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Abstract

Clustering clients with similar objectives and learning a model per cluster is an intuitive
and interpretable approach to personalization in federated learning. However, doing so
with provable and optimal guarantees has remained an open challenge. In this work, we
formalize personalized federated learning as a stochastic optimization problem where the
stochastic gradients on a client may correspond to one of K distributions. In such a setting,
we show that using i) a simple thresholding-based clustering algorithm, and ii) local client
gradients obtains optimal convergence guarantees. In fact, our rates asymptotically match
those obtained if we knew the true underlying clustering of the clients. Furthermore, our
algorithms are provably robust in the Byzantine setting where some fraction of the gradients
are corrupted.

1 Introduction

We consider the federated learning setting in which there are N clients with individual loss functions { f; };c[n
who seek to jointly train a model or multiple models. The defacto algorithm for problems in this setting is
FedAvg (McMahon et al.l [2017) which has an objective of the form

ThedAvg = argergrém ~ _ez[;v] fi(z). (1)

From , we see that FedAvg optimizes the average of the client losses. In many real-world cases however,
clients’ data distributions are heterogeneous, making such an approach unsuitable since the global optimum
may be very far from the optima of individual clients. Rather, we want algorithms which identify
clusters of the clients that have relevant data for each other and that only perform training within each
cluster. However, this is a challenging exercise since 1) it is unclear what it means for data distributions of two
clients to be useful for each other, or 2) how to automatically identify such subsets without expensive multiple
retraining (Zamir et al., 2018)). In this work we propose algorithms which iteratively and simultaneously 1)
identify K clusters amongst the clients by clustering their gradients and 2) optimize the clients’ losses within
each cluster.

1.1 Clustering Methods for Personalized Federated Learning

As stated, our task at hand in this work is to simultaneously learn the clustering structure amongst clients
and minimize their losses. There are two main criteria that must hold in order for this clustering problem
to be solvable.

1. Intra-cluster Similarity: Points within a cluster must be sufficiently close.

2. Inter-cluster Separation: Points from different clusters must be sufficiently far apart.

Since our approach in this work is to cluster clients by clustering their gradients, these criteria are difficult
to satisfy. We can see why by examining a naive algorithm, Myopic-Clustering (Algorithm .
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(a) Myopic-Clustering (n = 0.5) (b) IFCA /HypCluster

(c) Clustered Federated Learning

Figure 1: Counter-examples for existing clustering-based personalized federated learning algorithms.

Myopic-Clustering (Algorithm . This algorithm initially sets K models and iteratively updates
them with the gradients of the closest clients. However, Myopic-Clustering has two issues: 1) If it makes a
clustering mistake at one step, the models could be updated in directions away from their optima, or the
gradients of clients in the same cluster could drift apart, thus violating the intra-cluster similarity criterion.
Furthermore, these errors can compound over rounds. 2) Even if Myopic-Clustering clusters clients perfectly
at each step, the clients’ gradients will approach zero as the models converge to their optima. This means
that clients from different clusters will appear to belong to the same cluster as the algorithm converges, the
inter-cluster separation criterion will no longer be satisfied, and all clients will collapse into a single cluster.
The following example (Figure demonstrates these failure modes of Myopic-Clustering.

Let N =3 and K = 2, with client loss functions

fl(@"):%ﬂf2
f2(m):{41(95—1)3;3(3:—1)4“ <1

(@ —1)+1 x> 1,
fila) = 5o =2

where 7 is the learning rate of the algorithm. With this structure, clients {1,2} share the same global
minimum and belong to the same cluster, and client {3} belongs to its own cluster. Suppose Myopic-
Clustering is initialized at xo = 1.5. At step 1, it will compute the client gradients as /2y, 1/2n, and —1/2y
respectively, correctly clustering clients {1,2} together and client {3} alone. After updates, the clients’
parameters will next be z17 = 1,291 = 1,z31 = 2 respectively. At this point, clients {2,3} will be
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Algorithm 1 Myopic-Clustering

Input Learning rate: 7. Initial parameters: {331,0 =..=INo= Zo}.
1: for round ¢ € [T] do
2: for client ¢ in [N] do
3 Client ¢ sends g;(x;+—1) to server.
4 Server clusters {g;(xi—1)}ic|n], generating cluster centers {vy ¢ }re(x]-
5: Server sends vy, ¢ to client ¢, where k; denotes the cluster to which client ¢ is assigned.
6 Client ¢ computes update: z;; = z;+—1 — NV, +-
7

: Output: Personalized parameters: {z1,7,....,cn 7}

incorrectly clustered together since their gradients will both be 0, while client {1} will be clustered alone.
As the algorithm proceeds, clients {2,3} will always be clustered together and will remain at z = 1 and
x = 2 respectively, while client {1} will converge to its optimum at @ = 0. Consequently, two undesirable
things happen: 1) Client {2} gets stuck at the saddle point at = 1 which occurred when it was incorrectly
clustered with client {3} at ¢ = 1 and subsequently did not recover. 2) All gradients converge to 0, so at the
end of the algorithm all clients are clustered together.

Federated-Clustering (Algorithm , our proposed algorithm, checks at every step the gradient values of
all NV clients at the current parameters of all K clusters. This verification process avoids the type of errors
made by Myopic-Clustering. For instance, on the example above, at ¢t = 1 when Myopic-Clustering makes its
terminal mistake, Federated-Clustering computes the gradients of all clients at client {1}’s current parameters
- g1(1) = /39, g2(1) = 0, and g3(1) = —1/n. Therefore it correctly clusters {1, 2} together at this point, and
client {2}’s parameters update beyond the saddle-point and converge to the global minimum at z = 0.

To further motivate the design choice for our algorithms, we now discuss three clustering-based algorithms
in the literature on personalized federated learning. In particular, we generate counter-examples on which
they fail and show how our algorithm avoids such pitfalls.

The first two algorithms IFCA (Ghosh et al.| 2021]) and HypCluster (Mansour et al.,|2021)) are closely related.
They both cluster loss function values rather than gradients, and like our algorithm they avoid the myopic
nature of Myopic-Clustering by, at each step, computing all client losses at all current cluster parameters
to determine the clustering. However, as we show in the next example (Figure , they are brittle and
sensitive to initialization.

IFCA (Ghosh et al., |2021). Let N =2, K =2 with loss functions

fil@) = (@ + 0.5
fa(z) = (z — 0.5)%,

and initialize clusters 1 and 2 at x1 9 = —1.5 and z39 = 0 respectively. Given this setup, both clients
initially select cluster 2 since their losses at x2 ¢ are smaller than at z; g.

Option I: At 259 = 0, the client gradients will average to 0. Consequently the models will remain
stuck at their initializations, and both clients will be incorrectly assigned to cluster 2.

Option II: Both clients individually run 7 steps of gradient descent starting at their selected model
x9,0 (i.e. perform the LocalUpdate function in line 18 of IFCA). Since the clients’ individually updated
models will be symmetric around 0 after this process, the server will compute cluster 2’s model update in
line 15 of IFCA as: z3; < 0 = z3. Consequently, the outcome is the same as in Option I: the models
never update and both clients are incorrectly assigned to cluster 2.

HypCluster (Mansour et al.,[2021)). This algorithm is a centralized version of Option II of IFCA. The
server alternately clusters clients by loss function value and runs stochastic gradient descent per-cluster using
the clients’ data. It performs as Option IT of IFCA on the example above.



Under review as submission to TMLR

By clustering clients based on gradient instead of loss value, our algorithm Federated-Clustering initially
computes the clients’ gradients of +1 and —1 respectively at x2 o = 0, and given the continued separation of
their gradients around 0 as the algorithm converges, correctly identifies that they belong to different clusters.

Finally, we discuss Clustered Federated Learning, the algorithm proposed in|Sattler et al.| (2019), which runs
the risk of clustering too finely, as in the next example (Figure .

Clustered Federated Learning (Sattler et al., [2019). Clustered Federated Learning operates by
recursively bi-partitioning the set of clients based on the clients’ gradient values at the FedAvg optimum.
Consider the following example. Let N = 3 and K = 2 with client gradients

Therefore the correct clustering here is {1} and {2,3}. The FedAvg optimum is f,qa,, = /4, at which the
clients’ gradient values are g1 (1/4) = 1/4, g2(1/4) = —1/4 and g5 = 1/4 w.p. /2. Based on this computation,
Clustered Federated Learning partitions the client set into {1,2} and {3} w.p. 1/2 and then proceeds to
run the algorithm separately on each sub-cluster. Therefore, the algorithm never corrects its initial error
in separating clients {2} and {3}. Our algorithm, Federated-Clustering, avoids this type of mistake by
considering all clients during every clustering.

1.2 Our Contributions

To address the shortcomings in current approaches, we propose two personalized federated learning al-
gorithms, which simultaneously cluster similar clients and optimize their loss objectives in a personalized
manner. In each round of the procedure, we examine the client gradients to identify the cluster structure as
well as to update the model parameters. Importantly, ours is the first method with theoretical guarantees
for general non-convex loss functions, and not just restrictive toy settings. We show that our method enjoys
both nearly optimal convergence, while also being robust to some malicious (Byzantine) client updates. This
is again the first theoretical proof of the utility of personalization for Byzantine robustness. Specifically in
this work,

o We show that existing or naive clustering methods for personalized learning, with stronger assump-
tions than ours, can fail in simple settings (Figure [1)).

o We design a robust clustering subroutine (Algorithm [3)) whose performance improves with the sep-
aration between the cluster means and the number of data points being clustered. We prove nearly
matching lower bounds showing its near-optimality (Theorem , and we show that the error due to
malicious clients scales smoothly with the fraction of such clients (Theorem [I)).

o We propose two personalized learning algorithms (Algorithm [2|and Algorithm [4)) which converge at
the optimal O(1/+/n;T) rate in T for stochastic gradient descent for smooth non-convex functions
and linearly scale with n;, the number of clients in client ¢’s cluster.

o We empirically verify our theoretical assumptions and demonstrate experimentally that our learning
algorithms benefit from collaboration, scale with the number of collaborators, are competitive with
SOTA personalized federated learning algorithms, and are not sensitive to the model’s initial weights

(Section [4)).
2 Related Work

Personalization via Clustering. Personalization in federated learning has recently enjoyed tremendous
attention (see Tan et al.|(2022); Kulkarni et al.| (2020) for surveys). We focus on gradient-based clustering
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methods for personalized federated learning. Several recent works propose and analyze clustering methods.
Sattler et al.| (2019) alternately train a global model with FedAvg and partition clients into smaller clusters
based on the global model’s performance on their local data. [Mansour et al.| (2021)) and |Ghosh et al.| (2021)
instead train personalized models from the start (as we do) without maintaining a global model. They
iteratively update K models and, using empirical risk minimization, assign each of N clients one of the
models at every step. |[Mansour et al.| (2021) and |Ghosh et al.| (2021)) both provide generalization guarantees
for the assigned models and |Ghosh et al. (2021) additionally provide convergence guarantees on training
data. The spirit of our work is similar to these works with some important differences: 1)|Ghosh et al.| (2021))
assume strong convexity of the clients’ loss objectives (along with strong initializaton conditions), while our
guarantees hold for all smooth (convex and non-convex) functions; 2) |Ghosh et al| (2021); Mansour et al.
(2021)) cluster clients based on empirical risk minimization whereas we cluster clients based on similarity of
their gradients.

Multitask learning. Our work is closely related to multitask learning, which simultaneously trains sep-
arate models for different-but-related tasks. |Smith et al.|(2017) and |Li et al.| (2021) both cast personalized
federated learning as a multitask learning problem. In the first, the per-task models jointly minimize an
objective that encodes relationships between the tasks. In the second, models are trained locally (for per-
sonalization) but regularized to be close to an optimal global model (for task-relatedness). These settings
are quite similar to our setting. However, we use assumptions on gradient (dis)similarity across the domain
space to encode relationships between tasks, and we do not maintain a global model.

Robustness. Our methods are provably robust in the Byzantine (Lamport et al., [2019; |Blanchard et al.,
2017) setting, where clients can make arbitrary updates to their gradients to corrupt the training process.
Karimireddy et al.|(2021]) create an optimization algorithm for such settings with provably robust convergence
guarantees. Our clustering algorithm builds upon their procedure for minimizing the effect of malicious
gradients. The personalization algorithm in [Li et al.| (2021]) also has robustness properties, but they are only
demonstrated empirically and analyzed on toy examples.

3 Federated-Clustering

In this section, we propose an algorithm, Federated-Clustering (Algorithm , which avoids the shortcomings
of the algorithms discussed in Section [I.I] At a high level, it works as follows. Each client i maintains a
personalized model which, at every step, it broadcasts to the other clients j # i. Then each client j computes
its gradient on clients ’s model parameters and sends the gradient to client 7. Finally, client ¢ runs a clustering
procedure on the received gradients, determines which other clients have gradients closest to its own at its
current model, and updates its current model by averaging the gradients of these similar clients. By the end
of the algorithm, ideally each client has a model which has been trained only on the data of similar clients.

The core of our algorithm is a clustering procedure, Threshold-Clustering (Algorithm 7 which identifies
clients with similar gradients at each step. This clustering procedure, which we discuss in the next section,
has two important properties: it is robust and its error rate is near-optimal.

Notation. For an arbitrary integer N, we let [N] = {1, ..., N}. We take a 2 b to mean there is a sufficiently
large constant ¢ such that a > ¢b, a < b to mean there is a sufficiently small constant ¢ such that a < ¢b,
and a =~ b to mean there is a constant ¢ such that a = ¢b. We write i ~ j if clients ¢ and j belong to the
same cluster and i % j if they belong to different clusters. Finally, n; denotes the number of clients in client
i’s cluster, d; = ni/N denotes the fraction of clients in client #’s cluster, and §; denotes the fraction of clients
that are malicious from client i’s perspective.

3.1 Analysis of Clustering Procedure

Given the task of clustering IV points into K clusters, at step [ our clustering procedure has current estimates
of the K cluster-centers, vy, ...,vk,. To update each estimate vy ;41 < vi,, it constructs a ball of radius
T, around vy ;. If a point falls inside the ball, the point retains its value; if it falls outside the ball, its value
is mapped to the current cluster-center estimate. The values of all the points are then averaged to set vy ;41
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(update rule (4))). The advantage of this rule is that it is very conservative. If our algorithm is confident
that its current cluster-center estimate is close to the true cluster mean (i.e. there are many points nearby),
it will confidently improve its estimate by taking a large step in the right direction (where the step size and
direction are determined mainly by the nearby points). If our algorithm is not confident about being close to
the cluster mean, it will tentatively improve its estimate by taking a small step in the right direction (where
the step size and direction are small since the majority of points are far away and thus do not change the
current estimate).

To analyze the theoretical properties of this procedure, we look at a natural setting in which clients within
the same cluster have i.i.d. data (for analysis of our federated learning algorithm, we will relax this strong
notion of intra-cluster similarity). In particular, in our setting there are N points {z1, ..., 2y } which can be
partitioned into K clusters within which points are i.i.d. We assume the following.

o Assumption 1 (Intra-cluster Similarity): For all ¢ ~ j,

i.i.d.
Zi ~ Zj.

o Assumption 2 (Inter-cluster Separation): For all i ¢ j,

||EZZ — EZ]'||2 2 Az.

o Assumption 3 (Bounded Variance): For all z;,
E|lz; — Ez|? < o

Theorem 1. Suppose there N points {z;},cn) for which Assumptions [1-3] hold with inter-cluster separation
parameter A 2 °/s5;. Running Algarithm@for

[ 2 max ¢ 1, max _los(e/a)
ic[N] log(1 — %/2)

steps with fraction of malicious clients 5; < 0; and thresholding radius T =~ /0,0 guarantees that

~

, 02 o3
Ellvg, 1 — Ez||* S o + N + BicA. (2)

Proof. See O

Supposing 5; = 0, if we knew the identity of all points within z;’s cluster, we would simply take their mean
as the cluster-center estimate, incurring estimation error of ©°/n; (i.e. the sample-mean’s variance). Since we
don’t know the identity of points within clusters, the additional factor of ¢°/a in is the price we pay to
learn the clusters. This additional term scales with the difficulty of the clustering problem. If true clusters
are well-separated and/or the variance of the points within each cluster is small (i.e. A is large, o2 is small),
then the clustering problem is easier and our bound is tighter. If clusters are less-well-separated and/or
the variance of the points within each cluster is large, accurate clustering is more difficult and our bound
weakens.

Setting 7. To achieve the rate in (2)), we set 7 ~ VoA, which is the geometric mean of the standard
deviation, o, of points belonging to the same cluster and the distance, A, to a different cluster. The
intuition for this choice is that we want the radius for each cluster to be at least as large as the standard
deviation of the points belonging to that cluster in order to capture in-cluster points. The radius could be
significantly larger than the standard deviation if A is large, thus capturing many non-cluster points as well.
However, the conservative nature of our update rule (4] offsets this risk. By only updating the center with
a step-size proportional to the fraction of points inside the ball, it limits the influence of any mistakenly
captured points.

Threshold-Clustering has two important properties which we now discuss: it is Byzantine robust and has a
near-optimal error rate.
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3.1.1 Robustness

We construct the following definition to characterize the robustness of Algorithm [3]

Definition 1 (Robustness). An algorithm A is robust if the error introduced by bad clients can be bounded
i.e. malicious clients do not have an arbitrarily large effect on the convergence. Specifically, for a specific
objective, let £ be the base error of A with no bad clients, let B be the fraction of bad clients, and let E; be
some bounded error added by the bad points. Then A is robust if

Err(A) <& + B&s.

Threat model. Our clustering procedure first estimates the centers of the K clusters from the N points
and constructs a ball of radius 7, around the estimated center of each cluster k. If a point falls inside the
ball, the point retains its value; if it falls outside the ball, its value is mapped to the current cluster-center
estimate. Following the update rule , the values of all the points are averaged to update the cluster-center
estimate. Therefore, a bad point that wants to distort the estimate of the k’th cluster’s center has the most
influence by placing itself just within the boundary of the ball around that cluster-center, i.e. at 7-distance
from the cluster-center.

From we see that the base squared-error of Algorithm in estimating z;’s cluster-center is < o°/n; +7%/a,
and that the bad points introduce extra squared-error of order cA. Given our threat model, this is exactly
expected. The radius around z;’s cluster-center is order Vo A. Therefore, bad points placing themselves at
the edge of the ball around z;’s cluster-center estimate will be able to distort the estimate by order cA.
The scaling of this extra error by f; satisfies our definition of robustness, and the error smoothly vanishes
as B; — 0.

3.1.2 Near-Optimality

The next result shows that the upper bound on the estimation error of Algorithm [3[ nearly matches the
best-achievable lower bound. In particular, it is tight within a factor of o/A.

Theorem 2 (Near-optimality of Threshold-Clustering). For any algorithm A, there exists a mizture of
distributions D1 = (u1,0%) and Dy = (2, 02) with |1 — pz|| > A such that the estimator fi; produced by A
has error

g g

4 2
Ellin — il > Q<A2 n n).
Proof. See[A2] O

3.2 Analysis of Federated-Clustering

We now have the tools to analyze our personalized federated learning algorithm, Federated-Clustering (Al-
gorithm . First, we establish the necessary assumptions for clustering to be possible in this setting:
intra-cluster similarity, inter-cluster separation, bounded variance of stochastic gradients, and smoothness
of loss objectives.

o Assumption 4 (Intra-cluster Similarity): For all , i ~ j, and some constant A > 0,
IV fi(z) = Vfi(2)|* < A%V fil=)]1%,

where f;(z) & ni > jmi fi(@).

o Assumption 5 (Inter-cluster Separation): For all z, i ¢ j, and some constant D > 0,
IV fi(z) = Vfi(@)|? = A? = D?||V fy(2)|*.

We note that Assumptions 4 and 5 are quite permissive. Rather than requiring that clients in the same
cluster have close gradients at all points, Assumption 4 merely requires that they have the same optimum,
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Algorithm 2 Federated-Clustering
Input Learning rate: 1. Initial parameters for each client: {z1¢,...,Zn0}-
1: for client ¢ € [N] do
2: Send z; o to all clients j # .
3: for round ¢t € [T] do
4 for client ¢ in [N] do
5 Compute g;(z;+—1) and send to client j for all j # i € [N].
6: Compute v; ¢ < Threshold-Clustering({g;(zit—1)};eny; 1 cluster; gi(zi:-1)).
7
8
9

Update parameter: x;; = ;-1 — NV; ¢
Send z; ¢ to all clients j # ¢.

: Output: Personalized parameters: {z1,7,....,Zn1}-

but allows their gradients to diverge elsewhere in domain space. This assumption is closely related to the
strong growth condition (equation (1) in [Vaswani et al.| (2019)), which is shown to be a very useful notion
in practical deep learning. We also experimentally verify that it holds in our setting (Figure . Similarly,
rather than requiring that clients in different clusters have separated gradients at all points, Assumption 5
merely requires that their gradients be sufficiently far apart at their respective optima.

o Assumption 6 (Bounded Variance of Stochastic Gradients): For all x,
Ellgi(z) = Vfi(z)|* < o2,
where E[g;(z)|z] = Vfi(x) and each client i’s stochastic gradients g;(x) are independent.

o Assumption 7 (Smoothness of Loss Functions): For any z,y,
IV fi(z) = Vi)l < Lz —yl.

Theorem 3. Let Assumptions [4-7] hold with inter-cluster separation parameter A 2 max(1,A%) max(1,D*)o /s,
Under these conditions, suppose we run Algorithm |4 for T rounds with learning rate n < /L, fraction of
malicious clients 3; < 6;, and batch size |B| 2 v/max(1, A2)(o*/n; + o°/a + BioA)m;, where m; is the size

of client i’s training dataset. If, in each round t € [T], we cluster with radius T = \/6;0cA for

[ > max< 1, max M
ieN] log(1 — di/2)

steps, then

d max 2)(o? ng o3 f
;ZEHm(zi,ﬂ)Qs\/ ax(L, A%)( /T+ /a+ Bio) "
t=1

Proof. See O

We note a few things. 1) The rate in is the optimal rate in T for stochastic gradient descent on non-convex
functions (Arjevani et al|2019). 2) The dependence on /o2 /n; is intuitive, since convergence error should
increase as the variance of points in the cluster increases and decrease as the number of points in the cluster
increases. 3) The dependence on +/B;0A is also expected. We choose a radius 7 =~ VoA for clustering.
Given our threat model, the most adversarial behavior of the bad clients from client i’s perspective is to
place themselves at the edge of the ball surrounding the estimated location of ¢’s gradient, thus adding error
of order \/B;0A. When there are no malicious clients, this extra error vanishes.
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Algorithm 3 Threshold-Clustering
Input Points to be clustered: {zi,...,2zx}. Number of clusters: K. Cluster-center initializations:
{Ul,o, ceey ’UK_’()}.

1: for round [ € [M] do

2: for cluster k in [K] do
3: Set radius 7.
4: Update cluster-center estimate:
1N
Ukl = o ; (Zz]l(”Zz Vi1l < Tt) + V-1 1|20 — v—1 | > Tk,l))- (4)

5: Output: Cluster-center estimates {v1 = v1 p, ..., Uk = VK M }-

3.3 Improving Communication Efficiency with Momentum

Federated-Clustering is inefficient, requiring N2 rounds of communication between clients at each step (each
client computes their gradient at every other client’s parameter). We pay this price to ensure that the intra-
cluster similarity and inter-cluster separation criteria are satisfied throughout the algorithm, resulting in
higher likelihood of a correct clustering. Recall on the other hand that Myopic-Clustering, while communi-
cation efficient (N rounds per step), may not recover from past clustering mistakes. With our next algorithm,
Momentum-Clustering (Algorithm , we propose a practical middle-ground by clustering momentums in-
stead of gradients. Since momentums change much more slowly from round-to-round than gradients, a past
clustering mistake will not have as much of a deleterious impact on future correct clustering and convergence
as when clustering gradients.

In Algorithm [4] at each step each client computes their momentum and sends it to the server. The server
clusters the N momentums, computes an update per-cluster, and sends the update to the clients in each
cluster. Therefore, communication is limited to IV rounds per step.

3.3.1 Analysis of Momentum-Clustering
The analysis of the momentum based method requires adapting the intra-cluster similarity and inter-cluster

separation assumptions from before.

o Assumption 8 (Intra-cluster Similarity): For all i ~ j and t € [T,

i..d.
mit ~ My,

where m; ; is defined as in @

o Assumption 9 (Inter-cluster Separation): For all i ¢ j and ¢ € [T,

[Bms — Emy > > A

Note that the intra-cluster similarity assumption in this momentum setting is stronger than in the gradient
setting (Assumption 4): namely we require that the momentum of clients in the same cluster be i.i.d. at all
points. This stronger assumption is the price we pay for a simpler and more practical algorithm. Finally,
due to the fact that momentums are low-variance counterparts of gradients (Lemma , we can eliminate
constraints on the batch size and still achieve the same rate.

Theorem 4. Let Assumptions [6-9] hold with inter-cluster separation parameter A 2 ofs;. Under these

conditions, suppose we run Algom'thmfor T rounds with learning rate n < min {b m} (fr

is the global minimum of f;), fraction of bad clients 5; < &;, and momentum parameter o 2, L. If, in each
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Algorithm 4 Momentum-Clustering

Input Learning rate: 7. Initial parameters: {331,0 =..= xMo}.
1: for round ¢ € [T] do
2: for client ¢ in [N] do
3: Client ¢ sends
mi¢ = agi(Tig—1) + (1 — a)mi— (6)
to server.
4: Server generates cluster centers

{vk,t}re|K) < Threshold-Clustering({m;}; K clusters; {vy ;—1}re[k))

and sends vy, + to client i, where k; denotes the cluster to which 7 is assigned in this step.
5: Client ¢ computes update: z;; = x;¢—1 — NV, +.

6: Output: Personalized parameters: {1 1,...,ZN 1}

round t € [T, we cluster with radius T ~ \/6;0A for

Vao
[ > max < 1, max M
ieN] log(1 — 9i/2)

steps, then for alli € [N]

T 2 3
1 a'/n,-—‘r”/A ﬁzaA
—E]Evia:i, 2<y/ + — — . 5
thl || f( 7t 1)|| T TZ(U2/ni—|—Ud/A)Z ( )

Proof. See[AX] O

We see from that when there are no malicious clients (8; = 0), Momentum-Clustering achieves the same
\/?%/n:T convergence rate observed in , with no restrictions on the batch size.

4 Experiments

In this section, we 1) use a synthetic dataset to verify the assumptions and demonstrate the theoretical
performance from analysis in the previous section and 2) use the MNIST dataset (LeCun et al., [2010)
to compare the proposed algorithm with state-of-the-art federated learning algorithms. Algorithms are
implemented with PyTorch (Paszke et al., 2017)) and all experiments are running with Intel Xeon Gold 6132
CPU @ 2.60 GHz.

4.1 Synthetic dataset

Construction of synthetic dataset. We consider a synthetic linear regression task with squared loss
and construct K = 4 clusters, each with n; = 75 clients. Clients in cluster k € [K] share the same minimizer
x5 € R?. For each client i in cluster k, we generate sample matrix A; € R¥" from gaussian distribution
and obtain the associated y; = Az} € R". We choose the model dimension d = 10 to be greater than
the number of local samples n = 9 such that the local linear system y; = A/ x is overdetermined and the
error ||z* — x||3 is large. A desired federated clustering algorithm determines the minimizer by incorporating
information from other clients j ~ 4 in the same cluster.

Estimate constants in Assumption 4 and 5. Considering the above synthetic dataset,
 we estimate the intra-cluster variance ratio A% by finding the upper bound of

IV £i(x) = Vfi(@)lI3/1V fi(2) 1135

10
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Figure 2: Estimated A? and A? on synthetic dataset (D = 0).
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Figure 3: Performances of algorithms on synthetic dataset.

o we estimate the inter-cluster variance A? by setting D = 0 and computing the lower bound of

IV fi(x) = V £(2)3-

We run Federated-Clustering with perfect clustering assignments and estimate these bounds over time. The
result is shown in Figure [2] where grey lines are individual clients and black lines are averaged with a cluster
and red dashed lines are the estimated bounds. As we can see, the intra-cluster variance ratio does not grow
with time and therefore upper bounded by constant A2. On the other hand, the inter-cluster variance is
also lower bounded by positive constants. Therefore, we empirically showed that Assumptions 4 and 5 are
possible in practice.

Performances. We compare our algorithm with standalone training (“local”), IFCA (Ghosh et al., 2020)),
FedAvg or “global” (McMahan et al., 2017), and distributed training with ground truth (GT) cluster infor-
mation. We consider the synthetic dataset with cluster (K,n;) = (4,4) and compare its performance against
increasing n; = 16 and increasing cluster K = 16 separately. All other setups remain the same except step
sizes are tuned separately. The performances of algorithms are shown in Figure 3] Our algorithm outper-
forms other non-oracle baselines in all cases. While Federated-Clustering is slightly worse than ground truth
in the left subplot, their performances are almost identical in the middle subplot where n; = 16 is larger.
This observation is consistent with the linear-in-n; scaling, */n,T, in .

4.2 MNIST experiment

In this section, we compare the baselines and federated learning algorithms on MNIST dataset. The dataset
is constructed as follows which is similar to |Ghosh et al.| (2020). The data samples are randomly shuffled
and split into K = 4 clusters with n; = 75 clients in each cluster. We consider two different tasks: 1) the
rotation task transforms images in cluster k for k x 90 degrees; 2) the private label task transforms labels in
cluster k with T (y) : y — (y + ¥ mod 10) so that same image can have different labels within K clusters.

11
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Table 1: Test losses and accuracies for personalization algorithms.

Rotation Private label
Acc.(%) Loss  Acc.(%) Loss
Local 71.3 0.517 75.2 0.489
Global 46.6 0.631 22.2 0.803
Ditto 62.0 0.576 61.7 0.578
IFCA 54.6 0.588 65.4 0.531
KNN 52.1 2.395 63.2 1.411

FC (ours) 75.4 0.475 77.0 0.468
GT (oracle) 84.7 0.432 85.1 0.430

Personalization algorithm hyperparameters. For these two classification tasks, we additionally con-
sider KNN-personalization (Marfoq et all [2021) and Ditto (Li et al) 2021). The prediction of KNN-
personalization is made through a combination of a FedAvg model and a KNN model with tuned linear
combination coefficients, i.e. A = 0.5 and A = 0.9 for rotation and for private label tasks separately. The
hyper-parameter of Ditto is fixed to be 1. To reduce the computation cost of our federated clustering algo-
rithm, in each iteration we randomly divide N clients into 16 subgroups and apply federated clustering to
each subgroup simultaneously. The clipping radius T,é is adaptively chosen to be the 20%-percentile distances
to the cluster center.

Performances. The experiment results are listed in Table [l As an image can have different labels in the
private label task, a model trained over the pool of all datasets only admit inferior performance. Therefore,
a naive distributed training algorithm that gives a global model, i.e. FedAvg, Ditto, KNN, performs poorly
compared to training alone. On the other hand, our federated clustering algorithm outperforms standalone
training and personalization baselines. This experiment suggests that our federated clustering algorithm
explores the cluster structure and benefits from collaborative training.

5 Conclusion

We develop gradient-based clustering algorithms to achieve personalization in federated learning. Our algo-
rithms have optimal convergence guarantees, they asymptotically match the achievable rates when the true
clustering of clients is known, and our analysis holds under light assumptions (e.g. for all smooth convex and
non-convex losses). Furthermore, our algorithms are provably robust in the Byzantine setting where some
fraction of the clients can arbitrarily corrupt their gradients. Future directions involve developing bespoke
analysis for the convex-loss case and developing more communication-efficient versions of our algorithms.
Further, our analysis can be used to show that our algorithms are incentive-compatible and lead to stable
coalitions as in [Donahue & Kleinberg| (2021). This would form a strong argument towards encouraging
participants in a federated learning system. Investigating such incentives and fairness concerns is another
promising future direction.
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A Proofs

A.1 Proof of Theorem [

First we establish some notation.
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Notation.

e G; are the good points and B; the bad points from point z;’s perspective. Therefore |G;| + |B;| = N

e k; denotes the cluster to which client i is assigned at the end of Threshold-Clustering.

e To facilitate the proof, we introduce a variable cﬁiyl that quantifies the distance from the cluster-
center-estimates to the true cluster means at each step of thresholding. Specifically, for client i’s

cluster k; at round [ of Threshold-Clustering, we set

o = Ellog, -1 — Ez|%.

e For client ¢’s cluster k; at round [ of Threshold-Clustering, we use thresholding radius

T,i,’l ~ cihl + §,0A.
« We introduce a variable y;; to denote the points clipped by Threshold-Clustering:

1
Ukl = 5 _GZ[;V] zi1(llzj — vk a1l < Th1) +vka-11(l25 — vka—1ll > ) -
J

Yl

Proof of Theorem[], We prove the main result with the following sequence of inequalities, and then justify
the labeled steps afterwards.

1 2
Eljvoy, i — Ez* = ]EHN >y —Ez
J€[N]

1
— EH (|gZ Z Yjl — EZZ> + ﬂz (|B Z Yil — EZz)

JEG: ' jeB;
2 1
0| (a7 Zc;y)E = (e 7)o (g X ) -
—EZ'
H(wz Zy”) 1

JEB;
WEH(m 2 y) - B
JEG;

JEB;

2

(1) 2

< (1+8)1-

2

&1 &

(i1) o2 o3 )
S <(1 —(S)Ck l+ +A> +Bi(cki7l+6i0A)

(3ii) o2 o3
< @-sidt (T4 G+ soa)

(iv)

o2 3 -1
§(1_6/2)0k 1+< ++ﬂzUA>Z].—5/2
q=0

Justifications for the labeled steps are:

e (i) Young’s inequality: ||z + y||* < (1 + €)z? + (1 + /c)y? for any € > 0.
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o (ii) We prove this bound in Lemmas [I| and Importantly, it shows that the clustering error is
composed of two quantities: &1, the error contributed by good points from the cluster’s perspective,
and &, the error contributed by the bad points from the cluster’s perspective.

o (iii) Assumption that §; < 0;

o (iv) Since Ellog, s — Ezi||> = ¢}, ;,,, the inequality forms a recursion which we unroll over [ steps.

o (v) Assumption that czi’l = Eljvg, 0 — E2||? < 02. Also, the partial sum in the second term can be
upper-bounded by a large-enough constant.

o (vi) Assumption that ! > max {1, blg(gl(%}

From (7), we see that ¢ ; < Z—j + %3 + BicA. Plugging this into the expression for 77 ; gives 77 ; ~

~

%j + %3 + 0;0A = 0,0 A for large n; and A. ]

Lemma 1 (Clustering Error due to Good Points).

1
8 (157 2 war) -2
v JjEG;
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Proof of Lemma [l We prove the main result with the following sequence of inequalities and justify the
labeled steps afterward.

2 2
1 1
(g Swe) 2| =5 (g = wim0)+ (g wu-Ew)
i JEGs " jeGiijni " jeGiioti
(i) 2 1 2 5 1 2
< (1 + &)E Gl Z (yjo —Ez)| + (1 + Q)EHM Z (Y1 — Ez)
v tiegini " jeGijoti
(1) 2 1 2 2 1 2
N (1+&)E‘|gi| Z (Eyj1 — Ez)|| + <1+ @)EH@ Z (i — Eyji)

JEGij~i JE€Gizjri

2

0 1
1+ 2K S o —Ez
+( i 2) ngil. (s~ B2)
JE€Gijori
2\ ) 2 1
< 1+§ i 1Ejeg, iy — 25)I° + 1+§ E 1G] E (y0 — Byj)

JEG;jr~i

2

0
+ (1 + 2) (1—6:)°Ejeq,:jpillyji — Ezll?
2

< 6 lEjeq,:jmi(ys0 — 2)|1? +<1+ ) ng > (yir—Ey;)

]EgiZJNi

i

T2

i
w1+ %) a-ap Ercspsly =Bl

(ii1) (3, +0%)o 2\ n
< ) 2 kil 4 7
<o T ) ¢ (%)gﬂ
5, Lo
(16 <1+2)<( . A>c,”+ )
g g
< -
~< 5+A+5A2> (nﬁA)

< (1-6)c, l+<” A)

o (i), (ii) Young’s inequality

o (iii) We prove this bound in Lemmas and 4l Importantly, it shows that, from point i’s perspec-
tive, the error of its cluster-center-estimate is composed of three quantities: 77, the error introduced
by our thresholding procedure on the good points which belong to i’s cluster (and therefore ideally
are included within the thresholding radius); 72, which accounts for the variance of the points in
i’s cluster; and 73, the error due to the good points which don’t belong to i’s cluster (and therefore
ideally are forced outside the thresholding radius).

o (iv) Assumption that A 2> o/s;.

Lemma 2 (Bound 7;: Error due to In-Cluster Good Points).

(R, 0o
IBjeg.:jmi (i — 2)II° S cu + —SA
K3
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Proof of Lemma[2 By definition of y,;,

Ejegij~illyin — 25l = Elllor; i—1 — 2 | L([|vk,1-1 — 2511 > 7ie,,0)]
< Ellowa-1 =z 1(0omia-1 = 2] > 7k t)]
- Th; 1
< Ellvkg i1 — 2]
- Tkl
< Ellvw,i-1 — Bz + E[Ez; — 2|
~ Thy.l
Cii,l —1—02
T TR

Finally, by Jensen’s inequality and plugging in the value for 7y, i,

IE(y;0 — 2)I1* < Ellyji — z1)?
(R, +0%)7°

2
Thes 1

<

ct 2 o2 ol
kil kil +
~ cii’l ;0N\  S;0A

(Cii,l +0%)o

=ttt A
O
Lemma 3 (Bound 73: Variance of Clipped Points).
1 2 ng o
El— > Wu—-Ey)| <i7mo’
Gl 2=, Gl

Proof of Lemma[3 Note that the elements in the sum >_, ¢ . _;(y;1—Ey;,1) are not independent. Therefore,
we cannot get rid of the cross terms when expanding the squared-norm. However, if for each round of
thresholding we were sample a fresh batch of points to set the new cluster-center estimate, then the terms
would be independent. With this resampling strategy, our bounds would only change by a constant factor.
Therefore, for ease of analysis, we will assume the terms in the sum are independent. In that case,

2
1 n;
E‘ IGi] > (wiu—Ey)|| < wEllyﬂ — Ey;.))?
HjeGigni !
n; 2
< WEHZJ' —Ezl
1
n; 2
52
~ Gl
where the second-to-last inequality follows from the contractivity of the thresholding procedure. O

Lemma 4 (Bound 73: Error due to Out-of-Cluster Good Points).

0; o2 o’
2 7 2
Bjecisiillia ~Ball $ (14 3+ 7 )+ 5
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Proof of Lemma[f} By Young’s inequality,

0; 2
Ejeg.jpillyis — Ezil* < (1 + Z)Ellvki,m —Ez|* + (1 + 6>Ejegi:j7éiyj,l — V-1
1

0; 2
< <1 + 2)%,1 + <1 + 5>]Ejegi:j7éiyj,l = V-1

i

0; 2
= (15 )t (14 2 ) Bicgumllss = vmaa P11 = il < 7

0; 2
< (143 )+ (14 2 )R Bicounalzs = visoal| <

i
We now have to bound the probability in the expression above. Note that if ||vg, ;-1 — 2;|| < Tk,,1, then
1Bz — Ezil|* S [l25 — Bzil1* + |25 — Evk, a-al|® + 1Bk, 11 — Bz
< Nz = Ez? + [l2j — Bzl + 1Bz — vk, g1 [® + Ellok -1 — Ezl|* + Ell2z; — Ez|?
Sz — Ezl® + Tli;,l + C%,;,l + 07
By Assumption 2, this implies that
A% S|z — Ez* + Tli,,l + C%,;,l +0?
which means that
lz; — Ezj]|* 2 A — (lei,l + Cii,l +0?).

By Markov’s inequality,

2 2
P(|lz; — Ez|2 = A2 — (12, + 2, +0%)) < 7 <Z
(112 zll* 2 (Thsa T €y t07)) < A2 _ (7'1?1-,1 +Cii,l T o2) VA2

as long as
2 2 2 2
A" 2 Tt a0,

which holds due to the constraint on A in the theorem statement. Therefore

0; 2 (Ci1 T 5iO'A)O'2

Bjegursillae —Eal? S (149 )+ (14 2 )y
<(1+%1 2 e+ 2
- 2 §A2 )R AT

Lemma 5 (Clustering Error due to Bad Points).

2
= 2
EH (IBzI Z yj’l) —Ezi|| 56+ 0i0A
JEB;
Proof of Lemmal[3
1 2
]EH (IB'I 2 y“) —Ezi| < Ejes,llyja — Bzl
jes;
S Bjeslvga — veuta | + Bl — Bl

< Cii,l + §;0A.

The last inequality follows from the intuition that bad points will position themselves at the edge of the
thresholding ball, a distance 7, ; away from the current center-estimate vy, ;—;. Therefore we cannot do
better than upper-bounding Ejes, |yj1 — vk, 1-1[* by 77, ; = &, ; + dic A, the squared-radius of the ball. [
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A.2 Proof of Theorem

Proof of Theorem[3. Let

_J6 wp.p
D1{0 w.p. 1—p

and 5
w.p. 1—p
D =
2 {0 w.p. p

and define the mixture M = %Dl + %DQ‘ Also consider the mixture M = %251 + %252, where 251 = 0 and
Dy = 4. It is impossible to distinguish whether a sample comes from M or M. Therefore, if you at least
know a sample came from either M or M but not which one, the best you can do is to estimate y; with
= %p, half-way between the mean of Dy, which is dp, and the mean of Dy, which is 0. In this case

R 5202
Ellin — m|* = =~
Ifp < %, then
A= (1-p)é—pd=(1-2p)d. (8)
Also,
o? = 6°p(1 - p). (9)
Equating 62 in and @,
A? o2

(1-2p)2 p(1-p)’

which can be rearranged to
(40% + A?)p? — (40 + AHp + 0% = 0.

Solving for p,

1A )
P=35 2/4g2 + A2’
Note that,
§52p2 o2p?
4 4p(1-p)

o?p
= —. 11
4(1—p) 1

Plugging the expression for p from into 7 we can see that

&p?  o? (\/402 + A2 —A) B 02< 402 ) - o? (202 204)

- 0 ) > (2222
TR A Al 1\ Az T A

4

The last step used an immediately verifiable inequality that 1 +z > 1+ 3 — % for all z € [0, 8]. Finally,

we can choose A2 > 202 to give the result that
52p? ol
Ellg; — pg? > — > —— .

Finally, suppose that there is only a single cluster with K = 1. Then, given n stochastic samples. standard
information theoretic lower bounds show that we will have an error at least

2

g
Ellf, — 2> -
i1 — pa] Z

Combining these two lower bounds yields the proof of the theorem. O
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A.3 Proof of Theorem [3

First we establish some notation.
Notation.

o G, are the good clients and B; the bad clients from client ¢’s perspective. Therefore |G;| + |B;| = N.

o E, denotes conditional expectation given the parameter, e.g. E,g(z) = E[g(x)|z]. E denotes expec-
tation over all randomness.
. X, 2 % thl X, for a general variable X; indexed by t.

o We use f;(z) to denote average loss on a general batch B of samples. That is, if f;(z;b) is the loss
on a single sample b, we define f;(x) = \T::Ef’l > vep fi(z;b).

. filz) = ni FEGiijnvi fi()
« We introduce a variable p? to bound the variance of the gradients
Ellgi(z) — Ezgi(2)]? < 07,

and show in Lemma [6] how this can be written in terms of the variance of the gradients computed
over a batch size of 1.

e [y is the number of rounds that Threshold-Clustering is run in round ¢ of Federated-Clustering.
e k; denotes the cluster to which client i is assigned.

e v; 1 denotes the gradient update for client ¢ in round ¢ of Federated-Clustering and round [ of
Threshold-Clustering. That is, v; ;, + corresponds to the quantity returned in Step 6 of Algorithm

» To facilitate the proof, we introduce a variable cy, ;; that quantifies the distance from the cluster-

center-estimates to the true cluster means. Specifically, for client ¢’s cluster k; at round ¢ of
Federated-Clustering and round [ of Threshold-Clustering we set

C%“Lt = EH’Ui,lfl,t - Ezgi(xi,tfl)”Q'

e For client i’s cluster k; at round ¢ of Federated-Clustering and round [ of Threshold-Clustering, we
use thresholding radius

it = Choga + A'E|V filzi—1)|1 + dipA.
« Finally, we introduce a variable y;;; to denote the points clipped by Threshold-Clustering:

1
Vit = 5 D Lllgs(@se—1) = vl < 7o) + vii 1,195 (@i0-1) = vig-1,6ll > e )-
Je[N]

Yj,i,t

Proof of Theorem[3 In this proof, our goal is to bound E||V fi(x;.—1)|* for each client ¢, thus showing
convergence. Recall that our thresholding procedure clusters the gradients of clients at each round and
estimates the center of each cluster. These estimates are then used to update the parameters of the clusters.
Therefore, we expect E||V fi(z;,:—1)||? to be bounded in terms of the error of this estimation procedure. The
following sequence of inequalities shows this.
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By L-smoothness of f; and setting n < 1/r,
L
fi(ig) < filiz—1) + (Vfi(zit—1),Tip — Tig—1) + §||5L‘i,t —xi|?

L772 2
= fiwig—1) = UV fi(Tit—1),vi1,.0) + THUi,zt,tH
n n n
= fi(xi-1) + §||Uz‘,lt,t —Vfilmi—)|I® - §||Vfi($i,t71)\|2 - 5(1 — Ln)|vig, ]

< fil@iom1) +nlvie = V@)l + 042 [V i) = SV im0l = 50 = Ln)loia, ol
(12)

Recall that v; g, ¢+ is client i’s cluster-center estimate at round ¢ of optimization, so the second term on the
right side of is the error due to the clustering procedure. In Lemma |7} we show that, in expectation,
this error is bounded by

_ - 2 3
SEIV (i) + L DIV Filei P + (;j + 5+ ﬂmA>~

Therefore, subtracting f; from both sides, summing over t, dividing by T', taking expectations, applying
Lemma [7] to (12), and applying the constraint on A from the theorem statement, we have

E(fi(xio0) — f5)

NE[IV fi(zi-1)[1? S T

- 2 3
BV RGP on( S+ 5t aes). ()

The third term on the right side of reflects the fact that clients in the same cluster may have different
loss objectives. Far from their optima, these loss objectives may look very different and therefore be hard to
cluster together.

In order to bound this term, we use a similar argument as above. By L-smoothness of f;’s and setting
n <YL,

_ _ _ L
filziy) < fi(zi—1) +(Vfil@it—1),Tit — Tit—1) + §||1?zt —zi|?
_ _ Ln?

Ji(ziz—1) =V fi(Zi—1), i, e) + 777

r n r Mior n
= fil@ii1) + Sllvize = Vi@ )|* = SIV L)l = 50 = Ln)lvi*

Vi 1, ]I

Subtracting fi* from both sides, summing over ¢, dividing by T, taking expectations, and applying Lemma

@

- E _1 ’ _ Fx 2 3
VBV sl & S I R e o (4 S en). 9

Combining and , and applying the constraint on A from the theorem statement, we have that

ST £ (2 (T — f* 2 £ _ fx
BV e D < Bii0) f1>+TA E(fi(x0) — f7)

(3

N
+ nmax(1, A )<n + N + @‘PA). (15)
Dividing both sides of by 1 = /L and noting that p? = ¢”/|B| from Lemma |§|,
(. ) — f£F 2R (F (s o) — F* 2
E(fl(xho) fz ) + A E(fl(xlyo) fz ) + max(l, AQ) & + & + ﬂsz
77T n; A
L(E(fi(zio) = [7) + AE(fi(zio) = [7)) | max(1, A%)(7*/ni +7°/a + BioA)
_|_
T VB

¢ max(L, A2)(«"/n. + 7°/a 1 BioA)
T )

3

E|Vfi(zii-1)]* <

<

A
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where the last inequality follows from setting

2 3
|B| > max(1, A?) <Z + UK + ﬁi0A> T.

Since T' = mi/|B|, this is equivalent to setting

o2 o3
|B| Z 4 /max(1, A?) ( + x + 5¢0A) m;.

%

Lemma 6 (Variance reduction using batches). If, for a single sample b,
Eq|lgi(x;0) — Epgi(z;0)|” < 02,

then for a batch B of samples,

2 o?
E.|lgi(x) — Epgi(x)||” < Bl

Proof of Lemma [0

Eollgi(z) — Bogi()|” = 55 > Ballgi(z;b) — Bagi(a; )|

1
| B|?
beB

2

g

<

Lemma 7 (Bound on Clustering Error).

_ _ - 2 3
Eljvig,+ — Vfi(zit—1)|? S GE|V fi(wi—1)||* + §D2E|‘vfz‘($i,t—l)“2 + (Z + % + BiPA)
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Proof of Lemma[] We prove the main result with the following sequence of inequalities and justify the
labeled steps afterwards.

Ellvig, ¢ = Vfi(@iz—1)l1? = Elviy, e — Eefi(wi—1)]?

2
1
:]EH Z y] li,t mgz(mzt 1)
JE[N]
2
_EH (|g Z Yjlet — wgz T t—1 ) +5z<|8| Z Yjtl — wgz Tit— 1))
Z J€G: JEB;s
(1) 3
< (@+5)1 - |g Z Yjlest E.gi(zit—1)
“jeg;
2

+ <1 + ;)ﬁ?EH <B | Z Yijlet ) ng(xzt 1)
H(|g2 Z yJ’“’) Eogi(wii-1) +ﬁl H<|B| Z Yot ) E.gi(wi1—1)

Jj€G; jEB;

2

51 52

(id) o -
S (L=6;+B)et, 4, + (6 + BADE|V fi(wi )% +

2 3
+ (fz + 2 +5¢PA)

ADE[V (@)

A

(#4) - 2 3
S (W=52)f g, + SEIV (i) [P+ DIV )P + (’; 5 @-pA)

B

(o) - . 2 3
< O30, + SB[V + X DPEIV e )P + (Q + 5+ ﬂipA)

W BN s LD e e (24
< Z%,l,t+5iEHVfi($i,t—1)H +ZD E(WV fi(zi:—1)]|% + E+Z+ﬁipA .(16)

Justifications for the labeled steps are:
o (i) Young’s inequality: ||z + y||* < (1 + €)z? + (1 4 1/e)y? for any € > 0.

o (ii) We prove this bound in Lemmas [8 and Importantly, it shows that the clustering error is
composed of two quantities: &1, the error contributed by good points from the cluster’s perspective,
and &, the error contributed by the bad points from the cluster’s perspective.

o (iii) Assumption that 8; < min(J;, 9i/A*)

~

o (iv) Since E||v; 1, + — Vfilwis—1)||> = Ch. 1,41, the inequality forms a recursion which we unroll over
l; steps.

e (v) Assumption that l; > max(1, %)
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Finally, we note that

Lt =Ellgi(zit—1) — Exgi(zi—1)|?

SElgi(@ii-1) — Baegi(@ii—1)1? + ElEegi(ii—1) — Eagi(zii—1)|°
< p? + A%E||V fi(ie1)|%

ck

Applying this bound to 7 and applying the bound on A from the theorem statement, we have

El|vi,.¢ — V fi(2ie—1)|
< (0 + VBN A P + £ DBV RGP + (2 42+ ot
~~ i A i\ L4, A i\Li, n; A i

3

- 2
S OGE||V fi(@iz—1)]]? + £D2E||Vfi(9€i,t71)||2 + (2 + % + @'ﬂA)

Lemma 8 (Clustering Error due to Good Points).

2

1
]EH (|g| > yj,lt,t) — Eagi(zi-1)
" jeg;
o g, P oeme 3, (PP
S (U= 60 + SBIV Hara )P + 5 DBV eI+ (2 + )
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Proof of Lemma[8 We prove the main result in the sequence of inequalities below and then justify the

labeled steps.

2
H(|g Zy]lt,> a:gz(xlt 1)
l j€g;
1 1 1 2
H ( Z Yjlot ) -5 Z Erg;(2ii—1) — ( - ) Z Erg;(2ii—1)
\gz ‘g’L| e n; |gz| o
j€g; JEGij~i j€Gi i~
1 1 2
EH (g Z (Yot — ]Eng(xi,tl))) + <|g| Z (Yot — Emgi(xi,tﬂ))
Y jeGiigri " jeGigopi
i) 9 1 2 5; 1 _ ?
C(1+2)8 51 X -t + (14 3)E] 5 X s - Basianio)
d; |Gi| 4~ 2 |Gi|  _“—~
JEGijri JEGi:ghbi
(i) 2 2
< <1 + ) H Gl Z (Eyji,t — Eegj(xiz—1)) <1 =+ ) H 1G] Z (Yi 1ot — Eyji,e)
'l jeg; i Hjegij~i

2

0; 1 _
+ (1 + >EH > Wint — Bagi(wie1))
2 |g”'e@d%i
L )] Y B o] (14 2)Ef
~ ‘gz jGQ jroi Yot T g |g1
2
*( ) sz +< ) sz

(iv)

2 2\ n;
rg (1 + 5)512 ]E]Egz‘ijNiHE(y]}lt’ gj(xl t— 1))” +(1 + ) |g |2 2
i i

j€g g~

2

(yj,lt,t - Eyj,lt»t)
JEGij~i

Witet — Eegi(is-1))
JEGijti

1

(Ezgj(zit—1) —Egj(xit—1))

9 1
+(L+>EH > " Wiaet — Byja)

JEGi:jri

2
d; —
+(14 %) - 0 el ~ Eeao T
T3

T2

(v) —2 3 2 ;g o
S (51 Ck ltt"'EHVfl(xlt 1)” 6A + 1+57 |g|2p

5; 0\, o 13 e, P
1+ Z)a-6)?((1+ 2R, + SEIVfi(zi) |2 + 2 DE[V il )? + 2
2 2 A A

(vi)

- 3 p2
<0 (@ + BV A + 2 )+

+(1-5) (M + SE|V i@ )|? + L DRIV i@ 1) + &

A A
TN Elr.. 2 P 2Rl 2 PP
S (1= 00T 1+ GBIV e + & DBV RGP + (2 + 5 )

Justifications for the labeled steps are:

o (i),(ii),(iii) Young’s inequality

o (iv) First, we can can interchange the sum and the norm due to independent stochasticity of the
gradients. Then by the Tower Property and Law of Total Variance for the 1st and 3rd steps
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respectively,

ElErg;(zi—1) — Egj(wii—1))|* = E[Eog)(wi,—1) — E[Ezg; (zi—1)]|I
= Var(E.(g;(#i:-1)))
= Var(g;(zis-1)) — E(Varz(g;(zi¢-1)))
< Var(g;(wi—1)) = Ellgj(i,-1) — Evgj(wie—1)?
<07
where the last inequality follows since the two terms above it are both bounded by p?.

o (v) We prove this bound in Lemmas @ and It shows that, from point i’s perspective, the
error of its cluster-center-estimate is composed of three quantities: 77, the error introduced by our
thresholding procedure on the good points which belong to i’s cluster (and therefore ideally are
included within the thresholding radius); 72, which accounts for the variance of the clipped points in
i’s cluster; and T3, the error due to the good points which don’t belong to 4’s cluster (and therefore
ideally are forced outside the thresholding radius).

o (vi) (1+2/2)2(1 —2)2<1—2z forall z € [0,1]

Lemma 9 (Bound 77: Error due to In-Cluster Good Points).

Ejegjmil Bt — 95(ie-))? S ¢, 1, T EIVfilwie1)l? + 6 A

Proof of Lemma[9 In this sequence of steps, we bound the clustering error due to good points from client
’s cluster. By definition of y; i, +,
Elyjiee = g5 (@il = Elllvig, -1 = g5 (@ie— D)L g, -1 — g5(@ie—0) || > Thy ,.0)]
< Bllvig—1e = 95 @i ) IPL(10i2 1,6 = g5 (@il > Tho,.0)]

- Tkt 1,

< Ellvig—1,e = gj (i)

Thilet

Therefore, by Jensen’s inequality and plugging in the value for 74, i, +,

E ;0 = 95 (@ie—1))II?
< Ellyja e — g5 (i)l
(Ellvig, -1, — gj(@ie-1)[*)?
2
Thei et
< Elvig, 1.6 — Bogi(@i—1)|* + EllEagi(ws,e-1) — Bogj(@ie—1)|I” + Ellg; (@i4—1) — Bagj (zi—1)*)?

~ 2

Thilest

<

< (Cii,lt,t + AQE”Vﬁ(%,pﬂHQ + p?)?
< p.
k;,lt,

< (Fopr + AEIV filwi)|* + %)’
- Ckv Lt T A4]E||vfi(xi,t71)”2 + §;pA

A 3
< 2
(1 5A)C’“ lt7f+< 5A>E”Vfl(x” P+ 55

2
S ¢k

3
+ BNVl + 25 (17

islt,
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where the last inequality follows from constraints on A. The second inequality follows from Young’s inequal-
ity. The second-to-last inequality follows by separating the fraction into a sum of fractions and selecting
terms from the denominator for each fraction that cancel with terms in the numerator to achieve the desired
rate.

Summing over t and dividing by T', we have

Ejeg,jmillBa (Yt .t — 95 (ie—1)1? = Ellyji,.e — g5(wie—1)?

-,
S s TEIV (i) + A

3

Lemma 10 (Bound 73: Variance of Clipped Points).

2

n;
< 2

Gr’

Z (Yjte.t — By )

JEGigrt

1
E
‘ |Gl

Proof of Lemma[I0, The first thing to note is that the elements in the sum Zjegi:jwi(yjylmt —Ey,1,+) are not
independent. Therefore, we cannot get rid of the cross terms when expanding the squared-norm. However, if
for each round of thresholding we sampled a fresh batch of points to set the new cluster-center estimate, then
the terms would be independent. With such a resampling strategy, our bounds in these proofs only change
by a constant factor. Therefore, for ease of analysis, we will assume the terms in the sum are independent.
In that case,

2
1
EH Z (yj’lut - Eyj’lut) QEHyJ 1t — Byj, lt,tH
Gil . 6= =g
JEGizjri
|g |2E||g.]($lt 1) Egj(l’i,tfl)ng
o M
= |gz|2p )
where the second-to-last inequality follows from the contractivity of the thresholding procedure. O

Lemma 11 (Bound 73: Error due to Out-of-Cluster Good Points).

- S\ | oo .
Ejcguipillyiie — Bagi@inIP S (1 + 2>M + 6 EVFiwi—1)I? + £ DVl + &

Proof of Lemma[I1 This sequence of steps bounds the clustering error due to points not from client i’s
cluster. Using Young’s inequality for the first step,
EjegijrillYit e — Eogi(wie—1)|”

0; B 2
(1 + 5 )EH% -1t — Eugi(wie—1)|* + (1 + &>Ejegi:j76i”yj,lt,t — iz,

—~

0 2
< (145 )t (145 ) Bacaumaline - vioalP
5\ 2
=15 )i T (1 F 5 | Biegugpilllgi (@i-1) — via, {(@it—1) = Vig =18l < 7oyt ]
5\ 2
< 1‘*‘5 Chilpt T 1‘*‘5* Tt i PicGiini(ll9i (@i—1) = vig -1l < 7oy )
0 1
S (14 %) st (5) G+ ABITF i) + 6ipD0Precigiloais) - )
K3
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The next step is to bound the probability term in the inequality above. Note that if ||v; 1, —1+ — gj(zit—1)| <
TkE Lo then

[Eag; (@ie-1) — Bogi(is—1)I* S g5 (@ii—1) — Bagi(iz—1)I* + 1195 (i 1) = vigo—1.6l1> + [[vit,—1.6 — Bagi(@ie—1)||”
S g @ii—1) — Bagj(@is—1)* + 44, 4

+ vid—1, — Eagi(@ie—)|1* 4+ |Eagi(@in—1) — Bagi(zi—1)|?
S g @ie—1) — Bagj(@is—1)1* + 744, 4

+ Jvig, =14 — BaGi(@ie—1)* + A2V fi(wse—1) |1

By Assumption 4, the previous inequality implies

A? — D*|V fi(zip-)IIP S 1195 (@ie—1) — Bags(@is—0)I® + 7. 1,0 + ANV Fi(@ie )1 + vige—1.0 — Bagi(zi—1)|?

which, summing over ¢ and dividing by 7', implies

195 (@i.t-1) = Eogs(@ie—1) 2 + [vig—14 = Eofi(se—1)[2 + A%V fizie-1) |2 + DIV fi(wie-1) [P 2 A% =7, -

By Markov’s inequality, the probability of this event is upper-bounded by

P>+ Elvig,—14 — Eogi(wiz—1) > + A’E||V fi(i1—1)||? + D?E[|V fi(zis—1)|]?
A2 - TkQ:i,lt,t

P F Gt AE|V fi@ie-1)|12 + D?E[[V fi(wi 1) |2

~Y A2 9

where the second inequality holds due to the constraint on A from the theorem statement. Therefore,

Ejeg:jrillyjtee — Exgi(@it—1)?

< (1 Lo e PP+ G+ APENY filwie-)|? +D2E||Vfi($i,t—1)”2> 3

PN 5 A Chotut
Y L W7 P ol oy [ —
v (2 et e BN

P o1y, P
+ ZDQEHVfi(Z‘i,t—l)HQ + A

S\ 3
S (14 3) s + OBV AP + £ DBV + .

A

where for the last inequality we again apply the constraint on A. O

Lemma 12 (Clustering Error due to Bad Points).

1 _
EH (|B| Z yj,lt,t) = Ezgi(zie-1)

JEB;

2 —_—
S+ AEV (i) + 6ipA

Proof of Lemma[I3 This lemma bounds the clustering error due to the bad clients from client ’s perspective.
The goal of such clients would be to corrupt the cluster-center estimate of client 4’s cluster as much as possible
at each round. They can have the maximum negative effect by setting their gradients to be just inside the
thresholding radius around client ¢’s cluster-center estimate. This way, the gradients will keep their value
(rather than be assigned the value of the current cluster-center estimate per our update rule), but they will
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have maximal effect in moving the cluster-center estimate from its current position. Therefore, in step 3 of
the inequalities below, we can not do better than bounding the distance between these bad points and the
current cluster center estimate (i.e. [|y;,.+ — vi,—1,/|*) by the thresholding radius (777 ;, ,)-

1 _
EH (w 2 W“t) - Begia)
" jeB;

2
< Ejes Y50t — Eagi(mie—1)|?

5 ]EjGBi

<77

Yitet — Vidg—1.t% FElvig,—1.6 — Eei(zi 1)

isle,t + Czi,lut
S C%i»lht + A4E”vfi($i,t—1)”2 + §; pA.

The last inequality applies the definition of 73, , +, and the result of the lemma follows by summing this
inequality over ¢ and dividing by 7. O

A.4 Proof of Theorem [4

First we establish some notation.

Notation.

e G, are the good clients and B; the bad clients from client i’s perspective.

o E, denotes conditional expectation given the parameter, e.g. E,g(z) = E[g(x)|z]. E denotes expec-
tation over all randomness.

o k! is the cluster to which client i is assigned at round ¢ of the algorithm.

o« X, 2 % Zthl X, for a general variable X; indexed by t.

4 1

. fz(i’?) =, 24j€Giiimi fi(@)
EUTES ni ZjGQi:jNi mj¢
o We introduce a variable p? to bound the variance of the momentums
Ea|lmiy — Bemil® < p°,
and show in Lemma [13| how this can be written in terms of the variance of the gradients, o2.
e [; is the number of rounds that Threshold-Clustering is run in round ¢ of Federated-Clustering.

e k; denotes the cluster to which client ¢ is assigned.

o vy, 1+ denotes the gradient update for client ¢ in round ¢ of Momentum-Clustering and round / of
Threshold-Clustering. That is, vy, ;+ corresponds to the quantity returned in Step 4 of Algorithm@

o To facilitate the proof, we introduce a variable ¢y, ;; that quantifies the distance from the cluster-
center-estimates to the true cluster means. Specifically, for client i’s cluster k; at round ¢ of
Federated-Clustering and round [ of Threshold-Clustering we set

Fort = Ellvk, -1, — Eomig||.

e For client i’s cluster k; at round ¢ of Federated-Clustering and round [ of Threshold-Clustering, we
use thresholding radius

2 2 .
Thodt & Chy 1+ 0ipA
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« Finally, we introduce a variable, y;; ., to denote the points clipped by Threshold-Clustering:

1
kit = 37 > 1llmye = vee i vl < Thone) + vk 1M — Okl > o)
JEIN]

Yjit

Proof of Theorem[J In this proof, our goal is to bound E||V f;(x;—1)||>. We use L-smoothness of the loss
objectives to get started, and justify the non-trivial steps afterwards.

(@) L
Efi(xit) < Efi(zii—1) + E(V fi(xie—1), Tip — Tie—1) + §E||$1f - xi,t—1H2

L 2
= Efi(@ie-1) = nE(V (i1, Onctrt) + =3Bl gl
= Efi(@ie-1) + E|ve, i = Vi) = ZEIVEil@iem) 2 = 31— IEl|vg 1,
(49)
S Efi(l“it 1)+ 0El|vk; 0 = Boii||* + nEEymi s — V fi(wi 1)
TEIV (i)l = (1 = nEljon, o]
(ii4) p2 ps B )
< Ehone) + (2 + 5+ oA ) 4 BB~ Vi(oi)]
— JE|Vfilwii-)I = 2 (1 = LnEl|v, 1,4l (18)

Justifications for the labeled steps are:

o (i) L-smoothness of f; and n < 1/r
o (ii) Young’s inequality
o (iii) Lemma
Now it remains to bound the E||E,m;; — V fi(x;—1)||* term.

E|Exmis — Vi(zii—1)|]? <E|Exmiy — Vfi(zi—1)|?
= (1 - a)’E|Exmit—1 — Vfi(zir—2) + Vii(@is—2) — Vi(zi1)|?

%

1
< (1= (U @)BlEams o1 = Vhiaia 2P+ (1= 0 (14 5 ) PPE Ly P

—
=

(@) 1 4
< 5(1 - LU) ZEHvkivlt—lat—1||2’

t=2

where justifications for the labeled steps are:

o (i) Young’s inequality

o (ii) Assumption that o 2 Ln

Plugging this bound back into , summing over ¢t = 1 : T, and dividing by T gives

T (s 2 3
%; |vfz Tijt— 1 2<W+"]( +A+ﬁ2pA> (19)
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By the variance reduction from momentum (Lemma it follows from that

T . _ f* 2 3/2 3
TS B Awel s PEED I o (8T L T )
t=1 0

E(fi(wio) — f7) Lno? LUUS
< . d v/ ILnoA ).
S T + . + A + B; no

Finally, setting n < min {L 1/ m},
T 2 3
1 [o%n; +7°/A Bio A
T E||Vfi($i7t_1)|l2 /S + = 1-
T ; r T3(/mi+o°/a)7

Lemma 13 (Variance reduction using Momentum). Suppose that for all i € [N] and z,
Ellgi(z) — Eugi(2)|* < 0.
Then

E|jm; ¢ — Ewmi’tHz < ac?.

Proof of Lemma[I3

Ellmis — Em;||* = Elle(gi(@in—1) — Vfi(2ii-1)) + (1 — @) (mi—1 — Emg—1)|?
< ®Ellgi(zii—1) — Vii(@ir—1)||* + (1 — @)?E|mis—1 — Emy g1 ||?
< ®Ellgi(zii—1) — Viilwir)|I? + (1 — Q)E||mi—1 — Emy e o|?

-1
< a?0? E (1—-a)!
q=0

2 2(1 )
a) -

(1-
51
«@

Lemma 14 (Bound on Clustering Error).

2

P> P
Ellvge g, — Bamigl® < TR T hieA
1

31



Under review as submission to TMLR

Proof of Lemma[1j} We prove the main result, and then justify each step afterwards.

2

— 1 _
EHvkulut - ExmLt”z = EHN E Yilet — Emmi,t
JE[N]

2
_EH <|gl Zyﬂlt Emmi7t>+ﬁi<|6|zyjtl Emn)
J€Gi jEB;
(1) 9 1 i 2
<(14+8)1-5)E Z Yot o
|G|
J€Gi
)
+<1+ >B2 H<|B Zy]lt )—Ezmiﬁt
jEB;
)
i) ol g oo
l Jj€G; jeB:
> r
(1—5 + Bi)er, ltt+< A+5ipA>
@) - p2 ps
S (X =9%/2)ck .+ <m +5+ ﬂipA>
) e (", P
S Q=02+ <m RN 5¢PA>
(v) p p2 p3
SAk1t+<m+A+ﬁmA). (20)

We justify each step.

o (i) Young’s inequality

o (ii) We prove this bound in Lemmas and Importantly, it shows that the clustering error is
composed of two quantities: £, the error contributed by good points from the cluster’s perspective,
and &, the error contributed by the bad points from the cluster’s perspective.

o (iii) Assumption that 8; < min(d;,%i/a*)

o (iv) Since Eflvi, s — Exmi|* = ¢, 11,4, the inequality forms a recursion which we unroll over I
steps.
. 1
o (v) Assumption that I; > max(1, %)

Finally, we note that

Che e = Ellmig — Egmig|®
S Elmye — Eamji||* + E[Eamy — Eomi |
< p’.

Applying this bound to gives

2 3
Ellve, i,,e — Eamie? S 2 + L + BipA
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Lemma 15 (Clustering Error due to Good Points).

H (1 2 v ) = o

]Eg

2 p2 ps
S —=3:)6, 4,0+ <n, + A)'

(3

Proof of Lemma[I5 We state the main sequence of steps and then justify them afterwards.

]EH<|Q12 Zy”“) Eomi)
H(Igl Zyﬂlt> Gl S Eemyy - <1_

2

)5 sl

JEGij~i JEGij~i
1 1 - 2
E |g| Z (yj;lmt - ]Ewmj;t) + @ Z (ijt,t - Ewmi,t)
" jEGizj~i N jeGiijoti
@ P (L P
= (1 + |g2 Z (yj’lt;t - EImj7t) + 5 ‘g1 Z (y.j7lt7t - Ewmi7t)
JeGizjri JEGijoti
(@0 2 1 2 2 1 2
~ 1+ 5*1 E ‘gl| Z Eyj;lt,t - Ea;mj,t +(1+ 671 E ‘gl‘ Z (yj,lt7t — ]E:vyj,lt7t>
JEGij~i JjE€Gig~i
5i 1 IENE
+ (1 + 2>EH |g| Z (ijltvt - Exmiyt)
Y jEGigti
(i) 9 1 2 2 1 2
S (1 + @)EHW Z E(yju.t —mge)|| + (1 + &)EHW Z (Emye —Eymye)
JEGijr~i JEG;ij~i
2 1 2 57, 1 - 2
+ {1+ 5 E 1G] Z st = Byjaa)|| + {1+ 5 E 16,1 Z (Yjtet — Eatmig)
¢ Y jegiji U jeGiot

(iv) 2 2 ng
S <1 + 5)5? Ejeg,:jmil Ba (Ys1,,0 — my0)|1? +(1 + ) 17 ‘zp

1

2 ? 5; _
(143 g S = Ewan| +(1+5) 0= 8 Bucgusnaln g ~ Bl
‘ l JEGijr~i Ts

T2
(Si 2
5 ) =0 Ejegjnillyit e —

(ve) 3 2 5 5 3
< 9 (ci et 6PA> I P -+ (1+ 2)(1 —(51.)2((14— 2)0%“1“ + Z)
3 2 3
- P - P
5(5 (Ck ltt+5A> +m+(1_6i)(cii’l“t+A)

2 3

- (P* P
<(1-6)2 LAY
< St ¥ (n + A)

(2

(v) ) p2
S 6B seguimilEatyiane —miol + 2 + (14

Justifications for the labeled steps are:

o (i), (ii), (iii) Young’s inequality

o (iv) First, we can can interchange the sum and the norm due to independent stochasticity of the
momentums. Then, by the Tower Property and Law of Total Variance for the 1st and 3rd steps
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respectively

E|E.mj, — Emy || = E|Eemj . — E[E.m;,]|?
= Var(E,m; ;)
= Var(m; ) — E(Vary(m;+))

= Var(m;;) — E|lm;; — Egm;¢||?

s
where the last inequality follows since the two terms above it are both bounded by p2.

o (v) We prove this bound in Lemmas and It shows that, from point i’s perspective, the
error of its cluster-center-estimate is composed of three quantities: 77, the error introduced by our
thresholding procedure on the good points which belong to i’s cluster (and therefore ideally are
included within the thresholding radius); 7z, which accounts for the variance of the clipped points in
i’s cluster; and T3, the error due to the good points which don’t belong to i’s cluster (and therefore
ideally are forced outside the thresholding radius).

o (vi) (1+2/2)2(1—2)2<1—2z forall z € [0,1]

Lemma 16 (Bound 77: Error due to In-Cluster Good Points).

o

GA

EjegjmilE(Yj1,e —mie)l? S gy

Proof of Lemma[16 By definition of y,, s,

| L(lvks e —1,6 = Mgl > o ,0)]

< Elllokt -1 — |20k 1, — 1.0 — mell > 7oy ,0)]

Ellyjie.e — mjell = Elllvk, i,—1.6 — ™

Thi,le,t

Therefore by Jensen’s inequality,

1By5,,6 — mjell® < (Ellyja,.e — myell)?

< (Ellvkt -1, — my?)?

Tlgi,lut
< Ellvep -1 — Eomig|® + EEame —myl?)?
~ T]Si,lt,t
_ (Ellvkgg—1, — Eamig]® + E|Egmy, —mjq*)?
= 2
kil t
< (Cii»ltwt + 02)2
— 2
Thei Lot
< (Ciivlmt + p2)2
2
~ Ckiylht + SZPA
3
P 2 P
< (714 -
~ ( " &-A)C’“W M
3
<&, L+ LA
~ Ckile,t 8;A
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Summing this inequality over ¢ and dividing by T, we have

EjegijmillBa(Yjtet — my )12 < Ellyja,,e — my.l?

o

<el o, .
~ kit 5; A

Lemma 17 (Bound 73: Variance of Clipped Points).

2
< 2
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1
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|g Z (ijut - Eijut)
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Proof of Lemma[17 Note that the elements in the sum Y7 - (yj1.+ — Eyji,,¢) are not independent.
Therefore, we cannot get rid of the cross terms when expanding the squared-norm. However, if for each
round of thresholding we sampled a fresh batch of points to set the new cluster-center estimate, then the
terms would be independent. With this resampling strategy, our bounds would only change by a constant
factor. Therefore, for ease of analysis, we will assume the terms in the sum are independent. In that case,

2
1 n; 9
EH Gl > Wit —Byjun)|| < ﬁEHyﬂt,t —Eyj1,.t
Y jE€Gizj~i !
n; 2
< WEHmJ‘,t — Emj|
1
n; 2
< T~ 19 )
where the second-to-last inequality follows from the contractivity of the thresholding procedure. O

Lemma 18 (Bound 73: Error due to Out-of-Cluster Good Points).
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Ejegiijoillys.e — Bamil? S (1 + g)cii,lt,t X

Proof of Lemma[I8 This sequence of steps bounds the clustering error due to points not from client i’s
cluster. Using Young’s inequality for the first step,
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If fJoge 1,1 — mjell < Tk, .0, then
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By Assumption 9,
A% S e — Bemyel + 7,0+ [0k 20-1,0 — Eorti |

which, summing over ¢ and dividing by 7T, implies

2 okt 1t — Bamgf2 2 A2 =72,

[mje — Eamye et

By Markov’s inequality, the probability of this event is upper-bounded by

2 = 2 2
p°+ ]E”Uki,lt—Lt — Ewmi7t||2 < p-+ Ckz‘,ltﬂf
2 _ 2 ~ A2 ’
A Thi Ly t

where the inequality holds due to the constraint on A from the theorem statement. Therefore,

— 0 P Pz + Cii,l/,t - P3
Ejeg,:juillyji,e — Bamiel® < (1 TN T2f SN

5 \5— . p°
<(145) T
where again we apply the constraint on A for the second inequality.
Lemma 19 (Clustering Error due to Bad Points).
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Proof of Lemma[19 This lemma gives a bound on the clustering error due to the bad clients from client i’s
perspective. The goal of such clients would be to corrupt the cluster-center estimate of client i’s cluster as
much as possible at each round. They can have the maximum negative effect by setting their gradients to be
just inside the thresholding radius around client #’s cluster-center estimate. This way, the gradients will keep
their value (rather than be assigned the value of the current cluster-center estimate per our update rule), but
they will have maximal effect in moving the cluster-center estimate from its current position. Therefore, in
step 3 of the inequalities below, we can not do better than bounding the distance between these bad points

and the current cluster center estimate (i.e. ||yji,.t — Vkit—1.¢

1 _
) (737 X ) ~ Eor

JEB;

2
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2
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%) by the thresholding radius 7y, ;, ¢

2

The last inequality applies the definition of 73, , +, and the result of the lemma follows by summing this

inequality over ¢ and dividing by 7.
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