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Abstract

Scientific coding tasks often require navigat-
ing vast, uncertain solution spaces, where ini-
tial hypotheses may be incomplete, flawed, or
contradictory. A key challenge in automating
scientific coding tasks is the lack of clear-cut
success signals, such as gold labels or unit tests
that are common in traditional programming
or supervised learning tasks. In scientific do-
mains, correctness is often context-dependent,
diverse in form, and rarely captured by a single
metric. This makes it difficult for agents to de-
termine when a solution is sufficient or how to
refine it. We introduce Compare-and-Correct
(C&C), a verifier-guided agent framework for
scalable test-time trajectory exploration. In-
stead of relying on single-pass inference, C&C
leverages test-time compute scaling by generat-
ing a diverse set of candidate solutions and then
iteratively refining them via self-debugging and
self-improvement mechanisms. An Elo Rating-
based verifier ranks candidates by relative qual-
ity, guiding the agent to backtrack, correct, and
converge on the most promising solutions with-
out relying on explicit success criteria. We
demonstrate C&C’s effectiveness across a range
of tasks including machine learning engineer-
ing and visualization on ScienceAgentBench.
Experiments show that C&C significantly out-
performs direct prompting, prior agents like
OpenHands and Self-Debug, and alternative
verifiers such as random selection and LLM-as-
a-Judge. These results confirm the strength of
our agent design and verification approach. !

1 Introduction

Large language models (LLMs) for science are
rapidly reshaping the landscape of scientific dis-
covery by enabling LLMs to reason, analyze, and
solve problems across domains such as chemistry,
biology, physics, and data science (Yu et al., 2024,
2025; Tang et al., 2024; Bhattacharya et al., 2024;
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Ali-Dib and Menou, 2024; Hong et al., 2024;
Chen et al., 2025). A wide spectrum of tasks,
including molecule design (Bhattacharya et al.,
2024), physics simulation (Ali-Dib and Menou,
2024), hypothesis formulation (Jin et al., 2024),
and experiment-guided machine learning and data
analysis (Chan et al., 2025; Nathani et al., 2025)
pose unique challenges in terms of multi-step rea-
soning, domain-specific code generation, and in-
tegration with structured scientific data. To sys-
tematically study and advance these capabilities,
recent benchmarks such as ScienceAgentBench
(Chen et al., 2025), DiscoveryBench (Majumder
et al.), SciCode (Tian et al., 2024), and BixBench
(Mitchener et al., 2025) formulate scientific discov-
ery and numerical calculation problems as code
generation tasks and focus on evaluating advanced
models and agents across real-world scientific prob-
lems. These benchmarks mirror the complexity of
real-world science and reveal the growing potential
of LLMs not merely as language models, but as Al
co-scientists capable of accelerating and expanding
the frontiers of scientific inquiry.

To solve those scientific tasks, many rely on di-
rect prompting to obtain programs without special
agent design (Tian et al., 2024). While some agents
are emerging, most of them face at least one of the
following limitations in their ability to generalize
and robustly support scientific coding tasks: (1)
only leverage a linear problem-solving strategy and
lack structured reasoning and solution space explo-
ration, which prevents full utilization of the models’
capabilities (Wang et al., 2024; Chen et al., 2024).
(2) Rely on the gold verification signals such as
clear-cut success metrics of the problem to provide
feedback for further refinement and lacks a more
general verifier to select the best solution during the
exploration (Jiang et al., 2025), which often does
not hold for real-world scientific settings and re-
stricts its scope of generalization to more problems.
These limitations highlight the need for science
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Figure 1: An overview of our agent framework: Compare-and-Correct (C&C).

agents to wisely plan, reason, explore and verify
autonomously in realistic scientific tasks.

Existing work such as PlanSearch (Wang et al.,
2025) and CodeMonkeys (Ehrlich et al., 2025)
show that as the number of generated solutions
increases, the fraction of problems in a dataset that
are successfully solved by at least one candidate
often grows approximately log-linearly. This test-
time compute scaling effect of generating more can-
didate solutions can significantly improve the over-
all success solution coverage such as Pass@K in
coding tasks. Under this background, we seek to an-
swer two central questions: (1) How can we lever-
age test-time scaling to explore a broader space
of potential solutions for scientific coding tasks?
(2) How can we design an effective verifier that
can reliably select the most plausible solution from
a set of search trajectories, especially when those
solutions in the trajectories vary in quality, com-
pleteness, and logical soundness?

A key challenge in scientific coding tasks is
the absence of clear-cut success signals such as
unit test cases or gold labels, which are commonly
available in traditional programming tasks or su-
pervised MLE benchmarks like Kaggle. In scien-
tific domains, correctness is often diverse, context-
dependent, and not easily captured by a unified
format such as a single accuracy metric or unit test
pass rate. This makes it difficult for agents to know
when a solution is good enough or how to improve
upon it.

To address this, we propose C&C, a novel verifier-
guided agent framework that integrates test-time

scaling for trajectory exploration. As Figure 1
shows, our framework embraces test-time diver-
sification, which generates a broad set of initial
candidate solutions to create a meaningful basis
for comparison. We then use an Elo Rating-based
verifier to identify the most promising candidate
based on relative quality, enabling targeted self-
debugging and self-improvement. This design al-
lows the agent to adaptively search, compare, and
improve solutions without relying on hard-coded
metrics, making it well-suited for open-ended, com-
plex and weakly supervised scientific coding tasks.

We conduct a detailed component-wise analysis
to better understand the contribution of each design
choice. Through targeted ablations and controlled
experiments, we evaluate the impact of initial so-
lution size, self-improvement mechanism, and ver-
ifier strategies. This analysis reveals how each
module contributes to end-to-end performance, and
demonstrates that the combination of diverse solu-
tion exploration and strategic verifier-driven selec-
tion is key to effective scientific coding tasks.

In summary, our contributions are three-fold:

e We propose a novel agent framework for sci-
entific coding tasks that explores the solu-
tion space more thoroughly through verifier-
guided tree search, enabling iterative refine-
ment and evaluation of candidate programs
without relying on gold verification signals.

e We conduct a detailed analysis of each com-
ponent to better understand how it affects the
performance of our agent framework.



o Our results show that the success rate of C&C
on ScienceAgentBench achieves a significant
gain over other baselines with reasonable cost.
It exceeds the best baseline agent Self-Debug
with a 24% improvement for SR, and achieves
22.9% improvement over OpenHands for SR
while reducing 53.2% cost.

2 Agent Framework

2.1 Background and Challenges

With the rapid development of LLMs, more and
more increasingly complex problems can now be
addressed via direct prompting (Tian et al., 2024).
However, this method often lacks structured rea-
soning and struggles with complex reasoning with
intricate dependencies across steps. Agent-based
frameworks like OpenHands (Wang et al., 2024)
improve upon this by generating and executing
partial code iteratively, using intermediate observa-
tions to inform subsequent actions. This design
enables LLLMs to reason and act more dynami-
cally, facilitating more effective problem-solving
and greater flexibility. The basic ReAct (Yao et al.,
2023) (Reasoning + Acting) prompting used in
OpenHands encourages step-by-step thinking and
external tool usage, making it well-suited for tasks
requiring multi-step reasoning. Nevertheless, these
approaches still follow a linear reasoning process
and may not capture deeper logical dependencies.
Self-debugging agents (Chen et al., 2024) further
improve execution success through iterative retries
and leverage the execution feedback generated by
code interpreter, but still fail to address deeper se-
mantic errors or flaws in scientific logic. While
AIDE (Jiang et al., 2025) introduces tree search
for program-level exploration for automated code
refinement, it relies on the clear-cut success met-
rics in tasks as the explicit feedback and keep run-
ning agents to attempt more if the solution doesn’t
meet the metric requirement. However, in scientific
tasks, such success criteria is often not available so
that the assumptions in AIDE’s agent rarely hold
in real-world scientific domains.

2.2 Design Motivation

Scientific discovery is rarely linear. It thrives on
exploration, revision, and reflection. Yet, most
current reasoning agents make shallow, one-shot
decisions, lacking the capacity to backtrack, re-
vise, or evaluate solutions strategically. C&C is
designed to overcome these limitations by treat-

ing scientific reasoning as a trajectory-driven pro-
cess, where multiple diverse paths are explored,
evaluated, and refined. Not all paths are equal:
some lead to breakthroughs, others to dead ends.
C&C introduces a verifier-guided tree search that
compares, scores and expands solution trajectories
based on Elo Rating. This allows the agent to strate-
gically prioritize promising directions and enables
dynamic solution expansion, self-debugging, and
self-refinement, mimicking the way human scien-
tists iterate toward insight.

C&C is inspired by human-like reasoning pro-
cesses, where initial rough ideas or high-level plans
are generated first, followed by iterative debugging
and refinement. This approach allows the agent
to progressively improve its solutions through self-
correction. Our agent mainly explores the potential
solution through tree search. The inclusion of a
backtracking mechanism during search enables the
agent to revisit earlier reasoning steps and recon-
sider alternative paths when necessary. A dedicated
verifier guides the agent’s next actions: determin-
ing which branches to explore, how to prioritize
the search, and which solutions warrant further
refinement, thereby enabling more deliberate and
adaptive problem-solving.

2.3 Components

Initial Planning and Solution Generation. Exist-
ing work such as PlanSearch (Wang et al., 2025)
and CodeMonkeys (Ehrlich et al., 2025) show that
as the number of generated solutions increases, the
fraction of problems in a dataset that are success-
fully solved by at least one candidate often grows
approximately log-linearly. This test-time compute
scaling effect of generating more candidate solu-
tions can significantly improve the overall success
solution coverage such as Pass@K in coding tasks.
Hence, we follow (Jiang et al., 2025) to generate
a rich pool of diverse solution candidates to give
more starting points to increase the agents’ explo-
ration success. As Figure 1 shows, we first prompt
LLM to generate multiple high-level plans, and en-
sure that previously generated plans are visible to
the model to avoid repeated plans. Then for each
plan, the LLM generates a corresponding program
as a candidate solution. This approach unlocks hid-
den insights that would be missed by deterministic
one-pass inference alone.

Self-Debug for On-the-Fly Error Correction.
Scientific coding tasks require the agent to produce
executable code. C&C incorporates a self-debugging
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Figure 2: An overview of Elo Rating verifier in tree search.

mechanism to leverage code interpreter to detect
and repair bugs during tree search. This reflective
capability enables the agent to revise faulty steps
without discarding entire trajectories.

Iterative Self-Improve through Reflective Rea-
soning. Reasoning is not just about fixing mistakes,
but about getting better with each step. C&C em-
ploys iterative self-refinement by prompting the
model to identify a specific refinement point within
a selected frontier solution, based on the task de-
scription. This process mirrors how humans iter-
atively refine solutions, progressively improving
them toward correctness and completeness.
Verifier for Frontier Selection. Effective trajec-
tory selection is critical to the success of C&C. We
implement a suite of frontier selection mechanisms
to explore which selection choice is more effective
to evaluate and rank candidate solutions through-
out the exploration. The same mechanism is em-
ployed both at the initial solution selection stage
and during self-improvement cycles. We explore
four verifier strategies:

(1) Random Selection: As a baseline, we ran-
domly select the frontier node from the pool of
generated candidate solutions. We will always pri-
oritize selecting from non-buggy candidates either
in the initial solution selection phase or the self-
improvement phase.

(2) LLM-as-a-Judge: We prompt LLM to assess
the quality of each candidate solution by generating
a numerical score given the task description and
generated solution. Then each time, we will choose
the solution with the highest score to debug or self-
improve. The final solution will be the non-buggy
one with the highest score.

(3) Rubric-Based Grading (Rubric-as-a-Judge):
A structured grading rubric is first generated by
GPT-40 based on the ground truth program, outlin-
ing multiple fine-grained solution milestones with
associated scores. This rubric is then reviewed and
refined by human expert to ensure accuracy and
clarity (Chen et al., 2025). We input the task de-
scription, rubric and solution to LLMs to generate
a numerical score for the solution. Then each time,
we will choose the solution with the highest score
to debug or self-improve. The final solution will
be the non-buggy one with the highest score. This
approach leverages the ground truth information
indirectly as the feedback to help choose the most
promising frontier solution at each step.

(4) Elo Rating based Ranking (Elo, 1978; Zhou
et al., 2025) and Selection: We adapt the Elo Rat-
ing algorithm in Appendix A to maintain a dynamic
ranking of candidate solutions. Each solution com-
petes against others in pairwise comparisons using
the LLM, and the ranking is updated accordingly.
This enables the agent to select the best-performing
node both among initial solutions and during re-
cursive self-improvement. Importantly, it supports
adaptive backtracking, allowing the agent to revisit
previously under-ranked trajectories. An illustra-
tion of Elo Rating verifier is shown in Figure 2.

Initially, the system compares pairs of candidate
branches, favoring the top-2 highest Elo-score so-
lutions and start to explore the first best branch.
If the solution is buggy, then first debug it until
it’s executable. Then the self-improvement phase
starts. During the iterative refinement process,
for each-step self-improvement in the best branch,
we compare the new solution with the solution in



the second-best branch and select the highest-Elo-
ranked solution for further refinement. Finally, the
highest-score non-buggy solution is selected based
on Elo ranking as the best solution.

Crucially, to enable adaptive and resilient reason-
ing, if a current path underperforms, the agent can
backtrack and reconsider previously lower-ranked
alternatives. This mechanism prevents premature
commitment to suboptimal solutions and allows
recovery from early mistakes.

In summary, by combining these above compo-
nents, C&C achieves robust and flexible trajectory
exploration and supports high-quality solution se-
lection across a wide range of scientific tasks.

3 Experimental Setup

Baselines. To evaluate the effectiveness of C&C, we
compare it against the following three baselines,
each representing a different strategy for program
generation and reasoning: 1) Direct Prompting:
This baseline uses an LLM to generate a solution
in a single pass using a task-specific prompt. It
reflects the standard zero-shot setting commonly
used in prior work. This method serves as a simple
and widely adopted baseline for evaluating initial
model generation quality. 2) Self-Debug (Chen
et al., 2024): In this baseline, the model generates
an initial solution and then attempts to improve
it via self-debugging based on the Python inter-
preter execution feedback. While this method al-
lows for limited reflection, it does not incorporate
trajectory search, external verification, or ranking.
It evaluates the isolated effect of a self-correction
loop without broader solution exploration. 3) Open-
Hands (Wang et al., 2024): OpenHands is a gen-
eral agent that is designed for multiple domains
including Web and software engineering tasks. It
builds on the ReAct framework (Yao et al., 2023) to
generate the next action based on the previous ob-
servation. Instead of directly generating the entire
program solution at once, OpenHands gradually
finishes the solution step by step.

Dataset. To evaluate C&C in realistic scientific cod-
ing scenarios, we use ScienceAgentBench (Chen
et al., 2025), a curated benchmark designed to
assess agents’ capabilities in scientific discovery.
This dataset includes a diverse set of tasks that
cover the entire workflow such as model develop-
ment, data analysis, and visualization, spanning
from four scientific disciplines: Bioinformatics,
Computational Chemistry, Geographical Informa-

tion Science, and Psychology & Cognitive Neuro-
science. All of our experiments are done on their
“without expert-provided knowledge" setting.
Experiment Details. We experiment with GPT-
40 (both the 0513 version and the 1120 version)
(OpenAl, 2024) and Claude-3.7-Sonnet (Anthropic,
2025). Since GPT-40 (2024-11-20) version is much
cheaper than GPT-40 (2024-05-13) version, we try
both versions for the main experiments, but use
GPT-40 (2024-11-20) version for the ablation study
and verifier mechanism part. For all experiments,
we use the same hyperparameters. For tempera-
ture, we use 0.5 for code generation and 0.5 for
debug, analysis and summary, and O when leverag-
ing LLMs to compare or judge the solutions. For
top-p, we use top 0.95, and perform 0-shot prompt-
ing via the APIs. For each baseline, we run three
times to get the mean and standard deviation of
the performance. For each verifier mechanism, we
run the agent twice to get the mean and standard
deviation of the performance.

To constrain the budget, we set the initial solu-

tion number to 5, maximum debug step to 3 and
total exploration step to 10, which will include the
self-improvement step if the budget has not been
exhausted by self-debug.
Evaluation Metrics. We follow previous work
(Chen et al., 2025) to comprehensively evaluate
each generated program using three key metrics.
(1) Valid Execution Rate (VER) measures whether
a program can execute without errors. (2) Success
Rate (SR) assesses whether the output satisfies the
specific task goal, such as passing predefined crite-
ria, matching expected predictions, or producing a
high-quality visualization. These criteria are imple-
mented as task-specific evaluation programs during
the benchmark annotation process. SR is condi-
tioned on VER: if a program fails to execute or
save its output correctly, its SR is 0. (3) API Cost
(Cost) reports the average dollar cost required to
complete a single task using the agent. This metric
accounts for API usage and serves to highlight the
importance of designing cost-efficient agents, as
emphasized by Kapoor et al., 2024.

4 Result Analysis
4.1 Main Results

Table 1 compares the performance of different
agent strategies using two versions of GPT-4o0
(2024-05-13 and 2024-11-20) across three metrics:
Success Rate (SR), Valid Execution Rate (VER),



Base Model Agents SR VER Cost |
Direct Prompting  7.50 (0.5) 42.2 (1.6) 0.011 (0.000)
OpenHands 13.1(2.6) 62.8(2.9) 1.093 (0.071)
GPT-40 (2024-05-13) Self-Debug 14.7 (3.2) 71.2(1.2) 0.057 (0.001)
C&C (Ours) 16.1 (1.2) 66.0(3.5) 0.512 (0.009)
Self-Debug 15.0 (4.8) 67.0(7.4) 0.030 (0.010)
GPT-40 (2024-11-20) C&C (Ours) 18.6 (3.3) 69.9 (0.6) 0.342 (0.008)

Table 1: Mean performances of each agent and standard deviations on ScienceAgentBench (Chen et al., 2025).

Models Verification SR VER Cost |
Random Selection 15.2(0.7) 64.7(1.4) 0.180 (0.006)
GPT-40 (2024-11-20) LLM-as-a-Judge 16.2 (3.5) 69.1 (0.7) 0.253(0.013)
Elo Ranking 18.6 (3.3) 69.9 (0.6) 0.342 (0.008)
GPT-40 (2024-11-20) Rubric-as-a-Judge (w/ GT) 21.1 2.1) 74.5(2.8) 0.303 (0.016)

Table 2: Verification choice effect on our agent. “w/ GT" means using ground truth program judge signal.

and Cost. The experiment results show that our
proposed agent C&C consistently outperforms base-
line approaches across both model versions. Un-
der the 2024-05-13 model, C&C achieves an SR of
16.1%, surpassing Self-Debug (14.7%) and Open-
Hands (13.1%), while maintaining a strong VER
of 66.0%. Although the cost (0.512) is higher than
Self-Debug (0.057) and Direct Prompting (0.011),
C&C offers a better balance between performance
and cost-effectiveness compared to OpenHands
(1.093), which is substantially more expensive de-
spite lower SR and VER.

With the updated GPT-40 (2024-11-20), in order
to save the cost, we only choose the best baseline
Self-Debug for comparison. C&C achieves a large
performance gain compared to Self-Debug, with a
24% improvement for SR and a 2.9-point improve-
ment for VER. Besides, the performance of C&C is
more stable than Self-Debug, with a 31% reduc-
tion of standard deviation for SR and a 6.8-point
reduction of standard deviation for VER.

4.2 Verifier Strategy Analysis

Table 2 evaluates the impact of different verifica-
tion strategies on agent performance using GPT-40
(2024-11-20). Among the random selection, LLM-
as-a-Judge and Elo Ranking, Elo Ranking achieves
the highest SR (18.6%) and VER (69.9%), out-
performing both other two baselines, which attain
lower SR of 15.2% and 16.2%, respectively and
lower VER of 64.7% and 69.1% respectively.

The Rubric-as-a-Judge achieves the highest SR
and VER among all verification methods, benefit-
ing from access to ground truth rubric descriptions
that detail the correct solution steps. While this
method partially leverages ground truth signals, it
highlights the potential performance gains from
incorporating reliable supervision when available.
Howeyver, such rubric-based evaluations are often
impractical in real-world scientific tasks, where de-
tailed grading criteria are rarely accessible. In con-
trast, our Elo Rating-based verifier offers a more
generalizable solution, as it operates independently
of ground truth labels while still delivering strong
performance. Due to its effectiveness and applica-
bility in reality, we adopt Elo Ranking as the default
verification method in our main agent framework.

4.3 Component Ablation Study

Table 3 presents a component-wise ablation study
evaluating the impact of the number of initial solu-
tions and the use of the self-improvement mecha-
nism in our agent framework. We obvserve that:

(1) Number of successful initial solutions directly
contributes to end-to-end success rate. The table
shows a strong correlation between the average
number of successful initial solutions and the overll
success rate. Without self-improvement, increasing
the number of initial solutions from 1 to 5 yields
a steady improvement in the average number of
successful initial solutions (from 0.24 to 0.98), the
average number of successful nodes (from 0.40 to



Num of Init. Avg # of Successful Avg # of
2 9
Solutions Use Self-Tmprove? Init. Solutions Successful Nodes Success Rate
1 No 0.24 0.40 40.5
2 No 0.40 0.57 40.5
5 No 0.98 1.14 452
5 Yes 1.17 2.69 57.1

Table 3: Component ablation on our agent. Model: GPT-40 (2024-11-20). The experiment is done on 42 selected
tasks, where each task has been solved at least once by either a baseline or our agent.

1.14) and the overall success rate (from 40.5% to
45.2%). This indicates that generating multiple ini-
tial solutions increases the chance that at least one
initial solution is close to correct, thus improving
the agent’s final performance. The more successful
starting points the agent has, the more likely it is to
select or build upon a valid reasoning path.

(2) Self-improvement enables the agent to gener-
ate more correct programs and achieve the highest
success rate. The final row of Table 3 isolates the
effect of enabling self-improvement: for the same
initial solution size 5, when self-improvement is
disabled (row 3), the agent achieves an average
of 1.14 successful nodes and 45.2% success rate,
while when self-improvement is enabled (row 4),
the number of successful nodes jumps to 2.69, and
the success rate increases significantly to 57.1%.

This demonstrates that self-improvement nearly
doubles the number of correct programs, allowing
the agent to refine and expand upon flawed or
incomplete initial solutions. The improvement
in both node-level correctness and overall task
success confirms that self-improvement is a key
driver of end-to-end performance.

Overall, the findings highlight the complemen-
tary roles of solution diversity and iterative refine-
ment in enhancing agent performance on the tasks.

4.4 Error Analysis

To evaluate the effectiveness of our verifier-guided
approach, we conducted an error analysis on 20
randomly selected unsuccessful tasks from Sci-
enceAgentBench using C&C. We categorize errors
into two main types: exploration errors and veri-
fication errors. An exploration error occurs when
the agent’s entire trajectory fails to produce any
solution that meets the success criteria. In contrast,
a verification error arises when at least one success-
ful solution exists in the trajectory, but the agent
fails to identify or select it as the final output.

We further subdivide exploration errors into two

Analysis on 20 Unsuccessful Tasks

Exploration Error:
Executable but Unsuccessful

Verification Error 68.4%

Exploration Error:
Not Executable

Figure 3: Error analysis on 20 randomly selected unsuc-
cessful tasks of ScienceAgentBench.

categories: not executable, where all generated so-
lutions are buggy, and executable but unsuccessful,
where some solutions are runnable but do not sat-
isfy the task requirements. As shown in Figure 3,
only 15.8% of the failures were due to verifica-
tion errors, suggesting that our Elo Rating-based
verifier is generally effective at recognizing cor-
rect solutions. The remaining 84.2% of failures
were attributed to exploration errors, with 15.8%
resulting from non-executable programs and 68.4%
from executable but incorrect outputs. This anal-
ysis highlights that the dominant source of failure
lies in the exploration stage. It suggests that more
test-time compute is needed in order to cover suc-
cessful solution in the trajectory, such as increasing
the initial solution size or self-improve more steps.

4.5 Initial Solution and Verifier Model
Selection

Table 4 presents an ablation study on how different
configurations of initial solution generators and
verifiers affect agent performance. Using GPT-4o0
for both components yields a strong baseline (SR
=18.6%, VER = 69.9%) with the lowest agent cost
(0.342). Interestingly, during our experiments, we
observe that the successful solutions generated by
Claude-3.7 and GPT-40 partially differ, with each
model solving some examples that the other does
not. This complementary behavior motivates us to



Models VER Cost |
Initial Solutions Verification Initial Solutions  Verification ~Agent
GPT-40 GPT-40 18.6 69.9 0.061 0.150 0.342
mixture of GPT-40 and Claude-3.7 GPT-40 19.6 63.7 0.108 0.164 0.417
Claude-3.7 GPT-40 18.6 725 0.162 0.159 0.463
Claude-3.7 Claude-3.7 12.7 63.7 0.178 0.260 0.893

Table 4: Model selection of initial solutions and verification effect on our agent.

ensemble both models to enhance the diversity and
robustness of the initial solution generator. Table
4 shows that replacing the initial solutions with
a mixture of GPT-40 and Claude-3.7 leads to the
highest SR (19.6%), albeit with a drop in VER
(63.7%) and a moderate increase in cost (0.417).
Using Claude-3.7 exclusively as generator while
retaining GPT-40 as the verifier maintains a com-
petitive SR (18.6%) and achieves the highest VER
(72.5%), but increases total cost to 0.463. However,
when Claude-3.7 is used as both generator and ver-
ifier, performance deteriorates significantly (SR =
12.7%, VER = 63.7%) and cost nearly doubles
(0.893). We suspect this is because GPT-40 has
stronger verification capabilities than Claude-3.7.

5 Related Work

LLMs for Science. The integration of LLMs into
scientific research workflows has opened new av-
enues for automating complex tasks, from hypothe-
sis generation to data analysis. Recent benchmarks
such as ScienceAgentBench (Chen et al., 2025)
and DiscoveryBench (Majumder et al.) have been
instrumental in evaluating LLMs’ capabilities in
data-driven scientific discovery. At the same time,
different agents are applied or designed to solve
these tasks. For example, OpenHands (Wang et al.,
2024) completes the coding tasks by generating
and executing partial code iteratively, using inter-
mediate observations to inform subsequent actions.
Self-Debug (Chen et al., 2024) corrects the code
solution by providing the execution logs and feed-
back to LLMs. AIDE (Jiang et al., 2025) attempts
to incorporate tree search to iteratively refine the
code. However, these agents either rely on a single
refinement strategy (Wang et al., 2024; Chen et al.,
2024), or depend on gold verification signals such
as explicit success metrics to determine whether a
solution meets the task criteria and to guide further
refinement (Jiang et al., 2025).

Test-time Scaling in LLMs. Prior work such as
PlanSearch (Wang et al., 2025) and CodeMonkeys
(Ehrlich et al., 2025) demonstrates that increasing

the number of generated candidate solutions leads
to an approximately log-linear improvement in the
proportion of problems successfully solved by at
least one candidate. This test-time compute scaling
phenomenon significantly enhances overall solu-
tion coverage, that can be measured by metrics such
as Pass@K in code generation tasks. SFS (Light
et al., 2025) reveals performance gains on program-
ming tasks by enhancing the solution diversity and
leveraging prior search experiences. Snell et al.,
2025 shows that scaling LLM test-time compute
optimally can be more effective than scaling model
parameters. Inspired by these work, we leverage
the test-time scaling across multiple components
of our agent. In addition, we uniquely leverage Elo
Rating-based verifier to compare and refine can-
didate solutions during tree search. This enables
effective exploration and improvement without re-
quiring explicit success criteria, making our ap-
proach more generalizable to real-world scientific
tasks where such gold signals are often unavailable.

6 Conclusion

In summary, we propose C&C, a verifier-guided
agent framework designed to address the unique
challenges of scientific coding tasks: uncertain so-
lution spaces and the absence of clear-cut task suc-
cess signals. By applying test-time compute scal-
ing in various components, C&C generates diverse
candidate solutions and iteratively refines them
through self-debug and self-improvement, guided
by an Elo Rating-based verifier. This framework en-
ables the agent to expand and correct its trajectory
without requiring gold labels or predefined met-
rics as the task success signal. Our experiments on
ScienceAgentBench demonstrate that C&C consis-
tently outperforms prior baselines, including direct
prompting, OpenHands, and Self-Debug, as well
as alternative verification strategies. These results
demonstrate the effectiveness of our agent design
and highlight the importance of generalizable veri-
fiers in domains lacking gold verification signals.



Limitations

One limitation of our current framework is that
it requires generating an entire code block in a
single step, without support for incremental synthe-
sis or partial execution feedback. As a result, for
tasks that demand generating very long programs
which are beyond the model’s capacity, our agent
may become unsuitable for effectively handling
such cases. Additionally, once the agent enters
the self-improvement stage, it lacks the ability to
autonomously determine when to stop; instead, it
continues until the predefined maximum number of
total steps is reached. This rigid stopping criterion
can result in unnecessary computation or missing a
high-quality solution that has already been found
earlier.
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A Appendix
A Elo Algorithm

Firstly, we initialize the Elo score E; = 1500 for
each code response P;. Then, we iteratively update
the Elo scores by using the relative scores between
any two responses. Taking the response pair P; and
P; as an example, we obtain their match results S;
and S

10

Expected scores: When response F; faces re-
sponse P}, the expected score for P; (denoted £;)
is:

1
Ei= 1 4 10(R;—Ri)/400

Similarly, the expected score for P; is F; =
1—-E;.

ey

After the match:

e If P, wins: §; =1,5; =0

o If P;loses: S; =0, 5; =1

e Ifit’s a draw: S; = 0.5, S; = 0.5

Rating update rule: Use the standard Elo up-
date formula. For response F;:

Ri=R;+ K- (S;— E;) ()
Where:

* R, is the old rating, R/ is the new rating.

* S, is the actual score.

» F; is the expected score.

e K is a constant. We set it to 32 to determine
how fast ratings change.

For each pair of responses, we update both of
their Elo scores once. After all pairwise compar-
isons, we obtain the final Elo scores for all re-
sponses, which can be used to derive a ranking.
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