
Anchor-based Large Language Models

Anonymous ACL submission

Abstract

Large language models (LLMs) predominantly001
employ decoder-only transformer architectures,002
necessitating the retention of keys/values infor-003
mation for historical tokens to provide contex-004
tual information and avoid redundant computa-005
tion. However, the substantial size and parame-006
ter volume of these LLMs require massive GPU007
memory. This memory demand increases with008
the length of the input text, leading to an urgent009
need for more efficient methods of information010
storage and processing. This study introduces011
Anchor-based LLMs (AnLLMs), which utilize012
an innovative anchor-based self-attention net-013
work (AnSAN) and also an anchor-based infer-014
ence strategy. This approach enables LLMs to015
compress sequence information into an anchor016
token, reducing the keys/values cache and en-017
hancing inference efficiency. Experiments on018
question-answering benchmarks reveal that An-019
LLMs maintain similar accuracy levels while020
achieving up to 99% keys/values cache reduc-021
tion and up to 3.5 times faster inference. De-022
spite a minor compromise in accuracy, the sub-023
stantial enhancements of AnLLMs employing024
the AnSAN technique in resource utilization025
and computational efficiency underscore their026
potential for practical LLM applications.027

1 Introduction028

Large language models (LLMs) primarily utilize029

decoder-only transformer architectures, which ne-030

cessitate caching keys/values information for his-031

torical tokens during the auto-regressive inference032

to supply contextual information and avoid redun-033

dant computation (Wei et al., 2022; Touvron et al.,034

2023a; OpenAI, 2023; Touvron et al., 2023b). How-035

ever, due to their immense size and high parameter036

count, a considerable amount of GPU memory is037

required for loading. Furthermore, as the length038

of input text grows, storing keys/values caches re-039

quires more and more GPU memory, as evidenced040

in in-context learning, complex instructions, and041

OBQA PIQA BoolQ

0

200

400

600

800

89

262

804

5 5 5K
ey

s/
Va

lu
es

C
ac

he
s

Text lengths
Our caches

OBQA PIQA BoolQ

×1.0

×1.5

×3.5

A
cc

el
er

at
io

n
R

at
io

Figure 1: Keys/Values Caches and Inference Accelera-
tion Ratio of Ours in OBQA, PIQA, and BoolQ Tasks
with Five-Shot Demonstrations. The bars denote the
Keys/Values Cache and text length, while the curve rep-
resents the Inference Acceleration Ratio. As text length
increases, our method demonstrates an impressive re-
duction of up to 99% in Keys/Values Caches compared
to conventional methods. Moreover, by caching prefix
texts, we have enhanced inference efficiency by a factor
of 3.5 compared to non-caching inference.

extended conversations (Dong et al., 2022; Jiang 042

et al., 2023; Wang et al., 2023), which is not con- 043

ducive to scenarios with limited computational re- 044

sources. An alternative approach entails recalculat- 045

ing these extensive inputs, which, however, results 046

in increased time overhead. Therefore, this study 047

aims to reduce the storage demand for keys/values 048

caches during the inference phase of LLMs, im- 049

proving the memory efficiency and, consequently, 050

accelerating the inference speed as well. 051

In a recent study, Wang et al. (2023) demonstrate 052

that label words in prefix demonstrations can act 053

as anchors during inference, providing an effec- 054

tive context compression approach for improving 055

inference efficiency in in-context learning. How- 056

ever, in practical applications, not all prefix inputs 057

or demonstrations contain label words suitable for 058

compressing information, making the reliance on 059

label words a less universal approach for text in- 060

formation compression. Additionally, Pang et al. 061

1

(2024) observe that LLMs tend to attend to only a062

few, yet consistent, prefix tokens during inference.063

However, the specific tokens utilized are often un-064

predictable and uncontrollable. These observations065

raise an intriguing question: do natural language066

texts contain anchor points that compress the over-067

all semantic information of sequences? In this068

context, previous studies on sequence embeddings069

have shown that the hidden state of a special token070

in neural network models can encapsulate seman-071

tic information (Baudiš et al., 2016; Devlin et al.,072

2018). Furthermore, contemporary LLMs typically073

utilize the causal self-attention mechanism during074

both training and inference phases (Touvron et al.,075

2023a,b), attending on each prior token. This sug-076

gests that the final token in a sequence may be077

better suited to serve as a natural information com-078

pression point compared to other tokens, as they079

cannot observe future tokens. Therefore, a method-080

ical approach that identifies and exploits sequence081

anchor tokens in a dependable and controllable082

manner is essential for compressing sequence in-083

formation, effectively reducing keys/values caches,084

and improving inference efficiency for LLMs.085

To this end, we propose novel Anchor-based086

Large Language Models (AnLLMs), equipped087

with an innovative anchor-based self-attention net-088

work (AnSAN) and an anchor-based inference strat-089

egy. The AnSAN is designed to compel the models090

to compress sequence information into the anchor091

token (the last token in our implementation) during092

the training process, with the aid of anchor-based at-093

tention masks. During inference, the anchor-based094

inference strategy retains the keys/values caches of095

anchor tokens, which have aggregated the entire096

sequence information, and discards those of non-097

anchor tokens, thereby reducing memory demands.098

Specifically, the anchor-based attention masks for099

AnSAN serve two objectives: 1) to ensure anchor100

tokens attend exclusively to tokens within the same101

sequence, preventing attention to other sequences,102

and 2) to direct non-anchor tokens’ attention to103

previous sequence anchors, blocking the other non-104

anchor tokens from previous sequences. It is note-105

worthy that the technique of anchor-based atten-106

tion bears similarities to the principles underlying107

sparse attention (Child et al., 2019). However, un-108

like the existing research that employs sparse atten-109

tion to extend the context length of LLMs (Chen110

et al., 2023; Ratner et al., 2023), our method fo-111

cuses on continually pre-training the model to com-112

press sequence information into the anchor token.113

In our implementation, we utilize the publicly 114

available RedPajama datasets (Computer, 2023) 115

to continuously pre-train the open-source Llama2 116

models (Touvron et al., 2023b), resulting in An- 117

LLMs that incorporate our proposed anchor-based 118

attention mechanism. Experimental results on ques- 119

tion answering benchmarks, as depicted in Fig- 120

ure 1, reveal that our method achieves up to a 121

99% reduction in keys/values caches and up to a 122

3.5-fold increase in inference acceleration ratios, 123

while maintaining comparable accuracy to the orig- 124

inal model. Despite a minor decrease in accuracy 125

(within 1.5%), these findings underscore the sig- 126

nificant improvements in computational efficiency 127

and memory utilization offered by our method. 128

2 Related Work 129

Our research is inspired by the recent investigation 130

into the understanding of in-context learning (ICL) 131

within LLMs by Wang et al. (2023). In their study, 132

the authors delve into the underlying mechanisms 133

of ICL, emphasizing the influence of label words 134

in demonstration examples on information flow. 135

They reveal that these label words serve as anchors, 136

wherein semantic information converges into these 137

anchors during inference, subsequently directing 138

the LLMs’ final predictions. Motivated by their 139

findings, our objective is to extend this feature to 140

natural language modeling by guiding sequence 141

information compression into manually designed 142

anchor tokens, rather than solely relying on label 143

words. This is crucial because natural language 144

texts may not always contain an explicit label. 145

The most relevant method to our approach in 146

the existing literature is the learning to compress 147

prompts with gist tokens (Mu et al., 2023). Their 148

approach centers around compressing task-specific 149

prompts by fine-tuning the model using the pro- 150

posed gist masking, thereby enforcing prompt com- 151

pression. However, there are several crucial diver- 152

gences between our study and theirs. Unlike their 153

focus on compressing a task prompt, our objective 154

lies in training the LLM to condense sequence infor- 155

mation into the anchor tokens. Consequently, our 156

approach can be universally applied to a range of 157

tasks without requiring task-specific training, a fea- 158

ture not shared by gist tokens, as the anchor tokens 159

are seamlessly incorporated into the model’s lan- 160

guage modeling. Furthermore, our anchor-based at- 161

tention masks account for information compression 162

within a sequence and information interaction be- 163

2

tween sequences, thus extending beyond the mere164

compression of task prompts.165

On the other hand, FlashAttention (Dao et al.,166

2022) and PagedAttention (Kwon et al., 2023) both167

present memory-efficient attention mechanisms for168

LLMs. While they focus on optimizing attention169

computation and subdividing attention processing,170

our proposed method offers a distinct approach that171

specifically targets the compression of sequence in-172

formation into anchor tokens, making it orthogonal173

to these existing works.174

3 Anchor-based Large Language Models175

3.1 Background176

Transformers. LLMs are predominantly imple-177

mented as transformer decoders (Vaswani et al.,178

2017; Touvron et al., 2023a,b), consisting of an in-179

put embedding layer followed by multiple decoder180

layers. Each of these decoder layers is composed181

of a self-attention network and a feed-forward net-182

work, succeeded by respective normalization mod-183

ules. It is important to note that causal attention184

masks are employed within the self-attention mech-185

anisms, ensuring that current tokens solely attend186

to preceding tokens.187

Self-Attention Networks. Typically for decoder-188

only LLMs like Llama2 (Touvron et al., 2023b),189

self-attention networks (SANs) map queries Q,190

keys K, and values V into an output, as delineated191

in the following equations,192

SAN(Q,K, V) = Softmax(Q,K)V, (1)193

Softmax(Q,K)i,j =
Mi,jexp(QiK

T
j)

ΣkMi,kexp(QiKT
k)

, (2)194

Mi,j =

{
1, if i ≥ j

0, else
, (3)195

where M denotes an L × L masking matrix, fa-196

cilitating the current i-th token to attend to only197

preceding tokens whilst disregarding subsequent198

tokens during the training and inference phases.199

Keys/Values Caches. In the application of LLMs,200

the keys/values caches increase with lengthy pre-201

fix texts and continuously generated tokens during202

the inference phase, such as in question-answering203

(Saad-Falcon et al., 2023), text summarization204

(Basyal and Sanghvi, 2023), and machine transla-205

tion (Pang et al., 2024). The key and value matrices206

associated with tokens of prefix inputs are cached207

to avoid recomputation and expedite subsequent208

token prediction (Radford et al., 2019). Addition- 209

ally, the model generates the output token-by-token 210

in the real-time inference process, which requires 211

more cache memory to store the newly generated 212

sequence. Therefore, addressing the challenges 213

arising from the ever-expanding texts is crucial for 214

enhancing the efficiency of LLM inference. 215

3.2 Anchor-based Self-Attention Networks 216

Given an input text with n ordered sequences, 217

P = {S1, S2, ..., Sn}, their associated anchor to- 218

kens are the last tokens that represented as A = 219

{a1, a2, ..., an}. The primary objective of AnSAN 220

is to encapsulate the information of a sequence 221

into its anchor token, with the anchor hidden states 222

representing the comprehensive semantic informa- 223

tion. In this manner, an AnLLM equipped with 224

AnSAN generates subsequent tokens based on the 225

keys/values caches of preceding tokens within the 226

current sequence and the keys/values caches of an- 227

chor tokens from previous sequences. 228

Anchor-based Attention Masks. To accomplish 229

this, we devise anchor-based attention masks, as 230

illustrated in Figure 2. Assuming that the current 231

token in the sequence is a non-anchor token, we al- 232

low attention towards previous non-anchor tokens 233

within the same sequence and anchor tokens from 234

preceding sequences, while blocking attention to- 235

wards non-anchor tokens from previous sequences. 236

This approach ensures that non-anchor tokens can 237

only access information from anchor tokens in pre- 238

vious sequences and the current sequence’s infor- 239

mation. Conversely, when the current token is an 240

anchor token, which is the last token in the se- 241

quence, we exclusively permit its attention towards 242

previous non-anchor tokens within the same se- 243

quence, blocking all other attention. This constraint 244

forces the anchor token to aggregate information 245

solely from its current sequence. Consequently, we 246

replace Eq. (3) with anchor-based attention masks 247

in Eq. (4) to determine the mask of the i-th token in 248

the input text concerning the j-th token (assuming 249

that the i-th token belongs to the k-th sequence). 250

Mi,j =


0, if ((wi, wj) /∈ A) ∧ (wj ∈ S≤k−1)

0, else if (wi ∈ A) ∧ (wj ∈ S≤k−1)

1, else if i ≥ j

0, else

,

(4)

251

where S≤k−1 represents previous k−1 sequences. 252

The number 0 denotes blocking attention, whereas 253

the number 1 indicates the opposite. 254

3

w0 w1 w2 w4 w5 w7a0 a1

w7

w5

w4

w2

w1

w0

a1

a0

S0 S1

Anchor-based Attention Masks Keys/Values Caching

w0 w1 w2 a0 w4 w5 a1 w7

Anchor-based LLMs
(+AnSAN)

Masking

w0 w1 w2 a0 w4 w5 a1 w7 p

a0 a1 w7 ✓

Figure 2: Anchor-based Attention Masking and Efficient Caching in Anchor-based LLMs. On the left, the gray and
green squares represent the masking and unmasking operations respectively, with the circled “a” symbols denoting
the anchor tokens. On the right, the shaded circles depict keys/values caches. By employing anchor-based attention
masking during training, we compel the model to compress sequence information into the anchor tokens. On the
right, during inference, with the AnSAN technique, AnLLMs compress information into the anchor tokens and
discard the previous remaining keys/values caches, thereby facilitating an efficient caching mechanism.

Anchor Token Selection. By implementing the255

AnSAN mechanism for training LLMs, we can256

compel the model to compress sequence informa-257

tion into the anchor token and generate new tokens258

based on the anchor token information from previ-259

ous sequences and non-anchor token information260

from the current sequence.261

The challenge now lies in selecting an appropri-262

ate anchor token. In our experiment, we propose263

two implementation methods: one using the end-264

point as the anchor token, and the other appending265

a new token specifically as the anchor token.266

3.3 Anchor-based Inference267

By training the model to compress information268

into the anchor token of a natural language se-269

quence, we can optimize the inference process270

by modifying the keys/values caching mechanism.271

Specifically, during inference, upon encountering272

an anchor token that condenses the comprehen-273

sive semantic information of preceding tokens in274

the current sequence, the model can reduce the275

keys/values caches by deleting the caches of non-276

anchor tokens within that sequence.277

We introduce the inference method in Algo-278

rithm 1. The function “REDUCTION” in Line 1279

is utilized to remove keys/values caches when the280

model processes prefix texts in Line 10 or generates281

an anchor token during the prediction of the next282

Algorithm 1 Anchor-based Inference
Require: Anchor-based LLM Θ, prefix text P with anchor

tokens, keys/values cache list C, predicted token wnew;
Output: Generated text T ;
1: function REDUCTION(C)
2: j ← last anchor index in C;
3: C ← {c ∈ C | index(c) ≥ j or c is anchor};
4: return C.
5: end function
6: Initialize T , C as empty lists;
7: M← GetMasks(P, C) using Eq. (4);
8: Update wnew, C using Forward(P ;M, C,Θ);
9: Append wnew to T ;

10: C ← Reduction(C);
11: while wnew is not [eos] do
12: M← GetMasks(wnew, C) using Eq. (4);
13: Update wnew, C using Forward(wnew;M, C,Θ);
14: Append wnew to T ;
15: if wnew is the anchor token then
16: C ← Reduction(C);
17: end if
18: end while
19: return T .

token in Line 16. This approach aims to reduce 283

the keys/values caches for both prefix tokens and 284

generated outputs during real-time inference. 285

4 Experiments 286

In this section, we first detail AnLLM’s imple- 287

mentation, then outline the training procedure and 288

model perplexity. Finally, we introduce the evalua- 289

tion datasets and metrics. 290

4

0 0.25 0.5 0.75 1
1.8

1.9

2.0

2.1

2.2

2.3

2.4

2.5

Tokens (B)

Tr
ai

ni
ng

L
os

s
AnLLM-EP-7B
AnLLM-AC-7B

512 1024 2048 4096

3

3.5

4

4.5 4.3

3.6

3.2

2.9

4.4

3.7

3.3

3

4.5

3.8

3.4

3.1

Evaluation Context Length

Pe
rp

le
xi

ty

Llama2-7B
AnLLM-EP-7B
AnLLM-AC-7B

Figure 3: Training Process and Perplexity Evaluation of the Anchor-based Large Language Model.

4.1 Our Implementation291

Llama2-7b (Touvron et al., 2023b) is adopted as292

the base model in our experiments, which is an293

open-source and English-centric LLM. In accor-294

dance with the principles outlined in Section 3, we295

present our implementations here. The crux is to296

identify which tokens in a sequence can be consid-297

ered anchor tokens. In light of this, we describe298

two implementation strategies: one employs the299

endpoints directly, and the other involves append-300

ing a new token at the end of a sequence to serve301

as the anchor token. The details are as follows:302

• AnLLM-EP. This approach uses punctuation303

marks within the sequence as anchor tokens.304

Punctuation marks, such as commas, periods, and305

question marks, are viewed as semantic bound-306

aries within a sequence. As such, they can serve307

as anchor tokens in AnLLM. In our experiments308

of AnLLM-EP, we use the endpoint in English309

as the anchor tokens.310

• AnLLM-AC. This strategy entails the introduc-311

tion of a new token to act as the sequence anchor.312

In our implementation, we designate <AC> as313

the new token and initialize its embedding using314

the mean value of the embedding matrix. For315

training data, we use the sentence tokenizer from316

the NLTK package to split texts into sentences,317

appending <AC> at the end of each sentence as318

the anchor token.1 During inference, <AC> to-319

kens can be flexibly added to the text based on320

user requirements, such as adding one anchor321

for each demonstration, allowing for flexible and322

controllable sequence compression.323

1https://www.nltk.org/api/nltk.tokenize.punkt.
html

4.2 Data and Training Procedure 324

Considering that AnLLMs are expected to predict 325

subsequent tokens within the context of keys/values 326

hidden states of anchor tokens, this presents a sig- 327

nificant challenge for existing open-source LLMs. 328

To this end, by substituting the self-attention net- 329

works with anchor-based self-attention networks as 330

detailed in Section 3.2, we continually pre-train the 331

Llama2 model using a publicly available corpus. 332

Data. We employ the RedPajama-Data-1T- 333

Sample dataset (Computer, 2023) for the continu- 334

ous pre-training purpose.2 This dataset comprises 335

850, 000 samples with approximately 1 billion to- 336

kens, which have been subjected to right truncation 337

to fit the model context of 4, 096. 338

Training Procedure. We train each model via 339

the next token prediction objective on the dataset 340

for one epoch, with a batch size of 512. The learn- 341

ing rate is set to 0.00002 and constant after a lin- 342

ear warmup with 20 update steps. The AdamW 343

(Loshchilov and Hutter, 2019) with β1 = 0.9 and 344

β2 = 0.95 is adopted as the gradient backtrack 345

propagation optimizer. All the training procedures 346

are conducted with four 8× A100 GPU machines 347

with 40G GPU Memory. 348

Training Loss and Perplexity. The left-hand 349

side of Figure 3 depicts the training loss associated 350

with our models. The loss curves for AnLLM-EP 351

and AnLLM-AC consistently decline to approxi- 352

mately 1.9, with AnLLM-AC achieving a lower 353

loss. This observation suggests that continually 354

pre-training an LLM using anchor-based attention 355

2https://huggingface.co/datasets/
togethercomputer/RedPajama-Data-1T-Sample

5

https://www.nltk.org/api/nltk.tokenize.punkt.html
https://www.nltk.org/api/nltk.tokenize.punkt.html
https://huggingface.co/datasets/togethercomputer/RedPajama-Data-1T-Sample
https://huggingface.co/datasets/togethercomputer/RedPajama-Data-1T-Sample

masks is indeed viable, enabling the LLM to effec-356

tively learn the process of compressing sequence357

information into anchor tokens.358

The right-hand side of Figure 3 displays the per-359

plexity evaluation of the models with varying con-360

text lengths. Full attention is utilized to assess361

the language modeling capabilities of all models.362

Following the settings of Chen et al. (2023), the363

perplexity is evaluated on the test samples of the364

Proof-Pile datasets (Rae et al., 2020). The results365

demonstrate that both AnLLM-EP and AnLLM-366

AC models maintain a promising performance, ex-367

hibiting language modeling capacity comparable to368

the base model, Llama2-7B. Moreover, this finding369

suggests that AnLLMs are compatible with full at-370

tention, as indicated by minimal perplexity decline.371

4.3 Evaluation372

In our investigation, we employ a diverse collection373

of benchmarks with varying text lengths to evaluate374

our outcomes, including OpenBookQA (OBQA)375

(Mihaylov et al., 2018), WinoGrande (WG) (Sak-376

aguchi et al., 2021), ARC-easy (ARC-e) and ARC-377

challenge (ARC-c) (Clark et al., 2018), PIQA (Bisk378

et al., 2020), HellaSwag (HS) (Zellers et al., 2019),379

SCIQ (Welbl et al., 2017), and BoolQ (Clark et al.,380

2019). These benchmarks provide a comprehen-381

sive evaluation of various aspects, including reason-382

ing, comprehension, understanding of the physical383

world, and predicting future events. Importantly,384

they cover texts of varying lengths, facilitating a385

thorough assessment of our model’s performance386

across diverse tasks and text complexities, rang-387

ing from shorter input contexts in OBQA to longer388

texts in BoolQ. To measure the precision and ef-389

ficiency of our models, we evaluate them across390

three dimensions using three distinct metrics for391

both zero-shot and five-shot settings. For AnLLM-392

AC in the five-shot setting, we incorporate the an-393

chor token <AC> at the end of each demonstration.394

• Accuracy (Acc). This conventional metric is uti-395

lized to gauge the prediction accuracy of models.396

In accordance with previous studies (Gao et al.,397

2023), we choose the options with the highest398

probabilities as predictions and calculate accu-399

racy using the gold-standard labels.400

• Keys/Values Caches Reduction (C⇓). In the con-401

text of the five-shot evaluation, the demonstra-402

tions can be cached in GPU memory for subse-403

quent reuse. Nevertheless, extended demonstra-404

tions may require increased memory consump-405

tion. This metric is designed to assess the mem- 406

ory efficiency of the AnSAN technique. 407

• Inference Acceleration Ratio (T⇑). Similar to 408

Wang et al. (2023), capitalizing on the cached 409

keys/values, we present the Inference accelera- 410

tion ratio, which serves as an indicator of the 411

inference efficiency of the AnSAN technique. 412

Note that we first report full attention inference 413

results for all models, then present results with the 414

AnSAN method (+AnSAN) applied, compressing 415

sequence information into anchor tokens. 416

5 Results 417

As evident from the results presented in Table 1, 418

both the AnLLM-AC and AnLLM-EP models 419

demonstrate promising accuracy, comparable to 420

that of the base model, while simultaneously im- 421

proving memory and inference efficiency. 422

Accuracy (Acc). The proposed AnLLM-EP and 423

AnLLM-AC models exhibit commendable accu- 424

racy across various benchmarks. 425

In the zero-shot setting, with full attention, 426

AnLLM-EP and AnLLM-AC achieve average accu- 427

racies of 64.6% and 65.1%, respectively, compara- 428

ble to Llama2-7B’s 65.8% accuracy. This suggests 429

that training with integrated anchor tokens barely 430

affects the model capacity, emphasizing the robust- 431

ness of LLMs. Furthermore, our models excel in 432

OBQA, PIQA, and SCIQ tasks. 433

In the five-shot setting, with five prior examples, 434

AnLLM-EP and AnLLM-AC maintain dependable 435

performance using full attention. When implement- 436

ing the AnSAN technique, a slight accuracy decline 437

across all models is observed. This is expected, as 438

AnSAN, designed for memory efficiency, necessi- 439

tates token removal, potentially leading to informa- 440

tion loss. The degradation in BoolQ is most pro- 441

nounced, which contains the longest demonstration 442

tasks, indicating that the longer the text, the greater 443

the information loss after compression. However, 444

the average accuracy reduction is minimal, approx- 445

imately 1.5%, suggesting that AnSAN effectively 446

balances memory-saving and model performance. 447

Keys/Values Cache Reduction (C⇓). The size 448

of the keys/values cache is a critical factor in the 449

practical implementation of LLMs, particularly 450

concerning memory efficiency and computational 451

resources. In this respect, the AnLLM-EP and 452

AnLLM-AC models offer significant advantages. 453

6

OBQA WG ARC-e ARC-c PIQA HS SCIQ BoolQ AVG.

Llama2-7B 31.4 69.1 76.3 43.4 78.1 57.1 93.7 77.7 65.8
AnLLM-EP 33.2 68.0 73.4 40.8 77.8 55.0 94.4 74.4 64.6
AnLLM-AC 31.6 68.5 74.4 42.5 78.3 54.7 93.8 77.0 65.1

(a) The Zero-Shot Performance.

OBQA WG ARC-e ARC-c PIQA HS SCIQ BoolQ AVG.

Ld 89 133 145 209 262 426 603 804 334
Lx 18 26 36 42 42 90 130 169 69

Llama2-7B Acc 37.2 73.7 79.8 50.0 78.7 58.3 96.8 78.4 69.1
+AnSAN Acc 34.6 68.6 62.6 35.8 68.3 30.8 65.7 50.8 52.1

AnLLM-EP Acc 36.8 71.0 79.4 49.4 78.1 55.3 96.6 75.6 67.8
+AnSAN Acc 36.2 68.0 76.7 45.6 78.2 52.6 93.1 74.0 65.6

Lkv 89 8 5 30 9 25 50 43 32
C⇓ −0% −94% −97% −86% −97% −94% −92% −95% −90%
T⇑ ×1.0 ×1.0 ×1.0 ×1.2 ×1.4 ×2.1 ×2.6 ×3.5 ×1.7

AnLLM-AC Acc 37.2 72.3 79.8 49.0 78.6 56.9 96.8 77.5 68.5
+AnSAN Acc 35.6 70.6 79.2 47.9 78.7 55.6 95.7 76.6 67.5

Lkv 5 5 5 5 5 5 5 5 5
C⇓ −94% −96% −97% −98% −98% −99% −99% −99% −99%
T⇑ ×1.0 ×1.0 ×1.1 ×1.2 ×1.5 ×2.0 ×2.6 ×3.5 ×1.7

(b) The Five-Shot Performance.

Table 1: Accuracy and Efficiency of LLMs on Question Answering Benchmarks. C⇓ represents the reduction in
keys/values cache size, while T⇑ denotes the inference acceleration ratio during testing. Acc stands for Accuracy. Lkv

represents the length of the keys/values cache. Ld and Lx denote the lengths of in-context learning demonstrations
and input queries, respectively. Our methods effectively reduce cache sizes and boost inference efficiency.

By adopting the AnSAN, these models are de-454

signed to dramatically reduce the keys/values cache455

size during inference. As shown in Table 1, these456

models achieve remarkable reductions in cache size.457

Specifically, the average reduction percentages are458

around 90% for AnLLM-EP and an impressive459

99% for AnLLM-AC. This is a substantial im-460

provement compared to conventional approaches,461

which typically necessitate large cache sizes to462

store keys/values. These reductions in cache size463

translate to considerable savings in memory and464

computational resources, rendering these models465

highly efficient for practical applications.466

Inference Acceleration Ratio (T⇑). The infer-467

ence acceleration ratio serves as a crucial metric468

reflecting the model’s efficiency during the testing469

phase. By incorporating anchor tokens into nat-470

ural language texts, we can repurpose the hidden471

states of anchor tokens as keys/values caches in472

the demonstrations, and then adopt an inference473

strategy as suggested by Wang et al. (2023). In this474

scenario, both the AnLLM-EP and AnLLM-AC 475

models demonstrate significant improvements. 476

Specifically, in the five-shot testing, both 477

AnLLM-EP and AnLLM-AC models attain an av- 478

erage inference acceleration ratio of approximately 479

1.7 times. This represents a considerable advance- 480

ment over the conventional non-caching method, 481

which typically necessitates prolonged processing 482

times due to the large number of tokens involved. 483

As Ld increases, reaching up to 3.5 times in the 484

BoolQ task, the acceleration ratios also escalate, 485

corroborating the findings of Wang et al. (2023). 486

This enhancement in processing speed leads to in- 487

creased efficiency, making these models particu- 488

larly apt for scenarios with limited resources. 489

The AnLLM-EP and AnLLM-AC models ex- 490

hibit remarkable performance in natural lan- 491

guage understanding benchmarks, effectively 492

balancing accuracy, memory efficiency, and 493

time acceleration. The incorporation of anchor 494

tokens into AnLLMs, along with the utilization 495

7

of the AnSAN technique for reducing keys/values496

cache size, allows these models to maintain perfor-497

mance on par while significantly improving mem-498

ory efficiency and inference speed. The equilibrium499

achieved between model performance and compu-500

tational efficiency is noteworthy and opens up new501

possibilities for the advancement of LLMs.502

6 Analysis503

To further elucidate our method’s insights, we con-504

duct a natural language generation experiment with505

the German-to-English (De2En) translation task.506

We evaluate the models using COMET-DA (Rei507

et al., 2022), indicating translation quality, and the508

Keys/Values Cache Reduction C⇓ metric, denoting509

memory efficiency as previously described. In line510

with previous findings, AnLLMs accept a minor511

accuracy trade-off (about 3 COMET-DA points) for512

enhanced memory efficiency. All LLMs are fine-513

tuned on the Alpaca dataset, combined with the514

newstest2017-2020 datasets, following Jiao et al.515

(2023). Results are presented in Table 2.516

6.1 Compatibility and Flexibility of Full517

Attention and Anchor-based Attention518

The results offer significant insight into the inter-519

play between anchor-based attention and full at-520

tention mechanisms in the De2En translation task.521

Since source sentences are vital in translation tasks,522

applying full attention to them is crucial for main-523

taining model performance. Thus, retaining the524

source sentence keys/values caches is expected to525

enhance AnLLM performance when implement-526

ing the AnSAN technique. Specifically, when527

combining full attention with the AnSAN method,528

both AnLLM-EP and AnLLM-AC achieve approx-529

imately 80.0 COMET-DAE scores, comparable to530

other models using full attention exclusively. This531

indicates that the AnSAN technique is compatible532

with the full attention mechanism. Consequently,533

our proposed models allow users to choose between534

full attention and anchor-based attention for input535

texts based on their needs, emphasizing the com-536

patibility and flexibility of our models.537

6.2 Effective Cache Reduction for Real-Time538

Inference with the AnSAN Technique539

The results in Table 2 show that our reduction strat-540

egy effectively minimizes keys/values caches dur-541

ing real-time inference. In Specific, as indicated542

in Line 15 of Algorithm 1, when generating an543

anchor token (i.e., the endpoint or <AC> tokens),544

Model Src Cache De2En MaxKV C⇓
Llama2-7b ✓ 83.1 220 0%

AnLLM-EP ✓ 81.6 220 0%

+AnSAN
✗ 78.5 50 77%
✓ 80.3 124 44%

AnLLM-AC ✓ 82.4 220 0%

+AnSAN
✗ 78.0 35 84%
✓ 80.0 125 43%

Table 2: COMET-DA Scores and Keys/Values Cahces
for the WMT23 German-to-English (De2En) Transla-
tion Task. The term “Src Cach” denotes retaining source
sentence hidden states in Keys/Values Caches, while
“MaxKV” refers to the average maximum keys/values
length during inference.

our AnSAN-equipped models execute the reduc- 545

tion function to minimize the current keys/values 546

caches. When discarding source sentence caches, 547

we achieve approximately 77% and 84% reduc- 548

tion for the AnLLM-EP and AnLLM-AC mod- 549

els, respectively, albeit with a low COMET-DA 550

score. However, when retaining source sentence 551

caches, we still reduce around 44% of caches for 552

both models, achieving a COMET-DA score of 553

approximately 80.0. These results confirm the ef- 554

fectiveness of our anchor-based inference strategy 555

for practical real-time inference applications. 556

7 Conclusion 557

LLMs have emerged as a significant research area 558

in the field of artificial intelligence. However, de- 559

spite their exceptional performance across various 560

natural language tasks, the practical application of 561

these models is limited by their significant mem- 562

ory overhead and time efficiency. Implementing 563

LLMs on resource-constrained devices, such as 564

smartphones, poses a unique challenge. To address 565

this issue, we propose anchor-based LLMs with the 566

AnSAN technique. Our experiments demonstrate 567

that by sacrificing a marginal 1.5% in precision, our 568

approach saves 99% of keys/values cache memory 569

while simultaneously improving inference speed 570

by up to 3.5 times. Our methods’ application in 571

machine translation showcases their compatibility 572

and flexibility, effectively enhancing memory ef- 573

ficiency for practical use. Our novel approach is 574

practical, straightforward, flexible, and compatible 575

with existing methods, paving the way for further 576

adoption of LLMs in real-world applications. 577

8

Limitations578

While our proposed AnLLMs demonstrate signif-579

icant improvements in memory efficiency and in-580

ference acceleration, there are several limitations581

to consider:582

1. Accuracy trade-off: As observed in the ex-583

perimental results, our method incurs a mi-584

nor decrease in accuracy (within 1.5%) com-585

pared to the original model. This limitation586

stems from the information compression pro-587

cess, which may lead to information loss. Al-588

though the degradation in accuracy is rela-589

tively small, it is crucial to acknowledge this590

trade-off when deploying our method in prac-591

tical applications.592

2. Applicability to various tasks: Our experi-593

ments primarily focus on question-answering594

benchmarks and machine translation tasks.595

The effectiveness of our method in other natu-596

ral language processing tasks, such as summa-597

rization, sentiment analysis, and entity recog-598

nition, remains to be thoroughly investigated.599

Future work should explore the applicabil-600

ity and performance of our method across a601

broader range of tasks.602

3. Optimal anchor token selection: In our im-603

plementation, we chose the last token in a se-604

quence as the anchor token. However, the op-605

timal anchor token selection may vary across606

different tasks and domains. Further research607

is needed to develop more sophisticated strate-608

gies for identifying and leveraging the most609

suitable anchor tokens.610

4. Scalability to other LLMs: We have applied611

our method to the open-source Llama2 mod-612

els. It remains to be seen how our approach613

would perform when applied to other open-614

source LLMs, such as Falcon and Qwen (Al-615

mazrouei et al., 2023; Bai et al., 2023). Evalu-616

ating the effectiveness and scalability of our617

method on more extensive language models618

is an essential direction for future research.619

Despite these limitations, our work presents a620

novel approach to enhance memory efficiency and621

inference acceleration in LLMs. Future research622

efforts should address these limitations, refining623

our method and extending its applicability to a624

wider range of tasks and model architectures.625

Ethics Statement 626

In conducting this research, we have adhered to 627

the highest ethical standards and principles of aca- 628

demic integrity. The development and implemen- 629

tation of the AnLLMs and the AnSAN have been 630

carried out with the primary aim of improving the 631

memory efficiency and inference speed of large 632

language models, without any intention to cause 633

harm or promote malicious applications. 634

Our methodology and experimental design have 635

been thoroughly reviewed to ensure that the 636

datasets and models employed are used respon- 637

sibly and appropriately. The RedPajama datasets 638

and the open-source Llama2 models, which we 639

utilized in our study, are publicly available and 640

widely recognized as reliable resources in the re- 641

search community. All data used in this study have 642

been processed and analyzed in compliance with 643

relevant guidelines and best practices. 644

We acknowledge that the advancements in large 645

language models and their applications may have 646

potential implications for privacy, security, and fair- 647

ness. In light of these concerns, we emphasize the 648

importance of responsible usage and deployment 649

of our proposed AnLLMs and AnSAN techniques. 650

Researchers and practitioners adopting our meth- 651

ods should be aware of the potential risks and take 652

necessary precautions to mitigate any unintended 653

consequences. 654

Throughout this study, we have strived for trans- 655

parency and reproducibility. Our results and find- 656

ings are reported honestly and accurately, without 657

any manipulation or misrepresentation. We are 658

committed to sharing our knowledge and insights 659

with the broader research community, and we en- 660

courage open discussion and constructive feedback 661

to further advance the understanding and develop- 662

ment of efficient and ethical large language models. 663

In conclusion, this research has been conducted 664

in accordance with the highest ethical standards, 665

and we are dedicated to fostering a responsible and 666

collaborative research environment in the field of 667

large language models and artificial intelligence. 668

References 669

Ebtesam Almazrouei, Hamza Alobeidli, Abdulaziz Al- 670
shamsi, Alessandro Cappelli, Ruxandra Cojocaru, 671
Mérouane Debbah, Étienne Goffinet, Daniel Hess- 672
low, Julien Launay, Quentin Malartic, et al. 2023. 673
The falcon series of open language models. arXiv 674
preprint arXiv:2311.16867. 675

9

Jinze Bai, Shuai Bai, Yunfei Chu, Zeyu Cui, Kai Dang,676
Xiaodong Deng, Yang Fan, Wenbin Ge, Yu Han, Fei677
Huang, et al. 2023. Qwen technical report. arXiv678
preprint arXiv:2309.16609.679

Lochan Basyal and Mihir Sanghvi. 2023. Text680
summarization using large language models: A681
comparative study of mpt-7b-instruct, falcon-7b-682
instruct, and openai chat-gpt models. arXiv preprint683
arXiv:2310.10449.684

Petr Baudiš, Silvestr Stanko, and Jan Šedivý. 2016.685
Joint learning of sentence embeddings for relevance686
and entailment. In Proceedings of the 1st Workshop687
on Representation Learning for NLP, pages 8–17,688
Berlin, Germany. Association for Computational Lin-689
guistics.690

Yonatan Bisk, Rowan Zellers, Jianfeng Gao, Yejin Choi,691
et al. 2020. Piqa: Reasoning about physical com-692
monsense in natural language. In Proceedings of the693
AAAI conference on artificial intelligence, volume 34,694
pages 7432–7439.695

Yukang Chen, Shengju Qian, Haotian Tang, Xin Lai,696
Zhijian Liu, Song Han, and Jiaya Jia. 2023. Longlora:697
Efficient fine-tuning of long-context large language698
models. arXiv:2309.12307.699

Rewon Child, Scott Gray, Alec Radford, and700
Ilya Sutskever. 2019. Generating long se-701
quences with sparse transformers. arXiv preprint702
arXiv:1904.10509.703

Christopher Clark, Kenton Lee, Ming-Wei Chang,704
Tom Kwiatkowski, Michael Collins, and Kristina705
Toutanova. 2019. BoolQ: Exploring the surprising706
difficulty of natural yes/no questions. In Proceedings707
of the 2019 Conference of the North American Chap-708
ter of the Association for Computational Linguistics:709
Human Language Technologies, Volume 1 (Long and710
Short Papers), pages 2924–2936, Minneapolis, Min-711
nesota. Association for Computational Linguistics.712

Peter Clark, Isaac Cowhey, Oren Etzioni, Tushar Khot,713
Ashish Sabharwal, Carissa Schoenick, and Oyvind714
Tafjord. 2018. Think you have solved question an-715
swering? try arc, the ai2 reasoning challenge. arXiv716
preprint arXiv:1803.05457.717

Together Computer. 2023. Redpajama: an open dataset718
for training large language models.719

Tri Dao, Daniel Y. Fu, Stefano Ermon, Atri Rudra,720
and Christopher Ré. 2022. FlashAttention: Fast and721
memory-efficient exact attention with IO-awareness.722
In Advances in Neural Information Processing Sys-723
tems.724

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and725
Kristina Toutanova. 2018. Bert: Pre-training of deep726
bidirectional transformers for language understand-727
ing. arXiv preprint arXiv:1810.04805.728

Qingxiu Dong, Lei Li, Damai Dai, Ce Zheng, Zhiy- 729
ong Wu, Baobao Chang, Xu Sun, Jingjing Xu, and 730
Zhifang Sui. 2022. A survey for in-context learning. 731
arXiv preprint arXiv:2301.00234. 732

Leo Gao, Jonathan Tow, Baber Abbasi, Stella Biderman, 733
Sid Black, Anthony DiPofi, Charles Foster, Laurence 734
Golding, Jeffrey Hsu, Alain Le Noac’h, Haonan Li, 735
Kyle McDonell, Niklas Muennighoff, Chris Ociepa, 736
Jason Phang, Laria Reynolds, Hailey Schoelkopf, 737
Aviya Skowron, Lintang Sutawika, Eric Tang, An- 738
ish Thite, Ben Wang, Kevin Wang, and Andy Zou. 739
2023. A framework for few-shot language model 740
evaluation. 741

Huiqiang Jiang, Qianhui Wu, Xufang Luo, Dongsheng 742
Li, Chin-Yew Lin, Yuqing Yang, and Lili Qiu. 2023. 743
Longllmlingua: Accelerating and enhancing llms 744
in long context scenarios via prompt compression. 745
arXiv preprint arXiv:2310.06839. 746

Wenxiang Jiao, Jen-tse Huang, Wenxuan Wang, Zhi- 747
wei He, Tian Liang, Xing Wang, Shuming Shi, and 748
Zhaopeng Tu. 2023. ParroT: Translating during chat 749
using large language models tuned with human trans- 750
lation and feedback. In Findings of the Association 751
for Computational Linguistics: EMNLP 2023, pages 752
15009–15020, Singapore. Association for Computa- 753
tional Linguistics. 754

Woosuk Kwon, Zhuohan Li, Siyuan Zhuang, Ying 755
Sheng, Lianmin Zheng, Cody Hao Yu, Joseph E. 756
Gonzalez, Hao Zhang, and Ion Stoica. 2023. Effi- 757
cient memory management for large language model 758
serving with pagedattention. In Proceedings of the 759
ACM SIGOPS 29th Symposium on Operating Systems 760
Principles. 761

Ilya Loshchilov and Frank Hutter. 2019. Decoupled 762
weight decay regularization. In International Confer- 763
ence on Learning Representations. 764

Todor Mihaylov, Peter Clark, Tushar Khot, and Ashish 765
Sabharwal. 2018. Can a suit of armor conduct elec- 766
tricity? a new dataset for open book question answer- 767
ing. arXiv preprint arXiv:1809.02789. 768

Jesse Mu, Xiang Lisa Li, and Noah Goodman. 2023. 769
Learning to compress prompts with gist tokens. 770
arXiv preprint arXiv:2304.08467. 771

OpenAI. 2023. Gpt-4 technical report. 772

Jianhui Pang, Fanghua Ye, Longyue Wang, Dian Yu, 773
Derek F Wong, Shuming Shi, and Zhaopeng Tu. 2024. 774
Salute the classic: Revisiting challenges of machine 775
translation in the age of large language models. arXiv 776
preprint arXiv:2401.08350. 777

Alec Radford, Jeffrey Wu, Rewon Child, David Luan, 778
Dario Amodei, Ilya Sutskever, et al. 2019. Language 779
models are unsupervised multitask learners. OpenAI 780
blog, 1(8):9. 781

10

https://doi.org/10.18653/v1/W16-1602
https://doi.org/10.18653/v1/W16-1602
https://doi.org/10.18653/v1/W16-1602
https://doi.org/10.18653/v1/N19-1300
https://doi.org/10.18653/v1/N19-1300
https://doi.org/10.18653/v1/N19-1300
https://github.com/togethercomputer/RedPajama-Data
https://github.com/togethercomputer/RedPajama-Data
https://github.com/togethercomputer/RedPajama-Data
https://doi.org/10.5281/zenodo.10256836
https://doi.org/10.5281/zenodo.10256836
https://doi.org/10.5281/zenodo.10256836
https://doi.org/10.18653/v1/2023.findings-emnlp.1001
https://doi.org/10.18653/v1/2023.findings-emnlp.1001
https://doi.org/10.18653/v1/2023.findings-emnlp.1001
https://doi.org/10.18653/v1/2023.findings-emnlp.1001
https://doi.org/10.18653/v1/2023.findings-emnlp.1001
https://openreview.net/forum?id=Bkg6RiCqY7
https://openreview.net/forum?id=Bkg6RiCqY7
https://openreview.net/forum?id=Bkg6RiCqY7
http://arxiv.org/abs/2303.08774

Jack W. Rae, Anna Potapenko, Siddhant M. Jayaku-782
mar, Chloe Hillier, and Timothy P. Lillicrap. 2020.783
Compressive transformers for long-range sequence784
modelling. In International Conference on Learning785
Representations.786

Nir Ratner, Yoav Levine, Yonatan Belinkov, Ori Ram,787
Inbal Magar, Omri Abend, Ehud Karpas, Amnon788
Shashua, Kevin Leyton-Brown, and Yoav Shoham.789
2023. Parallel context windows for large language790
models. In Proceedings of the 61st Annual Meet-791
ing of the Association for Computational Linguistics792
(Volume 1: Long Papers), pages 6383–6402, Toronto,793
Canada. Association for Computational Linguistics.794

Ricardo Rei, José G. C. de Souza, Duarte Alves,795
Chrysoula Zerva, Ana C Farinha, Taisiya Glushkova,796
Alon Lavie, Luisa Coheur, and André F. T. Martins.797
2022. COMET-22: Unbabel-IST 2022 submission798
for the metrics shared task. In Proceedings of the799
Seventh Conference on Machine Translation (WMT),800
pages 578–585, Abu Dhabi, United Arab Emirates801
(Hybrid). Association for Computational Linguistics.802

Jon Saad-Falcon, Joe Barrow, Alexa Siu, Ani Nenkova,803
Ryan A Rossi, and Franck Dernoncourt. 2023. Pdf-804
triage: Question answering over long, structured doc-805
uments. arXiv preprint arXiv:2309.08872.806

Keisuke Sakaguchi, Ronan Le Bras, Chandra Bhagavat-807
ula, and Yejin Choi. 2021. Winogrande: An adver-808
sarial winograd schema challenge at scale. Commu-809
nications of the ACM, 64(9):99–106.810

Hugo Touvron, Thibaut Lavril, Gautier Izacard, Xavier811
Martinet, Marie-Anne Lachaux, Timothée Lacroix,812
Baptiste Rozière, Naman Goyal, Eric Hambro, Faisal813
Azhar, et al. 2023a. Llama: Open and effi-814
cient foundation language models. arXiv preprint815
arXiv:2302.13971.816

Hugo Touvron, Louis Martin, Kevin Stone, Peter Al-817
bert, Amjad Almahairi, Yasmine Babaei, Nikolay818
Bashlykov, Soumya Batra, Prajjwal Bhargava, Shruti819
Bhosale, et al. 2023b. Llama 2: Open founda-820
tion and fine-tuned chat models. arXiv preprint821
arXiv:2307.09288.822

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob823
Uszkoreit, Llion Jones, Aidan N Gomez, Łukasz824
Kaiser, and Illia Polosukhin. 2017. Attention is all825
you need. Advances in neural information processing826
systems, 30.827

Lean Wang, Lei Li, Damai Dai, Deli Chen, Hao Zhou,828
Fandong Meng, Jie Zhou, and Xu Sun. 2023. Label829
words are anchors: An information flow perspective830
for understanding in-context learning. In Proceed-831
ings of the 2023 Conference on Empirical Methods832
in Natural Language Processing, pages 9840–9855,833
Singapore. Association for Computational Linguis-834
tics.835

Jason Wei, Yi Tay, Rishi Bommasani, Colin Raffel,836
Barret Zoph, Sebastian Borgeaud, Dani Yogatama,837
Maarten Bosma, Denny Zhou, Donald Metzler, et al.838

2022. Emergent abilities of large language models. 839
arXiv preprint arXiv:2206.07682. 840

Johannes Welbl, Nelson F. Liu, and Matt Gardner. 2017. 841
Crowdsourcing multiple choice science questions. 842
In Proceedings of the 3rd Workshop on Noisy User- 843
generated Text, pages 94–106, Copenhagen, Den- 844
mark. Association for Computational Linguistics. 845

Rowan Zellers, Ari Holtzman, Yonatan Bisk, Ali 846
Farhadi, and Yejin Choi. 2019. Hellaswag: Can a 847
machine really finish your sentence? arXiv preprint 848
arXiv:1905.07830. 849

11

https://openreview.net/forum?id=SylKikSYDH
https://openreview.net/forum?id=SylKikSYDH
https://openreview.net/forum?id=SylKikSYDH
https://doi.org/10.18653/v1/2023.acl-long.352
https://doi.org/10.18653/v1/2023.acl-long.352
https://doi.org/10.18653/v1/2023.acl-long.352
https://aclanthology.org/2022.wmt-1.52
https://aclanthology.org/2022.wmt-1.52
https://aclanthology.org/2022.wmt-1.52
https://arxiv.org/abs/2302.13971
https://arxiv.org/abs/2302.13971
https://arxiv.org/abs/2302.13971
https://arxiv.org/abs/2307.09288
https://arxiv.org/abs/2307.09288
https://arxiv.org/abs/2307.09288
https://proceedings.neurips.cc/paper_files/paper/2017/hash/3f5ee243547dee91fbd053c1c4a845aa-Abstract.html
https://proceedings.neurips.cc/paper_files/paper/2017/hash/3f5ee243547dee91fbd053c1c4a845aa-Abstract.html
https://proceedings.neurips.cc/paper_files/paper/2017/hash/3f5ee243547dee91fbd053c1c4a845aa-Abstract.html
https://aclanthology.org/2023.emnlp-main.609
https://aclanthology.org/2023.emnlp-main.609
https://aclanthology.org/2023.emnlp-main.609
https://aclanthology.org/2023.emnlp-main.609
https://aclanthology.org/2023.emnlp-main.609
https://doi.org/10.18653/v1/W17-4413

A More Experimental Results850

A.1 Testing Acceleration Ratio to851

Full-Caching Method852

In Section 5, we report the testing acceleration853

ratio following the setting of Wang et al. (2023),854

comparing the time difference between caching855

and non-caching inference. Although our method856

reduces the keys/values caches, enabling smaller857

space for prefix information storage and improving858

testing time up to ×3.5, we are still curious about859

whether it would enhance inference efficiency if860

conventional methods use full caches that save all861

keys/values of prefix tokens. As a supplement to862

Table 1, we present the testing acceleration ratio863

between anchor-caching and full-caching inference864

in Table 3. The acceleration ratios for AnLLM-865

EP-AnSAN and AnLLM-AC-AnSAN achieve the866

highest improvements observed in tasks such as867

HS, SCIQ, and BoolQ. The average acceleration868

ratios for AnLLM-EP-AnSAN and AnLLM-AC-869

AnSAN are 1.03. These results demonstrate that870

our anchor-based caching method can enhance in-871

ference efficiency even when compared to conven-872

tional methods that save all keys/values of prefix873

tokens. These results suggest that our anchor-based874

caching approach, which saves only the keys/values875

caches of anchor tokens, can effectively accelerate876

the inference process for the lengthy prefix texts.877

A.2 Model Scalability Assessment878

To examine the scalability of our approach, we ex-879

tend the AnLLM-AC model to 13B and assess its880

performance on eight question-answering bench-881

marks using the same evaluation strategy as previ-882

ously mentioned. In comparison to the 7B AnLLM883

models in Table 1, Results in Table 4 indicate that884

as the model size expands, the AnLLM-AC model885

achieves accuracies of 67.5% and 70.0% for 0-shot886

and 5-shot testing, respectively, resulting in up to887

a 2.4% improvement. Moreover, by incorporating888

anchor-based attention, the AnLLM-AC-AnSAN889

model achieves an average accuracy of 69.5%, sig-890

nifying a 2.0% increase. The performance enhance-891

ment underscores the effectiveness of our methods892

in accommodating larger model capacities. The893

consistent improvements observed in the AnLLM-894

AC model across various scenarios highlight its895

robustness and adaptability. Furthermore, the in-896

creased performance of the AnLLM-AC-AnSAN897

model, facilitated by anchor-based attention, em-898

phasizes the potential of our approaches in opti-899

mizing LLMs. Collectively, these findings point 900

to promising avenues for future research aimed at 901

maximizing the utility and efficiency of AnLLM. 902

A.3 Case Study in Real-Time Inference 903

To elaborate on the optimization of keys/values 904

caches by AnLLM-EP and AnLLM-AC during 905

real-time inference, we reference examples from 906

the translation task in Section 6.2. As per Ta- 907

ble 5, AnLLM-EP and AnLLM-AC use "end- 908

points" (".") and "<AC>" tokens as anchor tokens, 909

respectively. During inference, both models em- 910

ploy auto-regressive generation, creating outputs 911

token-by-token. Upon generating an anchor token 912

(as per Line 16, Algorithm 1), the Reduction func- 913

tion (defined in Line 1) is activated, preserving 914

relevant caches and eliminating others. As a re- 915

sult, the Keys/Values Cache lengths are reduced to 916

roughly the sequence length, averaging around 50 917

for AnLLM-EP and 35 for AnLLM-AC, as shown 918

in Table 2. 919

B Data Settings 920

To provide a thorough insight into how we continu- 921

ally pre-train the model into AnLLM and carry out 922

evaluations, we showcase some data examples in 923

this section for both training and testing data. 924

B.1 Training Data Examples 925

In this section, we provide examples to illustrate the 926

specific data format used in training the AnLLM 927

models. For the AnLLM-EP model, the endpoints 928

act as anchor tokens, allowing us to directly utilize 929

natural language texts. For the AnLLM-AC model, 930

we append a new token <AC> at the end of each 931

sequence in the input texts, which are initially split 932

into sentences using the NLTK toolkits.3 Some 933

examples are presented in Table 6. All the trainig 934

data are downloaded from HuggingFace4, an open- 935

source community. 936

B.2 Testing Data Examples 937

For the testing outlined in the results section (Sec- 938

tion 5), we employ the same evaluation method as 939

in previous work (Gao et al., 2023), which treats 940

each choice as text generation and computes the 941

corresponding probabilities, respectively. Table 7 942

presents some evaluation examples. 943

3https://www.nltk.org/api/nltk.tokenize.punkt.
html

4https://huggingface.co/datasets/
togethercomputer/RedPajama-Data-1T-Sample

12

https://www.nltk.org/api/nltk.tokenize.punkt.html
https://www.nltk.org/api/nltk.tokenize.punkt.html
https://huggingface.co/datasets/togethercomputer/RedPajama-Data-1T-Sample
https://huggingface.co/datasets/togethercomputer/RedPajama-Data-1T-Sample

OBQA WG ARC-e ARC-c PIQA HS SCIQ BoolQ AVG.

AnLLM-EP-AnSAN ×1.00 ×1.00 ×1.00 ×1.00 ×1.00 ×1.06 ×1.14 ×1.13 ×1.03
AnLLM-AC-AnSAN ×1.00 ×1.02 ×1.00 ×1.00 ×1.00 ×1.01 ×1.10 ×1.13 ×1.03

Table 3: Testing Acceleration Ratio on Question-Answering Tasks between Anchor-Caching and Full-Caching
Inference with Five-Shot Demonstrations. Anchor-caching refers to saving only the keys/values caches of anchor
tokens with the AnSAN technique, while full-caching denotes saving caches for all prefix tokens. The tasks are
arranged according to the demonstration lengths. The experiments are the same as those of Table 1. These results
suggest that inference speed differences for short texts are minimal but become more pronounced for longer texts.
However, full-caching inference demands more GPU memory to store the complete keys/values caches, which is
not ideal for environments with limited computational resources.

Model OBQA WG ARC-e ARC-c PIQA HS SCIQ BoolQ AVG.

Zero-Shot Performance
Llama2-7B 31.4 69.1 76.3 43.4 78.1 57.1 93.7 77.7 65.8
Llama2-13b 35.2 72.1 79.4 48.5 79.1 60.0 94.5 80.6 68.7
AnLLM-AC-7B 31.6 68.5 74.4 42.5 78.3 54.7 93.8 77.0 65.1
AnLLM-AC-13B 35.2 70.7 77.9 46.9 78.6 58.1 94.7 78.1 67.5

Five-Shot Performance
Llama2-7B 37.2 73.7 79.8 50.0 78.7 58.3 96.8 78.4 69.1
Llama2-13b 38.2 76.3 82.2 52.6 80.0 61.4 97.5 83.5 71.5
AnLLM-AC-7B 37.2 72.3 79.8 49.0 78.6 56.9 96.8 77.5 68.5

+AnSAN 35.6 70.6 79.2 47.9 78.7 55.6 95.7 76.6 67.5
AnLLM-AC-13B 36.6 72.5 81.6 53.7 79.2 59.6 97.5 79.6 70.0

+AnSAN 36.0 74.0 81.6 52.0 79.1 58.4 96.3 78.8 69.5

Table 4: Accuracy of 13B LLMs on Question Answering Benchmarks. Compared to 7B AnLLMs, the 13B AnLLMs
exhibit superior performance, with up to 2.0 accuracy enhancements, suggesting that AnLLMs possess excellent
scalability to larger model architectures.

13

Input Below is an instruction that describes a task, paired with an input that provides further
context. Write a response that appropriately completes the request.
Instruction: Translate the following sentences from German to English.
Input: Nachdem Werte in einen anderen Teil des Speichers eingeschrieben wurden, wird
das CMOS RAM in der gleichen Weise wie das Communications RAM geprüft. Wurde der
Test bestanden, werden alle Speicherstellen auf ihren früheren Wert eingestellt. LED-Wert:
00 0011 Wenn das Gerät mit dem o.a. Display hält, liegt ein Fehler vor. Prüfen Sie in diesem
Falle U 85 und U 86 und die damit verbundenen Stromkreise bzw. die Dekodierung.
Response:

Output After values have been written to another part of the CMOS RAM, the CMOS RAM is
tested in the same way as the communications RAM. If the test is successful, all storage
locations will be reset to their former value. LED value: 00 0011 If the device is displaying
this value, there is a fault to be found. In this case, check U85 and U86 and the associated
power circuits, as well as decoding.

COMET-DA 82.2
Length 293
MaxKV 170

C⇓ 42%

(a) An Example of the AnLLM-EP Model in De2En Translation Task.

Input Below is an instruction that describes a task, paired with an input that provides further
context. Write a response that appropriately completes the request. <AC>
Instruction: Translate the following sentences from German to English. <AC>
Input: Der Spielablauf wird ausgelöst, wenn der Druckschalter START betätigt wird.
<AC> Der LED-Schalter bleibt erleuchtet und die Spielgeräusche werden hörbar. <AC>
Wird der letzte Spieler-Panzer vom feindlichen Angreifer eliminiert, ist ein Spiel beendet.
<AC> Das Spiel beginnt mit langsam fahrenden Panzern, die auf dem Bildschirm sichtbar
werden. <AC> Die Position der jeweiligen feindlichen Panzer oder Raketen kann der Spieler
dadurch bestimmen, dass er den eingeblendeten Text im oberen linken Hinweisdisplay-
Winkel seines Cockpits beachtet. <AC> Ein Hinweis kann z.B. <AC> lauten: GEGNER
VON RECHTS. <AC> Zusätzlich wird auf dem weitreichenden Radarschirm, begleitet von
einem Sonar-BLIP-Ton, ein Punkt sichtbar, der die feindliche Stellung darstellt. <AC>
Response:

Output The game is triggered when the start switch is pressed. <AC> The LED switch remains
illuminated and the game sounds can be heard. <AC> When the last enemy player’s tank
is destroyed, the game is over. <AC> The game begins with tanks moving slowly move
across the screen. <AC> The player’s tank’s position can be determined by the player by
paying attention to the respective enemy tank or missile icon in the upper left corner of his
cockpit’s display screen. <AC> An example of an instruction can be: ENEMY ON THE
RIGHT. <AC> In addition, on the wide-range radar screen, accompanied by a sonar BLIP
sound, a point is visible, which indicates the enemy position.

COMET-DA 81.8
Length 431
MaxKV 272

C⇓ 37%

(b) An Example of the AnLLM-AC Model in De2En Translatio Task.

Table 5: Case Study of Real-time Inference. During the inference process, AnLLM-EP generates "endpoint" as the
anchor token, whereas AnLLM-AC produces "<AC>" as the anchor token. Once upon an anchor token, we execute
the REDUCTION as shown in Line 16 to reduce the keys/values caches.

14

Gender diversity, or more often its lack thereof, among participants to software development
activities has been thoroughly studied in recent years. In particular, the presence of, effects of,
and countermeasures for gender bias in Free/Open Source Software (FOSS) have received a lot
of attention over the past decade. Geographic diversity is on the other hand the kind of diversity
that stems from participants in some global activity coming from different world regions and
cultures. Geographic diversity in FOSS has received relatively little attention in scholarly works. In
particular, while seminal survey-based and point-in-time medium-scale studies of the geographic
origins of FOSS contributors exist, large-scale longitudinal studies of the geographic origin of FOSS
contributors are still lacking. Such a quantitative characterization would be useful to inform decisions
related to global development teams and hiring strategies in the information technology (IT) market,
as well as contribute factual information to the debates on the economic impact and sociology of
FOSS around the world. ...

(a) A Training Data Example for the AnLLM-EP Model. The endpoints in the text serve as the anchor tokens.

Gender diversity, or more often its lack thereof, among participants to software development activities
has been thoroughly studied in recent years. <AC> In particular, the presence of, effects of, and
countermeasures for gender bias in Free/Open Source Software (FOSS) have received a lot of
attention over the past decade. <AC> Geographic diversity is on the other hand the kind of diversity
that stems from participants in some global activity coming from different world regions and
cultures.<AC> Geographic diversity in FOSS has received relatively little attention in scholarly
works. <AC> In particular, while seminal survey-based and point-in-time medium-scale studies of
the geographic origins of FOSS contributors exist, large-scale longitudinal studies of the geographic
origin of FOSS contributors are still lacking. <AC> Such a quantitative characterization would
be useful to inform decisions related to global development teams and hiring strategies in the
information technology (IT) market, as well as contribute factual information to the debates on the
economic impact and sociology of FOSS around the world. <AC> ...

(b) A Training Data Example for the AnLLM-AC Model. The newly added tokens <AC> in the text serve as the anchor tokens.

Table 6: Training Data Examples for the AnLLM-EP and AnLLM-AC models. For the AnLLM-EP model, the
endpoints are the natural anchor tokens. For the AnLLM-AC model, we manually append <AC> tokens to sequences
as the anchor tokens.

15

Choice 1: Slacklining: A group of people have stretched a tightrope across a gym. They take turns
trying to balance and walk on the rope.
Choice 2: Slacklining: A group of people have stretched a tightrope across a gym. They slide down
with it, jumping and spinning in the air.
Choice 3: Slacklining: A group of people have stretched a tightrope across a gym. They cross it
together, swinging back and fourth in anticipation.
Choice 4: Slacklining: A group of people have stretched a tightrope across a gym. They drop an
orange rope at the end.

(a) A Zero-Shot Testing Data Example of the HellaSwag Task. The log-likelihood of the red texts is computed as the choice
probabilities.

Choice 1: Ballet: We see a pregnant lady doing ballet in a studio. The lady spins and does a pliea.
Demonstration 2 Demonstration 3 Demonstration 4 Demonstration 5 Slacklining: A group of people
have stretched a tightrope across a gym. They take turns trying to balance and walk on the rope.
Choice 2: Ballet: We see a pregnant lady doing ballet in a studio. The lady spins and does a pliea.
Demonstration 2 Demonstration 3 Demonstration 4 Demonstration 5 Slacklining: A group of people
have stretched a tightrope across a gym. They slide down with it, jumping and spinning in the air.
Choice 3: Ballet: We see a pregnant lady doing ballet in a studio. The lady spins and does a
pliea. Demonstration 2 Demonstration 3 Demonstration 4 Demonstration 5 Slacklining: A group of
people have stretched a tightrope across a gym. They cross it together, swinging back and fourth in
anticipation.
Choice 4: Ballet: We see a pregnant lady doing ballet in a studio. The lady spins and does a pliea.
Demonstration 2 Demonstration 3 Demonstration 4 Demonstration 5 Slacklining: A group of people
have stretched a tightrope across a gym. They drop an orange rope at the end.

(b) A Five-Shot Testing Data Example of the HellaSwag Task for the ALLM-EP Inference.

Choice 1: Ballet: We see a pregnant lady doing ballet in a studio. The lady spins and does a pliea.
<AC> Demonstration 2 <AC> Demonstration 3 <AC> Demonstration 4 <AC> Demonstration 5
<AC> Slacklining: A group of people have stretched a tightrope across a gym. They take turns trying
to balance and walk on the rope.
Choice 2: Ballet: We see a pregnant lady doing ballet in a studio. The lady spins and does a pliea.
<AC> Demonstration 2 <AC> Demonstration 3 <AC> Demonstration 4 <AC> Demonstration 5
<AC> Slacklining: A group of people have stretched a tightrope across a gym. They slide down with
it, jumping and spinning in the air.
Choice 3: Ballet: We see a pregnant lady doing ballet in a studio. The lady spins and does a pliea.
<AC> Demonstration 2 <AC> Demonstration 3 <AC> Demonstration 4 <AC> Demonstration 5
<AC> Slacklining: A group of people have stretched a tightrope across a gym. They cross it together,
swinging back and fourth in anticipation.
Choice 4: Ballet: We see a pregnant lady doing ballet in a studio. The lady spins and does a pliea.
<AC> Demonstration 2 <AC> Demonstration 3 <AC> Demonstration 4 <AC> Demonstration 5
<AC> Slacklining: A group of people have stretched a tightrope across a gym. They drop an orange
rope at the end.

(c) A Five-Shot Testing Data Example of the HellaSwag Task for the ALLM-AC Inference.

Table 7: Testing Data Examples for the AnLLM-EP and AnLLM-AC models. The log-likelihood of the red italicized
texts is calculated as the choice probabilities.

16

	Introduction
	Related Work
	Anchor-based Large Language Models
	Background
	Anchor-based Self-Attention Networks
	Anchor-based Inference

	Experiments
	Our Implementation
	Data and Training Procedure
	Evaluation

	Results
	Analysis
	Compatibility and Flexibility of Full Attention and Anchor-based Attention
	Effective Cache Reduction for Real-Time Inference with the AnSAN Technique

	Conclusion
	More Experimental Results
	Testing Acceleration Ratio to Full-Caching Method
	Model Scalability Assessment
	Case Study in Real-Time Inference

	Data Settings
	Training Data Examples
	Testing Data Examples

