

000 *TREAT: A CODE LLMs TRUSTWORTHINESS / RELIA-* 001 *BILITY EVALUATION AND TESTING FRAMEWORK* 002

003 **Anonymous authors**
 004

005 Paper under double-blind review
 006

007 ABSTRACT 008

009 Large foundation models are fundamentally transforming the software engineer-
 010 ing landscape, demonstrating exceptional capabilities across diverse tasks such as
 011 code generation, debugging, and testing. Despite this rapid progress, a signifi-
 012 cant gap remains in how to comprehensively evaluate these models' trustworthi-
 013 ness in real-world software engineering scenarios. Existing benchmarks suffer
 014 from limited task scope and fail to incorporate critical evaluation aspects such
 015 as the robustness and reliability of models. To bridge this gap, we present an
 016 evaluation framework called **TREAT** (Code LLMs Trustworthiness / Reliability
 017 Evaluation And Testing) that provides a holistic assessment of model perfor-
 018 mance in code intelligence tasks. Our evaluation framework addresses key limita-
 019 tions in existing approaches with four main improvements: (1) Multi-Task Holis-
 020 tic Evaluation that spans diverse software engineering activities rather than lim-
 021 ited coding tasks; (2) Multi-Language and Multi-Modality Assessment that ex-
 022 tends beyond traditional single-language, text-only benchmarks to include multi-
 023 modality coding tasks; (3) Robustness Assessment that evaluates model reliability
 024 under semantically-preserving code transformations; and (4) Rigorous Evalu-
 025 ation Methodology that enhances the trustworthiness of evaluation results through
 026 diverse evaluation prompts and adaptive solution extraction. Based on this eval-
 027 uation framework, we assess 26 state-of-the-art models and uncover both their
 028 strengths and limitations, yielding several key insights: ① Current models show
 029 substantial performance variation across programming tasks, **especially on tasks**
 030 **like code review and vulnerability detection**; ② Multi-modal language models
 031 demonstrate specific performance limitations in UI code generation and edit;
 032 ③ Existing models exhibit severe robustness issues on coding tasks; ④ Our
 033 multi-prompt evaluation method can mitigate potential evaluation bias from sin-
 034 gle prompts and obtain more reliable results. Our project page is available at
 035 <https://code-treat.vercel.app/>.
 036

037 1 INTRODUCTION 038

039 The landscape of software engineering is being fundamentally reshaped by large foundation
 040 models, particularly Large Language Models (LLMs) and Multimodal Large Language Models
 041 (MLLM) (Hou et al., 2024; Lyu et al., 2025). These models can understand natural language instruc-
 042 tions and convert them into executable code, bridging the gap between human intent and software
 043 implementation. Advanced models like OpenAI's GPT series (Hurst et al., 2024) and Anthropic's
 044 Claude (Anthropic, 2024) have demonstrated remarkable proficiency across diverse software engi-
 045 neering tasks, from code generation and debugging (Li et al., 2024b; Wang et al., 2025a) to docu-
 046 mentation and testing (Gao et al., 2023; Xie et al., 2023). This evolution is driving the development
 047 of intelligent tools that are transforming software engineering practices. As these models become
 048 increasingly integrated into critical software development workflows, understanding their trustwor-
 049 thiness and reliability has become increasingly critical.

050 Despite these impressive achievements, the rapid advancement of LLMs in software engineering
 051 has created substantial challenges for model evaluation. Although numerous models have emerged
 052 in both academia and industry, there is a lack of comprehensive evaluation methodologies that can
 053 assess model capabilities across diverse real-world software engineering scenarios. Existing eval-
 uation approaches (Jain et al., 2025; Yang et al., 2024d) are often constrained to narrow, task-specific

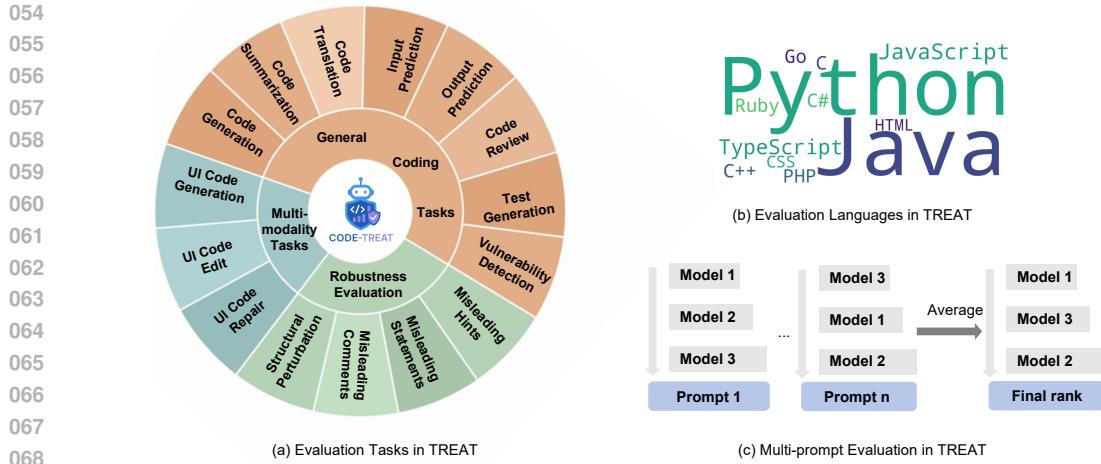


Figure 1: Overview of the TREAT evaluation framework.

benchmarks that fail to capture the complexity and diversity of practical software development workflows. Specifically, these benchmarks lack assessments for some critical software quality assurance tasks such as code review and code vulnerability detection. Moreover, existing benchmarks often focus solely on single-modal and normal inputs, failing to incorporate important aspects such as multi-modality processing capabilities and the mode’s robustness and reliability. These gaps make it difficult to assess model’s trustworthiness in real-world development scenarios, posing major challenges for researchers and practitioners to determine optimal model selection for specific software engineering scenarios.

To address the challenges, we present TREAT, the first holistic evaluation framework for LLMs in code intelligence tasks. It tackles the aforementioned problems with the following features: ① **Multi-Task Holistic Evaluation.** Unlike existing benchmarks that focus on narrow and task-specific assessments such as code generation, as shown in Figure 1 (a), TREAT provides a holistic benchmark spanning the software engineering activities in the development lifecycle. It encompasses multiple task categories, which enables researchers to assess model capabilities across diverse scenarios. ② **Multi-Language and Multi-Modality Assessment.** TREAT expands evaluation scope beyond traditional single-language, text-only benchmarks. As shown in Figure 1 (b), our framework systematically evaluates models across multiple programming languages and incorporates multi-modality tasks that bridge visual design and software implementation. We incorporate tasks such as UI code generation and edit, which are essential given the multimodal environment of modern software development environments. ③ **Robustness Evaluation.** Considering the importance of trustworthy Code LLMs in software engineering, as shown in Figure 1 (a), TREAT also incorporates systematic robustness evaluation through various code transformation methods, which evaluates model stability under semantically-preserving perturbations. ④ **Rigorous Evaluation Methodology.** We establish a rigorous evaluation methodology that enhances the fairness and reliability of the evaluation results. As shown in Figure 1 (c), we employ a multi-prompt evaluation strategy to reduce potential evaluation bias. Additionally, we employ an adaptive answer extraction method to better align benchmark evaluation with real-world developer usage.

Based on our evaluation framework, we have assessed 26 state-of-the-art models including both open-source and commercial models across different sizes. Based on this study and following analysis, we present the following novel empirical findings:

1. Current state-of-the-art models exhibit substantial performance variation and specialization across different programming tasks (Figure 2), with no single model achieving consistent best performance across all coding scenarios.
2. MLLMs exhibit different performance bottlenecks across different UI tasks, with UI code generation primarily limited by syntactic compilation issues while code edit and repair tasks are constrained by insufficient visual understanding and precise modification capabilities.
3. Existing large language models exhibit severe robustness issues on coding tasks, with an average performance decline of 14.1% under semantically-preserving code perturbations.

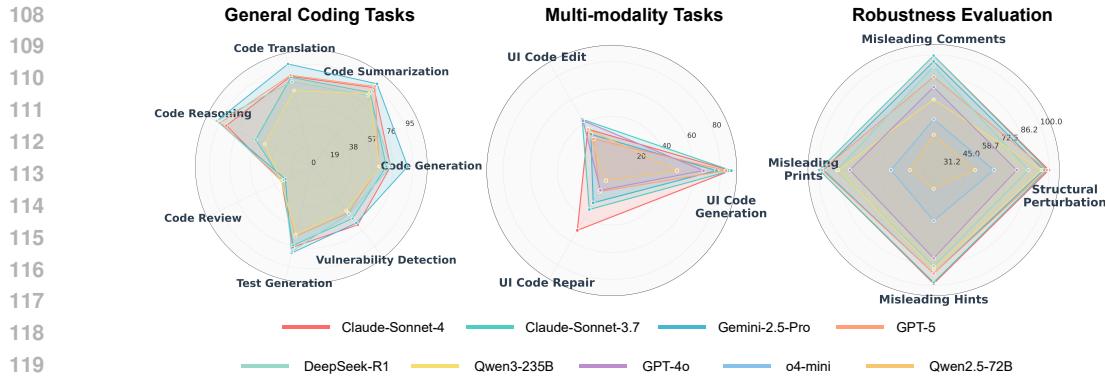


Figure 2: Performance comparison of leading models on TREAT. The results of multi-modality tasks are normalized for visualization.

4. Our multi-prompt evaluation method can effectively mitigate evaluation bias caused by single prompts, providing more reliable and trustworthy assessment results.

The main contributions of this paper can be summarized as follows:

1. **Comprehensive Benchmark.** We introduce TREAT, the first holistic evaluation framework spanning the software development lifecycle. It encompasses over 10+ tasks and languages, enabling a comprehensive assessment of LLM’s generalization capabilities across diverse settings.
2. **Holistic and Rigorous Evaluation.** We establish a holistic evaluation methodology that incorporates multi-modality assessment and robustness evaluation through semantically-preserving code transformations. The evaluation process employs multiple diverse prompts to reduce potential evaluation bias.
3. **Empirical Analysis.** Through evaluation of 25+ state-of-the-art models, we reveal novel findings such as significant performance variations across tasks and unreliable performance under robustness assessment.

2 RELATED WORK

2.1 LARGE LANGUAGE MODELS FOR CODE

Large language models (LLMs) for code have rapidly advanced tasks such as code generation, completion, and reasoning. Several prominent models have emerged in this domain. For example, OpenAI’s GPT series has garnered recognition for its proficiency in code generation and debugging capabilities, while Google’s Gemini models excel at tackling complex algorithmic problems. Anthropic’s Claude (Anthropic, 2024) has achieved impressive performance, exhibiting exceptional aptitude for tasks demanding sophisticated code reasoning. More recent models like DeepSeek-V3 (DeepSeek-AI et al., 2025b) and DeepSeek-R1 (DeepSeek-AI et al., 2025a) have reached performance levels that rival leading closed-source models. Qwen3 (Yang et al., 2025a) series features powerful agentic coding capabilities and is designed to handle complex software development workflows.

2.2 CODE INTELLIGENCE EVALUATION FOR LARGE LANGUAGE MODELS

The evaluation of Code LLMs has undergone significant evolution, transforming from simple code generation benchmarks such as HumanEval (Chen et al., 2021) and MBPP (Austin et al., 2021) to more sophisticated and realistic benchmarks. For example, LiveCodeBench (Jain et al., 2025) deals with the data contamination problem through the use of contemporary contest problems; BigCodeBench (Zhuo et al., 2024) focuses on library-aware code generation capabilities. Although some recent benchmarks have expanded to include additional evaluation tasks, they remain constrained in scope and scale. Different from these benchmarks, our TREAT evaluation framework provides a holistic evaluation of model performance encompassing multi-language support, multi-task evaluation, multi-modality capabilities, and robustness assessment.

162
163
164 Table 1: Comparison with existing evaluation benchmarks.
165
166
167
168
169
170
171
172
173
174
175
176
177
178

Benchmark	Size	Languages	Evaluation Tasks	Multi Prompt	Multi Modality
MBPP (Austin et al., 2021)	378	Python	Code Gen	✗	✗
HumanEval (Chen et al., 2021)	164	Python	Code Gen	✗	✗
LiveCodeBench (Jain et al., 2025)	1,055	Python	Code Gen, Input Pre, Output Pre, Code Rep	✗	✗
BigcodeBench (Zhuo et al., 2024)	1,140	Python	Code Gen	✗	✗
FullstackBench (Cheng et al., 2024)	3,374	16 languages	Code Gen	✗	✗
CoCo-Bench (Yin et al., 2025)	705	Python, Java, C++, SQL	Code Gen, Code Rev, Code Und, Code Mod	✗	✗
AutoCodeBench (Chou et al., 2025)	3,920	20 languages	Code Gen	✗	✗
SWE-Bench Multimodal (Yang et al., 2024c)	517	JavaScript	Issue Resolution	✗	✓
DyCodeEval (Chen et al.)	8,070	Python	Code Gen	✓	✗
TREAT	9,908	12 languages	Code Gen, Code Rev, Test Gen, etc. (10+ tasks)	✓	✓

179

3 TREAT BENCHMARK CONSTRUCTION METHODOLOGY

180

181 To comprehensively evaluate code intelligence tasks, we construct our TREAT evaluation frame-
182 work with a generic methodology based on the software development lifecycle. As shown in Ta-
183 ble 1, compared with existing benchmarks, TREAT encompasses over 10 evaluation tasks and is the
184 only benchmark that employs multiple-prompt evaluation, multi-modality capabilities assessment,
185 and robustness evaluation.

186 As illustrated in Figure 3, our benchmark construction process employs a structured pipeline that
187 begins with data collection from diverse sources. This raw data undergoes filtering and systematic
188 metric design processes to provide a rigorous and comprehensive evaluation for each task. The
189 TREAT benchmark encompasses three key components. The General Coding Tasks Evaluation
190 (Section 3.1) assesses fundamental software development capabilities across seven core areas in-
191 cluding code generation, code summarization, code translation, code reasoning, code review, test
192 generation, and vulnerability detection. The Multi-Modality Tasks Evaluation (Section 3.2) extends
193 beyond traditional text-based programming to evaluate capabilities in UI-based code generation, edit
194 and repair tasks. Finally, the Robustness Evaluation Tasks (Section 3.3) assesses various models’
195 reliability under various code transformation methods such as program structure transformation and
196 providing misleading comments. We present the core workflow in building the benchmark in this
197 section, and the detailed construction process for each task can be found in the Appendix A

198

3.1 GENERAL CODING TASKS EVALUATION

199200

3.1.1 DATA COLLECTION AND SELECTION

201 For general coding tasks, we construct our evaluation benchmark across seven important software
202 engineering activities from software development to quality assurance. Our dataset spans multiple
203 programming languages, with primary focus on Python and Java for most tasks, while extending to
204 ten popular languages (C, C++, C#, Go, Java, JavaScript, TypeScript, PHP, Python, Ruby) for code
205 summarization and code review to provide broad applicability.

206 To provide a comprehensive evaluation while reducing annotation costs, we employ a hybrid data
207 crawling strategy that combines automated crawling from GitHub repositories and coding platforms
208 with resampling from established public datasets. For tasks that can be automatically crawled and
209 annotated, we actively crawl from public and continuously updated coding platforms and GitHub
210 repositories, enabling to capture the most recent and comprehensive evaluation data; while for
211 datasets that require manual checks or annotations, we sample data from recent representative bench-
212 marks. For data collection, we collect high-quality data from two primary categories of reliable
213 sources: continuously updated competitive coding platforms (e.g., GEEKSFORGEEKS, HACKER-
214 RANK) that provide a large volume of algorithmic problems for evaluating model performance on
215 algorithmic reasoning tasks, and GitHub repositories meeting strict quality criteria (≥ 100 stars and
permissive open-source licenses such as Apache-2.0 and MIT) to gather real-world code samples

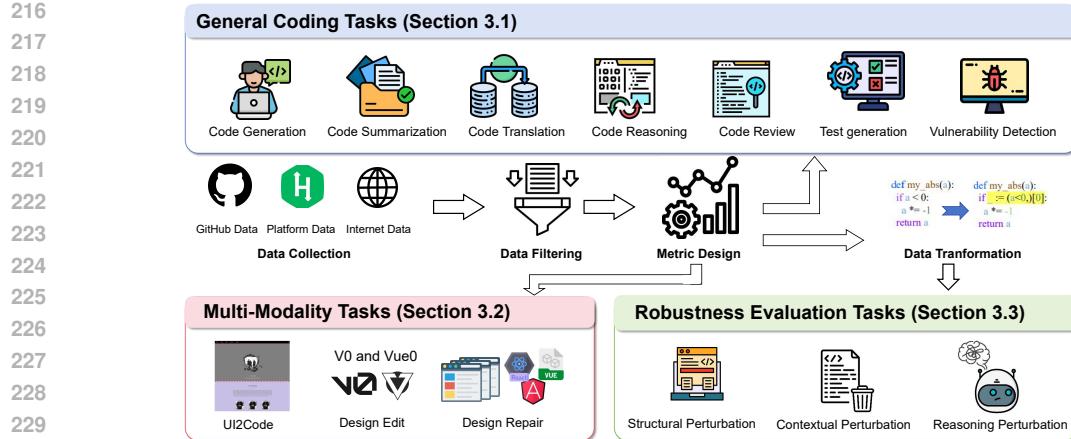


Figure 3: Evaluation methods of TREAT.

reflecting practical software development scenarios. To guarantee data integrity and eliminate redundant or low-quality samples, we first eliminate exact duplicates through string matching to avoid data redundancy, then follow established data cleaning method in each task to apply task-adaptive cleaning pipelines for filtering out irrelevant or invalid data (e.g., syntax errors, incomplete code snippets), and for selected aggregated benchmarks, we verify that they have undergone rigorous filtering and deduplication in their original publications to ensure reliability.

3.1.2 SCENARIO-SPECIFIC DATA COLLECTION METHODS

Code Generation (CG): For code generation, we utilize the algorithmic problems from GEEKSFORGEEKS and HACKERRANK, with data up to 2025 and spanning easy, medium, and hard difficulty levels. We augment their existing test cases following the EvalPlus (Liu et al., 2023) methodology, with all generated test cases validated against ground-truth solutions to ensure accuracy.

Code Summarization (CS): For code summarization, we leverage the crawled GitHub repositories and use the Tree-sitter (Tree-sitter, 2025) parser to extract function-docstring pairs from each file. Then we apply Shi et al. (Shi et al., 2022)'s data cleaning methods to remove noisy samples.

Code Translation (CT): We focus on Python-Java bidirectional translation using our collected GEEKSFORGEEKS problems and the existing PolyHumanEval datasets. We also augment the test suites following the EvalPlus (Liu et al., 2023) to ensure rigorous evaluation.

Code Reasoning (CR): For code reasoning, we follow previous work (Gu et al., 2024) and create two sub-tasks *input prediction* and *output prediction*. We leverage the crawled problems from GEEKSFORGEEKS and HACKERRANK and employ Tree-sitter to mask function names and generate candidate input-output-assertion triples for both sub-tasks.

Code Review (CRv): To construct a real-world code review dataset, we use the crawled GitHub repositories and extract diff hunk and review comment pairs from each pull request. We follow the filtering criteria in previous work (Li et al., 2022) to remove noisy review comments and construct evaluation data.

Test Generation (TG): For test generation evaluation, we follow SYMPROMPT (Ryan et al., 2024) and leverage its context augmentation technique on 24 projects used in CODAMOSA (Lemieux et al., 2023) to construct our dataset.

Vulnerability Detection (VD): For vulnerability detection, we adopt the PRIMEVUL benchmark (Ding et al., 2024) containing 6,968 expert-verified vulnerable functions and 228,800 benign functions across 140 CWEs.

3.2 MULTI-MODALITY BENCHMARK CONSTRUCTION

Evaluating code models on multi-modality tasks is crucial for understanding their ability to interpret and generate code from diverse input formats such as images or layouts. We evaluate code mod-

270 els on multi-modality tasks using the data from the DESIGNBENCH datasets (Xiao et al., 2025). It
 271 encompasses three tasks collected through GitHub repository mining of framework-based websites
 272 and analysis of top global websites, combined with real-world user modification requests from de-
 273 velopment platforms like Vercel’s V0. Based on this, we construct the multi-modality benchmark
 274 containing three core tasks: UI code generation, UI code edit, and UI code repair.

275 3.3 ROBUSTNESS BENCHMARK CONSTRUCTION

276 Robustness is crucial for evaluating models’ reliability and performance in real-world programming
 277 scenarios, especially in code reasoning, where models must follow program logic rather than pattern
 278 matching. Hence, we adopt the perturbation strategies from CODECRASH (Lam et al., 2025), which
 279 include structural and semantic perturbations, to stress-test code reasoning under extreme and non-
 280 ideal programs using output prediction (Gu et al., 2024). We use an aggregated program structure-
 281 consistent perturbation (PSC-ALL) that integrates identifier renaming, conditional reformatting, and
 282 garbage code insertion, reconstructing the program structure while preserving functionality. Beyond
 283 structure, we adopt two levels of NL-embedded perturbations: contextual-level, where we inject
 284 manifestly misleading cues to the program context through code comments (MCC) or print state-
 285 ments (MPS), and reasoning-level, where it injects plausible but incorrect hints (MHC) to trigger
 286 rationalization. In our work, we use data from the CR collection (Section 3.1.2) and apply the above
 287 perturbation strategies to evaluate models’ robustness.

288 4 EVALUATION SETUP

290 In this section, we provide the overall experimental setup. The detailed setup, such as the used
 291 prompt and metrics for each scenario, could be found in the Appendix B.

295 4.1 MODEL SELECTION

297 To provide a comprehensive evaluation across various LLMs, we evaluate over 26 state-of-the-art
 298 models of varying sizes and versions, including both open-source and closed-source LLMs: GPT
 299 family (Hurst et al., 2024; OpenAI, 2025a;b;c), Anthropic Claude series (Anthropic, 2024), Google
 300 Gemini (Google AI, 2024), DeepSeek family (DeepSeek-AI et al., 2025b;a), Alibaba Qwen (Yang
 301 et al., 2025b; Hui et al., 2024; Yang et al., 2025a), Meta LLaMA (Meta, 2024), and xAI Grok (Grok-
 302 3-Mini) (xAI, 2025). For multi-modality evaluation, we exclude models that cannot accept visual
 303 inputs and replace models that have multi-modality versions with their corresponding multi-modal
 304 variants (e.g., replacing Qwen2.5-72B-Instruct with Qwen2.5-72B-VL-Instruct (Qwen, 2025)). The
 305 detailed model list and their configuration are presented in the Appendix B.

306 4.2 ENHANCED EVALUATION METHOD

308 To avoid potential evaluation bias caused by using only one prompt, we employ the multi-prompt
 309 evaluation strategies tailored to each task’s requirements for a more comprehensive and fair eval-
 310 uation. For all tasks, we first adopt established prompt templates from recent benchmarks such
 311 as BIGCODEBENCH (Zhuo et al., 2024) and OCTOPACK (Muennighoff et al., 2023) as the seed
 312 prompt. To enhance prompt diversity and reduce potential bias, we use GPT-4o (Hurst et al., 2024)
 313 to generate two paraphrased variants of each base template and check their validity manually. Be-
 314 sides, we employ an adaptive solution extraction method that uses LLMs to extract solutions from
 315 LLM responses when Markdown parsing is ambiguous or fails (details in Appendix B.2).

316 4.3 EVALUATION METRICS

318 We select the most popular evaluation metrics for each task. For code generation, translation, and
 319 reasoning tasks, we adopt pass@1 accuracy (Chen et al., 2021). For code summarization and re-
 320 view tasks, we follow (Jiang et al., 2025; Sun et al., 2025) and employ LLM-as-judge evaluation
 321 using GPT-4o (Hurst et al., 2024) to assess quality on a 1-5 scale, which we convert to percentages
 322 for consistency. The test generation task is evaluated using compilation success rate and coverage
 323 metrics (line and branch coverage). Vulnerability detection employs standard classification met-
 324 rics including accuracy, precision, recall, and F1-score. For multi-modality tasks, apart from code

324
 325 Table 2: Overall model performance (%) on general coding tasks. The top three results on each task
 326 are highlighted in green (1st), orange (2nd), and blue (3rd) backgrounds, respectively.
 327

Model Name	Tasks							Avg. Rank
	CG	CS	CT	CR	CRv	TG	VD	
GPT-5	89.9	65.7	97.9	97.8	33.1	82.6	67.3	1
Claude-Sonnet-4	74.0	65.9	86.0	87.9	35.0	77.0	69.5	2
Claude-3.7-Sonnet	70.0	63.7	85.1	57.6	34.8	75.3	61.8	3
DeepSeek-R1 (0528)	68.8	63.8	87.0	96.7	34.9	67.4	56.0	4
o3-mini	79.9	60.4	92.8	97.0	34.6	69.7	50.5	5
GPT-4.1	76.8	60.0	87.6	63.5	34.4	75.4	59.8	6
Qwen3-235B-A22B	63.2	64.3	87.1	94.1	34.5	66.7	55.5	7
o4-mini	74.2	61.1	81.0	98.1	33.5	81.1	56.3	8
Grok-3-Mini	73.4	62.5	87.7	96.4	35.3	65.9	51.2	9
DeepSeek-R1	59.9	63.8	89.2	95.1	33.4	69.0	56.5	10
GPT-4o	66.4	62.8	82.0	57.7	33.8	69.3	60.3	11
Claude-3.5-Sonnet	59.5	66.2	81.7	60.1	34.6	73.2	47.7	12
DeepSeek-V3	65.2	64.3	82.1	57.7	34.2	68.6	51.5	13
Gemini-2.5-Pro	61.1	60.3	90.3	97.2	34.8	32.6	54.5	14
Qwen3-32B	63.1	63.1	86.0	94.0	34.2	65.2	53.5	15
Qwen3-30B-A3B	69.0	59.7	80.1	92.3	34.6	64.9	54.0	16
GPT-4-turbo	59.5	63.2	80.1	53.6	33.8	67.7	59.8	17
LLaMA-3.3-70B	40.7	65.9	70.0	47.2	33.9	66.7	62.3	18
Gemma-3-27B	51.3	61.3	65.9	41.6	35.0	64.7	62.0	19
Qwen2.5-72B	63.8	62.6	72.5	48.2	34.4	64.8	52.3	20
Qwen2.5-Coder-32B	62.5	62.6	74.6	56.2	34.2	65.0	51.7	21
Claude-3.5-Haiku	50.9	61.6	75.0	46.1	34.1	44.6	61.2	22
LLaMA-4-Scout	51.2	59.6	64.4	48.4	34.1	68.7	49.0	23
LLaMA-3.1-70B	48.7	58.6	67.7	41.5	33.4	66.3	57.2	24
GPT-3.5-turbo	50.6	56.3	66.5	34.8	31.3	67.5	45.8	25
LLaMA-3.1-8B	31.8	54.3	49.6	28.8	32.7	46.0	54.5	26

350
 351 complication rate and code modification similarity (CMS), we also utilize visual specialized metrics
 352 including CLIP score and MLLM-as-Judge score (Xiao et al., 2025).
 353
 354

355 5 EXPERIMENT RESULTS

356 5.1 MULTI-TASK PERFORMANCE COMPARISON

360 Table 2 presents the performance comparison across different general coding tasks. Due to space
 361 limitation, we report only the most popular metric for each task, with full results provided in the
 362 Appendix C. The results show that current state-of-the-art models achieve strong performance on
 363 some tasks such as code summarization and code reasoning, but exhibit notable weaknesses in others
 364 like code review and test generation. Many models show large performance gaps across different
 365 task categories, suggesting that existing LLMs have not achieved consistent proficiency across all
 366 coding capabilities. Specifically, we could observe that:

367 **Models exhibit substantial performance variation across different tasks.** Current models tend
 368 to specialize in specific domains rather than achieving uniform capabilities, with no single model
 369 performing optimally across all evaluated tasks. For example, GPT-5 achieves exceptional performance
 370 in code generation with 89.9% accuracy and excels in test generation with 82.6% coverage
 371 rate, yet performs poorly on code review tasks with only 33.1% score. Similarly, o3-mini demon-
 372 strates strong reasoning capabilities, achieving 79.9% and 92.8% pass rate in code generation and
 373 code reasoning, but struggles with vulnerability detection, reaching only 50.5% accuracy.

374 **Different models lead different tasks.** For example, o4-mini achieves the best results in code rea-
 375 soning at 98.1%, while Claude-Sonnet-4 performs best in vulnerability detection at 69.5%. Other
 376 models also show distinct areas of expertise. These results indicate that different models have devel-
 377 oped specialized strengths in specific programming domains. This specialization reflects the diverse
 378 nature of coding tasks, which require different skills from logical reasoning to code understanding.

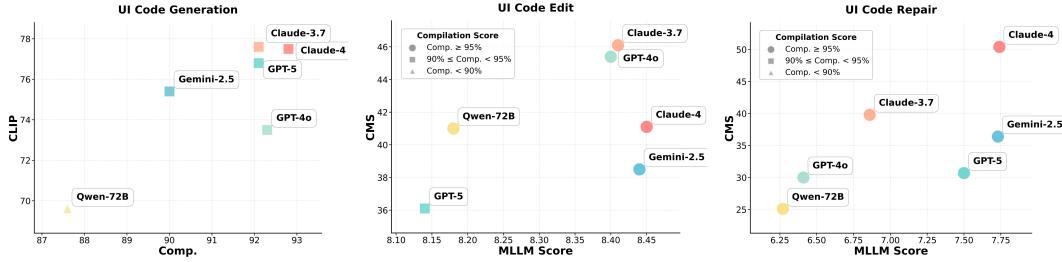


Figure 4: Multi-modality evaluation results.

5.2 MULTI-MODALITY EVALUATION

Figure 4 presents the multi-modality evaluation results of leading MLLMs. The detailed results of more models and each framework are shown in the Appendix C.8. We observe substantial performance variations and task-specific limitations across different tasks.

Models show different performance bottlenecks on different tasks. In UI code generation tasks, models are hindered by syntactic errors, facing the challenge of compilation errors. Claude-Sonnet-3.7 achieves the highest CLIP score of 77.6, demonstrating superior visual-semantic alignment, yet its compilation success rate of 92.1% falls slightly behind Claude-Sonnet-4's 92.8%. In contrast, UI code edit and repair tasks are primarily constrained by inadequate visual understanding and modification capabilities. We can find that the compilation rate of almost all models is higher than 95%, while both MLLM scores and CMS scores remain relatively modest, particularly in design repair tasks where CMS scores consistently fall below 50% across all evaluated models. The high compilation rates and lower functional accuracy scores indicate that while models can generate syntactically correct code given the code to modify, they struggle with precise code localization and targeted modifications.

5.3 ROBUSTNESS EVALUATION

Table 3: Robustness evaluation results. Darker red highlights represent more severe degradation under robustness testing.

Model	Vanilla	PSC-ALL	MCC	MPS	MHC	Avg $\Delta\%$
<i>Large Reasoning Models (enable thinking)</i>						
GPT-5	99.5	+0.5%	+0.0%	+0.0%	-0.5%	+0.0%
Gemini-2.5-Pro	100.0	-1.0%	-0.5%	-0.5%	-1.9%	-1.0%
DeepSeek-R1	98.1	-1.5%	-2.5%	-1.5%	-5.9%	-2.8%
Qwen3-32B	98.6	-4.4%	-4.9%	-3.4%	-3.4%	-4.0%
o4-mini	99.0	-0.5%	-13.6%	-1.5%	-6.8%	-5.6%
Claude-Sonnet-4	94.7	-8.6%	-2.5%	-7.1%	-7.6%	-6.5%
Qwen3-235B-A22B	97.6	-2.5%	-27.6%	-10.8%	-8.4%	-12.3%
<i>Large Language Models (under direct inference)</i>						
Claude-3.7-Sonnet	85.6	-7.9%	-7.9%	-7.3%	-3.9%	-6.7%
Claude-3.5-Sonnet	66.3	-4.3%	-10.9%	-12.3%	-22.5%	-12.5%
GPT-4o	73.1	-12.5%	-21.1%	-28.3%	-21.1%	-20.7%
LLaMA-3.3-70B	58.7	-20.5%	-22.1%	-32.8%	-13.1%	-22.1%
GPT-4.1	78.8	-12.8%	-30.5%	-27.4%	-20.7%	-22.9%
LLaMA-3.1-70B	56.7	-23.7%	-16.1%	-33.9%	-17.8%	-22.9%
Qwen2.5-32B-Coder	61.5	-12.5%	-39.8%	-32.8%	-20.3%	-26.4%
DeepSeek-V3	72.6	-21.2%	-31.1%	-27.2%	-33.8%	-28.3%
Qwen2.5-72B	63.5	-18.9%	-25.0%	-37.1%	-42.4%	-30.9%
Average	81.5	-9.5%	-16.0%	-16.5%	-14.4%	-14.1%

Table 3 presents the robustness evaluation results of different models under various perturbations. The experimental results reveal severe robustness issues in current LLMs on coding tasks. Based on the results, we have the following findings:

All models exhibit substantial performance degradation under code perturbations. With semantically-preserving code perturbations, all tested models show varying degrees of performance decline. On average, models experience performance drops of 9.5%, 16.0%, 16.5%, and 14.4% under PSC-ALL, MCC, MPS, and MHC, respectively, resulting in an overall average performance

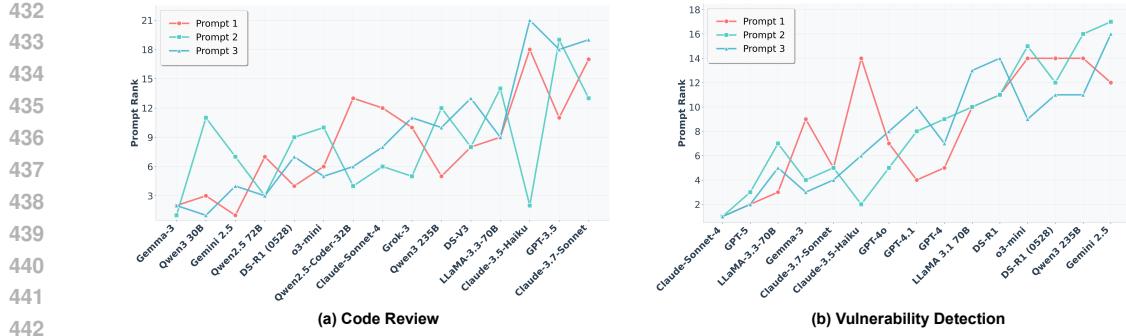


Figure 5: The performance variation of top-10 models using different prompts.

decline of 14.1%. This widespread problem suggests that current LLMs lack a robust understanding of code semantics and are easily misled by surface modifications.

Large reasoning models demonstrate better robustness. Models with advanced thinking capabilities, such as GPT-5 and Gemini-2.5-Pro, exhibit markedly stronger robustness compared to non-reasoning LLMs. These models show only minor performance fluctuations across most perturbation scenarios, with average performance drops controlled within 3%. In contrast, traditional models without reasoning exhibit considerable performance degradation, with models like DeepSeek-V3 and GPT-4o showing average performance decreases exceeding 20%.

Contextual-level perturbations cause the most severe impact. Models are more sensitive to contextual-level perturbations (MCC and MPS), indicating that LLMs are easily influenced by misleading natural language cues embedded in code. Misleading comments cause the largest performance drop at 20.0%, suggesting that models overly rely on comment information for code understanding rather than analyzing the actual code logic.

5.4 EFFECT OF THE MULTI-PROMPT EVALUATION

Figure 5 demonstrates the substantial performance variation across different prompts for code review and vulnerability detection tasks. The full results of all models on other tasks can be found in the Appendix C.9. Our analysis indicates that model performance exhibits significant sensitivity to prompt variations in some tasks. For example, Claude-3.5-Haiku shows remarkable fluctuations, with performance ranks ranging from as high as 3 to as low as 18 depending on the specific prompt used. These findings highlight the importance of employing multiple prompts to provide a more comprehensive and reliable evaluation of model capabilities, especially for tasks where prompt sensitivity is particularly evident.

6 CONCLUSION

This paper presents TREAT, a comprehensive evaluation framework that assesses the ability of LLMs in code intelligence tasks. Through multi-task, multi-language, and multi-modality evaluation of 26 state-of-the-art models, our framework reveals both their strengths and limitations, yielding several key insights into current models’ ability to handle diverse coding scenarios and maintain robustness under code transformations. TREAT provides researchers and practitioners with a standardized approach for model comparison across real-world software development contexts.

7 LIMITATION AND FUTURE WORK

While TREAT provides a comprehensive evaluation framework, several limitations should be acknowledged. Our current evaluation mainly focus on the function level, which may not fully capture the complexity of real-world software engineering that requires repository-level understanding. This evaluation framework does not contain some aspects of code quality such as the security. Additionally, TREAT faces the persistent challenge of potential data contamination. In the future, we will continuously enhance the benchmark by expanding evaluation tasks, incorporating more evaluation aspects, and regularly updating evaluation datasets to prevent data contamination.

486 ETHICS STATEMENT
487488 This work adheres to the ICLR Code of Ethics. We are dedicated to ensuring that TREAT serves
489 exclusively for academic research. Our plan includes the launch of a leaderboard website and the
490 provision of data and code access. During our data crawling process, we adhered to the regulations
491 of each website, and all the GitHub data we crawled has permissive open-source licenses (Apache-
492 2.0, MIT). TREAT does not contain any personal data or offensive content. No human subjects or
493 animal experimentation was involved in this work.494
495 REPRODUCIBILITY STATEMENT
496497 To encourage reproducibility, we release our code and benchmark data at <https://code-treat.vercel.app/>. We describe the details of the benchmark construction in Section 3 and the experimental setup in Section 4. Finally, we elaborate further details in Appendix including the detailed data collection process for each task (Appendix A), the used LLMs and experimental setup (Appendix B) and further details of experiment results (Appendix C).503 REFERENCES
504505 Anthropic. Claude 3.5 sonnet. *Anthropic News* June 21, 2024, 2024. URL <https://www.anthropic.com/news/clause-3-5-sonnet>.506 Anthropic. Claude, 2024. URL <https://www.anthropic.com/clause>. Accessed: 2024-06-06.507 Anthropic. Claude 3.7 sonnet and claude code. *Anthropic News* February 25, 2025, 2025a. URL <https://www.anthropic.com/news/clause-3-7-sonnet>.508 Anthropic. Introducing claude 4. *Anthropic News* May 23, 2025, 2025b. URL <https://www.anthropic.com/news/clause-4>.509 Chetan Arora, John Grundy, and Mohamed Abdelrazek. Advancing requirements engineering
510 through generative ai: Assessing the role of llms. In *Generative AI for Effective Software De-*
511 *velopment*, pp. 129–148. Springer, 2024a.512 Daman Arora, Atharv Sonwane, Nalin Wadhwa, Abhav Mehrotra, Saiteja Utpala, Ramakrishna
513 Bairi, Aditya Kanade, and Nagarajan Natarajan. Masai: Modular architecture for software-
514 engineering ai agents. *arXiv preprint arXiv:2406.11638*, 2024b.515 Mohammadmehdi Ataei, Hyunmin Cheong, Daniele Grandi, Ye Wang, Nigel Morris, and Alexander
516 Tessier. Elicitron: A large language model agent-based simulation framework for design require-
517 ments elicitation. *Journal of Computing and Information Science in Engineering*, 25(2):021012,
518 2025.519 Jacob Austin, Augustus Odena, Maxwell Nye, Maarten Bosma, Henryk Michalewski, David Dohan,
520 Ellen Jiang, Carrie Cai, Michael Terry, Quoc Le, and Charles Sutton. Program synthesis with large
521 language models. *arXiv preprint arXiv:2108.07732*, 2021.522 Max Brunsfeld and GitHub. Tree-sitter: Incremental parsing system. <https://tree-sitter.github.io/tree-sitter/>, 2018.523 Dong Chen, Shaoxin Lin, Muhan Zeng, Daoguang Zan, Jian-Gang Wang, Anton Cheshkov, Jun
524 Sun, Hao Yu, Guoliang Dong, Artem Aliev, et al. Coder: Issue resolving with multi-agent and
525 task graphs. *arXiv preprint arXiv:2406.01304*, 2024a.526 Dongping Chen, Ruoxi Chen, Shilin Zhang, Yaochen Wang, Yinuo Liu, Huichi Zhou, Qihui Zhang,
527 Yao Wan, Pan Zhou, and Lichao Sun. Mllm-as-a-judge: Assessing multimodal llm-as-a-judge
528 with vision-language benchmark. In *Forty-first International Conference on Machine Learning*
(ICLR), 2024b.

540 Junkai Chen, Li Zhenhao, Hu Xing, and Xia Xin. Nlperturbator: Studying the robustness of code
 541 llms to natural language variations. *ACM Transactions on Software Engineering and Methodology*, 2024c.
 542

543 Mark Chen, Jerry Tworek, Heewoo Jun, Qiming Yuan, Henrique Ponde de Oliveira Pinto, Jared Ka-
 544 plan, et al. Evaluating large language models trained on code. *arXiv preprint arXiv:2107.03374*,
 545 2021.

546 Simin Chen, Pranav Pusarla, and Baishakhi Ray. Dycodeeval: Dynamic benchmarking of reasoning
 547 capabilities in code large language models under data contamination. In *Forty-second Interna-
 548 tional Conference on Machine Learning*.

549 Simin Chen, Xiaoning Feng, Xiaohong Han, Cong Liu, and Wei Yang. Ppm: Automated generation
 550 of diverse programming problems for benchmarking code generation models. *Proceedings of the
 551 ACM on Software Engineering*, 1(FSE):1194–1215, 2024d.

552 Yao Cheng, Jianfeng Chen, Jie Chen, Li Chen, Liyu Chen, Wentao Chen, Zhengyu Chen, Shijie
 553 Geng, Aoyan Li, Bo Li, et al. Fullstack bench: Evaluating llms as full stack coders. *arXiv
 554 preprint arXiv:2412.00535*, 2024.

555 Jason Chou, Ao Liu, Yuchi Deng, Zhiying Zeng, Tao Zhang, Haotian Zhu, Jianwei Cai, Yue Mao,
 556 Chenchen Zhang, Lingyun Tan, et al. Autocodebench: Large language models are automatic code
 557 benchmark generators. *arXiv preprint arXiv:2508.09101*, 2025.

558 Arghavan Moradi Dakhel, Amin Nikanjam, Vahid Majdinasab, Foutse Khomh, and Michel C Des-
 559 marais. Effective test generation using pre-trained large language models and mutation testing.
 560 *Information and Software Technology*, 171:107468, 2024.

561 DeepSeek-AI, Daya Guo, Dejian Yang, Haowei Zhang, Junxiao Song, and Ruoyu Zhang et al.
 562 Deepseek-r1: Incentivizing reasoning capability in llms via reinforcement learning. *arXiv
 563 preprint arXiv:2501.12948*, 2025a.

564 DeepSeek-AI, Aixin Liu, Bei Feng, Bing Xue, Bingxuan Wang, and Bochao Wu et al. Deepseek-v3
 565 technical report. *arXiv preprint arXiv:2412.19437*, 2025b.

566 Yangruibo Ding, Yanjun Fu, Omniyyah Ibrahim, Chawin Sitawarin, Xinyun Chen, Basel Alomair,
 567 David Wagner, Baishakhi Ray, and Yizheng Chen. Vulnerability detection with code language
 568 models: How far are we? *arXiv preprint arXiv:2403.18624*, 2024.

569 Yihong Dong, Xue Jiang, Zhi Jin, and Ge Li. Self-collaboration code generation via chatgpt. *ACM
 570 Transactions on Software Engineering and Methodology*, 33(7):1–38, 2024.

571 Tulsee Doshi. Try the latest gemini 2.5 pro before general availability. *Google
 572 Blog June 5, 2025*, 2025. URL <https://blog.google/products/gemini/gemini-2-5-pro-latest-preview/>.

573 Zhuoyun Du, Chen Qian, Wei Liu, Zihao Xie, Yifei Wang, Yufan Dang, Weize Chen, and Cheng
 574 Yang. Multi-agent software development through cross-team collaboration. *arXiv preprint
 575 arXiv:2406.08979*, 2024.

576 Daniel Fried, Armen Aghajanyan, Jessy Lin, Sida Wang, Eric Wallace, Freda Shi, Ruiqi Zhong,
 577 Wen-tau Yih, Luke Zettlemoyer, and Mike Lewis. Incoder: A generative model for code infilling
 578 and synthesis. *arXiv preprint arXiv:2204.05999*, 2022. URL <https://arxiv.org/abs/2204.05999>.

579 Shuzheng Gao, Xin-Cheng Wen, Cuiyun Gao, Wenxuan Wang, Hongyu Zhang, and Michael R Lyu.
 580 What makes good in-context demonstrations for code intelligence tasks with llms? In *2023 38th
 581 IEEE/ACM International Conference on Automated Software Engineering (ASE)*, pp. 761–773.
 582 IEEE, 2023.

583 Google AI. Api overview, 2024. URL <https://ai.google.dev/gemini-api/docs/api-overview>. Accessed: 2024-06-06.

594 Aaron Grattafiori, Abhimanyu Dubey, Abhinav Jauhri, Abhinav Pandey, Abhishek Kadian, Ahmad
 595 Al-Dahle, Aiesha Letman, Akhil Mathur, Alan Schelten, Alex Vaughan, et al. The llama 3 herd
 596 of models. *arXiv preprint arXiv:2407.21783*, 2024.

597 Alex Gu, Baptiste Rozière, Hugh Leather, Armando Solar-Lezama, Gabriel Synnaeve, and Sida I.
 598 Wang. Cruxeval: a benchmark for code reasoning, understanding and execution. In *Proceedings
 599 of the 41st International Conference on Machine Learning*, ICML’24. JMLR.org, 2024.

600

601 Yi Gui, Yao Wan, Zhen Li, Zhongyi Zhang, Dongping Chen, Hongyu Zhang, Yi Su, Bohua Chen,
 602 Xing Zhou, Wenbin Jiang, and Xiangliang Zhang. Uicopilot: Automating ui synthesis via hier-
 603 archical code generation from webpage designs. In *Proceedings of the ACM on Web Conference
 604 (WWW)*, pp. 1846–1855, New York, NY, USA, 2025. Association for Computing Machinery.
 605 ISBN 9798400712746.

606 Daya Guo, Qihao Zhu, Dejian Yang, Zhenda Xie, Kai Dong, Wentao Zhang, Guanting Chen, Xiao
 607 Bi, Y. Wu, Y. K. Li, Fuli Luo, Yingfei Xiong, and Wenfeng Liang. Deepseek-coder: When
 608 the large language model meets programming – the rise of code intelligence. *arXiv preprint
 609 arXiv:2401.14196*, 2024. URL <https://arxiv.org/abs/2401.14196>.

610 Dan Hendrycks, Steven Basart, Saurav Kadavath, Mantas Mazeika, Akul Arora, Ethan Guo, Collin
 611 Burns, Samir Puranik, Horace He, Dawn Song, and Jacob Steinhardt. Measuring coding challenge
 612 competence with apps. *arXiv preprint arXiv:2105.09938*, 2021.

613

614 Sirui Hong, Mingchen Zhuge, Jonathan Chen, Xiawu Zheng, Yuheng Cheng, Jinlin Wang, Ceyao
 615 Zhang, Zili Wang, Steven Ka Shing Yau, Zijuan Lin, et al. Metagpt: Meta programming for
 616 a multi-agent collaborative framework. In *The Twelfth International Conference on Learning
 617 Representations*, 2023.

618 Xinyi Hou, Yanjie Zhao, Yue Liu, Zhou Yang, Kailong Wang, Li Li, Xiapu Luo, David Lo, John
 619 Grundy, and Haoyu Wang. Large language models for software engineering: A systematic litera-
 620 ture review. *ACM Transactions on Software Engineering and Methodology*, 33(8):1–79, 2024.

621

622 Wenhao Hu, Jinhao Duan, Chunchen Wei, Li Zhang, Yue Zhang, and Kaidi Xu. Dynacode: A
 623 dynamic complexity-aware code benchmark for evaluating large language models in code gener-
 624 ation. *arXiv preprint arXiv:2503.10452*, 2025.

625

626 Siming Huang, Tianhao Cheng, J. K. Liu, Jiaran Hao, Liuyihan Song, et al. Opencoder: The open
 627 cookbook for top-tier code large language models. *arXiv preprint arXiv:2411.04905*, 2025. URL
 628 <https://arxiv.org/abs/2411.04905>.

629

630 Binyuan Hui, Jian Yang, Zeyu Cui, Jiaxi Yang, Dayiheng Liu, Lei Zhang, Tianyu Liu, Jiajun Zhang,
 631 Bowen Yu, Kai Dang, et al. Qwen2.5-coder technical report. *arXiv preprint arXiv:2409.12186*,
 632 2024.

633

634 Aaron Hurst, Adam Lerer, Adam P. Goucher, Adam Perelman, Aditya Ramesh, Aidan Clark, AJ Os-
 635 trow, Akila Welihinda, Alan Hayes, and Alec Radford et al. Gpt-4o system card. *arXiv preprint
 636 arXiv:2410.212764*, 2024.

637

638 Naman Jain, King Han, Alex Gu, Wen-Ding Li, Fanjia Yan, Tianjun Zhang, Sida Wang, Armando
 639 Solar-Lezama, Koushik Sen, and Ion Stoica. Livecodebench: Holistic and contamination free
 640 evaluation of large language models for code. In *The Thirteenth International Conference on
 641 Learning Representations*, 2025.

642

643 Xue Jiang, Yihong Dong, Lecheng Wang, Zheng Fang, Qiwei Shang, Ge Li, Zhi Jin, and Wenpin
 644 Jiao. Self-planning code generation with large language models. *ACM Transactions on Software
 645 Engineering and Methodology*, 33(7):1–30, 2024.

646

647 Yanjie Jiang, Hui Liu, Tianyi Chen, Fu Fan, Chunhao Dong, Kui Liu, and Lu Zhang. Deep
 648 assessment of code review generation approaches: Beyond lexical similarity. *arXiv preprint
 649 arXiv:2501.05176*, 2025.

650

651 Carlos E Jimenez, John Yang, Alexander Wettig, Shunyu Yao, Kexin Pei, Ofir Press, and Karthik
 652 Narasimhan. Swe-bench: Can language models resolve real-world github issues? *arXiv preprint
 653 arXiv:2310.06770*, 2023.

648 Dongming Jin, Zhi Jin, Xiaohong Chen, and Chunhui Wang. Mare: Multi-agents collaboration
 649 framework for requirements engineering. *arXiv preprint arXiv:2405.03256*, 2024.

650

651 Man Ho Lam, Chaozheng Wang, Jen-tse Huang, and Michael R. Lyu. Codecrash: Stress testing llm
 652 reasoning under structural and semantic perturbations. *arXiv preprint arXiv:2504.14119*, 2025.

653

654 Caroline Lemieux, Jeevana Priya Inala, Shuvendu K Lahiri, and Siddhartha Sen. Codamosa: Es-
 655 capping coverage plateaus in test generation with pre-trained large language models. In *2023*
 656 *IEEE/ACM 45th International Conference on Software Engineering (ICSE)*, pp. 919–931. IEEE,
 657 2023.

658

659 Jia Li, Ge Li, Xuanming Zhang, Yihong Dong, and Zhi Jin. Evocodebench: An evolving code gen-
 660 eration benchmark aligned with real-world code repositories. *arXiv preprint arXiv:2404.00599*,
 661 2024a.

662

663 Jia Li, Ge Li, Yunfei Zhao, Yongmin Li, Zhi Jin, Hao Zhu, Huanyu Liu, Kaibo Liu, Lecheng Wang,
 664 Zheng Fang, et al. Deeval: Evaluating code generation in practical software projects. *arXiv
 665 preprint arXiv:2401.06401*, 2024b.

666

667 Kaixin Li, Yuchen Tian, Qisheng Hu, Ziyang Luo, Zhiyong Huang, and Jing Ma. Mmcode: Bench-
 668 marking multimodal large language models for code generation with visually rich programming
 669 problems. *arXiv preprint arXiv:2404.09486*, 2024c.

670

671 Linyi Li, Shijie Geng, Zhenwen Li, Yibo He, Hao Yu, Ziyue Hua, Guanghan Ning, Siwei Wang,
 672 Tao Xie, and Hongxia Yang. Infibench: Evaluating the question-answering capabilities of code
 673 large language models. In *The Thirty-eight Conference on Neural Information Processing Systems
 674 Datasets and Benchmarks Track*, 2024d.

675

676 Raymond Li, Loubna Ben Allal, Yangtian Zi, Niklas Muennighoff, et al. Starcoder: May the source
 677 be with you! *arXiv preprint arXiv:2305.06161*, 2023a. URL <https://arxiv.org/abs/2305.06161>.

678

679 Zhiyu Li, Shuai Lu, Daya Guo, Nan Duan, Shailesh Jannu, Grant Jenks, Deep Majumder, Jared
 680 Green, Alexey Svyatkovskiy, Shengyu Fu, et al. Automating code review activities by large-scale
 681 pre-training. In *Proceedings of the 30th ACM Joint European Software Engineering Conference
 682 and Symposium on the Foundations of Software Engineering*, pp. 1035–1047, 2022.

683

684 Zike Li, Mingwei Liu, Anji Li, Kaifeng He, Yanlin Wang, Xin Peng, and Zibin Zheng. En-
 685 hancing the robustness of llm-generated code: Empirical study and framework. *arXiv preprint
 686 arXiv:2503.20197*, 2025.

687

688 Zongjie Li, Chaozheng Wang, Zhibo Liu, Haoxuan Wang, Dong Chen, Shuai Wang, and Cuiyun
 689 Gao. CCTEST: testing and repairing code completion systems. In *45th IEEE/ACM International
 690 Conference on Software Engineering, ICSE 2023, Melbourne, Australia, May 14-20, 2023*, pp.
 691 1238–1250. IEEE, 2023b.

692

693 Feng Lin, Dong Jae Kim, and Tse-Hsun Chen. When llm-based code generation meets the software
 694 development process. *arXiv preprint arXiv:2403.15852*, 2024.

695

696 Feng Lin, Dong Jae Kim, Zhenhao Li, Jinqiu Yang, et al. Robunfr: Evaluating the robustness of
 697 large language models on non-functional requirements aware code generation. *arXiv preprint
 698 arXiv:2503.22851*, 2025.

699

700 Jiawei Liu, Chunqiu Steven Xia, Yuyao Wang, and LINGMING ZHANG. Is your code generated
 701 by chatGPT really correct? rigorous evaluation of large language models for code generation. In
 702 *Thirty-seventh Conference on Neural Information Processing Systems*, 2023.

703

704 Junyi Lu, Lei Yu, Xiaojia Li, Li Yang, and Chun Zuo. Llama-reviewer: Advancing code review
 705 automation with large language models through parameter-efficient fine-tuning. In *2023 IEEE
 706 34th International Symposium on Software Reliability Engineering (ISSRE)*, pp. 647–658. IEEE,
 707 2023.

702 Ziyang Luo, Can Xu, Pu Zhao, Qingfeng Sun, Xiubo Geng, Wenxiang Hu, Chongyang Tao, Jing
 703 Ma, Qingwei Lin, and Dixin Jiang. Wizardcoder: Empowering code large language models with
 704 evol-instruct. *arXiv preprint arXiv:2306.08568*, 2024. URL <https://arxiv.org/abs/2306.08568>.
 705

706 Michael R Lyu, Baishakhi Ray, Abhik Roychoudhury, Shin Hwei Tan, and Patanamon Thongta-
 707 nunam. Automatic programming: Large language models and beyond. *ACM Transactions on
 708 Software Engineering and Methodology*, 34(5):1–33, 2025.
 709

710 Lezhi Ma, Shangqing Liu, Yi Li, Xiaofei Xie, and Lei Bu. Specgen: Automated generation of formal
 711 program specifications via large language models. *arXiv preprint arXiv:2401.08807*, 2024a.
 712

713 Yingwei Ma, Qingping Yang, Rongyu Cao, Binhua Li, Fei Huang, and Yongbin Li. How to under-
 714 stand whole software repository. *arXiv preprint arXiv:2406.01422*, 2024b.
 715

716 Antonio Mastropaoletti, Luca Pasarella, Emanuela Guglielmi, Matteo Ciniselli, Simone Scalabrinio,
 717 Rocco Oliveto, and Gabriele Bavota. On the robustness of code generation techniques: An em-
 718 pirical study on github copilot. In *2023 IEEE/ACM 45th International Conference on Software
 719 Engineering (ICSE)*, pp. 2149–2160. IEEE, 2023.

720 Meta. Llama 3.2 vision, 2024. URL <https://huggingface.co/meta-llama/Llama-3-2-90B-Vision-Instruct>. Accessed: 2025-02-06.
 721

722 Niklas Muennighoff, Qian Liu, Armel Zebaze, Qinkai Zheng, Binyuan Hui, Terry Yue Zhuo,
 723 Swayam Singh, Xiangru Tang, Leandro Von Werra, and Shayne Longpre. Octopack: Instruc-
 724 tion tuning code large language models. In *NeurIPS 2023 Workshop on Instruction Tuning and
 725 Instruction Following*, 2023.
 726

727 Niklas Muennighoff, Qian Liu, Armel Zebaze, Qinkai Zheng, Binyuan Hui, Terry Yue Zhuo,
 728 Swayam Singh, Xiangru Tang, Leandro von Werra, and Shayne Longpre. Octopack: In-
 729 struction tuning code large language models. *arXiv preprint arXiv:2308.07124*, 2024. URL
 730 <https://arxiv.org/abs/2308.07124>.
 731

732 Minh Huynh Nguyen, Thang Phan Chau, Phong X Nguyen, and Nghi DQ Bui. Agilecoder: Dynamic
 733 collaborative agents for software development based on agile methodology. In *2025 IEEE/ACM
 734 Second International Conference on AI Foundation Models and Software Engineering (Forge)*,
 735 pp. 156–167. IEEE, 2025.

736 Erik Nijkamp, Bo Pang, Hiroaki Hayashi, Lifu Tu, Huan Wang, Yingbo Zhou, Silvio Savarese,
 737 and Caiming Xiong. Codegen: An open large language model for code with multi-turn program
 738 synthesis. *arXiv preprint arXiv:2203.13474*, 2023. URL <https://arxiv.org/abs/2203.13474>.
 739

740 Saeyoon Oh and Shin Yoo. Csa-trans: Code structure aware transformer for ast. *arXiv preprint
 741 arXiv:2404.05767*, 2024.
 742

743 OpenAI. Introducing gpt-4.1 in the api. *OpenAI News April 14, 2025*, 2025a. URL <https://openai.com/index/gpt-4-1/>.
 744

745 OpenAI. Openai gpt-5. *OpenAI News August 7, 2025*, 2025b. URL <https://openai.com/index/introducing-gpt-5/>.
 746

748 OpenAI. Openai o3-mini. *OpenAI News January 31, 2025*, 2025c. URL <https://openai.com/index/openai-o3-mini/>.
 749

751 Xiaohuan Pei, Daochang Liu, Luo Qian, and Chang Xu. Contrastive code-comment pre-training. In
 752 *2022 IEEE International Conference on Data Mining (ICDM)*, pp. 398–407. IEEE, 2022.
 753

754 Yun Peng, Shuzheng Gao, Cuiyun Gao, Yintong Huo, and Michael Lyu. Domain knowledge matters:
 755 Improving prompts with fix templates for repairing python type errors. In *Proceedings of the 46th
 ieee/acm international conference on software engineering*, pp. 1–13, 2024.

756 Chen Qian, Xin Cong, Cheng Yang, Weize Chen, Yusheng Su, Juyuan Xu, Zhiyuan Liu,
 757 and Maosong Sun. Communicative agents for software development. *arXiv preprint*
 758 *arXiv:2307.07924*, 6(3):1, 2023.

759

760 Qwen. Qwen2.5-vl, January 2025. URL <https://qwenlm.github.io/blog/qwen2.5-vl/>.

761

762 Alec Radford, Jong Wook Kim, Chris Hallacy, Aditya Ramesh, Gabriel Goh, Sandhini Agarwal,
 763 Girish Sastry, Amanda Askell, Pamela Mishkin, Jack Clark, et al. Learning transferable visual
 764 models from natural language supervision. In *International conference on machine learning*, pp.
 765 8748–8763. PMLR, 2021.

766

767 Winston W Royce. Managing the development of large software systems: concepts and techniques.
 768 In *Proceedings of the 9th international conference on Software Engineering*, pp. 328–338, 1987.

769

770 Baptiste Rozière, Jonas Gehring, Fabian Gloeckle, Sten Sootla, Itai Gat, Xiaoqing Ellen Tan, et al.
 771 Code llama: Open foundation models for code. *arXiv preprint arXiv:2308.12950*, 2023. URL
 772 <https://arxiv.org/abs/2308.12950>.

773

774 Gabriel Ryan, Siddhartha Jain, Mingyue Shang, Shiqi Wang, Xiaofei Ma, Murali Krishna Ra-
 775 manathan, and Baishakhi Ray. Code-aware prompting: A study of coverage-guided test gen-
 776 eration in regression setting using llm. *Proceedings of the ACM on Software Engineering*, 1
 777 (FSE):951–971, 2024.

778

779 Lin Shi, Fangwen Mu, Xiao Chen, Song Wang, Junjie Wang, Ye Yang, Ge Li, Xin Xia, and Qing
 780 Wang. Are we building on the rock? on the importance of data preprocessing for code sum-
 781 marization. In *Proceedings of the 30th ACM Joint European Software Engineering Conference and*
Symposium on the Foundations of Software Engineering, pp. 107–119, 2022.

782

783 Weijia Shi, Anirudh Ajith, Mengzhou Xia, Yangsibo Huang, Daogao Liu, Terra Blevins, Danqi
 784 Chen, and Luke Zettlemoyer. Detecting pretraining data from large language models. *arXiv*
preprint arXiv:2310.16789, 2023.

785

786 Weisong Sun, Yun Miao, Yuekang Li, Hongyu Zhang, Chunrong Fang, Yi Liu, Gelei Deng, Yang
 787 Liu, and Zhenyu Chen. Source code summarization in the era of large language models. pp.
 788 1882–1894, 2025.

789

790 Qingxiao Tao, Tingrui Yu, Xiaodong Gu, and Beijun Shen. Unraveling the potential of large lan-
 791 guage models in code translation: How far are we? *arXiv preprint arXiv:2410.09812*, 2024a.

792

793 Wei Tao, Yucheng Zhou, Yanlin Wang, Wenqiang Zhang, Hongyu Zhang, and Yu Cheng. Magis:
 794 Llm-based multi-agent framework for github issue resolution. *Advances in Neural Information*
Processing Systems, 37:51963–51993, 2024b.

795

796 Vikas Thada and Vivek Jaglan. Comparison of jaccard, dice, cosine similarity coefficient to find
 797 best fitness value for web retrieved documents using genetic algorithm. *International Journal of*
Innovations in Engineering and Technology, 2(4):202–205, 2013.

798

799 Sindhu Tipirneni, Ming Zhu, and Chandan K Reddy. Structcoder: Structure-aware transformer for
 800 code generation. *ACM Transactions on Knowledge Discovery from Data*, 18(3):1–20, 2024.

801

802 Tree-sitter. Introduction, 2025. URL <https://tree-sitter.github.io/tree-sitter/>. Accessed: 2025-09-24.

803

804 Yuxuan Wan, Chaozheng Wang, Yi Dong, Wenzuan Wang, Shuqing Li, Yintong Huo, and Michael R
 805 Lyu. Automatically generating ui code from screenshot: A divide-and-conquer-based approach.
 806 *arXiv preprint arXiv:2406.16386*, 2024.

807

808 Junhao Wang, Daoguang Zan, Shulin Xin, Siyao Liu, Yurong Wu, and Kai Shen. Swe-
 809 mirror: Scaling issue-resolving datasets by mirroring issues across repositories. *arXiv preprint*
arXiv:2509.08724, 2025a.

810 Ruiqi Wang, Jiyu Guo, Cuiyun Gao, Guodong Fan, Chun Yong Chong, and Xin Xia. Can llms
 811 replace human evaluators? an empirical study of llm-as-a-judge in software engineering. In 2025
 812 *International Symposium on Software Testing and Analysis (ISSTA)*. ACM New York, Trondheim,
 813 Norway, 2025b.

814

815 Shiqi Wang, Zheng Li, Haifeng Qian, Chenghao Yang, Zijian Wang, Mingyue Shang, Varun Kumar,
 816 Samson Tan, Baishakhi Ray, Parminder Bhatia, et al. Recode: Robustness evaluation of code gen-
 817 eration models. In *Proceedings of the 61st Annual Meeting of the Association for Computational
 818 Linguistics (Volume 1: Long Papers)*, pp. 13818–13843, 2023a.

819

820 Yue Wang, Hung Le, Akhilesh Deepak Gotmare, Nghi D.Q. Bui, Junnan Li, and Steven C.H.
 821 Hoi. Codet5+: Open code large language models for code understanding and generation. *arXiv
 822 preprint arXiv:2305.07922*, 2023b. URL <https://arxiv.org/abs/2305.07922>.

823

824 Jason Wei, Xuezhi Wang, Dale Schuurmans, Maarten Bosma, Fei Xia, Ed Chi, Quoc V Le, Denny
 825 Zhou, et al. Chain-of-thought prompting elicits reasoning in large language models. *Advances in
 826 neural information processing systems*, 35:24824–24837, 2022.

827

828 Minnan Wei, Ziming Li, Xiang Chen, Menglin Zheng, Ziyan Qu, Cheng Yu, Siyu Chen, and Xiaolin
 829 Ju. Evaluating and improving large language models for competitive program generation. *arXiv
 830 preprint arXiv:2506.22954*, 2025.

831

832 Wai Kin Wong, Huaijin Wang, Zongjie Li, and Shuai Wang. Binaug: Enhancing binary similar-
 833 ity analysis with low-cost input repairing. In *Proceedings of the IEEE/ACM 46th International
 834 Conference on Software Engineering, ICSE '24*, New York, NY, USA, 2024. Association for
 835 Computing Machinery.

836

837 Fan Wu, Cuiyun Gao, Shuqing Li, Xin-Cheng Wen, and Qing Liao. Mllm-based ui2code automation
 838 guided by ui layout information. In *2025 International Symposium on Software Testing and
 839 Analysis (ISSTA)*, pp. 1–23. ACM New York, Trondheim, Norway, 2025.

840

841 xAI. Grok-3-mini. <https://x.ai/models/grok-3-mini>, 2025.

842

843 Chunqiu Steven Xia, Yinlin Deng, Soren Dunn, and Lingming Zhang. Agentless: Demystifying
 844 llm-based software engineering agents. *arXiv preprint arXiv:2407.01489*, 2024.

845

846 Jingyu Xiao, Yuxuan Wan, Yintong Huo, Zhiyao Xu, and Michael R Lyu. Interaction2code: How
 847 far are we from automatic interactive webpage generation? *arXiv preprint arXiv:2411.03292*,
 848 2024.

849

850 Jingyu Xiao, Ming Wang, Man Ho Lam, Yuxuan Wan, Junliang Liu, Yintong Huo, and Michael R
 851 Lyu. Designbench: A comprehensive benchmark for mllm-based front-end code generation. *arXiv
 852 preprint arXiv:2506.06251*, 2025.

853

854 Zhuokui Xie, Yinghao Chen, Chen Zhi, Shuguang Deng, and Jianwei Yin. Chatunitest: a chatgpt-
 855 based automated unit test generation tool. *arXiv e-prints*, pp. arXiv–2305, 2023.

856

857 An Yang, Anfeng Li, Baosong Yang, Beichen Zhang, Binyuan Hui, Bo Zheng, Bowen Yu,
 858 Chang Gao, Chengan Huang, Chenxu Lv, et al. Qwen3 technical report. *arXiv preprint
 859 arXiv:2505.09388*, 2025a.

860

861 An Yang, Baosong Yang, Beichen Zhang, Binyuan Hui, Bo Zheng, Bowen Yu, Chengyuan Li,
 862 Dayiheng Liu, Fei Huang, Haoran Wei, et al. Qwen2.5 technical report. *arXiv preprint
 863 arXiv:2412.15115*, 2025b.

864

865 Chen Yang, Junjie Chen, Bin Lin, Jianyi Zhou, and Ziqi Wang. Enhancing llm-based test generation
 866 for hard-to-cover branches via program analysis. *arXiv preprint arXiv:2404.04966*, 2024a.

867

868 John Yang, Carlos E Jimenez, Alexander Wettig, Kilian Lieret, Shunyu Yao, Karthik Narasimhan,
 869 and Ofir Press. Swe-agent: Agent-computer interfaces enable automated software engineering.
 870 *Advances in Neural Information Processing Systems*, 37:50528–50652, 2024b.

864 John Yang, Carlos E Jimenez, Alex L Zhang, Kilian Lieret, Joyce Yang, Xindi Wu, Ori Press,
 865 Niklas Muennighoff, Gabriel Synnaeve, Karthik R Narasimhan, et al. Swe-bench multimodal:
 866 Do ai systems generalize to visual software domains? *arXiv preprint arXiv:2410.03859*, 2024c.
 867

868 Lin Yang, Chen Yang, Shutao Gao, Weijing Wang, Bo Wang, Qihao Zhu, Xiao Chu, Jianyi Zhou,
 869 Guangtai Liang, Qianxiang Wang, et al. On the evaluation of large language models in unit
 870 test generation. In *Proceedings of the 39th IEEE/ACM International Conference on Automated
 Software Engineering*, pp. 1607–1619, 2024d.
 871

872 Wenjing Yin, Tianze Sun, Yijiong Yu, Jiawei Fang, Guangyao Su, Jiancheng Wang, Zekun Wang,
 873 Wei Wang, Ran Chen, Ziyun Dai, et al. Coco-bench: A comprehensive code benchmark for
 874 multi-task large language model evaluation. *arXiv preprint arXiv:2504.20673*, 2025.
 875

876 Hao Yu, Bo Shen, Dezhi Ran, Jiaxin Zhang, Qi Zhang, Yuchi Ma, Guangtai Liang, Ying Li, Qianxi-
 877 ang Wang, and Tao Xie. Codereval: A benchmark of pragmatic code generation with generative
 878 pre-trained models. In *Proceedings of the 46th IEEE/ACM International Conference on Software
 Engineering*, pp. 1–12, 2024.
 879

880 Mingyue Yuan, Jieshan Chen, Zhenchang Xing, Aaron Quigley, Yuyu Luo, Tianqi Luo, Gelareh Mo-
 881 hammadi, Qinghua Lu, and Liming Zhu. DesignRepair: Dual-Stream Design Guideline-Aware
 882 Frontend Repair with Large Language Models . In *IEEE/ACM 47th International Conference on
 Software Engineering (ICSE)*, pp. 646–646, Los Alamitos, CA, USA, May 2025. IEEE Computer
 883 Society.
 884

885 Zhiqiang Yuan, Yiling Lou, Mingwei Liu, Shiji Ding, Kaixin Wang, Yixuan Chen, and Xin Peng.
 886 No more manual tests? evaluating and improving chatgpt for unit test generation. *arXiv preprint
 arXiv:2305.04207*, 2023.
 887

888 Linghao Zhang, Shilin He, Chaoyun Zhang, Yu Kang, Bowen Li, Chengxing Xie, Junhao Wang,
 889 Maoquan Wang, Yufan Huang, Shengyu Fu, et al. Swe-bench goes live! *arXiv preprint
 arXiv:2505.23419*, 2025.
 889

890 Simiao Zhang, Jiaping Wang, Guoliang Dong, Jun Sun, Yueling Zhang, and Geguang Pu. Experi-
 891 menting a new programming practice with llms. *arXiv preprint arXiv:2401.01062*, 2024a.
 892

893 Yuntong Zhang, Haifeng Ruan, Zhiyu Fan, and Abhik Roychoudhury. Autocoderover: Autonomous
 894 program improvement. In *Proceedings of the 33rd ACM SIGSOFT International Symposium on
 Software Testing and Analysis*, pp. 1592–1604, 2024b.
 895

896 Ting Zhou, Yanjie Zhao, Xinyi Hou, Xiaoyu Sun, Kai Chen, and Haoyu Wang. Bridging design and
 897 development with automated declarative ui code generation. *arXiv preprint arXiv:2409.11667*,
 898 2024.
 899

900 Terry Yue Zhuo, Zhuang Li, Yujin Huang, Fatemeh Shiri, Weiqing Wang, Gholamreza Haffari, and
 901 Yuan-Fang Li. On robustness of prompt-based semantic parsing with large pre-trained language
 902 model: An empirical study on codex. *arXiv preprint arXiv:2301.12868*, 2023.
 903

904 Terry Yue Zhuo, Minh Chien Vu, Jenny Chim, Han Hu, Wenhao Yu, Ratnadira Widyasari,
 905 Imam Nur Bani Yusuf, Haolan Zhan, Junda He, Indraneil Paul, et al. Bigcodebench: Bench-
 906 marking code generation with diverse function calls and complex instructions. *arXiv preprint
 arXiv:2406.15877*, 2024.
 907

908

909

910

911

912

913

914

915

916

917

918 APPENDIX
919920 CONTENTS
921

923	1	
924		
925	2	
926	Related Work	
927	2.1 Large Language Models for Code	3
928	2.2 Code Intelligence Evaluation for Large Language Models	3
929		
930	3	
931	TREAT Benchmark Construction Methodology	4
932	3.1 General Coding Tasks Evaluation	4
933	3.1.1 Data Collection and Selection	4
934	3.1.2 Scenario-Specific Data Collection Methods	5
935	3.2 Multi-Modality Benchmark Construction	5
936	3.3 Robustness Benchmark Construction	6
937		
938		
939	4	
940	Evaluation Setup	6
941	4.1 Model Selection	6
942	4.2 Enhanced Evaluation Method	6
943	4.3 Evaluation Metrics	6
944		
945		
946	5	
947	Experiment Results	7
948	5.1 Multi-task Performance Comparison	7
949	5.2 Multi-modality Evaluation	8
950	5.3 Robustness Evaluation	8
951	5.4 Effect of the Multi-prompt Evaluation	9
952		
953		
954	6	
955	Conclusion	9
956	7	
957	Limitation and Future Work	9
958		
959	A	
960	Detailed Benchmark Construction Methods	21
961	A.1 Code Generation	21
962	A.2 Code Summarization	21
963	A.3 Code Translation	22
964	A.4 Code Reasoning	22
965	A.5 Code Review	23
966	A.6 Test Generation	23
967	A.7 Vulnerability Detection	24
968	A.8 Multi-modality tasks	24
969	A.9 Code Robustness	24
970		
971		

972	A.10 Code-TREAT-lite	24
973		
974	B Detailed Experimental Setup	25
975		
976	B.1 Evaluated Models	25
977	B.2 Code Generation	25
978	B.3 Code Summarization	26
979	B.4 Code Translation	26
980	B.5 Code Review	27
981	B.6 Code Reasoning	28
982	B.7 Test Generation	28
983	B.8 Vulnerability Detection	29
984	B.9 Multi-modality tasks	30
985	B.10 Code Robustness	30
986		
987	C Detailed Experiment Results and Analysis	30
988		
989	C.1 Code Generation	30
990	C.2 Code Summarization	31
991	C.3 Code Translation	33
992	C.4 Code Review	33
993	C.5 Code Reasoning	35
994	C.6 Test Generation	36
995	C.7 Vulnerability Detection	37
996	C.8 Multi-modality Tasks	38
997	C.9 Effect of Multi-prompt Evaluation	39
998		
999	D Extended Related Work	44
1000		
1001	D.1 Large Language Models for Code	44
1002	D.2 Large Language Models for Software Engineering	44
1003	D.3 Large Language Models Evaluation	45
1004	D.4 Robustness of Code LLMs	46
1005		
1006	E Limitation and Future Work	46
1007		
1008	F Online Leaderboard	47
1009		
1010	G Prompt Details	49
1011		
1012	G.1 Code Generation	49
1013	G.2 Code Summarization	49
1014	G.3 Code Translation	51
1015	G.4 Code Review Generation	52
1016	G.5 Code Reasoning	53
1017		

1026	G.5.1 Input Prediction	53
1027	G.5.2 Output Prediction	55
1028	G.6 Test Generation	57
1029	G.7 Vulnerability Detection	58
1030		
1031		
1032		
1033	H Benchmark Statistics	62
1034		
1035	I Analysis of LLM-as-a-judge	62
1036		
1037	J Human Study	63
1038		
1039	K Analysis of Different Metrics	63
1040		
1041	L Data Contamination Analysis	64
1042		
1043	M Large Language Models Usage Statement	64
1044		
1045		
1046		
1047		
1048		
1049		
1050		
1051		
1052		
1053		
1054		
1055		
1056		
1057		
1058		
1059		
1060		
1061		
1062		
1063		
1064		
1065		
1066		
1067		
1068		
1069		
1070		
1071		
1072		
1073		
1074		
1075		
1076		
1077		
1078		
1079		

1080 A DETAILED BENCHMARK CONSTRUCTION METHODS
10811082 A.1 CODE GENERATION
10831084 **Language Scope.** In this paper, we concentrate our evaluation of code generation on Python and
1085 Java—two languages that together span a wide range of programming paradigms, from scripting
1086 and rapid prototyping to strongly-typed, object-oriented development.1087 Table 4: Dataset difficulty distribution
1088

Dataset	Total #	# Easy	# Medium	# Hard
GEEKSFORGEEKS	1536	818	603	115
HACKERRANK	455	142	157	156

1093 **Problem Definition.** Each problem is represented as a tuple (P, T, S) where P denotes the natural-
1094 language problem statement, T the set of available test cases, and $S = \{S_{\text{python}}, S_{\text{java}}, S_{\text{cpp}}\}$ the
1095 set of ground-truth solutions in three languages.1096 **Problem Collection.** We construct benchmarks by scraping GEEKSFORGEEKS and HACKERRANK
1097 using Python-based HTML scrapers. For each problem, we extracted the title, natural-language
1098 description, difficulty level, release date, human-verified solutions in Python, Java, and C++, and
1099 the sample test cases provided on the platform. We retain only those problems for which at least
1100 one language-specific solution compiles and executes successfully, ensuring that every problem in
1101 the dataset has a valid implementation and avoiding ambiguous or unsolvable tasks.1102 **Test Collection.** When official test suites are available, we adopt them in full, as they typically
1103 exercise common edge cases. For problems with insufficient coverage, we follow the spirit of
1104 EVALPLUS (Liu et al., 2023) and LIVECODEBENCH (Jain et al., 2025) by using a large language
1105 model (LLM; GPT-4o in our implementation) to synthesize additional random and adversarial
1106 inputs. No auxiliary type signatures or annotations beyond the original problem description are pro-
1107 vided. To standardize `stdin/stdout` evaluation across tasks and languages, we use a lightweight
1108 *Driver Code* harness that parses inputs from standard input and emits outputs to standard output;
1109 this harness is provided as part of our augmentation pipeline (Step 1).1110 **Three-stage augmentation.**
1111

1. **Constraint elicitation & Driver Code provisioning.** Prompt the LLM to infer and state
1112 preconditions, invariants, input domains, and corner cases implied solely by the problem
1113 description (without external type information). In this stage, we also provide the *Driver*
1114 *Code* that specifies the `STDIN` format and expected `STDOUT` schema.
2. **Generator synthesis.** Prompt the LLM to produce an input-constructor function that
1115 samples random and adversarial test cases consistent with the elicited constraints and compati-
1116 ble with the provided *Driver Code*.
3. **Validation and iteration.** Use a second LLM to check whether the constructor violates
1117 the elicited constraints or the I/O contract implied by the *Driver Code*; on violation, refine
1118 and retry for up to three rounds. If validated, execute the ground-truth reference solution
1119 via the same driver to derive expected outputs, and retain only synthesized tests that either
1120 confirm correct behavior or expose faults, from which we compute TPR.

1124 A.2 CODE SUMMARIZATION
11251126 **Language Scope.** Our summarization dataset comprises function–docstring pairs from ten widely
1127 used languages on GitHub, including C, C++, C#, Go, Java, JavaScript, TypeScript, PHP, Python,
1128 and Ruby, enabling evaluation of cross-language generalization in code summarization.1129 **Project Selection and Data Collection.** We assembled our corpus from publicly available GitHub
1130 repositories created in 2023 and restricted to projects with permissive licenses (e.g., Apache-2.0,
1131 MIT) and at least 100 stars.1133 **Function Extraction and Cleaning.** Using the Tree-sitter library (Brunsfeld & GitHub, 2018), we
1134 parsed each repository to extract all function definitions along with their docstrings. We then applied

1134 the cleaning methods proposed by Shi et al. (Shi et al., 2022) to isolate only the first sentence of each
 1135 docstring, producing concise description–function pairs (f, D) .
 1136

1137 **Dataset Statistics.** Table 5 summarizes the number of function–docstring pairs collected for each
 1138 language after filtering and cleaning.

1139 Table 5: Function–Docstring Pair Counts by Language
 1140

1141	1142	1143	1144	1145	1146	1147	1148	1149	1150	1151	1152	1153	1154	1155	1156	1157	1158	1159	1160	1161	1162	1163	1164	1165	1166	1167	1168	1169	1170	1171	1172	1173	1174	1175	1176	1177	1178	1179	1180	1181	1182	1183	1184	1185	1186	1187	1188	1189	1190	1191	1192	1193	1194	1195	1196	1197	1198	1199	1200	1201	1202	1203	1204	1205	1206	1207	1208	1209	1210	1211	1212	1213	1214	1215	1216	1217	1218	1219	1220	1221	1222	1223	1224	1225	1226	1227	1228	1229	1230	1231	1232	1233	1234	1235	1236	1237	1238	1239	1240	1241	1242	1243	1244	1245	1246	1247	1248	1249	1250	1251	1252	1253	1254	1255	1256	1257	1258	1259	1260	1261	1262	1263	1264	1265	1266	1267	1268	1269	1270	1271	1272	1273	1274	1275	1276	1277	1278	1279	1280	1281	1282	1283	1284	1285	1286	1287	1288	1289	1290	1291	1292	1293	1294	1295	1296	1297	1298	1299	1300	1301	1302	1303	1304	1305	1306	1307	1308	1309	1310	1311	1312	1313	1314	1315	1316	1317	1318	1319	1320	1321	1322	1323	1324	1325	1326	1327	1328	1329	1330	1331	1332	1333	1334	1335	1336	1337	1338	1339	1340	1341	1342	1343	1344	1345	1346	1347	1348	1349	1350	1351	1352	1353	1354	1355	1356	1357	1358	1359	1360	1361	1362	1363	1364	1365	1366	1367	1368	1369	1370	1371	1372	1373	1374	1375	1376	1377	1378	1379	1380	1381	1382	1383	1384	1385	1386	1387	1388	1389	1390	1391	1392	1393	1394	1395	1396	1397	1398	1399	1400	1401	1402	1403	1404	1405	1406	1407	1408	1409	1410	1411	1412	1413	1414	1415	1416	1417	1418	1419	1420	1421	1422	1423	1424	1425	1426	1427	1428	1429	1430	1431	1432	1433	1434	1435	1436	1437	1438	1439	1440	1441	1442	1443	1444	1445	1446	1447	1448	1449	1450	1451	1452	1453	1454	1455	1456	1457	1458	1459	1460	1461	1462	1463	1464	1465	1466	1467	1468	1469	1470	1471	1472	1473	1474	1475	1476	1477	1478	1479	1480	1481	1482	1483	1484	1485	1486	1487	1488	1489	1490	1491	1492	1493	1494	1495	1496	1497	1498	1499	1500	1501	1502	1503	1504	1505	1506	1507	1508	1509	1510	1511	1512	1513	1514	1515	1516	1517	1518	1519	1520	1521	1522	1523	1524	1525	1526	1527	1528	1529	1530	1531	1532	1533	1534	1535	1536	1537	1538	1539	1540	1541	1542	1543	1544	1545	1546	1547	1548	1549	1550	1551	1552	1553	1554	1555	1556	1557	1558	1559	1560	1561	1562	1563	1564	1565	1566	1567	1568	1569	1570	1571	1572	1573	1574	1575	1576	1577	1578	1579	1580	1581	1582	1583	1584	1585	1586	1587	1588	1589	1590	1591	1592	1593	1594	1595	1596	1597	1598	1599	1600	1601	1602	1603	1604	1605	1606	1607	1608	1609	1610	1611	1612	1613	1614	1615	1616	1617	1618	1619	1620	1621	1622	1623	1624	1625	1626	1627	1628	1629	1630	1631	1632	1633	1634	1635	1636	1637	1638	1639	1640	1641	1642	1643	1644	1645	1646	1647	1648	1649	1650	1651	1652	1653	1654	1655	1656	1657	1658	1659	1660	1661	1662	1663	1664	1665	1666	1667	1668	1669	1670	1671	1672	1673	1674	1675	1676	1677	1678	1679	1680	1681	1682	1683	1684	1685	1686	1687	1688	1689	1690	1691	1692	1693	1694	1695	1696	1697	1698	1699	1700	1701	1702	1703	1704	1705	1706	1707	1708	1709	1710	1711	1712	1713	1714	1715	1716	1717	1718	1719	1720	1721	1722	1723	1724	1725	1726	1727	1728	1729	1730	1731	1732	1733	1734	1735	1736	1737	1738	1739	1740	1741	1742	1743	1744	1745	1746	1747	1748	1749	1750	1751	1752	1753	1754	1755	1756	1757	1758	1759	1760	1761	1762	1763	1764	1765	1766	1767	1768	1769	1770	1771	1772	1773	1774	1775	1776	1777	1778	1779	1780	1781	1782	1783	1784	1785	1786	1787	1788	1789	1790	1791	1792	1793	1794	1795	1796	1797	1798	1799	1800	1801	1802	1803	1804	1805	1806	1807	1808	1809	1810	1811	1812	1813	1814	1815	1816	1817	1818	1819	1820	1821	1822	1823	1824	1825	1826	1827	1828	1829	1830	1831	1832	1833	1834	1835	1836	1837	1838	1839	1840	1841	1842	1843	1844	1845	1846	1847	1848	1849	1850	1851	1852	1853	1854	1855	1856	1857	1858	1859	1860	1861	1862	1863	1864	1865	1866	1867	1868	1869	1870	1871	1872	1873	1874	1875	1876	1877	1878	1879	1880	1881	1882	1883	1884	1885	1886	1887	1888	1889	1890	1891	1892	1893	1894	1895	1896	1897	1898	1899	1900	1901	1902	1903	1904	1905	1906	1907	1908	1909	1910	1911	1912	1913	1914	1915	1916	1917	1918	1919	1920	1921	1922	1923	1924	1925	1926	1927	1928	1929	1930	1931	1932	1933	1934	1935	1936	1937	1938	1939	1940	1941	1942	1943	1944	1945	1946	1947	1948	1949	1950	1951	1952	1953	1954	1955	1956	1957	1958	1959	1960	1961	1962	1963	1964	1965	1966	1967	1968	1969	1970	1971	1972	1973	1974	1975	1976	1977	1978	1979	1980	1981	1982	1983	1984	1985	1986	1987	1988	1989	1990	1991	1992	1993	1994	1995	1996	1997	1998	1999	2000	2001	2002	2003	2004	2005	2006	2007	2008	2009	2010	2011	2012	2013	2014	2015	2016	2017	2018	2019	2020	2021	2022	2023	2024	2025	2026	2027	2028	2029	2030	2031	2032	2033	2034	2035	2036	2037	2038	2039	2040	2041	2042	2043	2044	2045	2046	2047	2048	2049	2050	2051	2052	2053	2054	2055	2056	2057	2058	2059	2060	2061	2062	2063	2064	2065	2066	2067	2068	2069	2070	2071	2072	2073	2074	2075	2076	2077	2078	2079	2080	2081	2082	2083	2084	2085	2086	2087	2088	2089	2090	2091	2092	2093	2094	2095	2096	2097	2098	2099	2100	2101	2102	2103	2104	2105	2106	2107	2108	2109	2110	2111	2112	2113	2114	2115	2116	2117	2118	2119	2120	2121	2122	2123	2124	2125	2126	2127	2128	2129	2130	2131	2132	2133	2134	2135	2136	2137	2138	2139	2140	2141	2142	2143	2144	2145	2146	2147	2148	2149	2150	2151	2152	2153	2154	2155	2156	2157	2158	2159	2160	2161	2162	2163	2164	2165	2166	2167	2168	2169	2170	2171	2172	2173	2174	2175	2176	2177	2178	2179	2180	2181	2182	2183	2184	2185	2186	2187	2188	2189	2190	2191	2192	2193	2194	2195	2196	2197	2198	2199	2200	2201	2202	2203	2204	2205	2206	2207	2208	2209	2210	2211	2212	2213	2214	2215	2216	2217	2218	2219	2220	2221	2222	2223	2224	2225	2226	2227	2228	2229	2230	2231	2232	2233	2234	2235	2236	2237	2238	2239	2240	2241	2242	2243	2244	2245	2246	2247	2248	2249	2250	2251	2252	2253	2254	2255	2256	2257	2258	2259	2260	2261	2262	2263	2264	2265	2266	2267	2268	2269	2270	2271	2272	2273	2274	2275	2276	2277	2278	2279	2280	2281	2282	2283	2284	2285	2286	2287	2288	2289	2290	2291	2292	2293	2294	2295	2296	2297	2298	2299	2300	2301	2302	2303	2304	2305	2306	2307	2308	2309	2310	2311	2312	2313	2314	2315	2316	2317	2318	2319	2320	2321	2322	2323	2324	2325	2326	2327	2328	2329	2330	2331	2332	2333	2334	2335	2336	2337	2338	2339	2340	2341	2342	2343	2344	2345	2346	2347	2348	2349	2350	2351	2352	2353	2354	2355	2356	2357	2358	2359	2360	2361	2362	2363	2364	2365	2366	2367	2368	2369	2370	2371

1188 ing functions with no parameters and non-informative returns (e.g., *None/void*), and by discarding
 1189 triples that are inconsistent with the function interface or control-flow preconditions.
 1190

1191 **Assertion Statements.** Each example is packaged with a language-appropriate executable check
 1192 that binds the predicted quantity to a verifiable oracle. In Python, we assert that invoking f on
 1193 the predicted `inputs` equals `expected_output`. In Java, we use `assertEquals` to compare
 1194 the method’s return value against the expected result (with appropriate boxing and tolerance where
 1195 needed). These assertions serve both as a standardized harness for evaluation and as a safeguard
 1196 against malformed instances; any example that fails to execute or violates the assertion under the
 1197 reference implementation is discarded.
 1198

1198 A.5 CODE REVIEW

1200 **Language Scope.** Our code review dataset covers the same ten widely used programming lan-
 1201 guages—C, C++, C#, Go, Java, JavaScript, TypeScript, PHP, Python, and Ruby—to ensure broad
 1202 applicability of models in generating reviews.
 1203

1204 **Project Selection and Data Collection.** Repositories created in 2023 were selected if they carried
 1205 a permissive license (e.g., Apache-2.0, MIT) and met a threshold of at least 100 stars at the 2025
 1206 crawl. Pull-request metadata and associated discussion threads for PRs opened in 2023 were then
 1207 harvested and filtered according to the CodeReviewer (Li et al., 2022) protocol; forks, and archived
 1208 projects were excluded.
 1209

1210 **Review pair extraction.** For each pull request, we parsed the unified diff and decomposed it into
 1211 individual diff hunks D using GitHub’s default context length, grouping changes by file. For every
 1212 hunk we selected the earliest human-authored review comment C that was paired with that hunk;
 1213 comments authored by the commit author were excluded. If multiple comments addressed the same
 1214 hunk, only the earliest was retained. The resulting collection of (D, C) pairs—diff hunks annotated
 1215 with human reviewer feedback—was used to train and evaluate automated code-review systems.
 1216

1217 **Dataset Statistics.** Table 6 summarizes the number of diff-review pairs collected for each language
 1218 after filtering and cleaning.
 1219

1220 Table 6: Diff–review Pair Counts by Language

1221 Language	1222 Count
1222 C	1223 4,138
1223 C++	1224 43,648
1224 C#	1225 18,055
1225 Java	1226 23,493
1226 Go	1227 44,191
1227 JavaScript	1228 11,634
1228 TypeScript	1229 109,813
1229 PHP	1230 2,186
1230 Python	1231 145,981
1231 Ruby	1232 3,597
1233 Total	
1234 406,736	

1234 A.6 TEST GENERATION

1235 **Dataset Selection.** We relied on a publicly available pipeline that augments focal-method context
 1236 to improve test-synthesis precision. For Python, we followed SYMPROMPT’s methodology (Ryan
 1237 et al., 2024), applying its context augmentation to 24 projects drawn from CODAMOSA (Lemieux
 1238 et al., 2023) to enrich each target function with module-level context. Because SYMPROMPT does
 1239 not provide explicit branch-coverage metadata, and because relying on users or LLMs to infer
 1240 branching can lead to insufficient coverage, we augmented the pipeline with lightweight branch
 1241 annotations (e.g., `has_branches` and `expected_branches`) to assist test construction.
 1242

1242 A.7 VULNERABILITY DETECTION
12431244 **Dataset Selection.** We adopted the PRIMEVUL benchmark (Ding et al., 2024), which
1245 comprises 6,968 expert-verified vulnerable functions and 228,800 benign functions spanning 140 Com-
1246 mon Weakness Enumerations (CWEs). PRIMEVUL provides expert-guided labels, rigorous de-
1247 duperlication to eliminate near-duplicate fragments, and chronological splits designed to prevent
1248 temporal leakage between training and test sets. We also used the PRIMEVUL-PAIRED dataset,
1249 which pairs each vulnerable function with its patched counterpart, enabling pairwise evaluation of a
1250 model’s sensitivity to semantic changes introduced by security fixes.
12511252 A.8 MULTI-MODALITY TASKS
12531254 To evaluate the model’s capability in handling multi-modality programming requirements, we adopt
1255 the DESIGNBENCH (Xiao et al., 2025), which encompasses three distinct tasks: UI code generation,
1256 UI code edit and UI code repair, defined as follows:
12571258 **UI Code Generation** (\mathcal{T}_G). The objective of UI code generation is to generate expected code based
1259 on the UI Mockups. Formally, given a UI design image I , the task aims to generate corresponding
1260 UI code C such that $\mathcal{T}_G : I \rightarrow C$. The input contains the UI design image I , and the output is the
1261 UI code C that accurately reproduces the visual layout and styling.
12621263 **UI Code Edit** (\mathcal{T}_E). The goal of the UI code edit is to generate front-end code that complies with
1264 user modification instructions. Given the original UI design image I_o , original UI code C_o , and
1265 user instruction T described in natural language, the task produces modified code C_{new} such that
1266 $\mathcal{T}_E : (I_o, C_o, T) \rightarrow C_{new}$. The input contains the original UI design image I_o , original UI code
1267 C_o , and user instruction T , while the output is the updated code C_{new} incorporating the requested
1268 modifications.
12691270 **UI Code Repair** (\mathcal{T}_R). The goal of the UI code repair is to repair the UI code with display issues.
1271 Given the problematic UI code C_p , the problematic UI image I_p , the task generates repaired UI code
1272 C_r such that $\mathcal{T}_R : (C_p, I_p) \rightarrow C_r$. The input contains the problematic UI code C_p and image I_p , the
1273 output is the repaired code C_r that resolves visual design issues.
12741275 A.9 CODE ROBUSTNESS
12761277 To evaluate LLM robustness, we adopt the CodeCrash (Lam et al., 2025), a unified stress-testing
1278 benchmark, to systematically evaluate model robustness in code reasoning under semantically pre-
1279 served perturbations using output prediction tasks (Gu et al., 2024). Specifically, CodeCrash designs
1280 four types of perturbations:
12811282 **Aggregated Structural Perturbations (PSC-ALL).** Combine variable renaming, expression re-
1283 formating, and garbage code injection to construct functionally equivalent but complex programs,
1284 representing traditional transformations that expose whether LLMs rely on pattern matching.
12851286 **Contextual-level Misleading Perturbations.** (1) **Misleading Code Comments (MCC):** Insert
1287 natural language comments that explicitly contradict the actual code logic, testing whether LLMs
1288 can filter out shallow misleading cues. (2) **Misleading Print Statements (MPS):** Embed misleading
1289 messages as print statements, probing whether the effect is tied to a specific injection format.
12901291 **Reasoning-level Misleading Perturbations (MHC).** Provide plausible but incorrect high-level
1292 hints about the expected outputs, directly challenging model reasoning and highlighting potential
1293 rationalization issues.
12941295 A.10 CODE-TREAT-LITE
12961297 We provide the complete benchmark dataset Code-TREAT as well as the sampled Code-TREAT-lite
1298 (as described above) in an anonymous Hugging Face repository ([https://huggingface.co/](https://huggingface.co/Code-TREAT/datasets)
1299 Code-TREAT/datasets). All experimental results in this paper are based on Code-TREAT-lite.
1300

Table 7: List of Evaluated LLMs

Model Name	Abbreviation	Size	Open-source
GPT-3.5-Turbo-0125	GPT-3.5	Unknown	×
GPT-4-Turbo-2024-04-09	GPT-4	Unknown	×
GPT-4o-2024-11-20	GPT-4o	Unknown	×
GPT-4.1-2025-04-14	GPT-4.1	Unknown	×
o3-Mini (Med)	o3-mini	Unknown	×
o4-Mini (Med)	o4-mini	Unknown	×
GPT-5	GPT-5	Unknown	×
Claude-3.5-Haiku	Claude-3.5-Haiku	Unknown	×
Claude-3.5-Sonnet	Claude-3.5-Sonnet	Unknown	×
Claude-3.7-Sonnet	Claude-3.7-Sonnet	Unknown	×
Claude-Sonnet-4	Claude-Sonnet-4	Unknown	×
Gemini-2.5-Pro-05-06	Gemini-2.5-Pro	Unknown	×
Grok-3-Mini (High)	Grok-3-Mini	Unknown	×
DeepSeek-V3	DeepSeek-V3	671B (37B active)	✓
DeepSeek-R1	DeepSeek-R1	671B (37B active)	✓
DeepSeek-R1 (0528)	DeepSeek-R1 (0528)	671B (37B active)	✓
Qwen2.5-72B-Instruct	Qwen2.5-72B	72B	✓
Qwen2.5-Coder-32B-Instruct	Qwen2.5-Coder-32B	32B	✓
Qwen3-32B	Qwen3-32B	32B	✓
Qwen3-30B-A3B	Qwen3-30B	30B (3B active)	✓
Qwen3-235B-A22B	Qwen3-235B	235B (22B active)	✓
LLaMA-3.1-8B-Instruct	LLaMA-3.1-8B	8B	✓
LLaMA-3.1-70B-Instruct	LLaMA-3.1-70B	70B	✓
LLaMA-3.3-70B-Instruct	LLaMA-3.3-70B	70B	✓
LLaMA-4-Scout-17B-16E-Instruct	LLaMA-4-Scout	109B (17B active)	✓
Gemma-3-27B-Instruct	Gemma-3-27B	27B	✓

B DETAILED EXPERIMENTAL SETUP

B.1 EVALUATED MODELS

As shown in Table 7, to provide a comprehensive evaluation across various LLMs, we evaluate 26 models of varying sizes and versions for general coding tasks, including both open-source and closed-source LLMs: GPT family (GPT-3.5-Turbo-0125, GPT-4-Turbo-2024-04-09, GPT-4o-2024-11-20, GPT-4.1-2025-04-14, o3-mini, o4-mini, GPT-5) (Hurst et al., 2024), Anthropic Claude (Claude-3.5-Haiku, Claude-3.5-Sonnet, Claude-3.7-Sonnet, Claude-Sonnet-4) (Anthropic, 2024), Google Gemini & Gemma (Gemini-2.5-Pro-05-06, Gemma-3-27B-Instruct) (Google AI, 2024), DeepSeek family (DeepSeek-V3, R1, R1-0528) (DeepSeek-AI et al., 2025b;a), Alibaba Qwen (Qwen2.5-72B-Instruct, Qwen-32B-Coder-Instruct, Qwen3-32B, Qwen3-30B-A3B, Qwen3-235B-A22B) (Yang et al., 2025b; Hui et al., 2024; Yang et al., 2025a), Meta LLaMA (LLaMA-3.1-8B-Instruct, LLaMA-3.1-70B-Instruct, LLaMA-3.3-70B-Instruct, LLaMA-4-Scout-17B-16E-Ins) (Meta, 2024), and xAI Grok (Grok-3-Mini) (xAI, 2025).

B.2 CODE GENERATION

Model Configuration. Following BIGCODEBENCH (Zhuo et al., 2024), we set the temperature to 0.8 and, where supported, use a top- p of 0.95. To accommodate both models limited to 8,192 tokens and those with larger context windows, we cap the maximum output length at $\min(\text{Token}_{max}, 16,384)$, where Token_{max} denotes the maximum token allowance of each individual model.

1350 **Prompt Design.** We employ three zero-shot prompt templates from recent benchmarks: BIG-
 1351 CODEBENCH (Zhuo et al., 2024), OCTOPACK (Muennighoff et al., 2023), and LIVE-
 1352 CODEBENCH (Jain et al., 2025), and retain the models’ default system prompt settings. The detailed
 1353 system and user prompts are provided in Appendix G.1.
 1354

1355 **Data Sampling & Testing.** Owing to the large size of our Code Generation dataset corpus, we con-
 1356 structed a balanced yet tractable evaluation suite by randomly sampling problems from two sources,
 1357 GEEKSFORGEEKS and HACKERRANK. For each language (Python and Java), we selected the same
 1358 set of problems, with approximately half drawn from each source, to ensure a representative mix of
 1359 difficulty levels and problem types. For every problem, the model receives only the natural-language
 1360 (NL) description and is prompted to produce a complete solution in Markdown.
 1361

1362 **Evaluation Process.** Model outputs were parsed from Markdown. If a response contained exactly
 1363 one fenced code block, we extracted that block as the implementation; otherwise we invoked a
 1364 secondary LLM-based extraction step to identify the intended implementation. The resulting code
 1365 was passed to an automated pipeline that compiles/interprets and runs it against the reference test
 1366 suite; syntax errors, runtime errors, and timeouts were recorded as failures.
 1367

1368 **Evaluation Metrics.** We adopt PASS@1 accuracy (Chen et al., 2021) as the primary evaluation
 1369 metric and scale all scores in $[0, 1]$ to percentages by multiplying by 100 for readability.
 1370

1370 B.3 CODE SUMMARIZATION

1372 **Model Configuration.** Following BIGCODEBENCH (Zhuo et al., 2024), we set the tempera-
 1373 ture to 0.8 and, where supported, use a top- p of 0.95. To accommodate both models limited
 1374 to 8,192 tokens and those with larger context windows, we cap the maximum output length at
 1375 $\min(\text{Token}_{max}, 16,384)$, where Token_{max} denotes the maximum token allowance of each indi-
 1376 vidual model.
 1377

1378 **Prompt Design.** We adopt the zero-shot direct prompt template from Sun et al. (Sun et al., 2025).
 1379 To increase prompt diversity, we then ask GPT-4o (Hurst et al., 2024) to generate two paraphrased
 1380 variants of this template, yielding three distinct prompts for each test example. In our system prompt,
 1381 we require models to output their answers in JSON format, in addition to the default helpful assistant
 1382 instructions. Detailed system and user prompts, including those for the LLM-as-Judge setting, are
 1383 provided in Appendix G.2.
 1384

1385 **Data Sample & Testing.** We randomly sample 200 function–docstring pairs to form a balanced
 1386 evaluation set. For each sample, the model was given only the function implementation and
 1387 prompted to produce a concise summary.
 1388

1389 **Evaluation Process.** We parsed the model’s response and extracted the first sentence, mirroring
 1390 the procedure used to isolate human docstrings in Shi et al. (Shi et al., 2022). The extracted sentences
 1391 (both model-generated and human-written) were then passed through the same cleaning pipeline
 1392 described in Shi et al. to normalize formatting and remove spurious tokens. Finally, the cleaned
 1393 summaries were evaluated in batch using an LLM-based judging pipeline that assigns quality scores
 (e.g., correctness, completeness, relevance) which we aggregate into the reported metrics.
 1394

1395 **Evaluation Metrics** Recognizing BLEU’s inability to capture nuanced summaries and the vari-
 1396 ability of human annotations, we follow recent work (Sun et al., 2025) in using an LLM judge.
 1397 Specifically, we prompt GPT-4o (Hurst et al., 2024) to assign each generated summary a quality
 1398 score from 1 to 5, where higher values denote better accuracy, conciseness, and informativeness.
 1399 We include the human reference summaries in the judging pool to establish a baseline. Finally, we
 1400 scale all scores in $[1, 5]$ to percentages by multiplying by 20 for readability.
 1401

1401 B.4 CODE TRANSLATION

1402 **Model Configuration.** Following BIGCODEBENCH (Zhuo et al., 2024), we set the tempera-
 1403 ture to 0.8 and, where supported, use a top- p of 0.95. To accommodate both models limited
 1404 to 8,192 tokens and those with larger context windows, we cap the maximum output length at
 1405 $\min(\text{Token}_{max}, 16,384)$, where Token_{max} denotes the maximum token allowance of each indi-
 1406 vidual model.
 1407

1404 to 8,192 tokens and those with larger context windows, we cap the maximum output length at
 1405 $\min(\text{Token}_{max}, 16,384)$, where Token_{max} denotes the maximum token allowance of each individual model.
 1406

1407
 1408 **Prompt Design.** We employ the zero-shot direct prompt template from POLYHUMAN EVAL (Sun
 1409 et al., 2025) and then use GPT-4o (Hurst et al., 2024) to generate two paraphrased variants, result-
 1410 ing in three prompts per example. In our system prompt, we instruct the models to act as a code
 1411 translation system. The detailed system and user prompts are provided in Appendix G.3.
 1412

1413 **Data Sampling & Testing.** To ensure a fair evaluation of model coding capabilities, we use the
 1414 same sample data for HACKERRANK as in the CODE GENERATION task, and conduct compre-
 1415 hensive testing on the POLYHUMAN EVAL benchmark. For each translation task, models receive
 1416 only the source-language implementation and are prompted to generate the corresponding target-
 1417 language implementation, which must be returned as a fenced code block in Markdown.
 1418

1419 **Evaluation Process.** Model outputs were parsed from Markdown. If a response contained exactly
 1420 one fenced code block, we extracted that block as the implementation; otherwise we invoked a
 1421 secondary LLM-based extraction step to identify the intended implementation. The resulting code
 1422 was passed to an automated pipeline that compiles/interprets and runs it against the reference test
 1423 suite; syntax errors, runtime errors, and timeouts were recorded as failures.
 1424

1425 **Evaluation Metrics.** We adopt PASS@1 accuracy (Chen et al., 2021) as the primary evaluation
 1426 metric and scale all scores in $[0, 1]$ to percentages by multiplying by 100 for readability.
 1427

1428 B.5 CODE REVIEW

1429 **Model Configuration.** Following BIGCODEBENCH (Zhuo et al., 2024), we set the tempera-
 1430 ture to 0.8 and, where supported, use a top- p of 0.95. To accommodate both models limited
 1431 to 8,192 tokens and those with larger context windows, we cap the maximum output length at
 1432 $\min(\text{Token}_{max}, 16,384)$, where Token_{max} denotes the maximum token allowance of each individual model.
 1433

1434 **Prompt Design.** We adopt the zero-shot prompt template from LLAMA-REVIEWER (Lu et al.,
 1435 2023) and use GPT-4o-2024-11-20 (Hurst et al., 2024) to generate two paraphrased variants, yield-
 1436 ing three prompts per example. In our system prompt, we instruct the models to act as special-
 1437 ized code reviewers and to produce comments in JSON format. The detailed system and user
 1438 prompts—including those used for LLM-as-Judge—are provided in Appendix G.4.
 1439

1440 **Data Sampling & Testing.** For each language we randomly sampled 200 diff-review pairs from
 1441 the union dataset, maintaining diversity by stratifying on change size and file type. Each example
 1442 consists of a single diff hunk; models were provided only the hunk and asked to generate a review
 1443 comment in the prescribed JSON format.
 1444

1445 **Evaluation Process.** We parse the model’s JSON response to extract the “comments” field.
 1446 Parsed comments are then scored using an LLM-as-judge procedure (GPT-4o), which rates lexical
 1447 similarity to the human reference review comment.
 1448

1449 **Evaluation Metrics.** Because BLEU scores are low and uninformative when comparing detailed
 1450 LLM reviews against human review comments, we follow Jiang et al. (Jiang et al., 2025) in using an
 1451 LLM as judge. We use an GPT-4o (Hurst et al., 2024) as the judge to rate each generated review’s
 1452 lexical similarity to the human reference on a 1–5 scale according to the following detailed setup:
 1453

- 1454 • **Judge Messages.** Judge model is prompted with a *system message* that instructs it to “grade a
 1455 generated code review,” mimic grading ten times internally, and then output only the final JSON
 1456 grade:
 1457

1458 { "grade":<integer 1-5> }

- **Grading Criteria.** The *judge prompt* presents both the generated and reference reviews and specifies:
 1. Grade = 5 if the review is identical to the reference.
 2. Grade = 4 if it is semantically equivalent despite wording differences.
 3. Grade = 3 if it correctly covers some reference comments.
 4. Grade = 2 if only loosely related in content.
 5. Grade = 1 if completely unrelated.
- **Aggregation.** We collect the JSON grades for all 200 samples per language and report (1) the mean grade, and (2) the distribution of grades 1 through 5 to analyze model performance and error modes. we scale all scores in [1, 5] to percentages by multiplying by 20 for readability.

1470 B.6 CODE REASONING

1471 **Model Configuration.** Following BIGCODEBENCH (Zhuo et al., 2024), we set the temperature
 1472 to 0.8 and, where supported, use a top- p of 0.95. To accommodate both models limited
 1473 to 8,192 tokens and those with larger context windows, we cap the maximum output length at
 1474 $\min(\text{Token}_{\max}, 16,384)$, where Token_{\max} denotes the maximum token allowance of each individual
 1475 model.

1477 **Prompt Design.** We adopt the zero-shot direct prompt template from CRUX (Gu et al., 2024)
 1478 and use GPT-4o (Hurst et al., 2024) to generate two paraphrased variants, yielding three prompts
 1479 per example. In our system prompt, we require models to output their answers in JSON format,
 1480 in addition to the default helpful assistant instructions. The detailed system and user prompts are
 1481 provided in Appendix G.5.

1482 **Data sampling & Testing.** We randomly sampled 200 problems from the union of HACKERRANK
 1483 and GEEKSFORGEEKS. For each problem we constructed two task variants: (1) input prediction —
 1484 the models receive the function and a masked input placeholder and are asked to produce concrete
 1485 input values; and (2) output prediction — the models receive the function and specific input(s) and
 1486 are asked to produce the expected output. Models were instructed to return answers in a compact,
 1487 programmatically parsable form (e.g., Python/Java literals or comma-separated values).

1489 **Evaluation process.** We use a simple, regex-first parsing pipeline: when a model reply clearly
 1490 contains the needed values we extract them with lightweight patterns and substitute them into the
 1491 masked assertion (e.g., `assert f(*inputs) == expected_output`). If the regex extraction
 1492 fails or is ambiguous, we fall back to a secondary LLM (GPT-4o-mini) to produce a canonical
 1493 representation for the assertion. The resulting assertions are executed; compilation errors, runtime
 1494 exceptions, and timeouts are recorded as failures.

1495 **Evaluation Metrics.** We use pass@1 accuracy (Chen et al., 2021) as our primary metric, where
 1496 each example is scored as 1 if the model’s prediction satisfies the assertion and 0 otherwise. We
 1497 report the average pass@1 over the evaluation set and and scale all score in [0, 1] to percentage by
 1498 multiplying 100 for improved readability.

1500 B.7 TEST GENERATION

1502 **Model Configuration.** Following BIGCODEBENCH (Zhuo et al., 2024), we set the temperature
 1503 to 0.8 and, where supported, use a top- p of 0.95. To accommodate both models limited
 1504 to 8,192 tokens and those with larger context windows, we cap the maximum output length at
 1505 $\min(\text{Token}_{\max}, 16,384)$, where Token_{\max} denotes the maximum token allowance of each individual
 1506 model.

1508 **Prompt Design.** We adopt the zero-shot direct prompt templates from SymPrompt (Ryan et al.,
 1509 2024) for Python. To enhance diversity, we ask GPT-4o (Hurst et al., 2024) to paraphrase each
 1510 template into two additional variants, yielding three distinct prompts. In our system prompt, we
 1511 instruct the models to act as a professional unit test writer. The detailed system prompt and user
 prompts are provided in Appendix G.6.

1512 **Data Sampling & Testing.** We randomly sample 200 functions from the CODAMOSA
 1513 dataset (Lemieux et al., 2023) with the context-assistant annotations provided by SYM-
 1514 PROMPT (Ryan et al., 2024).
 1515

1516 **Evaluation Process.** Model outputs were parsed from Markdown. The extracted test suite is ex-
 1517 ecuted with `pytest` (using `pytest-cov`) in a sandboxed environment; we record syntax errors,
 1518 runtime failures, test outcomes, timeouts, and per-example coverage.
 1519

1520 **Evaluation Metrics.** Following prior works (Yuan et al., 2023; Xie et al., 2023; Yang et al.,
 1521 2024d), we assess test quality using three metrics:
 1522

- **Compilation Success Rate (CSR):** code executing successfully or not.
- **Line Coverage (Cov_L):** the percentage of source-code lines exercised by the test suite.
- **Branch Coverage (Cov_B):** the percentage of control-flow branches executed by the test suite.

1528 B.8 VULNERABILITY DETECTION
 1529

1530 **Model Configuration.** Following BigCodeBench (Zhuo et al., 2024), we set the temperature to 0.8
 1531 and, where supported, use a top- p of 0.95. To accommodate both models limited to 8,192 tokens and
 1532 those with larger context windows, we cap the maximum output length at $\min(\text{Token}_{max}, 16,384)$,
 1533 where Token_{max} denotes the maximum token allowance of each individual model.
 1534

1535 **Prompt Design.** We adopt the zero-shot direct prompt templates from Ding et al. (Ding et al.,
 1536 2024) for both PRIMEVUL and PRIMEVUL-PAIRED. To increase prompt diversity, we ask GPT-
 1537 4o (Hurst et al., 2024) to generate two paraphrased variants of each template, yielding three prompts
 1538 per example. In our system prompt, we instruct the models to act as a security expert in analyzing
 1539 code for vulnerability. The detailed system prompt and user prompts are provided in Appendix G.7.
 1540

1541 **Data Sampling & Tesing.** We randomly sampled 200 single-function examples from PRIMEVUL
 1542 and 200 function pairs from PRIMEVUL-PAIRED. For the single-function set we enforced a class-
 1543 balance constraint so that the absolute difference between the number of *vulnerable* and *benign*
 1544 examples is < 10 to avoid skewed metrics and ensure stable comparisons.
 1545

1546 **Evaluation Process.** For PRIMEVUL, each model receives a single function and predicts either
 1547 *vulnerable* or *benign*. For PRIMEVUL-PAIRED, the model is shown both the vulnerable and patched
 1548 versions of a function and returns a pair of labels. Predictions are compared against ground-truth
 1549 annotations to produce per-example outcomes; we aggregate these outcomes to compute the reported
 1550 metrics.
 1551

1552 **Evaluation Metrics.** We evaluate the model performance using the following metrics:
 1553

- **PRIMEVUL Metrics.**
 - *Accuracy*: the fraction of correct predictions over all examples
 - *Precision*: the proportion of predicted vulnerabilities that are true vulnerabilities
 - *Recall*: the proportion proportion of actual vulnerabilities correctly identified
 - *F1-Score*: the harmonic mean of precision and recall
- **PRIMEVUL-PAIRED Metrics.** We treat each vulnerable-patched pair as a single instance, classifying the model’s joint prediction into one of four categories (Ding et al., 2024):
 - *Pair-wise Correct (P-C)*: both functions labeled correctly.
 - *Pair-wise Vulnerable (P-V)*: both functions (incorrectly) labeled vulnerable.
 - *Pair-wise Benign (P-B)*: both functions (incorrectly) labeled benign.
 - *Pair-wise Reversed (P-R)*: labels swapped between vulnerable and patched versions.

1566
1567

B.9 MULTI-MODALITY TASKS

1568
1569
1570
1571

Model Configuration. We evaluate eight MLLMs that have been widely explored in multi-modal tasks, namely GPT-4o-2024-11-20 (Hurst et al., 2024), GPT-5 (OpenAI, 2025b), Claude-3.7-Sonnet (Anthropic, 2024), Claude-Sonnet-4 (Anthropic, 2025b), Gemini-2.5, Gemini-2.0 (Doshi, 2025), Qwen2.5-VL-72B-Instruct (Qwen, 2025), LLaMA-3.2-90B-Vision (Meta, 2024).

1572
1573

In configuring the MLLMs, we set the temperature to 0 and the maximum number of tokens output to 16,384.

1574

Evaluation Metrics. We evaluate the model performance using the following metrics:

1575
1576

- **Visual Metrics.** CLIP (Radford et al., 2021) is applied to measure the semantic similarity between the generated and original webpages.
- **Code Metrics.** (1) *Compilation Success Rate (CSR)* represents the percentage of generated code that compiles successfully without errors. Assume that the total number of samples is N and the number of samples compiled successfully is S , then $CSR = \frac{S}{N}$. (2) *Code Modification Similarity (CMS)*. We employ the Jaccard similarity (Thada & Jaglan, 2013) to quantify the precision of code modifications on design edit and design repair tasks by comparing the sets of modified line numbers between the ground truth and generated code. Let A represent the set of line numbers modified in the ground truth code and B represent the set of line numbers modified in the generated code. The CMS is formally defined as: $CMS(A, B) = \frac{|A \cap B|}{|A \cup B|}$.
- **MLLM-as-Judge Metrics.** MLLMs have shown great performance in assisting judges across diverse modalities (Chen et al., 2024b; Wang et al., 2025b). Therefore, we prompt GPT-4o (Hurst et al., 2024) to determine whether the model meets the user’s requirements on the design edit task and resolve the design issues on the design repair task, and output an **MLLM score** between 0 and 10 with detailed explanations (0-3 denotes the poor edit/repair, 4-6 denotes partial edit/repair, 7-8 denotes good edit/repair and 9-10 denotes excellent edit/repair).

1593
1594

B.10 CODE ROBUSTNESS

1595
1596
1597
1598
1599
1600
1601

Model Configuration. We evaluate multiple models of varying sizes and versions, including both open-source and closed-source LLMs: GPT family (GPT-4o, GPT-4o-mini, GPT-4.1, 5, o4-mini) (Hurst et al., 2024; OpenAI, 2025a;b), Anthropic Claude (Claude-3.5-Sonnet, 3.7-Sonnet, Claude-Sonnet-4) (Anthropic, 2024; 2025a;b), Google Gemini (Gemini-2.5-Pro) (Doshi, 2025), DeepSeek (DeepSeek-V3, R1) (DeepSeek-AI et al., 2025b), Alibaba Qwen (Qwen2.5-32B-Coder-Instruct, Qwen2.5-72B-Instruct, Qwen3-32B, 235B-A22B) (Hui et al., 2024; Yang et al., 2025b;a), and Meta LLaMA (LLaMA-3.1-70B-Instruct, LLaMA-3.3-70B-Instruct) (Grattafiori et al., 2024).

1602
1603
1604
1605
1606

Evaluation Metrics. We adopt PASS@1 accuracy (Chen et al., 2021) as the primary evaluation metric and scale all scores in $[0, 1]$ to percentages by multiplying by 100 for readability. All perturbed results are reported as relative ($\Delta\% = \frac{\text{Perturbed-VAN}}{\text{VAN}} \times 100\%$) differences from the corresponding vanilla baseline.

1607
1608
1609
1610

C DETAILED EXPERIMENT RESULTS AND ANALYSIS

1611

C.1 CODE GENERATION

1612
1613
1614
1615
1616
1617
1618
1619

Model Performance and Language Effects. Table 8 summarizes Pass@1 accuracy on code generation tasks, split by model, language (Python, Java), and dataset (GeeksforGeeks, HackerRank). GPT-5 establishes itself as the clear leader, achieving the highest accuracy across all splits, including an overall Pass@1 of 89.9%, with 91.5% on GeeksforGeeks and 85.3% on HackerRank. Its performance is robust across both Python (89.1%) and Java (90.8%), suggesting strong cross-language capability and minimal bias between these languages at the frontier of model capabilities. Second-tier models, such as o3-mini at 79.9% and GPT-4.1 at 76.8%, lag behind GPT-5 by a significant margin—over 10 percentage points in most splits. Among all evaluated models, there is a rapid drop-off after the top performers, with accuracy for the majority of models clustering in the 50–70% range, indicating a clear stratification in current code generation capabilities.

1620 Table 8: Model Performance on Code Generation. The top three results on each task are highlighted
 1621 in green (1st) , orange (2nd) , and blue (3rd) backgrounds, respectively.
 1622

Model	Overall			Python			Java				
	Overall	GeeksforGeeks	HackerRank	Overall			GeeksforGeeks	HackerRank	Overall	GeeksforGeeks	HackerRank
				GeeksforGeeks	HackerRank	Overall					
GPT-5	89.9	91.5	85.3	89.1	90.4	84.9	90.8	92.5	85.7		
o3-mini (Med)	79.9	81.4	75.6	82.2	84.0	76.9	77.6	78.7	74.4		
GPT-4.1-2025-04-14	76.8	79.4		68.8	77.8	81.2	67.5	75.7	77.6	70.0	
o4-mini (Med)	74.2	76.9	65.9	79.5	81.7		72.8	68.8	72.1	59.0	
Claude-Sonnet-4	74.0	75.4	69.7	75.0	76.9	69.2	73.0	73.9	70.2		
Grok-3-Mini (High)	73.4	73.9	71.8	70.6	71.8	67.1	76.1	76.0	76.4		
Claude-3.7-Sonnet	70.0	70.1	69.6	68.2	67.3	71.0	71.7	72.9	68.3		
Qwen3-30B-A3B	69.0	74.3	53.0	70.6	77.7	49.0	67.4	70.8	57.1		
DeepSeek-R1 (0528)	68.8	68.0	71.0	70.3	70.8	68.8	67.2	65.2	73.2		
GPT-4o-2024-11-20	66.4	68.4	60.4	71.0	73.3	63.8	61.8	63.4	57.1		
DeepSeek-V3	65.2	66.2	62.5	75.3	77.7	68.3	55.2	54.6	56.7		
Qwen2.5-72B-Instruct	63.8	65.3	59.2	65.2	66.1	62.5	62.3	64.4	55.9		
Qwen3-235B-A22B	63.2	63.1	63.8	64.7	65.4	62.7	61.8	60.7	64.9		
Qwen3-32B	63.1	64.5	58.8	66.3	69.6	56.4	59.9	59.5	61.2		
Qwen2.5-Coder-32B-Instruct	62.5	64.4	57.0	64.4	66.9	56.9	60.7	61.9	57.1		
Gemini-2.5-Pro-05-06	61.1	60.7	62.3	68.1	65.4	76.3	54.1	56.0	48.4		
DeepSeek-R1	59.9	55.6	72.7	61.0	57.9	70.5	58.8	53.4	74.8		
Claude-3.5-Sonnet	59.5	62.4	50.6	60.0	62.4	52.9	58.9	62.5	48.2		
GPT-4-turbo-2024-04-09	59.5	60.4	56.6	65.1	66.4	61.1	53.8	54.4	52.1		
Gemma-3-27B-Instruct	51.3	52.1	48.7	57.7	59.3	52.9	44.9	45.0	44.6		
Llama-4-Scout-17B-16E-Instruct	51.2	51.3	51.0	52.8	53.8	49.7	49.6	48.7	52.4		
Claude-3.5-Haiku	50.9	55.8	36.0	60.6	65.7	45.4	41.1	46.0	26.6		
GPT-3.5-turbo-0125	50.6	51.7	47.0	53.8	55.7	48.1	47.4	47.8	46.0		
Llama-3.1-70B-Instruct	48.7	50.3	43.9	49.8	51.7	43.9	47.6	48.9	43.9		
Llama-3.3-70B-Instruct	40.7	37.9	49.1	39.7	37.3	46.8	41.7	38.5	51.4		
Llama-3.1-8B-Instruct	31.8	33.1	27.7	33.1	34.6	28.8	30.4	31.6	26.6		

One notable observation is the prevalence of instruction drift: models sometimes generate unsolicited usage examples or disregard required code templates. This behavior results in outputs that are incompatible with automated evaluation harnesses, leading to an underestimation of their actual coding ability in certain cases. Despite such issues, the overall rankings remain consistent and robust across different benchmarks and codebases.

Task-Specific Limitations and Performance Bottlenecks. The analysis highlights several persistent challenges in current model performance. Most prominently, there is a systematic bias toward Python across almost all models except GPT-5, as evidenced by a consistent 10–20 percentage point performance gap in favor of Python over Java. This bias likely stems from imbalances in pre-training and fine-tuning datasets, which tend to heavily favor Python, thus equipping models with stronger priors for Python syntax, idioms, and library usage. Additionally, prompt misinterpretation emerges as a recurring bottleneck, particularly for Java. When prompts use phrasings such as “write a {lang} script” and lang is set to Java, several models mistakenly generate JavaScript code. This systematic evaluation artifact results in unconditional failures for affected Java test cases and reveals a vulnerability in current prompt understanding, especially when language names overlap with other widely-used programming languages. Together, these findings underscore the need for more balanced and robust instruction-following, as well as improved prompt disambiguation and better handling of language-specific conventions in next-generation code models.

C.2 CODE SUMMARIZATION

Model Performance and Language Effects. Table 9 summarizes model performance on code summarization tasks, as measured by GPT-4o judge scores across a variety of programming languages. GPT-5 leads with an exceptional overall quality score of 98.4%, consistently outperforming all competitors across nearly every language, including C, C++, Java, Python, and JavaScript, where scores frequently exceed 98%. Claude-3.5-Sonnet and LLaMA-3.3-70B also demonstrate strong capabilities, achieving overall scores of 96.5% and 96.0%, respectively, with their best results clustering closely to the top performer. Across the board, most large and instruction-tuned models maintain remarkably high summarization quality, often in the 95–99% range for mainstream languages, and all substantially exceed the human baseline of 44.6%. This wide margin highlights the brevity and sparsity typical of organic docstrings, which the LLMs’ outputs decisively surpass in both completeness and style. Notably, model scale and instruction quality are primary drivers of performance, as reasoning-oriented models such as DeepSeek-R1 and Gemini-2.5-Pro do not exhibit any consistent advantage in this task. Instead, their results underscore the importance of fine-tuning and

1674 Table 9: Model Performance on Code Summarization (%). The top three results on each task are
 1675 highlighted in green (1^{st}), orange (2^{nd}), and blue (3^{rd}) backgrounds, respectively.
 1676

1677 ^{*}JS = JavaScript, TS = TypeScript
 1678

Model	Overall	C	C++	C#	Go	Java	JS	TS	PHP	Python	Ruby
GPT-5	98.4	99.0	99.0	99.0	99.6	99.2	98.3	99.2	98.4	98.6	93.8
Claude-3.5-Sonnet	96.5	97.2	95.8	96.0	96.0	95.5	97.4	97.5	96.9	95.9	97.2
LLaMA-3.3-70B-Instruct	96.0	94.6	96.1	95.8	96.7	96.5	95.7	96.6	97.1	95.6	95.4
Qwen3-235B-A22B	95.3	95.6	94.7	95.1	95.5	95.7	95.8	94.7	95.6	96.1	94.3
Claude-Sonnet-4	93.8	91.8	93.8	94.1	93.1	94.4	94.2	93.7	95.1	93.2	94.3
DeepSeek-V3	92.8	94.3	93.4	92.6	92.0	91.6	92.5	92.4	91.8	94.4	93.2
DeepSeek-R1 (0528)	90.6	92.3	91.5	90.8	88.8	89.5	90.3	91.0	88.7	94.5	88.9
Qwen3-32B	90.2	92.6	90.3	90.0	88.0	86.7	91.4	90.0	90.1	93.6	89.2
GPT-4-turbo-2024-04-09	90.0	91.4	90.3	89.8	91.3	87.8	89.7	89.3	87.6	91.2	91.1
Claude-3.7-Sonnet	88.1	87.4	88.0	86.4	87.7	83.6	88.9	87.8	88.9	90.4	91.9
GPT-4o-2024-11-20	87.7	86.7	86.9	90.0	86.9	86.5	87.1	87.2	86.8	87.8	91.2
Qwen2.5-Coder-32B-Instruct	86.8	87.0	86.0	85.3	88.9	85.2	89.0	87.3	86.0	87.6	85.6
Qwen2.5-72B-Instruct	86.5	87.4	86.8	87.7	86.0	84.4	86.6	86.8	84.7	87.7	87.3
Claude-3.5-Haiku	85.2	87.0	85.5	82.9	88.1	86.8	87.0	86.5	85.2	87.3	76.0
Grok-3-Mini (High)	85.1	85.8	85.4	83.9	85.6	84.1	85.8	86.6	84.7	85.4	83.7
o4-mini (Med)	84.6	84.3	85.3	83.7	87.7	83.3	85.6	86.0	83.7	87.9	78.5
Gemma-3-27B-Instruct	83.0	80.6	81.5	83.1	82.6	82.3	83.5	82.3	84.3	84.7	84.6
Qwen3-30B-A3B	81.4	82.5	80.1	81.3	81.7	77.5	81.8	82.0	80.3	84.1	83.1
GPT-4.1-2025-04-14	80.2	79.0	79.8	78.8	82.1	80.5	80.9	80.3	80.5	80.0	80.4
o3-mini (Med)	79.5	86.7	87.0	86.1	87.2	82.9	86.7	84.8	85.5	23.0	85.4
Gemini-2.5-Pro-05-06	78.7	78.1	77.4	79.7	79.9	74.2	82.0	80.2	80.3	77.1	78.3
LLaMA-3.1-70B-Instruct	74.5	74.2	75.4	78.5	73.3	74.9	75.9	75.2	79.0	67.8	71.1
LLaMA-4-Scout-17B-16E-Instruct	74.4	70.6	71.7	79.6	75.9	77.2	73.7	72.5	77.0	70.3	75.2
GPT-3.5-turbo-0125	71.2	71.9	70.4	72.9	70.3	70.2	69.2	71.3	72.2	71.3	72.2
LLaMA-3.1-8B-Instruct	64.2	59.9	64.0	64.9	66.7	63.8	64.5	64.2	64.6	61.7	67.6
Human Baseline	44.6	44.1	38.2	41.8	54.3	34.8	45.4	40.1	48.3	48.8	50.7

1707
 1708 high-quality, language-specific training data for code summarization. There is minimal variation
 1709 across programming languages, with even lower-resource languages such as Ruby and PHP receiving
 1710 high-quality summaries from the top models, further confirming the strong generalization of
 1711 frontier LLMs.
 1712

1713 **Task-Specific Limitations and Performance Bottlenecks.** Despite near-ceiling performance from
 1714 leading models, while our evaluation setup follows the most widely adopted practices in the
 1715 field (Sun et al., 2025), our experimental observations reveal that this methodology may still present
 1716 several issues for further resolution. The use of a single LLM judge, such as GPT-4o, may introduce
 1717 bias and style sensitivity, as its preferences for certain phrasings or lengths can influence scores
 1718 independently of semantic correctness. Minor formatting differences or stylistic choices may there-
 1719 fore yield notable score shifts, even in cases where the underlying summary remains unchanged.
 1720 Furthermore, although efforts are made to ensure the judge differs from the evaluated models, there
 1721 remains a risk of cross-family self-preference, potentially inflating the scores for some model fam-
 1722 ilies. Pairwise comparisons mitigate but do not eliminate this concern. Another artifact of the
 1723 evaluation pipeline is the uniform truncation of outputs to the first sentence, which can inadvertently
 1724 penalize models that prepend reasoning or place their core summary at the end, this is observed,
 1725 for instance, in o3-mini’s Python summaries. This truncation policy is applied to all models with-
 1726 out model-specific adjustment, ensuring fairness but possibly underestimating some models’ true
 1727 summarization ability. Taken together, these factors highlight that while current models display ex-
 1728 traordinary summarization accuracy, subtle evaluation artifacts and judge-related biases represent
 1729 the main bottlenecks to further performance gains in this setting.

1728 C.3 CODE TRANSLATION
17291730 Table 10: Model Performance on Code Translation (%). The top three results on each task are
1731 highlighted in green (1st), orange (2nd), and blue (3rd) backgrounds, respectively.
1732

1734 Model	1735 Overall			1736 HackerRank			1737 PolyHumanEval		
	1738 Overall	1739 Python→Java	1740 Java→Python	1741 Overall	1742 Python→Java	1743 Java→Python	1744 Overall	1745 Python→Java	1746 Java→Python
GPT-5	97.9	98.1	97.8	97.1	97.9	96.3	99.0	98.4	99.6
o3-mini (Med)	92.8	90.9	94.8	89.3	87.3	91.3	97.3	95.3	99.2
Gemini-2.5-Pro-05-06	90.3	92.6	88.0	84.9	88.9	80.9	97.1	97.2	97.0
DeepSeek-R1	89.2	87.0	91.4	84.2	82.5	85.9	95.5	92.7	98.4
Grok-3-Mini (High)	87.7	86.5	88.8	81.8	81.8	81.3	95.2	92.3	98.2
GPT-4.1-2025-04-14	87.6	86.6	88.6	80.0	79.6	80.4	97.2	95.3	99.0
Qwen3-235B-A22B	87.1	82.1	92.1	80.8	74.5	87.2	95.0	91.7	98.4
DeepSeek-R1 (0528)	87.0	84.7	89.2	83.5	83.5	91.4	86.2	96.2	
Qwen3-32B	86.0	82.3	89.7	79.7	76.3	83.2	93.9	89.8	98.0
Claude-Sonnet-4	86.0	86.9	85.0	76.6	79.3	73.9	97.9	96.5	99.2
Claude-3.7-Sonnet	85.1	84.1	86.1	78.0	80.6	75.5	94.0	88.4	99.6
DeepSeek-V3	82.1	80.4	83.9	71.6	70.4	72.8	95.5	93.1	98.0
GPT-4o-2024-11-20	82.0	80.8	83.2	70.7	70.8	70.5	96.3	93.5	99.2
Claude-3.5-Sonnet	81.7	82.9	80.5	74.2	79.5	68.9	91.2	87.2	95.1
o4-mini (Med)	81.0	79.5	82.5	70.0	67.9	72.0	95.0	94.1	95.9
GPT-4-turbo-2024-04-09	80.1	78.0	82.2	69.4	68.3	70.5	93.7	90.4	97.0
Qwen3-30B-A3B	80.1	75.2	85.0	69.5	64.4	74.5	93.6	88.8	98.4
Claude-3.5-Haiku	75.0	72.7	77.2	61.5	61.1	61.9	92.1	87.4	96.7
Qwen2.5-Coder-32B-Instruct	74.6	74.7	74.5	58.4	59.9	56.9	95.1	93.5	96.7
Qwen2.5-72B-Instruct	72.5	75.9	69.1	56.2	59.8	52.6	93.2	96.3	90.0
Llama-3.3-70B-Instruct	70.0	68.8	71.1	57.1	58.2	55.9	86.4	82.3	90.4
Llama-3.1-70B-Instruct	67.7	68.2	67.2	51.8	54.3	49.2	87.9	85.8	90.0
GPT-3.5-turbo-0125	66.5	66.8	66.2	47.6	49.5	45.7	90.5	88.8	92.3
Gemma-3-27B-Instruct	65.9	65.4	66.3	46.6	49.8	43.4	90.2	85.2	95.3
Llama-4-Scout-17B-16E-Instruct	64.4	63.1	65.8	49.4	50.6	48.2	83.4	78.9	88.0
Llama-3.1-8B-Instruct	49.6	47.2	52.1	29.1	31.4	26.8	75.7	67.3	84.1

1751 **Model Performance and Dataset Effects.** Table 10 presents a comprehensive comparison of
1752 LLMs on Python↔Java code translation, reporting Pass@1 accuracy across both HACKERRANK
1753 and POLYHUMANEVAL benchmarks. GPT-5 establishes a new state-of-the-art with 97.9% over-
1754 all accuracy, maintaining exceptional results in both directions and across datasets, including up to
1755 99.0% on PolyHumanEval. The next tier—o3-mini and Gemini-2.5-Pro—remains highly competitive
1756 ($\geq 90\%$), while most leading models cluster above 85%. Among the strongest models, trans-
1757 lation is nearly symmetric in both directions, confirming balanced competence. Notably, Pass@1
1758 scores are systematically higher on POLYHUMANEVAL than on HACKERRANK for all model tiers
1759 and translation directions, indicating that POLYHUMANEVAL is a relative easier benchmark, likely
1760 due to models’ greater exposure to HumanEval-style problems in pretraining. There is a sharp per-
1761 formance drop beyond the frontier models, with accuracy falling into the 65–75% range for lower
1762 tiers. Overall, the results reveal a clear capacity–performance scaling effect, with newer and larger
1763 models outperforming smaller or earlier versions by a substantial margin.

1764 **Task-Specific Limitations and Performance Bottlenecks.** Despite these advances, several chal-
1765 lenges remain prominent, particularly among mid- and lower-tier models. While leading models
1766 exhibit robust and symmetric performance, many smaller models show a tendency for higher accu-
1767 racy in the Java→Python direction, benefiting from Python’s more permissive syntax and forgiving
1768 I/O; however, this advantage is not universal, with some exceptions observed. The significant and
1769 consistent gap between results on POLYHUMANEVAL and HACKERRANK underscores a broader
1770 limitation in model generalization: most models achieve high performance on familiar, benchmark-
1771 like problems but are less reliable on the stricter or more diverse scenarios found in HackerRank. For
1772 less capable models, accuracy drops sharply, reflecting both a lack of robustness to new evaluation
1773 harnesses and a persistent gap between surface-level correctness and deeper semantic understanding.
1774 These findings highlight that, although state-of-the-art models now translate code between Python
1775 and Java with near-perfect fidelity on established benchmarks, substantial room for improvement re-
1776 mains in achieving robust and generalizable code translation across diverse datasets and real-world
1777 settings.

1778 C.4 CODE REVIEW
1779

1780 **Model Performance and Language Effects.** Table 11 presents the lexical similarity ratings of
1781 contemporary large language models (LLMs) on code review generation, as evaluated by GPT-4o,
which assesses how closely model-generated reviews resemble human-written references in terms of

1782 Table 11: Model Performance on Code Review Generation (%). The top three results on each task
1783 are highlighted in green (1st), orange (2nd), and blue (3rd) backgrounds, respectively.
1784

Model	Overall	C	Cpp	Csharp	Go	Java	JavaScript	Php	Python	Ruby	TypeScript
Gemma-3-27B-Instruct	31.7	28.9	30.6	32.3	32.1	30.9	34.3	30.5	33.0	33.0	31.7
Qwen3-30B-A3B	31.6	29.9	31.9	31.1	33.0	30.9	32.9	31.1	32.7	31.4	30.8
Gemini-2.5-Pro-05-06	31.5	29.3	31.5	31.5	31.2	30.1	35.0	29.9	32.4	32.6	31.4
Qwen2.5-72B-Instruct	31.3	29.5	31.0	31.9	32.5	30.1	35.0	29.6	31.7	31.0	30.5
DeepSeek-R1 (0528)	31.1	28.5	30.9	31.4	31.9	30.9	34.4	29.3	31.5	31.4	31.3
o3-mini (Med)	31.1	28.6	31.5	31.0	31.7	30.2	34.8	29.9	31.6	31.3	30.7
Qwen2.5-Coder-32B-Instruct	31.1	29.0	31.1	31.5	31.1	30.3	34.7	29.1	31.9	31.1	31.0
Grok-3-Mini (High)	30.9	28.7	30.4	31.2	31.9	30.9	33.6	29.4	31.2	30.8	31.5
Qwen3-235B-A22B	30.9	28.9	30.3	30.9	32.0	29.4	34.4	29.3	31.6	31.2	31.5
Claude-Sonnet-4	30.9	28.7	30.6	31.3	31.4	29.6	34.1	30.1	31.2	31.4	31.0
DeepSeek-V3	30.9	28.1	29.9	31.1	31.9	30.4	33.5	30.4	32.0	30.2	31.4
LLaMA-3.3-70B-Instruct	30.7	28.4	29.4	31.9	31.2	29.8	32.9	29.3	31.8	31.6	30.7
Claude-3.5-Haiku	30.6	28.9	31.6	30.5	31.3	30.2	30.7	31.3	30.1	30.1	31.0
Claude-3.7-Sonnet	30.4	28.6	30.6	31.1	31.1	30.3	32.6	29.6	30.1	30.2	30.1
GPT-3.5-turbo-0125	30.4	30.5	31.6	29.7	31.6	30.7	29.6	29.0	32.4	29.2	29.8
Qwen3-32B	30.4	29.0	29.9	30.1	31.3	30.2	32.5	29.5	30.5	29.9	30.7
GPT-4o-2024-11-20	30.3	28.3	30.5	29.8	30.8	29.5	34.1	28.9	30.4	30.7	30.3
LLaMA-3.1-8B-Instruct	30.2	28.4	29.2	29.0	31.3	30.2	32.0	28.8	31.5	31.0	30.7
LLaMA-3.1-70B-Instruct	30.2	28.4	29.9	30.4	31.1	29.3	32.3	29.4	30.8	30.3	29.7
LLaMA-4-Scout-17B-16E-Instruct	30.1	28.3	29.7	30.2	30.7	29.5	32.3	29.1	30.7	30.2	30.4
Claude-3.5-Sonnet	30.0	28.7	29.0	30.0	30.8	29.4	33.2	28.3	30.0	30.1	30.1
GPT-4-turbo-2024-04-09	29.7	27.3	29.1	30.1	30.7	29.3	32.3	29.6	29.1	29.4	29.9
GPT-4.1-2025-04-14	29.4	27.3	28.5	29.0	30.2	29.2	32.6	28.7	29.8	28.8	30.4
o4-mini (Med)	29.0	26.9	28.5	28.8	29.6	28.3	32.5	28.0	28.8	29.3	29.4
DeepSeek-R1	27.3	24.9	27.0	26.4	27.9	27.2	30.6	25.7	28.0	26.6	28.2
GPT-5	26.9	24.3	26.6	26.9	26.7	25.8	30.5	25.7	26.9	26.9	28.4

wording, structure, and focus. In this evaluation, higher ratings indicate that a model’s review is lexically and stylistically closer to the human reference, while lower ratings reflect greater divergence. Gemma-3-27B achieves the highest overall similarity rating at 31.7%, closely followed by Qwen3-30B (31.6%) and Gemini-2.5-Pro (31.5%), with leading models demonstrating robust performance across a diverse set of programming languages. For instance, Gemma-3-27B obtains the top similarity ratings in languages such as Java, Python, Ruby, and TypeScript, while Qwen3-30B and Gemini-2.5-Pro excel in Cpp, Go, and JavaScript. Notably, in JavaScript, both Gemini-2.5-Pro and Qwen2.5-72B attain the highest similarity rating (35.0%), underscoring the competitive landscape. Despite these achievements, the overall ratings remain modest and tightly clustered, reflecting the inherent challenge of matching human reviewer style and phrasing under this evaluation protocol.

Task-Specific Limitations and Performance Bottlenecks. The main limitation of this task lies in the evaluation method. Although we follow the popular LLM-as-a-judge evaluation method in this field, the dependence on a single human-written reference and lexical similarity as judged by GPT-4o may pose some limitations. The metric inherently favors model outputs that closely mimic the specific language and focus of the human review, rather than those that offer unique, alternative, or equally valid critiques. Consequently, a higher similarity rating signals a closer match to the reference in terms of phrasing and content, while a lower rating often indicates linguistic or stylistic divergence, not necessarily a deficiency in review quality. Furthermore, even state-of-the-art models that generate comprehensive or insightful comments may receive limited credit when the reference review is incomplete, uninformative, or fails to address key issues in the code. This phenomenon is particularly evident with models such as GPT-5, which perform strongly across most code-related tasks and frequently generate high-quality, detailed review comments. Despite this, GPT-5 may still obtain relatively modest similarity ratings if its suggestions differ from or go beyond those present in the human reference, especially in cases where the reference itself is shallow or lacks substance. This reliance on potentially limited human reviews as ground truth can obscure genuine advances in model capability, and may penalize models that identify subtle bugs or offer substantive suggestions overlooked by the reference. The constrained spread of similarity ratings among leading models thus suggests that current progress is bounded by the ability to imitate the human reference rather than provide substantively better reviews.

C.5 CODE REASONING

Table 12: Model Performance (%) on Code Reasoning. The top three results on each task are highlighted in green (1^{st}), orange (2^{nd}), and blue (3^{rd}) backgrounds, respectively.

Model	Overall			Input			Output		
	Overall	Python	Java	Overall	Python	Java	Overall	Python	Java
o4-mini (Med)	98.1	96.6	99.5	97.7	96.1	99.3	98.4	97.1	99.7
GPT-5	97.8	95.7	100.0	98.2	96.4	100.0	97.5	94.9	100.0
Gemini-2.5-Pro-05-06	97.2	95.4	99.0	98.2	97.7	98.8	96.2	93.2	99.1
o3-mini (Med)	97.0	94.6	99.5	96.9	94.6	99.3	97.2	94.6	99.7
DeepSeek-R1 (0528)	96.7	94.7	98.7	97.0	95.3	98.6	96.3	94.0	98.7
Grok-3-Mini (High)	96.4	93.3	99.5	97.0	94.5	99.4	95.8	92.1	99.5
DeepSeek-R1	95.1	93.0	97.2	95.4	94.7	96.0	94.8	91.3	98.3
Qwen3-235B-A22B	94.1	90.5	97.6	93.4	89.9	96.9	94.8	91.2	98.3
Qwen3-32B	94.0	91.5	96.5	93.6	91.3	96.0	94.4	91.7	97.1
Qwen3-30B-A3B	92.3	89.6	95.0	91.5	89.0	93.9	93.2	90.2	96.1
Claude-Sonnet-4	87.8	85.7	90.0	85.2	83.8	86.7	90.5	87.6	93.3
GPT-4.1-2025-04-14	63.5	61.8	65.2	59.9	57.5	62.2	67.1	66.0	68.2
Claude-3.5-Sonnet	60.1	58.9	61.3	56.3	53.4	59.3	63.8	64.4	63.2
DeepSeek-V3	57.7	56.8	58.5	52.8	51.9	53.7	62.6	61.8	63.4
GPT-4o-2024-11-20	57.7	55.2	60.1	54.2	52.7	55.7	61.1	57.7	64.6
Claude-3.7-Sonnet	57.6	55.0	60.1	54.0	51.1	57.0	61.1	59.0	63.1
Qwen2.5-Coder-32B	56.2	52.6	59.7	50.8	45.3	56.3	61.5	59.9	63.2
GPT-4-turbo-2024-04-09	53.6	52.4	54.8	51.1	49.2	53.0	56.1	55.7	56.6
LLaMA-4-Scout	48.4	47.5	49.2	40.9	35.4	46.4	55.8	59.7	52.0
Qwen2.5-72B	48.2	48.2	48.3	43.5	41.9	45.1	53.0	54.5	51.4
LLaMA-3.3-70B	47.2	43.8	50.7	45.5	39.5	51.5	49.0	48.0	49.9
Claude-3.5-Haiku	46.1	45.4	46.7	42.7	40.0	45.3	49.5	50.7	48.2
Gemma-3-27B-Instruct	41.6	39.0	44.3	37.3	30.4	44.1	46.0	47.5	44.5
LLaMA-3.1-70B	41.5	38.1	45.0	38.7	33.5	43.9	44.4	42.6	46.1
GPT-3.5-turbo-0125	34.8	35.1	34.4	32.5	30.9	34.1	37.0	39.3	34.7
LLaMA-3.1-8B	28.8	32.6	25.0	26.7	29.9	23.6	30.8	35.2	26.4

Model Performance and Reasoning Effects. Table 12 provides a comprehensive overview of model capabilities on code reasoning tasks, measured through input and output prediction accuracy in both Python and Java. The results indicate a marked stratification among model families, with GPT-5 and Gemini-2.5-Pro setting the state of the art. o4-mini achieves the highest overall Pass@1 accuracy of 98.1%, maintaining balanced strength across both Python and Java. GPT-5 excels particularly on Java, reaching perfect accuracy in both overall and output prediction, and maintaining a strong position on Python. Gemini-2.5-Pro stands out for its superior input prediction in Python and competitive results elsewhere. Other models such as o3-mini, DeepSeek-R1, and Grok-3-Mini also demonstrate consistently high accuracy, illustrating that advances in architecture and scaling correlate directly with improved reasoning performance. Notably, this capacity-reasoning relationship becomes increasingly evident in more complex settings; larger and more recent models consistently outperform earlier or smaller counterparts, particularly in Python where the task demands more sophisticated reasoning. In contrast, models like Claude-Sonnet-4, which perform well in web-based evaluations, do not transfer this advantage fully to code reasoning, as evidenced by a lower overall accuracy of 87.8%. The trailing group of models, including GPT-3.5, LLaMA-3.1-8B, and compact Qwen or Gemma variants, remain limited in their reasoning capabilities, frequently falling below 50% overall accuracy. This sharp divide underscores the importance of both model scale and design in supporting complex reasoning tasks across programming languages.

Task-Specific Limitations and Performance Bottlenecks. Further examination of the results highlights persistent bottlenecks that inhibit optimal model performance, particularly in input reasoning

for Python. Even among top-performing models, there is a clear and recurring gap between Python and Java, with input prediction in Python proving more challenging and less consistent. A key factor underlying this discrepancy appears to be the inherent flexibility and less rigid syntax of Python, which increases the potential for subtle formatting and representation errors in predicted inputs or outputs. Models frequently struggle with faithfully preserving the expected structure of string literals and variable representations in Python, leading to a measurable drop in accuracy, whereas Java’s stricter and more explicit syntax mitigates such issues and enables higher reliability in both input and output prediction. This trend is further accentuated among mid- and lower-tier models, where input reasoning accuracy for Python can fall below 60% or even lower, in stark contrast to the consistently higher performance observed in Java. These results suggest that despite recent progress, current architectures still face significant obstacles in capturing and generalizing language-specific conventions, particularly in the more flexible and variable Python setting. Addressing these bottlenecks will require not only continued scaling but also more targeted innovations in code understanding and syntactic reasoning across diverse programming paradigms.

C.6 TEST GENERATION

Table 13: Model Performance (%) on Test Generation. The top three results on each task are highlighted in green (1^{st}), orange (2^{nd}), and blue (3^{rd}) backgrounds, respectively.

	Model	SymPrompt		
		CSR	Cov _L	Cov _{Br}
1913	Claude-3.5-Sonnet	99.8	73.2	70.3
1914	o4-mini (Med)	99.8	81.1	77.3
1915	Claude-3.5-Haiku	99.7	44.6	38.2
1916	Qwen3-235B-A22B	99.7	66.7	58.9
1917	Claude-3.7-Sonnet	99.3	75.3	71.0
1918	GPT-4-turbo-2024-04-09	99.3	67.7	60.3
1919	Qwen2.5-Coder-32B-Instruct	99.3	65.0	58.1
1920	Qwen3-30B-A3B	99.3	64.9	59.4
1921	o3-mini (Med)	99.3	69.7	66.7
1922	Claude-Sonnet-4	99.2	77.0	73.5
1923	GPT-4.1-2025-04-14	99.2	75.4	72.3
1924	GPT-5	99.2	82.6	81.8
1925	Gemini-2.5-Pro-05-06	99.0	32.6	25.1
1926	Qwen2.5-72B-Instruct	99.0	64.8	56.0
1927	Qwen3-32B	99.0	65.2	58.2
1928	DeepSeek-V3	98.8	68.6	63.5
1929	GPT-3.5-turbo-0125	98.8	67.5	55.4
1930	DeepSeek-R1 (0528)	98.7	67.4	58.8
1931	DeepSeek-R1	98.5	69.0	62.8
1932	GPT-4o-2024-11-20	98.5	69.3	63.6
1933	LLaMA-3.1-70B-Instruct	98.5	66.3	56.2
1934	Grok-3-Mini (High)	98.3	65.9	62.5
1935	LLaMA-3.3-70B-Instruct	98.3	66.7	58.0
1936	LLaMA-4-Scout-17B-16E-Instruct	97.7	68.7	58.3
1937	Gemma-3-27B-Instruct	97.5	64.7	56.3
1938	LLaMA-3.1-8B-Instruct	96.0	46.0	33.7

Model Performance and Capacity Effects. Table 13 summarizes model performance on the SymPrompt-Python unit test generation benchmark, reporting comprehensive success rate (CSR), line coverage (Cov_L), and branch coverage (Cov_{Br}). Both Claude-3.5-Sonnet and achieve the highest CSR of 99.8%, establishing a clear upper bound in reliability for input/output prediction. However, when considering code coverage metrics, GPT-5 distinguishes itself with leading results in both line coverage (82.6%) and branch coverage (81.8%), closely followed by and Claude-Sonnet-4. Notably, Claude-3.5-Sonnet, while excelling in CSR, demonstrates moderate coverage (73.2% and 70.3% for Cov_L and Cov_{Br}, respectively), suggesting some limitation in generating tests that comprehensively explore program logic.

1944 Performance varies substantially across model families and sizes. The latest Claude, GPT, and
 1945 Qwen variants consistently surpass earlier versions and smaller-scale models, underscoring a strong
 1946 capacity-performance relationship in unit test generation. Larger models such as Claude-3.7-Sonnet,
 1947 Qwen3-235B, and GPT-4.1 approach top-tier results in coverage, while smaller or prior-generation
 1948 models like Gemini-2.5-Pro and LLaMA-3.1-8B lag considerably, particularly in coverage metrics.
 1949 This performance stratification reinforces that scaling and architectural improvements yield measur-
 1950 able gains, especially on the more demanding aspects of code analysis and test completeness.

1951 **Task-Specific Limitations and Performance Bottlenecks.** Despite high comprehensive success
 1952 rates across most frontier models, coverage remains a persistent bottleneck. Many models maintain
 1953 near-ceiling CSR yet fall short in coverage, revealing a discrepancy between producing minimal
 1954 passing tests and generating diverse cases that robustly validate program behavior. For instance,
 1955 and Claude-3.7-Sonnet, while highly reliable, are still outperformed by GPT-5 in both line and
 1956 branch coverage, highlighting a gap in the ability to exercise complex code paths. Lower coverage
 1957 by models such as Gemini-2.5-Pro and Claude-3.5-Haiku further underscores challenges in code
 1958 reasoning and exploration, likely attributable to limited contextual understanding or training focus.

1959 A particularly striking phenomenon is observed in Gemini-2.5-Pro, which, despite achieving a com-
 1960 petitive CSR of 99.0%, exhibits extremely low coverage rates for both line (32.6%) and branch
 1961 (25.1%) metrics. This suggests a fundamental shortcoming in the model’s ability to generate tests
 1962 that adequately explore program execution paths. Qualitative inspection reveals that Gemini-2.5-Pro
 1963 frequently produces tests that either redundantly mock dependencies or even reimplement the focal
 1964 method itself within the test suite, behaviors which are inconsistent with standard unit testing prac-
 1965 tice. This pattern likely reflects a lack of exposure to unit test generation tasks during model training,
 1966 resulting in overgeneralized or misaligned output that fails to capture the intended testing objectives.
 1967 Such findings highlight the importance of task-specific fine-tuning and exposure for robust coding
 1968 capabilities in automated test generation.

1969 C.7 VULNERABILITY DETECTION

1970 Model Performance and Comparative Effects.

1971 Table 14 reports the performance of LLMs on vulnerability detection across both single-function
 1972 and paired-function scenarios, highlighting significant contrasts between models and task setups. In
 1973 the single-function PRIMEVUL setting, Claude-Sonnet-4 achieves the highest accuracy (69.5%) and
 1974 F1 score (73.7%), setting a new state of the art for this benchmark. GPT-5 and GPT-4-turbo closely
 1975 follow, with F1 scores of 69.2% and 69.9% respectively, underscoring consistent improvements
 1976 from recent GPT-family advances. Gemini-2.5-Pro and GPT-4o also demonstrate robust recall, with
 1977 Gemini-2.5-Pro achieving the highest recall (92.9%) yet comparatively lower precision, resulting
 1978 in moderate overall F1. Notably, models like Qwen2.5-72B and Qwen2.5-Coder-32B demonstrate
 1979 unusually high precision (73.2% and 70.4%), but this comes at the cost of extremely low recall,
 1980 indicating a tendency toward conservative positive predictions while missing many actual vulne-
 1981 rabilities.

1982 In the more challenging PRIMEVUL-PAIRED task, model performance diverges sharply. GPT-4.1
 1983 attains the highest P-C score (90.8%), evidencing an exceptional ability to simultaneously label
 1984 both vulnerable and patched variants correctly. In contrast, Gemini-2.5-Pro leads in P-V (72.4%),
 1985 indicating a strong bias toward labeling both functions as vulnerable, which maximizes recall but
 1986 inflates false positives. Certain models, including Qwen2.5-72B and LLaMA-3.3-70B, stand out
 1987 with strong P-B scores (81.3% and 79.3%, respectively), reflecting a pronounced preference for
 1988 benign classification. Across most models, however, the P-R metric remains relatively low, suggest-
 1989 ing that catastrophic reversals—where patched code is labeled vulnerable and vice versa—are still
 1990 infrequent but not eliminated. These results reinforce that while LLMs have made strides in detect-
 1991 ing vulnerabilities in isolation, comparative reasoning between functionally similar but semantically
 1992 divergent code remains a significant obstacle.

1993 Task-Specific Limitations and Performance Bottlenecks.

1994 Analysis of the results reveals persistent task-specific bottlenecks that constrain model effective-
 1995 ness on vulnerability detection. In the single-function scenario, several models achieve respectable
 1996 accuracy and F1 scores by leveraging recognizable vulnerability patterns or established coding anti-

1998 Table 14: Model Performance on Vulnerability Detection. The top three results on each task are
1999 highlighted in green (1st), orange (2nd), and blue (3rd) backgrounds, respectively.
2000

Model	PrimeVul				PrimeVul-Paired			
	Acc	Prec	Recall	F1	P-C	P-V	P-B	P-R
Claude-Sonnet-4	69.5	66.8	82.1	73.7	73.3	18.0	2.8	5.8
GPT-4-turbo-2024-04-09	59.8	57.3	89.7	69.9	49.5	10.7	33.0	6.8
GPT-5	67.3	67.9	70.5	69.2	80.3	13.5	2.5	3.7
GPT-4o	60.3	58.3	83.3	68.6	41.5	28.2	14.2	16.2
LLaMA-3.1-70B-Instruct	57.2	55.5	89.1	68.4	18.3	0.3	59.7	21.7
Claude-3.5-Haiku	61.2	59.3	80.8	68.4	32.8	3.8	35.0	28.3
Gemini-2.5-Pro-05-06	54.5	53.7	92.9	68.1	25.6	72.4	0.5	1.5
Gemma-3-27B-Instruct	62.0	60.6	76.9	67.8	35.8	8.2	30.2	25.8
LLaMA-3.3-70B-Instruct	62.3	61.6	73.4	67.0	12.8	0.5	79.3	7.4
GPT-4.1-2025-04-14	59.8	61.2	62.2	61.7	90.8	2.2	0.0	7.0
DeepSeek-R1	56.5	56.9	67.0	61.6	81.7	12.0	2.2	4.2
Qwen3-235B-A22B	55.5	56.9	59.6	58.2	85.2	6.8	2.9	5.1
Claude-3.5-Sonnet	47.7	49.9	68.9	57.9	77.7	9.2	5.2	8.0
Grok-3-Mini (High)	51.2	52.6	62.5	57.1	78.3	12.3	3.0	6.3
Claude-3.7-Sonnet	61.8	69.1	48.1	56.7	80.6	5.7	7.7	6.0
DeepSeek-R1 (0528)	56.0	58.1	55.1	56.6	72.5	19.7	2.2	5.7
Qwen3-32B	53.5	56.5	46.2	50.8	69.0	10.2	14.6	6.1
o4-mini (Med)	56.3	64.6	36.2	46.4	75.3	3.7	8.3	12.7
LLaMA-3.1-8B-Instruct	54.5	61.5	33.3	43.2	9.3	6.5	50.7	33.5
Qwen3-30B-A3B	54.0	61.5	30.8	41.0	60.9	9.9	20.4	8.8
DeepSeek-V3	51.5	63.6	15.7	25.2	39.8	0.2	52.0	8.0
Qwen2.5-72B-Instruct	52.3	73.2	13.1	22.3	14.5	1.5	81.3	2.7
o3-mini (Med)	50.5	61.5	12.8	21.2	54.7	3.5	35.8	6.0
Qwen2.5-Coder-32B-Instruct	51.7	70.4	12.2	20.8	24.0	8.0	49.0	19.0
LLaMA-4-Scout-17B-16E-Instruct	49.0	55.1	12.2	19.9	19.8	2.2	58.5	19.5
GPT-3.5-turbo-0125	45.8	40.8	9.3	15.1	13.0	1.8	37.4	47.9

2028 patterns; however, this approach is often brittle and susceptible to overfitting, as evidenced by the
2029 trade-off between high precision and low recall in several models. The paired-function setting, by
2030 contrast, exposes the models' limited capacity for nuanced semantic reasoning. Here, even top mod-
2031 els show a marked drop in balanced accuracy and struggle to consistently distinguish patched from
2032 vulnerable functions when differences are subtle and syntactic cues are minimal. This performance
2033 gap highlights that the comparative nature of the paired task demands deeper understanding of code
2034 semantics, intent of changes, and implications for program security.

2035 Underlying these limitations are two interrelated challenges. First, models that excel in isolated
2036 detection frequently rely on surface-level cues, which do not transfer to the more complex com-
2037 parative setting where semantic intent is crucial. Second, minor syntactic edits in code pairs often
2038 correspond to major shifts in vulnerability status, requiring the model to move beyond superficial
2039 pattern matching toward genuine comprehension of control flow, data dependencies, and defensive
2040 programming practices. The generally low P-C scores across the board reinforce the difficulty of
2041 this task, suggesting that even state-of-the-art models have not yet closed the gap between local
2042 vulnerability recognition and robust, context-aware reasoning about code security. Addressing these
2043 challenges will require the development of models with stronger program analysis capabilities and
2044 targeted training on semantically-rich vulnerability patterns.

C.8 MULTI-MODALITY TASKS

2047 **Model Performance and Capacity Effects.** Table 15 presents the performance of MLLMs on web
2048 development tasks across front-end frameworks, including React, Vue, Angular, and vanilla HTM-
2049 L/CSS. Claude-Sonnet-4, Claude-3.7-Sonnet, GPT-5 and Gemini-2.5 emerge as top performers,
2050 with Claude-Sonnet-4 achieving the highest overall performance, including superior CLIP scores
2051 (0.6907-0.8385) for Design Generation and exceptional MLLM scores for Design Edit (7.69-9.43)
and Design Repair (7.37-8.14). Claude-3.7-Sonnet demonstrates strong compilation rates (0.6867-

0.9746) alongside competitive performance across all tasks, while Gemini-2.5-Flash exhibits robust performance with reliable compilation success rates consistently exceeding 0.68. A clear capacity-performance relationship emerges across model families, with larger variants consistently outperforming their smaller counterparts, particularly on complex tasks requiring code localization and visual understanding capabilities.

Task-Specific Limitations and Performance Bottlenecks. Our analysis reveals distinct task-specific bottlenecks that constrain MLLM effectiveness in web development scenarios. For Design Generation tasks, models encounter dual challenges: compilation errors and visual inaccuracies. Angular exhibits the lowest compilation success rates (0.6747-0.7590) compared to React and Vue (>0.83), while moderate CLIP scores (around 0.6) indicate substantial opportunities for improvement in visual fidelity. Conversely, Design Edit and Design Repair tasks are primarily limited by code localization deficiencies, as evidenced by CMS scores significantly below compilation rates. Even top-performing models like Claude-Sonnet-4 achieve CMS scores of only 0.2992-0.6588 for Design Edit and 0.3795-0.6772 for Design Repair, despite maintaining compilation rates above 0.9. These findings underscore the critical need for enhanced code understanding and precise localization capabilities in MLLMs to enable more effective web development assistance.

Table 15: Model Performance on Multi-modality Tasks under different tasks and frameworks. The top two performing results are highlighted in green (1st) and orange (2nd) .

Metric	Framework	Claude		GPT		Gemini		LLaMA	Qwen
		Claude-4	Claude-3.7	GPT-5	GPT-4o	Gemini-2.5	Gemini-2.0	LLaMA-90B	Qwen-72B
<i>Design Generation</i>									
CLIP (%)	React	83.9	80.8	83.7	76.4	79.4	76.1	70.4	77.9
	Vue	81.2	83.2	79.0	77.3	77.8	69.0	53.2	68.4
	Angular	59.1	60.2	59.6	59.6	60.0	60.1	53.3	51.5
Compilation (%)	Vanilla	81.2	81.3	80.6	76.8	80.2	75.9	64.0	76.0
	React	99.1	95.4	97.2	97.2	91.7	90.8	94.5	95.4
	Vue	97.5	97.5	96.6	94.9	93.2	83.9	74.6	85.6
MLLM Score	Angular	67.5	68.7	67.5	71.1	68.7	71.1	73.5	62.6
<i>Design Edit</i>									
React	7.7	8.2	8.3	8.0	8.4	7.8	6.2	8.1	
MLLM Score	Vue	8.0	8.4	7.5	8.2	8.1	8.1	6.3	7.6
	Angular	8.3	8.0	8.6	8.3	8.2	9.1	5.7	8.2
	Vanilla	9.4	9.2	9.3	9.2	9.2	9.0	7.7	9.1
CMS (%)	React	42.1	46.6	35.1	52.5	36.6	37.1	26.4	44.0
	Vue	29.9	40.5	26.9	37.0	30.3	32.8	21.0	32.8
	Angular	65.9	68.3	59.6	61.0	58.2	63.9	47.0	60.2
Compilation (%)	Vanilla	34.0	34.4	30.2	33.9	35.8	29.1	19.5	32.1
	React	97.2	100.0	91.7	98.1	97.2	100.0	91.7	99.1
	Vue	98.1	98.1	88.6	94.3	97.1	95.2	91.4	93.3
MLLM Score	Angular	92.4	90.9	97.0	90.9	90.9	100.0	86.4	90.9
<i>Design Repair</i>									
React	7.6	6.8	7.4	6.4	7.7	6.3	4.2	5.6	
MLLM Score	Vue	7.4	6.6	7.0	6.3	7.4	6.1	4.8	6.0
	Angular	8.1	6.9	7.8	5.9	8.0	5.3	4.6	6.5
	Vanilla	7.8	7.2	7.8	7.1	7.7	7.3	5.7	6.9
CMS (%)	React	55.7	48.3	29.7	27.5	33.7	17.6	4.5	18.7
	Vue	40.0	30.7	31.6	25.2	36.2	17.8	5.0	11.3
	Angular	67.7	57.2	51.0	50.7	56.7	39.7	31.0	55.6
Compilation (%)	Vanilla	38.0	22.9	10.6	16.4	19.0	16.3	3.7	14.5
	React	100.0	100.0	100.0	100.0	100.0	100.0	92.9	92.9
	Vue	100.0	100.0	96.3	100.0	100.0	96.3	100.0	100.0
MLLM Score	Angular	100.0	92.9	100.0	100.0	100.0	100.0	78.6	92.9

C.9 EFFECT OF MULTI-PROMPT EVALUATION

We present the evaluation of using different prompts and their average performance in Figure 6 to Figure 13. We observe substantial prompt sensitivity with varying degrees of impact across different task categories. Specifically, we can achieve the following findings:

Prompt sensitivity exhibits task-specific patterns with varying magnitudes of impact. Tasks such as vulnerability detection, test generation, and code review demonstrate observational performance fluctuations across different prompts. For instance, in vulnerability detection tasks, when using prompt 1, GPT-4.1 achieve much higher performance than using prompt 2 and prompt 3; while for Claude-3.5-Haiku, the performance of prompt 1 is 10 ranks lower than prompt 2. In contrast, tasks like code reasoning and code translation exhibit relatively stable performance across different prompting approaches. The vast majority of models maintain the same ranking across dif-

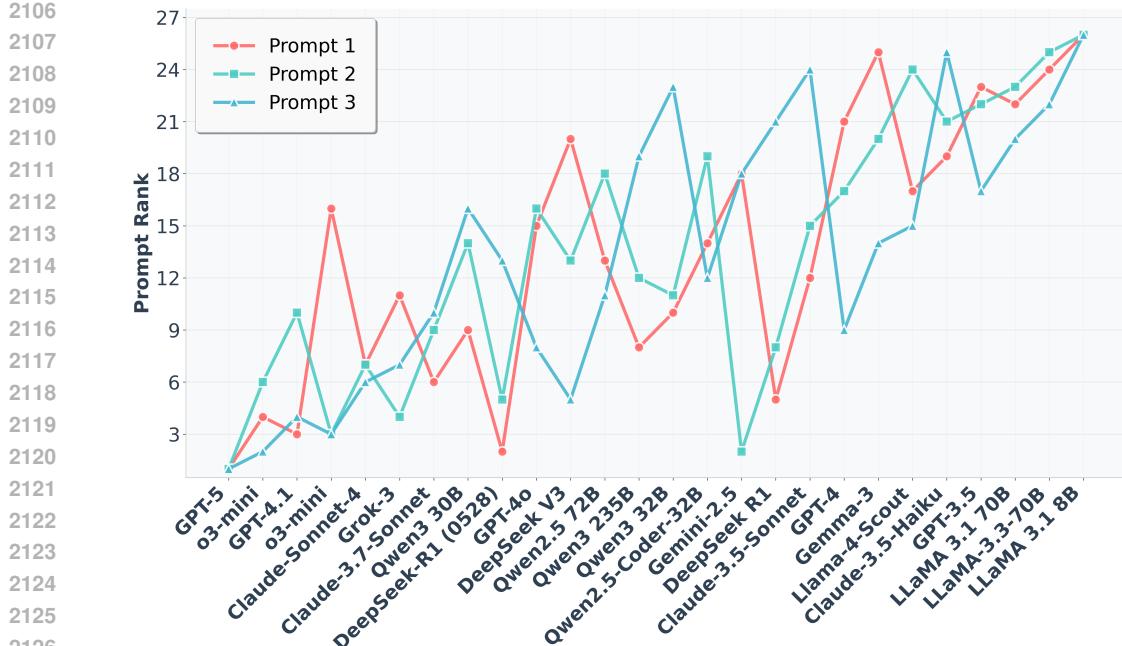


Figure 6: The performance variation of different prompt on code generation.

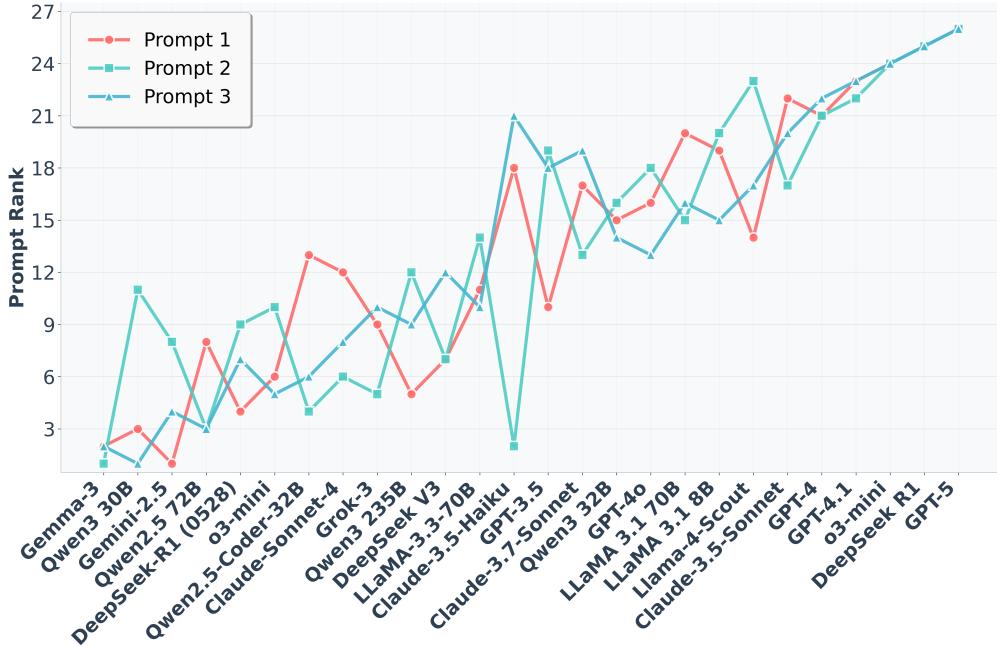


Figure 7: The performance variation of different prompt on code review.

ferent prompts, and even for the few inconsistencies, the maximum difference does not exceed 5. This suggests that different tasks are affected by evaluation prompts to varying degrees. For some tasks such as vulnerability detection, test generation, and code review, using a single prompt may introduce evaluation bias.

Multi-prompt evaluation provides more reliable and robust assessment results. Given the considerable performance disparities observed across prompts, our multi-prompt evaluation approach offers enhanced reliability compared to single-prompt assessments. To obtain comprehensive and

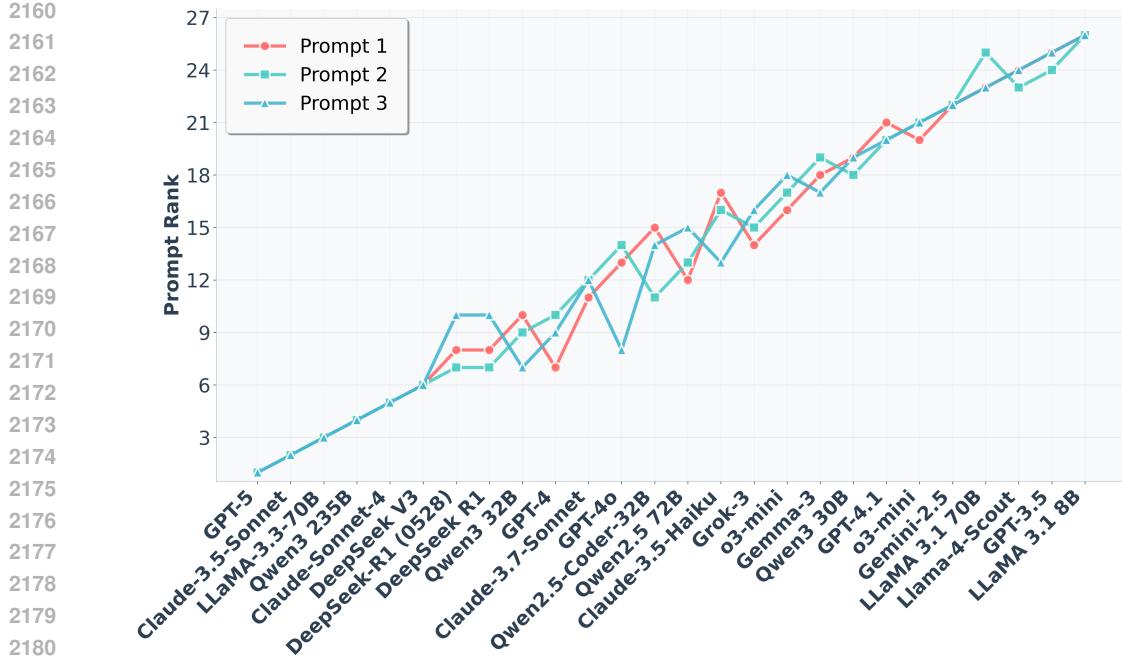


Figure 8: The performance variation of different prompt on code summarization.

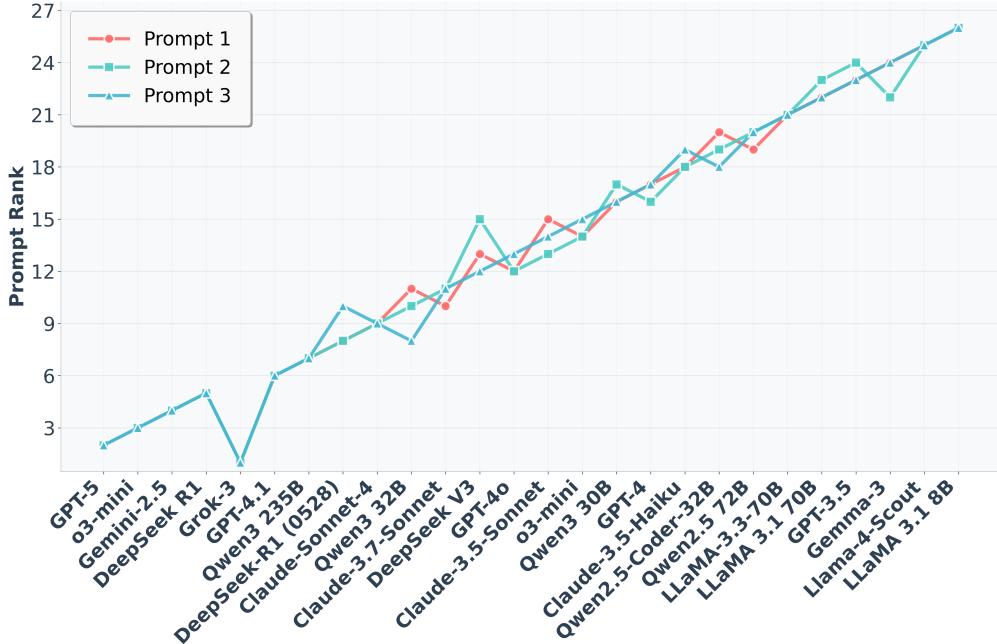
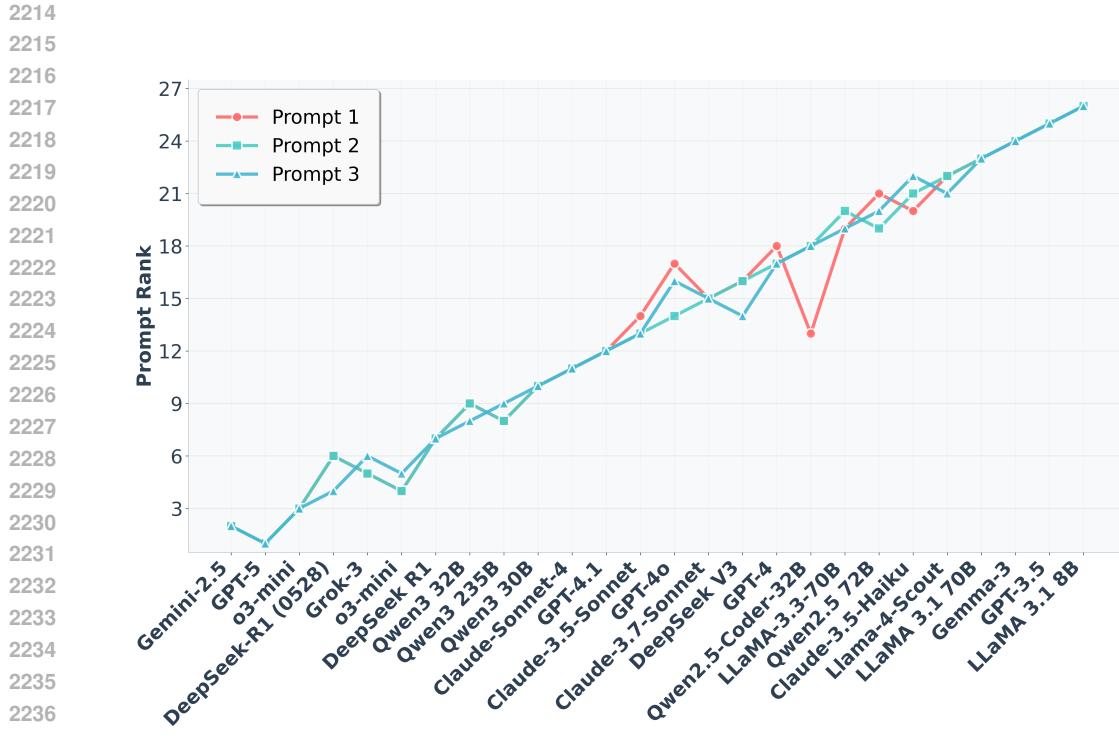
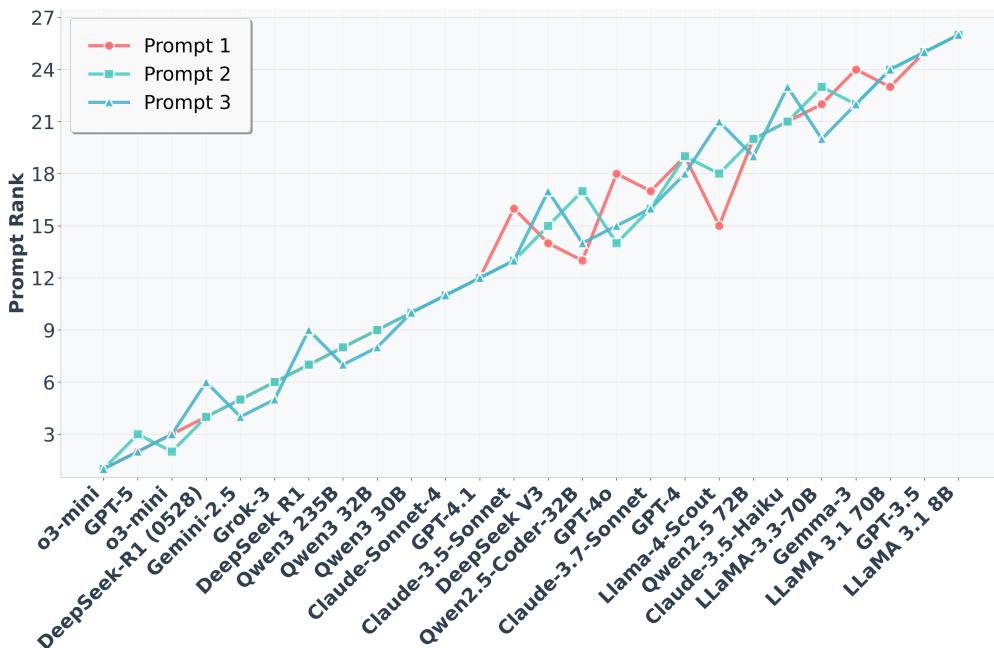


Figure 9: The performance variation of different prompt on code translation.

unbiased evaluation results, we employ multiple diverse prompts and report the averaged performance scores across all prompt variations. This methodology mitigates the potential bias introduced by any individual prompt design and provides a more accurate assessment of the models' capabilities across different programming tasks.

2238 Figure 10: The performance variation of different prompt on input prediction.
2239
2240
2241
2242
22432265 Figure 11: The performance variation of different prompt on output prediction.
2266
2267

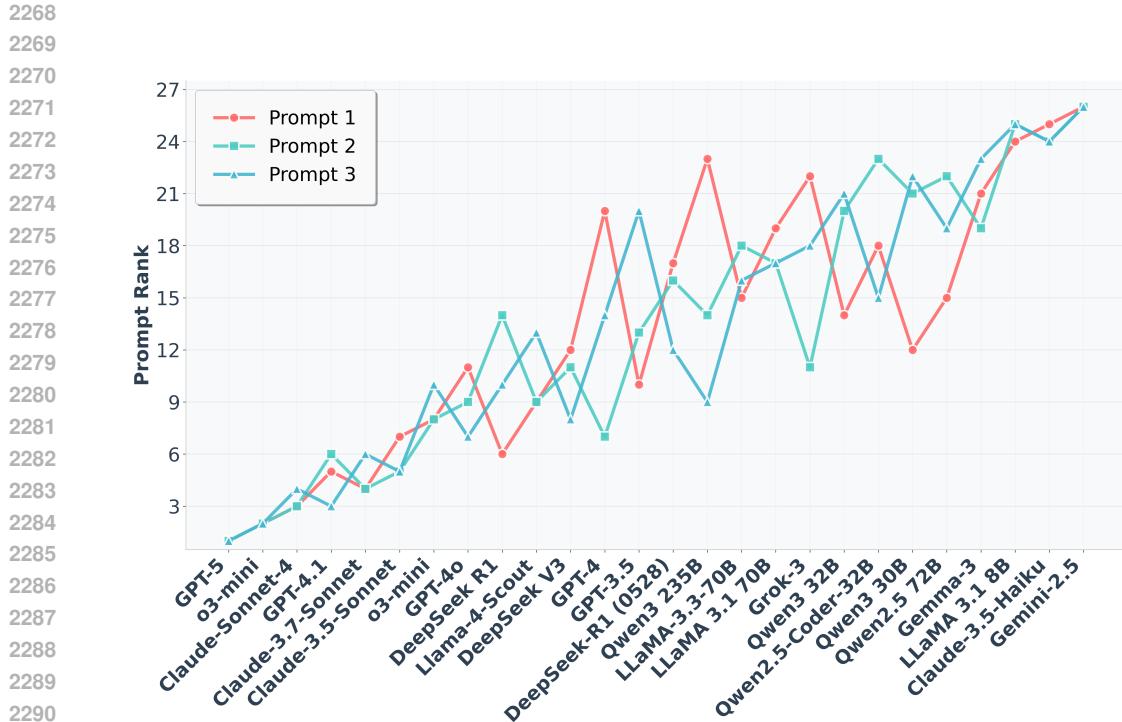


Figure 12: The performance variation of different prompt on unit test generation.

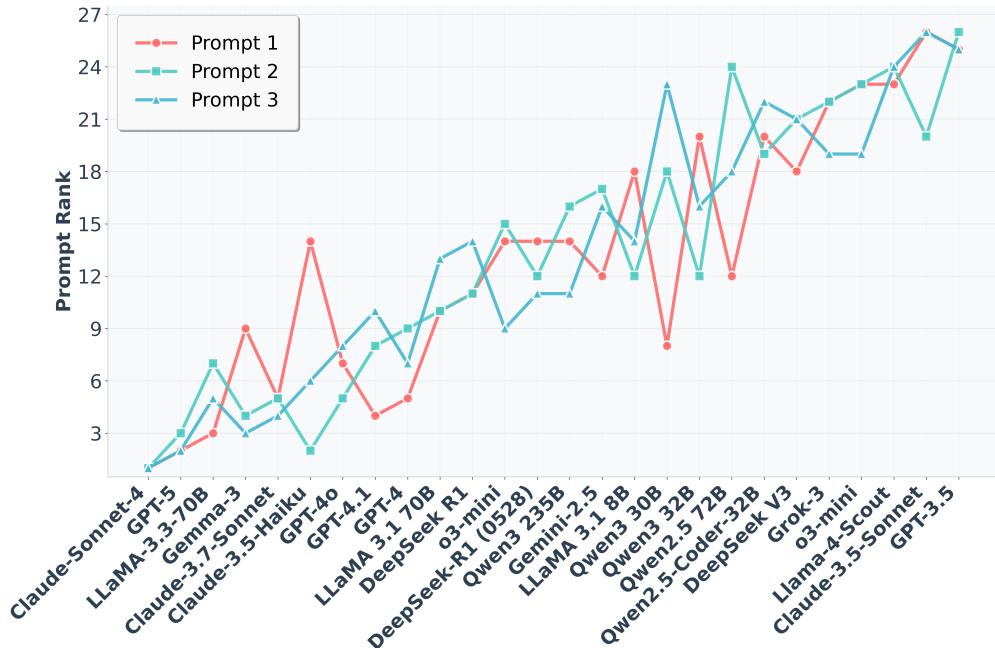


Figure 13: The performance variation of different prompt on vulnerability detection.

2322 **D EXTENDED RELATED WORK**
23232324 **D.1 LARGE LANGUAGE MODELS FOR CODE**
2325

2326 Large language models (LLMs) for code have rapidly advanced tasks such as code generation, com-
2327 pletion, and reasoning. Incoder (Fried et al., 2022) unify code synthesis and editing by training
2328 on masked code segments that are moved to the end of files, enabling zero-shot code infilling and
2329 improved performance on tasks like type inference, comment generation, and variable renaming.
2330 CodeGen (Nijkamp et al., 2023) open-sources a family of models up to 16.1B parameters together
2331 with the JAXFORMER training library and shows that multi-turn prompts substantially improve
2332 program synthesis. The StarCoder model (Li et al., 2023a) with 15.5B parameters models trained
2333 on one trillion tokens and fine-tuned on Python yields StarCoder, which outperforms many prede-
2334 cessors. CodeT5+ (Wang et al., 2023b) improves upon existing architectures by combining encoder
2335 and decoder modules and employs a mixture of pretraining objectives. CodeLLaMA (Rozière et al.,
2336 2023) extends LLaMA2 to code and emphasizes open foundational models for code. OCTOPACK
2337 (Muennighoff et al., 2024) highlights instruction tuning in large code models, utilizing a vast dataset
2338 of Git commits, which pair code changes with human instructions, for comprehensive code un-
2339 derstanding. WizardCoder (Luo et al., 2024) proposed the Evol-Instruct method, which rewrites
2340 simple instructions into more complex instructions, pushing performance beyond both open and
2341 closed models. DeepSeek Coder (Guo et al., 2024) introduces a family of open models trained on
2342 a 2 trillion-token corpus using a fill-in-the-blank objective and reports state-of-the-art performance
2343 among open models, even surpassing some closed models. OpenCoder (Huang et al., 2025) releases
2344 a top-tier open code LLM together with transparent training data, a complete processing pipeline,
2345 and ablation experiments.

2346 **D.2 LARGE LANGUAGE MODELS FOR SOFTWARE ENGINEERING**
2347

2348 Large language models play an important role in various processes of software engineering, from
2349 requirement engineering to software development, testing and maintenance.

2350 **Requirement Engineering.** LLMs enhance requirements engineering by automating elicitation,
2351 analysis, specification, and verification processes through multi-agent frameworks. Elicitation(Ataei
2352 et al., 2025) uses multiple persona-based agents to simulate user interactions and mine requirements
2353 comprehensively, reducing costs compared to traditional user studies. SpecGen(Ma et al., 2024a)
2354 automates specification generation through conversation-driven and mutation-based approaches.
2355 Multi-phase systems like Arora et al.(Arora et al., 2024a) cover all four RE phases using specialized
2356 agents: stakeholder/engineer agents for elicitation, formatting agents for specification, evaluator
2357 agents for analysis, and validator agents for final validation. MARE(Jin et al., 2024) similarly em-
2358 ploys stakeholder agents for elicitation, modeler agents for requirement modeling, checker agents
2359 for verification, and documenter agents for specification writing, all communicating within a shared
2360 workspace for seamless information exchange.

2361 **Software Development.** In the realm of front-end development, MLLMs have revolutionized
2362 creative design and web development practices. DCGen (Wan et al., 2024) proposes a divide-and-
2363 conquer strategy that generates submodule code separately before assembling complete webpages.
2364 DeclarUI (Zhou et al., 2024) combines element segmentation with page transition graphs to prompt
2365 MLLMs for mobile app UI generation with navigation logic. UICopilot (Gui et al., 2025) adopts
2366 a hierarchical approach by first generating HTML tree structures, then progressively generating UI
2367 components. LayoutCoder (Wu et al., 2025) introduces a layout-aware MLLM framework specif-
2368 ically designed to comprehend complex UI layouts and preserve layout fidelity in generated code.
2369 DesignRepair (Yuan et al., 2025) presents a dual-stream, knowledge-driven approach that lever-
2370 ages LLMs to detect and repair design quality issues in front-end code. Interaction2Code (Xiao
2371 et al., 2024) and DESIGNBENCH (Xiao et al., 2025) add interaction-aware generation and repair.
2372 LLM-based agents for end-to-end software development adopt classic software process models
2373 to standardize development workflows: **(A) Waterfall Process Model:** Most existing agents (e.g.,
2374 AISD (Zhang et al., 2024a), LCG (Lin et al., 2024), ChatDev (Qian et al., 2023), CTC (Du et al.,
2375 2024), Self-Collaboration (Dong et al., 2024)) follow the linear waterfall model (Royce, 1987) with
2376 sequential phases (requirements engineering, design, implementation, testing, deployment, main-
2377 tenance), while some extend it with iterative feedback loops for quality assurance and MetaGPT (Hong
2378 et al., 2023) integrates human-like Standardized Operating Procedures (SOPs) for role-based collab-
2379

2376 oration; **(B) Agile Development**: Some agents explore agile methodologies including Test-Driven
 2377 Development (TDD) (Lin et al., 2024), which prioritizes writing tests before coding through test-
 2378 implement-refine cycles, and Scrum (Lin et al., 2024; Nguyen et al., 2025), which breaks develop-
 2379 ment into iterative sprints, with experiments showing Scrum achieves the best and most stable
 2380 performance on function-level code generation benchmarks, followed by TDD (Lin et al., 2024).

2381 **Software Testing.** Software testing checks isolated software units (e.g., methods or classes) to
 2382 quickly identify and localize bugs (Yang et al., 2024a). While LLMs like ChatGPT can generate
 2383 unit tests with decent readability and usability (Yuan et al., 2023), they still exhibit compilation/ex-
 2384 ecution errors and limited coverage. Recent LLM-based agents address these issues through iterative
 2385 refinement: **(A) Fixing Compilation/Execution Errors.** ChatTester (Yuan et al., 2023) and
 2386 ChatUniTest (Xie et al., 2023) iteratively collect error messages and refine buggy test code; **(B) In-**
 2387 **creasing Coverage.** TELPA (Yang et al., 2024a) employs backward/forward program analysis and
 2388 counter-example sampling with CoT strategy to enhance coverage of hard-to-reach branches; **(C)**
 2389 **Enhancing Fault Detection.** MuTAP (Dakhel et al., 2024) uses mutation testing feedback, where
 2390 surviving mutants guide LLM refinement to improve test cases’ bug detection capabilities.

2391 **Software Operation and Maintenance.** LLM-based agents for end-to-end software maintenance
 2392 follow a common pipeline to automatically resolve real-world GitHub issues through multiple
 2393 phases: **(A) Preprocessing** – agents prepare repository knowledge (e.g., RepoUnderstander (Ma
 2394 et al., 2024b) builds knowledge graphs, Agentless (Xia et al., 2024) creates hierarchical struc-
 2395 tures); **(B) Issue Reproduction** – agents generate test scripts to trigger unexpected behaviors when
 2396 reproduction tests are unavailable (e.g., SWE-agent (Yang et al., 2024b), MASAI (Arora et al.,
 2397 2024b) with two-stage template-based approach); **(C) Issue Localization** – agents identify relevant
 2398 code elements using: (C.1) retrieval-based strategies via BM25 similarity (Tao et al., 2024b), (C.2)
 2399 navigation-based approaches with search interfaces (Yang et al., 2024b; Arora et al., 2024b; Zhang
 2400 et al., 2024b; Xia et al., 2024), (C.3) spectrum-based fault localization calculating suspiciousness
 2401 scores from test coverage (Zhang et al., 2024b; Chen et al., 2024a), and (C.4) simulation using
 2402 Monte Carlo Tree Search (Ma et al., 2024b); **(D) Task Decomposition** – breaking issues into fine-
 2403 grained sub-tasks (Tao et al., 2024b; Ma et al., 2024b); **(E) Patch Generation** – creating fixes for
 2404 localized suspicious code elements (Xia et al., 2024); **(F) Patch Verification** – validating correct-
 2405 ness through code review (Tao et al., 2024b), static checking for syntax (Zhang et al., 2024b; Ma
 2406 et al., 2024b; Arora et al., 2024b; Xia et al., 2024; Yang et al., 2024b), and dynamic checking via
 2407 test execution (Chen et al., 2024a; Arora et al., 2024b; Xia et al., 2024); **(G) Patch Ranking** –
 2408 identifying highest-probability correct patches using ranker agents (Arora et al., 2024b) or majority
 2409 voting (Xia et al., 2024). These approaches are evaluated on benchmarks like SWE-bench (Jimenez
 2410 et al., 2023) containing real-world GitHub issues across popular Python repositories.

2410 D.3 LARGE LANGUAGE MODELS EVALUATION

2412 Recent years have witnessed substantial efforts in building benchmarks to evaluate the capabili-
 2413 ties of LLMs on code-related tasks. Early benchmarks such as HUMAN-EVAL (Chen et al., 2021),
 2414 MBPP (Austin et al., 2021), and APPS (Hendrycks et al., 2021), as well as extensions like HU-
 2415 MANEVAL+ (Liu et al., 2023), focused on evaluating function-level code generation performance.
 2416 Due to the rapid advancement of code-oriented LLMs, more challenging and realistic benchmarks
 2417 have been proposed. LIVECODEBENCH (Jain et al., 2025) continuously collects new contest prob-
 2418 lems from LEETCODE, ATCODER, AND CODEFORCES, offering a contamination-free setting for
 2419 evaluating code generation. CCTEST (Li et al., 2023b) focuses on real-world code completion
 2420 tasks, efficiently testing and fixing inconsistency bugs in real products including Github copilot.
 2421 BIGCODEBENCH (Zhuo et al., 2024) focuses on library-aware code generation, assessing models’
 2422 ability to handle diverse libraries across multiple domains. INFIBENCH (Li et al., 2024d) provides
 2423 the first large-scale QA benchmark curated from Stack Overflow questions, challenging LLM capa-
 2424 bility in realistic software engineering contexts. SWE-BENCH (Jimenez et al., 2023) evaluates
 2425 models on practical software engineering tasks by requiring them to resolve GitHub issues through
 2426 multi-file code modifications in realistic repositories. **DYCODEEVAL** (Chen et al.) introduces dy-
 2427 namic benchmarking that deliberately controls contamination to assess reasoning capabilities in
 2428 code LLMs. **DYNACODE** (Hu et al., 2025) proposes a dynamic complexity-aware framework that
 2429 automatically adjusts problem difficulty, enabling finer-grained and adaptive evaluation of code gen-
 2430 eration skills. **EVOCODEBENCH** (Li et al., 2024a) is an evolving benchmark tightly aligned with
 2431 real-world GitHub repositories. It continuously incorporates new commits and domain-specific tasks

2430 to prevent leakage and maintain relevance. MMCode (Li et al., 2024c) and SWE-BENCH MULTIMODAL (Yang et al., 2024c) extends the original SWE-bench by adding visual inputs such as screenshots, UI mockups, design files, showing that current multimodal code models suffer large performance drops without visual context and highlighting a generalization gap to visual software domains. CODER-EVAL (Yu et al., 2024) and DevEval (Li et al., 2024b) emphasize repository-level code generation drawn from real open-source repositories. PPM (Chen et al., 2024d) presents an automated pipeline that uses LLMs themselves to synthesise diverse programming problems, facilitating scalable and varied benchmark creation. Recent efforts have also evaluated and proposed improvements for LLM-based competitive programming generation using real 2024 ICPC/CCPC contest problems (Wei et al., 2025).

2441 D.4 ROBUSTNESS OF CODE LLMs

2442 Robustness in Code LLMs has become an important research question, as models that excel on
 2443 standard benchmarks like HumanEval and MBPP often degrade sharply when exposed to real-world
 2444 variations such as semantically-preserving code transformations and natural-language prompt per-
 2445 turbations (Mastropaolet al., 2023; Zhuo et al., 2023). ReCode (Wang et al., 2023a) introduced the
 2446 first robustness benchmark for code generation, applying 12 functionality-preserving perturbations
 2447 including variable renaming, unused code insertion, and control-flow flattening. CCTest (Li et al.,
 2448 2023b) focuses on real-world code completion tasks, efficiently testing and fixing inconsistency
 2449 bugs in real products including Github copilot. NL Perturbator (Chen et al., 2024c) shifted focus
 2450 to natural-language prompt variations, categorizing different real-world perturbation types derived
 2451 from practitioner surveys and showing average pass@1 drops of 4.8–6.1% across StarCoder, CodeL-
 2452 lama, and DeepSeek-Coder. RobGen (Li et al., 2025) revealed that 35% of LLM-generated code is
 2453 less robust than human references due to missing conditional checks and proposed a lightweight
 2454 decoding-time framework that boosts robustness by 10% while preserving functional correctness.
 2455 RobuNFR (Lin et al., 2025) extended evaluation to non-functional requirements including design,
 2456 readability, reliability, performance, demonstrating that expressing the same NFR differently causes
 2457 high output variability and up to 39% correctness loss. Recent work CodeCrash (Lam et al., 2025)
 2458 comprehensively test LLMs in code reasoning under structural and NL-embedded perturbations. To
 2459 mitigate this problem, many techniques such as structure-aware model training and robustness training
 2460 are also introduced to improve code LLM’s robustness (Tipirneni et al., 2024; Pei et al., 2022;
 2461 Oh & Yoo, 2024).

2462 E LIMITATION AND FUTURE WORK

2463 To further enhance the comprehensiveness and practical implication of this benchmark, we have
 2464 planned several key directions for future work.

2465 **Expanding Task Diversity:** While our current benchmark covers a range of fundamental tasks, we
 2466 plan to introduce more complex and realistic challenges to better assess the advanced capabilities
 2467 of LLMs (Jimenez et al., 2023; Wong et al., 2024; Peng et al., 2024). For example, code debug-
 2468 ging which evaluate a model’s ability to not only identify and locate errors but also to explain the
 2469 underlying logic flaws in the code moves beyond simple code correction to test a model’s deeper
 2470 reasoning and diagnostic skills. Furthermore, tasks like issue resolution tasks (Jimenez et al., 2023;
 2471 Yang et al., 2024b), require models to analyze entire problem contexts from sources like GitHub
 2472 issues—including natural language descriptions, error logs, and user comments—and then propose
 2473 and justify a complete code-based solution. This will measure a model’s ability to handle repository-
 2474 level software maintenance challenges that are common in real-world development.

2475 **Introducing Multi-Level Granularity Evaluation:** Currently, our evaluation such as code gen-
 2476 eration and translation are primarily assessed at the function level. However, real-world software
 2477 engineering operates on much larger scales. We plan to extend our evaluation to higher levels of
 2478 abstraction to address this gap. This includes introducing repository-level tasks (Li et al., 2024b),
 2479 which will require models to generate or translate complete source files containing multiple classes
 2480 and functions. In future work, we aim to evaluate performance at multiple levels, challenging mod-
 2481 els to perform complex operations like implementing new features based on high-level requirements
 2482 or executing large-scale refactoring across an entire codebase.

Figure 14: The leaderboard page for different tasks.

Evaluating Diverse Prompting Strategies: The effectiveness of a large language model is significantly influenced by the prompting strategy used. We will conduct a more systematic investigation into the impact of various prompting techniques—from straightforward zero-shot and few-shot methods (Gao et al., 2023) to more complex approaches like Chain-of-Thought (Wei et al., 2022) and agentic workflows (Xia et al., 2024). This will provide valuable, practical guidance on how to most effectively elicit high-quality outputs from models for different coding tasks, ultimately helping to define best practices for their application.

Enhancing Security Evaluation: Given the increasing deployment of LLMs in production environments, we plan to expand our security evaluation framework beyond current vulnerability detection tasks. Our assessment will cover various critical dimensions such as vulnerability assessment of security flaws in generated code, privacy protection evaluation to prevent sensitive data exposure and regulatory violations, bias detection and mitigation in generated algorithms, authorship and intellectual property compliance. This will establish essential safeguards for responsible LLM deployment in software engineering practices.

Establishing a Regularly Update: To combat the persistent issue of data contamination, where a model’s training data may inadvertently include benchmark samples, we will implement a dynamic data collection and refreshment process (Jain et al., 2025; Zhang et al., 2025). By periodically sourcing new data from the latest open-source projects and programming platforms, we can ensure the benchmark remains fair and relevant. This regularly updating will help guarantee that we are assessing a model’s true generalization capabilities on previously unseen code, thereby maintaining the long-term integrity and credibility of our evaluation.

F ONLINE LEADERBOARD

Our online leaderboard is available at <https://code-treat.vercel.app/>.

In the leaderboard, we provide an interactive interface to view detailed results of each task, visualize the model performance with timeline and compare the ability of different models.

As shown in Figure 14, the leaderboard page displays a comprehensive ranking table of each task. Users can view model performance across multiple evaluation metrics for each task. The interface allows users to filter results by different time periods and switch between various tasks such as vulnerability detection. Each model entry shows detailed performance statistics.

Figure 15: The model performance timeline page.

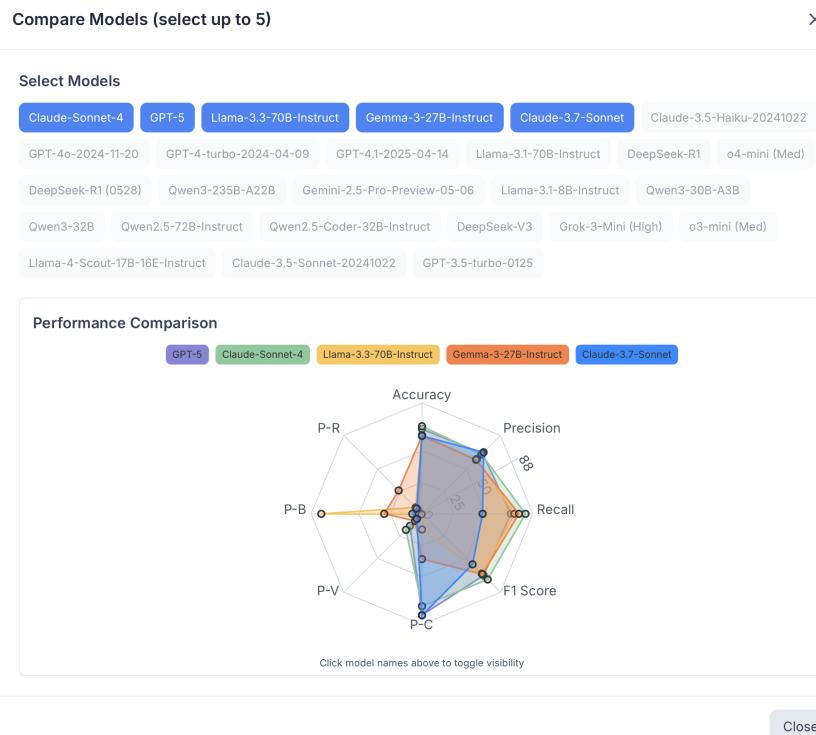


Figure 16: The leaderboard page for different tasks.

Figure 15 shows the model performance timeline comparison page, which provides a temporal view of how different models have evolved and improved over time. This scatter plot visualization plots model accuracy against release dates, with different colored points representing various model families. Users can interact with the timeline to explore historical trends and identify breakthrough moments in model development, making it easier to understand the progression of the field.

2592 For more detailed analysis, Figure 16 shows our model comparison interface, which allows users
 2593 to select different models for side-by-side comparison. The radar chart visualization displays mul-
 2594 tiple performance metrics simultaneously, including accuracy, precision, recall, F1 score, and other
 2595 relevant measures. This enables researchers to conduct comprehensive comparative analysis and
 2596 identify the strengths and weaknesses of different approaches across various evaluation dimensions.
 2597
 2598
 2599

2600 G PROMPT DETAILS

2603 G.1 CODE GENERATION

2606 CODE GENERATION

2608 SYSTEM PROMPT

2610 You are a helpful assistant.
 2611
 2612

2614 User Prompt Prompts 1

2616 Please provide a self-contained {PL} script that solves the
 2617 following problem in a markdown codeblock:{problem_description}
 2618 Your task is to complete the function {function_signatures} {
 2619 class_msg}
 2620
 2621

2622 USER PROMPT 2

2624 Write a {PL} function {function_signatures} {class_msg} to
 2625 solve the following problem:{problem_description}
 2626
 2627

2629 USER PROMPT 3

2631 You are an expert {PL} programmer. You will be given a question
 2632 {problem_description} and will generate a correct {PL} program
 2633 that matches the specification and passes all tests, You will
 2634 NOT return anything except for the program.
 2635 ### Question
 2636 {problem_description}
 2637 {starter_code_msg}
 2638 ### Answer:
 2639 (use the provided format with backticks)
 2640
 2641

2644 G.2 CODE SUMMARIZATION

2646

CODE SUMMARIZATION

2647

2648

2649

2650

2651

2652

2653

2654

2655

2656

2657

2658

2659

2660

2661

2662

2663

2664

2665

2666

2667

2668

2669

2670

2671

2672

2673

2674

2675

2676

2677

2678

2679

2680

2681

2682

2683

2684

2685

2686

2687

2688

2689

2690

2691

2692

2693

SYSTEM PROMPT

You are a helpful assistant.

USER PROMPT 1

Please generate a short comment in one sentence for the following function:
{code}

USER PROMPT 2

Please write a brief comment in one sentence for the following function:
{code}

USER PROMPT 3

Kindly provide a concise comment in one sentence for the following function:
{code}

CODE SUMMARIZATION – LLM AS JUDGE**SYSTEM PROMPT**

You are a helpful assistant.

2700

2701

2702

2703

2704 Here is a piece of code with corresponding comments. Please
 2705 rate each comment on a scale from 1 to 5, where a higher score
 2706 indicates better quality. A good comment should: 1) accurately
 2707 summarize the function of the code; 2) be expressed naturally
 2708 and concisely, without burdening the developer with reading; 3)
 2709 help the developer understand the code quickly: Your answer
 2710 should be in the JSON format JSON: {"Comment 0": {your rating},
 2711 "Comment 1": {your rating}, ..., "Comment n": {your rating}}.
 2712 Code:
 2713 <code>
 2714 Comment 0: <human baseline summary>
 2715 Comment 1: <summary written by LLM_1>
 2716 Comment 2: <summary written by LLM_2>
 2717 ...
 2718 Comment n: <summary written by LLM_3>

2719

2720

2721

2722

G.3 CODE TRANSLATION

2723

2724

2725

2726

2727

2728

2729

2730

2731

2732

2733

2734

2735

2736

2737

2738

2739

2740

2741

2742

2743

2744

2745

2746

2747

2748

2749

2750

2751

2752

2753

CODE TRANSLATION

SYSTEM PROMPT

You are a code translation system.

USER PROMPT 1

Translate {SL} To {TL}:
 {SC}

USER PROMPT 2

Translating {SL} To {TL} ensures that {TL} code can be executed
 :
 {SC}

USER PROMPT 3

Please provide the {TL} translation for the following {SL} code
 :
 {SC}

2754 G.4 CODE REVIEW GENERATION

2755

2756

2757

CODE REVIEW GENERATION

2758

2759

2760

2761

2762

2763

2764

2765

2766

2767

2768

2769

2770

2771

2772

2773

2774

2775

2776

2777

2778

2779

2780

2781

2782

2783

2784

2785

2786

2787

2788

2789

2790

2791

2792

2793

2794

2795

2796

2797

2798

2799

2800

2801

2802

2803

2804

2805

2806

2807

SYSTEM PROMPT

You are a code reviewer specializing in analyzing and providing feedback on code. Please provide your review comments in the following JSON format: {"comments": "<your comments>"}.

USER PROMPT 1

Below is an instruction that describes a task, paired with an input that provides further context. Write a response that appropriately completes the request.

Instruction:

Review the given code and provide a constructive code review comment.

Input:

The code/diff hunk is:

'{diff_hunk}'

Response:

{comment}}

USER PROMPT 2

Below is an instruction describing a task, along with additional context. Your job is to generate a complete response based on the following request:

Instruction:

Examine the provided code and offer constructive feedback.

Input:

The code or diff hunk is: '{diff_hunk}'

Response:

{comment}}

USER PROMPT 3

Below is a task description along with additional context. Provide an answer that fulfills the request.

Instruction:

Examine the given code and deliver a helpful code review comment.

Input:

The code (or diff snippet) is:

'{diff_hunk}'

Answer:

{comment}}

2808

CODE REVIEW GENRATION – LLM AS JUDGE

2809

2810

2811

2812

2813

2814

2815

2816

2817

2818

2819

2820

2821

2822

2823

2824

2825

2826

2827

2828

2829

2830

2831

2832

2833

2834

2835

2836

2837

2838

2839

2840

2841

2842

2843

2844

2845

2846

2847

2848

SYSTEM PROMPT

You are a smart code reviewer. You will be asked to grade a generated code review. You can mimic answering them in the background 10 times and provide me with the most frequently appearing answer. Furthermore, please strictly adhere to the output format specified in the question. There is no need to explain your answer. Please output your final answer in the following JSON format: {"grade": <your grade>}. The grade should be an integer between 1 and 5, inclusive.

2820

2821

2822

2823

2824

2825

2826

2827

2828

2829

2830

2831

2832

2833

2834

2835

2836

2837

2838

2839

2840

2841

2842

2843

2844

2845

2846

2847

2848

USER PROMPT

I am going to give you a generated code review as well as its reference review. You should grade the generated review by comparing it to the reference review, and output a grade based on the following criteria:

1. If the generated review is identical to the reference review, Grade=5;
2. If the generated review is essential equivalent to the reference review although their expressions are not identical, Grade=4;
3. If the generated review explicitly and correctly specifies some comments/suggestions presented in the reference review, Grade=3;
4. If the generated review is only loosely related to the reference review, Grade=2;
5. If the generated review is completely unrelated to the reference review in semantics, Grade=1.

Please NOTE that you should only output a grade without any explanation.

Generated Code Review:

<LLM generated-review>

Reference Code Review:

<human ground truth reference-review>

2849

2850

2851

2852

2853

2854

2855

2856

2857

2858

2859

2860

2861

G.5 CODE REASONING**G.5.1 INPUT PREDICTION****INPUT PREDICTION****SYSTEM PROMPT**

You are a helpful assistant. Please provide your input prediction in the following JSON format: {"input_prediction": "<your input prediction>"}.

2862

2863

2864

2865

2866 You are given a piece of code containing Java method 'f' (already defined elsewhere) and a masked 'public static void main' template where all inputs are '??'. Your task is to identify suitable inputs for each '??' with concrete, valid values so that, when combined with the existing class that contains 'f', the program compiles and the assertion in 'main' holds true. No extra information except the filled 'public static void main' code should be included in your submission.

2867 Code:

```
2868 {function}
2869 Masked main template:
2870 {assertion_query}
```

2871

2872

2873

2874

2875

2876

2877

2878

2879

2880

2881 You are provided with a Java method 'f' (defined elsewhere) and a 'public static void main' template with input placeholders marked as '??'.

2882 Your task is to replace each '??' with concrete

2883 , valid values so that the program compiles and the assertion

2884 in 'main' passes when run together with the class containing 'f

2885 '. Submit only the completed 'public static void main' code

2886 no additional explanation or information.

2887 Code:

```
2888 {function}
2889 Masked main template:
2890 {assertion_query}
```

2891

2892

2893

2894

2895 You are given a piece of code that includes a Java method 'f' (defined elsewhere) and a 'public static void main' template with masked inputs marked as '??'.

2896 Your task is to replace each '??' with concrete, valid input values such that, when

2897 combined with the existing class containing 'f', the program

2898 compiles successfully and the assertion in 'main' passes. Your

2899 response must include **only** the completed 'public static

2900 void main' code no additional explanation or information.

2901 Code:

```
2902 {function}
2903 Masked main template:
2904 {assertion_query}
```

2905 Code:

```
2906 {function}
2907 Masked Main Template:
2908 {assertion_query}
```

2909

2910

2911

2912

2913

2914

2915

USER PROMPT 1 – JAVA

You are given a piece of code containing Java method 'f' (already defined elsewhere) and a masked 'public static void main' template where all inputs are '??'. Your task is to identify suitable inputs for each '??' with concrete, valid values so that, when combined with the existing class that contains 'f', the program compiles and the assertion in 'main' holds true. No extra information except the filled 'public static void main' code should be included in your submission.

Code:

```
{function}
Masked main template:
{assertion_query}
```

USER PROMPT 2 – JAVA

You are provided with a Java method 'f' (defined elsewhere) and a 'public static void main' template with input placeholders marked as '??'. Your task is to replace each '??' with concrete , valid values so that the program compiles and the assertion in 'main' passes when run together with the class containing 'f' . Submit only the completed 'public static void main' code no additional explanation or information.

Code:

```
{function}
Masked main template:
{assertion_query}
```

USER PROMPT 3 – JAVA

You are given a piece of code that includes a Java method 'f' (defined elsewhere) and a 'public static void main' template with masked inputs marked as '??'.

Your task is to replace each '??' with concrete, valid input values such that, when

combined with the existing class containing 'f', the program

compiles successfully and the assertion in 'main' passes. Your

response must include **only** the completed 'public static

void main' code no additional explanation or information.

Code:

```
{function}
Masked main template:
{assertion_query}
```

Code:

```
{function}
Masked Main Template:
{assertion_query}
```

2916

2917

2918

2919

You will be provided with a function 'f' and a specified input format 'inputs = ??'. Your task is to identify a suitable input for the function 'f' that, when passed, results in the specified output. The solution should complete the final line of code to ensure the program executes error-free. Feel free to use any correct input, and note that the function f may incorporate predefined classes or data types. No extra information should be included in your submission.

{function}
{assertion_query}

2928

2929

2930

2931

2932

2933

You will be provided with a function 'f' and a specified output in the format 'inputs = ??'. Your task is to complete the final line of code so that the program executes error-free by identifying an input that, when passed to 'f', results in the specified output. There could be several correct inputs, and you may choose any one of them to complete the line. Do not include any extra information.

2939

2940

2941

2942

2943

2944

2945

2946

2947

2948

2949

2950

2951

2952

2953

2954

2955

2956

2957

2958

2959

2960

G.5.2 OUTPUT PREDICTION

2961

2962

2963

2964

2965

2966

2967

2968

2969

USER PROMPT 1 – PYTHON

You will be provided with a function 'f' and a specified input format 'inputs = ??'. Your task is to identify a suitable input for the function 'f' that, when passed, results in the specified output. The solution should complete the final line of code to ensure the program executes error-free. Feel free to use any correct input, and note that the function f may incorporate predefined classes or data types. No extra information should be included in your submission.

{function}
{assertion_query}

USER PROMPT 2 – PYTHON

You will be provided with a function 'f' and a specified output in the format 'inputs = ??'. Your task is to complete the final line of code so that the program executes error-free by identifying an input that, when passed to 'f', results in the specified output. There could be several correct inputs, and you may choose any one of them to complete the line. Do not include any extra information.

{function}
{assertion_query}

USER PROMPT 3 – PYTHON

You are provided with a function named 'f' and an expression formatted as 'inputs = ??'. Complete the expression by determining any possible input that, when passed to function 'f', will produce the specified output. Ensure the final line of code runs error-free. Note that there might be several valid inputs; you only need to provide one. Avoid including any extra information.

{function}
{assertion_query}

OUTPUT PREDICTION

SYSTEM PROMPT

You are a helpful assistant. Please provide your output prediction in the following JSON format: {"output_prediction": "<your output prediction>"}.

2970
 2971
 2972
 2973
 2974
 2975
 2976
 2977
 2978
 2979
 2980
 2981
 2982
 2983
 2984
 2985
 2986
 2987
 2988
 2989
 2990
 2991
 2992
 2993
 2994
 2995
 2996
 2997
 2998
 2999
 3000
 3001
 3002
 3003
 3004
 3005
 3006
 3007
 3008
 3009
 3010
 3011
 3012
 3013
 3014
 3015
 3016
 3017
 3018
 3019
 3020
 3021
 3022
 3023

USER PROMPT 1 – JAVA

You are given a piece of code containing Java method 'f' (already defined elsewhere) and a masked 'public static void main' template where the assertion's expected output(s) is/are '??'. Your task is to replace that '??' with concrete, valid value(s) so that, when combined with the existing class containing 'f', the program compiles and the assertion in 'main' holds true. No extra information except the filled 'public static void main' code should be included in your submission.

Code:

```
{function}
Masked main template:
{assertion_query}
```

USER PROMPT 2 – JAVA

You are given a Java code snippet containing a method 'f' (defined elsewhere) and a 'public static void main' template in which the expected output for an assertion is represented by '??'. Your task is to replace each '??' with specific, valid value(s) so that the program compiles successfully and the assertion in 'main' passes. Your submission must include only the completed 'public static void main' code do not add any extra explanation or content.

Code:

```
{function}
Masked main template:
{assertion_query}
```

USER PROMPT 3 – JAVA

You are provided with a piece of code that includes a Java method 'f' (already defined elsewhere) and a 'public static void main' template where the expected output(s) in the assertion is/are marked as '??'. Your task is to replace each '??' with concrete, valid value(s) such that the program compiles and the assertion in 'main' evaluates to true when combined with the given class containing 'f'. Submit only the completed 'public static void main' code no additional information.

Code:

```
{function}
Masked main template:
{assertion_query}
```

3024

3025

3026

3027

3028

3029

3030

3031

3032

3033

3034

3035

3036

3037

3038

3039

3040

3041

3042

3043

3044

3045

3046

3047

3048

3049

3050

3051

3052

3053

3054

3055

3056

3057

3058

3059

3060

3061

3062

3063

USER PROMPT 1 – PYTHON

Based on the given code, which may contain errors, complete the assert statement with the output when executing the code on the given test case. Do not output any extra information, even if the function is incorrect or incomplete.

```
{function}
{assertion_query}
```

USER PROMPT 2 – PYTHON

Please analyze the provided code, which might have errors, and finish the assert statement by specifying the expected result when the code is run with the specified test case. Ensure your response includes only the necessary information, without any additional comments about possible inaccuracies or incompleteness in the function.

```
{function}
{assertion_query}
```

USER PROMPT 3 – PYTHON

Given the function below, which may have errors, complete the assert statement to reflect the output when running the function with the provided test case. Only include the necessary information in your response; do not add anything extra, regardless of the function's correctness or completion status.

```
{function}
{assertion_query}
```

G.6 TEST GENERATION

3064

3065

3066

UNIT TEST GENERATION

3067

3068

3069

3070

3071

3072

3073

3074

3075

3076

3077

SYSTEM PROMPT

You are a professional Python unit test writer. Always output valid pytest test code wrapped in

```
'''python
{unit_test_code}
'''
```

Cover normal cases, invalid ts, boundary conditions, and exception paths.

```

3078
3079
3080
3081
3082
3083
3084
3085
3086
3087
3088
3089
3090
3091
3092
3093
3094
3095
3096
3097
3098
3099
3100
3101
3102
3103
3104
3105
3106
3107
3108
3109
3110
3111
3112
3113
3114
3115
3116
3117
3118
3119
3120
3121
3122
3123
3124
3125
3126
3127
3128
3129
3130
3131

```

USER PROMPT 1

```

```
{focal_method_code_with_context}
```
Write pytest unit tests for the focal method '{focal_method_name}' from the module '{module_name}'.

```

USER PROMPT 2

```

Here is the relevant code:
```
{focal_method_code_with_context}
```
Your task is to create pytest unit tests that thoroughly test the method '{focal_method_name}' defined in module '{module_name}'.

```

USER PROMPT 3

```

```
{focal_method_code_with_context}
```
Generate a set of pytest unit tests for '{focal_method_name}'. The method comes from the module '{module_name}'. Ensure coverage of normal cases, edge cases, and error handling.

```

G.7 VULNERABILITY DETECTION

VULNERABILITY DETECTION

SYSTEM PROMPT

```

You are a security expert analyzing code for vulnerabilities.
Be precise and accurate in your analysis.

```

3132

3133

3134

3135

3136

3137

3138

3139

3140

3141

3142

3143

3144

3145

3146

3147

USER PROMPT 1 – SINGLE FUNCTION

Please analyze the following code:

```

{code}

```

Please indicate your analysis result with one of the options:

(1) YES: A security vulnerability detected.

(2) NO: No security vulnerability.

Only reply with one of the options above. Do not include any further information.

3148

3149

3150

3151

3152

3153

3154

3155

3156

3157

3158

3159

3160

USER PROMPT 2 – SINGLE FUNCTION

Kindly review the code snippet below:

```

{code}

```

Then, respond exclusively with one of the following options:

(1) YES: A Security Vulnerability Detected.

(2) NO: No Security Vulnerability.

Please provide only one of the two responses, without any extra details.

3161

3162

3163

3164

3165

3166

3167

3168

3169

3170

3171

3172

3173

3174

3175

3176

3177

3178

3179

3180

3181

3182

3183

3184

3185

USER PROMPT 3 – SINGLE FUNCTION

Analyze the code snippet below:

```

{code}

```

After reviewing, choose exactly one of the following responses:

(1) YES: A security vulnerability detected.

(2) NO: No security vulnerability.

Respond only with one of these options and no additional information.

3186

3187

3188

3189

3190 Please analyze the following two code snippets separately. For
 3191 each snippet, provide exactly one answer either (1) or (2) from
 3192 the options below:

3193 For 'code1':

- 3194 - (1) YES: A security vulnerability detected.
- 3195 - (2) NO: No security vulnerability.

3196 For 'code2':

- 3197 - (1) YES: A security vulnerability detected.
- 3198 - (2) NO: No security vulnerability.

3199

3200 Ensure that your reply consists of two separate lines, one for
 3201 'code1' and one for 'code2', with no additional information.

3202 Code snippet for 'code1':

3203 ````

3204 {code1}

3205 ````

3206 Code snippet for 'code2':

3207 ````

3208 {code2}

3209 ````

3210

3211 Please output in the following JSON format:

3212 ````json

3213 {{"code1": "<YES / NO>","

3214 "code2": "<YES / NO>"}}

3215 ````

3216

3217

3218

3219

3220

3221

3222

3223

3224

3225

3226

3227

3228

3229

3230

3231

3232

3233

3234

3235

3236

3237

3238

3239

USER PROMPT 1 – PAIRED FUNCTIONS

Please analyze the following two code snippets separately. For each snippet, provide exactly one answer either (1) or (2) from the options below:

For 'code1':

- (1) YES: A security vulnerability detected.
- (2) NO: No security vulnerability.

For 'code2':

- (1) YES: A security vulnerability detected.
- (2) NO: No security vulnerability.

Ensure that your reply consists of two separate lines, one for 'code1' and one for 'code2', with no additional information.

Code snippet for 'code1':

````

{code1}

````

Code snippet for 'code2':

````

{code2}

````

Please output in the following JSON format:

````json

{{"code1": "<YES / NO>","

"code2": "<YES / NO>"}}

````

```

3240
3241
3242
3243
3244
3245
3246
3247
3248
3249
3250
3251
3252
3253
3254
3255
3256
3257
3258
3259
3260
3261
3262
3263
3264
3265
3266
3267
3268
3269
3270
3271
3272
3273
3274
3275
3276
3277
3278
3279
3280
3281
3282
3283
3284
3285
3286
3287
3288
3289
3290
3291
3292
3293

```

USER PROMPT 2 – PAIRED FUNCTIONS

Analyze the two provided code snippets individually. For each snippet, choose one answer from the following options:

- **For 'code1':**
 - (1) YES: A security vulnerability detected.
 - (2) NO: No security vulnerability.
- **For 'code2':**
 - (1) YES: A security vulnerability detected.
 - (2) NO: No security vulnerability.

Your response should consist of two separate lines one for 'code1' and one for 'code2' with no extra details. Use the following JSON format for your output:

```

```json
{ "code1": "<YES / NO>",
 "code2": "<YES / NO>" }
```

```

Here are the code snippets:

```

**Code snippet for 'code1':**
```
{code1}
```

```

```

**Code snippet for 'code2':**
```
{code2}
```

```

3294

3295

3296

3297

3298

3299

3300

3301

3302

3303

3304

3305

3306

3307

3308

3309

3310

3311

3312

3313

3314

3315

3316

3317

3318

3319

3320

3321

3322

3323

3324

3325

3326

3327

USER PROMPT 3 – PAIRED FUNCTIONS

Examine the two provided code snippets independently. For each snippet, select one answer either (1) or (2) from the choices below:

For 'code1':

- (1) YES: A security vulnerability was detected.
- (2) NO: No security vulnerability found.

For 'code2':

- (1) YES: A security vulnerability was detected.
- (2) NO: No security vulnerability found.

Your response should include exactly two lines: one for 'code1' and one for 'code2', without any extra details.

Here are the code snippets:

For 'code1':

```

{code1}

```

For 'code2':

```

{code2}

```

Return your answer in this JSON structure:

```
```json
{{
 "code1": "<YES / NO>",
 "code2": "<YES / NO>"
}}
```
```

H BENCHMARK STATISTICS

The data statistics of our evaluation data is as follows:

| Task | Code Generation | Code Summarization | Code Translation | Code Reasoning | Code Review | Test Generation | Vulnerability Detection | Multi-modal |
|-------------|-----------------|--------------------|------------------|----------------|-------------|-----------------|-------------------------|-------------|
| Data Volume | 1664 | 2000 | 744 | 2000 | 2000 | 200 | 400 | 900 |

Table 16: Task-wise data distribution

| Language | C | C++ | C# | Java | Go | JavaScript | TypeScript | PHP | Python | Ruby | Html | Css |
|-------------|-----|-----|-----|------|-----|------------|------------|-----|--------|------|------|-----|
| Data Volume | 400 | 800 | 400 | 2604 | 400 | 1072 | 400 | 400 | 2804 | 400 | 228 | 228 |

Table 17: Language-wise data distribution

I ANALYSIS OF LLM-AS-A-JUDGE

One potential problem of using LLM-as-a-judge as the evaluation metric is that it may have model preference and introduce fairness problem. To mitigate this problem, we analyze the influence of different judge models (Gemini-2.5-Flash and Claude-4-Sonnet) on evaluation. We present the results in Table 18 and Table 19. From these tables, we can find that different judging models exert

a certain impact on the result rankings. But the three models generally maintain a certain degree of consistency. For example, on the code review dataset, the Kendall’s W coefficient is 0.4936, indicating moderate consistency. Therefore, to provide a more reliable and convincing evaluation results, we use the average results of these three models as the evaluation results.

Table 18: Influence of different judge models on Code Summarization

| Model | Gemini-2.5-Flash | Rank | Claude-4 | Rank | GPT-4o | Rank |
|------------------------------|------------------|------|----------|------|--------|------|
| Claude-3.5-Haiku-20241022 | 41.82 | 19 | 57.82 | 16 | 85.24 | 15 |
| Claude-3.5-Sonnet-20241022 | 42.74 | 12 | 59.20 | 4 | 96.54 | 2 |
| Claude-3.7-Sonnet | 43.44 | 1 | 59.62 | 3 | 88.10 | 11 |
| Claude-Sonnet-4 | 43.44 | 1 | 60.38 | 1 | 93.76 | 5 |
| DeepSeek-R1 | 42.04 | 17 | 58.72 | 7 | 90.64 | 7 |
| DeepSeek-R1 (0528) | 41.98 | 18 | 58.72 | 7 | 90.64 | 7 |
| DeepSeek-V3 | 42.30 | 15 | 57.86 | 14 | 92.82 | 6 |
| GPT-3.5-turbo-0125 | 42.66 | 13 | 55.00 | 25 | 71.18 | 24 |
| GPT-4-turbo-2024-04-09 | 42.28 | 16 | 57.30 | 19 | 89.94 | 10 |
| GPT-4.1-2025-04-14 | 42.42 | 14 | 57.30 | 19 | 80.28 | 21 |
| GPT-4o-2024-11-20 | 42.82 | 9 | 57.84 | 15 | 87.88 | 12 |
| GPT-5 | 40.50 | 25 | 58.34 | 9 | 98.28 | 1 |
| Gemini-2.5-Pro-Preview-05-06 | 43.16 | 4 | 58.76 | 6 | 78.88 | 22 |
| Gemma-3-27B-Instruct | 43.12 | 5 | 57.96 | 13 | 82.96 | 19 |
| Grok-3-Mini (High) | 42.82 | 9 | 59.64 | 2 | 85.10 | 16 |
| Llama-3.1-70B-Instruct | 42.86 | 6 | 58.32 | 10 | 74.52 | 23 |
| Llama-3.1-8B-Instruct | 42.84 | 8 | 55.90 | 24 | 64.20 | 25 |
| Llama-3.3-70B-Instruct | 42.80 | 11 | 58.96 | 5 | 96.00 | 3 |
| Qwen2.5-72B-Instruct | 43.28 | 3 | 58.02 | 11 | 86.54 | 14 |
| Qwen2.5-Coder-32B-Instruct | 42.86 | 6 | 58.02 | 11 | 86.86 | 13 |
| Qwen3-235B-A22B | 40.88 | 23 | 56.84 | 21 | 95.12 | 4 |
| Qwen3-30B-A3B | 41.10 | 22 | 56.46 | 22 | 81.64 | 20 |
| Qwen3-32B | 41.40 | 20 | 57.74 | 17 | 90.10 | 9 |
| o3-mini (Med) | 40.60 | 24 | 56.24 | 23 | 84.26 | 18 |
| o4-mini (Med) | 41.14 | 21 | 57.70 | 18 | 84.38 | 17 |

J HUMAN STUDY

We conducted a human evaluation to investigate the reliability of LLM-as-judge used in our paper. We conduct this by randomly sampling 60 samples from the code summarization task, using predictions from the top 3 performing models on 20 same samples. Three developers with at least 5 years of experience participated, using the same criteria as the LLM judges. The results are shown in Table 20. We calculated the Pearson correlation coefficient between LLM judge scores and average human scores, resulting in a correlation of 0.99 with p-value 0.016 (<0.05) which indicates a high degree of consistency.

K ANALYSIS OF DIFFERENT METRICS

To comprehensively investigate the performance, we add additional smooth metrics to complement Pass@1 and LLM scores. Specifically, for code generation task, we follow previous work (Jiang et al., 2024) and add CodeBLEU to measure partial correctness and structural similarity; for code summarization task, we follow previous work and use BLEU (Sun et al., 2025) to evaluate the quality of generated summaries. The results are shown in Table 21 and 22. From these tables, we can observe that the model’s performance under these metrics is relatively low. This is because even if the generated code or comments exhibit significant textual differences from the ground truth, they may still be consistent in terms of functionality and semantics.

Table 19: Influence of different judge models on Code Review

| Model | Gemini-2.5-Flash | Rank | Claude-4 | Rank | GPT-4o | Rank |
|--------------------------------|------------------|------|----------|------|--------|------|
| Claude-3.5-Haiku-20241022 | 32.20 | 16 | 39.58 | 17 | 30.56 | 12 |
| Claude-3.5-Sonnet-20241022 | 34.16 | 2 | 39.54 | 18 | 29.98 | 20 |
| Claude-3.7-Sonnet | 33.46 | 3 | 40.38 | 8 | 30.48 | 14 |
| Claude-Sonnet-4 | 32.84 | 6 | 41.04 | 3 | 31.04 | 8 |
| DeepSeek-R1 | 32.26 | 15 | 40.48 | 7 | 27.38 | 25 |
| DeepSeek-R1 (0528) | 32.38 | 11 | 41.12 | 2 | 31.30 | 5 |
| DeepSeek-V3 | 32.56 | 9 | 39.60 | 16 | 30.52 | 13 |
| GPT-3.5-turbo-0125 | 29.60 | 26 | 34.72 | 26 | 29.64 | 22 |
| GPT-4-turbo-2024-04-09 | 32.30 | 13 | 39.36 | 22 | 29.70 | 21 |
| GPT-4.1-2025-04-14 | 32.92 | 5 | 40.80 | 4 | 29.38 | 23 |
| GPT-4o-2024-11-20 | 31.46 | 21 | 39.42 | 20 | 30.46 | 15 |
| GPT-5 | 29.98 | 25 | 42.78 | 1 | 26.62 | 26 |
| Gemini-2.5-Pro-05-06 | 32.68 | 8 | 40.30 | 11 | 31.46 | 3 |
| Gemma-3-27B-Instruct | 32.72 | 7 | 40.62 | 6 | 31.74 | 1 |
| Grok-3-Mini (High) | 34.54 | 1 | 40.34 | 10 | 30.90 | 10 |
| Llama-3.1-70B-Instruct | 31.32 | 22 | 38.74 | 24 | 30.14 | 19 |
| Llama-3.1-8B-Instruct | 30.42 | 24 | 37.36 | 25 | 30.20 | 18 |
| Llama-3.3-70B-Instruct | 32.34 | 12 | 38.80 | 23 | 30.70 | 11 |
| Llama-4-Scout-17B-16E-Instruct | 32.30 | 13 | 39.66 | 15 | 30.36 | 16 |
| Qwen2.5-72B-Instruct | 32.50 | 10 | 39.40 | 21 | 31.42 | 4 |
| Qwen2.5-Coder-32B-Instruct | 31.80 | 20 | 39.52 | 19 | 31.22 | 6 |
| Qwen3-235B-A22B | 32.14 | 17 | 40.38 | 8 | 31.10 | 7 |
| Qwen3-30B-A3B | 31.84 | 19 | 40.30 | 11 | 31.70 | 2 |
| Qwen3-32B | 32.10 | 18 | 40.28 | 13 | 30.36 | 16 |
| o3-mini (Med) | 33.10 | 4 | 39.68 | 14 | 31.00 | 9 |
| o4-mini (Med) | 30.60 | 23 | 40.76 | 5 | 29.02 | 24 |

| Model | LLM Judge Score | Human 1 Score | Human 2 Score | Human 3 Score |
|-------------------|-----------------|---------------|---------------|---------------|
| GPT-5 | 65 | 63 | 65 | 63 |
| Claude-3.5-Sonnet | 28 | 27 | 26 | 29 |
| LLaMA-3.3-70B | 38 | 39 | 38 | 37 |

Table 20: Model evaluation scores

L DATA CONTAMINATION ANALYSIS

Data contamination is a widespread challenge in benchmarking internet-scale LLMs, especially since most models do not disclose their training data for auditing. To mitigate this problem, for most tasks, we make the data collection and process stage an automated pipeline and plan to make the benchmark live, which could avoid the data contamination problem. Besides, to validate the contamination probability of current data, we adopted the widely-used min-k (Shi et al., 2023) method to detect potential contamination. We used Qwen3-30B-A3B for detection given its recent release (May 2025) and open-source nature, which enables access to the model’s output probabilities. The results are shown in Table 23. The results indicate that even newer models did not exhibit data leakage on our dataset. We have added this analysis to the appendix to ensure research transparency.

M LARGE LANGUAGE MODELS USAGE STATEMENT

In this paper, we employed LLMs to support the polish and refinement of this manuscript. The LLM was utilized to enhance linguistic expression and boost text comprehensibility. The model’s assistance encompassed activities including sentence restructuring and grammatical checks.

We emphasize that the LLMs are not used for conceptual development or experimental framework design. The authors assume complete accountability for all manuscript content, including portions

Table 21: Model Performance on Java and Python Tasks (CodeBLEU)

| Rank | Model | Java | Python | Average |
|------|--------------------------------|-------|--------|---------|
| 1 | Claude-3.7-Sonnet | 35.38 | 27.91 | 31.65 |
| 2 | GPT-4.1-2025-04-14 | 35.35 | 26.96 | 31.16 |
| 3 | Claude-Sonnet-4 | 34.76 | 26.92 | 30.84 |
| 4 | Qwen2.5-72B-Instruct | 34.17 | 27.01 | 30.59 |
| 5 | Claude-3.5-Sonnet-20241022 | 34.16 | 26.90 | 30.53 |
| 6 | Qwen2.5-Coder-32B-Instruct | 34.05 | 26.63 | 30.34 |
| 7 | o3-mini (Med) | 34.09 | 26.55 | 30.32 |
| 8 | GPT-5 | 34.03 | 26.15 | 30.09 |
| 9 | GPT-4o-2024-11-20 | 33.15 | 26.95 | 30.04 |
| 10 | DeepSeek-R1 (0528) | 34.42 | 25.59 | 30.01 |
| 11 | Qwen3-235B-A22B | 33.94 | 25.22 | 29.58 |
| 12 | DeepSeek-V3 | 30.98 | 27.72 | 29.35 |
| 13 | Qwen3-32B | 33.83 | 24.85 | 29.33 |
| 14 | DeepSeek-R1 | 34.03 | 24.66 | 29.33 |
| 15 | Qwen3-30B-A3B | 33.54 | 24.56 | 29.06 |
| 16 | GPT-4-turbo-2024-04-09 | 31.50 | 26.54 | 29.02 |
| 17 | Grok-3-Mini (High) | 32.52 | 25.51 | 29.01 |
| 18 | o4-mini (Med) | 31.92 | 25.84 | 28.88 |
| 19 | Llama-3.3-70B-Instruct | 32.15 | 25.31 | 28.73 |
| 20 | GPT-3.5-turbo-0125 | 31.90 | 25.49 | 28.69 |
| 21 | Claude-3.5-Haiku-20241022 | 30.96 | 26.03 | 28.49 |
| 22 | Llama-4-Scout-17B-16E-Instruct | 31.29 | 25.38 | 28.34 |
| 23 | Llama-3.1-70B-Instruct | 31.71 | 24.76 | 28.24 |
| 24 | Gemini-2.5-Pro-05-06 | 29.80 | 25.76 | 27.78 |
| 25 | Gemma-3-27B-Instruct | 28.93 | 25.65 | 27.29 |
| 26 | Llama-3.1-8B-Instruct | 30.33 | 23.29 | 26.81 |

Table 22: Code Summarization Task Results (BLEU)

| Rank | Model | BLEU Score |
|------|--------------------------------|------------|
| 1 | Llama-4-Scout-17B-16E-Instruct | 3.59 |
| 2 | Llama-3.1-8B-Instruct | 3.35 |
| 3 | GPT-4.1-2025-04-14 | 3.19 |
| 4 | Llama-3.1-70B-Instruct | 3.03 |
| 5 | Gemini-2.5-Pro-Preview-05-06 | 3.02 |
| 6 | GPT-3.5-turbo-0125 | 2.88 |
| 7 | Qwen2.5-72B-Instruct | 2.77 |
| 8 | GPT-4o-2024-11-20 | 2.76 |
| 9 | o4-mini(Med) | 2.72 |
| 10 | Gemma-3-27B-Instruct | 2.62 |
| 10 | o3-mini(Med) | 2.62 |
| 10 | Qwen2.5-Coder-32B-Instruct | 2.62 |
| 13 | Claude-3.7-Sonnet | 2.57 |
| 14 | GPT-5 | 2.56 |
| 14 | DeepSeek-R1(0528) | 2.56 |
| 14 | DeepSeek-R1 | 2.56 |
| 17 | Qwen3-30B-A3B | 2.55 |
| 18 | Grok-3-Mini(High) | 2.52 |
| 18 | Claude-Sonnet-4 | 2.52 |
| 20 | Claude-3.5-Sonnet-20241022 | 2.47 |
| 21 | Qwen3-32B | 2.37 |
| 22 | Llama-3.3-70B-Instruct | 2.33 |
| 23 | Claude-3.5-Haiku-20241022 | 2.31 |
| 24 | DeepSeek-V3 | 2.23 |
| 25 | GPT-4-turbo-2024-04-09 | 2.22 |
| 26 | Qwen3-235B-A22B | 1.62 |

Table 23: Contamination detection results

3510

3511

3512

| Task | Code Generation | Code Summuration | Code Translation | Code Review | Code Reasoning | Vulnerability Detection | Test Generation |
|-------|-----------------|------------------|------------------|-------------|----------------|-------------------------|-----------------|
| Min-k | -7.72 | -7.54 | -4.68 | -7.38 | -6.62 | -6.60 | -6.17 |

3513

3514

3515

that were refined through LLM assistance. We have verified that all LLM-produced content complies with academic integrity standards and does not constitute plagiarism or scholarly misconduct.

3516

3517

3518

3519

3520

3521

3522

3523

3524

3525

3526

3527

3528

3529

3530

3531

3532

3533

3534

3535

3536

3537

3538

3539

3540

3541

3542

3543

3544

3545

3546

3547

3548

3549

3550

3551

3552

3553

3554

3555

3556

3557

3558

3559

3560

3561

3562

3563