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Abstract001

Scientific coding tasks often require navigat-002
ing vast, uncertain solution spaces, where ini-003
tial hypotheses may be incomplete, flawed, or004
contradictory. A key challenge in automating005
scientific coding tasks is the lack of clear-cut006
success signals, such as gold labels or unit tests007
that are common in traditional programming008
or supervised learning tasks. In scientific do-009
mains, correctness is often context-dependent,010
diverse in form, and rarely captured by a single011
metric. This makes it difficult for agents to de-012
termine when a solution is sufficient or how to013
refine it. We introduce Compare-and-Correct014
(C&C), a verifier-guided agent framework for015
scalable test-time trajectory exploration. In-016
stead of relying on single-pass inference, C&C017
leverages test-time compute scaling by generat-018
ing a diverse set of candidate solutions and then019
iteratively refining them via self-debugging and020
self-improvement mechanisms. An Elo Rating-021
based verifier ranks candidates by relative qual-022
ity, guiding the agent to backtrack, correct, and023
converge on the most promising solutions with-024
out relying on explicit success criteria. We025
demonstrate C&C’s effectiveness across a range026
of tasks including machine learning engineer-027
ing and visualization on ScienceAgentBench.028
Experiments show that C&C significantly out-029
performs direct prompting, prior agents like030
OpenHands and Self-Debug, and alternative031
verifiers such as random selection and LLM-as-032
a-Judge. These results confirm the strength of033
our agent design and verification approach. 1034

1 Introduction035

Large language models (LLMs) for science are036

rapidly reshaping the landscape of scientific dis-037

covery by enabling LLMs to reason, analyze, and038

solve problems across domains such as chemistry,039

biology, physics, and data science (Yu et al., 2024,040

2025; Tang et al., 2024; Bhattacharya et al., 2024;041

1Our source code will be available upon acceptance.

Ali-Dib and Menou, 2024; Hong et al., 2024; 042

Chen et al., 2025). A wide spectrum of tasks, 043

including molecule design (Bhattacharya et al., 044

2024), physics simulation (Ali-Dib and Menou, 045

2024), hypothesis formulation (Jin et al., 2024), 046

and experiment-guided machine learning and data 047

analysis (Chan et al., 2025; Nathani et al., 2025) 048

pose unique challenges in terms of multi-step rea- 049

soning, domain-specific code generation, and in- 050

tegration with structured scientific data. To sys- 051

tematically study and advance these capabilities, 052

recent benchmarks such as ScienceAgentBench 053

(Chen et al., 2025), DiscoveryBench (Majumder 054

et al.), SciCode (Tian et al., 2024), and BixBench 055

(Mitchener et al., 2025) formulate scientific discov- 056

ery and numerical calculation problems as code 057

generation tasks and focus on evaluating advanced 058

models and agents across real-world scientific prob- 059

lems. These benchmarks mirror the complexity of 060

real-world science and reveal the growing potential 061

of LLMs not merely as language models, but as AI 062

co-scientists capable of accelerating and expanding 063

the frontiers of scientific inquiry. 064

To solve those scientific tasks, many rely on di- 065

rect prompting to obtain programs without special 066

agent design (Tian et al., 2024). While some agents 067

are emerging, most of them face at least one of the 068

following limitations in their ability to generalize 069

and robustly support scientific coding tasks: (1) 070

only leverage a linear problem-solving strategy and 071

lack structured reasoning and solution space explo- 072

ration, which prevents full utilization of the models’ 073

capabilities (Wang et al., 2024; Chen et al., 2024). 074

(2) Rely on the gold verification signals such as 075

clear-cut success metrics of the problem to provide 076

feedback for further refinement and lacks a more 077

general verifier to select the best solution during the 078

exploration (Jiang et al., 2025), which often does 079

not hold for real-world scientific settings and re- 080

stricts its scope of generalization to more problems. 081

These limitations highlight the need for science 082
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Figure 1: An overview of our agent framework: Compare-and-Correct (C&C).

agents to wisely plan, reason, explore and verify083

autonomously in realistic scientific tasks.084

Existing work such as PlanSearch (Wang et al.,085

2025) and CodeMonkeys (Ehrlich et al., 2025)086

show that as the number of generated solutions087

increases, the fraction of problems in a dataset that088

are successfully solved by at least one candidate089

often grows approximately log-linearly. This test-090

time compute scaling effect of generating more can-091

didate solutions can significantly improve the over-092

all success solution coverage such as Pass@K in093

coding tasks. Under this background, we seek to an-094

swer two central questions: (1) How can we lever-095

age test-time scaling to explore a broader space096

of potential solutions for scientific coding tasks?097

(2) How can we design an effective verifier that098

can reliably select the most plausible solution from099

a set of search trajectories, especially when those100

solutions in the trajectories vary in quality, com-101

pleteness, and logical soundness?102

A key challenge in scientific coding tasks is103

the absence of clear-cut success signals such as104

unit test cases or gold labels, which are commonly105

available in traditional programming tasks or su-106

pervised MLE benchmarks like Kaggle. In scien-107

tific domains, correctness is often diverse, context-108

dependent, and not easily captured by a unified109

format such as a single accuracy metric or unit test110

pass rate. This makes it difficult for agents to know111

when a solution is good enough or how to improve112

upon it.113

To address this, we propose C&C, a novel verifier-114

guided agent framework that integrates test-time115

scaling for trajectory exploration. As Figure 1 116

shows, our framework embraces test-time diver- 117

sification, which generates a broad set of initial 118

candidate solutions to create a meaningful basis 119

for comparison. We then use an Elo Rating-based 120

verifier to identify the most promising candidate 121

based on relative quality, enabling targeted self- 122

debugging and self-improvement. This design al- 123

lows the agent to adaptively search, compare, and 124

improve solutions without relying on hard-coded 125

metrics, making it well-suited for open-ended, com- 126

plex and weakly supervised scientific coding tasks. 127

We conduct a detailed component-wise analysis 128

to better understand the contribution of each design 129

choice. Through targeted ablations and controlled 130

experiments, we evaluate the impact of initial so- 131

lution size, self-improvement mechanism, and ver- 132

ifier strategies. This analysis reveals how each 133

module contributes to end-to-end performance, and 134

demonstrates that the combination of diverse solu- 135

tion exploration and strategic verifier-driven selec- 136

tion is key to effective scientific coding tasks. 137

In summary, our contributions are three-fold: 138

• We propose a novel agent framework for sci- 139

entific coding tasks that explores the solu- 140

tion space more thoroughly through verifier- 141

guided tree search, enabling iterative refine- 142

ment and evaluation of candidate programs 143

without relying on gold verification signals. 144

• We conduct a detailed analysis of each com- 145

ponent to better understand how it affects the 146

performance of our agent framework. 147
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• Our results show that the success rate of C&C148

on ScienceAgentBench achieves a significant149

gain over other baselines with reasonable cost.150

It exceeds the best baseline agent Self-Debug151

with a 24% improvement for SR, and achieves152

22.9% improvement over OpenHands for SR153

while reducing 53.2% cost.154

2 Agent Framework155

2.1 Background and Challenges156

With the rapid development of LLMs, more and157

more increasingly complex problems can now be158

addressed via direct prompting (Tian et al., 2024).159

However, this method often lacks structured rea-160

soning and struggles with complex reasoning with161

intricate dependencies across steps. Agent-based162

frameworks like OpenHands (Wang et al., 2024)163

improve upon this by generating and executing164

partial code iteratively, using intermediate observa-165

tions to inform subsequent actions. This design166

enables LLMs to reason and act more dynami-167

cally, facilitating more effective problem-solving168

and greater flexibility. The basic ReAct (Yao et al.,169

2023) (Reasoning + Acting) prompting used in170

OpenHands encourages step-by-step thinking and171

external tool usage, making it well-suited for tasks172

requiring multi-step reasoning. Nevertheless, these173

approaches still follow a linear reasoning process174

and may not capture deeper logical dependencies.175

Self-debugging agents (Chen et al., 2024) further176

improve execution success through iterative retries177

and leverage the execution feedback generated by178

code interpreter, but still fail to address deeper se-179

mantic errors or flaws in scientific logic. While180

AIDE (Jiang et al., 2025) introduces tree search181

for program-level exploration for automated code182

refinement, it relies on the clear-cut success met-183

rics in tasks as the explicit feedback and keep run-184

ning agents to attempt more if the solution doesn’t185

meet the metric requirement. However, in scientific186

tasks, such success criteria is often not available so187

that the assumptions in AIDE’s agent rarely hold188

in real-world scientific domains.189

2.2 Design Motivation190

Scientific discovery is rarely linear. It thrives on191

exploration, revision, and reflection. Yet, most192

current reasoning agents make shallow, one-shot193

decisions, lacking the capacity to backtrack, re-194

vise, or evaluate solutions strategically. C&C is195

designed to overcome these limitations by treat-196

ing scientific reasoning as a trajectory-driven pro- 197

cess, where multiple diverse paths are explored, 198

evaluated, and refined. Not all paths are equal: 199

some lead to breakthroughs, others to dead ends. 200

C&C introduces a verifier-guided tree search that 201

compares, scores and expands solution trajectories 202

based on Elo Rating. This allows the agent to strate- 203

gically prioritize promising directions and enables 204

dynamic solution expansion, self-debugging, and 205

self-refinement, mimicking the way human scien- 206

tists iterate toward insight. 207

C&C is inspired by human-like reasoning pro- 208

cesses, where initial rough ideas or high-level plans 209

are generated first, followed by iterative debugging 210

and refinement. This approach allows the agent 211

to progressively improve its solutions through self- 212

correction. Our agent mainly explores the potential 213

solution through tree search. The inclusion of a 214

backtracking mechanism during search enables the 215

agent to revisit earlier reasoning steps and recon- 216

sider alternative paths when necessary. A dedicated 217

verifier guides the agent’s next actions: determin- 218

ing which branches to explore, how to prioritize 219

the search, and which solutions warrant further 220

refinement, thereby enabling more deliberate and 221

adaptive problem-solving. 222

2.3 Components 223

Initial Planning and Solution Generation. Exist- 224

ing work such as PlanSearch (Wang et al., 2025) 225

and CodeMonkeys (Ehrlich et al., 2025) show that 226

as the number of generated solutions increases, the 227

fraction of problems in a dataset that are success- 228

fully solved by at least one candidate often grows 229

approximately log-linearly. This test-time compute 230

scaling effect of generating more candidate solu- 231

tions can significantly improve the overall success 232

solution coverage such as Pass@K in coding tasks. 233

Hence, we follow (Jiang et al., 2025) to generate 234

a rich pool of diverse solution candidates to give 235

more starting points to increase the agents’ explo- 236

ration success. As Figure 1 shows, we first prompt 237

LLM to generate multiple high-level plans, and en- 238

sure that previously generated plans are visible to 239

the model to avoid repeated plans. Then for each 240

plan, the LLM generates a corresponding program 241

as a candidate solution. This approach unlocks hid- 242

den insights that would be missed by deterministic 243

one-pass inference alone. 244

Self-Debug for On-the-Fly Error Correction. 245

Scientific coding tasks require the agent to produce 246

executable code. C&C incorporates a self-debugging 247
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Figure 2: An overview of Elo Rating verifier in tree search.

mechanism to leverage code interpreter to detect248

and repair bugs during tree search. This reflective249

capability enables the agent to revise faulty steps250

without discarding entire trajectories.251

Iterative Self-Improve through Reflective Rea-252

soning. Reasoning is not just about fixing mistakes,253

but about getting better with each step. C&C em-254

ploys iterative self-refinement by prompting the255

model to identify a specific refinement point within256

a selected frontier solution, based on the task de-257

scription. This process mirrors how humans iter-258

atively refine solutions, progressively improving259

them toward correctness and completeness.260

Verifier for Frontier Selection. Effective trajec-261

tory selection is critical to the success of C&C. We262

implement a suite of frontier selection mechanisms263

to explore which selection choice is more effective264

to evaluate and rank candidate solutions through-265

out the exploration. The same mechanism is em-266

ployed both at the initial solution selection stage267

and during self-improvement cycles. We explore268

four verifier strategies:269

(1) Random Selection: As a baseline, we ran-270

domly select the frontier node from the pool of271

generated candidate solutions. We will always pri-272

oritize selecting from non-buggy candidates either273

in the initial solution selection phase or the self-274

improvement phase.275

(2) LLM-as-a-Judge: We prompt LLM to assess276

the quality of each candidate solution by generating277

a numerical score given the task description and278

generated solution. Then each time, we will choose279

the solution with the highest score to debug or self-280

improve. The final solution will be the non-buggy281

one with the highest score.282

(3) Rubric-Based Grading (Rubric-as-a-Judge): 283

A structured grading rubric is first generated by 284

GPT-4o based on the ground truth program, outlin- 285

ing multiple fine-grained solution milestones with 286

associated scores. This rubric is then reviewed and 287

refined by human expert to ensure accuracy and 288

clarity (Chen et al., 2025). We input the task de- 289

scription, rubric and solution to LLMs to generate 290

a numerical score for the solution. Then each time, 291

we will choose the solution with the highest score 292

to debug or self-improve. The final solution will 293

be the non-buggy one with the highest score. This 294

approach leverages the ground truth information 295

indirectly as the feedback to help choose the most 296

promising frontier solution at each step. 297

(4) Elo Rating based Ranking (Elo, 1978; Zhou 298

et al., 2025) and Selection: We adapt the Elo Rat- 299

ing algorithm in Appendix A to maintain a dynamic 300

ranking of candidate solutions. Each solution com- 301

petes against others in pairwise comparisons using 302

the LLM, and the ranking is updated accordingly. 303

This enables the agent to select the best-performing 304

node both among initial solutions and during re- 305

cursive self-improvement. Importantly, it supports 306

adaptive backtracking, allowing the agent to revisit 307

previously under-ranked trajectories. An illustra- 308

tion of Elo Rating verifier is shown in Figure 2. 309

Initially, the system compares pairs of candidate 310

branches, favoring the top-2 highest Elo-score so- 311

lutions and start to explore the first best branch. 312

If the solution is buggy, then first debug it until 313

it’s executable. Then the self-improvement phase 314

starts. During the iterative refinement process, 315

for each-step self-improvement in the best branch, 316

we compare the new solution with the solution in 317
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the second-best branch and select the highest-Elo-318

ranked solution for further refinement. Finally, the319

highest-score non-buggy solution is selected based320

on Elo ranking as the best solution.321

Crucially, to enable adaptive and resilient reason-322

ing, if a current path underperforms, the agent can323

backtrack and reconsider previously lower-ranked324

alternatives. This mechanism prevents premature325

commitment to suboptimal solutions and allows326

recovery from early mistakes.327

In summary, by combining these above compo-328

nents, C&C achieves robust and flexible trajectory329

exploration and supports high-quality solution se-330

lection across a wide range of scientific tasks.331

3 Experimental Setup332

Baselines. To evaluate the effectiveness of C&C, we333

compare it against the following three baselines,334

each representing a different strategy for program335

generation and reasoning: 1) Direct Prompting:336

This baseline uses an LLM to generate a solution337

in a single pass using a task-specific prompt. It338

reflects the standard zero-shot setting commonly339

used in prior work. This method serves as a simple340

and widely adopted baseline for evaluating initial341

model generation quality. 2) Self-Debug (Chen342

et al., 2024): In this baseline, the model generates343

an initial solution and then attempts to improve344

it via self-debugging based on the Python inter-345

preter execution feedback. While this method al-346

lows for limited reflection, it does not incorporate347

trajectory search, external verification, or ranking.348

It evaluates the isolated effect of a self-correction349

loop without broader solution exploration. 3) Open-350

Hands (Wang et al., 2024): OpenHands is a gen-351

eral agent that is designed for multiple domains352

including Web and software engineering tasks. It353

builds on the ReAct framework (Yao et al., 2023) to354

generate the next action based on the previous ob-355

servation. Instead of directly generating the entire356

program solution at once, OpenHands gradually357

finishes the solution step by step.358

Dataset. To evaluate C&C in realistic scientific cod-359

ing scenarios, we use ScienceAgentBench (Chen360

et al., 2025), a curated benchmark designed to361

assess agents’ capabilities in scientific discovery.362

This dataset includes a diverse set of tasks that363

cover the entire workflow such as model develop-364

ment, data analysis, and visualization, spanning365

from four scientific disciplines: Bioinformatics,366

Computational Chemistry, Geographical Informa-367

tion Science, and Psychology & Cognitive Neuro- 368

science. All of our experiments are done on their 369

“without expert-provided knowledge" setting. 370

Experiment Details. We experiment with GPT- 371

4o (both the 0513 version and the 1120 version) 372

(OpenAI, 2024) and Claude-3.7-Sonnet (Anthropic, 373

2025). Since GPT-4o (2024-11-20) version is much 374

cheaper than GPT-4o (2024-05-13) version, we try 375

both versions for the main experiments, but use 376

GPT-4o (2024-11-20) version for the ablation study 377

and verifier mechanism part. For all experiments, 378

we use the same hyperparameters. For tempera- 379

ture, we use 0.5 for code generation and 0.5 for 380

debug, analysis and summary, and 0 when leverag- 381

ing LLMs to compare or judge the solutions. For 382

top-p, we use top 0.95, and perform 0-shot prompt- 383

ing via the APIs. For each baseline, we run three 384

times to get the mean and standard deviation of 385

the performance. For each verifier mechanism, we 386

run the agent twice to get the mean and standard 387

deviation of the performance. 388

To constrain the budget, we set the initial solu- 389

tion number to 5, maximum debug step to 3 and 390

total exploration step to 10, which will include the 391

self-improvement step if the budget has not been 392

exhausted by self-debug. 393

Evaluation Metrics. We follow previous work 394

(Chen et al., 2025) to comprehensively evaluate 395

each generated program using three key metrics. 396

(1) Valid Execution Rate (VER) measures whether 397

a program can execute without errors. (2) Success 398

Rate (SR) assesses whether the output satisfies the 399

specific task goal, such as passing predefined crite- 400

ria, matching expected predictions, or producing a 401

high-quality visualization. These criteria are imple- 402

mented as task-specific evaluation programs during 403

the benchmark annotation process. SR is condi- 404

tioned on VER: if a program fails to execute or 405

save its output correctly, its SR is 0. (3) API Cost 406

(Cost) reports the average dollar cost required to 407

complete a single task using the agent. This metric 408

accounts for API usage and serves to highlight the 409

importance of designing cost-efficient agents, as 410

emphasized by Kapoor et al., 2024. 411

4 Result Analysis 412

4.1 Main Results 413

Table 1 compares the performance of different 414

agent strategies using two versions of GPT-4o 415

(2024-05-13 and 2024-11-20) across three metrics: 416

Success Rate (SR), Valid Execution Rate (VER), 417
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Base Model Agents SR VER Cost ↓

GPT-4o (2024-05-13)

Direct Prompting 7.50 (0.5) 42.2 (1.6) 0.011 (0.000)
OpenHands 13.1 (2.6) 62.8 (2.9) 1.093 (0.071)
Self-Debug 14.7 (3.2) 71.2 (1.2) 0.057 (0.001)
C&C (Ours) 16.1 (1.2) 66.0 (3.5) 0.512 (0.009)

GPT-4o (2024-11-20)
Self-Debug 15.0 (4.8) 67.0 (7.4) 0.030 (0.010)
C&C (Ours) 18.6 (3.3) 69.9 (0.6) 0.342 (0.008)

Table 1: Mean performances of each agent and standard deviations on ScienceAgentBench (Chen et al., 2025).

Models Verification SR VER Cost ↓

GPT-4o (2024-11-20)
Random Selection 15.2 (0.7) 64.7 (1.4) 0.180 (0.006)
LLM-as-a-Judge 16.2 (3.5) 69.1 (0.7) 0.253 (0.013)

Elo Ranking 18.6 (3.3) 69.9 (0.6) 0.342 (0.008)

GPT-4o (2024-11-20) Rubric-as-a-Judge (w/ GT) 21.1 (2.1) 74.5 (2.8) 0.303 (0.016)

Table 2: Verification choice effect on our agent. “w/ GT" means using ground truth program judge signal.

and Cost. The experiment results show that our418

proposed agent C&C consistently outperforms base-419

line approaches across both model versions. Un-420

der the 2024-05-13 model, C&C achieves an SR of421

16.1%, surpassing Self-Debug (14.7%) and Open-422

Hands (13.1%), while maintaining a strong VER423

of 66.0%. Although the cost (0.512) is higher than424

Self-Debug (0.057) and Direct Prompting (0.011),425

C&C offers a better balance between performance426

and cost-effectiveness compared to OpenHands427

(1.093), which is substantially more expensive de-428

spite lower SR and VER.429

With the updated GPT-4o (2024-11-20), in order430

to save the cost, we only choose the best baseline431

Self-Debug for comparison. C&C achieves a large432

performance gain compared to Self-Debug, with a433

24% improvement for SR and a 2.9-point improve-434

ment for VER. Besides, the performance of C&C is435

more stable than Self-Debug, with a 31% reduc-436

tion of standard deviation for SR and a 6.8-point437

reduction of standard deviation for VER.438

4.2 Verifier Strategy Analysis439

Table 2 evaluates the impact of different verifica-440

tion strategies on agent performance using GPT-4o441

(2024-11-20). Among the random selection, LLM-442

as-a-Judge and Elo Ranking, Elo Ranking achieves443

the highest SR (18.6%) and VER (69.9%), out-444

performing both other two baselines, which attain445

lower SR of 15.2% and 16.2%, respectively and446

lower VER of 64.7% and 69.1% respectively.447

The Rubric-as-a-Judge achieves the highest SR 448

and VER among all verification methods, benefit- 449

ing from access to ground truth rubric descriptions 450

that detail the correct solution steps. While this 451

method partially leverages ground truth signals, it 452

highlights the potential performance gains from 453

incorporating reliable supervision when available. 454

However, such rubric-based evaluations are often 455

impractical in real-world scientific tasks, where de- 456

tailed grading criteria are rarely accessible. In con- 457

trast, our Elo Rating-based verifier offers a more 458

generalizable solution, as it operates independently 459

of ground truth labels while still delivering strong 460

performance. Due to its effectiveness and applica- 461

bility in reality, we adopt Elo Ranking as the default 462

verification method in our main agent framework. 463

4.3 Component Ablation Study 464

Table 3 presents a component-wise ablation study 465

evaluating the impact of the number of initial solu- 466

tions and the use of the self-improvement mecha- 467

nism in our agent framework. We obvserve that: 468

(1) Number of successful initial solutions directly 469

contributes to end-to-end success rate. The table 470

shows a strong correlation between the average 471

number of successful initial solutions and the overll 472

success rate. Without self-improvement, increasing 473

the number of initial solutions from 1 to 5 yields 474

a steady improvement in the average number of 475

successful initial solutions (from 0.24 to 0.98), the 476

average number of successful nodes (from 0.40 to 477
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Num of Init. Use Self-Improve? Avg # of Successful Avg # of Success RateSolutions Init. Solutions Successful Nodes

1 No 0.24 0.40 40.5
2 No 0.40 0.57 40.5
5 No 0.98 1.14 45.2
5 Yes 1.17 2.69 57.1

Table 3: Component ablation on our agent. Model: GPT-4o (2024-11-20). The experiment is done on 42 selected
tasks, where each task has been solved at least once by either a baseline or our agent.

1.14) and the overall success rate (from 40.5% to478

45.2%). This indicates that generating multiple ini-479

tial solutions increases the chance that at least one480

initial solution is close to correct, thus improving481

the agent’s final performance. The more successful482

starting points the agent has, the more likely it is to483

select or build upon a valid reasoning path.484

(2) Self-improvement enables the agent to gener-485

ate more correct programs and achieve the highest486

success rate. The final row of Table 3 isolates the487

effect of enabling self-improvement: for the same488

initial solution size 5, when self-improvement is489

disabled (row 3), the agent achieves an average490

of 1.14 successful nodes and 45.2% success rate,491

while when self-improvement is enabled (row 4),492

the number of successful nodes jumps to 2.69, and493

the success rate increases significantly to 57.1%.494

This demonstrates that self-improvement nearly495

doubles the number of correct programs, allowing496

the agent to refine and expand upon flawed or497

incomplete initial solutions. The improvement498

in both node-level correctness and overall task499

success confirms that self-improvement is a key500

driver of end-to-end performance.501

502

Overall, the findings highlight the complemen-503

tary roles of solution diversity and iterative refine-504

ment in enhancing agent performance on the tasks.505

4.4 Error Analysis506

To evaluate the effectiveness of our verifier-guided507

approach, we conducted an error analysis on 20508

randomly selected unsuccessful tasks from Sci-509

enceAgentBench using C&C. We categorize errors510

into two main types: exploration errors and veri-511

fication errors. An exploration error occurs when512

the agent’s entire trajectory fails to produce any513

solution that meets the success criteria. In contrast,514

a verification error arises when at least one success-515

ful solution exists in the trajectory, but the agent516

fails to identify or select it as the final output.517

We further subdivide exploration errors into two518

Figure 3: Error analysis on 20 randomly selected unsuc-
cessful tasks of ScienceAgentBench.

categories: not executable, where all generated so- 519

lutions are buggy, and executable but unsuccessful, 520

where some solutions are runnable but do not sat- 521

isfy the task requirements. As shown in Figure 3, 522

only 15.8% of the failures were due to verifica- 523

tion errors, suggesting that our Elo Rating-based 524

verifier is generally effective at recognizing cor- 525

rect solutions. The remaining 84.2% of failures 526

were attributed to exploration errors, with 15.8% 527

resulting from non-executable programs and 68.4% 528

from executable but incorrect outputs. This anal- 529

ysis highlights that the dominant source of failure 530

lies in the exploration stage. It suggests that more 531

test-time compute is needed in order to cover suc- 532

cessful solution in the trajectory, such as increasing 533

the initial solution size or self-improve more steps. 534

4.5 Initial Solution and Verifier Model 535

Selection 536

Table 4 presents an ablation study on how different 537

configurations of initial solution generators and 538

verifiers affect agent performance. Using GPT-4o 539

for both components yields a strong baseline (SR 540

= 18.6%, VER = 69.9%) with the lowest agent cost 541

(0.342). Interestingly, during our experiments, we 542

observe that the successful solutions generated by 543

Claude-3.7 and GPT-4o partially differ, with each 544

model solving some examples that the other does 545

not. This complementary behavior motivates us to 546
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Models SR VER Cost ↓
Initial Solutions Verification Initial Solutions Verification Agent

GPT-4o GPT-4o 18.6 69.9 0.061 0.150 0.342
mixture of GPT-4o and Claude-3.7 GPT-4o 19.6 63.7 0.108 0.164 0.417
Claude-3.7 GPT-4o 18.6 72.5 0.162 0.159 0.463
Claude-3.7 Claude-3.7 12.7 63.7 0.178 0.260 0.893

Table 4: Model selection of initial solutions and verification effect on our agent.

ensemble both models to enhance the diversity and547

robustness of the initial solution generator. Table548

4 shows that replacing the initial solutions with549

a mixture of GPT-4o and Claude-3.7 leads to the550

highest SR (19.6%), albeit with a drop in VER551

(63.7%) and a moderate increase in cost (0.417).552

Using Claude-3.7 exclusively as generator while553

retaining GPT-4o as the verifier maintains a com-554

petitive SR (18.6%) and achieves the highest VER555

(72.5%), but increases total cost to 0.463. However,556

when Claude-3.7 is used as both generator and ver-557

ifier, performance deteriorates significantly (SR =558

12.7%, VER = 63.7%) and cost nearly doubles559

(0.893). We suspect this is because GPT-4o has560

stronger verification capabilities than Claude-3.7.561

5 Related Work562

LLMs for Science. The integration of LLMs into563

scientific research workflows has opened new av-564

enues for automating complex tasks, from hypothe-565

sis generation to data analysis. Recent benchmarks566

such as ScienceAgentBench (Chen et al., 2025)567

and DiscoveryBench (Majumder et al.) have been568

instrumental in evaluating LLMs’ capabilities in569

data-driven scientific discovery. At the same time,570

different agents are applied or designed to solve571

these tasks. For example, OpenHands (Wang et al.,572

2024) completes the coding tasks by generating573

and executing partial code iteratively, using inter-574

mediate observations to inform subsequent actions.575

Self-Debug (Chen et al., 2024) corrects the code576

solution by providing the execution logs and feed-577

back to LLMs. AIDE (Jiang et al., 2025) attempts578

to incorporate tree search to iteratively refine the579

code. However, these agents either rely on a single580

refinement strategy (Wang et al., 2024; Chen et al.,581

2024), or depend on gold verification signals such582

as explicit success metrics to determine whether a583

solution meets the task criteria and to guide further584

refinement (Jiang et al., 2025).585

Test-time Scaling in LLMs. Prior work such as586

PlanSearch (Wang et al., 2025) and CodeMonkeys587

(Ehrlich et al., 2025) demonstrates that increasing588

the number of generated candidate solutions leads 589

to an approximately log-linear improvement in the 590

proportion of problems successfully solved by at 591

least one candidate. This test-time compute scaling 592

phenomenon significantly enhances overall solu- 593

tion coverage, that can be measured by metrics such 594

as Pass@K in code generation tasks. SFS (Light 595

et al., 2025) reveals performance gains on program- 596

ming tasks by enhancing the solution diversity and 597

leveraging prior search experiences. Snell et al., 598

2025 shows that scaling LLM test-time compute 599

optimally can be more effective than scaling model 600

parameters. Inspired by these work, we leverage 601

the test-time scaling across multiple components 602

of our agent. In addition, we uniquely leverage Elo 603

Rating-based verifier to compare and refine can- 604

didate solutions during tree search. This enables 605

effective exploration and improvement without re- 606

quiring explicit success criteria, making our ap- 607

proach more generalizable to real-world scientific 608

tasks where such gold signals are often unavailable. 609

6 Conclusion 610

In summary, we propose C&C, a verifier-guided 611

agent framework designed to address the unique 612

challenges of scientific coding tasks: uncertain so- 613

lution spaces and the absence of clear-cut task suc- 614

cess signals. By applying test-time compute scal- 615

ing in various components, C&C generates diverse 616

candidate solutions and iteratively refines them 617

through self-debug and self-improvement, guided 618

by an Elo Rating-based verifier. This framework en- 619

ables the agent to expand and correct its trajectory 620

without requiring gold labels or predefined met- 621

rics as the task success signal. Our experiments on 622

ScienceAgentBench demonstrate that C&C consis- 623

tently outperforms prior baselines, including direct 624

prompting, OpenHands, and Self-Debug, as well 625

as alternative verification strategies. These results 626

demonstrate the effectiveness of our agent design 627

and highlight the importance of generalizable veri- 628

fiers in domains lacking gold verification signals. 629

8



Limitations630

One limitation of our current framework is that631

it requires generating an entire code block in a632

single step, without support for incremental synthe-633

sis or partial execution feedback. As a result, for634

tasks that demand generating very long programs635

which are beyond the model’s capacity, our agent636

may become unsuitable for effectively handling637

such cases. Additionally, once the agent enters638

the self-improvement stage, it lacks the ability to639

autonomously determine when to stop; instead, it640

continues until the predefined maximum number of641

total steps is reached. This rigid stopping criterion642

can result in unnecessary computation or missing a643

high-quality solution that has already been found644

earlier.645
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A Appendix782

A Elo Algorithm783

Firstly, we initialize the Elo score Ei = 1500 for784

each code response Pi. Then, we iteratively update785

the Elo scores by using the relative scores between786

any two responses. Taking the response pair Pi and787

Pj as an example, we obtain their match results Si788

and Sj :789

Expected scores: When response Pi faces re- 790

sponse Pj , the expected score for Pi (denoted Ei) 791

is: 792

Ei =
1

1 + 10(Rj−Ri)/400
(1) 793

Similarly, the expected score for Pj is Ej = 794

1− Ei. 795

After the match: 796

• If Pi wins: Si = 1, Sj = 0 797

• If Pi loses: Si = 0, Sj = 1 798

• If it’s a draw: Si = 0.5, Sj = 0.5 799

Rating update rule: Use the standard Elo up- 800

date formula. For response Pi: 801

R′
i = Ri +K · (Si − Ei) (2) 802

Where: 803

• Ri is the old rating, R′
i is the new rating. 804

• Si is the actual score. 805

• Ei is the expected score. 806

• K is a constant. We set it to 32 to determine 807

how fast ratings change. 808

For each pair of responses, we update both of 809

their Elo scores once. After all pairwise compar- 810

isons, we obtain the final Elo scores for all re- 811

sponses, which can be used to derive a ranking. 812
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