practices in the
field (Sun et al., 2025), our experimental observations reveal that this methodology may still present
several issues for further resolution. The use of a single LLM judge, such as GPT-4o, may introduce
bias and style sensitivity, as its preferences for certain phrasings or lengths can influence scores
independently of semantic correctness. Minor formatting differences or stylistic choices may there-
fore yield notable score shifts, even in cases where the underlying summary remains unchanged.
Furthermore, although efforts are made to ensure the judge differs from the evaluated models, there
remains a risk of cross-family self-preference, potentially inflating the scores for some model fam-
ilies. Pairwise comparisons mitigate but do not eliminate this concern. Another artifact of the
evaluation pipeline is the uniform truncation of outputs to the first sentence, which can inadvertently
penalize models that prepend reasoning or place their core summary at the end, this is observed,
for instance, in o3-mini’s Python summaries. This truncation policy is applied to all models with-
out model-specific adjustment, ensuring fairness but possibly underestimating some models’ true
summarization ability. Taken together, these factors highlight that while current models display ex-
traordinary summarization accuracy, subtle evaluation artifacts and judge-related biases represent
the main bottlenecks to further performance gains in this setting.
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C.3 CODE TRANSLATION

Table 10: Model Performance on Code Translation (%). The top three results on each task are
highlighted in green (1st) , orange (2nd) , and blue (3rd) backgrounds, respectively.

Model Overall HackerRank PolyHumanEval

Overall Python→Java Java→Python Overall Python→Java Java→Python Overall Python→Java Java→Python

GPT-5 97.9 98.1 97.8 97.1 97.9 96.3 99.0 98.4 99.6
o3-mini (Med) 92.8 90.9 94.8 89.3 87.3 91.3 97.3 95.3 99.2

Gemini-2.5-Pro-05-06 90.3 92.6 88.0 84.9 88.9 80.9 97.1 97.2 97.0
DeepSeek-R1 89.2 87.0 91.4 84.2 82.5 85.9 95.5 92.7 98.4

Grok-3-Mini (High) 87.7 86.5 88.8 81.8 81.8 81.3 95.2 92.3 98.2
GPT-4.1-2025-04-14 87.6 86.6 88.6 80.0 79.6 80.4 97.2 95.3 99.0
Qwen3-235B-A22B 87.1 82.1 92.1 80.8 74.5 87.2 95.0 91.7 98.4
DeepSeek-R1 (0528) 87.0 84.7 89.2 83.5 83.5 83.5 91.4 86.2 96.5

Qwen3-32B 86.0 82.3 89.7 79.7 76.3 83.2 93.9 89.8 98.0
Claude-Sonnet-4 86.0 86.9 85.0 76.6 79.3 73.9 97.9 96.5 99.2

Claude-3.7-Sonnet 85.1 84.1 86.1 78.0 80.6 75.5 94.0 88.4 99.6
DeepSeek-V3 82.1 80.4 83.9 71.6 70.4 72.8 95.5 93.1 98.0

GPT-4o-2024-11-20 82.0 80.8 83.2 70.7 70.8 70.5 96.3 93.5 99.2
Claude-3.5-Sonnet 81.7 82.9 80.5 74.2 79.5 68.9 91.2 87.2 95.1

o4-mini (Med) 81.0 79.5 82.5 70.0 67.9 72.0 95.0 94.1 95.9
GPT-4-turbo-2024-04-09 80.1 78.0 82.2 69.4 68.3 70.5 93.7 90.4 97.0

Qwen3-30B-A3B 80.1 75.2 85.0 69.5 64.4 74.5 93.6 88.8 98.4
Claude-3.5-Haiku 75.0 72.7 77.2 61.5 61.1 61.9 92.1 87.4 96.7

Qwen2.5-Coder-32B-Instruct 74.6 74.7 74.5 58.4 59.9 56.9 95.1 93.5 96.7
Qwen2.5-72B-Instruct 72.5 75.9 69.1 56.2 59.8 52.6 93.2 96.3 90.0

Llama-3.3-70B-Instruct 70.0 68.8 71.1 57.1 58.2 55.9 86.4 82.3 90.4
Llama-3.1-70B-Instruct 67.7 68.2 67.2 51.8 54.3 49.2 87.9 85.8 90.0

GPT-3.5-turbo-0125 66.5 66.8 66.2 47.6 49.5 45.7 90.5 88.8 92.3
Gemma-3-27B-Instruct 65.9 65.4 66.3 46.6 49.8 43.4 90.2 85.2 95.3

Llama-4-Scout-17B-16E-Instruct 64.4 63.1 65.8 49.4 50.6 48.2 83.4 78.9 88.0
Llama-3.1-8B-Instruct 49.6 47.2 52.1 29.1 31.4 26.8 75.7 67.3 84.1

Model Performance and Dataset Effects. Table 10 presents a comprehensive comparison of
LLMs on Python↔Java code translation, reporting Pass@1 accuracy across both HACKERRANK
and POLYHUMANEVAL benchmarks. GPT-5 establishes a new state-of-the-art with 97.9% over-
all accuracy, maintaining exceptional results in both directions and across datasets, including up to
99.0% on PolyHumanEval. The next tier—o3-mini and Gemini-2.5-Pro—remains highly compet-
itive (≥90%), while most leading models cluster above 85%. Among the strongest models, trans-
lation is nearly symmetric in both directions, confirming balanced competence. Notably, Pass@1
scores are systematically higher on POLYHUMANEVAL than on HACKERRANK for all model tiers
and translation directions, indicating that POLYHUMANEVAL is an relative easier benchmark, likely
due to models’ greater exposure to HumanEval-style problems in pretraining. There is a sharp per-
formance drop beyond the frontier models, with accuracy falling into the 65–75% range for lower
tiers. Overall, the results reveal a clear capacity-performance scaling effect, with newer and larger
models outperforming smaller or earlier versions by a substantial margin.

Task-Specific Limitations and Performance Bottlenecks. Despite these advances, several chal-
lenges remain prominent, particularly among mid- and lower-tier models. While leading models
exhibit robust and symmetric performance, many smaller models show a tendency for higher accu-
racy in the Java→Python direction, benefiting from Python’s more permissive syntax and forgiving
I/O; however, this advantage is not universal, with some exceptions observed. The significant and
consistent gap between results on POLYHUMANEVAL and HACKERRANK underscores a broader
limitation in model generalization: most models achieve high performance on familiar, benchmark-
like problems but are less reliable on the stricter or more diverse scenarios found in HackerRank. For
less capable models, accuracy drops sharply, reflecting both a lack of robustness to new evaluation
harnesses and a persistent gap between surface-level correctness and deeper semantic understanding.
These findings highlight that, although state-of-the-art models now translate code between Python
and Java with near-perfect fidelity on established benchmarks, substantial room for improvement re-
mains in achieving robust and generalizable code translation across diverse datasets and real-world
settings.

C.4 CODE REVIEW

Model Performance and Language Effects. Table 11 presents the lexical similarity ratings of
contemporary large language models (LLMs) on code review generation, as evaluated by GPT-4o,
which assesses how closely model-generated reviews resemble human-written references in terms of
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Table 11: Model Performance on Code Review Generation (%). The top three results on each task
are highlighted in green (1st) , orange (2nd) , and blue (3rd) backgrounds, respectively.

Model Overall C Cpp Csharp Go Java Javascript Php Python Ruby Typescript

Gemma-3-27B-Instruct 31.7 28.9 30.6 32.3 32.1 30.9 34.3 30.5 33.0 33.0 31.7
Qwen3-30B-A3B 31.6 29.9 31.9 31.1 33.0 30.9 32.9 31.1 32.7 31.4 30.8

Gemini-2.5-Pro-05-06 31.5 29.3 31.5 31.5 31.2 30.1 35.0 29.9 32.4 32.6 31.4
Qwen2.5-72B-Instruct 31.3 29.5 31.0 31.9 32.5 30.1 35.0 29.6 31.7 31.0 30.5
DeepSeek-R1 (0528) 31.1 28.5 30.9 31.4 31.9 30.9 34.4 29.3 31.5 31.4 31.3

o3-mini (Med) 31.1 28.6 31.5 31.0 31.7 30.2 34.8 29.9 31.6 31.3 30.7
Qwen2.5-Coder-32B-Instruct 31.1 29.0 31.1 31.5 31.1 30.3 34.7 29.1 31.9 31.1 31.0

Grok-3-Mini (High) 30.9 28.7 30.4 31.2 31.9 30.9 33.6 29.4 31.2 30.8 31.5
Qwen3-235B-A22B 30.9 28.9 30.3 30.9 32.0 29.4 34.4 29.3 31.6 31.2 31.5

Claude-Sonnet-4 30.9 28.7 30.6 31.3 31.4 29.6 34.1 30.1 31.2 31.4 31.0
DeepSeek-V3 30.9 28.1 29.9 31.1 31.9 30.4 33.5 30.4 32.0 30.2 31.4

LLaMA-3.3-70B-Instruct 30.7 28.4 29.4 31.9 31.2 29.8 32.9 29.3 31.8 31.6 30.7
Claude-3.5-Haiku 30.6 28.9 31.6 30.5 31.3 30.2 30.7 31.3 30.1 30.1 31.0
Claude-3.7-Sonnet 30.4 28.6 30.6 31.1 31.1 30.3 32.6 29.6 30.1 30.2 30.1

GPT-3.5-turbo-0125 30.4 30.5 31.6 29.7 31.6 30.7 29.6 29.0 32.4 29.2 29.8
Qwen3-32B 30.4 29.0 29.9 30.1 31.3 30.2 32.5 29.5 30.5 29.9 30.7

GPT-4o-2024-11-20 30.3 28.3 30.5 29.8 30.8 29.5 34.1 28.9 30.4 30.7 30.3
LLaMA-3.1-8B-Instruct 30.2 28.4 29.2 29.0 31.3 30.2 32.0 28.8 31.5 31.0 30.7

LLaMA-3.1-70B-Instruct 30.2 28.4 29.9 30.4 31.1 29.3 32.3 29.4 30.8 30.3 29.7
LLaMA-4-Scout-17B-16E-Instruct 30.1 28.3 29.7 30.2 30.7 29.5 32.3 29.1 30.7 30.2 30.4

Claude-3.5-Sonnet 30.0 28.7 29.0 30.0 30.8 29.4 33.2 28.3 30.0 30.1 30.1
GPT-4-turbo-2024-04-09 29.7 27.3 29.1 30.1 30.7 29.3 32.3 29.6 29.1 29.4 29.9

GPT-4.1-2025-04-14 29.4 27.3 28.5 29.0 30.2 29.2 32.6 28.7 29.8 28.8 30.4
o4-mini (Med) 29.0 26.9 28.5 28.8 29.6 28.3 32.5 28.0 28.8 29.3 29.4
DeepSeek-R1 27.3 24.9 27.0 26.4 27.9 27.2 30.6 25.7 28.0 26.6 28.2

GPT-5 26.9 24.3 26.6 26.9 26.7 25.8 30.5 25.7 26.9 26.9 28.4

wording, structure, and focus. In this evaluation, higher ratings indicate that a model’s review is lex-
ically and stylistically closer to the human reference, while lower ratings reflect greater divergence.
Gemma-3-27B achieves the highest overall similarity rating at 31.7%, closely followed by Qwen3-
30B (31.6%) and Gemini-2.5-Pro (31.5%), with leading models demonstrating robust performance
across a diverse set of programming languages. For instance, Gemma-3-27B obtains the top sim-
ilarity ratings in languages such as Java, Python, Ruby, and TypeScript, while Qwen3-30B and
Gemini-2.5-Pro excel in Cpp, Go, and JavaScript. Notably, in JavaScript, both Gemini-2.5-Pro and
Qwen2.5-72B attain the highest similarity rating (35.0%), underscoring the competitive landscape.
Despite these achievements, the overall ratings remain modest and tightly clustered, reflecting the
inherent challenge of matching human reviewer style and phrasing under this evaluation protocol.

Task-Specific Limitations and Performance Bottlenecks. The main limitation of this task lies
in the evaluation method. Although we follow the popular LLM-as-a-judge evaluation method in
this field, the dependence on a single human-written reference and lexical similarity as judged by
GPT-4o may pose some limitations. The metric inherently favors model outputs that closely mimic
the specific language and focus of the human review, rather than those that offer unique, alternative,
or equally valid critiques. Consequently, a higher similarity rating signals a closer match to the
reference in terms of phrasing and content, while a lower rating often indicates linguistic or stylistic
divergence, not necessarily a deficiency in review quality. Furthermore, even state-of-the-art models
that generate comprehensive or insightful comments may receive limited credit when the reference
review is incomplete, uninformative, or fails to address key issues in the code. This phenomenon is
particularly evident with models such as GPT-5, which perform strongly across most code-related
tasks and frequently generate high-quality, detailed review comments. Despite this, GPT-5 may still
obtain relatively modest similarity ratings if its suggestions differ from or go beyond those present
in the human reference, especially in cases where the reference itself is shallow or lacks substance.
This reliance on potentially limited human reviews as ground truth can obscure genuine advances in
model capability, and may penalize models that identify subtle bugs or offer substantive suggestions
overlooked by the reference. The constrained spread of similarity ratings among leading models
thus suggests that current progress is bounded by the ability to imitate the human reference rather
than provide substantively better reviews.
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C.5 CODE REASONING

Table 12: Model Performance (%) on Code Reasoning. The top three results on each task are
highlighted in green (1st) , orange (2nd) , and blue (3rd) backgrounds, respectively.

Model Overall Input Output

Overall Python Java Overall Python Java Overall Python Java

o4-mini (Med) 98.1 96.6 99.5 97.7 96.1 99.3 98.4 97.1 99.7
GPT-5 97.8 95.7 100.0 98.2 96.4 100.0 97.5 94.9 100.0

Gemini-2.5-Pro-05-06 97.2 95.4 99.0 98.2 97.7 98.8 96.2 93.2 99.1
o3-mini (Med) 97.0 94.6 99.5 96.9 94.6 99.3 97.2 94.6 99.7

DeepSeek-R1 (0528) 96.7 94.7 98.7 97.0 95.3 98.6 96.3 94.0 98.7
Grok-3-Mini (High) 96.4 93.3 99.5 97.0 94.5 99.4 95.8 92.1 99.5

DeepSeek-R1 95.1 93.0 97.2 95.4 94.7 96.0 94.8 91.3 98.3
Qwen3-235B-A22B 94.1 90.5 97.6 93.4 89.9 96.9 94.8 91.2 98.3

Qwen3-32B 94.0 91.5 96.5 93.6 91.3 96.0 94.4 91.7 97.1
Qwen3-30B-A3B 92.3 89.6 95.0 91.5 89.0 93.9 93.2 90.2 96.1
Claude-Sonnet-4 87.8 85.7 90.0 85.2 83.8 86.7 90.5 87.6 93.3

GPT-4.1-2025-04-14 63.5 61.8 65.2 59.9 57.5 62.2 67.1 66.0 68.2
Claude-3.5-Sonnet 60.1 58.9 61.3 56.3 53.4 59.3 63.8 64.4 63.2

DeepSeek-V3 57.7 56.8 58.5 52.8 51.9 53.7 62.6 61.8 63.4
GPT-4o-2024-11-20 57.7 55.2 60.1 54.2 52.7 55.7 61.1 57.7 64.6
Claude-3.7-Sonnet 57.6 55.0 60.1 54.0 51.1 57.0 61.1 59.0 63.1

Qwen2.5-Coder-32B 56.2 52.6 59.7 50.8 45.3 56.3 61.5 59.9 63.2
GPT-4-turbo-2024-04-09 53.6 52.4 54.8 51.1 49.2 53.0 56.1 55.7 56.6

LLaMA-4-Scout 48.4 47.5 49.2 40.9 35.4 46.4 55.8 59.7 52.0
Qwen2.5-72B 48.2 48.2 48.3 43.5 41.9 45.1 53.0 54.5 51.4

LLaMA-3.3-70B 47.2 43.8 50.7 45.5 39.5 51.5 49.0 48.0 49.9
Claude-3.5-Haiku 46.1 45.4 46.7 42.7 40.0 45.3 49.5 50.7 48.2

Gemma-3-27B-Instruct 41.6 39.0 44.3 37.3 30.4 44.1 46.0 47.5 44.5
LLaMA-3.1-70B 41.5 38.1 45.0 38.7 33.5 43.9 44.4 42.6 46.1

GPT-3.5-turbo-0125 34.8 35.1 34.4 32.5 30.9 34.1 37.0 39.3 34.7
LLaMA-3.1-8B 28.8 32.6 25.0 26.7 29.9 23.6 30.8 35.2 26.4

Model Performance and Reasoning Effects. Table 12 provides a comprehensive overview of
model capabilities on code reasoning tasks, measured through input and output prediction accuracy
in both Python and Java. The results indicate a marked stratification among model families, with
GPT-5 and Gemini-2.5-Pro setting the state of the art. o4-mini achieves the highest overall Pass@1
accuracy of 98.1%, maintaining balanced strength across both Python and Java. GPT-5 excels par-
ticularly on Java, reaching perfect accuracy in both overall and output prediction, and maintaining a
strong position on Python. Gemini-2.5-Pro stands out for its superior input prediction in Python and
competitive results elsewhere. Other models such as o3-mini, DeepSeek-R1, and Grok-3-Mini also
demonstrate consistently high accuracy, illustrating that advances in architecture and scaling cor-
relate directly with improved reasoning performance. Notably, this capacity-reasoning relationship
becomes increasingly evident in more complex settings; larger and more recent models consistently
outperform earlier or smaller counterparts, particularly in Python where the task demands more so-
phisticated reasoning. In contrast, models like Claude-Sonnet-4, which perform well in web-based
evaluations, do not transfer this advantage fully to code reasoning, as evidenced by a lower overall
accuracy of 87.8%. The trailing group of models, including GPT-3.5, LLaMA-3.1-8B, and compact
Qwen or Gemma variants, remain limited in their reasoning capabilities, frequently falling below
50% overall accuracy. This sharp divide underscores the importance of both model scale and design
in supporting complex reasoning tasks across programming languages.

Task-Specific Limitations and Performance Bottlenecks. Further examination of the results high-
lights persistent bottlenecks that inhibit optimal model performance, particularly in input reasoning
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for Python. Even among top-performing models, there is a clear and recurring gap between Python
and Java, with input prediction in Python proving more challenging and less consistent. A key fac-
tor underlying this discrepancy appears to be the inherent flexibility and less rigid syntax of Python,
which increases the potential for subtle formatting and representation errors in predicted inputs or
outputs. Models frequently struggle with faithfully preserving the expected structure of string liter-
als and variable representations in Python, leading to a measurable drop in accuracy, whereas Java’s
stricter and more explicit syntax mitigates such issues and enables higher reliability in both input and
output prediction. This trend is further accentuated among mid- and lower-tier models, where input
reasoning accuracy for Python can fall below 60% or even lower, in stark contrast to the consistently
higher performance observed in Java. These results suggest that despite recent progress, current
architectures still face significant obstacles in capturing and generalizing language-specific conven-
tions, particularly in the more flexible and variable Python setting. Addressing these bottlenecks
will require not only continued scaling but also more targeted innovations in code understanding
and syntactic reasoning across diverse programming paradigms.

C.6 TEST GENERATION

Table 13: Model Performance (%) on Test Generation. The top three results on each task are high-
lighted in green (1st) , orange (2nd) , and blue (3rd) backgrounds, respectively.

Model SymPrompt

CSR CovL CovBr

Claude-3.5-Sonnet 99.8 73.2 70.3
o4-mini (Med) 99.8 81.1 77.3

Claude-3.5-Haiku 99.7 44.6 38.2
Qwen3-235B-A22B 99.7 66.7 58.9
Claude-3.7-Sonnet 99.3 75.3 71.0

GPT-4-turbo-2024-04-09 99.3 67.7 60.3
Qwen2.5-Coder-32B-Instruct 99.3 65.0 58.1

Qwen3-30B-A3B 99.3 64.9 59.4
o3-mini (Med) 99.3 69.7 66.7

Claude-Sonnet-4 99.2 77.0 73.5
GPT-4.1-2025-04-14 99.2 75.4 72.3

GPT-5 99.2 82.6 81.8
Gemini-2.5-Pro-05-06 99.0 32.6 25.1
Qwen2.5-72B-Instruct 99.0 64.8 56.0

Qwen3-32B 99.0 65.2 58.2
DeepSeek-V3 98.8 68.6 63.5

GPT-3.5-turbo-0125 98.8 67.5 55.4
DeepSeek-R1 (0528) 98.7 67.4 58.8

DeepSeek-R1 98.5 69.0 62.8
GPT-4o-2024-11-20 98.5 69.3 63.6

LLaMA-3.1-70B-Instruct 98.5 66.3 56.2
Grok-3-Mini (High) 98.3 65.9 62.5

LLaMA-3.3-70B-Instruct 98.3 66.7 58.0
LLaMA-4-Scout-17B-16E-Instruct 97.7 68.7 58.3

Gemma-3-27B-Instruct 97.5 64.7 56.3
LLaMA-3.1-8B-Instruct 96.0 46.0 33.7

Model Performance and Capacity Effects. Table 13 summarizes model performance on the
SymPrompt-Python unit test generation benchmark, reporting comprehensive success rate (CSR),
line coverage (CovL), and branch coverage (CovBr). Both Claude-3.5-Sonnet and achieve the highest
CSR of 99.8%, establishing a clear upper bound in reliability for input/output prediction. However,
when considering code coverage metrics, GPT-5 distinguishes itself with leading results in both line
coverage (82.6%) and branch coverage (81.8%), closely followed by and Claude-Sonnet-4. Notably,
Claude-3.5-Sonnet, while excelling in CSR, demonstrates moderate coverage (73.2% and 70.3% for
CovL and CovBr, respectively), suggesting some limitation in generating tests that comprehensively
explore program logic.
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Performance varies substantially across model families and sizes. The latest Claude, GPT, and
Qwen variants consistently surpass earlier versions and smaller-scale models, underscoring a strong
capacity-performance relationship in unit test generation. Larger models such as Claude-3.7-Sonnet,
Qwen3-235B, and GPT-4.1 approach top-tier results in coverage, while smaller or prior-generation
models like Gemini-2.5-Pro and LLaMA-3.1-8B lag considerably, particularly in coverage metrics.
This performance stratification reinforces that scaling and architectural improvements yield measur-
able gains, especially on the more demanding aspects of code analysis and test completeness.

Task-Specific Limitations and Performance Bottlenecks. Despite high comprehensive success
rates across most frontier models, coverage remains a persistent bottleneck. Many models maintain
near-ceiling CSR yet fall short in coverage, revealing a discrepancy between producing minimal
passing tests and generating diverse cases that robustly validate program behavior. For instance,
and Claude-3.7-Sonnet, while highly reliable, are still outperformed by GPT-5 in both line and
branch coverage, highlighting a gap in the ability to exercise complex code paths. Lower coverage
by models such as Gemini-2.5-Pro and Claude-3.5-Haiku further underscores challenges in code
reasoning and exploration, likely attributable to limited contextual understanding or training focus.

A particularly striking phenomenon is observed in Gemini-2.5-Pro, which, despite achieving a com-
petitive CSR of 99.0%, exhibits extremely low coverage rates for both line (32.6%) and branch
(25.1%) metrics. This suggests a fundamental shortcoming in the model’s ability to generate tests
that adequately explore program execution paths. Qualitative inspection reveals that Gemini-2.5-Pro
frequently produces tests that either redundantly mock dependencies or even reimplement the focal
method itself within the test suite, behaviors which are inconsistent with standard unit testing prac-
tice. This pattern likely reflects a lack of exposure to unit test generation tasks during model training,
resulting in overgeneralized or misaligned output that fails to capture the intended testing objectives.
Such findings highlight the importance of task-specific fine-tuning and exposure for robust coding
capabilities in automated test generation.

C.7 VULNERABILITY DETECTION

Model Performance and Comparative Effects.

Table 14 reports the performance of LLMs on vulnerability detection across both single-function
and paired-function scenarios, highlighting significant contrasts between models and task setups. In
the single-function PRIMEVUL setting, Claude-Sonnet-4 achieves the highest accuracy (69.5%) and
F1 score (73.7%), setting a new state of the art for this benchmark. GPT-5 and GPT-4-turbo closely
follow, with F1 scores of 69.2% and 69.9% respectively, underscoring consistent improvements
from recent GPT-family advances. Gemini-2.5-Pro and GPT-4o also demonstrate robust recall, with
Gemini-2.5-Pro achieving the highest recall (92.9%) yet comparatively lower precision, resulting
in moderate overall F1. Notably, models like Qwen2.5-72B and Qwen2.5-Coder-32B demonstrate
unusually high precision (73.2% and 70.4%), but this comes at the cost of extremely low recall,
indicating a tendency toward conservative positive predictions while missing many actual vulnera-
bilities.

In the more challenging PRIMEVUL-PAIRED task, model performance diverges sharply. GPT-4.1
attains the highest P-C score (90.8%), evidencing an exceptional ability to simultaneously label
both vulnerable and patched variants correctly. In contrast, Gemini-2.5-Pro leads in P-V (72.4%),
indicating a strong bias toward labeling both functions as vulnerable, which maximizes recall but
inflates false positives. Certain models, including Qwen2.5-72B and LLaMA-3.3-70B, stand out
with strong P-B scores (81.3% and 79.3%, respectively), reflecting a pronounced preference for
benign classification. Across most models, however, the P-R metric remains relatively low, suggest-
ing that catastrophic reversals—where patched code is labeled vulnerable and vice versa—are still
infrequent but not eliminated. These results reinforce that while LLMs have made strides in detect-
ing vulnerabilities in isolation, comparative reasoning between functionally similar but semantically
divergent code remains a significant obstacle.

Task-Specific Limitations and Performance Bottlenecks.

Analysis of the results reveals persistent task-specific bottlenecks that constrain model effective-
ness on vulnerability detection. In the single-function scenario, several models achieve respectable
accuracy and F1 scores by leveraging recognizable vulnerability patterns or established coding anti-
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Table 14: Model Performance on Vulnerability Detection. The top three results on each task are
highlighted in green (1st) , orange (2nd) , and blue (3rd) backgrounds, respectively.

PrimeVul PrimeVul-Paired

Model Acc Prec Recall F1 P-C P-V P-B P-R

Claude-Sonnet-4 69.5 66.8 82.1 73.7 73.3 18.0 2.8 5.8
GPT-4-turbo-2024-04-09 59.8 57.3 89.7 69.9 49.5 10.7 33.0 6.8

GPT-5 67.3 67.9 70.5 69.2 80.3 13.5 2.5 3.7
GPT-4o 60.3 58.3 83.3 68.6 41.5 28.2 14.2 16.2

LLaMA-3.1-70B-Instruct 57.2 55.5 89.1 68.4 18.3 0.3 59.7 21.7
Claude-3.5-Haiku 61.2 59.3 80.8 68.4 32.8 3.8 35.0 28.3

Gemini-2.5-Pro-05-06 54.5 53.7 92.9 68.1 25.6 72.4 0.5 1.5
Gemma-3-27B-Instruct 62.0 60.6 76.9 67.8 35.8 8.2 30.2 25.8

LLaMA-3.3-70B-Instruct 62.3 61.6 73.4 67.0 12.8 0.5 79.3 7.4
GPT-4.1-2025-04-14 59.8 61.2 62.2 61.7 90.8 2.2 0.0 7.0

DeepSeek-R1 56.5 56.9 67.0 61.6 81.7 12.0 2.2 4.2
Qwen3-235B-A22B 55.5 56.9 59.6 58.2 85.2 6.8 2.9 5.1
Claude-3.5-Sonnet 47.7 49.9 68.9 57.9 77.7 9.2 5.2 8.0

Grok-3-Mini (High) 51.2 52.6 62.5 57.1 78.3 12.3 3.0 6.3
Claude-3.7-Sonnet 61.8 69.1 48.1 56.7 80.6 5.7 7.7 6.0

DeepSeek-R1 (0528) 56.0 58.1 55.1 56.6 72.5 19.7 2.2 5.7
Qwen3-32B 53.5 56.5 46.2 50.8 69.0 10.2 14.6 6.1

o4-mini (Med) 56.3 64.6 36.2 46.4 75.3 3.7 8.3 12.7
LLaMA-3.1-8B-Instruct 54.5 61.5 33.3 43.2 9.3 6.5 50.7 33.5

Qwen3-30B-A3B 54.0 61.5 30.8 41.0 60.9 9.9 20.4 8.8
DeepSeek-V3 51.5 63.6 15.7 25.2 39.8 0.2 52.0 8.0

Qwen2.5-72B-Instruct 52.3 73.2 13.1 22.3 14.5 1.5 81.3 2.7
o3-mini (Med) 50.5 61.5 12.8 21.2 54.7 3.5 35.8 6.0

Qwen2.5-Coder-32B-Instruct 51.7 70.4 12.2 20.8 24.0 8.0 49.0 19.0
LLaMA-4-Scout-17B-16E-Instruct 49.0 55.1 12.2 19.9 19.8 2.2 58.5 19.5

GPT-3.5-turbo-0125 45.8 40.8 9.3 15.1 13.0 1.8 37.4 47.9

patterns; however, this approach is often brittle and susceptible to overfitting, as evidenced by the
trade-off between high precision and low recall in several models. The paired-function setting, by
contrast, exposes the models’ limited capacity for nuanced semantic reasoning. Here, even top mod-
els show a marked drop in balanced accuracy and struggle to consistently distinguish patched from
vulnerable functions when differences are subtle and syntactic cues are minimal. This performance
gap highlights that the comparative nature of the paired task demands deeper understanding of code
semantics, intent of changes, and implications for program security.

Underlying these limitations are two interrelated challenges. First, models that excel in isolated
detection frequently rely on surface-level cues, which do not transfer to the more complex com-
parative setting where semantic intent is crucial. Second, minor syntactic edits in code pairs often
correspond to major shifts in vulnerability status, requiring the model to move beyond superficial
pattern matching toward genuine comprehension of control flow, data dependencies, and defensive
programming practices. The generally low P-C scores across the board reinforce the difficulty of
this task, suggesting that even state-of-the-art models have not yet closed the gap between local
vulnerability recognition and robust, context-aware reasoning about code security. Addressing these
challenges will require the development of models with stronger program analysis capabilities and
targeted training on semantically-rich vulnerability patterns.

C.8 MULTI-MODALITY TASKS

Model Performance and Capacity Effects. Table 15 presents the performance of MLLMs on web
development tasks across front-end frameworks, including React, Vue, Angular, and vanilla HTM-
L/CSS. Claude-Sonnet-4, Claude-3.7-Sonnet, GPT-5 and Gemini-2.5 emerge as top performers,
with Claude-Sonnet-4 achieving the highest overall performance, including superior CLIP scores
(0.6907-0.8385) for Design Generation and exceptional MLLM scores for Design Edit (7.69-9.43)
and Design Repair (7.37-8.14). Claude-3.7-Sonnet demonstrates strong compilation rates (0.6867-
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0.9746) alongside competitive performance across all tasks, while Gemini-2.5-Flash exhibits robust
performance with reliable compilation success rates consistently exceeding 0.68. A clear capacity-
performance relationship emerges across model families, with larger variants consistently outper-
forming their smaller counterparts, particularly on complex tasks requiring code localization and
visual understanding capabilities.

Task-Specific Limitations and Performance Bottlenecks. Our analysis reveals distinct task-
specific bottlenecks that constrain MLLM effectiveness in web development scenarios. For Design
Generation tasks, models encounter dual challenges: compilation errors and visual inaccuracies.
Angular exhibits the lowest compilation success rates (0.6747-0.7590) compared to React and Vue
(>0.83), while moderate CLIP scores (around 0.6) indicate substantial opportunities for improve-
ment in visual fidelity. Conversely, Design Edit and Design Repair tasks are primarily limited by
code localization deficiencies, as evidenced by CMS scores significantly below compilation rates.
Even top-performing models like Claude-Sonnet-4 achieve CMS scores of only 0.2992-0.6588 for
Design Edit and 0.3795-0.6772 for Design Repair, despite maintaining compilation rates above 0.9.
These findings underscore the critical need for enhanced code understanding and precise localization
capabilities in MLLMs to enable more effective web development assistance.

Table 15: Model Performance on Multi-modality Tasks under different tasks and frameworks. The
top two performing results are highlighted in green (1st) and orange (2nd) .

Metric Framework Claude GPT Gemini LLaMA Qwen

Claude-4 Claude-3.7 GPT-5 GPT-4o Gemini-2.5 Gemini-2.0 LLaMA-90B Qwen-72B
Design Generation

CLIP (%)

React 83.9 80.8 83.7 76.4 79.4 76.1 70.4 77.9
Vue 81.2 83.2 79.0 77.3 77.8 69.0 53.2 68.4

Angular 59.1 60.2 59.6 59.6 60.0 60.1 53.3 51.5
Vanilla 81.2 81.3 80.6 76.8 80.2 75.9 64.0 76.0

Compilation (%)
React 99.1 95.4 97.2 97.2 91.7 90.8 94.5 95.4
Vue 97.5 97.5 96.6 94.9 93.2 83.9 74.6 85.6

Angular 67.5 68.7 67.5 71.1 68.7 71.1 73.5 62.6
Design Edit

MLLM Score

React 7.7 8.2 8.3 8.0 8.4 7.8 6.2 8.1
Vue 8.0 8.4 7.5 8.2 8.1 8.1 6.3 7.6

Angular 8.3 8.0 8.6 8.3 8.2 9.1 5.7 8.2
Vanilla 9.4 9.2 9.3 9.2 9.2 9.0 7.7 9.1

CMS (%)

React 42.1 46.6 35.1 52.5 36.6 37.1 26.4 44.0
Vue 29.9 40.5 26.9 37.0 30.3 32.8 21.0 32.8

Angular 65.9 68.3 59.6 61.0 58.2 63.9 47.0 60.2
Vanilla 34.0 34.4 30.2 33.9 35.8 29.1 19.5 32.1

Compilation (%)
React 97.2 100.0 91.7 98.1 97.2 100.0 91.7 99.1
Vue 98.1 98.1 88.6 94.3 97.1 95.2 91.4 93.3

Angular 92.4 90.9 97.0 90.9 90.9 100.0 86.4 90.9
Design Repair

MLLM Score

React 7.6 6.8 7.4 6.4 7.7 6.3 4.2 5.6
Vue 7.4 6.6 7.0 6.3 7.4 6.1 4.8 6.0

Angular 8.1 6.9 7.8 5.9 8.0 5.3 4.6 6.5
Vanilla 7.8 7.2 7.8 7.1 7.7 7.3 5.7 6.9

CMS (%)

React 55.7 48.3 29.7 27.5 33.7 17.6 4.5 18.7
Vue 40.0 30.7 31.6 25.2 36.2 17.8 5.0 11.3

Angular 67.7 57.2 51.0 50.7 56.7 39.7 31.0 55.6
Vanilla 38.0 22.9 10.6 16.4 19.0 16.3 3.7 14.5

Compilation (%)
React 100.0 100.0 100.0 100.0 100.0 100.0 92.9 92.9
Vue 100.0 100.0 96.3 100.0 100.0 96.3 100.0 100.0

Angular 100.0 92.9 100.0 100.0 100.0 100.0 78.6 92.9

C.9 EFFECT OF MULTI-PROMPT EVALUATION

We present the evaluation of using different prompts and their average performance in Figure 6 to
Figure 13. We observe substantial prompt sensitivity with varying degrees of impact across different
task categories. Specifically, we can achieve the following findings:

Prompt sensitivity exhibits task-specific patterns with varying magnitudes of impact. Tasks
such as vulnerability detection, test generation, and code review demonstrate observational perfor-
mance fluctuations across different prompts. For instance, in vulnerability detection tasks, when
using prompt 1, GPT-4.1 achieve much higher performance than using prompt 2 and prompt 3;
while for Claude-3.5-Haiku, the performance of prompt 1 is 10 ranks lower than prompt 2. In
contrast, tasks like code reasoning and code translation exhibit relatively stable performance across
different prompting approaches. The vast majority of models maintain the same ranking across dif-
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Figure 6: The performance variation of different prompt on code generation.

Figure 7: The performance variation of different prompt on code review.

ferent prompts, and even for the few inconsistencies, the maximum difference does not exceed 5.
This suggests that different tasks are affected by evaluation prompts to varying degrees. For some
tasks such as vulnerability detection, test generation, and code review, using a single prompt may
introduce evaluation bias.

Multi-prompt evaluation provides more reliable and robust assessment results. Given the con-
siderable performance disparities observed across prompts, our multi-prompt evaluation approach
offers enhanced reliability compared to single-prompt assessments. To obtain comprehensive and
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Figure 8: The performance variation of different prompt on code summarization.

Figure 9: The performance variation of different prompt on code translation.

unbiased evaluation results, we employ multiple diverse prompts and report the averaged perfor-
mance scores across all prompt variations. This methodology mitigates the potential bias introduced
by any individual prompt design and provides a more accurate assessment of the models’ capabilities
across different programming tasks.
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Figure 10: The performance variation of different prompt on input prediction.

Figure 11: The performance variation of different prompt on output prediction.
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Figure 12: The performance variation of different prompt on unit test generation.

Figure 13: The performance variation of different prompt on vulnerability detection.
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D EXTENDED RELATED WORK

D.1 LARGE LANGUAGE MODELS FOR CODE

Large language models (LLMs) for code have rapidly advanced tasks such as code generation, com-
pletion, and reasoning. Incoder (Fried et al., 2022) unify code synthesis and editing by training
on masked code segments that are moved to the end of files, enabling zero-shot code infilling and
improved performance on tasks like type inference, comment generation, and variable renaming.
CodeGen (Nijkamp et al., 2023) open-sources a family of models up to 16.1B parameters together
with the JAXFORMER training library and shows that multi-turn prompts substantially improve
program synthesis. The StarCoder model (Li et al., 2023a) with 15.5B parameters models trained
on one trillion tokens and fine-tuned on Python yields StarCoder, which outperforms many prede-
cessors. CodeT5+ (Wang et al., 2023b) improves upon existing architectures by combining encoder
and decoder modules and employs a mixture of pretraining objectives. CodeLLaMA (Rozière et al.,
2023) extends LLaMA2 to code and emphasizes open foundational models for code. OCTOPACK
(Muennighoff et al., 2024) highlights instruction tuning in large code models, utilizing a vast dataset
of Git commits, which pair code changes with human instructions, for comprehensive code un-
derstanding. WizardCoder (Luo et al., 2024) proposed the Evol-Instruct method, which rewrites
simple instructions into more complex instructions, pushing performance beyond both open and
closed models. DeepSeek Coder (Guo et al., 2024) introduces a family of open models trained on
a 2 trillion-token corpus using a fill-in-the-blank objective and reports state-of-the-art performance
among open models, even surpassing some closed models. OpenCoder (Huang et al., 2025) releases
a top-tier open code LLM together with transparent training data, a complete processing pipeline,
and ablation experiments.

D.2 LARGE LANGUAGE MODELS FOR SOFTWARE ENGINEERING

Large language models play an important role in various processes of software engineering, from
requirement engineering to software development, testing and maintenance.

Requirement Engineering. LLMs enhance requirements engineering by automating elicitation,
analysis, specification, and verification processes through multi-agent frameworks. Elicitation(Ataei
et al., 2025) uses multiple persona-based agents to simulate user interactions and mine requirements
comprehensively, reducing costs compared to traditional user studies. SpecGen(Ma et al., 2024a)
automates specification generation through conversation-driven and mutation-based approaches.
Multi-phase systems like Arora et al.(Arora et al., 2024a) cover all four RE phases using specialized
agents: stakeholder/engineer agents for elicitation, formatting agents for specification, evaluator
agents for analysis, and validator agents for final validation. MARE(Jin et al., 2024) similarly em-
ploys stakeholder agents for elicitation, modeler agents for requirement modeling, checker agents
for verification, and documenter agents for specification writing, all communicating within a shared
workspace for seamless information exchange.

Software Development. In the realm of front-end development, MLLMs have revolutionized
creative designand web development practices.DCGen (Wan et al., 2024) proposes a divide-and-
conquer strategy that generates submodule code separately before assembling complete webpages.
DeclarUI (Zhou et al., 2024) combines element segmentation with page transition graphs to prompt
MLLMs for mobile app UI generation with navigation logic. UICopilot (Gui et al., 2025) adopts
a hierarchical approach by first generating HTML tree structures, then progressively generating UI
components. LayoutCoder (Wu et al., 2025) introduces a layout-aware MLLM framework specif-
ically designed to comprehend complex UI layouts and preserve layout fidelity in generated code.
DesignRepair (Yuan et al., 2025) presents a dual-stream, knowledge-driven approach that lever-
ages LLMs to detect and repair design quality issues in front-end code. Interaction2Code (Xiao
et al., 2024) and DESIGNBENCH (Xiao et al., 2025) add interaction-aware generation and repair.
LLM-based agents for end-to-end software development adopt classic software process models
to standardize development workflows: (A) Waterfall Process Model:Most existing agents (e.g.,
AISD (Zhang et al., 2024a), LCG (Lin et al., 2024), ChatDev (Qian et al., 2023), CTC (Du et al.,
2024), Self-Collaboration (Dong et al., 2024)) follow the linear waterfall model (Royce, 1987) with
sequential phases (requirements engineering, design, implementation, testing, deployment, mainte-
nance), while some extend it with iterative feedback loops for quality assurance and MetaGPT (Hong
et al., 2023) integrates human-like Standardized Operating Procedures (SOPs) for role-based collab-
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oration; (B) Agile Development: Some agents explore agile methodologies including Test-Driven
Development (TDD) (Lin et al., 2024), which prioritizes writing tests before coding through test-
implement-refine cycles, and Scrum (Lin et al., 2024; Nguyen et al., 2025), which breaks devel-
opment into iterative sprints, with experiments showing Scrum achieves the best and most stable
performance on function-level code generation benchmarks, followed by TDD (Lin et al., 2024).

Software Testing. Software testing checks isolated software units (e.g., methods or classes) to
quickly identify and localize bugs (Yang et al., 2024a). While LLMs like ChatGPT can generate
unit tests with decent readability and usability (Yuan et al., 2023), they still exhibit compilation/ex-
ecution errors and limited coverage. Recent LLM-based agents address these issues through iter-
ative refinement: (A) Fixing Compilation/Execution Errors. ChatTester (Yuan et al., 2023) and
ChatUniTest (Xie et al., 2023) iteratively collect error messages and refine buggy test code; (B) In-
creasing Coverage. TELPA (Yang et al., 2024a) employs backward/forward program analysis and
counter-example sampling with CoT strategy to enhance coverage of hard-to-reach branches; (C)
Enhancing Fault Detection. MuTAP (Dakhel et al., 2024) uses mutation testing feedback, where
surviving mutants guide LLM refinement to improve test cases’ bug detection capabilities.

Software Operation and Maintenance. LLM-based agents for end-to-end software maintenance
follow a common pipeline to automatically resolve real-world GitHub issues through multiple
phases: (A) Preprocessing – agents prepare repository knowledge (e.g., RepoUnderstander (Ma
et al., 2024b) builds knowledge graphs, Agentless (Xia et al., 2024) creates hierarchical struc-
tures); (B) Issue Reproduction – agents generate test scripts to trigger unexpected behaviors when
reproduction tests are unavailable (e.g., SWE-agent (Yang et al., 2024b), MASAI (Arora et al.,
2024b) with two-stage template-based approach); (C) Issue Localization – agents identify relevant
code elements using: (C.1) retrieval-based strategies via BM25 similarity (Tao et al., 2024b), (C.2)
navigation-based approaches with search interfaces (Yang et al., 2024b; Arora et al., 2024b; Zhang
et al., 2024b; Xia et al., 2024), (C.3) spectrum-based fault localization calculating suspiciousness
scores from test coverage (Zhang et al., 2024b; Chen et al., 2024a), and (C.4) simulation using
Monte Carlo Tree Search (Ma et al., 2024b); (D) Task Decomposition – breaking issues into fine-
grained sub-tasks (Tao et al., 2024b; Ma et al., 2024b); (E) Patch Generation – creating fixes for
localized suspicious code elements (Xia et al., 2024); (F) Patch Verification – validating correct-
ness through code review (Tao et al., 2024b), static checking for syntax (Zhang et al., 2024b; Ma
et al., 2024b; Arora et al., 2024b; Xia et al., 2024; Yang et al., 2024b), and dynamic checking via
test execution (Chen et al., 2024a; Arora et al., 2024b; Xia et al., 2024); (G) Patch Ranking –
identifying highest-probability correct patches using ranker agents (Arora et al., 2024b) or majority
voting (Xia et al., 2024). These approaches are evaluated on benchmarks like SWE-bench (Jimenez
et al., 2023) containing real-world GitHub issues across popular Python repositories.

D.3 LARGE LANGUAGE MODELS EVALUATION

Recent years have witnessed substantial efforts in building benchmarks to evaluate the capabili-
ties of LLMs on code-related tasks. Early benchmarks such as HUMANEVAL (Chen et al., 2021),
MBPP (Austin et al., 2021), and APPS (Hendrycks et al., 2021), as well as extensions like HU-
MANEVAL+ (Liu et al., 2023), focused on evaluating function-level code generation performance.
Due to the rapid advancement of code-oriented LLMs, more challenging and realistic benchmarks
have been proposed. LIVECODEBENCH (Jain et al., 2025) continuously collects new contest prob-
lems from LEETCODE, ATCODER, AND CODEFORCES, offering a contamination-free setting for
evaluating code generation. CCTEST (Li et al., 2023b) focuses on real-world code completion
tasks, efficiently testing and fixing inconsistency bugs in real products including Github copilot.
BIGCODEBENCH (Zhuo et al., 2024) focuses on library-aware code generation, assessing models’
ability to handle diverse libraries across multiple domains. INFIBENCH (Li et al., 2024d) provides
the first large-scale QA benchmark curated from Stack Overflow questions, challenging LLM ca-
pability in realistic software engineering contexts. SWE-BENCH (Jimenez et al., 2023) evaluates
models on practical software engineering tasks by requiring them to resolve GitHub issues through
multi-file code modifications in realistic repositories. DYCODEEVAL (Chen et al.) introduces dy-
namic benchmarking that deliberately controls contamination to assess reasoning capabilities in
code LLMs. DYNACODE (Hu et al., 2025) proposes a dynamic complexity-aware framework that
automatically adjusts problem difficulty, enabling finer-grained and adaptive evaluation of code gen-
eration skills. EVOCODEBENCH (Li et al., 2024a) is an evolving benchmark tightly aligned with
real-world GitHub repositories. It continuously incorporates new commits and domain-specific tasks
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to prevent leakage and maintain relevance. MMCode (Li et al., 2024c) and SWE-BENCH MUL-
TIMODAL (Yang et al., 2024c) extends the original SWE-bench by adding visual inputs such as
screenshots, UI mockups, design files, showing that current multimodal code models suffer large
performance drops without visual context and highlighting a generalization gap to visual software
domains. CODEREVAL (Yu et al., 2024) and DevEval (Li et al., 2024b) emphasize repository-level
code generation drawn from real open-source repositories. PPM (Chen et al., 2024d) presents an
automated pipeline that uses LLMs themselves to synthesise diverse programming problems, facil-
itating scalable and varied benchmark creation. Recent efforts have also evaluated and proposed
improvements for LLM-based competitive programming generation using real 2024 ICPC/CCPC
contest problems (Wei et al., 2025).

D.4 ROBUSTNESS OF CODE LLMS

Robustness in Code LLMs has become an important research question, as models that excel on
standard benchmarks like HumanEval and MBPP often degrade sharply when exposed to real-world
variations such as semantically-preserving code transformations and natural-language prompt per-
turbations (Mastropaolo et al., 2023; Zhuo et al., 2023). ReCode (Wang et al., 2023a) introduced the
first robustness benchmark for code generation, applying 12 functionality-preserving perturbations
including variable renaming, unused code insertion, and control-flow flattening. CCTest (Li et al.,
2023b) focuses on real-world code completion tasks, efficiently testing and fixing inconsistency
bugs in real products including Github copilot. NLPerturbator (Chen et al., 2024c) shifted focus
to natural-language prompt variations, categorizing different real-world perturbation types derived
from practitioner surveys and showing average pass@1 drops of 4.8–6.1% across StarCoder, CodeL-
lama, and DeepSeek-Coder. RobGen (Li et al., 2025) revealed that 35% of LLM-generated code is
less robust than human references due to missing conditional checks and proposed a lightweight
decoding-time framework that boosts robustness by 10% while preserving functional correctness.
RobuNFR (Lin et al., 2025) extended evaluation to non-functional requirements including design,
readability, reliability, performance, demonstrating that expressing the same NFR differently causes
high output variability and up to 39% correctness loss. Recent work CodeCrash (Lam et al., 2025)
comprehensively test LLMs in code reasoning under structural and NL-embedded perturbations. To
mitigate this problem, many techniques such as structure-aware model training and robustness train-
ing are also introduced to improve code LLM’s robustness (Tipirneni et al., 2024; Pei et al., 2022;
Oh & Yoo, 2024).

E LIMITATION AND FUTURE WORK

To further enhance the comprehensiveness and practical implication of this benchmark, we have
planned several key directions for future work.

Expanding Task Diversity: While our current benchmark covers a range of fundamental tasks, we
plan to introduce more complex and realistic challenges to better assess the advanced capabilities
of LLMs (Jimenez et al., 2023; Wong et al., 2024; Peng et al., 2024). For example, code debug-
ging which evaluate a model’s ability to not only identify and locate errors but also to explain the
underlying logic flaws in the code moves beyond simple code correction to test a model’s deeper
reasoning and diagnostic skills. Furthermore, tasks like issue resolution tasks (Jimenez et al., 2023;
Yang et al., 2024b), require models to analyze entire problem contexts from sources like GitHub
issues—including natural language descriptions, error logs, and user comments—and then propose
and justify a complete code-based solution. This will measure a model’s ability to handle repository-
level software maintenance challenges that are common in real-world development.

Introducing Multi-Level Granularity Evaluation: Currently, our evaluation such as code gen-
eration and translation are primarily assessed at the function level. However, real-world software
engineering operates on much larger scales. We plan to extend our evaluation to higher levels of
abstraction to address this gap. This includes introducing repository-level tasks (Li et al., 2024b),
which will require models to generate or translate complete source files containing multiple classes
and functions. In future work, we aim to evaluate performance at multiple levels, challenging mod-
els to perform complex operations like implementing new features based on high-level requirements
or executing large-scale refactoring across an entire codebase.
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Figure 14: The leaderboard page for different tasks.

Evaluating Diverse Prompting Strategies: The effectiveness of a large language model is signif-
icantly influenced by the prompting strategy used. We will conduct a more systematic investiga-
tion into the impact of various prompting techniques—from straightforward zero-shot and few-shot
methods (Gao et al., 2023) to more complex approaches like Chain-of-Thought (Wei et al., 2022)
and agentic workflows (Xia et al., 2024). This will provide valuable, practical guidance on how
to most effectively elicit high-quality outputs from models for different coding tasks, ultimately
helping to define best practices for their application.

Enhancing Security Evaluation: Given the increasing deployment of LLMs in production environ-
ments, we plan to expand our security evaluation framework beyond current vulnerability detection
tasks. Our assessment will cover various critical dimensions such as vulnerability assessment of se-
curity flaws in generated code, privacy protection evaluation to prevent sensitive data exposure and
regulatory violations, bias detection and mitigation in generated algorithms, authorship and intellec-
tual property compliance. This will establish essential safeguards for responsible LLM deployment
in software engineering practices.

Establishing a Regularly Update: To combat the persistent issue of data contamination, where a
model’s training data may inadvertently include benchmark samples, we will implement a dynamic
data collection and refreshment process (Jain et al., 2025; Zhang et al., 2025). By periodically
sourcing new data from the latest open-source projects and programming platforms, we can ensure
the benchmark remains fair and relevant. This regularly updating will help guarantee that we are
assessing a model’s true generalization capabilities on previously unseen code, thereby maintaining
the long-term integrity and credibility of our evaluation.

F ONLINE LEADERBOARD

Our online leaderboard is available at https://code-treat.vercel.app/.

In the leaderboard, we provide an interactive interface to view detailed results of each task, visualize
the model performance with timeline and compare the ability of different models.

As shown in Figure 14, the leaderboard page displays a comprehensive ranking table of each task.
Users can view model performance across multiple evaluation metrics for each task. The interface
allows users to filter results by different time periods and switch between various tasks such as
vulnerability detection. Each model entry shows detailed performance statistics.
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Figure 15: The model performance timeline page.

Figure 16: The leaderboard page for different tasks.

Figure 15 shows the model performance timeline comparison page, which provides a temporal view
of how different models have evolved and improved over time. This scatter plot visualization plots
model accuracy against release dates, with different colored points representing various model fam-
ilies. Users can interact with the timeline to explore historical trends and identify breakthrough
moments in model development, making it easier to understand the progression of the field.
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For more detailed analysis, Figure 16 shows our model comparison interface, which allows users
to select different models for side-by-side comparison. The radar chart visualization displays mul-
tiple performance metrics simultaneously, including accuracy, precision, recall, F1 score, and other
relevant measures. This enables researchers to conduct comprehensive comparative analysis and
identify the strengths and weaknesses of different approaches across various evaluation dimensions.

G PROMPT DETAILS

G.1 CODE GENERATION

CODE GENERATION

SYSTEM PROMPT

You are a helpful assistant.

User Prompt Prompts 1

Please provide a self-contained {PL} script that solves the
following problem in a markdown codeblock:{problem_description}
Your task is to complete the function {function_signatures} {
class_msg}

USER PROMPT 2

Write a {PL} function {function_signatures} {class_msg} to
solve the following problem:{problem_description}

USER PROMPT 3

You are an expert {PL} programmer. You will be given a question
(problem_description) and will generate a correct {PL} program
that matches the specification and passes all tests, You will

NOT return anything except for the program.
### Question
{problem_description}
{starter_code_msg}
### Answer:
(use the provided format with backticks)

G.2 CODE SUMMARIZATION
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CODE SUMMARIZATION

SYSTEM PROMPT

You are a helpful assistant.

USER PROMPT 1

Please generate a short comment in one sentence for the
following function:
{code}

USER PROMPT 2

Please write a brief comment in one sentence for the following
function:
{code}

USER PROMPT 3

Kindly provide a concise comment in one sentence for the
following function:
{code}

CODE SUMMARIZATION – LLM AS JUDGE

SYSTEM PROMPT

You are a helpful assistant.
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USER PROMPT

Here is a piece of code with corresponding comments. Please
rate each comment on a scale from 1 to 5, where a higher score
indicates better quality. A good comment should: 1) accurately
summarize the function of the code; 2) be expressed naturally
and concisely, without burdening the developer with reading; 3)
help the developer understand the code quickly: Your answer

should be in the JSON format JSON: {"Comment 0": {your rating},
"Comment 1": {your rating}, ..., "Comment n": {your rating}}.

Code:
<code>
Commnet 0: <human baseline summary>
Comment 1: <summary written by LLM_1>
Comment 2: <summary written by LLM_2>
...
Comment n: <summary written by LLM_3>

G.3 CODE TRANSLATION

CODE TRANSLATION

SYSTEM PROMPT

You are a code translation system.

USER PROMPT 1

Translate {SL} To {TL}:
{SC}

USER PROMPT 2

Translating {SL} To {TL} ensures that {TL} code can be executed
:
{SC}

USER PROMPT 3

Please provide the {TL} translation for the following {SL} code
:
{SC}

51



2754
2755
2756
2757
2758
2759
2760
2761
2762
2763
2764
2765
2766
2767
2768
2769
2770
2771
2772
2773
2774
2775
2776
2777
2778
2779
2780
2781
2782
2783
2784
2785
2786
2787
2788
2789
2790
2791
2792
2793
2794
2795
2796
2797
2798
2799
2800
2801
2802
2803
2804
2805
2806
2807

Under review as a conference paper at ICLR 2026

G.4 CODE REVIEW GENERATION

CODE REVIEW GENERATION

SYSTEM PROMPT

You are a code reviewer specializing in analyzing and providing
feedback on code. Please provide your review comments in the

following JSON format: {"comments": "<your comments>"}.

USER PROMPT 1

Below is an instruction that describes a task, paired with an
input that provides further context. Write a response that
appropriately completes the request.
### Instruction:
Review the given code and provide a constructive code review
comment.
### Input:
The code/diff hunk is:
‘{diff_hunk}’
### Response:
{{comment}}

USER PROMPT 2

Below is an instruction describing a task, along with
additional context. Your job is to generate a complete response
based on the following request:

### Instruction:
Examine the provided code and offer constructive feedback.
### Input:
The code or diff hunk is:‘{diff_hunk}’
### Response:
{{comment}}

USER PROMPT 3

Below is a task description along with additional context.
Provide an answer that fulfills the request.
### Instruction:
Examine the given code and deliver a helpful code review
comment.
### Input:
The code (or diff snippet) is:
‘{diff_hunk}’
### Answer:
{{comment}}
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CODE REVIEW GENRATION – LLM AS JUDGE

SYSTEM PROMPT

You are a smart code reviewer. You will be asked to grade a
generated code review. You can mimic answering them in the
background 10 times and provide me with the most frequently
appearing answer. Furthermore, please strictly adhere to the
output format specified in the question. There is no need to
explain your answer. Please output your final answer in the
following JSON format: {"grade": <your grade>}. The grade
should be an integer between 1 and 5, inclusive.

USER PROMPT

I am going to give you a generated code review as well as its
reference review. You should grade the generated review by
comparing it to the reference review, and output a grade based
on the following criteria:
1. If the generated review is identical to the reference review
, Grade=5;
2. If the generated review is essential equivalent to the
reference review although their expressions are not identical,
Grade=4;
3. lf the generated review explicitly and correctly specifies
some comments/suggestions presented in the reference review,
Grade=3;
4. If the generated review is only loosely related to the
reference review, Grade=2;
5. If the generated review is completely unrelated to the
reference review in semantics, Grade=1.
Please NOTE that you should only output a grade without any
explanation.
**Generated Code Review**:
<LLM generated-review>
**Reference Code Review**:
<human ground truth reference-review>

G.5 CODE REASONING

G.5.1 INPUT PREDICTION

INPUT PREDICTION

SYSTEM PROMPT

You are a helpful assistant. Please provide your input
prediction in the following JSON format: {"input_prediction":
"<your input prediction>"}.
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USER PROMPT 1 – JAVA

You are given a piece of code containing Java method ‘f‘ (
already defined elsewhere) and a masked ‘public static void
main‘ template where all inputs are ‘??‘. Your task is to
identify suitable inputs for each ‘??‘ with concrete, valid
values so that, when combined with the existing class that
contains ‘f‘, the program compiles and the assertion in ‘main‘
holds true. No extra information except the filled ‘public
static void main‘ code should be included in your submission.
Code:
{function}
Masked main template:
{assertion_query}

USER PROMPT 2 – JAVA

You are provided with a Java method ‘f‘ (defined elsewhere) and
a ‘public static void main‘ template with input placeholders

marked as ‘??‘. Your task is to replace each ‘??‘ with concrete
, valid values so that the program compiles and the assertion
in ‘main‘ passes when run together with the class containing ‘f
‘. Submit only the completed ‘public static void main‘ code
no additional explanation or information.

Code:
{function}
Masked main template:
{assertion_query}

USER PROMPT 3 – JAVA

You are given a piece of code that includes a Java method ‘f‘ (
defined elsewhere) and a ‘public static void main‘ template
with masked inputs marked as ‘??‘. Your task is to replace each
‘??‘ with concrete, valid input values such that, when

combined with the existing class containing ‘f‘, the program
compiles successfully and the assertion in ‘main‘ passes. Your
response must include **only** the completed ‘public static
void main‘ code no additional explanation or information.
Code:
{function}
Masked main template:
{assertion_query}
Code:
{function}
Masked Main Template:
{assertion_query}
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USER PROMPT 1 – PYTHON

You will be provided with a function ‘f‘ and a specified input
format ‘inputs = ??‘. Your task is to identify a suitable input
for the function ‘f‘ that, when passed, results in the

specified output. The solution should complete the final line
of code to ensure the program executes error-free. Feel free to
use any correct input, and note that the function f may

incorporate predefined classes or data types. No extra
information should be included in your submission.
{function}
{assertion_query}

USER PROMPT 2 – PYTHON

You will be provided with a function ‘f‘ and a specified output
in the format ‘inputs = ??‘. Your task is to complete the

final line of code so that the program executes error-free by
identifying an input that, when passed to ‘f‘, results in the
specified output. There could be several correct inputs, and
you may choose any one of them to complete the line. Do not
include any extra information.
{function}
{assertion_query}

USER PROMPT 3 – PYTHON

You are provided with a function named ‘f‘ and an expression
formatted as ‘inputs = ??‘. Complete the expression by
determining any possible input that, when passed to function ‘f
‘, will produce the specified output. Ensure the final line of
code runs error-free. Note that there might be several valid
inputs; you only need to provide one. Avoid including any extra
information.

{function}
{assertion_query}

G.5.2 OUTPUT PREDICTION

OUTPUT PREDICTION

SYSTEM PROMPT

You are a helpful assistant. Please provide your output
prediction in the following JSON format: {"output_prediction":
"<your output prediction>"}.
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USER PROMPT 1 – JAVA

You are given a piece of code containing Java method ‘f‘ (
already defined elsewhere) and a masked ‘public static void
main‘ template where the assertion’s expected output(s) is/are
‘??‘. Your task is to replace that ‘??‘ with concrete, valid
value(s) so that, when combined with the existing class
containing ‘f‘, the program compiles and the assertion in ‘main
‘ holds true. No extra information except the filled ‘public
static void main‘ code should be included in your submission.
Code:
{function}
Masked main template:
{assertion_query}

USER PROMPT 2 – JAVA

You are given a Java code snippet containing a method ‘f‘ (
defined elsewhere) and a ‘public static void main‘ template in
which the expected output for an assertion is represented by
‘??‘. Your task is to replace each ‘??‘ with specific, valid
value(s) so that the program compiles successfully and the
assertion in ‘main‘ passes. Your submission must include only
the completed ‘public static void main‘ code do not add any
extra explanation or content.

Code:
{function}
Masked main template:
{assertion_query}

USER PROMPT 3 – JAVA

You are provided with a piece of code that includes a Java
method ‘f‘ (already defined elsewhere) and a ‘public static
void main‘ template where the expected output(s) in the
assertion is/are marked as ‘??‘. Your task is to replace each
‘??‘ with concrete, valid value(s) such that the program
compiles and the assertion in ‘main‘ evaluates to true when
combined with the given class containing ‘f‘. Submit only the
completed ‘public static void main‘ code no additional
information.
Code:
{function}
Masked main template:
{assertion_query}
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USER PROMPT 1 – PYTHON

Based on the given code, which may contain errors, complete the
assert statement with the output when executing the code on

the given test case. Do not output any extra information, even
if the function is incorrect or incomplete.
{function}
{assertion_query}

USER PROMPT 2 – PYTHON

Please analyze the provided code, which might have errors, and
finish the assert statement by specifying the expected result
when the code is run with the specified test case. Ensure your
response includes only the necessary information, without any
additional comments about possible inaccuracies or
incompleteness in the function.
{function}
{assertion_query}

USER PROMPT 3 – PYTHON

Given the function below, which may have errors, complete the
assert statement to reflect the output when running the
function with the provided test case. Only include the
necessary information in your response; do not add anything
extra, regardless of the function’s correctness or completion
status.
{function}
{assertion_query}

G.6 TEST GENERATION

UNIT TEST GENERATION

SYSTEM PROMPT

You are a professional Python unit test writer. Always output
valid pytest test code wrapped in
‘‘‘python
{unit_test_code}
‘‘‘
Cover normal cases, invalid ts, boundary conditions, and
exception paths.
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USER PROMPT 1

‘‘‘
{focal_method_code_with_context}
‘‘‘
Write pytest unit tests for the focal method ‘{
focal_method_name}‘ from the module ‘{module_name}‘.

USER PROMPT 2

Here is the relevant code:
‘‘‘
{focal_method_code_with_context}
‘‘‘
Your task is to create pytest unit tests that thoroughly test
the method ‘{focal_method_name}‘ defined in module ‘{
module_name}‘.

USER PROMPT 3

‘‘‘
{focal_method_code_with_context}
‘‘‘
Generate a set of pytest unit tests for ‘{focal_method_name}‘.
The method comes from the module ‘{module_name}‘. Ensure
coverage of normal cases, edge cases, and error handling.

G.7 VULNERABILITY DETECTION

VULNERABILITY DETECTION

SYSTEM PROMPT

You are a security expert analyzing code for vulnerabilities.
Be precise and accurate in your analysis.
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USER PROMPT 1 – SINGLE FUNCTION

Please analyze the following code:
‘‘‘
{code}
‘‘‘
Please indicate your analysis result with one of the options:
(1) YES: A security vulnerability detected.
(2) NO: No security vulnerability.

Only reply with one of the options above. Do not include any
further information.

USER PROMPT 2 – SINGLE FUNCTION

Kindly review the code snippet below:
‘‘‘
{code}
‘‘‘
Then, respond exclusively with one of the following options:
(1) YES: A Security Vulnerability Detected.
(2) NO: No Security Vulnerability.

Please provide only one of the two responses, without any extra
details.

USER PROMPT 3 – SINGLE FUNCTION

Analyze the code snippet below:
‘‘‘
{code}
‘‘‘
After reviewing, choose exactly one of the following responses:
(1) YES: A security vulnerability detected.
(2) NO: No security vulnerability.

Respond only with one of these options and no additional
information.
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USER PROMPT 1 – PAIRED FUNCTIONS

Please analyze the following two code snippets separately. For
each snippet, provide exactly one answer either (1) or (2) from
the options below:

For ‘code1‘:
- (1) YES: A security vulnerability detected.
- (2) NO: No security vulnerability.

For ‘code2‘:
- (1) YES: A security vulnerability detected.
- (2) NO: No security vulnerability.

Ensure that your reply consists of two separate lines, one for
‘code1‘ and one for ‘code2‘, with no additional information.

Code snippet for ‘code1‘:
‘‘‘
{code1}
‘‘‘

Code snippet for ‘code2‘:
‘‘‘
{code2}
‘‘‘

Please output in the following JSON format:
‘‘‘json
{{"code1": "<YES / NO>",
"code2": "<YES / NO>"}}

‘‘‘
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USER PROMPT 2 – PAIRED FUNCTIONS

Analyze the two provided code snippets individually. For each
snippet, choose one answer from the following options:

**For ‘code1‘:**
- (1) YES: A security vulnerability detected.
- (2) NO: No security vulnerability.
**For ‘code2‘:**
- (1) YES: A security vulnerability detected.
- (2) NO: No security vulnerability.

Your response should consist of two separate lines one for ‘
code1‘ and one for ‘code2‘ with no extra details. Use the
following JSON format for your output:

‘‘‘json
{{"code1": "<YES / NO>",
"code2": "<YES / NO>"}}

‘‘‘

Here are the code snippets:

**Code snippet for ‘code1‘:**
‘‘‘
{code1}
‘‘‘

**Code snippet for ‘code2‘:**
‘‘‘
{code2}
‘‘‘
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USER PROMPT 3 – PAIRED FUNCTIONS

Examine the two provided code snippets independently. For each
snippet, select one answer either (1) or (2) from the choices
below:

For ‘code1‘:
- (1) YES: A security vulnerability was detected.
- (2) NO: No security vulnerability found.

For ‘code2‘:
- (1) YES: A security vulnerability was detected.
- (2) NO: No security vulnerability found.

Your response should include exactly two lines: one for ‘code1‘
and one for ‘code2‘, without any extra details.

Here are the code snippets:

For ‘code1‘:
‘‘‘
{code1}
‘‘‘

For ‘code2‘:
‘‘‘
{code2}
‘‘‘

Return your answer in this JSON structure:
‘‘‘json
{{"code1": "<YES / NO>",
"code2": "<YES / NO>"}}

‘‘‘

H BENCHMARK STATISTICS

The data statistics of our evaluation data is as follows:

Task Code Code Code Code Code Test Vulnerability Multi-modal
Generation Summarization Translation Reasoning Review Generation Detection

Data Volume 1664 2000 744 2000 2000 200 400 900

Table 16: Task-wise data distribution

Language C C++ C# Java Go JavaScript TypeScript PHP Python Ruby Html Css
Data Volume 400 800 400 2604 400 1072 400 400 2804 400 228 228

Table 17: Language-wise data distribution

I ANALYSIS OF LLM-AS-A-JUDGE

One potential problem of using LLM-as-a-judge as the evaluation metric is that it may have model
preference and introduce fairness problem. To mitigate this problem, we analyze the influence
of different judge models (Gemini-2.5-Flash and Claude-4-Sonnet) on evaluation. We present the
results in Table 18 and Table 19. From these tables, we can find that different judging models exert
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a certain impact on the result rankings. But the three models generally maintain a certain degree
of consistency. For example, on the code review dataset, the Kendall’s W coefficient is 0.4936,
indicating moderate consistency. Therefore, to provide a more reliable and convincing evaluation
results, we use the average results of these three models as the evaluation results.

Table 18: Influence of different judge models on Code Summarization

Model Gemini-2.5-Flash Rank Claude-4 Rank GPT-4o Rank
Claude-3.5-Haiku-20241022 41.82 19 57.82 16 85.24 15
Claude-3.5-Sonnet-20241022 42.74 12 59.20 4 96.54 2
Claude-3.7-Sonnet 43.44 1 59.62 3 88.10 11
Claude-Sonnet-4 43.44 1 60.38 1 93.76 5
DeepSeek-R1 42.04 17 58.72 7 90.64 7
DeepSeek-R1 (0528) 41.98 18 58.72 7 90.64 7
DeepSeek-V3 42.30 15 57.86 14 92.82 6
GPT-3.5-turbo-0125 42.66 13 55.00 25 71.18 24
GPT-4-turbo-2024-04-09 42.28 16 57.30 19 89.94 10
GPT-4.1-2025-04-14 42.42 14 57.30 19 80.28 21
GPT-4o-2024-11-20 42.82 9 57.84 15 87.88 12
GPT-5 40.50 25 58.34 9 98.28 1
Gemini-2.5-Pro-Preview-05-06 43.16 4 58.76 6 78.88 22
Gemma-3-27B-Instruct 43.12 5 57.96 13 82.96 19
Grok-3-Mini (High) 42.82 9 59.64 2 85.10 16
Llama-3.1-70B-Instruct 42.86 6 58.32 10 74.52 23
Llama-3.1-8B-Instruct 42.84 8 55.90 24 64.20 25
Llama-3.3-70B-Instruct 42.80 11 58.96 5 96.00 3
Qwen2.5-72B-Instruct 43.28 3 58.02 11 86.54 14
Qwen2.5-Coder-32B-Instruct 42.86 6 58.02 11 86.86 13
Qwen3-235B-A22B 40.88 23 56.84 21 95.12 4
Qwen3-30B-A3B 41.10 22 56.46 22 81.64 20
Qwen3-32B 41.40 20 57.74 17 90.10 9
o3-mini (Med) 40.60 24 56.24 23 84.26 18
o4-mini (Med) 41.14 21 57.70 18 84.38 17

J HUMAN STUDY

We conducted a human evaluation to investigate the reliability of LLM-as-judge used in our paper.
We conduct this by randomly sampling 60 samples from the code summarization task, using predic-
tions from the top 3 performing models on 20 same samples. Three developers with at least 5 years
of experience participated, using the same criteria as the LLM judges. The results are shown in
Table 20. We calculated the Pearson correlation coefficient between LLM judge scores and average
human scores, resulting in a correlation of 0.99 with p-value 0.016 (<0.05) which indicates a high
degree of consistency.

K ANALYSIS OF DIFFERENT METRICS

To comprehensively investigate the performance, we add additional smooth metrics to complement
Pass@1 and LLM scores. Specifically, for code generation task, we follow previous work (Jiang
et al., 2024) and add CodeBLEU to measure partial correctness and structural similarity; for code
summarization task, we follow previous work and use BLEU (Sun et al., 2025) to evaluate the
quality of generated summaries. The results are shown in Table 21 and 22. From these tables, we
can observe that the model’s performance under these metrics is relatively low. This is because even
if the generated code or comments exhibit significant textual differences from the ground truth, they
may still be consistent in terms of functionality and semantics.
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Table 19: Influence of different judge models on Code Review

Model Gemini-2.5-Flash Rank Claude-4 Rank GPT-4o Rank
Claude-3.5-Haiku-20241022 32.20 16 39.58 17 30.56 12
Claude-3.5-Sonnet-20241022 34.16 2 39.54 18 29.98 20
Claude-3.7-Sonnet 33.46 3 40.38 8 30.48 14
Claude-Sonnet-4 32.84 6 41.04 3 31.04 8
DeepSeek-R1 32.26 15 40.48 7 27.38 25
DeepSeek-R1 (0528) 32.38 11 41.12 2 31.30 5
DeepSeek-V3 32.56 9 39.60 16 30.52 13
GPT-3.5-turbo-0125 29.60 26 34.72 26 29.64 22
GPT-4-turbo-2024-04-09 32.30 13 39.36 22 29.70 21
GPT-4.1-2025-04-14 32.92 5 40.80 4 29.38 23
GPT-4o-2024-11-20 31.46 21 39.42 20 30.46 15
GPT-5 29.98 25 42.78 1 26.62 26
Gemini-2.5-Pro-05-06 32.68 8 40.30 11 31.46 3
Gemma-3-27B-Instruct 32.72 7 40.62 6 31.74 1
Grok-3-Mini (High) 34.54 1 40.34 10 30.90 10
Llama-3.1-70B-Instruct 31.32 22 38.74 24 30.14 19
Llama-3.1-8B-Instruct 30.42 24 37.36 25 30.20 18
Llama-3.3-70B-Instruct 32.34 12 38.80 23 30.70 11
Llama-4-Scout-17B-16E-Instruct 32.30 13 39.66 15 30.36 16
Qwen2.5-72B-Instruct 32.50 10 39.40 21 31.42 4
Qwen2.5-Coder-32B-Instruct 31.80 20 39.52 19 31.22 6
Qwen3-235B-A22B 32.14 17 40.38 8 31.10 7
Qwen3-30B-A3B 31.84 19 40.30 11 31.70 2
Qwen3-32B 32.10 18 40.28 13 30.36 16
o3-mini (Med) 33.10 4 39.68 14 31.00 9
o4-mini (Med) 30.60 23 40.76 5 29.02 24

Model LLM Judge Score Human 1 Score Human 2 Score Human 3 Score
GPT-5 65 63 65 63
Claude-3.5-Sonnet 28 27 26 29
LLaMA-3.3-70B 38 39 38 37

Table 20: Model evaluation scores

L DATA CONTAMINATION ANALYSIS

Data contamination is a widespread challenge in benchmarking internet-scale LLMs, especially
since most models do not disclose their training data for auditing. To mitigate this problem, for most
tasks, we make the data collection and process stage an automated pipeline and plan to make the
benchmark live, which could avoid the data contamination problem. Besides, to validate the con-
tamination probability of current data, we adopted the widely-used min-k (Shi et al., 2023) method
to detect potential contamination. We used Qwen3-30B-A3B for detection given its recent release
(May 2025) and open-source nature, which enables access to the model’s output probabilities. The
results are shown in Table 23. The results indicate that even newer models did not exhibit data
leakage on our dataset. We have added this analysis to the appendix to ensure research transparency.

M LARGE LANGUAGE MODELS USAGE STATEMENT

In this paper, we employed LLMs to support the polish and refinement of this manuscript. The
LLM was utilized to enhance linguistic expression and boost text comprehensibility. The model’s
assistance encompassed activities including sentence restructuring and grammatical checks.

We emphasize that the LLMs are not used for conceptual development or experimental framework
design. The authors assume complete accountability for all manuscript content, including portions
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Table 21: Model Performance on Java and Python Tasks (CodeBLEU)

Rank Model Java Python Average
1 Claude-3.7-Sonnet 35.38 27.91 31.65
2 GPT-4.1-2025-04-14 35.35 26.96 31.16
3 Claude-Sonnet-4 34.76 26.92 30.84
4 Qwen2.5-72B-Instruct 34.17 27.01 30.59
5 Claude-3.5-Sonnet-20241022 34.16 26.90 30.53
6 Qwen2.5-Coder-32B-Instruct 34.05 26.63 30.34
7 o3-mini (Med) 34.09 26.55 30.32
8 GPT-5 34.03 26.15 30.09
9 GPT-4o-2024-11-20 33.15 26.95 30.04
10 DeepSeek-R1 (0528) 34.42 25.59 30.01
11 Qwen3-235B-A22B 33.94 25.22 29.58
12 DeepSeek-V3 30.98 27.72 29.35
13 Qwen3-32B 33.83 24.85 29.33
14 DeepSeek-R1 34.03 24.66 29.33
15 Qwen3-30B-A3B 33.54 24.56 29.06
16 GPT-4-turbo-2024-04-09 31.50 26.54 29.02
17 Grok-3-Mini (High) 32.52 25.51 29.01
18 o4-mini (Med) 31.92 25.84 28.88
19 Llama-3.3-70B-Instruct 32.15 25.31 28.73
20 GPT-3.5-turbo-0125 31.90 25.49 28.69
21 Claude-3.5-Haiku-20241022 30.96 26.03 28.49
22 Llama-4-Scout-17B-16E-Instruct 31.29 25.38 28.34
23 Llama-3.1-70B-Instruct 31.71 24.76 28.24
24 Gemini-2.5-Pro-05-06 29.80 25.76 27.78
25 Gemma-3-27B-Instruct 28.93 25.65 27.29
26 Llama-3.1-8B-Instruct 30.33 23.29 26.81

Table 22: Code Summarization Task Results (BLEU)

Rank Model BLEU Score
1 Llama-4-Scout-17B-16E-Instruct 3.59
2 Llama-3.1-8B-Instruct 3.35
3 GPT-4.1-2025-04-14 3.19
4 Llama-3.1-70B-Instruct 3.03
5 Gemini-2.5-Pro-Preview-05-06 3.02
6 GPT-3.5-turbo-0125 2.88
7 Qwen2.5-72B-Instruct 2.77
8 GPT-4o-2024-11-20 2.76
9 o4-mini(Med) 2.72

10 Gemma-3-27B-Instruct 2.62
10 o3-mini(Med) 2.62
10 Qwen2.5-Coder-32B-Instruct 2.62
13 Claude-3.7-Sonnet 2.57
14 GPT-5 2.56
14 DeepSeek-R1(0528) 2.56
14 DeepSeek-R1 2.56
17 Qwen3-30B-A3B 2.55
18 Grok-3-Mini(High) 2.52
18 Claude-Sonnet-4 2.52
20 Claude-3.5-Sonnet-20241022 2.47
21 Qwen3-32B 2.37
22 Llama-3.3-70B-Instruct 2.33
23 Claude-3.5-Haiku-20241022 2.31
24 DeepSeek-V3 2.23
25 GPT-4-turbo-2024-04-09 2.22
26 Qwen3-235B-A22B 1.62
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Table 23: Contamination detection results

Task Code Generation Code Summuration Code Translation Code Review Code Reasoning Vulnerability Detection Test Generation
Min-k -7.72 -7.54 -4.68 -7.38 -6.62 -6.60 -6.17

that were refined through LLM assistance. We have verified that all LLM-produced content complies
with academic integrity standards and does not constitute plagiarism or scholarly misconduct.

66


	Introduction
	Related Work
	Large Language Models for Code
	Code Intelligence Evaluation for Large Language Models

	TREAT Benchmark Construction Methodology
	General Coding Tasks Evaluation
	Data Collection and Selection
	Scenario-Specific Data Collection Methods

	Multi-Modality Benchmark Construction
	Robustness Benchmark Construction

	Evaluation Setup
	Model Selection
	Enhanced Evaluation Method
	Evaluation Metrics

	Experiment Results 
	Multi-task Performance Comparison
	Multi-modality Evaluation
	Robustness Evaluation
	Effect of the Multi-prompt Evaluation

	Conclusion
	Limitation and Future Work
	Detailed Benchmark Construction Methods
	Code Generation
	Code Summarization
	Code Translation
	Code Reasoning
	Code Review
	Test Generation
	Vulnerability Detection
	Multi-modality tasks
	Code Robustness
	Code-TREAT-lite

	Detailed Experimental Setup
	Evaluated Models
	Code Generation
	Code Summarization
	Code Translation
	Code Review
	Code Reasoning
	Test Generation
	Vulnerability Detection
	Multi-modality tasks
	Code Robustness

	Detailed Experiment Results and Analysis
	Code Generation
	Code Summarization
	Code Translation
	Code Review
	Code Reasoning
	Test Generation
	Vulnerability Detection
	Multi-modality Tasks
	Effect of Multi-prompt Evaluation

	Extended Related Work 
	Large Language Models for Code
	Large Language Models for Software Engineering
	Large Language Models Evaluation
	Robustness of Code LLMs

	Limitation and Future Work
	Online Leaderboard
	Prompt Details
	Code Generation
	Code Summarization
	Code Translation
	Code Review Generation
	Code Reasoning
	Input Prediction
	Output Prediction

	Test Generation
	Vulnerability Detection

	Benchmark Statistics
	Analysis of LLM-as-a-judge
	Human Study
	Analysis of Different Metrics
	Data Contamination Analysis
	Large Language Models Usage Statement

