

000 001 002 003 004 005 006 007 008 009 010 011 012 013 014 015 016 017 018 019 020 021 022 023 024 025 026 027 028 029 030 031 032 033 034 035 036 037 038 039 040 041 042 043 044 045 046 047 048 049 050 051 052 053 UNIFYING COUNTERFACTUAL DATA AUGMENTATION AND ARCHITECTURAL INDUCTIVE BIASES IN OFFLINE REINFORCEMENT LEARNING

Anonymous authors

Paper under double-blind review

ABSTRACT

Transformer-based models have recently achieved strong results in offline reinforcement learning by casting decision-making as sequence modeling. However, when trained purely on fixed datasets, they are prone to causal confusion: reliance on spurious correlations that predict reward in the data but do not reflect the true causal mechanisms of the environment. This issue is exacerbated by the weak inductive bias of Transformers, whose global attention is not aligned with the Markovian and causal dependencies of decision processes. We introduce the *Unified Causal Transformer (UCF)*, a framework that strengthens both the data and the model with causal consistency. On the data side, UCF employs a causal reward model to abduce exogenous factors and a counterfactual state generator to produce reward-preserving augmentations, yielding counterfactual trajectories that expose causal variability absent in observational data. On the model side, UCF integrates a causally structured hybrid architecture that combines separate modality-specific encoders for local dynamics with supervised attention for global reasoning, guiding the model to allocate representational capacity according to true causal dependencies. We evaluate UCF on two distinct sequential decision-making tasks—robotic control and recommendation—and demonstrate consistent gains in robustness and generalization over Transformer-based baselines. These results highlight the importance of causal consistency in both data and architecture for reliable offline policy learning.

1 INTRODUCTION

The success of high-capacity sequence models, particularly Transformers, in natural language processing (Devlin et al., 2019; Brown et al., 2020; Wolf et al., 2020) and computer vision (Chen et al., 2020; Ramesh et al., 2021; Reed et al., 2022) has inspired their use in decision-making. In offline reinforcement learning (RL), recent advances such as the Decision Transformer (DT) (Chen et al., 2021) demonstrate that sequential decision making can be cast as a sequence modeling problem. By processing trajectories as sequences of states, actions, and returns, these models predict future actions to achieve target objectives, leveraging pre-collected datasets without requiring additional environment interaction.

However, unlike text or images, decision-making tasks are governed by Markovian and causal dynamics. When trained purely on offline trajectories, Transformer-based models are prone to *causal confusion* (Lyle et al., 2021; Urpí et al., 2024): they may rely on spurious correlations that appear predictive in the dataset but do not reflect the true causal mechanisms of the environment (Gupta et al., 2023; Tien et al., 2022). For example, a model may incorrectly associate a background feature with high reward, leading to brittle policies that fail once that feature is absent at deployment. This limitation is compounded by the Transformer’s highly flexible architecture. While its global self-attention mechanism is powerful for general sequence modeling, it lacks the specific inductive biases that reflect the underlying causal graph of a given decision process (Agarwal et al., 2023; Kim et al., 2024). Recent studies confirm that robustness and generalization in sequential decision-making depend critically on causal reasoning, showing that correlation-based learning alone is insufficient for reliable policy learning (Richens & Everitt, 2024). Addressing this causal misalignment is therefore

054 a central challenge for offline RL, where additional data collection is not possible to disambiguate
 055 spurious from causal associations.
 056

057 We argue that addressing this challenge requires strengthening both the data and the model. On the
 058 data side, counterfactual augmentation offers a principled mechanism to expose causal variability
 059 that is missing from purely observational trajectories. By generating transitions under hypothetical
 060 interventions, the agent can learn to distinguish causal drivers of reward from spurious predictors (Lu
 061 et al., 2020; Chen et al., 2023). However, most existing augmentation methods assume access to
 062 environment interactions (Sun et al., 2024a; Cao et al., 2025), which is incompatible with the strictly
 063 offline setting we target. Moreover, some methods rely on strong structural assumptions, such as
 064 factored environments with independent entities that are not applicable to all environments (Pitis
 065 et al., 2022; Urpí et al., 2024). Our approach does not assume such structure, making it broadly
 066 applicable to standard continuous-control benchmarks such as Mujoco. On the model side, even
 067 with richer trajectories, a Transformer without appropriate inductive bias may still allocate attention
 068 according to superficial correlations (Hu et al., 2024; Kim et al., 2024). This motivates structuring
 069 the policy model to explicitly respect known causal dependencies, reducing the risk of overfitting
 070 to non-causal patterns. Together, causally consistent augmentation and causal structural guidance
 provide the two complementary ingredients needed for robust offline policy learning.

071 Concretely, we instantiate these two ingredients in a unified framework that we call the *Unified*
 072 *Causal Transformer (UCF)*. UCF integrates counterfactual data augmentation with a hybrid causal
 073 architecture for offline RL. First, a *causal reward model* (CRM) abduces latent exogenous factors
 074 from offline trajectories, enabling principled counterfactual reasoning. A *counterfactual state gener-
 075 ator* (CSG) then proposes minimal modifications to observed states while preserving rewards under
 076 the abduced factors, yielding transitions that pass causal and reward consistency checks. Second,
 077 UCF employs a *causally structured hybrid architecture* that processes trajectories through modality-
 078 specific convolutions for local dynamics and a supervised attention layer for global reasoning. This
 079 design ensures that representational capacity is allocated to distinct causal roles, aligning predictions
 080 with the true decision-making structure. By jointly enriching both the data and the model with
 081 causal consistency, UCF provides a scalable and robust approach to offline policy learning. Our
 082 main contributions are as follows:

- 083 • We propose a novel offline RL framework that unifies counterfactual augmentation with
 084 causal architectural guidance.
- 085 • We introduce a causal reward model that infers exogenous factors and a counterfactual state
 086 generator that produces reward-preserving augmentations under explicit causal constraints.
- 087 • We develop a causally structured hybrid architecture that combines separate modality-
 088 specific encoders with supervised attention to respect causal dependencies in policy learn-
 089 ing.
- 090 • We validate our framework on two distinct sequential decision-making tasks—robotic con-
 091 trol and recommendation—showing consistent gains in generalization and robustness over
 092 correlation-based sequence models.

093 2 PRELIMINARIES

094 2.1 DECISION TRANSFORMER (DT)

095 We consider the offline reinforcement learning (RL) setting, where the agent has access only to a
 096 fixed dataset of trajectories and cannot interact with the environment. The environment is modeled
 097 as a Markov Decision Process (MDP), defined by $\mathcal{M} = (\mathcal{S}, \mathcal{A}, P, R, \gamma)$, where \mathcal{S} is the state space,
 098 \mathcal{A} is the action space, $P(s' | s, a)$ specifies the transition dynamics, $R(s, a)$ is the reward function,
 099 and $\gamma \in [0, 1]$ is the discount factor.

100 In offline RL, the dataset $\mathcal{D} = \{\tau_i\}_{i=1}^N$, with $\tau_i = (s_0, a_0, r_0, \dots, s_T, a_T, r_T)$, is collected under
 101 one or more behavior policies, and the agent must learn a new policy without further environment
 102 interaction. The Decision Transformer (DT) (Chen et al., 2021) formulates offline RL as conditional
 103 sequence modeling. Instead of explicitly estimating value functions or dynamics, DT trains a
 104 Transformer autoregressively on trajectory data. Each trajectory is tokenized into a sequence:

$$105 \tau = (\hat{G}_0, s_0, a_0, \hat{G}_1, s_1, a_1, \dots, \hat{G}_T, s_T, a_T),$$

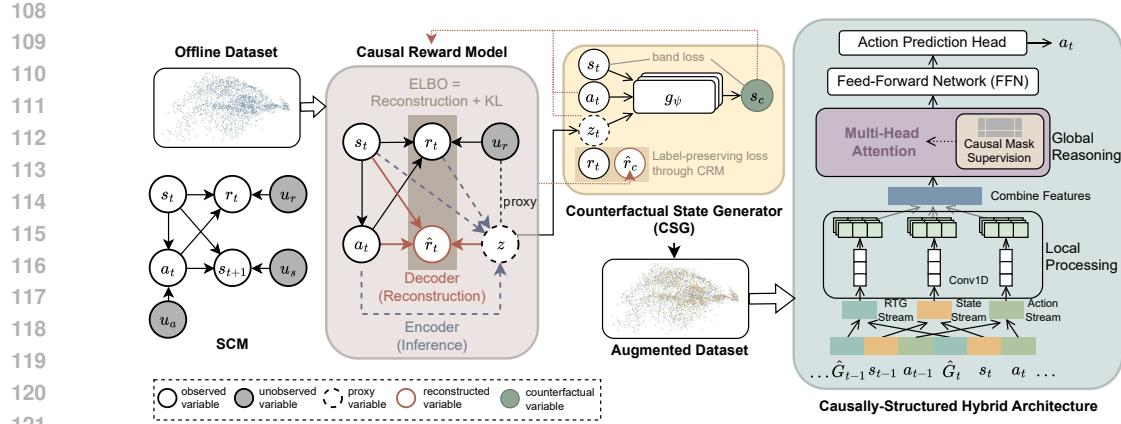


Figure 1: Overview of the proposed UCF framework. Left/Middle: A Causal Reward Model (CRM) and Counterfactual State Generator (CSG) jointly produce a causally consistent augmented dataset from offline trajectories. Right: A Causally-Structured Hybrid Architecture processes the data with local convolutions and global, causally supervised attention.

where $\hat{G}_t = \sum_{k=t}^T \gamma^{k-t} r_k$ denotes the returns-to-go (RTG). The model is trained to predict the action a_t conditioned on a context window of the most recent K tokens:

$$\pi_\theta(a_t \mid \hat{G}_{t-K+1:t}, s_{t-K+1:t}, a_{t-K+1:t-1}).$$

2.2 STRUCTURAL CAUSAL MODEL (SCM)

A Structural Causal Model (SCM) provides a formal framework for representing cause-effect relationships (Pearl, 2009). An SCM is a tuple $\mathcal{M}_c = (\mathcal{U}, \mathcal{V}, \mathcal{F}, P(\mathcal{U}))$, where \mathcal{U} is a set of exogenous (external) variables, \mathcal{V} is a set of endogenous (internal) variables, and \mathcal{F} is a set of structural equations. Each equation $V_i := f_i(\text{Pa}(V_i), U_i)$ specifies how an endogenous variable $V_i \in \mathcal{V}$ is determined by its direct causes (parents) $\text{Pa}(V_i) \subseteq \mathcal{V}$ and an exogenous noise variable $U_i \in \mathcal{U}$, drawn from the distribution $P(\mathcal{U})$.

Causal Relationships in MDPs The agent-environment interaction loop in an MDP can be formally described by an SCM (Peters et al., 2017; Zhang et al., 2020; Bennett et al., 2021; Shi et al., 2022). The causal mechanisms governing the policy, state transitions, and rewards are given by the following structural equations:

$$a_t := \pi(s_t, u_a), \quad s_{t+1} := f_s(s_t, a_t, u_s), \quad r_t := f_r(s_t, a_t, u_r), \quad (1)$$

where a_t , s_{t+1} , and r_t are endogenous variables. The functions π , f_s , and f_r represent the causal mechanisms for action selection, state transition, and reward generation, respectively. The terms u_a , u_s , and u_r are mutually independent exogenous noise variables that account for the stochasticity in the system.

3 THE PROPOSED METHOD

We introduce a framework designed to improve offline RL by addressing causal consistency at both the data and model levels. The central idea is to enrich offline datasets with principled counterfactual transitions and to ensure the policy model processes information in a way that respects known causal structures. As illustrated in Figure 1, our framework is composed of two synergistic components: (i) a Counterfactual Transition Generation module that produces novel states which, under the original action and inferred unobserved context, would have yielded the identical reward, thereby creating label-preserving data augmentations; and (ii) a Causally-Structured Hybrid Architecture that integrates local dynamics modeling using separate modality-specific encoders with a global reasoning module. Crucially, this global module uses a final self-attention layer where specific heads are explicitly supervised to attend only to the direct causal parents of an action—namely, the current state

162 and the desired return-to-go. Together, these components enable a model to learn a more robust and
 163 generalizable policy from offline data.
 164

165 **3.1 COUNTERFACTUAL TRANSITION GENERATION**
 166

167 We aim to estimate the causal effect of hypothetical interventions on states using only offline data.
 168 We address the core counterfactual query: *What would the reward have been if the state had been*
 169 *different, while holding all else constant?* We follow Pearl’s three steps of counterfactual reasoning
 170 (Pearl et al., 2000; Pearl, 2009): abduction (infer exogenous variables from data), action (surgi-
 171 cally set the state to a hypothetical value), and prediction (evaluate the outcome under the modified
 172 world). To operationalize this, we adopt a two-stage process: (i) a *Causal Reward Model* (CRM)
 173 that captures the structural reward equation and provides the abduction step, and (ii) a *Counterfac-*
 174 *tual State Generator* (CSG) that edits states while holding the action and exogenous factors fixed,
 175 guided by the CRM and a controlled move band.
 176

177 **Causal Reward Model (CRM)** We model the reward mechanism via the structural equation as
 178 defined in Equation (1):
 179

$$r_t = f_r(s_t, a_t, u_r),$$

180 where u_r are unobserved exogenous factors. We approximate this SCM using a Conditional Vari-
 181 ational Autoencoder (CVAE), where the latent variable z acts as a disturbance factor that captures
 182 variability in the reward mechanism. The encoder $q_\phi(z | s_t, a_t, r_t)$ performs abduction by inferring
 183 a posterior distribution over disturbance values that are consistent with the observed transition. The
 184 decoder $p_\theta(r_t | s_t, a_t, z)$ represents our learned structural function \hat{f}_r . The latent prior $p(z)$ serves
 185 as the prior distribution over disturbance factors. The model is trained by maximizing the ELBO:
 186

$$\mathcal{L}_{\text{CVAE}} = \mathbb{E}_{q_\phi(z | s_t, a_t, r_t)} [\log p_\theta(r_t | s_t, a_t, z)] - \beta \text{KL}(q_\phi(z | s_t, a_t, r_t) \| p(z)). \quad (2)$$

187 After training, the latent variable z is used as a disturbance factor conditioned on the observed
 188 transition. The encoder learns the posterior distribution $q_\phi(z | s_t, a_t, r_t)$, which captures the dis-
 189 turbance values that are consistent with the observed evidence. This follows the abduction step of
 190 counterfactual reasoning, where latent disturbances are inferred so that counterfactual predictions
 191 remain aligned with the reward mechanism. During counterfactual construction, the counterfactual
 192 state generator draws samples from this posterior to produce alternative states that satisfy reward
 193 consistency under the learned model.
 194

195 **Counterfactual State Generator (CSG)** To generate a counterfactual for a given factual transi-
 196 tion (s_t, a_t, r_t) , we first perform abduction using the CRM encoder by drawing a latent disturbance
 197 sample from the posterior, $z_t \sim q_\phi(z | s_t, a_t, r_t)$. This inferred context z_t is then held constant and,
 198 along with the factual state and action, is used as input to the generator:
 199

$$s_c = g_\psi(s_t, a_t, z_t).$$

200 The CSG is optimized to preserve the CRM reward under the factual action and fixed z_t , while
 201 keeping the edit size within a controlled band in *normalized* state space. Let σ_s be the per-dimension
 202 standard deviation of states (computed on the dataset), and define the normalized move $\Delta_t = (s_c -$
 203 $s_t)/\sigma_s$. The loss is
 204

$$\mathcal{L}_{\text{CSG}} = (\hat{f}_r(s_c, a_t, z_t) - r_t)^2 + \lambda_{\text{band}} \left([\rho_{\text{low}} - \|\Delta_t\|_2]_+^2 + [\|\Delta_t\|_2 - \rho_{\text{high}}]_+^2 \right), \quad (3)$$

205 where $[\cdot]_+ = \max(0, \cdot)$. The first term enforces *label preservation* under the SCM; the second term
 206 implements a *move band* that enforces state plausibility by discouraging trivial copies (too small
 207 moves) and off-manifold edits (too large moves). The details of the counterfactual construction and
 208 move band are in Appendix H.
 209

210 **Data Augmentation and Acceptance Gating** After the CRM and CSG are trained, we generate
 211 the augmented dataset. For each factual trajectory, we create a small number of augmented copies.
 212
 213

216 In each copy, we scan time steps that pass a reward quantile filter and propose $s_c = g_\psi(s_t, a_t, z_t)$.
 217 A candidate is only accepted if it passes two acceptance gates:
 218

$$219 \quad |\hat{f}_r(s_c, a_t, z_t) - r_t| \leq \varepsilon_r \quad \text{and} \quad \left\| \frac{s_c - s_t}{\sigma_s} \right\|_2 \leq \rho_{\text{high}}. \quad (4)$$

221 The tolerance ε_r is set adaptively. If accepted, we replace the observation token s_t with the counterfactual s_c . The next observation s_{t+1} is kept factual; we do not treat it as the successor of s_c .
 222 The final dataset is the union of all original trajectories and their edited copies. The details are in
 223 Appendix H.
 224

226 **Validity of Counterfactual Augmentation** Sampling z_t from the posterior $q_\phi(z | s_t, a_t, r_t)$ applies
 227 the abduced disturbance during counterfactual generation, which satisfies the ‘hold fixed’
 228 clause and preserves reward consistency. Conditioning g_ψ on (s_t, a_t, z_t) aligns edits with the action-
 229 conditioned reward mechanism $f_r(s, a, u_r)$. The band loss implements a minimal-change prior in
 230 normalized coordinates, which keeps augmented states near the data manifold.
 231

232 **Proposition 1** (causal consistency of accepted counterfactuals). *Assume the learned CRM provides
 233 a sufficiently accurate approximation of the true reward SCM and the CSG is trained to (approxi-
 234 mately) minimize equation 3. If a generated s_c satisfies the acceptance gates $|\hat{f}_r(s_c, a_t, z_t) - r_t| \leq$
 235 ε_r and $\|(s_c - s_t)/\sigma_s\|_2 \leq \rho_{\text{high}}$, then the augmented transition (s_c, a_t, r_t) is a consistent sam-
 236 ple from the post-intervention distribution implied by the reward SCM under the factual action and
 237 abduced exogenous variables. A detailed discussion of assumptions and proof is provided in Ap-
 238 pendix C.2.*

239 3.2 CAUSALLY-STRUCTURED HYBRID ARCHITECTURE

241 Enriching the dataset with causally-consistent transitions improves the quality of the input data;
 242 however, for the agent to fully benefit, the model architecture should also be designed to leverage
 243 this causal structure. To this end, we introduce a hybrid architecture that operates at both local
 244 and global levels. The model first encodes trajectory sequences using a stack of modality-specific
 245 convolutional layers, capturing local causal dynamics aligned with the Markov property. A final
 246 attention layer, guided by causal supervision, performs long-range reasoning to capture high-level
 247 dependencies relevant to goal-conditioned policy learning.
 248

249 **Modeling Local Causal Dynamics with Separate Modality-Specific Encoders** The convolutional
 250 backbone imposes a structural prior aligned with the local causal dynamics of MDPs. Tra-
 251 jectories are tokenized into sequences of return-to-go, state, and action tokens, and each modality
 252 is processed by its own 1D convolutional encoder. Separating the encoders by modality avoids
 253 representational interference and allows each signal type (state, action, and RTG) to be processed
 254 with an architecture suited to its structure. This preserves modality-specific information before the
 255 transformer performs global reasoning. The convolutional blocks then transform raw inputs into
 256 compact, temporally aware representations that serve as the local context for the transformer layers,
 257 while keeping the overall architecture simple and effective for sequence modeling.
 258

259 **Supervised Attention for Global Reasoning** After convolutional encoding, we apply a final
 260 multi-head self-attention block to perform global policy reasoning: determining which action a_t
 261 best achieves the return-to-go \hat{G}_t from the current state s_t . To align this reasoning with known
 262 causal dependencies, we supervise attention heads using explicit causal masks.
 263

264 **Causal Attention Supervision** We impose causal structure by supervising the attention weights
 265 for each action token to focus only on its direct parents: the state and return-to-go at the same
 266 timestep. This is encoded using a binary mask $M \in \{0, 1\}^{L \times L}$, where $M[i, j] = 1$ if token j is a
 267 valid causal parent of token i . We construct a uniform target distribution: $q_{i,j} = \frac{1}{|S_i|} \cdot \mathbb{I}[j \in S_i]$,
 268 where $S_i = \{j : M[i, j] = 1\}$, and supervise the attention matrix A using a cross-entropy loss:
 269

$$\mathcal{L}_{\text{mask}} = \frac{1}{L} \sum_{i=1}^L \sum_{j \in S_i} -\frac{1}{|S_i|} \log(A_{i,j} + \epsilon), \quad (5)$$

270 with ϵ for numerical stability. The total objective becomes $\mathcal{L}_{\text{total}} = \mathcal{L}_{\text{action}} + \lambda \mathcal{L}_{\text{mask}}$, where λ balances
 271 the causal constraint. This guides the model to respect causal structure while maintaining flexibility
 272 in learning global dependencies.
 273

274 4 EXPERIMENT

275 We conduct a series of experiments to empirically validate the effectiveness of our proposed UCF.
 276 Our evaluation is designed to answer the following key research questions: (i): Does UCF outper-
 277 form state-of-the-art offline RL baselines on standard offline RL benchmarks? (ii): Can UCF gen-
 278 eralize beyond robotic control to other sequential decision-making tasks such as recommendation?
 279 (iii): What is the relative contribution of our two core components: the Counterfactual Transition
 280 Generation module and the Causally-Structured Hybrid Architecture? (iv): Does UCF demonstrate
 281 greater robustness than standard models when faced with causally misleading distractors in the en-
 282 vironment?
 283

284 4.1 LOCOMOTION AND ANTMAZE TASKS

285 In this section, we conduct a comprehensive empirical evaluation to answer our first research ques-
 286 tion. To this end, we test UCF on a diverse suite of locomotion and navigation tasks from the D4RL
 287 benchmark and compare its performance against leading value-based and Decision Transformer-
 288 based methods.
 289

290 **Datasets** We evaluate UCF on a suite of continuous control tasks from the D4RL benchmark (Fu
 291 et al., 2020). Specifically, we consider tasks from two domains: locomotion and navigation.
 292 For locomotion, we use six datasets from three widely used agents—HalfCheetah, Hopper, and
 293 Walker2d—under three standard data regimes: medium (m), medium-replay (m-r), and medium-
 294 expert (m-e). For navigation, we include two datasets from the Antmaze environment: umaze
 295 (u) and umaze-diverse (u-d). This combined suite provides a comprehensive testbed for evaluat-
 296 ing offline decision-making performance and generalization. Full details of the datasets are given
 297 in Appendix E.1.
 298

299 **Baselines** We compare CaDM against several state-of-the-art offline RL algorithms. These include
 300 conservative offline RL methods: IQN (Kostrikov et al., 2021) and CQL (Kumar et al., 2020). We
 301 also benchmark against DT-based methods: the standard DT (Chen et al., 2021), DC (Kim et al.,
 302 2024), and LSDT (Wang et al., 2025a). Full details of the baselines are given in Appendix E.1.
 303

304 **Overall Results** The performance of our method, UCF, alongside state-of-the-art baselines is pre-
 305 sented in Table 1. All scores are expert-normalized returns as specified by the D4RL benchmark (Fu
 306 et al., 2020). The results clearly demonstrate that UCF achieves state-of-the-art or highly competi-
 307 tive performance across the full suite of MuJoCo locomotion and Antmaze navigation tasks. On the
 308 MuJoCo locomotion tasks, UCF stands out as the top-performing method in 6 out of the 9 environ-
 309 ments. It shows particularly dominant results in the Hopper and Walker2d domains and consistently
 310 excels on the challenging medium-expert and medium-replay datasets. This indicates a strong ability
 311 to leverage mixed-quality data, a common challenge in offline reinforcement learning. Furthermore,
 312 UCF proves its versatility on the Antmaze tasks, which are characterized by sparse rewards and re-
 313 quire long-horizon, goal-conditioned reasoning. In both the umaze and umaze-d environments, UCF
 314 achieves highly competitive scores that are within 5% of the best-performing methods (IQN and
 315 CQL, respectively). This strong performance in both dense-reward locomotion and sparse-reward
 316 navigation highlights UCF’s effectiveness as a general-purpose algorithm. Overall, the empirical
 317 results confirm that UCF is a robust and powerful method for offline decision-making, capable of
 318 matching or exceeding the performance of leading value-based and transformer-based approaches
 319 across a diverse set of challenges.
 320

321 4.2 RECOMMENDATION TASKS

322 **Datasets** For the recommendation domain, we evaluate UCF on three large-scale, real-world
 323 datasets: KuaiRand (Gao et al., 2022b), KuaiRec (Gao et al., 2022a), and VirtualTB (Shi et al.,
 324 2019). Full details of the datasets are given in Appendix E.2.
 325

324
 325 Table 1: Offline results on the MuJoCo and Antmaze datasets. We report the expert-normalized
 326 returns, averaged across 5 random seeds for MuJoCo and 4 for Antmaze. The boldface numbers
 327 denote the best score and any scores within 5% of the best for each dataset.

Method	H-Cheetah			Hopper			Walker2d			Antmaze	
	-m	-m-r	-m-e	-m	-m-r	-m-e	-m	-m-r	-m-e	-umaze	-umaze-d
IQL	47.4	44.2	86.7	66.3	94.7	91.5	78.3	73.9	109.6	87.5	62.2
CQL	44.0	37.5	91.6	58.5	95.0	105.4	72.5	77.2	108.8	74.0	84.0
DT	42.6	36.6	86.8	67.6	82.7	107.6	74.0	66.6	108.1	69.8	70.3
DC	43.0	41.3	93.0	92.6	94.2	110.4	79.2	76.6	109.6	82.2	78.5
LSDT	43.6	42.9	93.2	87.2	93.9	111.7	81.0	74.7	109.8	80.0	83.2
UCF	44.9	43.5	93.1	93.4	94.8	112.0	82.5	77.0	110.7	83.1	84.5

338
 339 **Baselines** In this domain, we compare UCF against recent DT-based baselines tailored for recom-
 340 mender systems: DT4Rec (Zhao et al., 2023), CDT4Rec (Wang et al., 2023), and EDT4Rec (Chen
 341 et al., 2024). Full details of the baselines are given in Appendix E.2.

342
 343 **Overall Results** The evaluation results on the three recommendation datasets are presented in
 344 Table 2. The findings are unequivocal: UCF consistently outperforms all specialized, state-of-the-
 345 art Decision Transformer baselines across every metric on all datasets. Specifically, UCF achieves
 346 the highest Cumulative Reward (\mathcal{R}_{cum}) and Average Reward (\mathcal{R}_{avg}) on KuaiRand, KuaiRec, and
 347 VirtualTB, often by a clear margin over the second-best methods. This strong performance provides
 348 an affirmative answer to our second research question (RQ ii), demonstrating that UCF generalize
 349 effectively beyond robotic control to the distinct domain of sequential recommendation. The ability
 350 of our general-purpose model to surpass domain-specialized methods highlights the robustness and
 351 broad applicability of our proposed architecture.

352
 353 Table 2: Evaluation results on recommendation datasets. Metrics include Cumulative Reward
 354 (\mathcal{R}_{cum}) and Average Reward (\mathcal{R}_{avg}). **Bold** indicates the best performance per metric, and * marks
 355 the second-best.

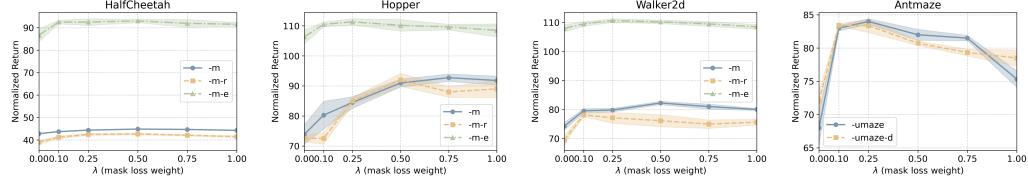
Method	KuaiRand		KuaiRec		VirtualTB	
	\mathcal{R}_{cum}	\mathcal{R}_{avg}	\mathcal{R}_{cum}	\mathcal{R}_{avg}	\mathcal{R}_{cum}	\mathcal{R}_{avg}
DT4Rec	6.8172 ± 2.45	0.5686 ± 0.21	28.5418 ± 10.42	0.8798 ± 0.34	76.7871 ± 22.63	5.4420 ± 1.72
CDT4Rec	7.3271 ± 1.98	$0.6508^* \pm 0.19$	30.4888 ± 10.19	1.0061 ± 0.35	79.2101 ± 22.38	5.6490 ± 1.61
EDT4Rec	$7.5817^* \pm 1.84$	0.6497 ± 0.17	$31.0726^* \pm 10.98$	$1.0397^* \pm 0.39$	$79.6651^* \pm 21.67$	$5.6741^* \pm 1.54$
UCF	7.6221 ± 1.79	0.6554 ± 0.16	31.8721 ± 10.55	1.0582 ± 0.40	80.4241 ± 21.15	5.6957 ± 1.51

363 4.3 ABLATION STUDY

364
 365 **Contributions of Two Core Components** To investigate the contributions of our two core compo-
 366 nents, we evaluate two variants of our model: w/o Count, which removes counterfactual data
 367 augmentation, and w/o Arch, which replaces our causal architecture with a standard DT backbone.
 368 The results in Table 3 highlight their distinct yet complementary roles. On the dense-reward Mu-
 369 JoCo tasks, the causal hybrid architecture is the dominant contributor. Removing it (w/o Arch)
 370 causes a clear performance drop, especially on the more diverse medium-replay datasets for Hopper
 371 and Walker2d. In contrast, removing data augmentation (w/o Count) leads to only small degra-
 372 dations, suggesting that the architecture can already extract strong policies when rewards are plentiful
 373 and coverage is reasonable. On the sparse-reward AntMaze tasks, augmentation becomes more im-
 374 portant: w/o Count consistently underperforms UCF, while w/o Arch suffers an even larger drop,
 375 showing that both components are needed. These results confirm our hypothesis: counterfactual
 376 augmentation enriches the dataset, while the causal hybrid architecture is essential for leveraging
 377 this variability to produce robust long-horizon plans.

378
 379
 380
 381
 382
 383
 384 Table 3: Ablation study of UCF components on MuJoCo and Antmaze tasks. We compare the full
 385 model against variants without the Counterfactual Transition Generation (w/o Count) and without
 386 the Causally-Structured Hybrid Architecture (w/o Arch). Bold numbers denote the best score and
 387 any scores within 5% of the best for each dataset.
 388
 389
 390
 391

Method	H-Cheetah			Hopper			Walker2d			Antmaze	
	-m	-m-r	-m-e	-m	-m-r	-m-e	-m	-m-r	-m-e	-umaze	-umaze-d
UCF	44.9	43.5	93.1	93.4	94.8	112.0	82.5	77.0	110.7	83.1	84.5
w/o Count	43.8	42.7	93.0	92.8	94.3	111.2	81.5	76.8	110.0	81.5	82.5
w/o Arch	43.2	41.0	91.0	84.2	91.5	110.0	79.8	73.5	109.2	78.0	79.5
DT	42.6	36.6	86.8	67.6	82.7	107.6	74.0	66.6	108.1	69.8	70.3
DC	43.0	41.3	93.0	92.6	94.2	110.4	79.2	76.6	109.6	82.2	78.5
LSDT	43.6	42.9	93.2	87.2	93.9	111.7	81.0	74.7	109.8	80.0	83.2



392
 393 Figure 2: Ablation on the causal supervision weight λ across MuJoCo locomotion tasks and
 394 Antmaze. Each plot reports normalized returns (mean \pm standard deviation over 5 seeds).
 395
 396
 397
 398

402
 403 **Effect of Causal Supervision Weight λ .** We investigate the effect of the causal supervision weight
 404 λ , which balances the action prediction loss and the mask supervision loss. Setting $\lambda = 0$ removes
 405 causal supervision entirely, reducing UCF to a standard Transformer; $\lambda = 1$ enforces full adherence
 406 to the causal mask. Figure 2 shows that moderate values of λ typically yield the best trade-off.
 407 In simple environments such as Hopper, larger λ improves stability and performance. In more
 408 complex domains such as HalfCheetah or Antmaze, too much supervision can constrain the model,
 409 and intermediate λ values achieve the strongest results. This confirms that causal supervision is
 410 beneficial, but its strength should adapt to task complexity.

411 4.4 ROBUSTNESS TO SPURIOUS CORRELATIONS

412 To test whether UCF mitigates causal confusion, we construct semi-synthetic datasets by injecting a
 413 binary distractor feature into standard D4RL benchmarks (HalfCheetah-medium, Hopper-medium,
 414 and Walker2d-medium). The distractor is correlated with reward in the training set but has no causal
 415 effect on the environment. At test time, we intervene by fixing the distractor to 0.0, breaking the
 416 correlation. Figure 3 reports normalized returns (mean \pm standard deviation across 5 seeds) under
 417 this intervention. DT suffers a severe collapse in performance, confirming that it overfit to
 418 the spurious distractor. DC shows moderate robustness, but its reliance on correlation still leads
 419 to a significant drop. In contrast, UCF maintains strong performance, with only a minor degra-
 420 dation compared to training on the original dataset. These results provide direct evidence that
 421 UCF’s design—combining counterfactual data augmentation and causally supervised attention—
 422 successfully prevents the model from treating the distractor as causal. Full dataset construction and
 423 evaluation details are in Appendix G.4.

425 5 RELATED WORK

426 5.1 TRANSFORMER ARCHITECTURES FOR REINFORCEMENT LEARNING

427 Recent work has reframed sequential decision making as a sequence modeling problem, where tra-
 428 jectories of returns-to-go, states, and actions are treated as tokens processed by Transformer-based
 429 architectures. DT (Chen et al., 2021) demonstrated that conditioning on return-to-go enables policy

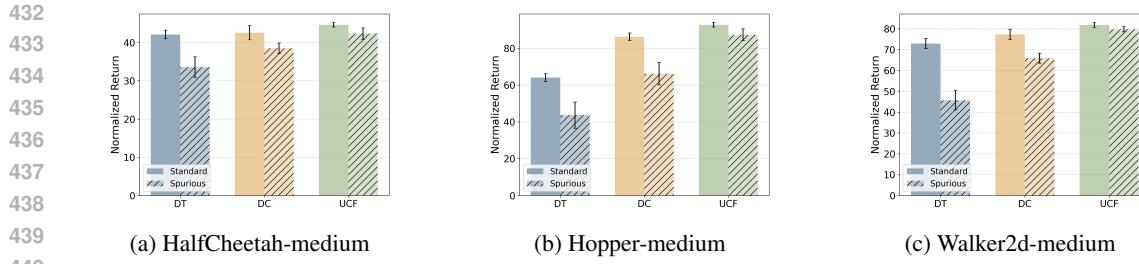


Figure 3: Robustness to spurious distractors. Expert-normalized returns for DT, DC, and UCF when trained on datasets with a spurious binary feature and evaluated under intervention.

learning without value functions or explicit dynamics models. Trajectory Transformer (Janner et al., 2021) extended this perspective by discretizing trajectories and using beam search for planning. Beyond purely autoregressive modeling, masked prediction has been explored as an alternative training paradigm. Uni[MASK] (Carroll et al., 2022) proposed a unified framework where diverse inference tasks are cast as different masking patterns, while MaskDP (Liu et al., 2022) applied masked autoencoding to state–action trajectories, showing strong zero-shot and fine-tuning performance. At the architectural level, several works have explored combining attention with convolution to better align with the structure of decision-making problems. DC (Kim et al., 2024) replaced most attention blocks with lightweight convolutional mixers, showing that local filtering is often sufficient for Markovian dynamics while retaining a final attention block for long-range reasoning. LSdT (Wang et al., 2025a) proposed a parallel hybrid design where each block splits into a convolution branch for local dependencies and an attention branch for global dependencies, with channel ratios controlling their relative contributions. This sequence modeling paradigm has also been extended to recommendation tasks. CDT4Rec (Wang et al., 2023) incorporated a causal reward estimator, EDT4Rec (Chen et al., 2024) leveraged entropy regularization and reward relabeling for learning from suboptimal data, and MaskRDT (Wang et al., 2025b) improved efficiency on long user histories through retentive networks and adaptive masking. Our approach UCF, differs from prior architectures by its explicit causal grounding. Unlike DC and LSdT, which combine convolution and attention without causal guidance, UCF augments offline data with counterfactual trajectories that preserve causal consistency and constrains attention to focus on true causal parents. This integration of causal augmentation and causal priors yields policies that are more robust and generalizable.

5.2 CAUSAL REINFORCEMENT LEARNING

A complementary line of research introduces causality into RL to address spurious correlations and improve generalization (Zeng et al., 2025). CDL (Wang et al., 2022) learns task-independent state abstractions by uncovering the causal structure of environment dynamics. ACE (?) proposes causality-aware entropy regularization that weights action dimensions by their causal influence on rewards, improving exploration efficiency in continuous control. CSR (Yang et al., 2025) develops causality-guided self-adaptive representations that detect distribution shifts, expand causal graphs to accommodate new variables, and prune irrelevant factors, enabling more generalizable policy transfer. A particularly active direction focuses on counterfactual reasoning. MOCODA (Pitis et al., 2022) generates counterfactual transitions using a factored dynamics model for improved out-of-distribution generalization. CAIAC (Urpí et al., 2024) targets robotic manipulation, augmenting data by swapping action-independent factors between trajectories. ACAMDA (Sun et al., 2024b) applies adversarial counterfactual augmentation to enforce causally consistent dynamics. More recently, CIP (Cao et al., 2025) combines counterfactual data augmentation with causality-aware empowerment to improve sample efficiency across domains. Unlike prior counterfactual augmentation methods, which either assume factored environments with independent entities (MOCODA, CAIAC) or rely on online interaction with the environment (ACAMDA, CIP), our method is explicitly tailored for strictly offline RL where only a fixed dataset is available. Crucially, we do not assume a factorized state space, making our approach applicable to standard continuous-control benchmarks such as Mujoco. On the model side, we further introduce a causally structured hybrid architecture with supervised attention, ensuring that the agent can fully benefit from counterfactual augmentation by aligning its reasoning with true causal dependencies rather than spurious correlations.

486 **6 CONCLUSION**

487

488 We presented the Unified Causal Transformer (UCF), a framework that strengthens offline reinforcement learning through causal consistency at both the data and model levels. On the data side, UCF
 489 introduces counterfactual augmentation by combining a causal reward model with a counterfactual
 490 state generator, producing reward-preserving transitions that expand the training set without requiring
 491 online interaction or factorized environments. On the model side, UCF employs a causally structured
 492 hybrid architecture that integrates convolutional modeling of local dynamics with supervised
 493 attention for global reasoning, ensuring that predictions align with true causal parents. Experiments
 494 on robotic control and recommendation tasks demonstrate that UCF achieves improved robustness,
 495 generalization, and resistance to spurious correlations compared to existing baselines.
 496

497 While UCF advances causal consistency in offline RL, several limitations remain. First, the quality
 498 of counterfactual augmentation depends on the accuracy of the learned causal reward model; in-
 499 accuracies in modeling complex reward mechanisms may reduce the validity of generated samples.
 500 Second, although our causal supervision improves interpretability and robustness, it introduces addi-
 501 tional hyperparameters (e.g., supervision strength, window size) that require careful tuning. Finally,
 502 UCF has so far been evaluated on standard continuous-control and recommendation benchmarks; its
 503 effectiveness in large-scale, high-dimensional environments with richer structure remains an open
 504 question. Future work will explore integrating stronger causal discovery techniques into the aug-
 505 mentation process, extending UCF to partially observable or multi-agent settings, and studying how
 506 causal supervision can be dynamically adapted during training to further improve scalability and
 507 generalization.

508 **REFERENCES**

509

510 Pranav Agarwal, Aamer Abdul Rahman, Pierre-Luc St-Charles, Simon JD Prince, and
 511 Samira Ebrahimi Kahou. Transformers in reinforcement learning: a survey. *arXiv preprint*
 512 *arXiv:2307.05979*, 2023.

513 Andrew Bennett, Nathan Kallus, Lihong Li, and Ali Mousavi. Off-policy evaluation in infinite-
 514 horizon reinforcement learning with latent confounders. In *International Conference on Artificial
 515 Intelligence and Statistics*, pp. 1999–2007. PMLR, 2021.

516 Tom Brown, Benjamin Mann, Nick Ryder, Melanie Subbiah, Jared D Kaplan, Prafulla Dhariwal,
 517 Arvind Neelakantan, Pranav Shyam, Girish Sastry, Amanda Askell, et al. Language models are
 518 few-shot learners. *Advances in neural information processing systems*, 33:1877–1901, 2020.

519 Hongye Cao, Fan Feng, Tianpei Yang, Jing Huo, and Yang Gao. Causal information prioritization
 520 for efficient reinforcement learning. In *The Thirteenth International Conference on Learning
 521 Representations*, 2025. URL <https://openreview.net/forum?id=nDj45w5wam>.

522 Micah Carroll, Orr Paradise, Jessy Lin, Raluca Georgescu, Mingfei Sun, David Bignell, Stephanie
 523 Milani, Katja Hofmann, Matthew Hausknecht, Anca Dragan, et al. Uni [mask]: Unified inference
 524 in sequential decision problems. *Advances in neural information processing systems*, 35:35365–
 525 35378, 2022.

526 Lili Chen, Kevin Lu, Aravind Rajeswaran, Kimin Lee, Aditya Grover, Misha Laskin, Pieter Abbeel,
 527 Aravind Srinivas, and Igor Mordatch. Decision transformer: Reinforcement learning via sequence
 528 modeling. *Advances in neural information processing systems*, 34:15084–15097, 2021.

529 Mark Chen, Alec Radford, Rewon Child, Jeffrey Wu, Heewoo Jun, David Luan, and Ilya Sutskever.
 530 Generative pretraining from pixels. In *International conference on machine learning*, pp. 1691–
 531 1703. PMLR, 2020.

532 Xiaocong Chen, Siyu Wang, Lianyong Qi, Yong Li, and Lina Yao. Intrinsically motivated reinforce-
 533 ment learning based recommendation with counterfactual data augmentation. *World Wide Web*,
 534 26(5):3253–3274, 2023.

535 Xiaocong Chen, Siyu Wang, and Lina Yao. Maximum-entropy regularized decision transformer
 536 with reward relabelling for dynamic recommendation. *arXiv preprint arXiv:2406.00725*, 2024.

540 Jacob Devlin, Ming-Wei Chang, Kenton Lee, and Kristina Toutanova. Bert: Pre-training of deep
 541 bidirectional transformers for language understanding. In *Proceedings of the 2019 conference of*
 542 *the North American chapter of the association for computational linguistics: human language*
 543 *technologies, volume 1 (long and short papers)*, pp. 4171–4186, 2019.

544 Justin Fu, Aviral Kumar, Ofir Nachum, George Tucker, and Sergey Levine. D4rl: Datasets for deep
 545 data-driven reinforcement learning. *arXiv preprint arXiv:2004.07219*, 2020.

546 Chongming Gao, Shijun Li, Wenqiang Lei, Jiawei Chen, Biao Li, Peng Jiang, Xiangnan He, Jiaxin
 547 Mao, and Tat-Seng Chua. Kuairec: A fully-observed dataset and insights for evaluating recom-
 548 mender systems. In *Proceedings of the 31st ACM International Conference on Information &*
 549 *Knowledge Management*, pp. 540–550, 2022a.

550 Chongming Gao, Shijun Li, Yuan Zhang, Jiawei Chen, Biao Li, Wenqiang Lei, Peng Jiang, and
 551 Xiangnan He. Kuairand: An unbiased sequential recommendation dataset with randomly exposed
 552 videos. In *Proceedings of the 31st ACM International Conference on Information and Knowledge*
 553 *Management, CIKM '22*, pp. 3953–3957, 2022b. doi: 10.1145/3511808.3557624. URL <https://doi.org/10.1145/3511808.3557624>.

554 Chunjiang Ge, Shiji Song, and Gao Huang. Causal intervention for human trajectory prediction
 555 with cross attention mechanism. In *Proceedings of the AAAI Conference on Artificial Intelligence*,
 556 volume 37, pp. 658–666, 2023.

557 Gunshi Gupta, Tim GJ Rudner, Rowan Thomas McAllister, Adrien Gaidon, and Yarin Gal. Can
 558 active sampling reduce causal confusion in offline reinforcement learning? In *Conference on*
 559 *Causal Learning and Reasoning*, pp. 386–407. PMLR, 2023.

560 Shengchao Hu, Li Shen, Ya Zhang, Yixin Chen, and Dacheng Tao. On transforming reinforcement
 561 learning with transformers: The development trajectory. *IEEE Transactions on Pattern Analysis*
 562 and *Machine Intelligence*, 46(12):8580–8599, 2024. doi: 10.1109/TPAMI.2024.3408271.

563 Michael Janner, Qiyang Li, and Sergey Levine. Offline reinforcement learning as one big sequence
 564 modeling problem. *Advances in neural information processing systems*, 34:1273–1286, 2021.

565 Jeonghye Kim, Suyoung Lee, Woojun Kim, and Youngchul Sung. Decision convformer: Local
 566 filtering in metaformer is sufficient for decision making. In *The Twelfth International Confer-
 567 ence on Learning Representations*, 2024. URL <https://openreview.net/forum?id=af2c8EaK18>.

568 Ilya Kostrikov, Ashvin Nair, and Sergey Levine. Offline reinforcement learning with implicit q-
 569 learning. *arXiv preprint arXiv:2110.06169*, 2021.

570 Aviral Kumar, Aurick Zhou, George Tucker, and Sergey Levine. Conservative q-learning for offline
 571 reinforcement learning. *Advances in neural information processing systems*, 33:1179–1191, 2020.

572 Fangchen Liu, Hao Liu, Aditya Grover, and Pieter Abbeel. Masked autoencoding for scalable and
 573 generalizable decision making. *Advances in neural information processing systems*, 35:12608–
 574 12618, 2022.

575 Chaochao Lu, Biwei Huang, Ke Wang, José Miguel Hernández-Lobato, Kun Zhang, and Bernhard
 576 Schölkopf. Sample-efficient reinforcement learning via counterfactual-based data augmentation.
 577 *arXiv preprint arXiv:2012.09092*, 2020.

578 Clare Lyle, Amy Zhang, Minqi Jiang, Joelle Pineau, and Yarin Gal. Resolving causal confusion in
 579 reinforcement learning via robust exploration. In *Self-Supervision for Reinforcement Learning*
 580 *Workshop-ICLR*, volume 2021, 2021.

581 Judea Pearl. *Causality*. Cambridge university press, 2009.

582 Judea Pearl et al. Models, reasoning and inference. *Cambridge, UK: Cambridge University Press*,
 583 19(2):3, 2000.

584 Jonas Peters, Dominik Janzing, and Bernhard Schlkopf. *Elements of Causal Inference: Foundations*
 585 and *Learning Algorithms*. The MIT Press, 2017. ISBN 0262037319.

594 Silviu Pitis, Elliot Creager, Ajay Mandlekar, and Animesh Garg. Mocoda: Model-based counterfac-
 595 tual data augmentation. *Advances in Neural Information Processing Systems*, 35:18143–18156,
 596 2022.

597 Aditya Ramesh, Mikhail Pavlov, Gabriel Goh, Scott Gray, Chelsea Voss, Alec Radford, Mark Chen,
 598 and Ilya Sutskever. Zero-shot text-to-image generation. In *International conference on machine
 599 learning*, pp. 8821–8831. Pmlr, 2021.

600 Scott Reed, Konrad Zolna, Emilio Parisotto, Sergio Gómez Colmenarejo, Alexander Novikov,
 601 Gabriel Barth-maron, Mai Giménez, Yury Sulsky, Jackie Kay, Jost Tobias Springenberg, Tom Ec-
 602 cles, Jake Bruce, Ali Razavi, Ashley Edwards, Nicolas Heess, Yutian Chen, Raia Hadsell, Oriol
 603 Vinyals, Mahyar Bordbar, and Nando de Freitas. A generalist agent. *Transactions on Machine
 604 Learning Research*, 2022. ISSN 2835-8856. URL <https://openreview.net/forum?id=1lkK0kHjvj>. Featured Certification, Outstanding Certification.

605 Jonathan Richens and Tom Everitt. Robust agents learn causal world models. In *The Twelfth In-
 606 ternational Conference on Learning Representations*, 2024. URL <https://openreview.net/forum?id=pOoKI3ouvl>.

607 Raanan Y Rohekar, Yaniv Gurwicz, and Shami Nisimov. Causal interpretation of self-attention in
 608 pre-trained transformers. *Advances in Neural Information Processing Systems*, 36:31450–31465,
 609 2023.

610 Chengchun Shi, Masatoshi Uehara, Jiawei Huang, and Nan Jiang. A minimax learning approach to
 611 off-policy evaluation in confounded partially observable markov decision processes. In *Inter-
 612 national Conference on Machine Learning*, pp. 20057–20094. PMLR, 2022.

613 Jing-Cheng Shi, Yang Yu, Qing Da, Shi-Yong Chen, and An-Xiang Zeng. Virtual-taobao: Virtualiz-
 614 ing real-world online retail environment for reinforcement learning. In *Proceedings of the AAAI
 615 Conference on Artificial Intelligence*, volume 33, pp. 4902–4909, 2019.

616 Yongduo Sui, Xiang Wang, Jiancan Wu, Min Lin, Xiangnan He, and Tat-Seng Chua. Causal at-
 617 tention for interpretable and generalizable graph classification. In *Proceedings of the 28th ACM
 618 SIGKDD conference on knowledge discovery and data mining*, pp. 1696–1705, 2022.

619 Yongduo Sui, Wenyu Mao, Shuyao Wang, Xiang Wang, Jiancan Wu, Xiangnan He, and Tat-Seng
 620 Chua. Enhancing out-of-distribution generalization on graphs via causal attention learning. *ACM
 621 Transactions on Knowledge Discovery from Data*, 18(5):1–24, 2024.

622 Yuewen Sun, Erli Wang, Biwei Huang, Chaochao Lu, Lu Feng, Changyin Sun, and Kun Zhang.
 623 Acamda: Improving data efficiency in reinforcement learning through guided counterfactual data
 624 augmentation. *Proceedings of the AAAI Conference on Artificial Intelligence*, 38(14):15193–
 625 15201, Mar. 2024a. doi: 10.1609/aaai.v38i14.29442. URL <https://ojs.aaai.org/index.php/AAAI/article/view/29442>.

626 Yuewen Sun, Erli Wang, Biwei Huang, Chaochao Lu, Lu Feng, Changyin Sun, and Kun Zhang.
 627 Acamda: Improving data efficiency in reinforcement learning through guided counterfactual data
 628 augmentation. In *Proceedings of the AAAI Conference on Artificial Intelligence*, volume 38, pp.
 629 15193–15201, 2024b.

630 Jeremy Tien, Jerry Zhi-Yang He, Zackory Erickson, Anca Dragan, and Daniel S Brown. A study
 631 of causal confusion in preference-based reward learning. In *ICML 2022: Workshop on Spurious
 632 Correlations, Invariance and Stability*, 2022.

633 Núria Armengol Urpí, Marco Bagatella, Marin Vlastelica, and Georg Martius. Causal action influ-
 634 ence aware counterfactual data augmentation. In *Proceedings of the 41st International Conference
 635 on Machine Learning*, ICML’24. JMLR.org, 2024.

636 Jincheng Wang, Penny Karanasou, Pengyuan Wei, Elia Gatti, Diego Martinez Plasencia, and Dim-
 637 itrios Kanoulas. Long-short decision transformer: Bridging global and local dependencies for
 638 generalized decision-making. In *The Thirteenth International Conference on Learning Represen-
 639 tations*, 2025a. URL <https://openreview.net/forum?id=NHMuM84tRT>.

648 Siyu Wang, Xiaocong Chen, Dietmar Jannach, and Lina Yao. Causal decision transformer for
 649 recommender systems via offline reinforcement learning. In *Proceedings of the 46th International*
 650 *ACM SIGIR Conference on Research and Development in Information Retrieval*, pp. 1599–1608,
 651 2023.

652 Siyu Wang, Xiaocong Chen, and Lina Yao. Retentive decision transformer with adaptive masking
 653 for reinforcement learning-based recommendation systems. *ACM Transactions on Intelligent*
 654 *Systems and Technology*, 16(3):1–20, 2025b.

655 Zizhao Wang, Xuesu Xiao, Zifan Xu, Yuke Zhu, and Peter Stone. Causal dynamics learning for task-
 656 independent state abstraction. In Kamalika Chaudhuri, Stefanie Jegelka, Le Song, Csaba Szepes-
 657 vari, Gang Niu, and Sivan Sabato (eds.), *Proceedings of the 39th International Conference on Ma-*
 658 *chine Learning*, volume 162 of *Proceedings of Machine Learning Research*, pp. 23151–23180.
 659 PMLR, 17–23 Jul 2022. URL <https://proceedings.mlr.press/v162/wang22ae.html>.

660 Thomas Wolf, Lysandre Debut, Victor Sanh, Julien Chaumond, Clement Delangue, Anthony Moi,
 661 Pierrick Cistac, Tim Rault, Remi Louf, Morgan Funtowicz, et al. Transformers: State-of-the-art
 662 natural language processing. In *Proceedings of the 2020 conference on empirical methods in*
 663 *natural language processing: system demonstrations*, pp. 38–45, 2020.

664 Yupei Yang, Biwei Huang, Fan Feng, Xinyue Wang, Shikui Tu, and Lei Xu. Towards generaliz-
 665 able reinforcement learning via causality-guided self-adaptive representations. In *The Thirteenth*
 666 *International Conference on Learning Representations*, 2025. URL <https://openreview.net/forum?id=bMvqccRmKD>.

667 Yan Zeng, Ruichu Cai, Fuchun Sun, Libo Huang, and Zhifeng Hao. A survey on causal reinforce-
 668 ment learning. *IEEE Transactions on Neural Networks and Learning Systems*, 36(4):5942–5962,
 669 2025. doi: 10.1109/TNNLS.2024.3403001.

670 Amy Zhang, Clare Lyle, Shagun Sodhani, Angelos Filos, Marta Kwiatkowska, Joelle Pineau, Yarin
 671 Gal, and Doina Precup. Invariant causal prediction for block mdps. In *International Conference*
 672 *on Machine Learning*, pp. 11214–11224. PMLR, 2020.

673 Kesen Zhao, Lixin Zou, Xiangyu Zhao, Maolin Wang, and Dawei Yin. User retention-oriented
 674 recommendation with decision transformer. In *Proceedings of the ACM Web Conference 2023*,
 675 WWW ’23, pp. 1141–1149, New York, NY, USA, 2023. Association for Computing Machinery.
 676 ISBN 9781450394161. doi: 10.1145/3543507.3583418. URL <https://doi.org/10.1145/3543507.3583418>.

684 A THE USAGE OF LLM

685 In preparing this manuscript, we employed a large language model (LLM) strictly as a writing
 686 assistant. Its role was limited to grammar checking, stylistic polishing, and improving readability of
 687 the text. All technical content, experimental design, and results were produced by the authors.

691 B BACKGROUND ON CAUSAL INFERENCE

692 Here, we introduce fundamental causal modeling concepts (Pearl, 2009; Peters et al., 2017) that
 693 underpin our methodology and theoretical analysis.

694 **Structural Causal Models** Structural Causal Models (SCMs) formalize the data-generating pro-
 695 cess by specifying how each variable is causally determined by its parents and exogenous noise.
 696 An SCM is associated with a directed acyclic graph (DAG) that encodes causal relationships among
 697 variables.

698 **Definition B.1** (Structural Causal Model (Pearl, 2009)). A *Structural Causal Model (SCM)* $\mathcal{M} =$
 699 $(\mathcal{G}, \mathbf{S}, P_{\mathbf{U}})$ consists of:

- A directed acyclic graph (DAG) $\mathcal{G} = (\mathbf{V}, \mathcal{E})$, where \mathbf{V} is a set of endogenous variables and \mathcal{E} is the set of directed edges representing direct causal relationships;
- A collection of structural assignments $\mathbf{S} = \{X_i = f_i(\text{PA}_i, U_i)\}$ for each $X_i \in \mathbf{V}$, where $\text{PA}_i \subseteq \mathbf{V} \setminus \{X_i\}$ are the parent variables of X_i in \mathcal{G} , and $U_i \in \mathbf{U}$ are exogenous noise variables;
- A joint distribution $P_{\mathbf{U}}$ over the exogenous variables $\mathbf{U} = \{U_1, \dots, U_n\}$, typically assumed to be mutually independent.

An SCM \mathcal{M} induces a joint observational distribution over \mathbf{V} according to the structural assignments and exogenous distribution.

Definition B.2 (Intervention (Pearl, 2009)). An intervention in an SCM $\mathcal{M} = (\mathcal{G}, \mathbf{S}, P_{\mathbf{U}})$ corresponds to replacing the structural assignment for a variable $X_j \in \mathbf{V}$ with a new mechanism:

$$X_j = \hat{f}_j(\widehat{\text{PA}}_j, \hat{U}_j),$$

resulting in a modified model $\hat{\mathcal{M}}$. The new model $\hat{\mathcal{M}}$ induces a different distribution over the variables \mathbf{V} , referred to as the interventional distribution:

$$P_{\hat{\mathcal{M}}}(\mathbf{V}) = P_{\mathcal{M}}(\mathbf{V} \mid \text{do}(X_j = \hat{f}_j(\widehat{\text{PA}}_j, \hat{U}_j))).$$

Definition B.3 (Causal Effect Identifiability (Pearl, 2009)). The causal effect of X on Y is identifiable from a graph \mathcal{G} if the quantity $P(y \mid \text{do}(x))$ can be computed uniquely from any positive probability of the observed variables. That is, if

$$P_{M_1}(y \mid \text{do}(x)) = P_{M_2}(y \mid \text{do}(x))$$

for every pair of models M_1 and M_2 such that $P_{M_1}(\nu) = P_{M_2}(\nu) > 0$ and $\mathcal{G}(M_1) = \mathcal{G}(M_2) = \mathcal{G}$.

Theorem B.1 (Three Steps of Counterfactual Reasoning (Pearl, 2009)). Computing a counterfactual requires a three-step process:

1. **Abduction:** Condition the distribution of the exogenous variables u_r on the observed evidence e , obtaining $P(u_r \mid e)$.
2. **Action:** Modify the SCM by performing a surgical intervention using the $\text{do}()$ -operator, forcing variables to take hypothetical values (e.g., setting the state to s_c).
3. **Prediction:** Use the modified model together with $P(u_r \mid e)$ to compute the counterfactual outcome.

C ASSUMPTIONS AND PROPOSITIONS

C.1 ASSUMPTIONS

A1 (Markov property) (Pearl, 2009). The environment is Markovian. The joint over $\mathcal{V} = \{s_t, a_t, r_t, s_{t+1}\}$ factorizes as $p(s_t) p(a_t \mid s_t) p(r_t \mid s_t, a_t) p(s_{t+1} \mid s_t, a_t)$. *Use:* underlies the SCM in Eq. (1), CRM training, and the counterfactual edit that changes only s_t .

A2 (Faithfulness) (Pearl, 2009). The observed distribution is faithful to the causal DAG \mathcal{G} : conditional independences coincide with d -separations (no cancellation). *Use:* justifies that the supervised attention mask encodes true parent sets of a_t .

A3 (Causal minimality) (Pearl, 2009). The DAG has no redundant edges: for every edge $X \rightarrow Y$, $X \not\perp\!\!\!\perp Y \mid \text{Pa}(Y) \setminus \{X\}$. *Use:* prevents spurious parents in the mask and supports interpretability.

A4 (Temporal causality). No backward or instantaneous cycles; edges respect time order. *Use:* supports abduction at time t and interventions on s_t while holding a_t and exogenous variables fixed.

C.2 PROPOSITION ON CAUSAL CONSISTENCY

We restate Proposition 1 in an assumption–guarantee form. The argument follows Pearl’s abduction–action–prediction framework.

756 Additional conditions.
757

758 1. **Approximate reward model.** The learned Causal Reward Model (CRM) approximates
759 the true reward mechanism with error at most δ , i.e.,

$$760 |\hat{f}_r(s, a, z) - f_r(s, a, u_r)| \leq \delta, \\ 761$$

762 whenever z is produced by the CRM encoder from (s, a, r) .

763 2. **Generator training.** The Counterfactual State Generator (CSG) is trained with the objec-
764 tive in Eq. equation 3 and proposes edits within an upper move bound ρ_{high} .

765 3. **Acceptance test.** A proposed counterfactual state s_c is accepted only if it satisfies

$$766 |\hat{f}_r(s_c, a_t, z_t) - r_t| \leq \varepsilon_r \quad \text{and} \quad \|(s_c - s_t)/\sigma_s\|_2 \leq \rho_{\text{high}}. \\ 767$$

768 **Guarantee.** Under Assumptions A1–A4 and the above conditions, every accepted counterfactual
769 transition (s_c, a_t, r_t) corresponds to an approximate sample from the interventional distribution

$$770 P(r \mid do(s_t \leftarrow s_c), a_t, u_r), \\ 771$$

772 with approximation error bounded by $\delta + \varepsilon_r$.

773 **Argument.** The reward SCM is defined as $r = f_r(s, a, u_r)$ with exogenous noise $u_r \sim P(u_r)$
774 independent of (s, a) .

775 *Abduction.* Given (s_t, a_t, r_t) , we infer a posterior over u_r ; in practice, the CRM encoder provides
776 z_t as a proxy for the abduced u_r .

777 *Action.* A counterfactual state $s_c = g_\psi(s_t, a_t, z_t)$ is generated, corresponding to the intervention
778 $do(s_t \leftarrow s_c)$ while keeping (a_t, u_r) fixed.

779 *Prediction.* The CRM decoder evaluates $\hat{f}_r(s_c, a_t, z_t)$. By the approximation property,
780 $\hat{f}_r(s_c, a_t, z_t) \approx f_r(s_c, a_t, u_r)$ within δ .

781 *Acceptance.* If $\hat{f}_r(s_c, a_t, z_t)$ is within ε_r of $r_t = f_r(s_t, a_t, u_r)$, then

$$782 |\hat{f}_r(s_c, a_t, u_r) - f_r(s_t, a_t, u_r)| \leq \delta + \varepsilon_r. \\ 783$$

784 Thus the counterfactual reward matches the factual reward up to tolerance, while the move constraint
785 ensures s_c remains near the support of the data. Therefore, (s_c, a_t, r_t) is an approximate sample from
786 the interventional distribution under the factual action and abduced exogenous variables.

787

D EXTENDED RELATED WORK

788

D.1 CAUSALITY IN ATTENTION MECHANISMS

789 Recent work has explored integrating causality into attention to enhance interpretability and gener-
790 alization. Some studies interpret attention through a causal lens, such as Rohekar et al. (2023), who
791 treat self-attention as estimating an SCM via constraint-based methods. Others embed attention into
792 causal frameworks, like CAL (Sui et al., 2022) and CAL+ (Sui et al., 2024), which use attention
793 to identify causal features in GNNs. Intervention-based designs have also emerged, e.g., Ge et al.
794 (2023) introduce Social Cross Attention with learnable variables representing confounder strata to
795 deconfound human trajectory prediction. In contrast, our approach directly supervises attention
796 heads using a predefined causal graph, aligning attention patterns with known structural dependen-
797 cies in sequential decision-making tasks.

800

E DATASETS AND BASELINES

801

E.1 ROBOTIC CONTROL TASK

802 **Datasets** For robotic control experiments, we use datasets from the D4RL benchmark (Fu et al.,
803 2020), which are widely used in offline reinforcement learning research. These datasets are gen-
804 erated using the MuJoCo physics simulator and consist of pre-collected trajectories from various
805 environments and policy qualities. Specifically, we evaluate on:

810

- HalfCheetah: A 2D bipedal cheetah-like robot aiming to run.

811

- Hopper: A 2D one-legged hopper robot aiming to hop forward.

812

- Walker2d: A 2D bipedal robot aiming to walk.

813

814 For each of these environments, we use three dataset types reflecting different data quality and
815 collection strategies:

816

- -medium (m): Trajectories collected by a policy trained to a medium level of performance and then rolled out.
- -medium-replay (m-r): The full replay buffer contents of an agent trained to a medium level of performance.
- -medium-expert (m-e): A 50/50 mix of trajectories from a medium policy and an expert policy.

823

824 **Baselines** We compare CaDM against several state-of-the-art and representative offline RL algorithms
825 in the robotic control domain.

826

- **Offline RL Methods:**

- IQL (Implicit Q-Learning) (Kostrikov et al., 2021): An offline Q-learning method that learns Q-functions by implicitly defining them via expectile regression, avoiding explicit policy constraints or out-of-distribution action queries.
- CQL (Conservative Q-Learning) (Kumar et al., 2020): A widely used offline RL algorithm that learns a conservative Q-function by adding a regularization term to the standard Bellman error. This term penalizes high Q-values for actions outside the dataset distribution and encourages low Q-values for them, mitigating overestimation issues.

- **Decision Transformer (DT) and Variants:**

- DT (Decision Transformer) (Chen et al., 2021): The standard Decision Transformer that models RL as a sequence modeling problem, predicting actions autoregressively based on desired returns-to-go, past states, and actions.
- DC (Decision ConvFormer) (Kim et al., 2024): A DT variant that integrates convolutional layers, potentially to better capture local features or spatial relationships in states, which can be beneficial in certain control tasks.
- LSDT (Long–Short Decision Transformer) (Wang et al., 2025a): A Decision Transformer variant that augments the model with a long–short temporal module, enabling it to capture both short-term transitions and long-range dependencies more effectively.

848 **E.2 RECOMMENDATION TASK**

849

850 **Datasets** For evaluating CaDM on recommendation tasks, we selected the following publicly
851 available datasets, known for their scale and real-world relevance:

852

- KuaiRand: An unbiased sequential recommendation dataset collected from the recommendation logs of the Kuaishou video-sharing mobile app (Gao et al., 2022b). It is notable for including millions of intervened interactions where items were randomly exposed within standard recommendation feeds, which helps in studying and mitigating exposure bias. It provides rich side information, including user IDs, interaction timestamps, and features for users and items, across various collection policies.
- KuaiRec: Another dataset from Kuaishou, KuaiRec is distinguished by its "fully-observed" user-item interaction matrix for a subset of users and items, meaning nearly all preferences are known (Gao et al., 2022a). This dense interaction data (e.g., 1,411 users and 3,327 items with 99.6% density in its "small matrix") is valuable for evaluating recommendation models without suffering severely from missing data issues, and for research in unbiased recommendation, interactive RL, and off-policy evaluation. It also contains a larger, sparser "big matrix" and side information like item categories and a social network.

864 • VirtualTB (Virtual Taobao): An online simulation platform that mimics a real-
 865 world e-commerce environment (Taobao) for developing and testing recommender systems
 866 (Shi et al., 2019). It is trained on hundreds of millions of real user data points and generates
 867 virtual customers with dynamic and static features. VirtualTB allows RL agents to interact
 868 with the simulated environment, receive feedback (e.g., clicks), and be evaluated on metrics
 869 like Click-Through Rate (CTR).

870
 871
 872
 873
Baselines For the recommendation tasks, we compare CaDM with the following state-of-the-art
 874 Decision Transformer-based models designed for recommender systems:

875 • CDT4Rec (Causal Decision Transformer for Recommender
 876 Systems) (Wang et al., 2023): This model adapts the Decision Trans-
 877 former framework for recommendation by incorporating a causal mechanism. It aims to
 878 address the challenge of reward function design by estimating rewards based on the causal
 879 relationships inferred from user behavior within the transformer architecture.

880
 881
 882
 883
 884
 885 • DT4Rec (Decision Transformer for Recommender Systems) (Zhao
 886 et al., 2023): This approach applies the Decision Transformer to focus on user
 887 retention in recommender systems. It often employs specific reward prompting strategies
 888 tailored for recommendation scenarios to guide the DT model.

889
 890
 891
 892 • EDT4Rec (Max-Entropy enhanced Decision Transformer with
 893 Reward Relabeling for Offline RLRS) (Chen et al., 2024): This
 894 model enhances Decision Transformer-based methods for recommendation by tackling
 895 limitations such as "stitching" suboptimal trajectories and insufficient online exploration.
 896 It integrates max-entropy regularization to encourage exploration and a reward relabeling
 897 technique (often based on learned Q-values from methods like CQL) to improve learning
 898 from suboptimal data.

902 F ALGORITHMS FOR UCF

903 **Algorithm 1** Unified Causal Transformer (UCF): End-to-end training on augmented data

904 **Require:** Offline dataset \mathcal{D} ; CRM encoder q_ϕ and decoder p_θ ; CSG g_ψ ; UCF policy model π_ω (hy-
 905 brid conv + final attention); mask weight λ ; augmentation budget K per trajectory; thresholds
 906 ($\varepsilon_r, \rho_{\text{high}}$); state normalization σ_s ; optimizers $\text{Opt}_\phi, \text{Opt}_\theta, \text{Opt}_\psi, \text{Opt}_\omega$

907 1: **Train CRM** (q_ϕ, p_θ) on \mathcal{D} by maximizing the ELBO (Alg. 2)
 908 2: **Train CSG** g_ψ with banded move and reward-preservation (Alg. 3)
 909 3: **Augment** \mathcal{D} using $(q_\phi, p_\theta, g_\psi)$ and the acceptance gate (Alg. 5, 4); get \mathcal{D}_{aug}
 910 4: **Train UCF policy** π_ω on \mathcal{D}_{aug} with action loss + mask loss (Alg. 6)
 911 5: **return** trained policy π_ω

918 **Algorithm 2** Training the Causal Reward Model (CRM) as a CVAE
919
920 **Require:** Offline dataset $\mathcal{D} = \{(s_t, a_t, r_t)\}$; prior $p(z)$ (e.g., $\mathcal{N}(0, I)$); encoder $q_\phi(z \mid s, a, r)$;
921 decoder $p_\theta(r \mid s, a, z)$; ELBO weight β ; optimizer Opt
922 1: Initialize parameters ϕ, θ
923 2: **while** not converged **do**
924 3: Sample minibatch $\{(s_t, a_t, r_t)\}_{t=1}^B \sim \mathcal{D}$
925 4: Encode: $(\mu_\phi, \Sigma_\phi) \leftarrow q_\phi(z \mid s_t, a_t, r_t)$
926 5: Sample latent $z_t \sim \mathcal{N}(\mu_\phi, \Sigma_\phi)$ ▷ via reparameterization
927 6: Decode: $\hat{r}_t \sim p_\theta(r \mid s_t, a_t, z_t)$
928 7: ELBO objective:
929
$$\mathcal{L}_{\text{CVAE}} = \frac{1}{B} \sum_{t=1}^B \left(\log p_\theta(r_t \mid s_t, a_t, z_t) - \beta \text{KL}(q_\phi(z \mid s_t, a_t, r_t) \parallel p(z)) \right)$$

930
931 8: Update $\phi, \theta \leftarrow \phi, \theta + \eta \nabla_{\phi, \theta} \mathcal{L}_{\text{CVAE}}$ with Opt
932 9: **end while**
933 10: **return** trained CRM: encoder q_ϕ , decoder p_θ (defining $\hat{f}_r(s, a, z)$)
934

935
936
937

Algorithm 3 Training the Counterfactual State Generator (CSG)

938 **Require:** Trained CRM (q_ϕ, p_θ); generator g_ψ ; state normalization σ_s ; band radii $(\rho_{\text{low}}, \rho_{\text{high}})$;
939 weights $(\lambda_r, \lambda_{\text{band}})$; optimizer Opt
940 1: Initialize parameters ψ
941 2: **while** not converged **do**
942 3: Sample minibatch $\{(s_t, a_t, r_t)\}_{t=1}^B$
943 4: Abduction: $z_t \leftarrow \mu_\phi(s_t, a_t, r_t)$ ▷ posterior mean from CRM encoder
944 5: Generate counterfactual proposal: $s_c \leftarrow g_\psi(s_t, a_t, z_t)$
945 6: Normalized move: $\Delta_t \leftarrow (s_c - s_t) / \sigma_s$
946 7: Reward consistency:
947
$$L_r = \frac{1}{B} \sum_t \left(\hat{f}_r(s_c, a_t, z_t) - r_t \right)^2$$

948 8: Band penalty:
949
$$L_{\text{band}} = \frac{1}{B} \sum_t \left([\rho_{\text{low}} - \|\Delta_t\|_2]_+^2 + [\|\Delta_t\|_2 - \rho_{\text{high}}]_+^2 \right)$$

950 9: Total loss: $\mathcal{L}_{\text{CSG}} = \lambda_r L_r + \lambda_{\text{band}} L_{\text{band}}$
951 10: Update $\psi \leftarrow \psi - \eta \nabla_\psi \mathcal{L}_{\text{CSG}}$ with Opt
952 11: **end while**
953 12: **return** trained generator g_ψ
954
955
956
957
958
959
960
961

Algorithm 4 Acceptance gate for a counterfactual proposal

962 **Require:** (s_t, a_t, r_t) ; posterior mean $z_t = \mu_\phi(s_t, a_t, r_t)$; proposal $s_c = g_\psi(s_t, a_t, z_t)$; thresholds
963 $(\varepsilon_r, \rho_{\text{high}})$; normalization σ_s
964 1: Reward proximity: $\Delta r \leftarrow |\hat{f}_r(s_c, a_t, z_t) - r_t|$
965 2: Move size: $m \leftarrow \left\| \frac{s_c - s_t}{\sigma_s} \right\|_2$
966 3: **if** $\Delta r \leq \varepsilon_r$ **and** $m \leq \rho_{\text{high}}$ **then**
967 4: **return** ACCEPT
968 5: **else**
969 6: **return** REJECT
970 7: **end if**

972 **Algorithm 5** Offline counterfactual augmentation

973

974 **Require:** Dataset $\mathcal{D} = \{\tau\}$ with trajectories $\tau = (s_0, a_0, r_0, \dots)$; trained CRM (q_ϕ, p_θ) ; trained

975 CSG g_ψ ; per-trajectory budget K (proposals per trajectory); acceptance thresholds $(\varepsilon_r, \rho_{\text{high}})$;

976 normalization σ_s

977 1: $\mathcal{D}_{\text{aug}} \leftarrow \mathcal{D}$ ▷ start from the original dataset

978 2: **for all** trajectory $\tau \in \mathcal{D}$ **do**

979 3: Initialize counter $c \leftarrow 0$

980 4: **for all** time indices t in τ **in random order do**

981 5: **if** $c \geq K$ **then break**

982 6: Compute $z_t \leftarrow \mu_\phi(s_t, a_t, r_t)$

983 7: Propose $s_c \leftarrow g_\psi(s_t, a_t, z_t)$

984 8: **if** ACCEPT($(s_t, a_t, r_t), z_t, s_c$) **then**

985 9: Replace (s_t) by (s_c) in a copy of τ to form $\tilde{\tau}$

986 10: Append modified trajectory $\tilde{\tau}$ to \mathcal{D}_{aug}

987 11: $c \leftarrow c + 1$

988 12: **end if**

989 13: **end for**

990 14: **end for**

991 15: **return** \mathcal{D}_{aug}

993 **Algorithm 6** Train UCF policy on augmented dataset

994 **Require:** \mathcal{D}_{aug} ; hybrid model π_ω with modality-specific conv blocks and a final multi-head attention
 995 layer; mask weight λ ; optimizer Opt_ω

996 1: **while** not converged **do**

997 2: Sample trajectory windows (RTG, states, actions) from \mathcal{D}_{aug}

998 3: Encode with modality-specific 1D convolutional blocks (RTG/state/action)

999 4: Apply final multi-head self-attention to the token sequence

1000 5: **Action loss** $\mathcal{L}_{\text{action}}$: negative log-likelihood (discrete) or MSE (continuous) for a_t

1001 6: **Mask loss** $\mathcal{L}_{\text{mask}}$: cross-entropy to target $q_{i,j} \propto \mathbf{1}[j \in S_i]$ where S_i are causal parents (state
 1002 and RTG at time t)

1003 7: Total loss: $\mathcal{L}_{\text{total}} \leftarrow \mathcal{L}_{\text{action}} + \lambda \mathcal{L}_{\text{mask}}$

1004 8: Descend $\nabla_\omega \mathcal{L}_{\text{total}}$ with Opt_ω

1005 9: **end while**

1006 10: **return** π_ω

G IMPLEMENTATION DETAILS

We implement UCF on top of the official Decision Transformer codebase¹, incorporating (i) a *Causal Reward Model* (CRM) trained as a conditional VAE, (ii) a *Counterfactual State Generator* (CSG) trained to edit states under causal constraints, and (iii) a *hybrid causal policy architecture* that combines modality-specific convolutions for local dynamics with a final self-attention layer trained with a causal mask loss. Unless otherwise stated, all experiments follow the D4RL protocol with expert-normalized returns.

G.1 CAUSAL REWARD MODEL (CRM)

The CRM is parameterized as a conditional variational autoencoder. The encoder $q_\phi(z \mid s, a, r)$ and decoder $p_\theta(r \mid s, a, z)$ are implemented as two-layer MLPs with hidden size 256 and ReLU activations. The latent variable dimension is 32. We optimize the ELBO with $\beta = 0.1$, which balances reward reconstruction accuracy and latent regularization. Larger values (e.g., $\beta = 1.0$) led to worse reward prediction in preliminary runs. We use Adam with a learning rate of 3×10^{-4} , weight decay 10^{-4} , and batch size 256. Training runs for 10^6 steps with early stopping.

¹<https://github.com/kzl/decision-transformer>

Table 4: Hyperparameters for the Causal Reward Model (CRM).

Hyperparameter	Value
Latent dimension	16 (MuJoCo) / 32 (Antmaze)
Network	2-layer MLP (ReLU, 256)
Optimizer	Adam
Learning rate	3×10^{-4}
Weight decay	1×10^{-4}
Batch size	256
KL weight β	0.1
Training epochs	40

G.2 COUNTERFACTUAL STATE GENERATOR (CSG)

The generator $g_\psi(s, a, z)$ is a three-layer MLP (hidden size 256, ReLU). States are normalized by dataset statistics and the move band acts in normalized space. The loss combines reward consistency under fixed (a, z) and a band penalty that encourages $\|\Delta_t\|_2 = \|(s_c - s_t)/\sigma_s\|_2$ to lie in $[\rho_{\text{low}}, \rho_{\text{high}}]$. We train with Adam (learning rate 5×10^{-4} , batch size 256) for 40 epochs. At acceptance, a counterfactual is kept if $|\hat{r}(s_c, a, z) - r| \leq \varepsilon_r$ (adaptive: $0.1 \times \text{reward std}$ if unspecified) and $\|\Delta_t\|_2 \leq \rho_{\text{high}}$.

Table 5: Hyperparameters for the Counterfactual State Generator (CSG).

Hyperparameter	Value
Network	3-layer MLP (ReLU, 256)
Optimizer	Adam
Learning rate	5×10^{-4}
Batch size	256
Training epochs	40
Move-band radii	$(\rho_{\text{low}}, \rho_{\text{high}}) = (0.2, 0.5)$
Band weight λ_{band}	0.1
Reward tolerance ε_r	adaptive ($0.1 \times \text{std of rewards}$)
Acceptance gate	$ \hat{r}(s_c, a, z) - r \leq \varepsilon_r, \ \Delta_t\ _2 \leq \rho_{\text{high}}$
Training subset	Top-70% reward transitions

G.3 HYBRID CAUSAL POLICY ARCHITECTURE

Tokenization and embeddings Trajectories are tokenized as repeating triplets (\hat{G}_t, s_t, a_t) with context length $K=15$. We use learned positional embeddings and layer normalization. The model dimension is $d_{\text{model}}=128$ by default and 256 for Hopper-medium and Hopper-medium-replay.

Local processing We build three parallel streams (RTG, state, action). Each stream applies depth-wise 1D convolutions followed by pointwise projections with residual connections (kernel size 3, stride 1). Outputs are concatenated along the channel axis and projected back to d_{model} .

Global reasoning A single multi-head self-attention block operates on the fused sequence. We supervise the final attention block, with all heads constrained to place probability mass only on the direct parents of a_t , namely s_t and \hat{G}_t , and optionally a short window of recent states. Let A be the attention matrix and $q_{i,j}$ the target distribution over valid parents S_i . The mask loss is

$$\mathcal{L}_{\text{mask}} = \frac{1}{L} \sum_{i=1}^L \sum_{j \in S_i} -q_{i,j} \log(A_{i,j} + \epsilon), \quad \epsilon = 10^{-8}.$$

The total loss is

$$\mathcal{L}_{\text{total}} = \mathcal{L}_{\text{action}} + \lambda_{\text{mask}} \mathcal{L}_{\text{mask}}.$$

1080
1081
1082 Table 6: Hybrid causal architecture: convolutional stream details.
1083
1084
1085
1086
1087
1088

Component	Setting	Notes
Streams	RTG / State / Action	Parallel, modality-specific
Conv blocks per stream	2	Depthwise 3×1 + pointwise 1×1
Hidden channels	128 (default)	256 for Hopper-m / m-r
Activation / dropout	GELU / 0.1	Residual + LayerNorm
Fusion	Concat + Linear	To d_{model}

1089
1090 Table 7: Hybrid causal architecture: attention and supervision.
1091
1092

Hyperparameter	Value	Notes
d_{model}	128 (default) / 256 (Hopper-m / m-r)	Embedding size
Transformer layers	1 (final only)	On top of conv fusion
Attention heads	2	Matches implementation
Supervised heads	All heads	Last block only
Supervise window w	0–4	Default $w=2$ (recent states)
Decay for s_{t-k}	0.6^k	Geometric weights
Parent tokens	$s_t, \hat{G}_t (+ s_{t-k})$	Small weight on a_{t-1} optional
ϵ in loss	10^{-8}	Numerical stability
Optimizer / LR	Adam / 1×10^{-4}	Linear warmup

1103
1104 **Policy training protocol.** We use Adam, batch size 64, weight decay 10^{-4} , dropout 0.1, GELU
1105 activations, and a linear warmup schedule. Evaluation follows D4RL. Model selection uses valida-
1106 tion return.1107
1108 **Embedding dimension.** We use an embedding dimension of 256 in hopper-medium and
1109 hopper-medium-replay, and 128 in all other environments. This matches prior findings that
1110 higher-dimensional embeddings improve stability in Hopper tasks but provide limited benefit else-
1111 where.1112 Table 8: Common hyperparameters of UCF policy (based on DC).
1113

Hyperparameter	Value
Number of layers	1
Hidden size	128 (default) / 256 (Hopper-medium / replay)
Context length K (MuJoCo / AntMaze)	20 / 50
Dropout	0.1
Activation	GELU
Learning rate	10^{-4} (MuJoCo, AntMaze)
Weight decay	10^{-4}
Batch size	64
Optimizer	Adam
Learning rate schedule	Linear warmup

1126
1127 G.4 DETAILS FOR SPURIOUS CORRELATION EXPERIMENT
11281129 This appendix describes how we construct the spurious datasets and the exact evaluation protocol
1130 used in the robustness experiment.1131
1132 **Dataset construction.** We create spurious variants of HalfCheetah-medium-v2 and
1133 Hopper-medium-v2 (D4RL) as follows: (1) Load the original offline trajectories. (2) Com-
pute the global median of per-step rewards. (3) Define a binary distractor feature $d_t := \mathbb{I}\{r_t >$

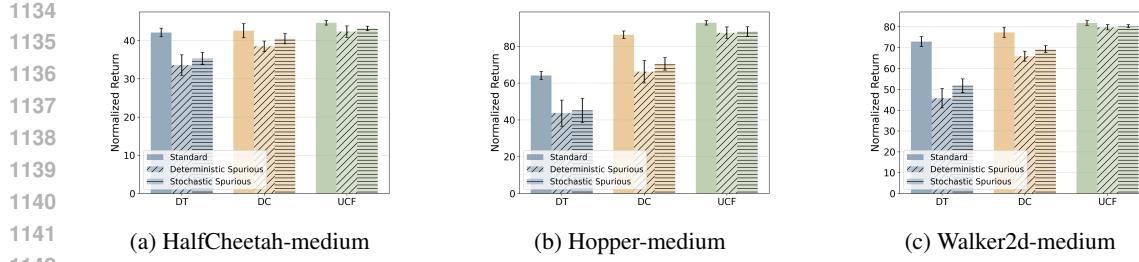


Figure 4: Robustness to spurious distractors. Expert-normalized returns for DT, DC, and UCF when trained on datasets with deterministic spurious and stochastic spurious.

median(r). (4) Append d_t to each state vector (state dimension increases by one). (5) Save the modified dataset. This makes d_t highly predictive of reward in the training data while having no causal effect on the environment.

Training protocol. DT and DC are trained directly on the modified datasets (with d_t appended to states). For UCF, we first apply counterfactual augmentation to the same spurious dataset: the Causal Reward Model (CRM) and Counterfactual State Generator (CSG) generate candidate counterfactual states that are then filtered by the acceptance gates (reward consistency and move-band checks). The distractor d_t is treated as part of the state input but is not used in abduction beyond its presence in s_t and does not enter the reward-preservation objective directly. Accepted counterfactuals are merged with the spurious dataset to form the augmented training set.

Evaluation protocol. At test time, we break the learned correlation by a direct intervention in the evaluation loop. Policies are evaluated in the original, unmodified environments. For each observed state, we append a fixed distractor value of 0.0 before passing it to the policy, matching the training input dimension but removing any predictive content from the distractor.²

Robustness to Stochastic Distractors In our main robustness experiment (Section 4.4), we utilized a deterministic distractor $d_t = \mathbb{I}[r_t > \text{median}(r)]$, which creates a perfect correlation ($R = 1.0$) between the feature and the reward class. To further validate our method against the reviewer’s question regarding noisy sensors, we evaluated all models on a stochastic distractor scenario.

We define a noisy distractor with a flip probability $p = 0.15$:

$$d_t = \mathbb{I}[r_t > \text{median}(r)] \oplus \text{Bernoulli}(0.15) \quad (6)$$

This distractor preserves the reward-aligned bit with probability 0.85 and randomly flips it with probability 0.15, reducing its reliability while keeping a noticeable correlation with reward. We trained DT, DC, and UCF on this stochastic dataset and evaluated them under the same intervention protocol (fixing $d_t = 0$ at test time).

Figure 4 shows the expert-normalized returns for DT, DC, and UCF under three settings: no distractor, the deterministic distractor, and the stochastic distractor. Adding noise to the spurious feature weakens its predictive value, and the degradation in DT and DC is correspondingly smaller than in the deterministic case. This occurs because the stochastic distractor is a “noisier” predictor than the deterministic one; consequently, the models rely on it slightly less during training, leading to a smaller collapse when the feature is removed. However, their performance remains significantly degraded compared to the standard setting, confirming that they still suffer from causal confusion. In contrast, UCF demonstrates remarkable stability, achieving returns comparable to the clean baseline. These empirical results confirm that UCF’s robustness benefits are not limited to deterministic artifacts but extend to stochastic correlations.

²We use the same feature normalization as in training; the added distractor coordinate is standardized with the training statistics and set to the normalized value corresponding to $d_t=0$.

1188

H DETAILS ON THE PROPOSED METHOD

1189

1190

Counterfactual Construction. Counterfactual Construction follows the Pearl’s three-step causal
1191 procedure: abduction, action, and prediction (Pearl et al., 2000; Pearl, 2009).

1192

1193

1194 1. Abduction: Infer the latent disturbance $z_t \sim q_\phi(z | s_t, a_t, r_t)$, which captures the unob-
1194 served factors that, together with (s_t, a_t) , produced the factual reward.
1195 2. Action (Intervention): Define the counterfactual intervention by holding the action a_t fixed.
1196 In our reward SCM, a_t is a direct causal parent of r_t . To ensure the counterfactual is valid
1197 with respect to the reward mechanism, we hold the action parent fixed and solve for a state
1198 edit.
1199 3. Prediction: Compute the counterfactual state $s_c = \text{CSG}(s_t, a_t, z_t)$. This step generates the
1200 value of the state variable in the counterfactual world, ensuring it remains on-manifold and
1201 preserves the reward under the fixed action and abduced context.

1202

1203 In this procedure, s_t provides the factual state as the basis for editing (prediction step), a_t ensures the
1204 counterfactual remains consistent with the reward mechanism (intervention step), and z_t ensures the
1205 generator respects the unobserved disturbance inferred from evidence (abduction step). Together,
1206 these allow UCF to follow the full abduction–action–prediction pipeline and generate valid counter-
1207 factual states.

1208

On the move-band constraint. The move band $[\rho_{\text{low}}, \rho_{\text{high}}]$ in Equation (3) serves two purposes
1209 beyond reward preservation: (i) *avoiding trivial augmentations* — without a lower bound, the gen-
1210 erator can collapse to near-identity edits that add little diversity; and (ii) *preventing off-manifold edits*
1211 — without an upper bound, large moves can drift outside dataset support and destabilize policy
1212 learning. We normalize state coordinates and apply the constraint in normalized space. Empirically,
1213 $(\rho_{\text{low}}, \rho_{\text{high}}) = (0.2, 0.5)$ yields non-trivial yet plausible edits.

1214

1215

Acceptance gates at generation time. After training, we generate counterfactuals and accept s_c
1216 only if

1217
$$|\hat{f}_r(s_c, a_t, z_t) - r_t| \leq \varepsilon_r \quad \text{and} \quad \left\| \frac{s_c - s_t}{\sigma_s} \right\|_2 \leq \rho_{\text{high}}.$$
1218

1219 The tolerance ε_r is set adaptively to $0.1 \times \text{std}(r)$ if not specified; only accepted s_c are written back.

1220

Data augmentation procedure For each factual trajectory $\tau = \{(s_t, a_t, r_t)\}_{t=0}^{T-1}$, we create a
1221 small number of *augmented copies*. In each copy, we scan time steps that pass a reward quantile
1222 filter and propose $s_c = g_\psi(s_t, a_t, \mu_\phi(s_t, a_t, r_t))$. If the candidate passes the two acceptance gates
1223 above, we replace only the observation token s_t with the counterfactual s_c . The next observation
1224 s_{t+1} is kept factual; we do not treat it as the successor of s_c . The final dataset on disk is the union
1225 of all original trajectories and their edited copies; no in-batch replacement is performed later.

1226

1228

I ABLATION STUDIES ON COUNTERFACTUAL GENERATION

1229

1230 We conduct ablations to evaluate the design choices in the counterfactual generation pipeline. Experi-
1231 ments are performed on `hopper-medium-v2` and `halfcheetah-medium-v2`, with results
1232 reported as expert-normalized return (mean \pm std over 5 seeds).

1233

I.1 REWARD CONSISTENCY GATE

1234 The counterfactual generator accepts a proposal only if

1235
$$|\hat{f}_r(s_c, a_t, z_t) - r_t| \leq \varepsilon_r,$$
1236

1237 which ensures counterfactuals remain consistent with the factual reward. Without this gate, coun-
1238 terfactuals may provide contradictory training signals. In implementation, ε_r is automatically set to
1239 $0.1 \times \text{std}(r)$, scaling the tolerance relative to reward variability in the dataset.

1242 Table 9: Ablation on reward consistency gate. Expert-normalized returns (mean \pm std over 5 seeds).
1243

Method	Hopper-medium	HalfCheetah-medium
UCF (full)	93.4 ± 1.5	44.9 ± 0.7
w/o reward gate	74.7 ± 3.3	42.1 ± 1.1

1248
1249
1250 We find that removing the gate significantly degrades Hopper performance, with a smaller but
1251 consistent drop on HalfCheetah. This confirms that label-preservation under the Causal Reward Model
1252 is critical for stable counterfactual training.
1253

1254 I.2 BAND CONSTRAINT

1255 The move band constrains the normalized edit magnitude $\|\Delta_t\|_2 = \|(s_c - s_t)/\sigma_s\|_2$ to lie within
1256 $[\rho_{\text{low}}, \rho_{\text{high}}]$. This discourages both trivial near-copies ($\|\Delta_t\|_2 < \rho_{\text{low}}$) and implausible off-manifold
1257 shifts ($\|\Delta_t\|_2 > \rho_{\text{high}}$). We default to $(\rho_{\text{low}}, \rho_{\text{high}}) = (0.2, 0.5)$ and weight the penalty with $\lambda_{\text{band}} = 0.1$.
1258

1259 Table 10 shows that this constraint is critical for performance. Removing the band constraint entirely
1260 ($\lambda_{\text{band}} = 0$) causes a significant performance collapse on both environments. Relaxing only the lower
1261 bound ($\rho_{\text{low}} = 0$), which allows for trivial copies, also degrades performance, confirming the value
1262 of encouraging meaningful state edits.
1263

1264 Table 10: Ablation on the band constraint. Expert-normalized returns (mean \pm std over 5 seeds).
1265

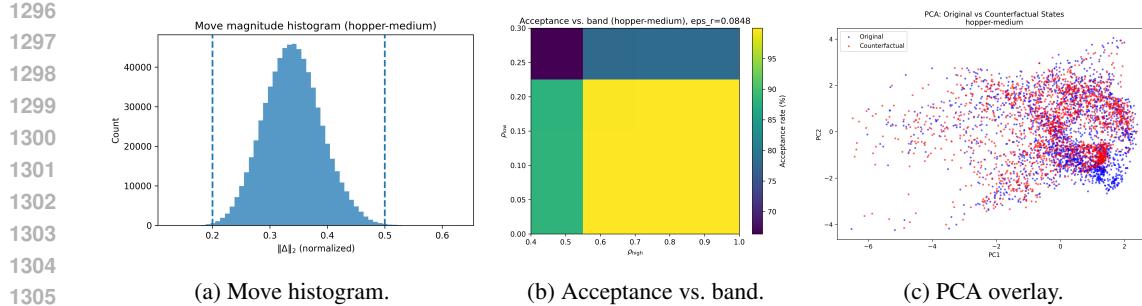
Method	Hopper-medium	HalfCheetah-medium
UCF (full)	93.4 ± 1.5	44.9 ± 0.7
w/o band constraint ($\lambda_{\text{band}} = 0$)	68.2 ± 4.1	41.9 ± 1.8
w/o lower band ($\rho_{\text{low}} = 0$)	85.9 ± 2.4	43.7 ± 0.9

1266 The diagnostics in Figure 5 and Figure 6 explain these choices.
1267

1268 **Move histograms.** The empirical $\|\Delta\|_2$ distributions are unimodal, with modes around 0.33–0.37.
1269 This suggests that the generator naturally prefers moderate edits rather than extremely small or large
1270 ones. Our default band of $(0.2, 0.5)$ brackets this region, retaining the majority of plausible moves
1271 while excluding both trivial near-copies (< 0.2) and overly aggressive shifts (> 0.5). This balance
1272 prevents the generator from collapsing to identity mappings while also discouraging unrealistic
1273 counterfactuals.
1274

1275 **Acceptance heatmaps.** We further sweep $(\rho_{\text{low}}, \rho_{\text{high}})$ and report acceptance rates. The heatmaps
1276 show that our chosen range $(0.2, 0.5)$ maintains high acceptance (around 90% 95% on Hopper-
1277 medium and around 70% 75% for HalfCheetah-medium) while keeping edits within a safe move
1278 region. Tightening the lower bound (e.g., $\rho_{\text{low}} = 0.3$) sharply decreases acceptance, discarding
1279 many otherwise valid counterfactuals. Conversely, relaxing the upper bound (e.g., $\rho_{\text{high}} > 0.6$)
1280 increases acceptance but allows off-manifold edits (because the ρ_{high} term is used in Acceptance
1281 Gate).
1282

1283 **PCA overlays.** To assess the geometric plausibility of generated states, we visualize original and
1284 counterfactual states in the top two PCA components. Counterfactuals (red) largely overlap with
1285 the support of the original dataset (blue), indicating that edits remain on-manifold under our chosen
1286 range $(0.2, 0.5)$. The necessity of the band constraint and the reward consistency gate is paramount
1287 to achieving this result; ablation studies confirm that relaxing these constraints leads to off-manifold
1288 drift and subsequent degradation in policy performance. This visual confirmation of on-manifold
1289 generation validates the safety mechanism of the counterfactual pipeline.
1290



1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349

Figure 5: **Hopper-medium** diagnostics. The default band (0.2, 0.5) achieves high acceptance while counterfactuals stay on-manifold.

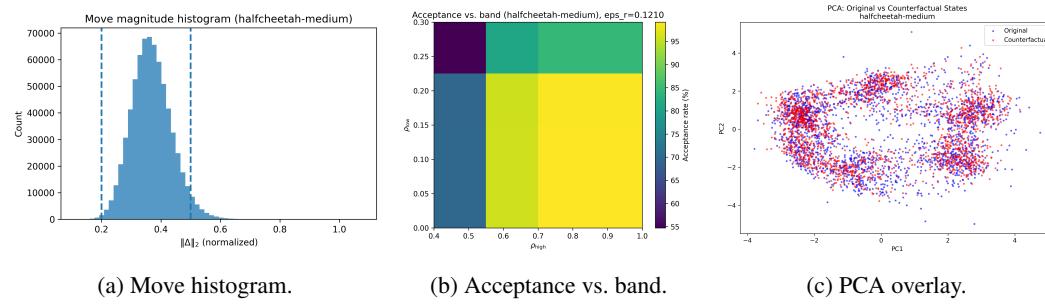


Figure 6: **HalfCheetah-medium** diagnostics. The default band (0.2, 0.5) balances coverage and precision; counterfactuals remain aligned with the original manifold.

J SHORT-CONTEXT DECISION TRANSFORMER DOES NOT ADDRESS CAUSAL CONFUSION

Several recent works have tested whether reducing the Decision Transformer (DT) context length improves stability. This idea was evaluated directly by the Decision ConvFormer (Kim et al., 2024). In their Appendix G.3 (Table 19), they report that DT performance decreases as the context window is shortened. These findings are consistent with our robustness results in Figure 3 and Figure 4. Our experiments show that the standard DT fails because it overfits to spurious correlations, a problem of causal confusion that is not resolved by simply reducing the context length.