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Abstract

Pre-trained language models (pLMs) have advanced our understanding of RNA
biology. However, current evaluation frameworks remain limited in capturing the
inherent complexity of RNA, leading to insufficient and biased assessments that
hinder their practical applications. Here, we introduce RNAscope, a comprehensive
benchmarking framework designed to gauge RNA pLMs via structure prediction,
interaction classification, and function characterization. This framework includes
1,253 experiments spanning diverse subtasks of varying complexity and enables
systematic model comparison with consistent architectural modules. Model as-
sessment shows that generalization of sequence flexibility across RNA families,
target contexts, and environmental features remains challenging for existing mod-
els. RNAscope provides a systematic, robust, and fair evaluation framework to
accelerate RNA modeling.

1 Introduction

RNA is central to biology, modulating gene expression and protein synthesis [42]. Its inherent
structural flexibility is often shaped by interaction with other biomolecules, influencing key cellular
processes [27,(77]]. While RNA functions are evolutionally encoded in their sequence, decoding the
underlying sequence-based features across various biological contexts remains essential.

Concurrently, RNA pLMs [1}10,(76} |11]], pre-trained on diverse RNA species, have been utilized to
study a wide range of contextual RNA properties, including structure [[12, (73} 58], interaction [[75]
72, 135]], and function [4} 36 |8]]. However, existing evaluation frameworks [50} 54| have yet to fully
progress in parallel with the rapid development of these models, limiting their ability to reflect the
broader landscape of structural patterns [60} |31} |48]], interaction strength [62} 30, 49]], and functional
characteristics [9} 22| 44]]. For instance, predicting binary RNA-target interaction alone is insufficient
to characterize the full spectrum of biological RNA intermolecular binding, where their affinity and
specificity often span several orders of magnitude.

In this study, we present RNAscope, a systematic benchmarking framework to evaluate the perfor-
mance of pLMs (Fig[I)). It assessed their representational capacity by compiling three cohorts of
subtasks. This framework offers the following main contributions to the evaluation of RNA pLM:s:

¢ Comprehensive RNA Benchmarking. RNAscope comprises 15 core subtasks for evaluating RNA
pLMs across three fundamental biological domains: structural prediction, molecular interaction, and
functional characterization. It showcases a systematic comparison and critical assessment with 1,253
experiments in varying modules, addressing a broad spectrum of RNA biology landscape.

 In-depth Comparative Analysis. RNAscope provides an extensive evaluation of various state-of-
the-art RNA and DNA pLMs, harnessing the complexity of RNA properties across RNA families,
targets contexts, and environmental features. It further presents a detailed comparison of their
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Figure 1: Overview of RNAscope. (a) RNAscope systematically evaluates pLMs in their abilities to
capture RNA structure, interactions, and functions . (b-d) It comprises 15 core tasks (b), assessing
supervised baselines, DNA and RNA pLMs with classifier modules (simple MLP, shallow CNN, and
ResNet) (c) through diverse evaluation metrics and multi-dimensional analysis (d).

strengths and limitations related to un-pre-trained models from basic binary classification and more
complex multiclass characterization.

* Sustainable Framework Development. RNAscope presents an open-source platform with public
leaderboards (https://rnascope-board.github.io/), along with available datasets and |code,
promoting fair, transparent, and standardized model comparisons. By continually incorporating
upcoming datasets, it will foster collaboration in the development of robust RNA pLMs, thereby
engineering RNA biology.

2 Background

2.1 Structural, Interaction, and Functional Complexities of RNA Sequences

RNA molecules are sequences that fold into complex spatial structures, interact with diverse molecular
partners, and carried out varied biological functions [70, [25]. Investigating RNA sequences to
understand their structures, interactions, and functions is essential for advancing RNA biology and its
applications [82,|13}39].

In many cases, RNA molecules display a high degree of sequence-based evolutionary conservation
across species, such as at splicing sites [3]. However, the complexity of the dynamic RNA regulation
network extends far beyond these predominant RNA features, involving versatile structural confor-
mations [64], intermolecular binding for both stable and transient events [21}[79]], and coordination
of both pervasive and cryptic functional patterns [29]]. To address this complexity, it is essential to
develop a more comprehensive framework that incorporates a wide range of RNA pattern propensities.

2.2 Advancements in RNA pLMs

In recent years, deep learning has substantially advanced bioinformatics, leading to the development
of pLMs tailored for biological sequences. RNA pLMs—such as RNABERT/1]], RNA-FM[10],
SpliceBERT(11]], 3UTRBERT]76], UTR-LM[14] and RiNALMo[46]—Ileverage large-scale RNA
sequence data to learn sophisticated representations that encapsulate both sequence patterns and
broader contextual information. These models, typically based on transformer encoder architectures,
are pre-trained on specific RNA species to address various aspects of RNA biology.

Despite their successful applications, the scope of evaluation for these models is often limited to their
specific tasks. This highlights the need for a comprehensive assessment of their capabilities across a
broader spectrum of RNA biology tasks. Moreover, RNA transcripts are dynamically synthesized and
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processed from the same DNA template into multiple isoforms, reflecting intricate layers of cellular
regulation [81,|59]]. Recent advancements in DNA pLMs, such as DNABERT2[80]], HyenaDNA[43]],
and Nucleotide Transformer[|16]], have also enhanced the modeling of DNA sequences, helping to
identify genome-wide functional patterns. Exploring the potential of these DNA pLMs in RNA-
specific tasks represents another promising avenue for future research.

2.3 Existing RNA benchmarking frameworks

High-throughput biotechniques have greatly expanded the availability of RNA data in multiple
domains. However, RNA benchmarking frameworks remain limited in scope and depth. Existing
benchmarks, such as RnaBench [54], primarily focus on RNA secondary structure prediction and
their molecular design task. Although BEACON [50] extends the evaluation to include function
and engineering tasks, it still lacks effective assessment that account for RNA contextual properties,
such as RNA interaction in the presence of other molecules. Moreover, these benchmarks often
overlook the complexity of RNA across different fields, resulting in a fragmented understanding of
RNA biology and its modeling challenges (see detailed description in Appendix [B). To effectively
evaluate RNA pLMs, further benchmarking frameworks need to integrate large-scale, versatile
datasets that comprehensively represent the structural diversity and functional flexibility of RNA
molecules.

3 Task Definition and Objectives

RNA molecules are often evolutionarily conserved in certain regions, reflecting their essential
functions. However, RNA structure and behavior are highly contextual, displaying significant
dynamism and diversity. Understanding the complex relationship between RNA sequences and
their structures, interactions, and functions remains a major challenge. To address this, RNAscope
introduces three hierarchically structured cohorts of sub-tasks for evaluating RNA pLMs on their
ability to capture and generalize RNA structural, interaction, and functional features beyond
predominant evolutionary conservation across diverse biological contexts. Detailed descriptions
and dataset construction are provided in the Appendix [C]

3.1 Structure-related Tasks

Key Points: RNA sequences determine structures. This panel outlines tasks for inferring RNA
structure from one-dimensional (1D) sequence, including secondary structure prediction for
base-pairing likelihood, chemical reactivity prediction for structural dynamics and nucleotide
accessibility, and contact map prediction for spatial interactions essential to three-dimensional
topology. Together, these tasks establish a sub-framework for understanding the structural diversity
of RNA across families.

(1) Secondary Structure Prediction (SSP) is a binary classification task that determines the pairing
status y; € {0, 1} of each nucleotide x; within an RNA sequence, thus characterizing base-pairing
conditions [28} |51].

Data Split and Analysis: Evaluation is conducted on three datasets: bpRNA, SetA, and SetB.
bpRNA comprises bpRNA-1m (split into TRO, VL0, and TSO for intra-family evaluation) and
bpRNA-new (containing novel families for inter-family evaluation). SetA includes eight canoni-
cal RNA families, and SetB contains 22 structurally diverse families, each with independent
train-test splits. To assess cross-family generalization, TestSetA and TestSetB are also used
to evaluate models trained on the other set. All datasets are de-redundified based on sequence
identity.

(2) Chemical Reactivity Prediction (CRP) is a regression task that predicts the chemical reactivity
y; of each nucleotide x; in an RNA molecule within the range [0, 1], primarily influenced by its
secondary structure, where unpaired regions typically are more chemically reactive. Reactivity
measurements reflect RNA’s secondary structure and dynamic conformational changes [|69, [71]],
thereby representing molecular conformations.

Data split and analysis: The dataset is derived from publicly available data from the ‘Stanford
Ribonanza RNA Folding competition’” on Kaggle [[19]]. To assess the model’s generalizability,



115
116

117

118
119
120

121
122
123
124

125

126
127
128
129
130
131
132
133

134
135
136

137
138
139
140

141
142
143

144
145
146

147
148
149

Table 1: Summary of 15 benchmark tasks across RNA structure, interaction and function in RNAscope.
See Appendix [C|and [D]for detailed dataset and metric information.

Task Type Task Name Dataset (Source) Train  Validation Test Metric
bpRNA (55 10,814 1,300 6,706  Precision, Recall, Binary F1
Second Structure Prediction SetA |55 2,850 316 1,022 Precision, Recall, Binary F1
Structure @ SetB 55 985 109 1,022 Precision, Recall, Binary F1
Chemical Reactivity Prediction 2A3-MaP (19 144918 16,103 6,787 MAE
Contact Map Prediction RNA3DB (61 9,101 1,011 1,375 Short@L/5, Long@L/5
Binary Binding Prediction 22 RBPs |76 331,591 110,537 110,557 Fl
DAse [78 65,149 10,858 32,576 Macro F1
. Systematic Binding Ranking ISLETS |78 188,159 31,360 94,080 Macro F1
Interaction TARDBP [78 132,779 22,130 39,390 Macro F1
L L - GFP [63 189 48 181 Spearman p
Binding Affinity Prediction NELF [63 168 43 2442 Spearman p
- . - Donor |38 169,798 42,448 316,282 Accuracy
Splicing Site Prediction Acceptor [38 164946 41236 315268 Accuracy
Splicing Event Prediction DeepASmRNA |7 52,008 17,313 32,052 Macro F1
Polyadenylation Signal Prediction ~ DeeReCT-PolyA [74] 22,536 7,514 78,291 Accuracy
Function Coding Potential Prediction CPPred 65 51,770 5,753 122,710 Accuracy
mRNA Subcellular Localization Allocator [36 13,838 1,730 1,730 Macro F1
Ribosome Loading Prediction HepG2 (8 759,594 10,000 20,000 R?
ncRNA Category Classification Neypred |37 28,626 3,175 13,646 Accuracy
microRNA Subcellular Localization RNALocate |2 373 47 118 subACC, Hloss
gRNA Efficiency Prediction gRNA Data|34 6,134 1,480 13631 Spearman p

training samples include sequences of lengths {170, 177}, while the test sets TestS and TestL.
consist of sequences with lengths {115, 155} and {206}, respectively.

(3) Contact Map Prediction (CMP) assigns a label y;; € {0, 1} to each nucleotide pair (z;, z;),
indicating whether they are within 8A in three-dimensional space. The inherent flexibility of RNA
leads to complex three-dimensional structures, which present significant challenges for accurate
contact map prediction.

Data split and analysis: The dataset originates from RNA3DB [61]], which comprises almost all
3D RNA structures obtained from the Protein Data Bank (PDB). It employs strict partitioning to
eliminate sequence and structural redundancy between training and test sets, ensuring robust
evaluation of the model’s ability.

3.2 Interaction-related Tasks

Key Points: Both naturally and artificially evolved RNA sequences adopt defined structural shapes,
enabling high-specificity interactions with a wide array of target molecules. This panel outlines tasks
for inferring RNA interaction with different targets from 1D sequence, including binary binding
prediction for RNA-proteins interactions within cells; systematic binding ranking for categorizing
RNA interaction with targets of varying molecular sizes; and binding affinity prediction for RNA-
protein interaction with varying strengths in vitro. Together, these tasks establish a sub-framework
for understanding the interaction diversity of RNA across targets, encompassing both persistent and
transient interaction.

(1) Binary Binding Prediction (BBP) is a binary classification task that predicts whether an RNA
sequence interacts with the RNA-binding protein (RBP). Studies have shown that RNAs involved in
these interactions often have conserved binding motifs in their sequences.

Data split and analysis: The original data is sourced from eCLIP experiments, comprising 22
datasets corresponding to 22 RBPs across K562 and HepG2 cell lines [40]. All sequences are
unified to 100 nucleotides in length, with samples having over 80% sequence identity removed
[76]. The positive-to-negative sample ratio is maintained at 1:2 for each RBP dataset.

(2) Systematic Binding Ranking (SBR) is a multi-label classification task that ranks the binding
categories of RNA species targeting different molecular targets. This task aims to assess the ability of
pLMs to understand the binding capacity of these species across multiple targets.

Data split and analysis: The data, derived from SELEX experiments [18] and curated by
UltraGen[78]], includes three datasets: DAse, TARDBP, and ISLETS. Each dataset targets
different types of molecules, including small molecules, proteins, and (multi)cellular systems.

(3) Binding Affinity Prediction (BAP) is a regression task that quantifies the binding affinity of
RNA sequences. It aims to assess how nucleotide mutations influence binding affinity and map the
RNA-protein interaction landscape.
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Table 2: Overview of the RNA and DNA pLMs evaluated in RNAscope. The representative versions
of the models from multiple checkpoints were compared (see Appendix [E] for details).

Model Type Model Name Pre-trained Data Params. Tokenizer ~Embedding Size Architecture
RNABERT [1] Human ncRNA 0.48M Single Base 120 BERT
RNA-FM |10 Multispecies ncRNA 100M  Single Base 640 BERT
RNA pLMs SUTRBERT 176 Human 3’UTR 86M ‘k-merf 768 BERT
SpliceBERT |11 Multispecies pre-mRNA 20M Single Base 512 BERT
UTR-LM [14] Multispecies 5’UTR 1.2IM  Single Base 128 BERT
RiNALMo [46 Multispecies ncRNA 650M Single Base 1280 BERT
DNABERT?2 [80 Multispecies genomes 117M BPE 768 BERT
DNA pLMs HyenaDNA [43 Human genome 1.6M Single Base 256 Hyena
Nucleotide Transformer (NT)[16]  Diverse human genomes 480M k-mer? 1280 BERT

Note: T Overlapping k-mer (stride I, allowing overlap), & Nonoverlapping k-mer (stride k, no overlap).

Data split and analysis: The data, from HiTS-RAP experiments, comprise two datasets: GFP
and NELF [63]. These experiments measure the binding affinity of mutagenized aptamers of
GFPapt [57] and NELEapt [45]]. Following a setup similar to Flip [[17]], wild-type and single
mutants are used for training, while double mutations form the test set, enabling a rigorous
evaluation of the model’s ability to understand the binding mechanism.

3.3 Function-related Tasks

Key Points: Functional RNA demands both conserved structure and specific environment. This
panel outlines tasks for inferring RNA functions with different spatiotemporal conditions from 1D
sequence across pre-mRNA, mRNA, and ncRNA, including coding and non-coding classification
for general sequence motif conservation; subcellular localization for sequence-derived spatial
conservation; splicing and polyadenylation identification for nuclear RNA maturation; ribosome
loading estimation for cytosolic mRNA translation; genome editing efficiency for cellular on-
target environment of guide RNA (gRNA). Together, these tasks establish a sub-framework for
understanding the evolutionary function diversity of RNA across conservation levels and contexts.

3.3.1 Pre-mRNA-related Function Tasks

(1) Splicing Site Prediction (SPS) comprises two binary classification tasks: distinguishing whether
a sequence corresponds to a splice donor or acceptor site. SPS is central to pre-mRNA processing,
removing non-coding regions and joining coding regions by recognizing donor and acceptor sites.

Data split and analysis: The datasets for predicting splice donor and acceptor sites are curated
from the genome sequences of human, Ara (arabidopsis), and rice, with redundant sequences
removed [38]. Training is performed on the human dataset, while evaluation is conducted on the
human, Ara and rice to assess cross-species generalization. All test sets are ensured to have less
than 80% sequence identity with the training set.

(2) Splicing Event Prediction (SPE) is a multi-label classification task that maps RNA sequence
x to the splicing event label y € {ES, AA, AD, IR} [ﬂ SPE further reveals the diversity of splicing
mechanisms.

Data split and analysis: The datasets are sourced from the RNA sequences of huamn, Ara, and
rice species [7]], with models trained on the human dataset and evaluated on all three species to
assess cross-species performance. The sequence identity between the test and training sets is
kept below 80%.

(3) Polyadenylation Signal Prediction (PAS) is a binary classification task that predicts the presence
of the polyadenylation signal (PAS), a hexamal motif upstream of the RNA 3’-end cleavage site,
critical for mRNA maturation.

Data split and analysis: The datasets from [74] include 18,786 true PAS sequences from 12
human individuals, balanced with pseudo-PAS sequences. Models are trained on human data
and evaluated on poly(A) datasets from C57BL/6J (mouse_bl) and SPRET/EiJ (mouse_sp)
mice, with test sets maintaining <80% sequence identity with the training set.

3.3.2 mRNA-related Function Tasks

(1) Coding Potential Prediction (CPP) is a binary classification task that distinguishes coding RNA
from non-coding ones. This task aims to enchance transcript coding potential for mRNA drug design.

'ES: Exon Skipping, AA: Alternative Acceptor site, AD: Alternative Donor site, IR: Intron Retention.



190
191
192

193
194
195

196
197
198

199
200
201

202
203
204

205

206
207
208
209

210
211
212

213
214
215

216
217

218
219
220

221
222
223

224

225
226
227
228
229
230
231
232
233

234
235
236

Data split and analysis: The dataset, sourced from [65]], consists of coding and non-coding
sequences from human, mouse, zebrafish, fruit fly, and yeast. Training was conducted on the
human dataset, with validation performed across all five species.

(2) mRNA Subcellular Localization (mSL) is a multi-label classification task that maps an mRNA
sequence z to a set of localization labels y || This task predicts the spatial distribution patterns of
mRNAs, which interprets the contextual environment for protein synthesis and cellular processes.

Data split and analysis: The benchmark dataset from [36]], contains 17,298 unique human
mRNA sequences. Sequences were divided into training, validation, and testing sets in an 8:1:1
ratio, mirroring the original multi-label distribution.

(3) Ribosome Loading Prediction (RLP) is a regression task that predicts the Mean Ribosome Load
(MRL) for the given 5° untranslated region (5’UTR), aiming to engineer optimization of translation
efficiency by estimating ribosome occupancy.

Data split and analysis: The dataset, from MRL measurements in HepG2 cells [8]], ranks 5S’UTRs
by sequencing read counts, assigning the top 20,000 to testing, 10,000 to validation, and the
remainder to training.

3.3.3 ncRNA-related Function Tasks

(1) ncRNA Category Classification (NCC) is a multi-label classification task that assigns ncRNA
sequences to 13 categories. This classification aims to feature conserved sequence patterns from
different types of ncRNA, aiding in the understanding of RNA involved regulatory roles beyond
protein production.

Data split and analysis: The dataset, sourced from [37]], includes 31,000 non-coding RNA
sequences obtained from the Rfam database [33]]. A 20% non-redundant subset is used to form
the testing set.

(2) microRNA Subcellular Localization (miSL) is a multi-label classification task that predicts the
subcellular localization of microRNAs{ﬂ Accurate localization prediction is crucial for understanding
microRNA function and informing drug design.

Data split and analysis: The dataset, sourced from RNALocate v2.0 [|15] and constructed by [2],
consists of 538 unique microRNAs, with redundancy removed using an 80% identity threshold.

(3) gRNA Efficiency Prediction (gEP) is a regression task that predicts the cleavage efficiency of
guide RNAs (gRNAs) in the CRISPR-Cas9 system, aiming to engineer the optimization of gene
editing by enhancing on-target efficiency.

Data split and analysis: The dataset, from [34], includes five public gRNA efficiency datasets
for training. Testing is conducted on six additional datasets covering various cell lines and
organisms (human, mouse, zebrafish) for unbiased evaluation.

4 Experiments

Pre-trained Language Models (pLMs). We evaluated a diverse set of RNA pLMs, includ-
ing RNABERT, RNA-FM, 3UTRBERT, SpliceBERT, UTR-LM, and RiNALMo. Among them,
RNABERT, RNA-FM, and RiNALMo were pre-trained on various non-coding RNAs (ncRNAs),
while 3UTRBERT and UTR-LM focused on the 3’ and 5’ untranslated regions (UTRs) of mRNA,
respectively. SpliceBERT was pre-trained on pre-mRNA sequences. To assess cross-modality
transfer, we also included three state-of-the-art DNA pLMs—DNABERT?2, HyenaDNA, and the
Nucleotide Transformer—all trained on genomic DNA. This comparison provides insight into how
pre-training domains influence performance on RNA-specific tasks. Additional model details are
provided in Appendix [E]

Downstream Modules. Three lightweight supervised modules were evaluated on frozen language
model (LM) embeddings—a simple MLP, a shallow CNN, and a 24-layer ResNet—to consistently
assess the capabilities and performance of various LMs across tasks. For each task, we frozen the

%L ocalization labels include nucleus, cytoplasm, exosome, ribosome, membrane, and mitochondria.
3The four subcellular localizations: nucleus, exosome, cytoplasm, and microvesicle.
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backbones of pre-trained LMs and fine-tune only the downstream modules, enabling a comparable
evaluation of embeddings across diverse architectures and parameter scales.

Supervised Baselines. A 24-layer ResNet was employed as a supervised baseline for each task. Inputs
were encoded using two distinct methods: (1) one-hot encoding, which represents sequences as sparse
binary vectors indicating the presence of specific tokens, and (2) 512-dimensional dense embeddings,
which mapped sequences to a continuous feature space derived from a learned representation. These
approaches, referred to as One-hot and Dense, respectively, enabled a comparative analysis of how
input encoding schemes influence model performance.

Traning Setups. Models were optimized using AdamW (learning rate set 1e-4, weight decay 0.01).
Training was employed an early stopping strategy, and was terminated if validation performance
shows no improvement over 10 consecutive evaluations. For sequence-level tasks, average pooling
was applied to aggregate sequence representations. To ensure compatibility and fair comparison
across tasks, we set the maximum input length to 1024 nucleotides. For robust and reliable evaluation,
each model was independently trained three times using different random seeds for each specific task.

5 Results and Discussion

5.1 RNA Sequence to Structure

Key notes: RNA pLMs exhibit limited capacity to capture RNA’s structural complexity, as
shown in the benchmark results for structure tasks in Table[I6] While effective at modeling conserved
intra-family base-pairing, further advancements are needed to enhance inter-family generalization
and to capture the structural dynamics and spatial folding essential for three-dimensional topology.

Table 3: Benchmark results for RNA structure tasks. Reported as mean (std) of three runs with
different seeds. The and models for each test set are highlighted in two shades of
green. Classifier modules—simple MLP, shallow CNN, and ResNet—are used with frozen pLM
weights. Results reflecting the best-performing classifier module for each dataset are additionally
underlined.

[ Second Structure | Chemical Reactivity | Contact Map
Model bpRNA bpRNA SetAmeumty  SetAcranity | SetBusmiy  SetBicmy | TestS Testl,
‘ P! F]mem family P! F]ln%c\ family e ly ot ly 0 ly BT y MAE | MAE | ‘ Short@L/5+  Long@L/5 t
One-hot ‘ 0.5480,003) 0.482(,006) ‘ 0.6890.007) 0.343014) ‘ 0.3690.008) 0.510(.021) ‘ 0.179001  0.167002 | 0.1580.006)  0.16810.007)
Dense 0.552(0.002) 0.501(0.007) 0.695(0.005) 0.3480.010) 0.384(0.006) 0.5260.027) | 0.1760001)  0.174(0.002) [IHOHIOOGHIS 070 506)
(+MLP)
RNABERT_mlp 0.55110.004) 0.5410.003) 0.700(0.001) 0.607(0.000) 0.5180.002) 0.5240004) | 02550000 0.26600.001) | 0.0130001)  0.021 (0,003
RNA-FM_mlp 0.766(0.004) 0.608(0.002) 0.837(.001) 0.6850.001) 0.8690.000) 0.6050.006) | 0.214(0.001) 0.1870003) | 0.137(0.003) 0.1290.002)
3UTRBERT_mlp 0.6470.012) 0.597(0.003) 0.746(0.004) 0.5980.004) 0.673(0.005) 0.5120009) | 02020001y  0.195(0.002) | 0.103(0.002) 0.086(0.003)
SpliceBERT_mlp 0.651(0.024) 0.586(0.011) 0.760(0.001) 0.5870.010) 0.7170.005) 0.5480.022) | 02070001y  0.207(0.001) | 0-111(0.002) 0.12110.002)
UTR-LM_mlp 0.6210.007) 0.585(0.005) 0.7239.005) 0.5970.005) 0.6530.016) 0.5550017) | 02010001y 0.196(0.003) | 0.111(0.002) 0.097(0.002)
RINALMo_mlp 0.797 0001 0.6250000 0881000 IIOTIB00nM| 0-8%000s [HOT260000 M| 01830000 0195000 | 01730000 | 0164000
(+CNN)
RNABERT _cnn 0.5980.003) 0.5710.005) 0.696(0,003) 0.5990.010) 0.5750.008) 05610015y | 02280001  0.241(0.002 | 0.117(0.005) 0.102(0,002)
RNA-FM_cnn 0.7860.001) 0.590(0.005) 0.842(,001) 0.685(0.005) 0.874.001) 0.5690.007 | 0.1970003  0.176000 | 0.1410005)  0.1500.004)
3UTRBERT _cnn 0.6720.005) 0.5880.016) 0.762(0.002) 0.592(0.008) 0.7040.001) 0.4860.005) | 0.19200000 0.1820.002) | 0.138(0.004) 0.1090.005)
SpliceBERT_cnn 0.6910,003) 0.565(0,004) 0.774(0.000) 0.5790.006) 0.737(0.008) 05130011 | 0.1960001 01790002 | 0.1500.007)  0.140(0.004)
UTR-LM_cnn 0.6680.003) 0.5950.007) 0.743(0.003) 0.587(0.003) 0.6880.006) 0.4860.003 | 0.1910001)  0.1760007) | 0.1520.005  0.1320.001)
RINALMo_cnn 0.8030.000) 0.6050.006) 0881000 0.7060007, [10903@oas ™ 07080008 | 01730001 0.1%000 | 0182000  0.1460005)
(+ResNet)
RNABERT _resnet 0.685(0.003) 0.576(0.015) 0.7430.006) 0.5790.009) 0.6700.004) 04780013) | 0.1810002) 0.17500.003) | 0.084(0.003  0.083(0.003)
RNA-FM_resnet 0.775(0.001) 0.6070.001) 0.820(0.001) 0.663(0.008) 0.860(0.006) 0.5910023) | 0.19600.004) | 01660004y | 0-1450.008)  0.150(0.007)
3UTRBERT _resnet 0.6850.007) 0.576(0.015) 0.746(0,003) 0.5730.008) 0.695(0.009) 04980032 | 0.1870.002)  0.17200004) | 0.137(0.016) 0.122(9,002)
SpliceBERT _resnet 0.695(0.006) 0.5740.005) 0.772(0.004) 0.5790.014) 0.712(0.003) 0.5610003) | 0.1931000) 0.177(0.003 | 0-155.002) 0.161(0.009)
UTR-LM_resnet 0.6970.003) 0.5680.012) 0.756(0.008) 0.5690.013) 0.716(0.012) 04720042y | 0.180001)  0.1710.005) | 0.0750.006)  0.101(0.00)
RiNALMo_resnet 0.805(0.003) 0.6130.014 0.8820.002) 0.707.007) 0.897(0.001) 0.6720.015  [F0M630000) 01630005  0.133(0.002) 0.1390.005)

As shown in Table[T6] RNA pLMs outperform baseline models on intra-family secondary structure
prediction, with performance further enhanced by deeper classifiers such as CNN and ResNet.
RNA-FM and RiNALMo were pre-trained on large-scale ncRNA datasets (e.g., RNAcentral includes
both endogenous and synthetic RNAs), achieving the highest average F1 scores in three benchmark
datasets—0.834 and 0.861, respectively—surpassing the Dense baseline (0.552) by over 50%.

However, these improvements fail to generalize to inter-family settings, with F1 scores dropping by
over 20% compared to intra-family results. Training curves (Fig[FI)) reveal that improvements in
validation performance are often accompanied by declines in inter-family accuracy, suggesting that
models may rely on family-specific features rather than broadly conserved base-pairing patterns. In
more complex tasks, such as chemical reactivity, RNA pLMs exhibit reduced advantages; in contact
map prediction, they are consistently outperformed by simpler Dense baselines, highlighting their
limitations in modeling non-canonical interactions and long-range structural dependencies.
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5.2 RNA Sequence to Interaction

Key notes: RNA pLMs show higher performance in predicting in vivo RNA-target interaction
than in in vitro. This disparity indicates that recognition of in vivo evolutionary patterns related to
interaction contexts is more conserved. In contrast, predicting in vitro interactions in the absence of
such evolutionary constraints, including binding strengths and affinity scores across diverse molecular
targets, remains a challenge. These findings imply that current models may underestimate the full
complexity of RNA interactome that arised from different evolutionary phases. Detailed benchmark
comparison for interaction tasks are presented in Table [4]

In predicting endogenous RNA-RBP binary-binding tasks, RNA pLMs demonstrate a higher accuracy
compared to baseline models. Using only a simple MLP probe, SpliceBERT achieves an average
F1 score of 0.736 across 22 RBP datasets, with further gains observed when employing deeper
classifier modules. This improvement may imply the conserved nature of RBP-binding sites, which
are often defined by short, contiguous 5-mer motifs [20, |67]—patterns well captured by nucleotide-
level tokenization. In contrast, subword tokenization strategies in DNA pLMs, such as BPE or
non-overlapping k-mers (e.g., in DNABERT?2 and NT), tend to fragment such motifs, resulting in
lower performance than even simple baselines. Additionally, RNA-protein binding sites are widely
distributed across the transcriptome and are frequently enriched in intronic regions. SpliceBERT’s
pretraining on pre-mRNA, which incorporates an extensive intronic content [68}, 67]], may contribute
to its ability to capture these contextual binding patterns.

In contrast, RNA pLMs yield limited Taple 4: Benchmark results on interaction tasks. Results
gains over baseline mpdels On in VUro  are mean (std) from three runs with different seeds, with
tasks, where the evolutionary constraints (he and models highlighted. Binary
are g.reatlly 'reduced and sequence conserva- - binding classification task comprises 22 RBP datasets,
tion 18 m1n1ma1. In the systematic binding  with average performance reported. Further detailed in
task derived from SELEX datasets, RNA Tables [T7]and [T§]in the Appendix.

pLMs underperform on protein (TARDBP) | Binary Binding | Systematic Binding | Binding Affnity
. Model RIS :

22 RBP’s Average | DAse | TARDBP | ISLETS GFP NELF
and (multi)cellular (ISLETS) targets, and | 2R N iy R R
yleld only modest gains on small-molecule One-hot 0.703 0.614(0005) | 0.4610010) [NOBISEOEM| 02150008 | 0.668(0.130)
. A A Dense 0.704 0.6220.001) [HOBTZEHHN 04120002 | 0-1380.041) | 0-38810.050)

(DAse) binding. These trends consis- ML)
. . . . : DNABERT2_mlp 0.683 0.6290.009 | 04250005) | 0403000 | -0.12400s0 | 01480010,
tently align with prior findings [[78]]: small-  Hyenona 0640 0522000 | 037600y | 03T T0ms | 0092008 | 0.1400005
. e e o NT_mlp 0.666 0.5990010, | 0391 0001) | 03600035 | 0.13%0s0) | 03140000
molecule blnders CXhlblt dlStlnCt sequence RNABERT _mlp 0.539 0.5280.006) | 0.3070.006) | 03090007, | -0.0490036) | 0.1290.005)
RNA-FM_mlp 0.698 0.6050006 | 0390006) | 03690012 | 0.0730006 | 03310000,
features that separate them from non-  sumseri_mp 0716 0.6 Lo, | 040Ty | 03970015, | 00430005 | 03T
. . SpliceBERT_mlp 0.736 0.6200012 | 0390007, | 03670012 | 0.07%010, | 02980003,
blnders, whereas for protein (TARDBP) UTR-LM_mlp 0.682 05360015 | 0.366000) | 02990031, | 0.028 01340072
. . . RiNALMo_mlp 0.726 0571000 | 03730000 | 03320000 | 0.0760010, | 01570015

and cellular (ISLETYS) targets, distinguish- e
3 : _hi : _ DNABERT2._cnn 0.685 0.6400.00 | 04560001, | 041406 | -0.0300002 | 02410021,
ing binders from non-binders is substan HyenaDNA_cnn 0.697 0.597 0006 | 04380001 | 039000 | 0.13%011 | 01810000
o 3 NT_cnn 0.674 0.6220012) | 04480006 | 0.3960.002) | 0.138(0017) | 0.25%0.007)
tlally more Challenglng due to the lack of RNABERT cnn 0.642 0.538000) | 04140008 | 0341000 | -0.0160003) | 01350003
s s RNA-FM_cnn 0.724 06400016 | 04600013 | 04100005 | 02240075 | 03840002
distinctive sequence features. SUTRBERT_cmn 0728 Q0S| 04200 | 040300 | 0270 vy | 019% g
SpliceBERT_cnn 0.748 0.63%0006 | 04660003 | 04T4g0an7| 0.107001, | 03400007,
s . ST : . UTR-LM_cnn 0.728 0571009 | 04320001 | 03720012 | 0.03700m | 02440060,
Similarly, in the binding affinity regression RINALMo_cnn 0749 05950005 | 04410005 | 03700009) | 0.06700sn) | 0161001

_ (+ResNet)
task, most RNA and DNA pLMs underper DNABERT?_resnet 0.669 0.6170009 | 04380002 | 04010009 | 02670018 | 05800020,

; ' s 0.727 0.623 0471 0411 0.376, 0.625

f Tm h n h D n hn n h ELF HyenaDNA _resnet (0.005) 0.003) (0.005) (0.032) (0.143)
orme than the Dense baseline o t.eN ; NT_resnet 0.681 0.6380013 | 0450001 | 04130009 | 03340009 | 0.6260015)
dataset. Ol’l the G FP dataset, pI'OblIlg Wlth RNABERT _resnet 0.675 05990.003) | 04610003 | 0404002y | 0.0290.165) |JOBTTEES
¢ § . RNA-FM_resnet 0.719 0.6340000 | 0.4600005) | 0409001, [JOEOT@BIN| 06360050,
a 51mple MLP ylelds low correlation CO-  3UTRBERT resnet 0.728 0.6240009) | 04680008 | (04400 | 02620165 | 04980215
. SpliceBERT _resnet 0.750 0.617¢,013) | 04560002 | 04060003 | 0.1620.071) | 0.51000.040)
efficients (< 0.14). Although model per- UTR-LM resnet | 0.723 05970005 | 04460000 | 03720011, | 023300 |10:67 050
RiNALMo_resnet 0.750 0.564 0031 | 04480001 | 03810005 | 0.1090093 | 02560095,

formance improves with deeper classifier
heads, noticeable standard deviations across runs underscore the model sensitivity to experimental
conditions, suggesting limited robustness in capturing fine-grained affinity variation under weak
supervision.

5.3 RNA Sequence to Function

Key notes: RNA pLMs present remarkable capabilities for characterizing RNA biological
processes than engineering. Consistent with their leading performance on the interaction tasks,
pLMs demonstrated greater improvement in cellular processes than engineering design that beyond
the evolutionary frame when compared to the baseline. As expected, DNA-based pLMs did not out-
perform RNA-based pLMs on RNA-centric tasks. For model optimization with various downstream
modules, shallow CNNs leveraging full-sequence embeddings outperform MLPs that rely on pooled
embeddings from pLMs. Additionally, the performance of pLMs closely align with their pre-training
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source, showcasing their strong capability in task-specific studies. Table[5further presents benchmark
results for function tasks across pre-mRNA, mRNA and ncRNA.

Table 5: Benchmark results for function tasks across pre-mRNA, mRNA, and ncRNA. Results are
presented as mean (std) from three runs with different seeds, highlighting the and
models. For additional results, please refer to Table [T9]in Appendix. The gRNA Efficiency Prediction

comprises six test sets, with averages presented here and details Tabel 20]in Appendix.
pre-mRNA Tasks mRNA Tasks neRNA Tasks
Model ‘Splicing Site ‘Splicing Event PAS Coding Potential | mRNA SL | Ribosome Loading | ncRNA Category | miRNA SL | gRNA Efficiency
Donor_human Donor_ara | Acceptor_human Acceptor_ara | human  ara | human mouse bl | human  mouse ) o N Average
ACCH ACCH PACer ACCT Fit FIt ACCt  ACCT ACCH ACCH Fit Ret ACC subACCH Sprmmmi ot
One-hot 0903000, 089300 | 090000 074600 | 05850000 031000 | 0752008 06330010 | 09450001, 0924000 | 05830010, [IOHS G0N 094700 | 029900 0252
Dense 0.895000 07620008 0.895(0.001) 0.7380010) | 0.58%0.016) 0.3300.033) | 074410001 0.6290.012) | 0.94610.001) 0.9220.002) | 0-58810.017) 0.6410.027) 0.9500.008) 0.322(0.000) 0254
MLP)
DNABERT2.mlp | 0808000y 0.6620015 | 0.7%0mn  0.682 0582009 02880015 | 0744000 0617000, | 0.9420001 0.9400001) | 05160014 | 0284010 0839005 | 032500 0.130
HyenaDNA_mlp 0.7800001  0.6650.004) 0.7970.002) 0.6920007) | 0.5330.003 0.2910016) | 0.738(0.003) 0.641(0.007) | 0.8960.004) 0.8720011) | 04940010 0.154(9.019) 0.676(0.017) 0.322(,000, 0.178
NT_mlp 07760001, 0.6670.007, 0.775(0.004) 0.655(0.001) 0.2960.020) | 0.7380001)  0.6280.006) | 0.-8950.003) 0.87710.003) | 0.47610.003) 0.1130.008) 0.7270.009) 0.322,000 0.171
RNABERT_mlp 0.6750005  0.6000.003) 0.664(0.001) 06120015 | 04100011, 02150014 | 0.7020.002 0.6240.002) | 0.7260.003) 0.7440.001) | 04250000 -0.0360.010) 0.5230.007) 0.3229,000) 0.129
RNA-FM_mlp 0.8030.000)  0.6940011) 0.8070.003) 0.7080013) | 0.5920.004 0.344(0.003) | 0.758(0.001) 0.643(0.009) | 0.941(0.002) 0.942(0.001) | 0.52010.011) 0.1690.009) 0.965(0.001) 0.3330.008 0200
3UTRBERT_mlp 08140006 0.7070.002) 08140004 0.7300002) | 0.59%0.003 0.348(0.015) | 07650004 0.6540.008) | 0.905(0.002) 0.918(0.003) | 0.516(0.010) 0.2990021) 0.8290.003) 0.302¢0.004y 0.157
SpliceBERT _mlp 0.8860001)  0.8020.011) 08870001 08430004 | 0.64600.009) 0.367(0.005) | 0.7630.003) 0.606(0.008) | 0.9620.000) 0.964(0.001) | 0.5600.004) 0.1580.005) 0.849,0.008) 0.3250.004 0.134
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+CNN)
DNABERT2_cnn 08610004  0.726(0.000) 0.851(0.009) 07250017 | 06190003 0.3060.05) | 07530007 0.6100.009) | 0.9550.001) 0.93%.001) | 0.5300.008) 0.3359.014) 0.90000.007, 0.3560.012) 0.137
HyenaDNA_cnn 09540001  0.8930.004) 0.9460.001) 0.8540.009) | 0.6630.010) 0.4170.020) | 0.7600010) 0.6780.015) | 0.927 (0,003 0.905.004) | 0.4920.005) 0.453(0.008) 0.804(0.015) 0.322.00) 0.228
NT_cnn 0.9250.0s)  0.8370.000) 0.9029.001) 0.7960.009) | 0.5700.011) 0.3460011) | 0.741 0002 0.6320.007) | 0.91110.002) 0.880(0.001) | 0.5290.015) 0.285(0.009) 0.8980.002) 0.322(,000 0.249
RNABERT_cnn | 09310 0840006 | 0.904000y 0.7%00 | 0500, 02950012 | 0.727002 0640000 | 07840005 0.780000m | 04250000 | 04070002y 071500 | 0.3220m0 0.195
RNA-FM_cnn 09580001 08910002 0.945(0.001) 08450002 | 07170046 0.4480017) | 0.7730001) 0.6720015) | 0.9520.001) 0.948(0.003) | 0.5440.009) 0.488,0.008) 0.9670.003) 0.342(.020, 0.256
SUTRBERT_cnn | 0957000, 088900 | 0947000 084100 | 07130000 04400017 | 0.77%ams 0:63%011) | 0925000 0921000 | 05690020 | 04810001y 0918005 | 031100 0.175
SpliceBERT cnn | 09570000 0906000, | 093 oo, 08900009 | 0.76000s 0495001 | 07780009 0.6300016 | 0967000 0.964000n | 0.56T00zry | 0461002, 0915000 | 03220m0 0.187
UTR-LM_cnn | 092500, 079000 | 0.92L0a0n) 080T0us | 06570010 0313001y | 0.766006 0.65%00r2) | 0953000 09360000 | 0500010 | 04010010 0909000 | 0.3220m0) 0209
RiNALMo_cnn 0.9030002) 08550001 0.895(0.002) 08590001 | 0691000 0.3830005) | 0.7700.004  0.6340.003) | 09280003 0.9130000) | 0.5%4 0010y 05010004 0974000 0.3250.010) 0253
(+ResNet)
DNABERT?2 resnet | 0.9370000)  0.86610008) 0.9270.003) 08530004 | 0.697 003 0.3660011) | 0.740 10007, 0.6160.007) | 0.941 0003 0.9220005) | 0.597 00109 0.4270010) 08830011 0.299.062) 0.103
HyenaDNA _resnet | 0.9640000)  0.903(0,000) 0954001 08480013 ‘ 0.6210002) 03890041, [OTBIGHHTOGIBEG 0-9350.001) 09080003 | 05930012 0.6370012) 0.9410.008) 0.302¢.017 0216
NT_resnet 0.9540.001  0.893012) 0.9370.002) 08590002  JONSTGRSINOS2EHERN 0-7410.015) 0.648(0.008) | 0.9190.001) 0.888(0.002) | 0.5980.007) 04190015 0.905(0.010) 0.2910.08 0.189
0.9650001) | 09080005, 0.9529,001) 0.856(0.011) .7250.001)  0.4930.026) | 0.738(0.005) 0.636(0.007) | 0.85410.003)  0.832(0,005) | 0.523(0.015) 0.6300.011) 0.9470.004) 0.311.016) 0.164
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SpliceBERT resnct | 0.9630mn  JOO3SGMNN 095000  [O898mam i 079205 0:51aainy| 0775000 06280011 | 0.9680001, 0.965000n 060700 | 0635000 0945000 | 0.3030055) 0.184
UTR-LM_resnet 0.945000 08610006 0.9410.001) 08260007 | 0.6780005 0.4360004) | 0766000 0.654 0011 | 0.954 0001  0.94810.000) || 06080604 0.647 0011 0.9580.006) 0.331(0.000) 0.246
RiNALMo_resnet | 093100y 087looay | 092800 08640007, | 071000y 04530015, | 0.76%0002 0.6 L0010, |[ODT2EERMOSTIGRR] 0.00%0000 | 06830010 09690002 | 03020005, 0237

In function prediction tasks, RNA pLMs exhibit strong alignment between pre-training domain and
downstream performance. Under probing with a simple MLP, SpliceBERT achieves the highest
accuracy across all pre-mRNA splicing benchmarks, while 3UTRBERT excels in polyadenylation
site (PAS) prediction involving 3> UTRs. RNA-FM and RiNALMo, pretrained on a broad corpus
of non-coding RNAs, achieve top performance in ncRNA classification and microRNA subcellular
localization (see Fig. [6).

In contrast, RNA pLMs underperform relative to the baseline on ribosome loading prediction, a
regression task designed to engineer translation efficiency through modeling 5° UTR-driven ribosome
occupancy. Similarly, in the gRNA efficiency prediction task, another synthetic engineering scenario,
pLMs perform comparably to the baseline. These results suggest limited generalizability to design-
driven tasks beyond the evolutionary distributions represented in the training corpus.

5.4 Limitation and Future Directions

Evaluating models’ ability to capture both conserved and diverse RNA features is essential. In RNA
biology, increasing complexity—from structure to interactions to function—introduces stronger
evolutionary constraints, shaping sequence conservation. RNA structure (e.g. synthetic RNA) alone
is subject to minimal constraint, whereas RNA interaction requires the recognition of biophysically
compatible features, such as electrostatic forces and suitable geometric shapes. Further cellular
RNA function imposes even higher constraints, demanding specific target interactions while avoiding
nonspecific binding with others. Accordingly, RNA pLMs perform well in identifying predominant
RNA patterns using binary labels but show reduced effectiveness in handling more complex, multi-
class characteristics. For instance, while they can recognize on/off binding signals between RNA
and RBP, their performance declines in tasks involving varying levels of binding strength and
specificity. This limitation may reflect the inherent imbalance in pre-training source, where certain
RNA patterns are pervasive and cryptic features are likely underrepresented, ultimately hindering
pLM generalization across diverse RNA subtasks.

To address this complexity, expanding RNAscope to incorporate more diverse and underrepresented
RNA patterns from both in vitro and in vivo source will help to evaluate the generalizability of
RNA pLMs. However, it is important to note that RNA pLM may still limit to fully reflect RNA
behavior in spatiotemporal cellular contexts, such as transcriptome-wide saturation in guide RNA
off-target. From model perspectives, further efforts involving more advanced approaches, such as
deeper architectures, structure-aware embeddings, and multi-task learning, may help to tackle these
challenges, enabling RNA pLMs to characterize RNA features beyond conserved sequence patterns
and thereby support RNA engineering and therapeutics.
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A Glossary

* Pre-mRNA (Precursor mRNA): Pre-mRNA is the precursor RNA transcript synthesized from
genomic DNA, containing both exons (coding regions) and introns (non-coding regions). It undergoes
various maturation processes, including splicing, 5’ capping, and 3’ polyadenylation, to be processed
into mature mRNA.

¢ Splicing: The process of removing introns and joining exons to form a continuous coding sequence
within pre-mRNA, facilitating the efficient translation of genetic information into protein.

* Alternative Splicing: A process that allows a single pre-mRNA to be spliced in various ways,
producing different mRNA isoforms and increasing protein diversity.

* 3’ Polyadenylation: The addition of a poly(A) tail to the 3’ end of pre-mRNA, enhancing its
stability, facilitating nuclear export, and promoting translation initiation.

* mRNA (Messenger RNA): Mature mRNA is the processed transcript that carries genetic informa-
tion from DNA in the nucleus to ribosomes for protein synthesis. It consists of three parts: the 5’
untranslated region (UTR), coding sequence (CDS), and 3’ UTR.

* 5° UTR (5’ Untranslated Region): The 5° UTR, located upstream of the coding sequence in
mRNA, regulates translation initiation through interactions with translation initiation factors and
ribosomal machinery, without encoding protein.

* 3’ UTR (3’ Untranslated Region): The 3° UTR is the noncoding region downstream of the coding
sequence in mRNA. It regulates mRNA stability, translation, and localization through interactions
with RNA-binding proteins and microRNAs.

* ncRNA (Non-Coding RNA): Non-coding RNAs do not translate into proteins but are vital for
regulating gene expression, RNA processing, and cellular functions.

* miRNA (MicroRNA): Small, essential non-coding RNAs that regulate gene expression post-
transcriptionally by promoting the degradation or inhibiting the translation of target mRNAs.

* gRNA (Guide RNA): Engineered non-coding RNAs that directs the Cas9 protein to specific
genomic region for gene editing, as in the CRISPR-Cas9 system.

B Towards Robust Evaluation of RNA Language Models

RNA pLMs have shown strong performance on established benchmarks, many of which focus on
tasks dominated by evolutionarily conserved sequence features. While such conservation provides
helpful inductive biases, it also narrows the scope of evaluation: models may overfit to recurring
patterns without learning representations that generalize to biologically diverse or synthetic contexts.
In practice, many challenges in RNA biology occur in settings with weak even absent conservation
signals—such as transient or low-affinity RNA—protein interactions, cross-species annotation, or
the design of functional de novo sequences. Consequently, it remains unclear whether RNA pLMs
capture generalizable principles or primarily reflect dataset-specific regularities.

To address this limitation,

RNAscope presents a hierar- RNASEERE HEnel e
chical evaluation framework “ncy,
that spans a continuum of <
evolutionary constraints (Fig. 2).
It incorporates: (i) dataset splits
promoting  diversity  across
sequence families, species,
and experimental contexts;
(ii) task types beyond binary
ClaSSiﬁCﬁtiOﬂ, including regres- Modeling RNA Structure, Interaction, Function tasks via RNA pLMs

sion, ranking, and multi-label Figure 2: Assessment of RNA pLMs performance in structure, in-
prediction; and (iii) functionally teraction, and function, mirroring the complexity of RNA biology.
diverse tasks, ranging from

conserved biological processes (e.g., canonical splicing) to design-driven challenges with limited
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evolutionary precedent (e.g., synthetic gRNA optimization). This design enables a more principled
analysis of model generalization across varying biological contexts.

B.1 Challenges of Existing RNA Benchmarking Frameworks

A representative prior benchmark is BEACON [50], which evaluates RNA pLMs across 13 tasks
spanning structure, function, and engineering. However, like many existing evaluation frameworks,
BEACON falls short in capturing the large complexity of RNA biology, leading to limited and
potentially biased assessments that constrain generalization and real-world applicability. In
particular, it overlooks critical challenges such as structural redundancy, functional heterogeneity, and
limited model robustness on synthetic or under-constrained sequence distributions. In particular, RNA
interaction tasks, crucial for linking structure to regulatory function, are absent from BEACON.
This gap restricts assessment of a model’s capacity to capture context-sensitive binding behavior.
Specifically, critical evaluation aspects—particularly within structure, function, and engineering
tasks—remain underexplored, including:

(1) Structural Tasks: Lack of Cross-Family and Cross-Structure Validation

RNA structure prediction remains challenging due to the limited availability of experimentally
resolved structures and the low diversity across RNA families [56]]. Public datasets are often highly
imbalanced—for example, over 95% of sequences in some benchmarks originate from rRNA and
tRNA [23]], which exhibit highly conserved structures even at sequence identities below 30%. Despite
this, many models are trained and evaluated on overlapping structural families, leading to inflated
performance estimates [60, 31} [48|]. BEACON adopts sequence-similarity-based splits (e.g., 80%
identity), but fails to account for structural similarity, thereby limiting assessment of generalization to
novel RNA folds.

(2) Functional Tasks: Inadequate Cross-Type and Cross-Species Assessment

RNA molecules span diverse types—pre-mRNA, mRNA, and ncRNA—each governed by distinct
regulatory mechanisms and functional contexts. Effectively modeling these differences requires task
definitions and evaluation criteria tailored to the unique biology of each RNA type. However, current
benchmarks often aggregate these tasks under shared metrics and architectures without distinction,
potentially masking type-specific modeling challenges.

Moreover, functional benchmarks are predominantly derived from higher eukaryotes (e.g., human
and mouse), with minimal support for cross-species evaluation. This limits assessment of a model’s
ability to generalize regulatory patterns conserved across evolutionary lineages. While BEACON
includes tasks covering multiple RNA types (e.g., splicing, APA, ncRNA classification), it does not
differentiate them in task formulation or analysis, reducing the granularity of functional assessment.

(3) Engineering Tasks: Dataset Bias and Experimental Context Dependency

In design-oriented tasks—such as predicting CRISPR on-target and off-target efficiency—models
often exhibit strong performance under in-dataset cross-validation, yet fail to generalize to inde-
pendent datasets derived from distinct biological systems or experimental conditions [34]. Such
performance drops highlight the tendency of current models to overfit to dataset-specific features,
rather than learning robust, transferable representations. BEACON does not incorporate cross-system
or cross-condition evaluation protocols, thereby limiting its ability to assess model reliability in
synthetic or translational settings that deviate from the training distribution.

B.2 The RNAscope Framework

Table 6: Comparison of RNAscope with BEACON benchmark.

Benchmark | Tasks Task Variants Test Sets Total Samples Downstream Modules Task Relationship”
RNAscope 15 42 63 3,693,205 MLP, CNN, ResNet Complexity levels
BEACON 13 13 13 967,166 ResNet Unintended correlations

Note: *Task Relationship indicates whether the relationships between tasks are deliberately designed, including the hierarchical setup
of sub-tasks and the criteria for splitting test sets.

16



673
674
675
676
677
678

In light of these limitations, we propose RNAscope, an expanded benchmark designed to provide
hierarchical, evolution-aware evaluations across structure, interaction, and function. As summarized
in Table [/} RNAscope integrates dataset diversity, task variety, and context specificity to offer a
more rigorous and interpretable assessment of RNA pLMs. Compared to prior work (see Table[6),
RNAscope explicitly addresses the key challenges outlined above, enabling more realistic and
generalizable model evaluation.

Table 7: Task features in RNAscope across structure, interaction, and function.

Task Name

Description

Task Variants Test Pre-task Variant Total Test Sets

Test Split

Structure Tasks

engineering task designed to
surpass natural sequence
properties.

Secondary Structure Prediction Foundational complexity; 3 2 6 Cross-family evaluation with two
Assessing base pairing test sets: Intra-family Test for
interactions. within-family prediction and
Inter-family Test for cross-family
prediction.
Chemical Reactivity Prediction |Moderate complexity; Assessing 1 2 2 Cross-length evaluation with two
base pairing and dynamic test sets: TestS for short sequences,
conformational changes. and TestL for long sequences.
Contact Map Prediction High complexity; Assessing 3D 1 1 1 Cross-structure evaluation with
structural interactions. redundancy removal based on
structural and sequence similarity.
Interaction Tasks
Binary Binding Prediction Foundational complexity; In 22 1 22 22 independent training and test
vivo data; Assessing binary sets for 22 distinct targets.
classification for in vivo RNA
binding to RBPs.
Systematic Binding Ranking Moderate complexity; In vitro 3 1 3 Three independent training and
data;Assessing multi-level test sets for three different target
classification for in vitro RNA types.
binding across three target
types.
Binding Affinity Prediction High complexity; In vitro data; 2 1 2 Two independent training and test
Assessing prediction of RNA sets for two different protein
binding affinities for two protein targets.
targets.
Function Tasks
Splicing Site Prediction Pre-mRNA task:; Biological 2 3 6 Cross-species validation including
function task; Highly conserved human, Arabidopsis (Ara), and
biological process. rice.
Splicing Event Prediction Pre-mRNA task ; Biological 1 3 3 Cross-species validation with three
function task; Moderately test sets: human, Arabidopsis
conserved biological process. (Ara), and rice.
Polyadenylation Signal Prediction| Pre-mRNA task; Biological 1 3 3 Cross-species validation including
function task; Moderately human, and C57BL/6J and
conserved biological process. SPRET/EiJ mouse strains.
Coding Potential Prediction | mRNA task:; Biological function 1 5 5 Cross-species validation including
task; Highly conserved five species.
biological process.
Subcellular Localization mRNA task; Biological function 1 1 1 Multi-label classification task.
Prediction task; Lowly conserved biological
process.
Ribosome Loading Prediction mRNA task; Functional 1 1 1 Task partitioned based on
engineering task designed to predefined criteria.
surpass natural sequence
properties.
ncRNA Category Classification |ncRNA task: Biological function 1 1 1 Task partitioned for classification.
task; Highly conserved
biological process.
microRNA Subcellular ncRNA task; Biological function 1 1 1 Task partitioned for microRNA
Localization task; Lowly conserved biological classification.
process.
gRNA Efficiency Prediction ncRNA task; Functional 1 6 6 Testing conducted on six datasets

covering multiple cell lines and
organisms (human, mouse,
zebrafish).
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C Detailed Dataset Construction and Analysis

C.1 Structure-related Tasks

* Secondary structure prediction includes three benchmarks: bpRNA, SetA, and SetB. The bpRNA
dataset comprises two subsets that enable both intra- and inter-family evaluation. bpRNA-1m, derived
from Rfam 12.2 [32]], is used for within-family testing, with TR0, VLO, and TSO serving as the
training, validation, and intra-family test sets, respectively. bpRNA-new [55] includes families newly
added in Rfam 14.2, which are absent from the original training distribution, and is used to evaluate
generalization to novel RNA families. Redundant sequences were filtered using an 80% identity
threshold via CD-HIT [24]], and sequences longer than 500 nucleotides were excluded to ensure
consistency. SetA and SetB, introduced by Rivas et al. [52], offer additional benchmarks with varying
structural similarity. SetA includes TrainSetA and TestSetA, curated from literature and covering
eight common RNA families (e.g., tRNA, SRP RNA, tmRNA), used primarily for intra-family
evaluation. SetB includes TrainSetB and TestSetB, constructed from 22 structurally distinct RNA
families in Rfam 10.0 [26] with 3D annotations. Sequences in SetB share less than 70% identity with
those in SetA to ensure structural independence. All pseudoknotted structures were removed from all
datasets. TestSetA and TestSetB serve as intra- and inter-family test sets, respectively.

* Chemical reactivity prediction dataset is sourced from the publicly available ‘Stanford Ri-
bonanza RNA Folding competition’ on Kaggle [61f, which includes experimental reactivity mea-
surements for each position in RNA molecules. These measurements are highly sensitive to the
in vitro structures (or multiple structures) formed by the RNA. Accurate prediction of chemical
reactivity necessitates an implicit comprehension of RNA structure. The dataset, extracted from
train_data_QUICK_START. cst] and based on 2A3 chemical modifier measurements, is partitioned
into training and testing sets according to specific length distributions: {115,155,170,177,206}.
The shorter test set (TestS) includes lengths {115, 155}, while the longer test set (TestL) contains
sequences of length {206}. TestS contains 4,403 samples, TestL contains 2,384 samples, totaling
6,787 samples.

¢ Contact map prediction dataset is based on RNA3DB [61]], a structured RNA dataset sourced
from the Protein Data Bank (PDB), designed for training and benchmarking deep learning models.
RNA3DB encompasses all PDB RNA 3D structures, clustering RNA 3D chains into distinct, non-
redundant groups in terms of both sequence and structure. This organization facilitates a reliable
approach for partitioning training, validation, and test sets. RNA3DB is periodically updated by its
maintainers, and the version utilized in this study is 2024-12-04-full-release’ There is only
one test set, containing 1,375 samples.

C.2 Interaction-related Tasks

* Binary binding prediction dataset originates from the eCLIP dataset [40] curated by [76], which
includes 22 distinct datasets from 22 RNA-binding proteins (RBPs) across two cell lines, K562 and
HepG2. eCLIP (enhanced Crosslinking and Immunoprecipitation) [|68] is a high-resolution technique
used to map RNA-protein interactions in vivo, enabling the precise identification of RBP binding
sites across the transcriptome. All sequencing data is standardized to 100 nucleotide lengths, and
sequences with more than 80% identity are removed. The dataset maintains a positive-to-negative
ratio of 1:2. The number of training, validation, and test samples for the 22 datasets is detailed in
Table[8]

» Systematic binding ranking dataset, curated by [78], is based on raw data derived from SELEX
(Systematic Evolution of Ligands by Exponential Enrichment) experiments, which are designed
to identify high-affinity RNA molecules from a large pool of in vitro candidates targeting specific
molecules. Specifically, the dataset consists of three distinct subsets: DAse, TARDBP, and ISLETS.
These subsets correspond to different targets, including small molecules (Maleimide involved in
Diels-Alderase), proteins (TAR DNA-binding protein 43), and multi-cellular entities (human islets),
respectively. For each original dataset, RNA species are ranked according to their enrichment levels
in the final SELEX round and classified into categories based on their ranking range. Subsequently,

*https://www.kaggle.com/competitions/stanford-ribonanza-rna-folding/data
>https://github.com/marcellszi/rna3db/releases/tag/2024-12-04-full-release
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each RNA category within the benchmark dataset was partitioned into training, validation, and test
sets at a ratio of 6:1:3.

* Binding affinity prediction dataset, sourced from [63]], utilizes the high-throughput sequenc-
ing—RNA affinity profiling (HiTS-RAP) method to measure the binding affinities of in vitro mutage-
nized libraries of GFP-binding and NELF-E-binding aptamers to their respective targets. The dataset
includes two subsets: GFP and NELF, which measure the binding affinities of wild-type, single-
mutant, and double-mutant variants of GFPapt and NELEapt. To assess the model’s applicability
to real-world scenarios, we adopt a ‘1-vs-rest’ splitting strategy, following the approach of FLIP
[17]. Specifically, the wild-type and single-mutant variants are assigned to the training set, while the
remaining mutant variants are used for testing.

Table 8: Dataset splits for the binary binding Prediction task of 22 RNA-binding proteins (RBPs)
across HepG2 and K562 cell lines, detailing the number of samples in training, validation, and test
sets.

Dataset name Train Validation Test
AKAPI1_HepG2 9,635 3,212 3,213
BCLAF1_HepG2 40,890 13,630 13,631
DDX24_K562 10,632 3,544 3,546
FAM120A_K562 7,572 2,524 2,525
G3BP1_HepG2 9,515 3,172 3,173
GRWDI1_HepG2 29,326 9,776 9,776
IGF2BP1_K562 8,543 2,848 2,848
LARP4_HepG2 8,386 2,796 2,796
LIN28B_K562 8,743 2,916 2914
PABPC4_K562 9,293 3,098 3,098
PPIG_HepG2 24,836 8,279 8,280
PUM2_K562 8,472 2,824 2,825
RBM15_K562 12,468 4,156 4,156
RPS3_HepG2 8,807 2,935 2,937
SND1_HepG2 11,069 3,690 3,691
UCHL5_K562 23,411 7,804 7,805
YBX3_K562 26,165 8,721 8,723
ZNF622_K562 19,195 6,399 6,400
DDX3X_HepG2 10,859 3,620 3,621
DDX3X_K562 7,378 2,460 2,461
UPF1_HepG2 15,567 5,189 5,191
UPF1_K562 20,829 6,943 6,945
Total 331,591 110,537 110,555

C.3 Function-related Tasks

C.3.1 Pre-mRNA-related Function Tasks

* Splicing site prediction dataset, sourced from [38]], includes donor and acceptor splice site data
for human (H. sapiens), Arabidopsis (A. thaliana), and rice (O. sativa japonica). Splice sites are
conserved regions in pre-mRNA that mark the boundaries between exons and introns. Donor sites (5’
sites) are located at exon-intron junctions and are often characterized by the dinucleotide GU, while
acceptor sites (3’ sites) are found at intron-exon junctions, typically marked by AG [5]. Positive
samples are generated by extracting 200-nucleotide flanking sequences from both sides of splice
sites, forming 402-nucleotide input sequences. Negative samples consist of non-splice sites following
the GU-AG rule, with redundancy removed to balance the number of positive and negative samples.
Models are trained on the human dataset and validated across all three species for cross-species
generalization, as detailed in Table[9] Test sets are filtered using CD-HIT [24] to ensure less than
80% sequence identity with the training data.

* Splicing event prediction dataset is provided by 7], which includes transcript data from human,
Arabidopsis, and rice, with alternative splicing events identified and classified into five distinct types
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for the transcripts of each species using SUPPA [66]. Alternative splicing is vital for biological pro-
cesses, yet genome-wide splicing patterns in many non-model organisms remain largely unexplored.
Here, training is performed on human data and evaluation is conducted across all three species,
as detailed in Table@} To prevent redundancy, test sets are filtered via CD-HIT [24] to maintain
sequence identity below 80% relative to the training set.

* Polyadenylation signal prediction dataset focuses on identifying true polyadenylation signals
(PAS) in the 10-30 nt upstream region, characterized by a 6-nt PAS motif (e.g., AAUAAA) [47].
The dataset includes the Omni human poly(A) dataset with 18,786 true PAS sequences and an
equal number of pseudo-PAS sequences from human Chromosome 21 [41]. It also contains poly(A)
datasets from C57BL/6J (BL) and SPRET/EiJ (SP) mouse strains, with 46,224 and 40,230 sequences,
respectively, balanced for true and pseudo-PAS [[74]]. Training is performed on the human dataset,
with evaluation across all three species, as detailed in Table[TT} CD-HIT [24] is applied to filter the
test sets, ensuring no more than 80% sequence identity with sequences in the training data.

Table 9: Dataset splits for the splicing site prediction task, including two sub-tasks: donor splice site
prediction and acceptor splice site prediction. The table details the number of samples in training,
validation, and test sets. For each sub-task, models are trained on the human dataset and evaluated on
test sets from all three species: human, arabidopsis, and rice.

Sub-Task Split Species Number Total
Train Human 169,798 169,798
Donor Validation Human 42,448 42,448

Human 68,180
Test Arabidopsis 119,491 316,282
Rice 128,611

Train Human 164,946 164,946
Acceptor  Validation Human 41,236 41,236

Human 66,114
Test Arabidopsis 119,780 315,268
Rice 129,374

Table 10: Dataset splits for the splicing event prediction task, detailing the number of samples in
training, validation, and test sets. Models are trained on the human dataset and evaluated on test sets
from three species: human, arabidopsis, and rice.

Split Number Species Total
Train 52,008 Human 52,008
Validation 17,313 Human 17,313

14,383 Human
Test 11,237 Arabidopsis 32,051
6,432 Rice
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Table 11: Dataset splits for the polyadenylation signal prediction task, detailing the number of
samples in training, validation, and test sets. Models are trained on the human dataset and evaluated
on test sets from three species: human, mouse_bl, and mouse_sp, where mouse represents the species,
and bl and sp represent different strains.

Split Number  Species Total
Train 22,536 Human 22,536
Validation 7,514 Human 7,514

7,363 Human
Test 37,868 mouse_bl 78,291
33,060 mouse_sp

C.3.2 mRNA-related Function Tasks

» Coding potential prediction involves binary classification to differentiate between coding RNAs
and non-coding RNAs (ncRNAs). Rapid and accurate prediction of coding potential is essential for
understanding transcript functionality. The dataset, derived from [65]], includes both coding and non-
coding RNAs from human, mouse, zebrafish, fruit fly, and Saccharomyces cerevisiae (s.cerevisiae).
To minimize redundancy, a sequence identity cutoff of >80% is applied between the training and
testing sets. Models are trained on the human dataset and evaluated on test sets from all five species,
as detailed in Table[12

* mRNA subcellular localization aims to predict the spatial distribution of mRNA. The asymmetric
distribution of mRNA across different subcellular compartments tightly regulates protein synthesis
within human cells. Accurate identification of mRNA subcellular localization is crucial for deepening
our understanding of gene regulatory networks. The benchmark dataset, sourced from [36], includes
data from the RNALocate and DM3Loc databases, comprising a total of 17,298 unique mRNA
sequences. Sequence redundancy is removed by applying an 80% sequence similarity threshold. The
dataset is randomly split into training, validation, and test sets in an 8:1:1 ratio.

* Ribosome loading prediction is a functional engineering task aimed at optimizing and designing
5 UTRs to enhance mRNA translation efficiency through accurate ribosome loading prediction. The
dataset, derived from MRL measurements in HepG2 cells [8], ranks 5° UTRs by sequencing read
counts, with the top 20,000 sequences assigned to the test set, 10,000 to the validation set, and the
remaining sequences to the training set.

Table 12: Dataset splits for the coding potential prediction task, detailing the number of samples in
training, validation, and test sets. Models are trained on the human dataset and evaluated on test sets
from all five species including human, mouse, zebrafish, fruit fly, and s. cerevisiae.

Split Number Species Total
Train 51,770 Human 51,770
Validation 5,753 Human 5,753
16,798 Human
51,032 Mouse
Test 26,256 Zebrafish 122,710

21,498 Fruit_fly
7,126 S. cerevisiae

C.3.3 ncRNA-related Function Tasks

* ncRNA Category Classification aims to classify short non-coding RNAs (sncRNAs) based
on conserved sequence patterns across different ncRNA types. The dataset, sourced from [37]],
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comprises 31,000 sncRNA sequences from various organisms with 13 ncRNA categories ﬁ A 20%
non-redundant subset is used to form the testing set.

* MicroRNA subcellular localization aims to predict the subcellular localization of microRNAs, a
class of non-coding RNAs (ncRNAs) with critical roles in gene regulation. Identifying the subcellular
localization of microRNAs is of significant importance for drug design. The dataset, derived from
[2]], consists of 538 unique microRNAs, with redundancy removed using an 80% identity threshold.
The dataset is split into training and testing sets at an 8:2 ratio.

* gRNA efficiency prediction is a functional engineering task focused on optimizing gene editing by
accurately predicting the on-target efficiency of guide RNAs (gRNAs). The dataset, derived from [34],
includes five public gRNA efficiency datasets for training, with testing conducted on six additional
datasets from various cell lines and organisms (human, mouse, zebrafish). Independent datasets from
diverse biological systems and experimental conditions validate the model’s robustness, mitigating
overfitting to specific contexts, as detailed in Table[T3]

Table 13: Dataset splits for the gRNA Efficiency Prediction task, listing each dataset by split, name,
and number of gRNAs.

Split Dataset Name Number
Chari_293t 984
Doench_hg 1,862
Train Doench_mel4 781
Moreno-Mateos 835
Wang-Xu_hl60 1,672
Chari_293t 250
Doench_hg 471
Validation Doench_mel4 170
Moreno-Mateos 185
Wang-Xu_hl60 404
mESC(Koike-Yusa) 1,064
HEL(Labuhn) 424
Test A375(Shalem) 1,278
HEK293T(Xi Xiang) 10,592
Zebrafish(Gagnon) 111
Zebrafish(Shkumatava) 162

D Metrics

¢ Precision, Recall, and F1-score: These metrics are used to evaluate classification performance.
For binary classification tasks, we adopt the standard binary F1-score, which focuses on the positive
class (label = 1). Precision measures the proportion of predicted positives that are correct, Recall
measures the proportion of actual positives that are recovered, and the F1-score is the harmonic mean
of Precision and Recall.

TP TP Precision - Recall
Precision = ————— Recall = ———— Fl-score = 2 - .
s = T Epr Y T TP EN score Precision + Recall’ )

where T'P, FP, and F'N denote the number of true positives, false positives, and false negatives,
respectively.

For multi-class settings, we report the macro F1-score, computed as the arithmetic mean of per-class
Fl-scores. Unlike micro-averaging, macro F1 gives equal weight to each class, making it more
sensitive to performance on underrepresented classes.

*These categories includes 5.8S rRNA, 5S rRNA, CD-box, HACA-box, Intron-gpl, Intron-gpll, Leader,
miRNA, Riboswitch, Ribozyme, tRNA, Y RNA (vertebrates), sbBRNA and CeY RNA (nematodes), sbRNA
(insects), Y RNA like (bacterial).
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* Accuracy: Accuracy is defined as the proportion of correctly classified instances (both positive and
negative) to the total number of instances.

For a classification task with N instances, let 7'P be the number of true positives, T'N be the number
of true negatives, F'P be the number of false positives, and F'N be the number of false negatives.
The Accuracy is given by:

TP+ TN
ACC = . 2
cC TP+TN+FP+ FN @

* MAE: In the chemical reactivity regression task, the Mean Absolute Error (MAE) is used to
evaluate the performance of models. MAE is defined as:

N
1 .
MAE = N ‘5—1 lyi — 9il s 3)

where

* N: the total number of samples,
* y;: the true chemical reactivity value of the i-th sample,

* g;: the predicted chemical reactivity value of the ¢-th sample.

Before calculating the MAE, the actual values y; are clipped to be within the range [0, 1], as follows:

y; = max (min (yraw,, 1.0),0.0) , (@)
where yraw, are the raw data values. The clipping ensures that the predicted values stay within the
valid range of [0, 1] for the scoring process.

e Spearman p: Spearman’s rank correlation coefficient, denoted by p, measures the monotonic
relationship between two variables. Given two sets of observations
X:{QTl,xQ,...,l'n} and Y:{yhyQa"'ayn}a

let R(z;) and R(y;) be the ranks of z; and y; respectively. The Spearman rank correlation coefficient
is then defined as

6

n(n2 —1)’ ®)

p=1
where

d; = R(x;) — R(y;)
is the difference between the ranks of the i-th pair of observations, and n is the number of observations.

o R2 The coefficient of determination, denoted as R2, is defined as the proportion of the variance in
the dependent variable that is predictable from the independent variable(s).

For a regression task with N data points, let y; be the actual value, g; the predicted value, and y the
mean of the actual values. The formula for R? is:

SN (i — i)

R*=1-
Y (i — 9)°

) (6)

where:

¢ N is the number of observations,
* 9, is the actual value of the ¢-th observation,

* y; is the predicted value of the i-th observation,
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¢ is the mean of the actual values.

e Short@L/5, Long@L/5: For an RNA sequence of length L, a mean precision of long-range
contacts is used at cutoff of L = 5 for benchmarking various predictors, where ¢ and j denote the
sequence positions of any two nucleotides in the sequence. The definition of long-range contacts is
|i — j| > 24. This means that long-range contacts are defined as those between nucleotides that are
at least 24 positions apart. The definition of short-range contacts is |i — j| € [5, 24).

The definition of Precision is given by:

TP

P .. -t
recision TP—I—FP,

* Hloss: Hamming loss (Hloss) reflects the overall accuracy of a model by measuring the number of
incorrect labels in classification tasks. A lower value indicates better performance.

Hloss(h) is defined as:

Where:

* pis the total number of data points.

* ¢ is the total number of possible labels.

h(z;) is the predicted label set and x; is the RNA sequence.

AY; is the difference between the predicted and actual microRNA subcellular localization
label for z;.

* subACC: Subset Accuracy (Subset Acc) reflects a model’s ability to make precise predictions, as it
measures the proportion of samples where all predicted labels exactly match the true labels. A higher
value indicates better performance.

The Subset Acc(h) is defined as:

| M
Subset Acc(h) = ’ Z [h(x(i)) — y(i)}

i=1
Where:

* p: The total number of data points in the dataset.

e M: The number of data points that are being evaluated in this sum.
o 2("): The feature vector (input data) for the ¢-th instance.

« 41 The true label for the i-th instance.

h(z): The predicted label for the i-th instance.

[h(:r(i)) = y(i)} : An indicator function that equals 1 if the predicted label matches the true
label, and O otherwise.

E RNA pLMs and DNA pLMs

This study aims to encompass a diverse range of publicly available RNA and DNA pLMs. Here, we
provide a detailed description of the RNA and DNA pre-trained models selected for this work. For
models that offer multiple pre-trained checkpoints, we focus on a few representative ones, primarily
based on the results from the original studies, to optimize computational resource usage.

24



875

876
877

879
880

881
882
883
884

885
886
887
888
889
890

891
892
893
894

895
896
897
898
899

900
901
902
903

905

906
907
908
909
910
911

912
913

914
915
916
917

919
920

E.1 RNA pLMs and checkpoint selection

¢« RNABERT: RNABERT [1]] adopts the BERT architecture with six layers. The pretraining objective
incorporates both the masked language modelling (MLM) and structural alignment learning, which
is a structural alignment loss to capture conserved secondary structure information. The MLM
pretraining data consists of 76,237 human-derived small ncRNA sequences, ranging in length from
20 to 440 bases, sourced from RNAcentral [53]].

¢ RNA-FM: RNA-FM [10] is built upon the BERT architecture with 12 layers. It employs a
single-base tokenization scheme, utilizing unique tokens such as <c1s> at the start and <eos> at the
end. Pretraining was conducted using the MLM objective on a dataset of 23 million samples from
RNAcentral.

* 3UTRBERT: 3UTRBERT [76] is built on the BERT architecture with 12 layers. Instead of treating
individual bases as separate tokens, it groups consecutive bases into k-mers, with [CLS] at the start
and [SEP] at the end. The model was pre-trained using the MLM objective on 20,362 3°’UTR
sequences from human transcripts. Multiple checkpoints were pre-trained with k-mer sizes ranging
from 3 to 6, with the original study reporting the 3-mer checkpoint achieved the best performance.
Hence, we adopt the 3-mer checkpoint for benchmarking in this work.

* SpliceBERT: SpliceBERT |[/11] is based on the BERT architecture, consisting of six transformer
layers. It uses a single-base tokenization approach, with [CLS] at the start and [SEP] at the end.
Pretraining was performed using the MLM objective, with 2 million pre-mRNA sequences from 72
vertebrate species.

e UTR-LM: UTR-LM [14] is a BERT-based model with six transformer layers and single-base
tokenization. It is pretrained on a hybrid corpus of endogenous and randomly synthesized 5> UTR se-
quences drawn from multiple species, using the MLM objective. To enhance semantic representations,
UTR-LM incorporates auxiliary supervision derived from sequence-computable signals, including
predicted secondary structures and minimum free energy (MFE).

¢ RiNALMo: RiNALMo [46] adopts a BERT architecture with 33 transformer layers and single-base
tokenization. It is pretrained using the MLM objective on 36 million non-coding RNA sequences
aggregated from multiple databases, totaling 650 million parameters. RiNALMo emphasizes its
generalization capability, particularly in overcoming the limitations of prior deep learning methods
that fail to transfer to unseen RNA families in secondary structure prediction tasks.

E.2 DNA pLMs and checkpoint selection

* DNABERT2: DNABERT?2 [80|] adapts the Transformer Encoder architecture with relative po-
sitional encoding via Attention with Linear Biases (ALiBi), consisting of 12 Transformer layers.
It employs the Byte Pair Encoding (BPE) tokenizer, enabling efficient tokenization of genomic
sequences that often span thousands of bases. It was pre-trained using the MLM objective on a
multi-species genome dataset, which includes genomes from 135 species and spans 32.49 billion
nucleotide bases.

* HyenaDNA: HyenaDNA [43] architecture is a simple stack of Hyena operators. It uses a single-base
tokenization approach and is pre-trained on the human reference genome using next-token prediction.

* Nucleotide Transformer (NT): NT [[16] uses an encoder-only Transformer architecture with learn-
able absolute positional encodings. It employs a 6-mer tokenization approach and is pre-trained with
the MLM objective. It has four variants: NT-500M-human, NT-500M-1000g, NT-2500M-1000g, and
NT-2500M-multi, with 500M and 2500M indicating model sizes, and human, 1000g, and multi refer-
ring to different pretraining datasets (human reference genome, 3202 high-coverage human genomes
from the 1000 Genome project [6], and multispecies genomes). We chosen the NT-500M-1000g
checkpoint for its balanced parameter size and strong performance.
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F Comprehensive Results and Evaluation of RNA Structure, Interaction, and
Function Prediction

F.1 Structure-related Tasks

To assess generalization during training, Fig. [F-T]shows the F1 score trajectories of RINALMo—the
top-performing RNA pLM for secondary structure prediction—on three independent datasets: bpRNA,
SetA, and SetB. In each case, frozen embeddings from RiNALMo are combined with MLP, shallow
CNN, or ResNet classifiers. Overall, deeper classifiers such as ResNet yield higher F1 scores
on both validation and intra-family test sets, with performance steadily improving and eventually
plateauing. In contrast, inter-family test performance often degrades over time, particularly with
ResNet, underscoring the challenge of learning structural representations that generalize across RNA
families.

For secondary structure prediction, we further include two widely used thermodynamic models,
RNAfold 28] and RNAstructure [51]], which estimate the minimum free energy structure by summing
contributions from nearest-neighbor loops. Their performance is evaluated across four independent
RNA secondary structure test sets (see Table [I4). Thermodynamics-based models demonstrate
consistently strong performance across RNA secondary structure prediction tasks. On the bpRNA
inter-family test set (bpRNA-new), RNAfold achieves an F1 score of 0.746, substantially outper-
forming the best RNA pLM (RiNALMo_MLP, 0.625). This performance gap is further evident in
the SetA/SetB benchmarks. When trained within SetA, RNA pLMs reach up to 0.882 on TestSetA
(intra-family). However, when trained on SetB and tested on TestSetA (inter-family), performance
drops to 0.726—falling below both RNAfold (0.785) and RNAstructure (0.735). These results
highlight the strong cross-family generalization of thermodynamic models and reveal that current
pLMs struggle to transfer learned structural features beyond training families.

Table 14: Evaluation of thermodynamics-based secondary structure modles (RNAfold and RNAstruc-
ture) on four independent RNA test sets (TS0, bpRNA-new, TestSetA, TestSetB), using Precision,
Recall, and F1 as metrics.

Model TS0 bpRNA-new
Precision  Recall F1 Precision  Recall F1
RNAfold 0.619 0.825 0.707 0.644 0.886  0.746
RNAstructure 0.572 0.782  0.661 0.573 0.817 0.673
Model TestSetA TestSetB
Precision  Recall F1 Precision  Recall F1
RNAfold 0.735 0.843 0.785 0.627 0.824 0.712
RNAstructure 0.683 0.795 0.735 0.541 0.745  0.627

Table 15: Performance of RNA pLMs and baselines on secondary structure prediction, including
Precision and Recall for both intra-family and inter-family tests. Results are mean (std) from three

runs with different seeds, with the and models highlighted.
| Second Structure
Model
bpRNA . fumily bPRNA | v amity SetAnafamily SetAjner-family SetBia-family SetBiyer-family
Precision T  Recall T Precision?  Recall T Precisiont  Recall T Precision 1 Recall T Precisiont  Recall T  Precision?  Recall T

One-hot ‘ 0.4650008)  0.66810.021)  0.39%0.002 _0.6080.00) ‘ 0.6300023)  0.76310.050  0.2780010) 045510073 ‘ 04380022) 03200021y 06050008 04420035
Dense 04330015y  0.76300039)  0.387(0.006) HOTI200an0| 0.6280.013 0.7770.020)  0.2770.006)  0.472(0.047) | 04350027 0.3460.022)  0.6000.007)  0.469(0,044

(+MLP)
RNABERT_mlp 0.5510003y 0.5510007 0.5170000) 0.5670.007 | 061400000 0.8140002 0.488(0.000) FOBOB@ENT 0-5250.001) 0.5120004) 0.6490.001)  0.4400,005)
RNA-FM mlp | 0.747000n  0.7880007 0.563000n  0.661000s | 08100002 08670005  0.657000 0716000 | 0.8670000 0.871002 0699005  0.533w011)
SUTRBERT mlp | 0.6000008) 0.7020022) 0.52%0005) 0.6860.017) | 0.6830009) 0.8220.006) 0.5000002)  0.7430.016) | 0.6700.005)  0.6760.014)  0.6160003) 04830014
SpliceBERT mlp | 0.6130015  0.69%00m0,  0.5330007 0.652003 | 07080019 08220025 04960005  0.71800s, | 07230010 0.71200s  0.615000y  0.4950036,
UTR-LM_mlp 0.5990014)  0.6460015)  0.5430.004)  0.6340.018) | 06710007y  0.7850.010) 0.5050002) 0.7290014) | 0.639%0.014) 0.6690.034)  0.626(0007)  0.4990.030)
RiNALMo_mlp | 0.7810.006  0-8140.000 FOBSTS000nN 0-6830016) 0871000 08920007 06750008  0.756(0.010) | 0-887c0011) [HOS0N0007 07890006 0673 0015)

(+CNN)
RNABERT cnn | 05870004y  0.6100011)  0.5420.002)  0.6030.013) | 0.6520010)  0.7460.018)  0-5070004)  0.7300031) | 0-5480005) 0.6060023) 0.58810002)  0.5370.008)
RNA-FM cnn | 07630009 08120013 0.541000m  0.6500015 | 08130006 0.8740000 0.64%00 07270016 | 0.87%01s  0.870001s 0.682001 04890017
3UTRBERT cnn | 0.612¢015)  0.748(0019)  0.50%0011)  0.6970.037) | 0.70000.001, 0.8370005 0.4960005) 0.733013) | 0.7040002) 0.7040003) 0.616(0003)  0.401(0.008)
SpliceBERT cnn | 0.634(0.003y  0.7600.011) 049610005y  0.656(0.013) | 0.7270.007y  0.8290.000) 04920003y  0.7030.013) | 0.7300.004)  0.744(0020) 0.6140004) 0.441(0.015)
UTR-LM_cnn 0.61810.005) 0.72810.012)  0.5240.007  0-688(0.019) | 0.68%0.005  0-807(0012) 04980002  0.7160012) | 0.7090.008)  0.668(0.005)  0.62010.003)  0.400(0.003
RiNALMo_cnn 0.78500.006) 082300097 0-5720014) 0.6430.025) 18740007 0.8880.007 067800057 0.738(0.020) (109080057 0-8970.0020  0-77%0010)  0:650(0.018)

(+ResNet)

RNABERT _resnet | 0.593(0.026) 0.81800s8) 04790011y  0.73000.077) | 0.6900.014y 0.8050032) 0.4840004y  0.723(0.039) | 0.7050.005) 0.639%0.009) 0.6100007y  0.393(0.021)
RNA-FM_resnet | 0.73400s) | 0:8200012) 0.5400009) 0.6930016) | 0.7830005) 0.8610.006) 0.5850.015) [ 07660005 | 0-8510017 0.8700004 0.6650015  0.533(0.045)
3UTRBERT resnet | 0.5970010)  0.8040036) 04850000)  0.71300s1) | 0.6990000) 0.801001s) 0.489%0005) 0.692(0.029) | 0.706(0022) 0.686(0.034) 0.60%0.004) 04220049
SpliceBERT resnet | 0.627001  0.781003 04910008  0.692001) | 0718000 0835005 04860000 07190056 | 0.719001  0.706001) 0.599%0013  0.52810006)
UTR-LM _resnet | 0.6250.012 0.788(0.028) 04910006y  0.676(0.042) | 0.7200.012) 0.797(0.033) 049110005y 0.678(0.047) | 0.738(0.008) 0.698(0.043  0.61310008)  0.387(0.055)
RiNALMo_resnet  [F0¥788 0,014 10:8230.010) .5730.007)  0.66010.036) | 0.861(0.005) 9030.009)7 0.6640022) 0.7570.044) | 0.9020015)  0.8910.016) 0.77310.022)  0.596(0.035)
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Table 16: Results of DNA pLMs on structure tasks. Since structure prediction is a nucleotide-level
classification task, and DNABERT? uses a BPE tokenizer while NT employs nonoverlapping k-mers,
which are not well-suited for these tasks, only results from HyenaDNA are reported.

| Second Structure

DPRNA . fumity DPRNA e fumity SetAna-fumily SetAmer-family
Precision 1 Recall 1 FIt  Precision?  Recall | FI1 | Precisiont  Recall 1 FIt  Precision?  Recall FI 1

Model

(+MLP) ‘
HyenaDNA_mlp | 0.5010005 04490012 0473002 0432000m 0356001 0.38%000) | 0.554000 0946001 0.698000m 04380001 0.9460000) 0.5990002)

(+CNN)
HyenaDNA _cnn ‘osmoum, 046900157 04910005 0434000  0.3830027) 04060015 | 0.555000m 09670005 07060000 043900000 096100y 0.6030002)

(+ResNet) ‘
HyenaDNA_resnet | 04920010 07640001 0.5 0019) 04220015 03050130 0-3420087 | 0-5630003 09340010 0702000y 04430005 09190027 059810003

Second Structure Chemical Reactivity Contact Map
Model
SetBiary family ethmu famil TestS TestL
‘ Precision?  Recall f  F11 | Precision call 1 F11 MAE|  MAE/ | Short@L/51 Long@L/57

(+MLP)
HyenaDNA_mlp ‘0-472«)0”1 0.1850.078)  0.258(0.085) | 0.5520005) 02470053  0.33%00s1) | 0.73810.065) 0.297(0.008) | 0.008(0000  0.005(0.001)

(+CNN) ‘
HnddDNA cnn | 04720004 02400034 03170030 | 0.57%0004) 0.2660013  0.3590.012) | 0.3440010)  0.2830.005) | 0.01110002) 0.0080.001)

(+Res! ‘
HyenaDNA re%nel 04730000 02390002 0-3150.005) | 0-5640.003  02570010) 0-34%0.005) | 0.2750.003) 029700100 | 0.01000.003  0.0070.001)

(@)
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Figure 3: F1 performance of RINALMo on secondary structure prediction across three datasets.
Panels (a), (b), and (c) correspond to bpRNA, SetA, and SetB, respectively. Each panel reports the
F1 score on the validation set (left), intra-family test set (middle), and inter-family test set (right)
throughout training. Curves represent models using MLP, CNN, and ResNet classifiers applied to
frozen pLM embeddings. While validation and intra-family performance improves steadily, inter-
family generalization remains limited or declines, highlighting challenges in cross-family structure
prediction.

944 F.2 Interaction-related Tasks
945 We evaluate in vivo RNA—protein interactions across 22 RNA-binding proteins (RBPs). Detailed

as6  results are provided in Table[I7]and Table[T8] with a summary of overall performance comparison
947 shown in Figure ]
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Overall, RNA pLMs demonstrate stronger performance than DNA pLMs across most datasets.
Incorporating increasingly expressive downstream modules—from simple MLPs to shallow CNNs
and ResNets—consistently improves performance. Notably, while a few RBP benchmarks show
only marginal improvements with deeper downstream modules, most benefit from architectural
complexity. This suggests that modules with greater modeling capacity are better able to capture
subtle or diffuse binding signals, particularly on RBP datasets where binding motifs or features are
poorly characterized.

Among the evaluated models, SpliceBERT consistently achieves robust performance across the 22
RBP datasets, even when utilizing a simple MLP head. This robustness may stem from its pre-
training on intronic regions of pre-mRNA, which are common targets for RNA-binding proteins.
Such pre-training likely enables SpliceBERT to capture conserved and functionally relevant binding
patterns, enhancing its generalizability across diverse RBP datasets.

Table 17: Detailed results for binary binding prediction across 22 datasets, each corresponding to one

of 22 RNA-binding proteins (RBPs) in K562 and HepG2 cell lines. The reported values represent

mean (std) obtained from three independent runs with distinct random seeds. The top-performing

and second-best models for each dataset are highlighted in two shades of green, denoted as and
, respectively (Part 1).

| Binary Binding Prediction

Model AKAPI_HepG2 BCLAF1_HepG2 DDX24 K562 DDX3X_HepG2 DDX3X K562 FAMI20A K562 G3BP1 HepG2 GRWDI_HepG2 IGF2BP1 K562 LARP4_HepG2  LIN28B_K562
‘ FIt Flt FlT FIt FlT Flt Flt Fit Flt FIt Fit
One-hot 0.7530007) 0.7330.009) 0.6380.005) 0.850,0001) 0.8080.002) 0.7310.006) 0.6080016) 0.6540007) 0.6980.01) 0.6500005) 0.6030.006)
Dense 0757000 0.7430005) 0.65110009) 0847 0001) 0.8080.002) 07360004 0.6230006) 0650002 06950009 0.65610005) 0.5930.008)
(+MLP)
DNABERT2_mlp 0.7450.005) 0.6970.001) 0.5990.010) 0.8460001) 0.8070004) 0.7170014) 0.5840007) 0621000 06910002, 0.645 0008 0.5840.007)
HyenaDNA_mlp 0.7220007 0.6740.005) 0.536(0.026) 0.8460.002) 0.793(0.007) 0.6780.018) 0.527 00201 0.5320013 0.6950.002) 0.5800.037) 04120008
NT_mlp 0.7440.002) 0.676(0.006) 0.572(0.008) 0.840,0.006) 0.7960001) 0.7000.003) 0.5860001) 0.5930201) 0.680(0.006) 0.6410.009) 04670053
RNABERT_mlp 0.548,0.09) 0.6170007) 04560012 0.7980.003) 0.6890.007) 0.5010021) 04360004 0.4570012) 0.615007) 0.408.0.000) 0.4060.000)
RNA-FM_mlp 0.776(0.000, 0.715¢0.001) 0.6280.002) 0.852¢0.001) 0.81110.004) 0.7510.003) 0.638.001) 0.6380.008) 0.7340.006) 0.5070.009) 0.6020.015)
3UTRBERT mlp 0.7880002) 0.7200.002) 0.6410005) 0.854001) 0.8260.002) 0.7550001) 066110003 0.65010002) 0.72200m) 0.6960.001) 0.6090002)
SpliceBERT_mlp 07890003 074200 0.6970.005) 0.8630001) 0.8380m1) 0.7470.004) 0.689%0001) 0.6920 0 0743001, 0.709000) 0.6490001)
UTR-LM_mlp 07600005 0.6960.007) 0.595 0000, 0.8500.002) 08130.002) 0.7350.03) 0.5900005) 0590050, 0701000y 0662000 055500s9)
RiNALMo_mlp 0797000 0.7400.005) 0.6640.005) 0.8610.001) 0.8240.004) 0768000y 0.6630.007) 06650004 0.7420001) 0.6900.05) 0.633 0.0
(+CNN)
DNABERT2_cnn 0.739005) 0.6970.001) 0.5990010) 0.8450.00¢) 0.7990.005) 0.7240.002) 0.6020006) 0.6140005) 06940002, 0.6380010) 0.5890.001)
HyenaDNA_enn 076000002 0.7330.007) 06140023 0.3510.000) 0.8130.000) 0.7550007) 06130002 0.626(0011) 0738000 0.6430006) 0406000,
NT_cnn 07420008 0.6890.002) 0.5980.005) 0.842(.004) 0.7960.003) 0.7120.005) 0.5930007) 0.6080.004) 0.6850.005) 0.6370003) 0.4530.067)
RNABERT _cnn 0.7040.02) 0.6700.002) 0.527002) 0.8350.002) 0.7920002) 0.6850.006) 051500004 0.5840.006) 0.679%0003) 0.598,0.006) 05070009
RNA-FM_cnn 0.7880.002) 0.7400.002) 0.6580.001) 0.859.003) 0.812(0.001) 0.7610.007) 0.6540.003) 0.662(0.001) 0.7430.002) 0.662(0.001) 0.6190.003)
3UTRBERT _cnn 0.78%0002) 0.7550002) 0.6660.005) 0.8530.006) 0.8260002) 0.7630.002) 0.6630010) 0.6750006) 0727000 0.7010000) 0.6250005)
SpliceBERT _cnn 0792000 0.7700.000) 0.7120004) 0.8600.000) 0838000 0.75%0001) 06940001 0710003 07460001, 0716001 0.6420010)
UTR-LM_cnn 0.7910.004) 0.7510001) 0.6660.012) 0.8530.02) 0.8150003) 0.759%0003) 06570007 0680000 0740001, 0.68T0.006) 0.6310001)
RiNALMo_cnn 0.8000.00) 0.7760.002) 0.72000.005) 0.8650.00 0.820(0.006) 07780003 06810007 0703000 07510000 0.702¢0.002) 06430006
(+ResNet)
DNABERT2_resnet | 0.726(000%) 0.6970.007) 0.5770.01) 0.8430001) 0.7950.001) 07010021y 05720005 0.5990006) 0.678 0008 0.6390019) 0.5610005)
HyenaDNA _resnet 07710003 0.7530.001) 0.6830.001) 0.8530.001) 0.8100001) 0.75T000m) 0633005 0.67%0ms) 0732000 0.6580.001) 06070009
NT_resnet 0.73810.006) 0.7080.003) 06010015 0.8410005) 0.7900.016) 0.701 0007, 06010005 0623000 0.6880015) 06240013 0561000
RNABERT _resnct 07320010 0.721 0002y 05710016 0.8380.008) 0.7890.008) 0.7090.010) 0.559%0008) 0.6280.04) 0689000 0.6240015) 0.5280105)
RNA-EM_resnet 0.7790.06) 0.7460001) 0.6440.05) 08540004 0.8110004) 0.7520.009) 0.639%0005) 0.6650.008) 0732005 0.6560.002) 0.6090012)
3UTRBERT _resnet 0.792(0005) 0.751001) 0.6600.00:) 0.853.000) 0.8240002) 0.7480.005) 0.6560015) 0.67610005) 07210001 0.6830007) 0.6180.004)
SpliceBERT resnet 07850002 0776000, 0.7300m8 0.8630001) 08400004 0.7560.009) 06910013 07200003 07430003 0710005 0646000
UTR-LM_resnet 0.7850005) 0.7450.009) 0.659%0014) 0.8500.005) 0.8210007) 0.7520.006) 06490003 0.673 0013 0730000 0.6630011) 0.62000002)
RiNALMo_resnet 0.798(0.004) 07810001 0.7210010) 0.863(0.005) 0.823(0.004) 07780006 0.6810.002) 0.7110.005) 0754000 0.6990.007) 0.6410.001)

Table 18: Detailed results for binary binding prediction across 22 datasets, each corresponding to one

of 22 RNA-binding proteins (RBPs) in K562 and HepG2 cell lines. The reported values represent

mean (std) obtained from three independent runs with distinct random seeds. The top-performing

and second-best models for each dataset are highlighted in two shades of green, denoted as and
, respectively (Part 2).

| Binary Binding Prediction

Model ‘ PABPC4_K562 PPIG_HepG2 PUM2_K562 RBMI15_K562 RPS3_HepG2 SNDI_HepG2 UPF1_HepG2 UPF1_K562 UCHL5_K562 YBX3_K562 ZNF622 K562
FIt 1 1 FIt
One-hot 0.682(0.004) 0.6940.012) 0.8990.002) 0.6460.004) 0.675(0.006) 0.67000.005) 0.765(0.004) 0.7170.003) 0.6850.003) 0.634(0.002) 0.6790.005)
Dense 0.67%0.003) 0.6980.005) 0.9010.003) 0.651(0.006) 0.6780.006) 0.6570.007) 0.7680.001) 0.721 0003 0.6790.012) 0.626(0.005) 0.673(0.001)
(+MLP)
DNABERT2_mlp 0.6550.003) 0.6690.003) 0.82000.003) 0.6580.006) 0.6810.006) 0.6290.007) 0.7550.003) 0.711 000 0.668(0.001) 0.5910.002) 0.6570.005)
HyenaDNA_mlp 0.5790.019) 0.65%0.002) 0.7940.005) 0.6310.008) 0.665(0.003) 0.6090.014) 0.732(0.003) 0.6840013) 0.6080.004) 0.5090.023) 0.6070.007
NT_mlp 0.6470.003) 06490011y 0.814(0.002) 0.638(0.004) 0.6630.003) 0.5990.019) 0.743(0.001) 0.6880.008) 0.642(0.00) 0.6350.001) 0.635(0.001)
RNABERT_mlp 0.407(0.000) 0.567(.007) 0.7260.001) 0.5500.011) 0.6050.008) 0.5220.000) 0.6010.014) 04800017 0.538(0.008) 0.415(0.000) 0.5190.004)
RNA-FM_mlp 0.696(0.001) 0.6840.003) 0.8190.004) 0.674(0.002) 0.6980.002) 0.6690.002) 0.7790.003) 0.7400.003) 0.6790.002) 0.5900.01) 0.6720.005)
3UTRBERT_mlp 0.6950.005) 0.7070.002) 0.853(0.003) 0.6810.003) 0.685(0.001) 0.662(0.003) 0.7830.002) 0.746(0.003) 0.7020.006) 0.6060.004) 0.690(0.003)
T_mlp 0.724000% 0.74610.000) 0.8420.004) 0.679%0.001) 0.7080.005) 0.6870.00% 0.787 0003 0.744 0003 0.7420002) 0.6520.00) 0.727 0001
UTR-LM_mlp 0.6670.007) 0.6730.003) 0.815(0.003) 0.645.007) 0.67110.006) 0.6250.018) 0.6540.004) 0.766(0.002) 0.722.003) 0.572¢.001) 0.650(0.007)
RiNALMo_mlp 0.7090.004y 0.7150.003) 0.843(0.001) 0.6890.002) 0.7040.012) 0.6680.007) 0.7150.002) 0.7900.002) 0.755(0.005) 0.6210.002) 0.714(.007)
(+CNN)
DNABERT2_cnn 0.67010.010) 0.6560.007) 0.843(0.006) 0.6570.004) 0.6770.005) 0.652(0.004) 0.750(0.000) 0.7020.007) 0.6510.002) 0.6180002) 0.6440.006)
HyenaDNA_cnn 0.6700.009) 0.7300.003) 0.8830.005) 0.704(0.005) 0.7020.008 0.6690.010) 0.767(0.00) 0.7160.004) 0.657.007) 0.605.018) 0.684(0.007)
NT_cnn 0.6410.006) 0.6680.002 0.835, 0.6: 3 0.67000.014) 0.625(0.007) 0.7520.001) 0.6950.00m) 0.6470.002) 0.646(0.002) 0.646(0.002)
RNABERT_cnn 0.6310010) 0.6070014) 0.8150.002) 0.61500.004) 0.642(0.007) 0.5670.005) 0.724(0.00) 0.6840.002) 0.606.001) 0.5350.008) 0.613(0.003
RNA-FM_cnn 0.702(0.002) 0.722(0.003) 0.875(0.006) 0.7070.004) 0.7090.002) 0.6890.006) 0.7880.002) 0.7550.002) 0.6930.005) 0.642(0.001) 0.6970.002)
3UTRBERT_cnn 0.7080.011) 0.7340.000) 0.890, 0.6 0.69: 0.6780.006) 0.7910.001) 0.752(0.001) 0.7180.004) 0.6390.008) 0.7110.004)
SpliceBERT _cnn 0.7290.000y 0.7690.004) 0.872(0.006) 0.7080.002) 0.7170.003 0.7130.002) 0.7890.002) 0.7590.003) 0.7480.001) 0.676(0.002) 0.7430.006)
UTR-LM_cnn 0.6900.037) 0.7440.004) 0.8870.005) 0.7040.011) 0.698,0.006) 0.6710.004) 0.7090.002) 0.785(0.003) 0.7490.002) 0.6450.006) 0.7160.004y
RiNALMo_cnn 0.7200.005) 0.764.001) 0.8950.005) 07290003 0.7220.005) 0.7010.002) 0.74000.006) 07930001 0.7690.002) 0.666(0.003) 0.7480.000
(+ResNet)
DNABERT?_resnet 0.62 0.659%0.002 0.823, 0.6! s 0.6640.009) 0.6200.004) 0.7490.004) 0.684(0.007) 0.626(0.009) 0.594.005) 0.634(0.012)
HyenaDNA _resnet 0.686(0.003) 0.7390.005) 0.896(0.004) 0.720,0.004) 0.6990.004) 0.6840.007) 0.7780.003) 0.7370.003) 0.7040.001) 0.6390.002) 0.710¢0.008y
NT_resnet 0.644(0.00) 0.672(0.009) 0.8290.004) 0.673.012) 0.6780.006) 0.6440.003) 0.742(0.003) 0.7000.015) 0.655(0.006) 0.634(0.00) 0.634(0.002)
RNABERT_resnet 0.647 (0021 0.684(0.003) 0.8780.005) 0.624(0.009) 0.657(0.006) 0.607(0.006) 0.7550.005) 0.7080.002) 0.6580.008) 0.606(0.005) 0.643(0.010)
RNA-FM_resnet 0.686(0.002) 0.7200.005) 0.886(0.005) 0.706/0.006) 0.7040.012) 0.676(0.005) 0.780(0.003) 0.7440.00) 0.6910.004) 0.6310001) 0.686(0.002)
3UTRBERT _resnet 0.6940.007 0.7320.003 0.8930.004) 0.6930.008) 0.6850.010) 0.6730.014) 0.7910.001) 0.7430.005) 0.7160.003) 0.637(0.005) 0.7040.008)
SpliceBERT _resnet 0.7160.05) 0.7890.005) 0.8950.002) 0.7130.002) 0.71010.008) 0.7050.001) 0.7880.002) 0.746(0.006) 0.75010.000) 0.675000m 0.7490.006)
UTR-LM_resnet 0.6890.010) 0.736(0.008) 0.892(0.005) 0.693(0.005) 0.69010.009) 0.692(.007) 0.6990.002) 0.781 001 0.7390,002) 0.6390.009) 0.70000.003)
RiNALMo_resnet 0.7120.005 0.7680.006) 0.8930.008) 0.7200006 0.71600.006) 0.7070.002) 0.746(0.005, 0.7990008 0.7660.000 0.66700.003 0.7490.009
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o

Figure 4: Performance on 22 RBPs datasets for the in vivo binary binding prediction task. Baselines
(One-hot and Dense) are colored gray, while DNA- and RNA-based pLMs are in pink and blue,
respectively.
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Table 19: Additional benchmark results on pre-mRNA, mRNA and ncRNA tasks.

| pre-mRNA Tasks | mRNA Tasks | ncRNA Tasks
Model | Splicing Site |Splicing Event| PAS |  Coding Potential Prediction | MicroRNA Subcellular
‘Donor,rice Acceptor,rice‘ rice mouse_sp | zebrafish fruite_fly s.cerevisiae‘ HLoss/
ACC} ACCT FIt ACCT | ACCT  ACCt ACCH
One-hot ‘ 07540018 ‘ 0735001 ‘ 0350003 ‘o.msw_m, 09000005 09240009 0.7210017) ‘ 0.3080001,
Dense 0.7380.006) 0.7200.015) 0.380(0.025) 0.6330.014) | 0.900(0.007) 0.8720074) 0.713(0.012) 0.3070.000)
(+MLP)
DNABERT2_mlp | 0.624(0.008) | 0.6710.027) 03640012y | 0.62810002) | 0.8950.004) 0.873(0.007 0.774(0.007) 0.295(0.028)
HyenaDNA_mlp | 0.631(0.004) 0.652(0.010) 0.378¢0.014) | 0.647(0.006) | 0-886(0.005) 0.897(0.003) 0.606(0.005) 0.307(0.000)
NT_mlp 05970006 | 0.60700 | 0367001 | 06370009 | 0874000 0.912000 06940000 03070000y
RNABERT_mlp | 0.587(003) | 0.573(.010) 03010008y | 0.633(0002) | 0.640(0.009) 0.482(0014) 0.165¢011) 0.307(0.000)
RNA-FM_mlp | 0.6690009 | 0.680000m | 0402000m | 0-6550008 | 09080007 09120018 0.77%0013 0.2950004)
3UTRBERT_mlp | 0.669.00s) 0.7250.002) 0.3840.021) 0.6640.009) | 0.8850.003) 0.744(0.013) = 0.8270.016) 0.3080.003)
SpliceBERT_mlp | 0765001 | 0.8330005 | 0410007 | 0-618000s | 0.928000 0.9160012 07900013 0.30000007
UTR-LM_mlp | 0.6030006 | 06010005 | 030800 | 06480003 | 08670008 0.86400ms 0.6720015 0.307.000)
RINALMo_mlp | 07340003 | 0776000 | 04000010 | 06490019 | 0.937000s (09480012 07130010, 0.2780.006)
(+CNN)
DNABERT2_cnn | 0.7100.015) | 0.7480.003) 0.3590.020) | 0.61810.009) | 0.8990.001) 0.885(0.007 0.75%0.001) 0.2640.003)
HyenaDNA_cnn 0.8900.007) 0.855(0.005) 0.4640.020) 0.6820.014) | 0.8750.002) 09110002y 0.677(0.008) 0.3070.000)
NT_cnn 0819001 | 0777003y | 0384006 | 06800008 | 08920002 0905000 0.7190024) 0.3070.000y
RNABERT cnn | 0.821(011) | 0.7780.003) 0.3450.001) | 0.6450.002) | 0.752(0.003) 0.834(0003) 0.538(0.014) 0.307(0.000)
RNA-FM_cnn 089119003 | 0.848(0.004) 04990018y | 0.681¢0013) | 0.9120001) 0.88810.023) 0.713 (9,036 0.2680.007)
3UTRBERT_cnn | 0.8830010 | 0.8460009 | 04690011 | 06480012 | 09010005 08190020, 0.8070.009) 0.301 (0005
SpliceBERT_cnn | 0.894015) | 08920011 0.5350.014) | 0.63810017) | 0.9240004) 0.87200012) 0.7190.041 0.3070.000)
UTR-LM_cnn | 08000007 | 07980008 | 0447001 | 06630013 | 091 T0ms 08690008 07480026 0.307.000)
RiINALMo_cnn | 0.831(.003) | 0-850(0.002) 045000007 | 0.647(0.003) | 0.9060.001) 0.9250.002) 0.6690.039) 0.2640.010)
(+ResNet)
DNABERT2_resnet | 0.8580010) | 08540006 | 042100m | 06250010 | 0.887000m 08950005 0.7320014 0294031,
HyenaDNA_resnet | 09000010 | 0.8530015 | 04370013 0.8990005 0912005  0.6430003) 02850017
NT_resnet 0.8960009 | 0.8640.002) 06550007 | 0.8840003 09130005 0.637(0007) 0.30900209
RNABERT resnet | 0901000 | 0.8430009 | 0.5380025 | 06410006 | 0.7900010 08340008 0.6370038) 0.30800001)
RNA-FM_resnet | 0917005 | 0.86%0006 | 0.55000 [0679%0013| 09110002 0.871003 07040037,
3UTRBERT resnet 09190008 | 0876000 | 0.5140011 | 0.6630015) | 08890006 0.840000s 08170014 03020020,
SpliceBERT _resnet 0.5620012 | 0.6410013) [0931000n| 09140011, 0.7370.028) 02730011,
UTR-LM_resnet | 0.8540009 | 08290005 | 0471000 | 0.65700m | 09200005 09110010 07450010, 0.29400005)
RiNALMo_resnet | 0.8540003 | 0.857c015) 0.502011) | 0.6760.012) [{0I932(@500)0:972(c602) 1078435660, | 0.266(0.001
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Table 20: Benchmark results for gRNA efficiency prediction across six datasets from various cell lines
and organisms, including human, mouse, and zebrafish. The pLMs did not demonstrate performance
advantages over the baselines, including One-hot and Dense models.

| gRNA
Model mESC HEL A375 HEK293T Zebrafish Zebrafish
(Koike-Yusa) (Labuhn) (Shalem) (Xi Xiang) (Gagnon) (Shkumatava) Average
Spearman pT  Spearman pf  Spearman pf  Spearman pT Spearman pT  Spearman pT =
One-hot 0.2620.028) 0.095¢0.011 0.2020.016) 0.4570.043) 0.3070.033) 0.191g07 | 0252
Dense 0.2940.026) 0.105(0.006) 0.2070.020) 0.488(.011) 0.2640.029) 0.1660.022) 0.254

(+MLP)
DNABERT2 mlp | 0.149%010)  0.0190014) 00980016 02070016y 0206000,  0.10100 | 0.130
HyenaDNA_mlp | 0.1400005y  0.080000sy  0.1430007  0.324001)  0.2390022  0.1430005 | 0.178

NT_mlp 0.1460.006) 0.025(0.004) 0.1180.005) 0.325¢0.013) 0.210¢.011 0.2010.010 0.171
RNABERT_mlp | 0.1150m5 00600005 00320002 02780005  0218000m  0.0700m | 0.129
RNA-FM_mlp 0.1930.002) -0.015(.001) 0.146(0.003) 0.386(0.007) 0.3230.012) 0.168(.013) 0.200

3UTRBERT_mlp | 0.163000s 00480001,  O.11lgossy  0279%0ss) 02060037,  0.134qow0 | 0.157
SpliceBERT mlp | 0.14200i5y 00170012y  0.0810019) 02330089  0.1830030)  0.151gss | 0.134

UTR-LM_mlp 0.1560.011 0.014(0,.006) 0.1400.003) 0.2940.006) 0.2670.020) 0.1320.011) 0.167
RiNALMo_mlp 0.1630.005) 0.022(9.026) 0.1270.021 0.3240.020) 0.2840.001) 0.1830.030) 0.184
(+CNN)

DNABERT2_cnn 0.145¢0.006) 0.065(0.010) 0.0840.010) 0.223(.015) 0.212(0.009) 0.0940.032) 0.137
HyenaDNA_cnn | 02180007, 00890005 01740005 0392000m 03000007 [70:19@0i2 | 0228

NT_cnn 0.2410.004) 0.0670.012) 0.232,006) 0.485(0.007) 0.2080.014) 0.264(0.001) 0.249
RNABERT cnn | 02220011, [OMAIGESME 011900 039500  020lgo  0.091gcer | 0.195
RNA-FM_cnn 02530005 00720005 0208001 0519015 029300  0.193000 [MO256

3UTRBERT _cnn 0.207.014) 0.0330.003) 0.130(0.023) 0.316(0.035) 0.236(0.014) 0.128(.012) 0.175
SpliceBERT _cnn 0.1980.027) 0.0410.016) 0.102¢0.012) 0.343(0.021) 0.2740.026) 0.1660.034) 0.187

UTR-LM_cnn 0.1970.004) 0.070(.017) 0.155(0.002) 0.3480.012) 0.296(0.036) 0.1910,023) 0.209
RiNALMo_cnn 0.269(0.023) 0.0730.031 0.216(,013) 0.4800.023) 0.3020.016) 0.1800.010) 0.253
(+ResNet)

DNABERT2_resnet | 0.131g01y  0.0430019  0.073000)  0.1800007  0.13100sy 00600053 | 0.103
HyenaDNA _resnet | 0.2290013 | 0011goiey " 0.18000s) 0423007  0.207q0e0y  0.14600s | 0216
NT_resnet 0.179%02  0.03300s 0162008 0382005  0.17300s9)  0.20600s9 | 0.189
RNABERT resnet | 0.188004 0102006 01240010 039006  0.1720015)  0.037021) | 0.164
RNAFM resnet | 022900157  0.0450004) 01750005 04400044y 02730040y  0.188003s) | 0.225
3UTRBERT resnet | 016900 00390007 0.1260007 03190014 02300033  0.11000s | 0.166
SpliceBERT resnet | 0.1920033 00470037  0.13100s 0349006  0.2320000,  0.15300s | 0.184
UTR-LM_resnet | 0.2400011, 00740018y 0.1910010) 04450020 [HOBESG0M 0.1830050 | 0246
RINALMo_resnet | 0233000  0.0490010 | 0209000 0468001y 02870017  0.177qes | 0237
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Figure 5: UMAP visualization of mRNA and ncRNA representations from different pLMs across five
species: human, mouse, zebrafish, fruit fly, and yeast. The left panel shows mRNA (blue) and ncRNA
(yellow) distributions. The right panels further separate mRNA (top) and ncRNA (bottom), with
species distinguished by color. DNA pLMs, including DNABERT2, and RNA pLMs, including RNA-
FM, 3UTRBERT, SpliceBERT and RiNALMo, demonstrate zero-shot capabilities in distinguishing
between mRNA and ncRNA, as well as across different species. This highlights the distinct semantic
representations of mRNA and ncRNA, which can be captured by pLMs. Furthermore, there are
particularly notable semantic similarities in mRNA across species that are evolutionarily closely
related, such as human and mouse.
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Figure 6: UMAP visualization of 13 distinct ncRNA types using representations from different pLMs.
The RNA-FM model, pre-trained on 23 million ncRNAs, demonstrated superior zero-shot capabilities
in distinguishing ncRNA types, highlighting its ability to capture the unique semantic characteristics
of various ncRNA classes.
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G Details of Compute Resources

All benchmark experiments were executed on eight 40GB A100 GPUs and two 80GB A800 GPUs.
Most tasks were run on the A100 GPUs, while the Contact Map Prediction task, requiring larger
memory capacity, was executed on the 80GB A800 GPUs.

H Open-Source Platform: Leaderboard, Datasets, and Code

RNAscope offers an open-source platform with public leaderboards (https://rnascope-board!
github.io/) to promote transparency and standardize RNA model evaluations. It enables fair and
reproducible comparisons of RNA pre-trained language models (pLMs) across various tasks. In
addition to the leaderboard, RNAscope provides access to datasetslﬁlzlnd codeﬂ enabling researchers
to replicate, refine, and build on existing work. These resources encourage community participation,
model testing, and benchmark development.

RNAscope aims to foster collaboration between computational and experimental researchers to
discover novel RNA molecules beyond evolutionary patterns. By offering a broader perspective,
RNAscope enhances the understanding of RNA models’ strengths and limitations, thereby improving
their practical application. As related technologies advance, additional datasets and tasks will be
incorporated, including single-cell RNA data and expanded tasks such as predicting cell-type or
tissue-specific patterns.

With datasets covering various RNA types and species, the platform enables evaluations across
multiple biological contexts, improving model generalization. RNAscope ultimately aims to facilitate
the development of more robust RNA models.

https://kaggle.com/datasets/bOaceed2f6b3dfd43c1ab33b58467a466308d056b6868d861ad00e1074ce384d
8https://anonymous.4open.science/r/RNAscope
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NeurlIPS Paper Checklist

1.

Claims

Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?

Answer: [Yes]

Justification: The abstract and introduction clearly state the paper’s contributions, presenting
RNAscope as a comprehensive framework that benchmarks RNA pLMs across structure,
interaction, and function tasks.

. Limitations

Question: Does the paper discuss the limitations of the work performed by the authors?
Answer: [Yes]

Justification: The paper includes a dedicated Section 5.4 titled Limitation and Future
Directions, where the limitations are explicitly discussed.

. Theory assumptions and proofs

Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?

Answer: [NA]

Justification: The paper does not include any theoretical results, so this question is not
applicable (NA).

. Experimental result reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?

Answer: [Yes]

Justification: The paper fully discloses all necessary information for reproducing the main
experimental results, and both the code and datasets used in the study are publicly available.

. Open access to data and code

Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?

Answer: [Yes]

Justification: Both the code and datasets used in the study are publicly available.

. Experimental setting/details

Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?

Answer: [Yes]

Justification: Details of the dataset can be found in Appendix C Detailed Dataset Construc-
tion and Analysis.

. Experiment statistical significance

Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?

Answer: [Yes]

Justification: The paper reports standard deviations in the experimental result tables, provid-
ing a measure of variability and supporting the assessment of statistical significance.

. Experiments compute resources

Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?
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10.

11.

12.

13.

14.

15.

Answer: [Yes]

Justification: We have provided an elaboration of computing resources

. Code of ethics

Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines]?

Answer: [Yes]

Justification: The authors have reviewed and ensured that the research complies with the
NeurIPS Code of Ethics in all respects.

Broader impacts

Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?

Answer: [NA]

Justification: The paper focuses on fundamental scientific research and does not have
immediate or direct societal impacts.

Safeguards

Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?

Answer: [NA]

Justification: The paper focuses on fundamental scientific research and does not involve
data or models with high risk for misuse.

Licenses for existing assets

Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?

Answer: [Yes]

Justification: The datasets used in the study are properly cited with references to the original
publications, ensuring appropriate credit and adherence to their terms of use.

New assets

Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?

Answer: [Yes]

Justification: The paper provides the necessary and detailed descriptions of the new assets
introduced, ensuring they are well documented for reproducibility and further use.

Crowdsourcing and research with human subjects

Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?

Answer: [NA]

Justification: The paper does not involve crowdsourcing experiments or research with human
subjects.

Institutional review board (IRB) approvals or equivalent for research with human
subjects

Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?

Answer: [NA]

Justification: The paper does not involve crowdsourcing or research with human subjects.
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1079 16. Declaration of LLLM usage

1080 Question: Does the paper describe the usage of LLMs if it is an important, original, or
1081 non-standard component of the core methods in this research? Note that if the LLM is used
1082 only for writing, editing, or formatting purposes and does not impact the core methodology,
1083 scientific rigorousness, or originality of the research, declaration is not required.

1084 Answer: [NA]

1085 Justification: The paper does not involve the usage of large language models (LLMs) as an
1086 important, original, or non-standard component of the core methodology.

1087

36



	Introduction
	Background
	Structural, Interaction, and Functional Complexities of RNA Sequences
	Advancements in RNA pLMs
	Existing RNA benchmarking frameworks

	Task Definition and Objectives
	Structure-related Tasks
	Interaction-related Tasks
	Function-related Tasks
	Pre-mRNA-related Function Tasks
	mRNA-related Function Tasks
	ncRNA-related Function Tasks


	Experiments
	Results and Discussion
	RNA Sequence to Structure
	RNA Sequence to Interaction
	RNA Sequence to Function
	Limitation and Future Directions

	Appendix
	Glossary
	Towards Robust Evaluation of RNA Language Models
	Challenges of Existing RNA Benchmarking Frameworks
	The RNAscope Framework

	Detailed Dataset Construction and Analysis
	Structure-related Tasks
	Interaction-related Tasks
	Function-related Tasks
	Pre-mRNA-related Function Tasks
	mRNA-related Function Tasks
	ncRNA-related Function Tasks


	Metrics
	RNA pLMs and DNA pLMs
	RNA pLMs and checkpoint selection
	DNA pLMs and checkpoint selection

	Comprehensive Results and Evaluation of RNA Structure, Interaction, and Function Prediction
	Structure-related Tasks
	Interaction-related Tasks
	Function-related Tasks

	Details of Compute Resources
	Open-Source Platform: Leaderboard, Datasets, and Code

