
Published as a Tiny Paper at ICLR 2023

MITIGATING METASTABLE FAILURES IN DISTRIBUTED
SYSTEMS WITH OFFLINE REINFORCEMENT LEARNING

Yueying Li1,4, Daochen Zha2, Tianjun Zhang3, G. Edward Suh1, Christina Delimitrou4, Francis Y. Yan5

1Cornell University 2Rice University 3University of California, Berkeley 4MIT 5Microsoft Research

ABSTRACT

This paper introduces a load shedding mechanism that mitigates metastable fail-
ures through offline reinforcement learning (RL). Previous studies have heavily
focused on heuristics that are reactive and limited in generalization, while online
RL algorithms face challenges in accurately simulating system dynamics and ac-
quiring data with sufficient coverage. In contrast, our algorithm leverages offline
RL to learn directly from existing log data. Through extensive empirical exper-
iments, we demonstrate that our algorithm outperforms rule-based methods and
supervised learning algorithms in a proactive, adaptive, generalizable, and safe
manner. Deployed in a Java compute service with diverse execution times and
configurations, our algorithm exhibits faster reaction time and attains the Pareto
frontier between throughput and tail latency.

1 INTRODUCTION

Building reliable cloud services is of paramount importance in distributed systems. With the pro-
liferation of microservices (Gan et al., 2019a), it becomes critical for applications to fortify their
services against cascading failures and enduring latency degradation (Gan et al., 2019b; 2021). The
microservice architecture is particularly vulnerable to a new form of failure known as metastable
failures (Huang et al., 2022; Bronson et al., 2021), which exhibit a distinct trait of sustaining effects
that hold systems in a degraded state and impede their recovery. Notably, these metastable failures
have emerged as the culprits behind significant outages at large internet companies.

We focus on rate limiting to protect systems from such catastrophic failures. Prior work has
adopted heuristic-based rate limiting to prevent system overload (Netflix; Kumar; Amazon), but
these approaches are reactive, causing the system to endure prolonged capacity degradation in-
duced by metastable failures. Additionally, some strategies suffer from convergence issues in
non-stationary environments (Figure 1a)1. Lastly, these heuristics require configuring a myriad of
system-dependent parameters, thus lacking the ability to generalize across different system contexts.

To address these limitations, we explore learning-based approaches for load control to prevent sys-
tem metastability. An intuitive solution is to use reinforcement learning (RL), as this problem can be
naturally framed as a sequential decision process where the rate limit can be predicted based on the
system status at each interval. However, existing online RL algorithms are ill-suited to prevent or
mitigate metastable failures in the real world due to the following reasons: 1) it is difficult to access
a high-fidelity simulator that accurately captures the system dynamics; 2) it is infeasible to explore
online and collect unsafe data in a real cloud system. To overcome these challenges, we ask: “Is it
possible to train a load-shedding policy using only existing log data from cloud services, eliminating
the need for extensive tuning of static thresholds for rate limiters?”

Offline reinforcement learning (Levine et al., 2020) emerges as an appealing solution for load con-
trol. In this paper, we propose PolicyShedder, a load shedding policy designed to proactively mit-
igate metastable failures using offline RL. PolicyShedder learns directly from native system log
data, incurring minimal system overhead. By deploying it on a Java compute service that is prone

1In this figure, we show a typical case where the heuristic-based load shedder fails to react to system state
changes in a timely manner, resulting in cyclic latency spikes and service level objective (SLO) violations.

1

Published as a Tiny Paper at ICLR 2023

to metastable failures due to design anti-patterns, we demonstrate that PolicyShedder consistently
attains the Pareto frontier between throughput and tail latency, compared with carefully selected
heuristics across different contexts (Figure 4), while achieving a 12% lower reaction time, i.e., the
time taken to recover from a vulnerable system state with high latency.

2 DESIGN OF POLICYSHEDDER

We model the task of load shedding, aimed at mitigating system overload and metastable failures,
as a Markov Decision Process (MDP). The formulation is as follows.

Action space. The objective of PolicyShedder is to generate a rate limit λt (number of requests
to admit per second) for each pre-configured monitoring time window ∆T . In order to generalize
across applications with different service time distributions, we scale the rate limit by Little’s law
and train an RL model to output at = λtTavg , where Tavg denotes the average execution time
of requests (excluding waiting time in the queue, which can be computed from log data). During
deployment, we divide the model’s output by Tavg to obtain the rate limit λt.

State space. The input to PolicyShedder is st = {Qlent,ewma(Qlent),Latt,ewma(Latt)}.
Here, ewma represents an exponentially weighted moving average over a time interval [min{0, t−
n∆T}, t], where n is a predefined parameter that captures dependencies in the series of queue
lengths (Qlen) and request latencies (Lat) in the log data. An alternative approach involves concate-
nating a window of historical data into the current observed features. However, there is a trade-off
between the state’s dimension and the ability to capture dependencies in the time-series data.

Reward. We begin with a well-studied metric in the context of congestion control known as Power,
defined as the ratio of throughput to delay (Giessler et al., 1978). Gail and Kleinrock proved that
the optimal operation point for the network and individual flows is simultaneously attained when
Power is maximized (Gail & Kleinrock, 1981). Considering the importance of tail latency in cap-
turing application SLO requirements and metastable signals, we define the reward using aggre-
gated statistics—average throughput and the 95th percentile of tail latency—over a consecutive 10-
second period into the future. This approach helps mitigate the impact of temporal load spikes
and captures the delayed effect of rewards. Formally, the reward Rt(α) = Throughputavg[t :
t + n∆T] − α · Latency95[t : t + n∆T], where α controls the trade-off between throughput and
latency. Detailed experimental setups and results are shown in the appendix (A.4–A.9).

0 50 100 150 200
Time (s)

0

50

100

150

200

250

300

350

400

Th
ro

ug
hp

ut
 (R

PS
)

0

100

200

300

400

500

600

700

800

Ra
te

 L
im

it
(Q

PS
)

0

100

200

300

400

500

600

700

800

GC
 d

ur
at

io
n

(m
s)

0

50

100

150

200

250

300

350

400

Qu
eu

e
le

ng
th

0

50

100

150

200

250

300

350

400

La
te

nc
y

(m
s)

(a) Metastable failures

Cloud Envi r onm entAppl i cat i on Log

Col lect

Pol i cyShedder

Gener ate Rewar d Lear n Of f l i ne

(b) Overview of PolicyShedder

Figure 1: (a) Illustration of metastable failures. (b) System overview of PolicyShedder. We collect
log data from the application and process them using a user-defined function to generate rewards,
which are then incorporated into trajectories for training PolicyShedder offline. Once the training
completes, PolicyShedder is deployed online to interact with the cloud environment.

3 CONCLUSION AND OUTLOOK

We present a practical application of offline reinforcement learning (RL) in cloud systems, with a
focus on mitigating critical system failures. This data-driven offline RL-based abstraction provides
a valuable tool for constructing intelligent and reliable distributed systems. An extension of our re-
search is to use a multi-agent formulation to enable load shedding for interconnected cloud services
with different user requirements, thereby protecting applications from cascading failures.

2

Published as a Tiny Paper at ICLR 2023

ACKNOWLEDGMENTS

We thank Zhengyao Jiang for the helpful discussions, especially for providing suggestions on offline
RL training methodologies. We also thank Aleksey Charapko for the insightful discussion regarding
metastable failures.

URM STATEMENT

The authors acknowledge that at least one key author of this work meets the URM criteria of ICLR
2023 Tiny Papers Track. In this work, Yueying Li meets this criterion.

REFERENCES

Handling overload. URL: https://ferd.ca/handling-overload.html.

Amazon. Amazon: Using load shedding to avoid overload. URL: https://aws.amazon.com/
builders-library/using-load-shedding-to-avoid-overload.

Michael Bain and Claude Sommut. A framework for behavioural cloning. Machine Intelligence,
1999.

Lawrence S. Brakmo, Sean W O’Malley, and Larry L. Peterson. TCP Vegas: New techniques
for congestion detection and avoidance. In Proceedings of the conference on Communications
architectures, protocols and applications, pp. 24–35, 1994.

Nathan Bronson, Abutalib Aghayev, Aleksey Charapko, and Timothy Zhu. Metastable failures in
distributed systems. In Proceedings of the Workshop on Hot Topics in Operating Systems, HotOS
’21, pp. 221–227, New York, NY, USA, 2021. Association for Computing Machinery.

Neal Cardwell, Yuchung Cheng, C. Stephen Gunn, Soheil Hassas Yeganeh, and Van Jacobson. BBR:
Congestion-based congestion control: Measuring bottleneck bandwidth and round-trip propaga-
tion time. Queue, 14(5):20–53, 2016.

Jonathan D. Chang, Masatoshi Uehara, Dhruv Sreenivas, Rahul Kidambi, and Wen Sun. Mit-
igating covariate shift in imitation learning via offline data without great coverage. CoRR,
abs/2106.03207, 2021. URL: https://arxiv.org/abs/2106.03207.

Lili Chen, Kevin Lu, Aravind Rajeswaran, Kimin Lee, Aditya Grover, Michael Laskin, Pieter
Abbeel, Aravind Srinivas, and Igor Mordatch. Decision transformer: Reinforcement learning
via sequence modeling, 2021.

Mo Dong, Tong Meng, Doron Zarchy, Engin Arslan, Yossi Gilad, Brighten Godfrey, and Michael
Schapira. Pcc vivace: Online-learning congestion control. In 15th USENIX Symposium on Net-
worked Systems Design and Implementation (NSDI 18), pp. 343–356, 2018.

Scott Fujimoto and Shixiang Shane Gu. A minimalist approach to offline reinforcement learning,
2021.

Scott Fujimoto, Edoardo Conti, Mohammad Ghavamzadeh, and Joelle Pineau. Benchmarking batch
deep reinforcement learning algorithms, 2019a.

Scott Fujimoto, David Meger, and Doina Precup. Off-policy deep reinforcement learning without
exploration. In International conference on machine learning, pp. 2052–2062. PMLR, 2019b.

R. Gail and L. Kleinrock. An invariant property of computer network power. In Proceedings of the
International Conference on Communications, pp. 63.1.1–63.1.5, Denver, Colorado, June 14-18,
1981.

Yu Gan, Yanqi Zhang, Dailun Cheng, Ankitha Shetty, Priyal Rathi, Nayan Katarki, Ariana Bruno,
Justin Hu, Brian Ritchken, Brendon Jackson, et al. An open-source benchmark suite for microser-
vices and their hardware-software implications for cloud & edge systems. In Proceedings of the
Twenty-Fourth International Conference on Architectural Support for Programming Languages
and Operating Systems, pp. 3–18, 2019a.

3

https://ferd.ca/handling-overload.html
https://aws.amazon.com/builders-library/using-load-shedding-to-avoid-overload
https://aws.amazon.com/builders-library/using-load-shedding-to-avoid-overload
https://arxiv.org/abs/2106.03207

Published as a Tiny Paper at ICLR 2023

Yu Gan, Yanqi Zhang, Kelvin Hu, Dailun Cheng, Yuan He, Meghna Pancholi, and Christina Delim-
itrou. Seer: Leveraging big data to navigate the complexity of performance debugging in cloud
microservices. In Proceedings of the 24th International Conference on Architectural Support for
Programming Languages and Operating Systems, pp. 19–33, 2019b.

Yu Gan, Mingyu Liang, Sundar Dev, David Lo, and Christina Delimitrou. Sage: Practical and
scalable ml-driven performance debugging in microservices. In Proceedings of the 26th ACM
International Conference on Architectural Support for Programming Languages and Operating
Systems, ASPLOS ’21, pp. 135–151, New York, NY, USA, 2021. Association for Computing
Machinery.

Alfred Giessler, J. D. Haenle, Andreas König, and E. Pade. Free buffer allocation - an investigation
by simulation. Comput. Networks, 2:191–208, 1978.

Google. Google optimize. URL: https://marketingplatform.google.com/about/optimize/.

Mor Harchol-Balter. Performance modeling and design of computer systems: Queueing theory in
action. URL: www.cs.cmu.edu/∼harchol/PerformanceModeling/book.html.

Zhang-Wei Hong, Pulkit Agrawal, Remi Tachet des Combes, and Romain Laroche. Harnessing
mixed offline reinforcement learning datasets via trajectory weighting. In The Eleventh Interna-
tional Conference on Learning Representations, 2023.

Lexiang Huang, Matthew Magnusson, Abishek Bangalore Muralikrishna, Salman Estyak, Rebecca
Isaacs, Abutalib Aghayev, Timothy Zhu, and Aleksey Charapko. Metastable failures in the wild.
In 16th USENIX Symposium on Operating Systems Design and Implementation (OSDI 22), pp.
73–90, Carlsbad, CA, July 2022. USENIX Association.

Michael Janner, Justin Fu, Marvin Zhang, and Sergey Levine. When to trust your model: Model-
based policy optimization, 2019.

Nathan Jay, Noga H Rotman, P Brighten Godfrey, Michael Schapira, and Aviv Tamar. A deep
reinforcement learning perspective on internet congestion control. URL: https://github.com/
PCCproject/PCC-RL.

Zhengyao Jiang, Tianjun Zhang, Michael Janner, Yueying Li, Tim Rocktäschel, Edward Grefen-
stette, and Yuandong Tian. Efficient planning in a compact latent action space, 2022.

Rahul Kidambi, Aravind Rajeswaran, Praneeth Netrapalli, and Thorsten Joachims. Morel: Model-
based offline reinforcement learning, 2020.

Ilya Kostrikov, Rob Fergus, Jonathan Tompson, and Ofir Nachum. Offline reinforcement learning
with fisher divergence critic regularization. In International Conference on Machine Learning,
pp. 5774–5783. PMLR, 2021a.

Ilya Kostrikov, Ashvin Nair, and Sergey Levine. Offline reinforcement learning with implicit q-
learning. CoRR, abs/2110.06169, 2021b. URL: https://arxiv.org/abs/2110.06169.

Aviral Kumar, Aurick Zhou, George Tucker, and Sergey Levine. Conservative q-learning for offline
reinforcement learning, 2020.

Vikas Kumar. Load shedding with NGINX using adaptive concurrency control. URL: https://tech.
olx.com/load-shedding-with-nginx-using-adaptive-concurrency-control-part-1-e59c7da6a6df.

Kwei-Herng Lai, Daochen Zha, Junjie Xu, Yue Zhao, Guanchu Wang, and Xia Hu. Revisiting
time series outlier detection: Definitions and benchmarks. In Thirty-fifth conference on neural
information processing systems datasets and benchmarks track (round 1).

Kwei-Herng Lai, Daochen Zha, Guanchu Wang, Junjie Xu, Yue Zhao, Devesh Kumar, Yile Chen,
Purav Zumkhawaka, Minyang Wan, Diego Martinez, et al. Tods: An automated time series outlier
detection system. In Proceedings of the aaai conference on artificial intelligence, volume 35, pp.
16060–16062, 2021.

4

https://marketingplatform.google.com/about/optimize/
www.cs.cmu.edu/~harchol/PerformanceModeling/book.html
https://github.com/PCCproject/PCC-RL
https://github.com/PCCproject/PCC-RL
https://arxiv.org/abs/2110.06169
https://tech.olx.com/load-shedding-with-nginx-using-adaptive-concurrency-control-part-1-e59c7da6a6df
https://tech.olx.com/load-shedding-with-nginx-using-adaptive-concurrency-control-part-1-e59c7da6a6df

Published as a Tiny Paper at ICLR 2023

Sergey Levine, Aviral Kumar, George Tucker, and Justin Fu. Offline reinforcement learning: Tuto-
rial, review, and perspectives on open problems, 2020.

Yuening Li, Daochen Zha, Praveen Venugopal, Na Zou, and Xia Hu. Pyodds: An end-to-end out-
lier detection system with automated machine learning. In Companion Proceedings of the Web
Conference 2020, pp. 153–157, 2020.

Yuening Li, Zhengzhang Chen, Daochen Zha, Kaixiong Zhou, Haifeng Jin, Haifeng Chen, and Xia
Hu. Automated anomaly detection via curiosity-guided search and self-imitation learning. IEEE
Transactions on Neural Networks and Learning Systems, 33(6):2365–2377, 2021a.

Yuening Li, Zhengzhang Chen, Daochen Zha, Kaixiong Zhou, Haifeng Jin, Haifeng Chen, and Xia
Hu. Autood: Neural architecture search for outlier detection. In 2021 IEEE 37th International
Conference on Data Engineering (ICDE), pp. 2117–2122. IEEE, 2021b.

Radhika Mittal, Terry Lam, Nandita Dukkipati, Emily Blem, Hassan Wassel, Monia Ghobadi, Amin
Vahdat, Yaogong Wang, David Wetherall, and David Zats. TIMELY: RTT-based congestion
control for the datacenter. In Sigcomm ’15, 2015.

Netflix. Concurrency limiter’s heuristic algorithm. URL: https://github.com/Netflix/
concurrency-limits/blob/master/concurrency-limits-core/src/main/java/com/netflix/concurrency/
limits/limit/Gradient2Limit.java#L76-L84.

Samarth Sinha, Homanga Bharadhwaj, Aravind Srinivas, and Animesh Garg. D2RL: Deep dense
architectures in reinforcement learning. arXiv preprint arXiv:2010.09163, 2020.

Ziyu Wang, Alexander Novikov, Konrad Zolna, Josh S Merel, Jost Tobias Springenberg, Scott E
Reed, Bobak Shahriari, Noah Siegel, Caglar Gulcehre, Nicolas Heess, et al. Critic regularized
regression, 2020.

Keith Winstein and Hari Balakrishnan. TCP ex Machina: Computer-generated congestion control.
ACM SIGCOMM Computer Communication Review, 43(4):123–134, 2013.

Francis Y. Yan, Jestin Ma, Greg D. Hill, Deepti Raghavan, Riad S. Wahby, Philip Levis, and
Keith Winstein. Pantheon: the training ground for internet congestion-control research. In 2018
USENIX Annual Technical Conference (USENIX ATC 18), pp. 731–743, Boston, MA, July 2018.
USENIX Association.

Tianhe Yu, Garrett Thomas, Lantao Yu, Stefano Ermon, James Y. Zou, Sergey Levine, Chelsea Finn,
and Tengyu Ma. MOPO: Model-based offline policy optimization, 2020.

Tianhe Yu, Aviral Kumar, Rafael Rafailov, Aravind Rajeswaran, Sergey Levine, and Chelsea Finn.
Combo: Conservative offline model-based policy optimization, 2021.

Daochen Zha, Kwei-Herng Lai, Mingyang Wan, and Xia Hu. Meta-AAD: Active anomaly detec-
tion with deep reinforcement learning. In 2020 IEEE International Conference on Data Mining
(ICDM), pp. 771–780. IEEE, 2020.

Daochen Zha, Louis Feng, Bhargav Bhushanam, Dhruv Choudhary, Jade Nie, Yuandong Tian, Jay
Chae, Yinbin Ma, Arun Kejariwal, and Xia Hu. Autoshard: Automated embedding table sharding
for recommender systems. In Proceedings of the 28th ACM SIGKDD Conference on Knowledge
Discovery and Data Mining, pp. 4461–4471, 2022a.

Daochen Zha, Louis Feng, Qiaoyu Tan, Zirui Liu, Kwei-Herng Lai, Bhargav Bhushanam, Yuandong
Tian, Arun Kejariwal, and Xia Hu. Dreamshard: Generalizable embedding table placement for
recommender systems. In Advances in Neural Information Processing Systems, 2022b.

Yanqi Zhang, Weizhe Hua, Zhuangzhuang Zhou, G. Edward Suh, and Christina Delimitrou. Sinan:
ML-based and QoS-aware resource management for cloud microservices. In Proceedings of the
26th ACM International Conference on Architectural Support for Programming Languages and
Operating Systems, ASPLOS ’21, pp. 167–181, New York, NY, USA, 2021. Association for
Computing Machinery.

5

https://github.com/Netflix/concurrency-limits/blob/master/concurrency-limits-core/src/main/java/com/netflix/concurrency/limits/limit/Gradient2Limit.java#L76-L84
https://github.com/Netflix/concurrency-limits/blob/master/concurrency-limits-core/src/main/java/com/netflix/concurrency/limits/limit/Gradient2Limit.java#L76-L84
https://github.com/Netflix/concurrency-limits/blob/master/concurrency-limits-core/src/main/java/com/netflix/concurrency/limits/limit/Gradient2Limit.java#L76-L84

Published as a Tiny Paper at ICLR 2023

A APPENDIX

A.1 RELATED WORK

A.1.1 OFFLINE RL

In offline RL, a policy is learned from logged data, collected from an environment over a period of
time, interaction with the environment is not required. The policy used affects the data distribution
collected from an environment. When a policy is learned using an offline dataset, the data distribu-
tion when the learned policy is in use differs from the logged data, resulting in a data distribution
shift. This remains the fundamental problem with offline RL and several different approaches have
been proposed to tackle it.

Offline RL methods can be grouped into two categories in terms of learning and utilizing a model
of the environment. Model-based offline RL methods (Janner et al., 2019; Kidambi et al., 2020; Yu
et al., 2020; 2021; Jiang et al., 2022; Zha et al., 2022b;a) train a model of the environment using
state-action transitions from the logged data. These methods utilize the learned model to generate
synthetic episodes, controlled by the policy being trained. The policy parameters are updated using
a combination of real episodes (from the logged data) and synthetic ones until convergence. On
the other hand, model-free methods (Fujimoto et al., 2019a;b; Kumar et al., 2020; Wang et al.,
2020; Kostrikov et al., 2021a) learn a policy that maps states to actions to maximize returns directly.
Our methods directly leverage IQL but change the action partition and normalization to be able to
generalize to different contexts.

A.1.2 PERFORMANCE DEBUGGING, ANOMALY DETECTION, AND ROOT CAUSE ANALYSIS

Anomaly detection has been widely studied in machine learning Zha et al. (2020); Lai et al. (2021);
Lai et al.; Li et al. (2021a;b; 2020). Recently, anomaly detection has been applied to performance
debugging in cloud services (Gan et al., 2021; 2019b; Zhang et al., 2021). Sage uses unsupervised
learning and Causal Bayesian Networks for modeling causal relationships among microservices and
uses counterfactuals to detect root causes (services and resources) of latency service-level objective
(SLO) violation. 93% accuracy in correctly identifying the root cause of QoS violations.

Our problem of mitigating metastable failure is related to but different from performance debugging
or mitigating SLO violation. They are related because learning-based methods have great poten-
tial to improve the reliability of distributed systems by learning through history logs/traces/metrics.
Instead of coding hard-wired mapping of predefined signals/events for an anomaly to mitigation
actions (like restarting servers, rebooting, or adding more resources through auto-scaling), the adap-
tation of anomaly detection and mitigation to new contexts can become an automatic procedure done
by machines in a few days with retraining.

They are also different. Performance debugging for SLO violations can be caused by the contention
of resources and can be mitigated by resource isolation or auto-scaling. For a metastable failure, it is
characterized by a sustaining effect loop either by capacity degradation or workload amplification,
which complicates the mitigation strategies.

A.2 BACKGROUND

We first discussed how we arrive at the right formulation and abstraction. Our problem boils down
to setting the right rate or concurrency limit for a service, according to the observed service status
(latency, queue size, etc.) When enabled, our limiter will reject excess RPS (request per second)
to allow instances to run at a safe and stable state. Our goal is to maximize the throughput and
minimize the tail latency of the service and prevent metastable failures from happening when the
system enters a vulnerable state2.

In order to find the right limit of cloud service at the application level, traditionally, people draw
wisdom from queuing theory (Harchol-Balter) and manually configured fixed concurrency limits
measured via a process of performance testing and profiling. While this provided an accurate value at

2Extended discussion on how metastable state and vulnerable state are defined can be found in Huang et al.
(2022).

6

Published as a Tiny Paper at ICLR 2023

that moment in time, the measured limit would quickly become stale as a system’s topology changes
due to partial outages, auto-scaling, or from code push that impact latency characteristics (url).

Adaptive rule-based approach: A natural solution is to use an adaptive rate limiter, or equiv-
alently, a concurrency limiter. An industry example of an adaptive concurrency limiter is from
Netflix (Netflix), which draws inspiration from TCP congestion control algorithms (Cardwell et al.,
2016; Brakmo et al., 1994; Winstein & Balakrishnan, 2013; Yan et al., 2018), that seek to determine
how many packets may be transmitted at a time without incurring timeouts or increased latency.
These algorithms, when deployed on the server side, are based on the assumption that latencies are
good proxies for queuing. However, when the system is going under a metastable state - each request
in the queue could take longer to execute; and moreover, the latency distributions of services could
be drastically different. Hence these methods are neither accurate enough to capture system state
changes nor generalizable enough to unseen system conditions to prevent or to mitigate metastable
failures.

Adaptive online learning/reinforcement learning: Similarly, people can use online learning to dy-
namically adjust the load based on real-time feedback, according to a learned policy (Jay et al.). As
an example, using multi-armed bandit or implementing more sophisticated RL-based adaptive online
learning to take more states into account has shown promising performance in network congestion
control problem (Dong et al., 2018; Mittal et al., 2015). Online learning has shown some promise
in other applications too (Google), however, to implement fully online learning algorithms in the
real world, it is necessary to collect responses and update configurations in near real-time, which
poses significant challenges to the infrastructure. Non-Bayesian online algorithms tend to explore
extensively in the initial rounds. This can have a major impact on user experience and lead to SLO
violation before the algorithm converges. Furthermore, since the environment is non-stationary, the
algorithm may be consistently in the exploration phase, which may cause convergence issues.

Offline (un-/semi-/supervised) learning: The third option is to learn a policy from log data without
expensive online exploration with a supervised learning approach like behavior cloning (BC) (Bain
& Sommut, 1999). Supervised learning is suitable if we can learn a mapping from the state of
the system, load shedding action to the utility function of predicted latency and throughput of the
service. It is used in congestion control literature. However, this is untenable due to the large state
space across different services. Furthermore, inaccurate predictions can cause a feedback cycle
known as cascading errors in the long term (Chang et al., 2021). In our problem setup, if we have
a slight prediction error that predicts a sub-optimal action, errors can be compounded and lead to
more unstable failures.

A.3 PRELIMINARIES FOR OFFLINE RL

The RL problem is formulated in the context of a Markov decision process (MDP)
(S,A, p0(s), p(s′|s, a), r(s, a), γ), where S is a state space, A is an action space, p0(s) is a dis-
tribution of initial states, p(s′|s, a) is the environment dynamics, r(s, a) is a reward function, and γ
is a discount factor. The agent interacts with the MDP according to a policy π(a|s). The goal is to
obtain a policy that maximizes the cumulative discounted returns:

π∗ = argmax
π

Eπ

[∞∑
t=0

γtr(st, at)|s0 ∼ p0(·), at ∼ π(·|st), st+1 ∼ p(·|st, at)

]
.

Off-policy RL methods based on approximate dynamic programming typically utilize a state-action
value function (Q-function), referred to as Q(s, a), which corresponds to the discounted returns
obtained by starting from the state s and action a, and then following the policy π.

Offline reinforcement learning with implicit Q-learning. In contrast to online (on-policy or off-
policy) RL methods, offline RL uses previously collected data without any additional data collec-
tion. Like many recent offline RL methods, our work builds on approximate dynamic programming
methods that minimize temporal difference error, according to the following loss:

LTD(θ) = E(s,a,s′)∼D[(r(s, a) + γmax
a′

Qθ̂(s
′, a′)−Qθ(s, a))

2], (1)

7

Published as a Tiny Paper at ICLR 2023

where D is the dataset, Qθ(s, a) is a parameterized Q-function, Qθ̂(s, a) is a target network (e.g.,
with soft parameters updates defined via Polyak averaging), and the policy is defined as π(s) =
argmaxaQθ(s, a).

There are three functions to train in IQL:

LV (ψ) = E(s,a)∼D[L
τ
2(Qθ(s, a)− Vψ(s))]

where Lτ2(u) = |τ − 1(u < 0)|u2.
The Q-function is trained with the state-value function to avoid querying the actions.

LQ(θ) = E(s,a,r,a′)∼D[(r + γVψ(s
′)−Qθ(s, a))

2]

Finally, the policy function is trained by using advantage-weighted regression.

Lπ(ϕ) = E(s,a)∼D[exp(β(Qθ − Vψ(s))) log πϕ(a|s)]

A.4 EXPERIMENTS

Table 1: Rewards of PolicyShedder and the baselines with different average execution times.

Method In-distribution Out-of-distribution Metastability
80 ms 100 ms 120 ms 60 ms 140 ms all

Best heuristic 41.17 ± 0.87 24.99 ± 0.71 10.47 ± 0.84 31.00 ± 3.41 -21.44 ± 0.92 1/5
BC 19.91 ± 12.87 -1379.50 ± 164.43 -1530.12 ± 95.98 -1312.36 ± 429.97 -4685.18 ± 441.51 2/5
IQL 50.47 ± 1.60 30.20 ± 1.65 13.59 ± 1.27 41.06 ± 1.57 -1.68 ± 1.41 2/5
TD3+BC 32.20 ± 1.65 12.34 ± 3.24 -43.56 ± -6.94 -6.12 ± 6.34 9.42 ± 2.83 2/5
DT 24.99 ± 0.71 23.48 ± 3.71 13.36 ± 9.97 -39.12 ± 89 19.34 ± 1.70 1/5
CQL 13.59 ± 1.27 -4.18 ± 0.21 -4.50 ± 2.34 -1.36 ± 0.97 9.19 ± 2.78 3/5
PolicyShedder 53.05 ± 1.50 29.14 ± 2.13 16.59 ± 0.29 45.20 ± 1.22 32.45 ± 3.21 0/5

We train PolicyShedder on the log data collected from java application environments with different
average execution times and heap sizes, where the execution time of these applications ranges from
{80, 100, 120} (ms), and the heap size is in {192, 256, 512} (MB). The logging policy is a heuristic
policy based on TIMELY algorithm (Mittal et al., 2015), which is widely used in datacenter.

The initial version of PolicyShedder is trained with implicit Q-learning (IQL) (Kostrikov et al.,
2021b). We used around 500 trajectories with the reward (α = 0.25), and each trajectory contains
around 4 minutes of log data with monitoring interval as 1 sec. To adapt to sporadic traffic, we
choose ∆T = min{1, time with at least 3 consecutive requests}. However, we found this vanilla
offline RL approach is not able to reason about the performance well under distribution shift in
transition dynamics (which is the key characteristic of Metastable system, compared to traditional
congestion control). Hence, we proposed to use feature normalization and advantage weighted
reweighting for our datasets (Hong et al., 2023).

To evaluate the generalizability of PolicyShedder, we test in both in-distribution and out-of-
distribution environments. The former uses the same ranges of execution times and the heap sizes,
while for the latter, the execution time is selected from {60, 140} and only the heap size is selected
in the same range. We compare PolicyShedder with several different baselines: 1) Heuristic: It
uses heuristic strategies (Netflix) to control the rate limit in a certain range. 3 We adopt grid-search
for the heuristics and report the best result. 2) Behavior cloning (BC) and Offline RL: BC is
an imitation learning algorithm; it uses supervised learning losses to train the policy to imitate the
behavioral policies recorded in the log. We include it as it is a common baseline in offline RL re-
search (Kostrikov et al., 2021b; Kumar et al., 2020). We also choose the mostly widely used offline

3Originally, we use the load-shedder baseline simply as the one in (Netflix). Note that the concurrency limit
can be translated to the rate limit because we know the system queue lengths at each time stamp. However, we
found that the heuristic is not able to fully prevent the metastable failure from happening due to the delayed
nature of load-shedding actions, and requires some prior knowledge of service concurrency limit. Hence, we
improve upon the baseline with a stronger version of concurrency control (Mittal et al., 2015).

8

Published as a Tiny Paper at ICLR 2023

RL methods, including one-step, pessimistic, and conservative algorithms. Specifically, we imple-
ment Conservative Q-learning (CQL) (Kumar et al., 2020), Implicit Q-learning (IQL) (Kostrikov
et al., 2021b), TD3+BC (Fujimoto & Gu, 2021), Decision transformer (DT) (Chen et al., 2021))

Table 1 summarizes the results. Observation 1: PolicyShedder significantly outperforms the best
heuristic, showing the promise of handling metastable failures with offline RL. Observation 2:
Behavior cloning delivers unsatisfactory performance. This is because the log contains both good
and bad behaviors. The supervised policy may have learned undesirable behaviors from the log.

A.5 HYPERPARAMETERS

We report the hyperparameters used for training the RL agent. Unless otherwise stated, we use grid
search for hyperparameter optimization.

Table 2: Hyperparameter of Behavior Cloning (BC).

Hyperparameter Value

Batch size 100
Regularization factor 0.5

Table 3: Hyperparameter of Implicit Q-Learning (IQL).

Hyperparameter Value

Actor learning rate 3× 10−4

Critic learning rate 3× 10−4

Actor optimizer Adam
Critic optimizer Adam
Batch size 256
N-step TD calculation 1
Discount factor 0.99
Target network synchronization coefficiency 0.005
The number of Q functions for ensemble 2
The expectile value for value function training 0.7
Inverse temperature value 3.0
The maximum advantage weight value to clip 100.0

Table 4: Hyperparameter of TD3+BC.

Hyperparameter Value

Actor learning rate 3× 10−4

Critic learning rate 3× 10−4

Batch size 256
N-step TD calculation 1
Discount factor 0.99
Target network synchronization coefficiency 0.005
The number of Q functions for ensemble 2
Standard deviation for target noise 0.2
Clipping range for target noise 0.5
Alpha 2.5
Interval to update policy function 2

9

Published as a Tiny Paper at ICLR 2023

Table 5: Hyperparameter of Conservative Q-Learning (CQL).

Hyperparameter Value

Actor learning rate 3× 10−4

Critic learning rate 3× 10−4

Learning rate for temperature parameter of SAC 1× 10−4

Learning rate for alpha 1× 10−4

Batch size 256
N-step TD calculation 1
Discount factor 0.99
Target network synchronization coefficiency 0.005
The number of Q functions for ensemble 2
Initial temperature value 1.0
Initial alpha value 1.0
Threshold value 10.0
Constant weight to scale conservative loss 5.0
The number of sampled actions to compute 10

A.6 ABLATION STUDIES

Table 6: Model ablation studies.

Dropout Hidden Dense BatchNorm Overhead (s) In-distribution OOD
MLP - 1 0.5 [32,32] No Yes 0.0032 34 ± 1.65 38.5 ± 1.34
MLP - 2 0.5 [16,16] No Yes 0.0031 32 ± 2.09 32.4 ± 2.23
MLP - 3 0.5 [8, 8] No Yes 0.0031 23.5 ± 1.94 -19.2 ± 2.34
MLP - 4 0.2 [32,32] No No 0.0032 26 ± 1.42 23.4 ± 1.22
MLP - 5 0.5 [32,32] No No 0.0031 30.5 ± 0.65 33.3 ± 3.88
MLP - 6 0.8 [32,32] No No 0.0031 22 ± 1.23 33.2 ± 5.32
MLP - 7 NA [32,32] No No 0.0028 28.25 ± 1.21 31.2 ± 4.20
MLP - 8 0.5 [32,32,32] No Yes 0.0035 35.5 ± 1.01 45.3 ± 4.39
MLP - 9 0.5 [32,32,32,32] No Yes 0.0036 34.75 ± 0.49 43.5 ± 3.23

MLP - 10 0.5 [32,32] Yes Yes 0.0033 36 ± 2.65 49.5 ± 1.32
Linear 0.5 [32] No Yes 0.0028 5.75 ± 1.92 -3.5 ± 1.21

We now study how each design choice affects performance. In the figure below (Figure ??), we
aggregate the score across the in-distribution and OOD setups.

Feature choices: FDC1: choice of multiple feature inputs including memory and CPU utilization;
FDC2: without normalization; FDC3: without EWMA features. Surprisingly, we find that additional
features like memory and CPU utilization are not helpful in improving the model performance.

Model choices: MDC1: use DNN model; MDC2: use LSTM model. We observed that although
changing the policy network to a more complex LSTM model seems to be able to get us a slightly
higher score, the overhead introduced by the additional complexity overshadows the benefit.

Look-ahead interval: We sweep the lookahead window with linear search from n = 5 to n = 15
but report only three points for the sake of space. The look-ahead window is used for in the reward
formulation. In essence, a smaller window makes the system less reactive but may be more sensitive
to spurious long requests.

In Table 6, we consider different model architectures, reporting both system overhead and model
performance for in distribution and out-of-distribution experiments under different neural architec-
tures. We can see that the overhead is not sensitive to the shape of hidden layers (MLP - 7-9);
however, the more the number of layers, the more the agent’s performance and sample complexity
deteriorates (Sinha et al., 2020). The model performance is sensitive to the dense connections (MLP
- 10 vs MLP - 1), especially for OOD environment. Moreover, the wider the hidden layers and the
more dropouts, the better the generalizability.

10

Published as a Tiny Paper at ICLR 2023

Full FDC1 FDC2 FDC3 MDC1 MDC2 n=5 n=10 n=15
0

10

20

30

M
ea

n
n

or
m

a
li
ze

d
sc

o
re

Full Model Feature Choices Model Choices Lookahead Interval

Figure 2: Ablation studies

A.7 PARSER DETAILS

Figure 3: Parser for the log

In Figure 3, we show the details about how we parse the existing request logs to get the trajectories
used for offline RL training. The action are indirectly recorded from the log, and the reward can be
calculated by taking tail latency and QPS for future look-ahead windows. We further normalize the
action and reward according to the service characteristics (i.e. average execution time).

A.8 OOD PERFORMANCE

In this section, we focus on PolicyShedder’s performance under the distribution shift. We make
the service have a higher / lower average execution time due to the code upgrade, and report its
performance across different system setups. We observe that compared with best heuristic (under
linear search) and Behavior cloning which simply learns from the heuristics, it is better at reasoning
about the right actions under OOD environment.

Table 7: Out-of-distribution rewards on different execution times and heap sizes for the best heuristic
(80, 120, 0.75), behavior cloning, and our PolicyShedder. The best reward is highlighted in boldface,
and the second best reward is underlined.

Method Execution time 90 Execution time 140
192 256 512 192 256 512

(80, 120, 0.75) 29.65 27.66 35.69 -20.20 -21.75 -22.37
Behavior cloning -708.82 -1550.01 -1678.25 -5086.85 -4070.34 -4898.35
PolicyShedder 43.28 39.88 40.03 -1.67 0.05 -3.40

11

Published as a Tiny Paper at ICLR 2023

A.9 VISUALIZATION

Figure 4 shows that PolicyShedder achieves a better tradeoff between throughput and latency com-
pared with the heuristics., i.e., higher throughput and lower latency across all system configurations.
The legend tuple shows the average execution time (ms) of the requests in the workload and garbage
collection (GC) heap size (MB) configurations.

200 400

60

70

80

90

100 200 300 400

60

70

80

90

100 200 300 400

60

70

80

90

100 200 300 400
40

50

60

70

80

100 200 300 400

50

60

70

80

100 200 300 400

50

60

70

500 1000

20

40

60

200 400 600 800

20

40

60

100 200 300 400

20

40

60

80,256

80,512

80,192

100,192

100,256

100,512

120,256

120,192

120,512

95% Tail Latency (ms) 95% Tail Latency (ms) 95% Tail Latency (ms)

95% Tail Latency (ms) 95% Tail Latency (ms) 95% Tail Latency (ms)

95% Tail Latency (ms) 95% Tail Latency (ms) 95% Tail Latency (ms)

T
hr

ou
gh

pu
t (

re
q/

s)

T
hr

ou
gh

pu
t (

re
q/

s)

T
hr

ou
gh

pu
t (

re
q/

s)

T
hr

ou
gh

pu
t (

re
q/

s)

T
hr

ou
gh

pu
t (

re
q/

s)

T
hr

ou
gh

pu
t (

re
q/

s)

T
hr

ou
gh

pu
t (

re
q/

s)

T
hr

ou
gh

pu
t (

re
q/

s)

T
hr

ou
gh

pu
t (

re
q/

s)

Figure 4: Visualization of PolicyShedder against the heuristics, where PolicyShedder is highlighted
as solid selected points.

12

Published as a Tiny Paper at ICLR 2023

A.10 CASE STUDY

0 100 200

20

40

60

80

100

120

0

2k

4k

6k

8k

10k

20

40

60

80

100

R
at

e
Li

m
it

La
te

nc
y

(m
s)

T
hr

ou
gh

pu
t

(a) Heuristic (execution 100)
0 100 200

0

20

40

60

80

100

120

0

5k

10k

15k

20k

25k

20

40

60

R
at

e
Li

m
it

La
te

nc
y

(m
s)

T
hr

ou
gh

pu
t

(b) Heuristic (execution 140)
0 100 200

20

40

60

80

100

120

0

10k

20k

30k

10

20

30

40

50

60

R
at

e
Li

m
it

La
te

nc
y

(m
s)

T
hr

ou
gh

pu
t

(c) Heuristic (execution 160)

0 100 200
0

20

40

60

80

100

120

0

2000

4000

6000

0

20

40

60

80

R
at

e
Li

m
it

La
te

nc
y

(m
s)

T
hr

ou
gh

pu
t

(d) PolicyShedder (execution 100)
0 100 200

0

50

100

0

5k

10k

15k

20k

20

40

60

R
at

e
Li

m
it

La
te

nc
y

(m
s)

T
hr

ou
gh

pu
t

(e) PolicyShedder (execution 140)
0 100 200

0

20

40

60

80

100

120

0

1000

2000

3000

0

20

40

60

80

100

R
at

e
Li

m
it

La
te

nc
y

(m
s)

T
hr

ou
gh

pu
t

(f) PolicyShedder (execution 160)

Figure 5: Visualization of the misconfigured heuristic policy when the system has a code upgrade
that makes average execution time from 140 ms to 160 ms. The heuristics’ reaction time is longer
compared with PolicyShedder by average 12%. (a) vs (d) shows how our system is more stable.
(b) vs (e) shows a misconfigured heuristic could end up sacrificing the long-term throughput of the
service, while our PolicyShedder is less conservative. (c) vs (f) further demonstrate a much faster
reaction.

13

	Introduction
	Design of PolicyShedder
	Conclusion and Outlook
	Appendix
	Related Work
	Offline RL
	Performance Debugging, Anomaly Detection, and Root Cause Analysis

	Background
	Preliminaries for Offline RL
	Experiments
	Hyperparameters
	Ablation Studies
	Parser Details
	OOD performance
	Visualization
	Case Study

