
A Problem-Oriented Perspective and
Anchor Verification for Code Optimization

Anonymous ACL submission

Abstract

Large language models (LLMs) have shown001
remarkable capabilities in solving various pro-002
gramming tasks, such as code generation. How-003
ever, their potential for code optimization, par-004
ticularly in performance enhancement, remains005
largely unexplored. This paper investigates the006
capabilities of LLMs in optimizing code for007
minimal execution time, addressing a critical008
gap in current research. The recently proposed009
code optimization dataset constructs program010
optimization pairs based on iterative submis-011
sions from the same programmer for the same012
problem. However, this approach limits LLMs013
to local performance improvements, neglecting014
global algorithmic innovation. To overcome015
this limitation, we adopt a completely differ-016
ent perspective by reconstructing the optimiza-017
tion pairs into a problem-oriented approach.018
This allows for the integration of various ideas019
from multiple programmers tackling the same020
problem. Experimental results demonstrate that021
adapting LLMs to problem-oriented optimiza-022
tion pairs significantly enhances their optimiza-023
tion capabilities. Furthermore, recognizing the024
inherent trade-offs in code optimization, we in-025
troduce an anchor verification mechanism to026
mitigate the "optimization tax". Ultimately, our027
approach elevates both the optimization ratio028
and speedup to new levels.029

1 Introduction030

Large Language Models (LLMs) and Code LLMs,031

such as GPT-4 (Achiam et al., 2023), CodeLLaMA032

(Roziere et al., 2023), WizardCoder (Luo et al.,033

2024), DeepSeek-Coder (Guo et al., 2024) and034

Qwen2.5-Coder (Hui et al., 2024), have demon-035

strated remarkable capabilities in software engi-036

neering and programming tasks, garnering sig-037

nificant attention from both academia and indus-038

try. In tasks such as code completion and code039

generation, Code LLMs achieve high correctness040

rates (Pass@K) on widely used benchmarks like041

EvalPlus (Liu et al., 2023) and LiveCodeBench 042

(Jain et al., 2024). However, despite these advance- 043

ments, the code produced by these models often 044

falls short in real-world applications. It may lack 045

the necessary optimizations to meet specific perfor- 046

mance and efficiency requirements (Shi et al., 2024; 047

Niu et al., 2024). As a result, the generated code 048

often requires further refinement and optimization 049

to align with practical constraints. 050

While low-level optimizing compilers and per- 051

formance engineering tools have made signifi- 052

cant advancements (Alfred et al., 2007; Wang and 053

O’Boyle, 2018), they primarily focus on hardware- 054

centric optimizations. High-level performance con- 055

siderations, such as algorithm selection and API 056

usage, continue to rely heavily on manual interven- 057

tion by programmers. Automating high-level code 058

optimization remains a major challenge and, un- 059

like code generation, has yet to be widely explored. 060

Code optimization can be approached from vari- 061

ous angles. In this work, we specifically focus on 062

time performance optimization, with an emphasis 063

on minimizing program execution time, given its 064

critical importance in practical applications. 065

In the field of performance optimization, the 066

construction of datasets has been a critical chal- 067

lenge. Unlike code generation, which only requires 068

the collection of correct code, performance opti- 069

mization demands semantically equivalent code 070

pairs with varying levels of efficiency. This dual 071

requirement, ensuring both functional correctness 072

and measurable performance improvements, makes 073

dataset creation considerably more complex. Re- 074

cent study (Shypula et al., 2024) partly addressed 075

this challenge by collecting user iterative submis- 076

sions from programming platforms, thereby cre- 077

ating code optimization pairs—each consisting of 078

less efficient code and its semantically equivalent, 079

more efficient counterpart. By utilizing these opti- 080

mization pairs, researchers have demonstrated the 081

potential of Code LLMs in code optimization tasks 082

1

Slow Fast
Runtime 3706 ms 2843 ms 2598 ms

Problem

2503 ms 745 ms 31 ms

Slow Fast
Runtime 3706 ms 2503 ms 1020 ms 389 ms 56 ms

A1 A2 A3 AN
Snuke and Raccoon have a heap of N cards. The i-th card
from the top has the integer ai written on it. First, Snuke
will take some number of cards from the top of the heap,
then Raccoon will take all the remaining cards. Here, both
Snuke and Raccoon have to take at least one card.
Let the sum of the integers on Snuke's cards and Raccoon's
cards be x and y, respectively. They would like to minimize
|x-y|. Find the minimum possible value of |x-y|.

B1 B2 B3 BP

C1 C2 C3 CM

Solutions
. . .
Solutions

. . .
Solutions

. . .
Solutions

Alice

Bob

Charlie

A1 C1 B1

468 ms 56 ms

A2 B3 C2 AN CM

A1 A2 A4 A5 A6 AN-1 AN

89 ms1778 ms

A3

619 ms

User Oriented

Problem Oriented

Figure 1: For a given problem, different users submit and iterate on their code solutions. The user-oriented
perspective constructs optimization pairs based on the submission trajectories of individual users. In contrast, the
problem-oriented perspective analyzes all solutions for the problem to build trajectories and form optimization pairs.

through subsequent fine-tuning.083

However, the current approach of constructing084

code optimization pairs from iterative submissions085

by the same user has significant limitations. We086

refer to this as the user-oriented approach. As087

shown in Figure 1, a user initially submits a so-088

lution to a programming problem, but early ver-089

sions may fail to meet the system’s time con-090

straints due to excessive computational overhead.091

Through iterative refinements, the user eventually092

arrives at a more efficient solution. This process093

captures the user’s submission trajectory, which094

is used to construct optimization pairs such as095

(A1, A2), (A2, A3), ..., (AN−1, AN). While this096

approach naturally reflects the direction of code097

optimization, it is inherently constrained by the098

thought patterns of a single programmer. Con-099

sequently, improvements tend to be incremental,100

building upon existing logic and paradigms. We101

present a substantial number of intuitive examples102

(Fig 15, 16, 17, 18) in Appendix H. In contrast,103

real-world code optimization thrives on collabo-104

rative diversity. Code review and refactoring pro-105

cesses deliberately involve multiple programmers106

to overcome cognitive inertia, with innovation aris-107

ing from the synthesis of diverse perspectives. In-108

spired by this insight, we propose shifting from the109

user-oriented perspective to a problem-oriented110

perspective. We restructure optimization pairs by111

incorporating solutions from multiple programmers 112

addressing the same problem. As illustrated in the 113

final part of Figure 1, solutions from different users, 114

ordered by runtime, form a completely new opti- 115

mization trajectory for the given problem. This 116

problem-oriented perspective encourages a diverse 117

range of innovative ideas, fostering a more holistic 118

optimization process that better mirrors the com- 119

plexity and creativity of program optimization. 120

Experimental results show that adapting Code 121

LLMs to problem-oriented optimization pairs 122

greatly enhances code optimization capabilities, 123

leading to significant improvements in both opti- 124

mization ratios (31.24% → 58.89%) and speedup 125

(2.95×→5.22×). Meanwhile, we also observe that 126

code optimization inherently involves a trade-off 127

in correctness, meaning that optimized code is not 128

always guaranteed to be correct, which we call 129

"optimization tax". To address this challenge, we 130

introduce an innovative anchor verification mech- 131

anism specifically designed for code optimization. 132

Unlike conventional test case execution feedback- 133

based code generation methods (Chen et al., 2023; 134

Wei et al., 2024; Chen et al., 2024a), which rely 135

on synthesized test cases and bidirectional execu- 136

tion filtering to validate generated test case and 137

code, our anchor verification mechanism first uti- 138

lizes the LLM to explain the "slow code" and gen- 139

erate test case inputs. Next, we treat the "slow 140

2

code" under optimization as a test case anchor to141

produce precise outputs for these inputs. By pair-142

ing each test input with its corresponding output,143

we create complete and verified test cases. These144

verified test cases are then used for the iterative145

refinement of the "optimized code". Further exper-146

imental results show that our anchor verification147

mechanism pushes code optimization to new levels,148

significantly improving both the optimization ratio149

(58.90% → 71.06%), speedup (5.22×→6.08×)150

and correctness (61.55% → 74.54%).151

In summary, our contributions are as follows,152

and the code is publicly available 1:153

• To the best of our knowledge, we are the first154

to introduce a problem-oriented perspective155

for code optimization.156

• Our proposed anchor verification mechanism157

effectively mitigates the "optimization tax".158

• Extensive experiments and analyses validate159

the effectiveness and robustness of both the160

problem-oriented perspective and the anchor161

verification mechanism in code optimization.162

2 Related Works163

2.1 LLMs for Code-Related Tasks.164

LLMs pre-trained on extensive code corpora have165

demonstrated remarkable capabilities in various166

programming tasks, including code completion,167

code generation, and code summarization (Li et al.,168

2022; Nijkamp et al., 2023; Roziere et al., 2023;169

Wei et al., 2023; Guo et al., 2024; Song et al.,170

2024; Wang et al., 2025). To enhance the accu-171

racy of code generation, numerous techniques and172

frameworks have been proposed, such as execution173

feedback and self-correction mechanisms (Chen174

et al., 2024b; Zhong et al., 2024; Moon et al., 2024;175

Olausson et al., 2024). However, despite these176

advancements, the research of LLMs to code op-177

timization, a field of both practical significance178

and considerable real-world challenges, remains179

underexplored in both academia and industry.180

2.2 Code Optimization.181

With Moore’s law losing momentum, program op-182

timization has become a central focus of software183

engineering over the past few decades (Bacon et al.,184

1994; Kistler and Franz, 2003). However, achiev-185

ing high-level optimizations, such as algorithmic186

changes, remains challenging due to the difficulty187

1https://anonymous.4open.science/r/
code-optimization-85ED

in comprehending code semantics. Previous re- 188

search has employed machine learning to enhance 189

performance by identifying compiler transforma- 190

tions (Bacon et al., 1994), optimizing GPU code 191

(Liou et al., 2020), and automatically selecting algo- 192

rithms (Kerschke et al., 2019). For instance, Deep- 193

PERF (Garg et al., 2022) leverages a transformer- 194

based model fine-tuned to generate performance 195

improvement patches for C# applications. Recently, 196

Shypula et al. (2024) introduced the first C/C++ 197

dataset designed for program efficiency optimiza- 198

tion, with preliminary results demonstrating the 199

potential of LLMs in code optimization. 200

3 Problem-Oriented Code Optimization 201

We shift from a user-oriented perspective to a 202

problem-oriented perspective, with Section 3.1 out- 203

lining the key distinctions in their construction. 204

Subsequently, we conduct comprehensive struc- 205

tural, semantic, and sampling analyses of both user- 206

oriented and problem-oriented optimization pairs. 207

3.1 Problem-oriented Optimization Pairs 208

User-Oriented Perspective. The current code 209

optimization pairs are derived from PIE, introduced 210

by Shypula et al. (2024), which focuses on opti- 211

mizing program execution time by utilizing human 212

programmers’ submissions from a wide range of 213

competitive programming tasks on CodeNet (Puri 214

et al., 2021). A key aspect of developing PIE is 215

recognizing the typical workflow of programmers: 216

when faced with a problem, they usually begin with 217

an initial solution and then iteratively refine it. As 218

shown in Figure 1, for a given problem P , users 219

(Alice, Bob, Charlie, etc.) have their submission 220

trajectories, filter out incorrect submissions, and 221

sort the remaining ones in chronological order. For- 222

mally denoted as: 223

Alice valid submissions: [A1, A2, A3, . . . , AN]

Bob valid submissions: [B1, B2, B3, . . . , BP]

Charlie valid submissions: [C1, C2, C3, . . . , CM]

224

The user-oriented optimization pairs are con- 225

structed by extracting sequential pairs from each 226

user’s submission trajectory. For example, Alice’s 227

valid submissions generate optimization pairs such 228

as (A1, A2), (A2, A3), and so on, while Charlie’s 229

valid submissions result in optimization pairs like 230

(C1, C2), (C2, C3), and so forth. Ultimately, ag- 231

gregating all these optimization pairs forms the 232

complete user-oriented optimization dataset (PIE). 233

3

https://anonymous.4open.science/r/code-optimization-85ED
https://anonymous.4open.science/r/code-optimization-85ED

0 100 200 300 400 500
Graph Edit Distances

0

1

2

3

4

5

6
#C

ou
nt

 (T
ho

us
an

d)
Problem-oriented User-oriented

Figure 2: Structural Analysis of the Disparities between
Problem-oriented and User-oriented Optimization Pairs.

Problem-Oriented Perspective. While user-234

oriented optimization pairs naturally indicate the235

direction of optimization, as previously noted, they236

are inherently confined by the cognitive patterns of237

a single programmer. The detailed instances in Ap-238

pendix H illustrate this point, intuitively showing239

that the overall problem-solving approach and logi-240

cal framework remain largely unaltered. Therefore,241

we shift the perspective on optimization pairs and242

propose a problem-oriented construction method.243

Specifically, we regard all submissions for the same244

problem P from different users as a single group,245

thereby breaking down the barriers between differ-246

ent users. We sort all valid user submissions for247

the same P based on the marked runtime and map248

them onto the same optimization trajectories:249

All users: [A1, C1, B1, A2, B3, C2, . . . , CM]250

Subsequently, we construct optimization pairs251

along the problem-oriented trajectory, such as252

(A1, C1), (C1, B1), (C1, B2), etc. Ultimately, this253

process yields a problem-oriented optimization254

dataset. This method not only reflects the direc-255

tion of optimization but also integrate the diverse256

strategies and algorithm of different programmer.257

Extra Quantity Bonus. The problem-oriented258

perspective also offers a significant advantage in259

terms of scale. Assuming there are P problems,260

each with U users, and each user has nu valid sub-261

missions, the user-oriented and problem-oriented262

perspectives exhibit a substantial divergence in the263

scaling of optimization pairs:264

user oriented =
1

2
·
∑P

p=1

∑U
u=1C

2
nu

problem oriented =
1

2
·
∑P

p=1C
2∑U

u=1 nu

265

Figure 3: Semantic Representation Analysis of Problem-
oriented and User-oriented Optimization Pairs.

Global Local Other
0

20

40

60

80

100
Pe

rc
en

t (
%

)
78.0

44.0

14.0

37.0

8.0

19.0

Problem-oriented User-oriented

Figure 4: Human Analysis of the Optimization Types
between Problem-oriented and User-oriented Pairs.

This characteristic is particularly advantageous for 266

addressing the challenge of data scarcity when con- 267

structing code optimization pairs. 268

3.2 Multi-Dimension Analysis 269

To rigorously and comprehensively compare code 270

optimization pairs derived from two different per- 271

spectives, we employ a multi-faceted analysis. 272

Specifically, based on the problem-oriented ap- 273

proach proposed in Section 3.1, we reconstruct 274

the PIE dataset, resulting in the PCO (Problem- 275

oriented Code Optimization). To ensure compara- 276

bility and fairness, we retained the same number of 277

optimization pairs for each problem in PCO as in 278

the corresponding problem in PIE, selecting those 279

with the top speedup rankings. This guarantees that 280

both datasets contain a total of 78K optimization 281

pairs, as shown in Table 3. We then perform com- 282

parative analyses across three different dimensions: 283

Structural Analysis, Semantic Representation Anal- 284

ysis, and Human & LLMs Sampling Analysis. 285

4

Table 1: Prompt and Fine-Tuning Results for LLMs on PIE and PCO optimization pairs with BEST@1 and BEST@8.

Prompt LLMs BEST@1 BEST@8

/ Dataset & Code LLMs %OPT SPEEDUP CORRECT %OPT SPEEDUP CORRECT

Instruct DEEPSEEKCODER 33B 5.28% 1.12× 30.17% 14.83% 1.23× 48.00%
Instruct GPT-4 12.37% 1.19× 75.28% 22.81% 1.38× 91.74%

CoT DEEPSEEKCODER 33B 13.91% 1.24× 37.45% 20.81% 1.55× 61.89%
CoT GPT-4 23.43% 1.37× 48.65% 47.92% 1.74× 80.53%

PIE CODELLAMA 13B 12.98% 1.73× 47.45% 41.65% 2.85× 72.27%
PIE DEEPSEEKCODER 7B 23.56% 2.29× 41.27% 47.23% 3.34× 69.23%
PIE DEEPSEEKCODER 33B 27.57% 2.77× 50.49% 56.76% 3.83× 81.14%
PIE QWEN2.5-CODER 7B 26.96% 2.80× 41.21% 56.17% 3.85× 78.54%
PIE QWEN2.5-CODER 32B 31.24% 2.95× 46.52% 60.89% 4.11× 87.95%

PCO CODELLAMA 13B 31.83% 3.23× 44.26% 55.87% 4.89× 69.61%
PCO DEEPSEEKCODER 7B 44.38% 4.31× 45.71% 71.53% 6.24× 73.09%
PCO DEEPSEEKCODER 33B 49.83% 4.57× 50.64% 74.87% 6.67× 78.29%
PCO QWEN2.5-CODER 7B 54.83% 4.73× 56.26% 75.28% 6.89× 77.43%
PCO QWEN2.5-CODER 32B 58.89% 5.22× 61.55% 80.77% 7.22× 83.03%

Structural Analysis. First, we analyze the struc-286

tural differences between "slow" and "fast" code287

within the optimization pairs. To achieve this, we288

utilize Control Flow Graphs (CFGs), as they repre-289

sent the logical structure and execution pathways290

of a program. To quantify the structural differ-291

ences, we employ the Graph Edit Distance (GED)292

metric, which measures the minimum edit opera-293

tion cost between the CFGs of "slow" and "fast"294

code. As shown in Fig 2, significant differences295

emerge from different perspectives: user-oriented296

optimization pairs exhibit a relatively small aver-297

age GED, indicating that the optimizations involve298

minor changes, such as localized optimizations.299

In contrast, problem-oriented optimization pairs300

show a significantly higher average GED, suggest-301

ing substantial changes, such as major structural302

modifications. These optimizations often involve303

global changes, such as algorithmic adjustments,304

which contrasts sharply with the incremental nature305

of user-oriented optimizations.306

Semantic Representation Analysis. Beyond307

comparing the code structure within optimization308

pairs, we also analyze the semantic differences be-309

tween optimization pairs. To do this, we concate-310

nate the "slow" and "fast" code snippets within each311

pair to form a unified input. These concatenated se-312

quences are then encoded using CODET5P-110M-313

EMBEDDING (Wang et al., 2023) to generate high-314

dimensional semantic embeddings, which are sub-315

sequently projected using t-SNE (van der Maaten316

and Hinton, 2008) for visualization. As shown in317

Fig 3, the embeddings for the user-oriented pairs318

are tightly clustered, indicating that the code pairs 319

represent similar coding semantics. In contrast, 320

the embeddings for the problem-oriented pairs are 321

more dispersed, reflecting greater diversity. 322

Human & LLMs Sampling Analysis. We con- 323

duct a sampling analysis to further investigate op- 324

timization patterns. Specifically, we randomly se- 325

lect 100 pairs from the PIE and PCO for human 326

analysis, aiming to classify the types of optimiza- 327

tions applied. Additionally, we randomly select 328

1,000 optimization pairs for evaluation using GPT- 329

4. The optimizations are categorized into three 330

main types: global algorithmic optimizations, local 331

optimizations, and other modifications (e.g., code 332

cleanup), with details provided in the Appendix A. 333

As shown in Fig 4, human analysis reveals distinct 334

trends across the different perspectives: In the PIE 335

dataset, true global algorithmic optimizations con- 336

stitute a relatively small proportion. In contrast, 337

the majority of program pairs in PCO fall into the 338

global algorithmic optimization category, indicat- 339

ing a stronger emphasis on significant algorithmic 340

and structural improvements. The LLM analysis 341

exhibits similar patterns, as shown in Fig 7. 342

3.3 Adapting LLMs to Optimization Pairs 343

Moreover, we utilize supervised finetuning to adapt 344

LLMs to problem-oriented PCO optimization pairs. 345

Metrics. To evaluate code optimization perfor- 346

mance, following (Shypula et al., 2024), we mea- 347

sure below metrics: 348

• Percent Optimized [%OPT]: The fraction of 349

programs in the test set improved by a certain 350

5

Figure 5: Impact of using varying percentages of PCO optimization pairs on %OPT, SPEEDUP, and CORRECT. The
blue line represents the original PCO datasets, while the yellow line represents the original PIE datasets.

method. A program must be at least 10%351

faster and correct to contribute.352

• Speedup [SPEEDUP]: The absolute improve-353

ment in running time. If o and n are354

the "old" and "new" running times, then355

SPEEDUP(O, N) =
(
o
n

)
. A program must be356

correct to contribute.357

• Percent Correct [CORRECT]: The proportion358

of programs in the test set that are functionally359

equivalent to the original program.360

We count a program as functionally correct only if361

it passes every test case. Additionally, we report362

SPEEDUP as the average speedup across all test363

set samples. For generated programs that are ei-364

ther incorrect or slower than the original, we use a365

speedup of 1.0×, hence, in the worst case, the orig-366

inal program has a speedup of 1.0. We benchmark367

performance using gem5 CPU simulator environ-368

ment (Binkert et al., 2011) and compile all C++369

programs with GCC version 9.4.0 and C++17 as370

well as the -O3 optimization flag. Therefore, any371

reported improvements would be those on top of372

the optimizing compiler.373

Code LLMs Selection. We select GPT-4 (gpt-374

4-0613) (Achiam et al., 2023), CODELLAMA375

(Roziere et al., 2023), DEEPSEEKCODER (Guo376

et al., 2024) and QWEN2.5-CODER (Hui et al.,377

2024) for code optimization, as these LLMs are378

top-performing in code domain. For instruction-379

following prompt, we utilize the corresponding380

chat versions, while for fine-tuning, we employ381

the base versions of these LLMs. Detailed training382

parameters are provided in the Appendix D.383

Decoding Strategy. Code generation benefits384

from sampling multiple candidate outputs for each385

input and selecting the best one; in our case, the386

"best" refers to the fastest program that passes all387

test cases. We use BEST@k to denote this strategy, 388

where k represents the number of samples and the 389

temperature is set to 0.7. we use vLLM (Kwon 390

et al., 2023) for efficiently inference and detailed 391

prompts shown in Fig 10. 392

3.4 Adapting Results. 393

Instruction Prompting. First, we use instruction 394

prompts to guide the LLMs in optimizing code. 395

Additionally, inspired by Chain-of-Thought (CoT) 396

(Wei et al., 2022), we ask the LLMs to reason about 397

how to optimize the program before generating 398

the optimized version. Details of the instruction 399

prompt and CoT prompt are shown in Appendix E. 400

Table 1 shows that using instruct prompt and CoT 401

did not significantly improve %OPT and SPEEDUP. 402

The best performance by GPT-4 achieved 47.92 403

%OPT and 1.74× SPEEDUP under BEST@8. Addi- 404

tionally, we observe that using CoT for optimiza- 405

tion speeds up the program but can lead to a decline 406

in CORRECT due to the complexities it introduces. 407

Fine-Tuning Results. As shown in Table 1, 408

whether for different LLM series or varying pa- 409

rameter scales, significant performance differences 410

are observed when finetuned on user-oriented 411

(PIE) and problem-oriented (PCO) optimization 412

pairs. QWEN2.5-CODER 32B on PCO at BEST@1, 413

demonstrates substantial improvements: %OPT 414

(31.24% → 58.89%), SPEEDUP (2.95×→5.22×), 415

and CORRECT (46.52% → 61.55%) compared 416

to finetuned on PIE. At BEST@8, %OPT and 417

SPEEDUP reached 80.77% and 7.22×, respectively. 418

This indicates a significant advantage in adapting 419

to problem-oriented optimization pairs compared 420

to user-oriented optimization pairs. 421

Finding 1: We also observe that, unlike BEST@1, 422

CORRECT slightly declines for most LLMs adapted 423

on PCO under BEST@8. This is because, com- 424

6

Slow Code Optimized Code

Explain: This code implements a
simple sequence generation and
duplicate detection algorithm …

Test case input:
Input 1: 1 Input 2: 7
Input 3: 0 Input N: -5

Stage1: Explain
and generate

test case input.

Stage 2: Filter invalid
input and execute on

slow code.

Concatenate
verified test case
input and output.

Input 1: 1 Output 1: 4
Input 2: 2 Output 2: 5
Input 3: 7 Output 3: 18
.
Input N: -5 Output N: 6

Stage 3: Executing verified test
cases and iterative refinement.

Anchor Verification Framework

&

Verified Test Cases

Figure 6: Anchor Verification Framework. It includes three stages: generating test inputs based on the slow code’s
functionality, constructing a verified test case set by executing inputs through the slow code, and iteratively refining
the optimized code with execution feedback to ensure correctness and preserve performance gains.

pared to PIE, LLMs adapting on PCO results in425

more significant modifications to the code in pur-426

suit of maximum efficiency, which slightly disrupts427

the balance of CORRECT.428

Finding 2: For LLMs adapted on PCO, both429

%OPT and CORRECT are much closer compared430

to PIE. This suggests that when the optimized code431

is correct, it is highly likely to be optimized. The432

closer %OPT and CORRECT are, the higher the433

proportion of "correct will be optimized". This434

insight also indicates that, for LLMs adapted on435

PCO, to further increase the optimization ratio, the436

bottleneck lies in ensuring correctness.437

3.5 PCO Percentage Analysis.438

We further explore how using fewer PCO optimiza-439

tion pairs impacts %OPT, SPEEDUP, and COR-440

RECT. To investigate this, we randomly selected a441

certain percentage of optimization pairs from PCO,442

reducing the number of pairs from 90% and 80%443

down to 10%, and fine-tuned QWEN2.5-CODER in444

the same way. As shown in Fig 5, even with just445

30% of the PCO optimization pairs, LLMs adapted446

on PCO achieve both %OPT and SPEEDUP that447

surpass those of the full PIE. Furthermore, with448

roughly half of the PCO pairs, CORRECT matches449

the full PIE. These results highlight the impres-450

sive data efficiency of the problem-oriented per-451

spective, where fewer optimization pairs can still452

deliver competitive or even superior performance453

compared to full user-oriented optimization pairs.454

4 Anchor Verification For Practicability455

In Section 3, we discuss a key challenge in456

LLM code optimization, whether through Instruct457

Prompting or Finetuning: while performance en-458

hancement offers significant benefits, there is also 459

a risk of optimized code is not 100% correct. We 460

refer to this phenomenon as the "optimization tax". 461

To tackle the challenge of "optimization tax", we 462

propose a novel anchor verification framework that 463

leverages the original "slow code" as a reliable test 464

case verification anchor. Unlike the code genera- 465

tion domain, which may rely on potentially error- 466

prone synthetic test cases for refinement, the code 467

optimization scenario has a unique advantage: the 468

"slow code", despite its inefficiency, is functionally 469

correct. This inherent characteristic positions it as 470

an ideal test case verification anchor. As shown in 471

Fig 6, the framework consists of three stages. First, 472

we generate test case inputs (only inputs) based 473

on the functionality of the slow code. Then, we 474

construct a verified test case (test case inputs and 475

outputs) by executing these inputs through the slow 476

code. Finally, we iteratively refine the optimized 477

code using feedback from the execution of the ver- 478

ified test case. This process ensures correctness 479

while maintaining the performance gains. 480

4.1 Detailed Methodology. 481

Stage 1: Test Inputs Generation. In the first stage, 482

the LLM is prompted to explain the functionality 483

of the "slow code" and generate a set of test inputs. 484

These test inputs are designed to cover the bound- 485

ary cases of the implemented functionality. Unlike 486

LLM-based test case generation, the first stage fo- 487

cuses solely on generating the test case inputs. 488

Stage 2: Verified Testcase Construction. Based 489

on the obtained test case inputs, we feed these in- 490

puts to the "slow code" for compilation and exe- 491

cution. Although the "slow code" is inefficient, it 492

ensures correctness. We filter out test case inputs 493

7

Table 2: Results of Anchor Verification and compared methods with QWEN2.5-CODER, GPT-4o, and DEEPSEEK-
V3 on BEST@1. The improvement (denoted as ∆) is measured against the baseline (w/o refinement).

LLMs Methods
BEST@1

%OPT ∆ ↑ SPEEDUP ∆ ↑ CORRECT ∆ ↑

Baseline (w/o refinement) 58.90% 5.22× 61.55%

QWEN2.5-CODER 32B
INSTRUCT

Self Debugging 58.42% -0.48 5.13× -0.09 61.14% -0.41
Direct Test Generation 62.98% +4.08 5.46× +0.24 65.95% +4.40
Anchor Verification 64.75% +5.85 5.67× +0.45 67.28% +5.73

GPT-4o
Self Debugging 61.96% +3.06 5.59× +0.37 63.60% +2.05

Direct Test Generation 65.43% +6.53 5.71× +0.49 68.61% +7.06
Anchor Verification 68.40% +9.50 5.90× +0.68 71.98% +10.43

DEEPSEEK-V3
Self Debugging 64.11% +5.21 5.63× +0.41 65.64% +4.09

Direct Test Generation 66.26% +7.36 5.81× +0.59 69.53% +7.98
Anchor Verification 71.06% +12.16 6.08× +0.86 74.54% +12.99

that don’t match the input format and gather the494

corresponding output results. Finally, we combine495

the test case inputs and their corresponding output496

results to form verified test case sets.497

Stage 3: Iterative Refinement. Leveraging the498

verified test case sets, we compile and execute the499

optimized code to check its correctness. If an error500

occurs, similar to the feedback mechanism in code501

generation, we provide the error information to the502

LLM, enabling it to iteratively refine the optimized503

code based on this feedback.504

4.2 Experiment Results.505

Compared Methods. To rigorously validate the506

effectiveness of the anchor verification mechanism,507

we benchmark against two compared methods:508

• Self-Debugging: following the approach out-509

lined in (Chen et al., 2024b), the method prompts510

the LLM to provide line-by-line explanations of511

the generated code as feedback for refinement.512

• Direct Test Generation: The LLM generates513

complete test cases (including inputs and outputs)514

and uses synthetic cases to execute and iteratively515

refine the optimized code.516

Experiments Setup. We set the maximum itera-517

tion count for all methods to 1. Detailed implemen-518

tation and prompts are shown in Appendix F.519

Main Results. We use "QWEN2.5-CODER 32B520

finetuned on PCO" as the baseline (the last row521

in Table 1). We experimented with three differ-522

ent LLM backbones: QWEN2.5-CODER 32B IN-523

STRUCT, GPT-4o, and DEEPSEEK-V3 (DeepSeek-524

AI, 2024), with the results shown in Table 2. All525

methods showed performance gains, except for a526

slight decline in the self-debugging with QWEN2.5-527

CODER 32B INSTRUCT. The decline can be at- 528

tributed to the high demands on the LLM’s ability 529

for self-explanation and correction, and QWEN2.5- 530

CODER 32B INSTRUCT’s overall performance 531

still lags behind the other two LLMs. Anchor 532

verification demonstrated the best improvements 533

across all three LLM backbones, particularly with 534

DEEPSEEK-V3. Compared to the baseline, COR- 535

RECT improved by 12.99%, %OPT improved by 536

12.16%, and SPEEDUP increased to 6.08×. This re- 537

sult further confirms that improving CORRECT can 538

simultaneously enhance both %OPT and SPEEDUP. 539

4.3 Deeper Analysis. 540

To conduct a more comprehensive analysis of An- 541

chor Verification, we perform experiments using 542

"QWEN2.5-CODER 32B finetuned on PIE" as the 543

baseline and compared it with other methods. The 544

results, presented in Table 4, show that Anchor 545

Verification continues to deliver the highest perfor- 546

mance gains. Furthermore, we observed that the 547

gains in optimization ratio and speedup brought by 548

Anchor Verification’s improvement in correctness 549

in PIE are not as significant as those achieved in 550

PCO. This further underscores the superiority of 551

the PCO. Additionally, we present three case stud- 552

ies to intuitively show specific examples of Anchor 553

Verification, as shown in Figure 19, 20, and 21. 554

5 Conclusion 555

In this paper, we propose a problem-oriented per- 556

spective and an anchor verification mechanism for 557

code optimization. Our approach elevates both the 558

optimization ratio, speedup, and correctness to new 559

levels. We hope these insights will pave the way 560

for a feasible path to improving program efficiency. 561

8

Limitation562

This paper focuses on optimizing the time effi-563

ciency of given code, without considering other564

optimization directions. However, in real-world565

scenarios, there are many other optimization direc-566

tions, such as memory optimization. Furthermore,567

ensuring the full correctness of code optimization568

remains a complex challenge, one that warrants569

further research.570

References571

Josh Achiam, Steven Adler, Sandhini Agarwal, Lama572
Ahmad, Ilge Akkaya, Florencia Leoni Aleman,573
Diogo Almeida, Janko Altenschmidt, Sam Altman,574
Shyamal Anadkat, et al. 2023. Gpt-4 technical report.575
arXiv preprint arXiv:2303.08774.576

V Aho Alfred, S Lam Monica, and D Ullman Jeffrey.577
2007. Compilers Principles, Techniques & Tools.578
pearson Education.579

David F. Bacon, Susan L. Graham, and Oliver J.580
Sharp. 1994. Compiler transformations for high-581
performance computing. ACM Comput. Surv.,582
26(4):345–420.583

Nathan Binkert, Bradford Beckmann, Gabriel Black,584
Steven K. Reinhardt, Ali Saidi, Arkaprava Basu, Joel585
Hestness, Derek R. Hower, Tushar Krishna, Somayeh586
Sardashti, Rathijit Sen, Korey Sewell, Muhammad587
Shoaib, Nilay Vaish, Mark D. Hill, and David A.588
Wood. 2011. The gem5 Simulator. SIGARCH Com-589
put. Archit. News.590

Bei Chen, Fengji Zhang, Anh Nguyen, Daoguang Zan,591
Zeqi Lin, Jian-Guang Lou, and Weizhu Chen. 2023.592
Codet: Code generation with generated tests. In593
The Eleventh International Conference on Learning594
Representations.595

Mouxiang Chen, Zhongxin Liu, He Tao, Yusu Hong,596
David Lo, Xin Xia, and Jianling Sun. 2024a. B4:597
Towards optimal assessment of plausible code solu-598
tions with plausible tests. In Proceedings of the 39th599
IEEE/ACM International Conference on Automated600
Software Engineering, ASE ’24, page 1693–1705.601
ACM.602

Xinyun Chen, Maxwell Lin, Nathanael Schärli, and603
Denny Zhou. 2024b. Teaching large language mod-604
els to self-debug. In The Twelfth International Con-605
ference on Learning Representations.606

DeepSeek-AI. 2024. Deepseek-v3 technical report.607
Preprint, arXiv:2412.19437.608

Spandan Garg, Roshanak Zilouchian Moghaddam,609
Colin B. Clement, Neel Sundaresan, and Chen Wu.610
2022. Deepperf: A deep learning-based approach611
for improving software performance. Preprint,612
arXiv:2206.13619.613

Daya Guo, Qihao Zhu, Dejian Yang, Zhenda Xie, Kai 614
Dong, Wentao Zhang, Guanting Chen, Xiao Bi, 615
Y Wu, YK Li, et al. 2024. Deepseek-coder: When the 616
large language model meets programming–the rise of 617
code intelligence. arXiv preprint arXiv:2401.14196. 618

Edward J Hu, yelong shen, Phillip Wallis, Zeyuan Allen- 619
Zhu, Yuanzhi Li, Shean Wang, Lu Wang, and Weizhu 620
Chen. 2022. LoRA: Low-rank adaptation of large 621
language models. In International Conference on 622
Learning Representations. 623

Binyuan Hui, Jian Yang, Zeyu Cui, Jiaxi Yang, Day- 624
iheng Liu, Lei Zhang, Tianyu Liu, Jiajun Zhang, 625
Bowen Yu, Kai Dang, et al. 2024. Qwen2. 5-coder 626
technical report. arXiv preprint arXiv:2409.12186. 627

Naman Jain, King Han, Alex Gu, Wen-Ding Li, Fanjia 628
Yan, Tianjun Zhang, Sida Wang, Armando Solar- 629
Lezama, Koushik Sen, and Ion Stoica. 2024. Live- 630
codebench: Holistic and contamination free eval- 631
uation of large language models for code. arXiv 632
preprint arXiv:2403.07974. 633

Pascal Kerschke, Holger H. Hoos, Frank Neumann, and 634
Heike Trautmann. 2019. Automated algorithm selec- 635
tion: Survey and perspectives. Evolutionary Compu- 636
tation, 27(1):3–45. 637

Thomas Kistler and Michael Franz. 2003. Continuous 638
program optimization: A case study. ACM Trans. 639
Program. Lang. Syst., 25(4):500–548. 640

Woosuk Kwon, Zhuohan Li, Siyuan Zhuang, Ying 641
Sheng, Lianmin Zheng, Cody Hao Yu, Joseph E. 642
Gonzalez, Hao Zhang, and Ion Stoica. 2023. Effi- 643
cient memory management for large language model 644
serving with pagedattention. In Proceedings of the 645
ACM SIGOPS 29th Symposium on Operating Systems 646
Principles. 647

Yujia Li, David Choi, Junyoung Chung, Nate Kushman, 648
Julian Schrittwieser, Rémi Leblond, Tom Eccles, 649
James Keeling, Felix Gimeno, Agustin Dal Lago, 650
et al. 2022. Competition-level code generation with 651
alphacode. Science, 378(6624):1092–1097. 652

Jhe-Yu Liou, Xiaodong Wang, Stephanie Forrest, and 653
Carole-Jean Wu. 2020. Gevo: Gpu code optimization 654
using evolutionary computation. ACM Trans. Archit. 655
Code Optim., 17(4). 656

Jiawei Liu, Chunqiu Steven Xia, Yuyao Wang, and Ling- 657
ming Zhang. 2023. Is your code generated by chat- 658
GPT really correct? rigorous evaluation of large lan- 659
guage models for code generation. In Thirty-seventh 660
Conference on Neural Information Processing Sys- 661
tems. 662

Ilya Loshchilov and Frank Hutter. 2019. Decoupled 663
weight decay regularization. In International Confer- 664
ence on Learning Representations. 665

Ziyang Luo, Can Xu, Pu Zhao, Qingfeng Sun, Xi- 666
ubo Geng, Wenxiang Hu, Chongyang Tao, Jing Ma, 667
Qingwei Lin, and Daxin Jiang. 2024. Wizardcoder: 668

9

https://arxiv.org/abs/2303.08774
https://en.wikipedia.org/wiki/Compilers:_Principles,_Techniques,_and_Tools
https://doi.org/10.1145/197405.197406
https://doi.org/10.1145/197405.197406
https://doi.org/10.1145/197405.197406
https://dl.acm.org/doi/abs/10.1145/2024716.2024718?casa_token=IOl_fM1nyAwAAAAA:XmnS50Y9k00y9ULsvVpHsi4m1jXRKIK1Ej72VBCq_SnMa2FCsl5x8lrVHRmLzCd1Rrb3qdnPymQNVg
https://openreview.net/forum?id=ktrw68Cmu9c
https://doi.org/10.1145/3691620.3695536
https://doi.org/10.1145/3691620.3695536
https://doi.org/10.1145/3691620.3695536
https://doi.org/10.1145/3691620.3695536
https://doi.org/10.1145/3691620.3695536
https://openreview.net/forum?id=KuPixIqPiq
https://openreview.net/forum?id=KuPixIqPiq
https://openreview.net/forum?id=KuPixIqPiq
https://arxiv.org/abs/2412.19437
https://arxiv.org/abs/2206.13619
https://arxiv.org/abs/2206.13619
https://arxiv.org/abs/2206.13619
https://arxiv.org/abs/2401.14196
https://arxiv.org/abs/2401.14196
https://arxiv.org/abs/2401.14196
https://arxiv.org/abs/2401.14196
https://arxiv.org/abs/2401.14196
https://openreview.net/forum?id=nZeVKeeFYf9
https://openreview.net/forum?id=nZeVKeeFYf9
https://openreview.net/forum?id=nZeVKeeFYf9
https://doi.org/10.1162/evco_a_00242
https://doi.org/10.1162/evco_a_00242
https://doi.org/10.1162/evco_a_00242
https://doi.org/10.1145/778559.778562
https://doi.org/10.1145/778559.778562
https://doi.org/10.1145/778559.778562
https://www.science.org/doi/abs/10.1126/science.abq1158
https://www.science.org/doi/abs/10.1126/science.abq1158
https://www.science.org/doi/abs/10.1126/science.abq1158
https://doi.org/10.1145/3418055
https://doi.org/10.1145/3418055
https://doi.org/10.1145/3418055
https://openreview.net/forum?id=1qvx610Cu7
https://openreview.net/forum?id=1qvx610Cu7
https://openreview.net/forum?id=1qvx610Cu7
https://openreview.net/forum?id=1qvx610Cu7
https://openreview.net/forum?id=1qvx610Cu7
https://openreview.net/forum?id=Bkg6RiCqY7
https://openreview.net/forum?id=Bkg6RiCqY7
https://openreview.net/forum?id=Bkg6RiCqY7
https://openreview.net/forum?id=UnUwSIgK5W
https://openreview.net/forum?id=UnUwSIgK5W

Empowering code large language models with evol-669
instruct. In The Twelfth International Conference on670
Learning Representations.671

Seungjun Moon, Hyungjoo Chae, Yongho Song, Taey-672
oon Kwon, Dongjin Kang, Kai Tzu iunn Ong, Se-673
ung won Hwang, and Jinyoung Yeo. 2024. Coffee:674
Boost your code llms by fixing bugs with feedback.675
Preprint, arXiv:2311.07215.676

Erik Nijkamp, Bo Pang, Hiroaki Hayashi, Lifu Tu, Huan677
Wang, Yingbo Zhou, Silvio Savarese, and Caiming678
Xiong. 2023. Codegen: An open large language679
model for code with multi-turn program synthesis. In680
The Eleventh International Conference on Learning681
Representations.682

Changan Niu, Ting Zhang, Chuanyi Li, Bin Luo,683
and Vincent Ng. 2024. On evaluating the effi-684
ciency of source code generated by llms. Preprint,685
arXiv:2404.06041.686

Theo X. Olausson, Jeevana Priya Inala, Chenglong687
Wang, Jianfeng Gao, and Armando Solar-Lezama.688
2024. Is self-repair a silver bullet for code genera-689
tion? In The Twelfth International Conference on690
Learning Representations.691

Ruchir Puri, David S Kung, Geert Janssen, Wei Zhang,692
Giacomo Domeniconi, Vladimir Zolotov, Julian693
Dolby, Jie Chen, Mihir Choudhury, Lindsey Decker,694
et al. 2021. Codenet: A large-scale ai for code695
dataset for learning a diversity of coding tasks. arXiv696
preprint arXiv:2105.12655.697

Baptiste Roziere, Jonas Gehring, Fabian Gloeckle, Sten698
Sootla, Itai Gat, Xiaoqing Ellen Tan, Yossi Adi,699
Jingyu Liu, Tal Remez, Jérémy Rapin, et al. 2023.700
Code llama: Open foundation models for code. arXiv701
preprint arXiv:2308.12950.702

Jieke Shi, Zhou Yang, and David Lo. 2024. Efficient703
and green large language models for software engi-704
neering: Literature review, vision, and the road ahead.705
Preprint, arXiv:2404.04566.706

Alexander G Shypula, Aman Madaan, Yimeng Zeng,707
Uri Alon, Jacob R. Gardner, Yiming Yang, Mi-708
lad Hashemi, Graham Neubig, Parthasarathy Ran-709
ganathan, Osbert Bastani, and Amir Yazdanbakhsh.710
2024. Learning performance-improving code edits.711
In The Twelfth International Conference on Learning712
Representations.713

Zifan Song, Yudong Wang, Wenwei Zhang, Kuikun714
Liu, Chengqi Lyu, Demin Song, Qipeng Guo, Hang715
Yan, Dahua Lin, Kai Chen, and Cairong Zhao. 2024.716
Alchemistcoder: Harmonizing and eliciting code ca-717
pability by hindsight tuning on multi-source data.718
In The Thirty-eighth Annual Conference on Neural719
Information Processing Systems.720

Laurens van der Maaten and Geoffrey Hinton. 2008.721
Visualizing data using t-sne. Journal of Machine722
Learning Research, 9(86):2579–2605.723

Yaoxiang Wang, Haoling Li, Xin Zhang, Jie Wu, Xiao 724
Liu, Wenxiang Hu, Zhongxin Guo, Yangyu Huang, 725
Ying Xin, Yujiu Yang, Jinsong Su, Qi Chen, and 726
Scarlett Li. 2025. Epicoder: Encompassing diver- 727
sity and complexity in code generation. Preprint, 728
arXiv:2501.04694. 729

Yue Wang, Hung Le, Akhilesh Gotmare, Nghi Bui, Jun- 730
nan Li, and Steven Hoi. 2023. CodeT5+: Open code 731
large language models for code understanding and 732
generation. In Proceedings of the 2023 Conference 733
on Empirical Methods in Natural Language Process- 734
ing, pages 1069–1088, Singapore. Association for 735
Computational Linguistics. 736

Zheng Wang and Michael O’Boyle. 2018. Machine 737
learning in compiler optimization. Proceedings of 738
the IEEE, 106(11):1879–1901. 739

Jason Wei, Xuezhi Wang, Dale Schuurmans, Maarten 740
Bosma, brian ichter, Fei Xia, Ed Chi, Quoc V Le, 741
and Denny Zhou. 2022. Chain-of-thought prompt- 742
ing elicits reasoning in large language models. In 743
Advances in Neural Information Processing Systems, 744
volume 35, pages 24824–24837. Curran Associates, 745
Inc. 746

Yuxiang Wei, Federico Cassano, Jiawei Liu, Yifeng 747
Ding, Naman Jain, Zachary Mueller, Harm de Vries, 748
Leandro von Werra, Arjun Guha, and Lingming 749
Zhang. 2024. Selfcodealign: Self-alignment for code 750
generation. arXiv preprint arXiv:2410.24198. 751

Yuxiang Wei, Zhe Wang, Jiawei Liu, Yifeng Ding, and 752
Lingming Zhang. 2023. Magicoder: Source code is 753
all you need. arXiv preprint arXiv:2312.02120. 754

Yaowei Zheng, Richong Zhang, Junhao Zhang, Yanhan 755
Ye, Zheyan Luo, Zhangchi Feng, and Yongqiang Ma. 756
2024. Llamafactory: Unified efficient fine-tuning 757
of 100+ language models. In Proceedings of the 758
62nd Annual Meeting of the Association for Compu- 759
tational Linguistics (Volume 3: System Demonstra- 760
tions), Bangkok, Thailand. Association for Computa- 761
tional Linguistics. 762

Li Zhong, Zilong Wang, and Jingbo Shang. 2024. 763
Ldb: A large language model debugger via verify- 764
ing runtime execution step-by-step. arXiv preprint 765
arXiv:2402.16906. 766

A Categories of Optimization Types. 767

We categorize code optimization into three main 768

categories: global algorithmic optimizations, local 769

optimizations, and other optimizations. 770

• Global Algorithmic Optimizations: This type 771

of optimization involves altering the algorithm 772

itself to achieve significant performance improve- 773

ments. Such changes can effectively reduce time 774

complexity and enhance the speed of code exe- 775

cution. Examples include transforming recur- 776

sive solutions into dynamic programming ap- 777

10

https://openreview.net/forum?id=UnUwSIgK5W
https://openreview.net/forum?id=UnUwSIgK5W
https://openreview.net/forum?id=UnUwSIgK5W
https://arxiv.org/abs/2311.07215
https://arxiv.org/abs/2311.07215
https://arxiv.org/abs/2311.07215
https://openreview.net/forum?id=iaYcJKpY2B_
https://openreview.net/forum?id=iaYcJKpY2B_
https://openreview.net/forum?id=iaYcJKpY2B_
https://arxiv.org/abs/2404.06041
https://arxiv.org/abs/2404.06041
https://arxiv.org/abs/2404.06041
https://openreview.net/forum?id=y0GJXRungR
https://openreview.net/forum?id=y0GJXRungR
https://openreview.net/forum?id=y0GJXRungR
https://arxiv.org/abs/2105.12655
https://arxiv.org/abs/2105.12655
https://arxiv.org/abs/2105.12655
https://arxiv.org/abs/2308.12950
https://arxiv.org/abs/2404.04566
https://arxiv.org/abs/2404.04566
https://arxiv.org/abs/2404.04566
https://arxiv.org/abs/2404.04566
https://arxiv.org/abs/2404.04566
https://openreview.net/forum?id=ix7rLVHXyY
https://openreview.net/forum?id=SAQXbnvv4t
https://openreview.net/forum?id=SAQXbnvv4t
https://openreview.net/forum?id=SAQXbnvv4t
http://jmlr.org/papers/v9/vandermaaten08a.html
https://arxiv.org/abs/2501.04694
https://arxiv.org/abs/2501.04694
https://arxiv.org/abs/2501.04694
https://doi.org/10.18653/v1/2023.emnlp-main.68
https://doi.org/10.18653/v1/2023.emnlp-main.68
https://doi.org/10.18653/v1/2023.emnlp-main.68
https://doi.org/10.18653/v1/2023.emnlp-main.68
https://doi.org/10.18653/v1/2023.emnlp-main.68
https://doi.org/10.1109/JPROC.2018.2817118
https://doi.org/10.1109/JPROC.2018.2817118
https://doi.org/10.1109/JPROC.2018.2817118
https://proceedings.neurips.cc/paper_files/paper/2022/file/9d5609613524ecf4f15af0f7b31abca4-Paper-Conference.pdf
https://proceedings.neurips.cc/paper_files/paper/2022/file/9d5609613524ecf4f15af0f7b31abca4-Paper-Conference.pdf
https://proceedings.neurips.cc/paper_files/paper/2022/file/9d5609613524ecf4f15af0f7b31abca4-Paper-Conference.pdf
https://arxiv.org/abs/2312.02120
https://arxiv.org/abs/2312.02120
https://arxiv.org/abs/2312.02120
http://arxiv.org/abs/2403.13372
http://arxiv.org/abs/2403.13372
http://arxiv.org/abs/2403.13372
https://arxiv.org/abs/2402.16906
https://arxiv.org/abs/2402.16906
https://arxiv.org/abs/2402.16906

Global Local Other
0

20

40

60

80

100
Pe

rc
en

t (
%

)

83.7

57.0

10.5

32.0

5.8
11.0

Problem-oriented User-oriented

Figure 7: LLM Analysis of the Optimization Types
between Problem-oriented and User-oriented Pairs.

proaches, leveraging advanced mathematical the-778

ories, and restructuring complex data processing779

logic. These optimizations can lead to substantial780

gains in efficiency and scalability.781

• Local Optimizations: These optimizations fo-782

cus on improving specific parts of the code with-783

out changing the overall algorithm. They include784

enhancing I/O functions, optimizing read/write785

patterns to minimize runtime delays, and reduc-786

ing computational complexity in certain sections787

of the code. By addressing these localized issues,788

programs can achieve more efficient execution789

and better resource utilization, ultimately leading790

to faster and more responsive applications.791

• Other Optimizations: This category involves792

general code cleanup and refactoring aimed at793

improving code readability, maintainability, and794

overall quality. Examples include removing795

unnecessary initializations and redundant code,796

cleaning up outdated comments, and organizing797

the code structure more logically.798

B LLMs Analysis on Optimization Types.799

Figure 7 presents the LLMs analysis of optimiza-800

tion types between problem-oriented and user-801

oriented optimization pairs. GPT-4 identifies a802

higher proportion of "global algorithm optimiza-803

tion" compared to human analysis. Upon further in-804

vestigation, we find that this discrepancy is mainly805

due to GPT-4’s tendency to categorize program806

pairs with significant changes as "global algorithm807

optimization".808

C Datasets Statistics.809

The statistical results of the PCO and PIE are shown810

in Table 3. We meticulously reviewed and ensured811

Given the program below, improve
its performance:↪→

Program:
{slow_code}

Optimized Version:

Figure 8: Instruct Prompt.

that any particular competitive programming prob- 812

lem appeared in only one of the train, validation, 813

or test sets.

Dataset Unique Problems Pairs

PIE 1,474 77,967

PCO 1,474 77,967

Val 77 2,544
Test 41 978

Table 3: Number of unique problem ids and pairs.

814

D Training Details. 815

We fine-tuned the CODELLAMA (13B), DEEPSEEK- 816

CODER (7B, 33B), and QWEN2.5-CODER (7B, 817

32B) models using LLAMA-FACTORY (Zheng 818

et al., 2024) on a server equipped with 8×A100 819

GPUs (NVIDIA A100 80GB). During the fine- 820

tuning process, we employed LoRA (Hu et al., 821

2022) (with lora_rank=8 and lora_target=all), and 822

for both the PIE and PCO datasets, we trained the 823

LLMs for only 2 epochs. All experiments were 824

conducted using AdamW (Loshchilov and Hutter, 825

2019) optimizer with an initial learning rate 5e-5. 826

E The Prompts of Adapting LLM on 827

Optimization Pairs. 828

In this section, we present the prompts for adapting 829

the LLM to optimization pairs. The instruction 830

prompt is shown in Figure 8, the CoT (Chain of 831

Thought) prompt is shown in Figure 9, and the 832

vLLM inference prompt is shown in Figure 10. 833

F Implementation Details of the Anchor 834

Verification Framework and the 835

Compared Methods. 836

• Anchor Verification: In the Anchor Verification 837

Framework, for the test case inputs in Stage 1, 838

11

Given the program, generate an
efficiency improvement strategy
to enhance its performance.

↪→
↪→

slower program:
{slow_code}

strategy:
LLMs generated potential strategy.

optimized version:

Figure 9: Chain-of-thought Prompting.

Given the program below, improve
its performance:↪→

Program:
{slow_code}

Optimized Version:

Figure 10: Inference Prompt.

we prompt the LLM to generate three test case839

inputs based on the "slow code", the detailed840

prompt as illustrated in Figure 11. In Stage 2 and841

Stage 3, for compiling and executing both the842

"slow code" and "optimized code", we compile843

all C++ programs using GCC version 9.4.0 with844

C++17 and the -O3 optimization flag. In Stage845

3, we leverage the verified test case sets. If an846

error occurs, we provide the error information to847

the LLM, allowing it to iteratively refine the opti-848

mized code based on this feedback. The detailed849

prompt is shown in Figure 12.850

• Self-Debugging: following the approach pre-851

sented in (Chen et al., 2024b), the method in-852

structs the LLM to provide line-by-line explana-853

tions of the generated program as feedback, func-854

tioning akin to rubber duck debugging. In this855

process, the LLM is capable of autonomously856

identifying and rectifying bugs without requir-857

ing human intervention. The detailed prompt is858

shown in Figure 13.859

• Direct Test Generation: The LLM generates860

complete test cases (including both inputs and861

outputs) and utilizes synthetic test cases to exe-862

cute the optimized code, enabling iterative refine-863

ment. The prompt for generating complete test864

cases is shown in Figure 14, while the iterative865

refinement prompt is the same as the one used866

Given the program below, please
explain and analyze its
functionality, and provide 3
testcase inputs that fully
consider boundary conditions
and code coverage. Note that
only the testcase inputs are
required.

↪→
↪→
↪→
↪→
↪→
↪→
↪→

Program:
{slow_code}

Explanation:
{Your explanation here}

Test case Inputs:
{Your testcase inputs}

Figure 11: Anchor Verification Framework Stage 1 (Test
Inputs Generation) Prompt.

You are a code expert, and your
task is to correct the
functionally incorrect code
based on test cases and
execution feedback. Analyze the
issues, apply the necessary
fixes, and ensure the corrected
code meets the expected
functionality and pass the
testcase.

↪→
↪→
↪→
↪→
↪→
↪→
↪→
↪→
↪→

Incorrect Program:
{code}

Explanation:
{explanation}

Testcase:
{Testcase}

Feedback from execution:
{Feedback}

Your corrected code version:

Figure 12: Anchor Verification Framework Stage 3 (It-
erative Refinement) Prompt.

in Stage 3 of the Anchor Verification method, as 867

depicted in Figure 12. 868

G Results of Anchor Verification 869

Framework on PIE. 870

We conducted experiments using "QWEN2.5- 871

CODER 32B fine-tuned on PIE" as the baseline 872

and compared it with other methods. The re- 873

sults, shown in Table 4, demonstrate that An- 874

chor Verification consistently delivers the high- 875

12

Below is a potentially problematic
C++ program. Please provide a
line-by-line explanation and
correct any errors that may be
present.

↪→
↪→
↪→
↪→

Program:
{program}

Explanation:
{Your explanation here}

Revised Program:
{Your revised program here}

Figure 13: Self-Debugging Prompt.

Given the program below, please
explain and analyze its
functionality, and generate
three comprehensive test cases
that thoroughly cover boundary
conditions and all code paths.
Each testcase should include
the input and the corresponding
expected output.

↪→
↪→
↪→
↪→
↪→
↪→
↪→
↪→

Program:
{slow_code}

Explanation:
{Your explanation here}

Test case:
{Your testcase}

Figure 14: The Prompt of Direct Test Generation
Method.

est performance gains. On the DEEPSEEK-V3876

backbone, we observed improvements in %OPT877

(31.24% → 47.28%), SPEEDUP (2.95×→3.40×),878

and CORRECT (46.52% → 65.32%). Furthermore,879

we found that the gains in optimization ratio and880

speedup brought by the Anchor Verification Mech-881

anism’s improvements in correctness for PIE were882

not as significant as those observed in PCO. For883

example, on the DEEPSEEK-V3 backbone, COR-884

RECT increased by 18.8%, but SPEEDUP only im-885

proved by 0.45×. In contrast, in the PCO scenario,886

CORRECT increased by 12.99%, while SPEEDUP887

saw a larger improvement of 0.86×.888

H Detailed Examples of User-Oriented 889

and Problem-Oriented Perspectives. 890

We provide detailed examples, as shown in Figure 891

16, Figure 17, and Figure 18, to illustrate that in 892

the original PIE, program optimization pairs are 893

constructed through iterative submissions and opti- 894

mizations by the same user for the same program- 895

ming problem, which can be limited by the single 896

programmer’s thought patterns. 897

I Case Study of Anchor Verification 898

Framework. 899

We present three case studies to vividly illustrate 900

specific examples of Anchor Verification, as de- 901

picted in Figures 19, 20, and 21. These cases offer 902

a clear and intuitive understanding of how Anchor 903

Verification operates in practice. 904

13

Table 4: Results of Anchor Verification and compared methods with QWEN2.5-CODER, GPT-4o, and DEEPSEEK-
V3 on BEST@1. The improvement (denoted as ∆) is measured against the baseline (w/o refinement).

LLMs Methods
BEST@1

%OPT ∆ ↑ SPEEDUP ∆ ↑ CORRECT ∆ ↑

Baseline (w/o refinement) 31.24% 2.95× 46.52%

QWEN2.5-CODER 32B
INSTRUCT

Self Debugging 35.69% +4.45 3.02× +0.07 53.74% +7.22
Direct Test Generation 38.74% +7.50 3.08× +0.13 57.49% +10.97
Anchor Verification 40.48% +9.24 3.17× +0.22 59.09% +12.57

GPT-4o
Self Debugging 37.47% +6.23 3.06× +0.11 55.65% +9.13

Direct Test Generation 39.64% +8.40 3.13× +0.18 57.86% +11.34
Anchor Verification 42.50% +11.26 3.32× +0.37 63.60% +17.08

DEEPSEEK-V3
Self Debugging 40.61% +9.37 3.23× +0.28 59.62% +13.10

Direct Test Generation 40.17% +8.93 3.18× +0.23 58.73% +12.21
Anchor Verification 47.28% +16.04 3.40× +0.45 65.32% +18.80

#include <iostream>
#include <stdio.h>
using namespace std;
typedef long ll;

int main() {
int length;
ll arr[200000];
ll res[200000] = {0};
ll temp = 0;
ll m = 2147483647;
scanf("%d", &length);
for (int i = 0; i < length;

++i) {
scanf("%ld", &arr[i]);

}
res[0] = arr[0];
for (int i = 1; i < length;

++i) {
res[i] += res[i - 1] +

arr[i];
}
for (int i = 1; i < length;

++i) {
temp = abs(res[length - 1]

- res[i - 1] * 2);
m = min(temp, m);

}
printf("%ld\n", m);
return 0;

}

(a) user1, initialization version.

#include <bits/stdc++.h>
using namespace std;

#define int long long
typedef vector<int> vi;

const int INF = 1e18 + 5;

void solve() {
int n;
cin >> n;
vi v(n), pre(n);
int mn = INF, s = 0;
for(int i = 0; i < n; i++) cin

>> v[i];
pre[0] = v[0];
for(int i = 1; i < n; i++)

pre[i] = v[i] + pre[i -
1];

for(int i = n - 1; i >= 1;
i--) {
s += v[i];
mn = min(mn, abs(pre[i -

1] - s));
}
cout << mn;

}

signed main() {
speed;
int t = 1;
while(t--) solve();

}

(b) user1, iteration version.

#include<cstdio>
const int MAX = 2e5 + 5;
int a[MAX];
int main() {

int n;
long long sum = 0;
scanf("%d", &n);
for (int i = 0; i < n; i++)
{

scanf("%d", a + i);
sum += a[i];

}
long long left,right,temp;
left = sum - a[n - 1];
right = a[n - 1];
long long min = left > right ?

left - right : right -
left;

left = 0;
for (int i = 0; i < n-2; i++)

{
left += a[i];
right = sum - left;
temp = left > right ? left

- right : right -
left;

if (temp < min)
min=temp;

}
printf("%d\\n", min);
return 0;

}

(c) another user submitted version.

Figure 15: The three submitted code solutions all address problem "p03661", which asks for a split point in an
array that minimizes the absolute difference between the sums of the two parts. Solutions (a) and (b) are different
submissions from same user "u018679195". In (a), the prefix sum is calculated first, then the minimum difference is
computed from start to finish. In (b), the prefix sum is also calculated first, but the minimum difference is computed
from end to start, avoiding additional multiplication operations. Solution (c), from user "u353919145", calculates
the difference between the left and right sums in real-time, requiring only one pass through the loop. It can be seen
that solutions (a) and (b) only make local changes, while (c) constructs a more efficient algorithm.

14

#include <bits/stdc++.h>

using namespace std;

#define int long long

const int N = 1e5 + 5, M = 5, inf
= 1e15;

int dp[N][M], a[N];

char op[N];

int Sign(int x) {
if (x % 2) return -1;
return 1;

}

int32_t main() {
for (int i = 0; i < N; i++)

for (int j = 0; j < M;
j++) dp[i][j] = -inf;

int n; cin >> n >> a[0];
for (int i = 1; i < n; i++)

cin >> op[i] >> a[i];
dp[0][0] = a[0];
for (int i = 1; i < n; i++)

for (int j = M - 1; j >=
0; j--) {
if (op[i] == '+') dp[i][j]

= dp[i - 1][j] + a[i]

* Sign(j);
else if (j) dp[i][j] =

dp[i - 1][j - 1] +
a[i] * Sign(j);

if (j + 1 < M) dp[i][j] =
max(dp[i][j], dp[i][j
+ 1]);

}
cout << dp[n-1][0] << "\n";

}

(a) user1, initialization version.

#include <bits/stdc++.h>
using namespace std;

#define int long long
const int N = 1e5 + 5, M = 3, inf

= 1e15;

int dp[N][M], a[N];
char op[N];

int Sign(int x) {
if (x % 2) return -1;
return 1;

}

int32_t main() {
ios::sync_with_stdio(0),

cin.tie(0), cout.tie(0),
cout.tie(0);

for (int i = 0; i < N; i++)
for (int j = 0; j < M;
j++) dp[i][j] = -inf;

int n; cin >> n >> a[0];
for (int i = 1; i < n; i++)

cin >> op[i] >> a[i];
dp[0][0] = a[0];
for (int i = 1; i < n; i++)

for (int j = M - 1; j >=
0; j--) {
if (op[i] == '+') dp[i][j]

= dp[i - 1][j] + a[i]

* Sign(j);
else if (j) dp[i][j] =

dp[i - 1][j - 1] +
a[i] * Sign(j);

if (j + 1 < M) dp[i][j] =
max(dp[i][j], dp[i][j
+ 1]);

}
cout << dp[n-1][0] << "\n";

}

(b) user1, iteration version.

#include<cstdio>
#include<algorithm>
using namespace std;
const int MAXN=int(1e5+5);
typedef long long LL;
#define INF LL(1e15)
LL s1,s2,as,n;
LL sz[MAXN],fh[MAXN];
char c[5];
int main()
{

scanf("%lld",&n);
scanf("%lld",&as);
getchar();
for(LL i=1;i<=n-1;i++) {

scanf("%s",c);
scanf("%d",&sz[i]);
fh[i]=c[0];

}
s1=s2=-INF;
for(LL i=1;i<=n-1;i++) {

if(fh[i]=='-') {
as-=sz[i];
s1-=sz[i];
s2+=sz[i];
s1=max(s1,s2);
s2=max(as,s2);

}
else {

as+=sz[i];
s1+=sz[i];
s2-=sz[i];

}
s2=max(s1,s2);
as=max(s2,as);

}
printf("%lld",as);

}

(c) another user submitted version.

Figure 16: The above three code snippets all come from the problem "p03580", which involves maximizing
the evaluated value of a given formula by adding an arbitrary number of pairs of parentheses and outputting the
maximum possible value. (a) and (b) are from the same user "u1821171064", both employing dynamic programming
algorithms with a time complexity of O (N ∗M), where N is the length of the sequence and M is the number of
states. In (b), the number of states M is reduced, and input and output are optimized. (c) is from user "u863370423"
and uses a greedy algorithm, which is suitable for problems with fewer current states where the global optimal
solution can be achieved through local optimization, with a time complexity of O (N).

15

#include <iostream>
#include <cstring>
using namespace std;
typedef long long LL;
#define F(i) for(int i=0;i<n;i++)

int d[555][555] = {0}, c[555][555]
= {0};

int qu(int l, int r) {
if (l > r) return 0;
if (d[l][r] != -1) return

d[l][r];
return d[l][r] = c[l][r] +

qu(l + 1, r) + qu(l, r -
1) - qu(l + 1, r - 1);

}

int main() {
memset(d, -1, sizeof(d));
int n, m, q;
cin >> n >> m >> q;
while (m--) {

int l, r;
cin >> l >> r;
c[l][r]++;

}
while (q--) {

int l, r;
cin >> l >> r;
cout << qu(l, r) << endl;

}
return 0;

}

(a) user1, initialization version.

#include <bits/stdc++.h>
using namespace std;

#define int long long
#define pb push_back
#define faster

ios::sync_with_stdio(0)

const int N = 509;
vector<int> v[N + 5];

int32_t main() {
faster;
int n, p, q;
cin >> n >> p >> q;
int x, y;
for (int i = 1; i <= p; i++) {

cin >> x >> y;
v[x].pb(y);

}
for (int i = 1; i <= n; i++) {

sort(v[i].begin(),
v[i].end());

}
while (q--) {

cin >> x >> y;
int ans = 0;
for (int i = x; i <= y;

i++) {
ans += upper_bound(
v[i].begin(),

v[i].end(), y)
- v[i].begin();

}
cout << ans << "\n";

}
return 0;

}

(b) user1, iteration version.

#include <cstdio>
#define int long long
#define dotimes(i, n) for (int i =

0; i < (n); i++)

using namespace std;

int rint() {
int n;
scanf("%lld", &n);
return n;

}

void wint(int n) {
printf("%lld\n", n);

}

signed main() {
int N = rint();
int M = rint();
int Q = rint();
int S[N + 1][N + 1];
dotimes(R, N + 1)
dotimes(L, N + 1)

S[R][L] = 0;
dotimes(i, M) {
int L = rint();
int R = rint();
S[R][L]++;

}
dotimes(R, N)
dotimes(L, N)

S[R + 1][L + 1] += S[R +
1][L] + S[R][L + 1] -
S[R][L];

dotimes(i, Q) {
int p = rint() - 1;
int q = rint();
wint(S[q][q] + S[p][p] -

S[q][p] - S[p][q]);
}
return 0;

}

(c) another user submitted version.

Figure 17: The above three code segments all come from the same problem "p03283", which deals with cumulative
sum queries in a 2D matrix. (a) and (b) are different submission versions from the same user "u816631826". In (a),
the problem is solved using recursion and dynamic programming, but the query time complexity is high, O

(
N2

)
. In

(b), the STL-provided binary search function is used, reducing the time complexity to O (N ∗ log(N)). (c) comes
from another user "u281670674" and solves the problem using a 2D prefix sum matrix. The preprocessing time
complexity is O

(
N2

)
, but the query time complexity for each query is O (1), making it more efficient.

16

#include <bits/stdc++.h>

using namespace std;

inline void rd(int &x) {
char ch;

for(;!isdigit(ch=getchar()););
for(x=ch-'0';
isdigit(ch=getchar());)

x=x*10+ch-'0';
}

typedef long long LL;

const int MAXN = 300005;

int N, n, a[MAXN], cnt[MAXN];

LL sum[MAXN];

int ans[MAXN];

inline bool chk(int k, int x) {
int pos = upper_bound(a + 1, a

+ n + 1, x) - a;
return sum[pos-1] +

1ll*(n-pos+1)*x >=
1ll*k*x;

}

int main() {
rd(N);
for(int i = 1, x; i <= N; ++i)

rd(x), ++cnt[x];
for(int i = 1; i <= 300000;

++i) if(cnt[i]) a[++n] =
cnt[i];

sort(a + 1, a + n + 1);
for(int i = 1; i <= n; ++i)

sum[i] = sum[i-1] + a[i];
int now = 0;
for(int k = n; k >= 1; --k) {

while(now < N && chk(k,
now+1)) ++now;

ans[k] = now;
}
for(int i = 1; i <= N; ++i)

printf("%d\n", ans[i]);
}

(a) user1, initialization version.

#include <bits/stdc++.h>

using namespace std;

inline void rd(int &x) {
char ch;

for(;!isdigit(ch=getchar()););
for(x=ch-'0';

isdigit(ch=getchar());)
x=x*10+ch-'0';

}

typedef long long LL;

const int MAXN = 300005;

int n, cnt[MAXN];

LL sum[MAXN];

int ans[MAXN];

inline bool chk(int k, int x) {
return sum[x] >= 1ll*k*x; }

int main() {
rd(n);
for(int i = 1, x; i <= n; ++i)

rd(x), ++cnt[x],
++sum[cnt[x]];

for(int i = 1; i <= n; ++i)
sum[i] += sum[i-1];

int now = 0;
for(int k = n; k >= 1; --k) {

while(now < n && chk(k,
now+1)) ++now;

ans[k] = now;
}
for(int i = 1; i <= n; ++i)

printf("%d\n", ans[i]);
}

(b) user1, iteration version.

#include<bits/stdc++.h>
#include<cstdio>
using namespace std;
typedef long long ll;
#define rep(i, n) for(int i = 0; i

< (n); i++)
#define rep1(i, n) for(int i = 1;

i <= (n); i++)

int hist[300002], cnt[300001];
const int cm = 1 << 17;
char cn[cm], * ci = cn + cm, ct;

inline char getcha() {
if (ci - cn == cm) {

fread_unlocked(cn, 1, cm,
stdin); ci = cn; }

return *ci++;}
inline int getint() {

int A = 0;
if (ci - cn + 16 > cm) while

((ct = getcha()) >= '0') A
= A * 10 + ct - '0';

else while ((ct = *ci++) >=
'0') A = A * 10 + ct -
'0';

return A;}

const int dm = 1 << 21;
char dn[dm], * di = dn;
inline void putint(int X) {

int keta = 0;
char C[10];
while (X) {

*(C + keta) = '0' + X %
10;

X /= 10;
keta++;

}
for (int i = keta - 1; i >= 0;

i--)* di++ = (*(C + i));

*di++ = '\n';}

int main() {
int N = getint();
rep(i, N) hist[getint()]++;
rep1(i, N) cnt[hist[i]]++;
int k = 1;
rep(i, N + 1) rep(j, cnt[i])

hist[k++] = i

k = N + 1;
int ruiseki = N;
int mae = 0;
for (int i = N; i >= 1; i--) {

while (hist[k - 1] >= i) {
ruiseki -= hist[--k];

}
int kei = N - k + 1 +

ruiseki / i;

for (int j = mae + 1; j <=
kei; j++) putint(i);

mae = kei;
}
for (int j = mae + 1; j <= N;

j++) {

*di++ = '0';

*di++ = '\n';
}
fwrite(dn, 1, di - dn,

stdout);
return 0;

}

(c) another user submitted version.

Figure 18: The above three code snippets all come from the problem "p02890", which requires calculating, for each
possible K value (from 1 to N), the maximum number of times K cards with different numbers can be selected and
removed from N cards. (a) and (b) are from the same user "u990400947" and utilize prefix sum calculation and
searching. The latter employs condition checking with a time complexity of O (N ∗ log(N)). (c) uses a difference
array, reducing the time complexity to O (N).

17

** Optimized but incorrect Code **

#include <stdio.h>
#include <algorithm>
using namespace std;
int n,k,i,a[100005];
int main()
{

scanf("%d%d",&n,&k);
for(i=1;i<=n;i++) scanf("%d",&a[i]);
sort(a+1,a+n+1);
printf("%d\n",n-lower_bound(a+1,a+n+1,k)+1);
return 0;

}

Below is the Explanation of slow code and generated test case inputs

Explanation:
This code counts how many elements in an array are greater than or equal to a

given value k. Here's the breakdown:↪→

Input: Reads n (array size) and k (threshold value), followed by an array h
of size n.↪→

Sorting: Sorts the array h in descending order.
Counting: Iterates through the sorted array and counts how many elements are

greater than or equal to k.↪→
Output: Prints the count.

Test Inputs:
Test case 1 input:
5 10
15 8 12 10 20

Test case 2 input:
4 5
1 2 3 4

Test case 3 input:
6 7
7 7 7 7 7 7

** Verified Test cases **

** Test Cases**
Test case 1 input:
5 10
15 8 12 10 20
Test case 1 output:
4

Test case 2 input:
4 5
1 2 3 4
Test case 2 output:
0

Test case 3 input:
6 7
7 7 7 7 7 7
Test case 3 output:
6

** Optimized and Correct Code**

#include <stdio.h>
#include <algorithm>
using namespace std;
int n, k, i, a[100005];
int main() {

scanf("%d%d", &n, &k);
for (i = 0; i < n; i++)

scanf("%d", &a[i]);↪→
sort(a, a + n);
printf("%d\n", n -

(lower_bound(a, a + n, k) -
a));

↪→
↪→
return 0;

}

Figure 19: Case Study 1. The reason for the error is that the offset was not calculated correctly. The correct fix is to
calculate the index using lower_bound(...)− a.

18

** Optimized but incorrect Code **

#include <cstdio>
#include <algorithm>
using std::min;
#define MAXN 100003
int abs(int z)
{

if (z<0) return -z;
else return z;

}
int main(void)
{

int N,K,i,j;
int h[MAXN], p[MAXN];
scanf("%d%d",&N,&K);
for (i=0;i<N;i++)
{

scanf("%d",h+i);
}
p[N-1]=0;
p[N-2]=abs(h[N-2]-h[N-1]);
for(i=N-3;i>=0;i--)
{

p[i]=min(p[i+1]+abs(h[i]-h[i+1]),p[i+2]
+abs(h[i]-h[i+2]));

}
printf("%d\n",p[0]);
return 0;

}

Below is the Explanation of slow code and generated test case inputs

Explanation:
This code solves a dynamic programming problem to find the minimum cost to

reach the n-th element from the first element in an array, where you can
jump up to k steps back at each position. Here's the breakdown:

↪→
↪→

Input: Reads n (array size) and k (maximum jump distance), followed by the
array num.↪→

Initialization:
dp array is initialized to a large value, except dp[0] and dp[1], which are

set to 0 (starting points with no cost).↪→
DP Transition:
For each position i from 2 to n, it calculates the minimum cost to reach i by

considering jumps from positions j (within [i-k, i-1]).↪→
The cost is the absolute difference between num[i] and num[j], added to the

cost to reach j.↪→
Output: The minimum cost to reach the n-th element (dp[n]) is printed.

** Test Cases**
Test case 1 input:
5 2
1 3 5 2 4

Test case 2 input:
4 1
10 20 10 30

Test case 3 input:
6 3
1 2 3 4 5 6

19

** Verified Test cases **

** Test Cases**
Test case 1 input:
5 2
1 3 5 2 4
Test case 1 output:
5

Test case 2 input:
4 1
10 20 10 30
Test case 2 output:
40

Test case 3 input:
6 3
1 2 3 4 5 6
Test case 3 output:
5

** Optimized and Correct Code**

#include <cstdio>
#include <algorithm>
#include <climits>

using std::min;
#define MAXN 100003
int abs(int z)
{

if (z<0)
return -z;

else
return z;

}

int main(void)
{

int N,K,i,j;
int h[MAXN], p[MAXN];
scanf("%d%d",&N,&K);
for (i=0;i<N;i++)
{

scanf("%d",h+i);
}
p[0] = 0;
for(i=1;i<N;i++)
{

p[i] = INT_MAX;
for(j=1;j<=K && i-j>=0;j++)
{

p[i] = min(p[i], p[i-j] + abs(h[i] - h[i-j]));
}

}
printf("%d\n",p[N-1]);

return 0;
}

Figure 20: Case Study 2. The reason for the error is that the code does not properly handle the jump limit K, and
the state transition logic is incomplete, only considering the cost of adjacent positions and ignoring larger jump
ranges. The correct modification is to use a double loop to dynamically update the minimum cost for each position
by considering jumps up to K steps backward, thus fully addressing all possible jump scenarios.

20

** Optimized but incorrect Code **

#include<cstdio>
#include<cstring>
#include<algorithm>
using namespace std;
int n,ans;
int a[10010];

int main(){
scanf("%d",&n);
for(int i=1;i<=n;i++) scanf("%d",&a[i]);
while(1){

int mx=a[1],id=1;
for(int i=2;i<=n;i++)

if(a[i]>mx) mx=a[i],id=i;
if(mx<n-1) break;
ans+=mx/n;
a[id]%=n;
for(int i=1;i<=n;i++)

if(i!=id) a[i]+=mx/n;
}
printf("%d\n",ans);

}

Below is the Explanation of slow code and generated test case inputs

Explanation:
The code simulates a process where an array a of size n is repeatedly

modified until the maximum value in the array is no greater than n-1. The
process involves the following steps:

↪→
↪→

Input: The code reads the size of the array n and the elements of the array
a.↪→

Main Loop: The code enters an infinite loop that continues until the maximum
value in the array is less than or equal to n-1. In each iteration:↪→

The maximum value maxn in the array and its index id are identified.
If maxn is less than or equal to n-1, the loop terminates.
Otherwise:
The value at a[id] is updated to maxn % n (the remainder when maxn is divided

by n).↪→
All other elements in the array are incremented by maxn / n (the quotient

when maxn is divided by n).↪→
The operation count ans is incremented by maxn / n.
Output: The total number of operations ans is printed.

** Test Cases**
Test case 1 input:
2
0 7

Test case 2 input:
4
8 0 0 0

Test case 3 input:
4
1 8 3 4

21

** Verified Test cases **

** Test Cases**
Test case 1 input:
2
0 7
Test case 1 output:
6

Test case 2 input:
4
8 0 0 0
Test case 2 output:
2

Test case 3 input:
4
1 8 3 4
Test case 3 output:
9

** Optimized and Correct Code**

#include<cstdio>
#include<cstring>
#include<algorithm>
using namespace std;

int n,ans;
int a[10010];

int main(){
scanf("%d",&n);
for(int i=1;i<=n;i++) scanf("%d",&a[i]);
while(1){

int mx=a[1],id=1;
for(int i=2;i<=n;i++)

if(a[i]>mx) mx=a[i],id=i;
if(mx<n) break;
ans+=mx/n;
a[id]%=n;
for(int i=1;i<=n;i++)

if(i!=id) a[i]+=mx/n;
}
printf("%d\n",ans);
return 0;

}

Figure 21: Case Study 3. The error is that the termination condition used mx < n− 1, which prematurely stopped
the loop, while the correct condition is mx < n, ensuring the loop only stops when maximum value is less than n.

22

	Introduction
	Related Works
	LLMs for Code-Related Tasks.
	Code Optimization.

	Problem-Oriented Code Optimization
	Problem-oriented Optimization Pairs
	Multi-Dimension Analysis
	Adapting LLMs to Optimization Pairs
	Adapting Results.
	PCO Percentage Analysis.

	Anchor Verification For Practicability
	Detailed Methodology.
	Experiment Results.
	Deeper Analysis.

	Conclusion
	Categories of Optimization Types.
	LLMs Analysis on Optimization Types.
	Datasets Statistics.
	Training Details.
	The Prompts of Adapting LLM on Optimization Pairs.
	Implementation Details of the Anchor Verification Framework and the Compared Methods.
	Results of Anchor Verification Framework on PIE.
	Detailed Examples of User-Oriented and Problem-Oriented Perspectives.
	Case Study of Anchor Verification Framework.

