
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2026

UNIFYING COUNTERFACTUAL DATA AUGMENTATION
AND ARCHITECTURAL INDUCTIVE BIASES IN OFFLINE
REINFORCEMENT LEARNING

Anonymous authors
Paper under double-blind review

ABSTRACT

Transformer-based models have recently achieved strong results in offline rein-
forcement learning by casting decision-making as sequence modeling. However,
when trained purely on fixed datasets, they are prone to causal confusion: re-
liance on spurious correlations that predict reward in the data but do not reflect
the true causal mechanisms of the environment. This issue is exacerbated by the
weak inductive bias of Transformers, whose global attention is not aligned with
the Markovian and causal dependencies of decision processes. We introduce the
Unified Causal Transformer (UCF), a framework that strengthens both the data
and the model with causal consistency. On the data side, UCF employs a causal
reward model to abduce exogenous factors and a counterfactual state generator
to produce reward-preserving augmentations, yielding counterfactual trajectories
that expose causal variability absent in observational data. On the model side,
UCF integrates a causally structured hybrid architecture that combines separate
modality-specific encoders for local dynamics with supervised attention for global
reasoning, guiding the model to allocate representational capacity according to
true causal dependencies. We evaluate UCF on two distinct sequential decision-
making tasks—robotic control and recommendation—and demonstrate consistent
gains in robustness and generalization over Transformer-based baselines. These
results highlight the importance of causal consistency in both data and architecture
for reliable offline policy learning.

1 INTRODUCTION

The success of high-capacity sequence models, particularly Transformers, in natural language pro-
cessing (Devlin et al., 2019; Brown et al., 2020; Wolf et al., 2020) and computer vision (Chen et al.,
2020; Ramesh et al., 2021; Reed et al., 2022) has inspired their use in decision-making. In offline
reinforcement learning (RL), recent advances such as the Decision Transformer (DT) (Chen et al.,
2021) demonstrate that sequential decision making can be cast as a sequence modeling problem.
By processing trajectories as sequences of states, actions, and returns, these models predict future
actions to achieve target objectives, leveraging pre-collected datasets without requiring additional
environment interaction.

However, unlike text or images, decision-making tasks are governed by Markovian and causal dy-
namics. When trained purely on offline trajectories, Transformer-based models are prone to causal
confusion (Lyle et al., 2021; Urpı́ et al., 2024): they may rely on spurious correlations that appear
predictive in the dataset but do not reflect the true causal mechanisms of the environment (Gupta
et al., 2023; Tien et al., 2022). For example, a model may incorrectly associate a background feature
with high reward, leading to brittle policies that fail once that feature is absent at deployment. This
limitation is compounded by the Transformer’s highly flexible architecture. While its global self-
attention mechanism is powerful for general sequence modeling, it lacks the specific inductive biases
that reflect the underlying causal graph of a given decision process (Agarwal et al., 2023; Kim et al.,
2024). Recent studies confirm that robustness and generalization in sequential decision-making de-
pend critically on causal reasoning, showing that correlation-based learning alone is insufficient for
reliable policy learning (Richens & Everitt, 2024). Addressing this causal misalignment is therefore

1



054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2026

a central challenge for offline RL, where additional data collection is not possible to disambiguate
spurious from causal associations.

We argue that addressing this challenge requires strengthening both the data and the model. On the
data side, counterfactual augmentation offers a principled mechanism to expose causal variability
that is missing from purely observational trajectories. By generating transitions under hypothetical
interventions, the agent can learn to distinguish causal drivers of reward from spurious predictors (Lu
et al., 2020; Chen et al., 2023). However, most existing augmentation methods assume access to
environment interactions (Sun et al., 2024a; Cao et al., 2025), which is incompatible with the strictly
offline setting we target. Moreover, some methods rely on strong structural assumptions, such as
factored environments with independent entities that are not applicable to all environments (Pitis
et al., 2022; Urpı́ et al., 2024). Our approach does not assume such structure, making it broadly
applicable to standard continuous-control benchmarks such as Mujoco. On the model side, even
with richer trajectories, a Transformer without appropriate inductive bias may still allocate attention
according to superficial correlations (Hu et al., 2024; Kim et al., 2024). This motivates structuring
the policy model to explicitly respect known causal dependencies, reducing the risk of overfitting
to non-causal patterns. Together, causally consistent augmentation and causal structural guidance
provide the two complementary ingredients needed for robust offline policy learning.

Concretely, we instantiate these two ingredients in a unified framework that we call the Unified
Causal Transformer (UCF). UCF integrates counterfactual data augmentation with a hybrid causal
architecture for offline RL. First, a causal reward model (CRM) abduces latent exogenous factors
from offline trajectories, enabling principled counterfactual reasoning. A counterfactual state gener-
ator (CSG) then proposes minimal modifications to observed states while preserving rewards under
the abduced factors, yielding transitions that pass causal and reward consistency checks. Second,
UCF employs a causally structured hybrid architecture that processes trajectories through modality-
specific convolutions for local dynamics and a supervised attention layer for global reasoning. This
design ensures that representational capacity is allocated to distinct causal roles, aligning predic-
tions with the true decision-making structure. By jointly enriching both the data and the model with
causal consistency, UCF provides a scalable and robust approach to offline policy learning. Our
main contributions are as follows:

• We propose a novel offline RL framework that unifies counterfactual augmentation with
causal architectural guidance.

• We introduce a causal reward model that infers exogenous factors and a counterfactual state
generatorthat produces reward-preserving augmentations under explicit causal constraints.

• We develop a causally structured hybrid architecture that combines separate modality-
specific encoders with supervised attention to respect causal dependencies in policy learn-
ing.

• We validate our framework on two distinct sequential decision-making tasks—robotic con-
trol and recommendation—showing consistent gains in generalization and robustness over
correlation-based sequence models.

2 PRELIMINARIES

2.1 DECISION TRANSFORMER (DT)

We consider the offline reinforcement learning (RL) setting, where the agent has access only to a
fixed dataset of trajectories and cannot interact with the environment. The environment is modeled
as a Markov Decision Process (MDP), defined byM = (S,A, P,R, γ), where S is the state space,
A is the action space, P (s′ | s, a) specifies the transition dynamics, R(s, a) is the reward function,
and γ ∈ [0, 1) is the discount factor.

In offline RL, the dataset D = {τi}Ni=1, with τi = (s0, a0, r0, . . . , sT , aT , rT ), is collected under
one or more behavior policies, and the agent must learn a new policy without further environment
interaction. The Decision Transformer (DT) (Chen et al., 2021) formulates offline RL as condi-
tional sequence modeling. Instead of explicitly estimating value functions or dynamics, DT trains a
Transformer autoregressively on trajectory data. Each trajectory is tokenized into a sequence:

τ = (Ĝ0, s0, a0, Ĝ1, s1, a1, . . . , ĜT , sT , aT ),

2
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Figure 1: Overview of the proposed UCF framework. Left/Middle: A Causal Reward Model (CRM)
and Counterfactual State Generator (CSG) jointly produce a causally consistent augmented dataset
from offline trajectories. Right: A Causally-Structured Hybrid Architecture processes the data with
local convolutions and global, causally supervised attention.

where Ĝt =
∑T
k=t γ

k−trk denotes the returns-to-go (RTG). The model is trained to predict the
action at conditioned on a context window of the most recent K tokens:

πθ(at | Ĝt−K+1:t, st−K+1:t, at−K+1:t−1).

2.2 STRUCTURAL CAUSAL MODEL (SCM)

A Structural Causal Model (SCM) provides a formal framework for representing cause-effect rela-
tionships (Pearl, 2009). An SCM is a tupleMc = (U ,V,F , P (U)), where U is a set of exogenous
(external) variables, V is a set of endogenous (internal) variables, and F is a set of structural equa-
tions. Each equation Vi := fi(Pa(Vi), Ui) specifies how an endogenous variable Vi ∈ V is deter-
mined by its direct causes (parents) Pa(Vi) ⊆ V and an exogenous noise variable Ui ∈ U , drawn
from the distribution P (U).

Causal Relationships in MDPs The agent-environment interaction loop in an MDP can be for-
mally described by an SCM (Peters et al., 2017; Zhang et al., 2020; Bennett et al., 2021; Shi et al.,
2022). The causal mechanisms governing the policy, state transitions, and rewards are given by the
following structural equations:

at := π(st, ua), st+1 := fs(st, at, us), rt := fr(st, at, ur), (1)

where at, st+1, and rt are endogenous variables. The functions π, fs, and fr represent the causal
mechanisms for action selection, state transition, and reward generation, respectively. The terms
ua, us, and ur are mutually independent exogenous noise variables that account for the stochasticity
in the system.

3 THE PROPOSED METHOD

We introduce a framework designed to improve offline RL by addressing causal consistency at both
the data and model levels. The central idea is to enrich offline datasets with principled counterfactual
transitions and to ensure the policy model processes information in a way that respects known causal
structures. As illustrated in Figure 1, our framework is composed of two synergistic components: (i)
a Counterfactual Transition Generation module that produces novel states which, under the original
action and inferred unobserved context, would have yielded the identical reward, thereby creating
label-preserving data augmentations; and (ii) a Causally-Structured Hybrid Architecture that inte-
grates local dynamics modeling using separate modality-specific encoders with a global reasoning
module. Crucially, this global module uses a final self-attention layer where specific heads are ex-
plicitly supervised to attend only to the direct causal parents of an action—namely, the current state
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and the desired return-to-go. Together, these components enable a model to learn a more robust and
generalizable policy from offline data.

3.1 COUNTERFACTUAL TRANSITION GENERATION

We aim to estimate the causal effect of hypothetical interventions on states using only offline data.
We address the core counterfactual query: What would the reward have been if the state had been
different, while holding all else constant? We follow Pearl’s three steps of counterfactual reason-
ing (Pearl et al., 2000; Pearl, 2009): abduction (infer exogenous variables from data), action (surgi-
cally set the state to a hypothetical value), and prediction (evaluate the outcome under the modified
world). To operationalize this, we adopt a two-stage process: (i) a Causal Reward Model (CRM)
that captures the structural reward equation and provides the abduction step, and (ii) a Counterfac-
tual State Generator (CSG) that edits states while holding the action and exogenous factors fixed,
guided by the CRM and a controlled move band.

Causal Reward Model (CRM) We model the reward mechanism via the structural equation as
defined in Equation (1):

rt = fr(st, at, ur),

where ur are unobserved exogenous factors. We approximate this SCM using a Conditional Vari-
ational Autoencoder (CVAE), where the latent variable z acts as a disturbance factor that captures
variability in the reward mechanism. The encoder qϕ(z | st, at, rt) performs abduction by inferring
a posterior distribution over disturbance values that are consistent with the observed transition. The
decoder pθ(rt | st, at, z) represents our learned structural function f̂r. The latent prior p(z) serves
as the prior distribution over disturbance factors. The model is trained by maximizing the ELBO:

LCVAE = Eqϕ(z|st,at,rt)[log pθ(rt | st, at, z)]− β KL(qϕ(z | st, at, rt) ∥ p(z)) . (2)

After training, the latent variable z is used as a disturbance factor conditioned on the observed
transition. The encoder learns the posterior distribution qϕ(z | st, at, rt), which captures the dis-
turbance values that are consistent with the observed evidence. This follows the abduction step of
counterfactual reasoning, where latent disturbances are inferred so that counterfactual predictions
remain aligned with the reward mechanism. During counterfactual construction, the counterfactual
state generator draws samples from this posterior to produce alternative states that satisfy reward
consistency under the learned model.

Counterfactual State Generator (CSG) To generate a counterfactual for a given factual transi-
tion (st, at, rt), we first perform abduction using the CRM encoder by drawing a latent disturbance
sample from the posterior, zt ∼ qϕ(z | st, at, rt). This inferred context zt is then held constant and,
along with the factual state and action, is used as input to the generator:

sc = gψ(st, at, zt).

The CSG is optimized to preserve the CRM reward under the factual action and fixed zt, while
keeping the edit size within a controlled band in normalized state space. Let σs be the per-dimension
standard deviation of states (computed on the dataset), and define the normalized move ∆t = (sc −
st)/σs. The loss is

LCSG =
(
f̂r(sc, at, zt)− rt

)2
+ λband

([
ρlow − ∥∆t∥2

]2
+
+

[
∥∆t∥2 − ρhigh

]2
+

)
, (3)

where [·]+ = max(0, ·). The first term enforces label preservation under the SCM; the second term
implements a move band that enforces state plausibility by discouraging trivial copies (too small
moves) and off-manifold edits (too large moves). The details of the counterfacutal construction and
move band are in Appendix H.

Data Augmentation and Acceptance Gating After the CRM and CSG are trained, we generate
the augmented dataset. For each factual trajectory, we create a small number of augmented copies.

4
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In each copy, we scan time steps that pass a reward quantile filter and propose sc = gψ(st, at, zt).
A candidate is only accepted if it passes two acceptance gates:∣∣f̂r(sc, at, zt)− rt∣∣ ≤ εr and

∥∥∥∥sc − stσs

∥∥∥∥
2

≤ ρhigh. (4)

The tolerance ϵr is set adaptively. If accepted, we replace the observation token st with the coun-
terfactual sc. The next observation st+1 is kept factual; we do not treat it as the successor of sc.
The final dataset is the union of all original trajectories and their edited copies. The details are in
Appendix H.

Validity of Counterfactual Augmentation Sampling zt from the posterior qϕ(z | st, at, rt) ap-
plies the abduced disturbance during counterfactual generation, which satisfies the ‘hold fixed’
clause and preserves reward consistency. Conditioning gψ on (st, at, zt) aligns edits with the action-
conditioned reward mechanism fr(s, a, ur). The band loss implements a minimal-change prior in
normalized coordinates, which keeps augmented states near the data manifold.
Proposition 1 (causal consistency of accepted counterfactuals). Assume the learned CRM provides
a sufficiently accurate approximation of the true reward SCM and the CSG is trained to (approxi-
mately) minimize equation 3. If a generated sc satisfies the acceptance gates

∣∣f̂r(sc, at, zt)− rt∣∣ ≤
εr and ∥(sc − st)/σs∥2 ≤ ρhigh, then the augmented transition (sc, at, rt) is a consistent sam-
ple from the post-intervention distribution implied by the reward SCM under the factual action and
abduced exogenous variables. A detailed discussion of assumptions and proof is provided in Ap-
pendix C.2.

3.2 CAUSALLY-STRUCTURED HYBRID ARCHITECTURE

Enriching the dataset with causally-consistent transitions improves the quality of the input data;
however, for the agent to fully benefit, the model architecture should also be designed to leverage
this causal structure. To this end, we introduce a hybrid architecture that operates at both local
and global levels. The model first encodes trajectory sequences using a stack of modality-specific
convolutional layers, capturing local causal dynamics aligned with the Markov property. A final
attention layer, guided by causal supervision, performs long-range reasoning to capture high-level
dependencies relevant to goal-conditioned policy learning.

Modeling Local Causal Dynamics with Separate Modality-Specific Encoders The convolu-
tional backbone imposes a structural prior aligned with the local causal dynamics of MDPs. Tra-
jectories are tokenized into sequences of return-to-go, state, and action tokens, and each modality
is processed by its own 1D convolutional encoder. Separating the encoders by modality avoids
representational interference and allows each signal type (state, action, and RTG) to be processed
with an architecture suited to its structure. This preserves modality-specific information before the
transformer performs global reasoning. The convolutional blocks then transform raw inputs into
compact, temporally aware representations that serve as the local context for the transformer layers,
while keeping the overall architecture simple and effective for sequence modeling.

Supervised Attention for Global Reasoning After convolutional encoding, we apply a final
multi-head self-attention block to perform global policy reasoning: determining which action at
best achieves the return-to-go Ĝt from the current state st. To align this reasoning with known
causal dependencies, we supervise attention heads using explicit causal masks.

Causal Attention Supervision We impose causal structure by supervising the attention weights
for each action token to focus only on its direct parents: the state and return-to-go at the same
timestep. This is encoded using a binary mask M ∈ {0, 1}L×L, where M [i, j] = 1 if token j is a
valid causal parent of token i. We construct a uniform target distribution: qi,j = 1

|Si| · I[j ∈ Si],
where Si = {j :M [i, j] = 1}, and supervise the attention matrix A using a cross-entropy loss:

Lmask =
1

L

L∑
i=1

∑
j∈Si

− 1

|Si|
log(Ai,j + ϵ), (5)

5



270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2026

with ϵ for numerical stability. The total objective becomesLtotal = Laction+λLmask, where λ balances
the causal constraint. This guides the model to respect causal structure while maintaining flexibility
in learning global dependencies.

4 EXPERIMENT

We conduct a series of experiments to empirically validate the effectiveness of our proposed UCF.
Our evaluation is designed to answer the following key research questions: (i): Does UCF outper-
form state-of-the-art offline RL baselines on standard offline RL benchmarks? (ii): Can UCF gen-
eralize beyond robotic control to other sequential decision-making tasks such as recommendation?
(iii): What is the relative contribution of our two core components: the Counterfactual Transition
Generation module and the Causally-Structured Hybrid Architecture? (iv): Does UCF demonstrate
greater robustness than standard models when faced with causally misleading distractors in the en-
vironment?

4.1 LOCOMOTION AND ANTMAZE TASKS

In this section, we conduct a comprehensive empirical evaluation to answer our first research ques-
tion. To this end, we test UCF on a diverse suite of locomotion and navigation tasks from the D4RL
benchmark and compare its performance against leading value-based and Decision Transformer-
based methods.

Datasets We evaluate UCF on a suite of continuous control tasks from the D4RL benchmark (Fu
et al., 2020). Specifically, we consider tasks from two domains: locomotion and navigation.
For locomotion, we use six datasets from three widely used agents—HalfCheetah, Hopper, and
Walker2d—under three standard data regimes: medium (m), medium-replay (m-r), and medium-
expert (m-e). For navigation, we include two datasets from the Antmaze environment: umaze
(u) and umaze-diverse (u-d). This combined suite provides a comprehensive testbed for evaluat-
ing offline decision-making performance and generalization. Full details of the datasets are given
in Appendix E.1.

Baselines We compare CaDM against several state-of-the-art offline RL algorithms. These include
conservative offline RL methods: IQL (Kostrikov et al., 2021) and CQL (Kumar et al., 2020). We
also benchmark against DT-based methods: the standard DT (Chen et al., 2021), DC (Kim et al.,
2024), and LSDT(Wang et al., 2025a). Full details of the baselines are given in Appendix E.1.

Overall Results The performance of our method, UCF, alongside state-of-the-art baselines is pre-
sented in Table 1. All scores are expert-normalized returns as specified by the D4RL benchmark (Fu
et al., 2020). The results clearly demonstrate that UCF achieves state-of-the-art or highly competi-
tive performance across the full suite of MuJoCo locomotion and Antmaze navigation tasks. On the
MuJoCo locomotion tasks, UCF stands out as the top-performing method in 6 out of the 9 environ-
ments. It shows particularly dominant results in the Hopper and Walker2d domains and consistently
excels on the challenging medium-expert and medium-replay datasets. This indicates a strong ability
to leverage mixed-quality data, a common challenge in offline reinforcement learning. Furthermore,
UCF proves its versatility on the Antmaze tasks, which are characterized by sparse rewards and re-
quire long-horizon, goal-conditioned reasoning. In both the umaze and umaze-d environments, UCF
achieves highly competitive scores that are within 5% of the best-performing methods (IQL and
CQL, respectively). This strong performance in both dense-reward locomotion and sparse-reward
navigation highlights UCF’s effectiveness as a general-purpose algorithm. Overall, the empirical
results confirm that UCF is a robust and powerful method for offline decision-making, capable of
matching or exceeding the performance of leading value-based and transformer-based approaches
across a diverse set of challenges.

4.2 RECOMMENDATION TASKS

Datasets For the recommendation domain, we evaluate UCF on three large-scale, real-world
datasets: KuaiRand (Gao et al., 2022b), KuaiRec (Gao et al., 2022a), and VirtualTB (Shi et al.,
2019). Full details of the datasets are given in Appendix E.2.
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Table 1: Offline results on the MuJoCo and Antmaze datasets. We report the expert-normalized
returns, averaged across 5 random seeds for MuJoCo and 4 for Antmaze. The boldface numbers
denote the best score and any scores within 5% of the best for each dataset.

Method H-Cheetah Hopper Walker2d Antmaze
-m -m-r -m-e -m -m-r -m-e -m -m-r -m-e -umaze -umaze-d

IQL 47.4 44.2 86.7 66.3 94.7 91.5 78.3 73.9 109.6 87.5 62.2
CQL 44.0 37.5 91.6 58.5 95.0 105.4 72.5 77.2 108.8 74.0 84.0
DT 42.6 36.6 86.8 67.6 82.7 107.6 74.0 66.6 108.1 69.8 70.3
DC 43.0 41.3 93.0 92.6 94.2 110.4 79.2 76.6 109.6 82.2 78.5
LSDT 43.6 42.9 93.2 87.2 93.9 111.7 81.0 74.7 109.8 80.0 83.2
UCF 44.9 43.5 93.1 93.4 94.8 112.0 82.5 77.0 110.7 83.1 84.5

Baselines In this domain, we compare UCF against recent DT-based baselines tailored for recom-
mender systems: DT4Rec (Zhao et al., 2023), CDT4Rec (Wang et al., 2023), and EDT4Rec (Chen
et al., 2024). Full details of the baselines are given in Appendix E.2.

Overall Results The evaluation results on the three recommendation datasets are presented in
Table 2. The findings are unequivocal: UCF consistently outperforms all specialized, state-of-the-
art Decision Transformer baselines across every metric on all datasets. Specifically, UCF achieves
the highest Cumulative Reward (Rcum) and Average Reward (Ravg) on KuaiRand, KuaiRec, and
VirtualTB, often by a clear margin over the second-best methods. This strong performance provides
an affirmative answer to our second research question (RQ ii), demonstrating that UCF generalize
effectively beyond robotic control to the distinct domain of sequential recommendation. The ability
of our general-purpose model to surpass domain-specialized methods highlights the robustness and
broad applicability of our proposed architecture.

Table 2: Evaluation results on recommendation datasets. Metrics include Cumulative Reward
(Rcum) and Average Reward (Ravg). Bold indicates the best performance per metric, and * marks
the second-best.

Method KuaiRand KuaiRec VirtualTB
Rcum Ravg Rcum Ravg Rcum Ravg

DT4Rec 6.8172 ± 2.45 0.5686 ± 0.21 28.5418 ± 10.42 0.8798 ± 0.34 76.7871 ± 22.63 5.4420 ± 1.72
CDT4Rec 7.3271 ± 1.98 0.6508* ± 0.19 30.4888 ± 10.19 1.0061 ± 0.35 79.2101 ± 22.38 5.6490 ± 1.61
EDT4Rec 7.5817* ± 1.84 0.6497 ± 0.17 31.0726* ± 10.98 1.0397* ± 0.39 79.6651* ± 21.67 5.6741* ± 1.54
UCF 7.6221 ± 1.79 0.6554 ± 0.16 31.8721 ± 10.55 1.0582 ± 0.40 80.4241 ± 21.15 5.6957 ± 1.51

4.3 ABLATION STUDY

Contributions of Two Core Components To investigate the contributions of our two core com-
ponents, we evaluate two variants of our model: w/o Count, which removes counterfactual data
augmentation, and w/o Arch, which replaces our causal architecture with a standard DT backbone.
The results in Table 3 highlight their distinct yet complementary roles. On the dense-reward Mu-
JoCo tasks, the causal hybrid architecture is the dominant contributor. Removing it (w/o Arch)
causes a clear performance drop, especially on the more diverse medium-replay datasets for Hopper
and Walker2d. In contrast, removing data augmentation (w/o Count) leads to only small degrada-
tions, suggesting that the architecture can already extract strong policies when rewards are plentiful
and coverage is reasonable. On the sparse-reward AntMaze tasks, augmentation becomes more im-
portant: w/o Count consistently underperforms UCF, while w/o Arch suffers an even larger drop,
showing that both components are needed. These results confirm our hypothesis: counterfactual
augmentation enriches the dataset, while the causal hybrid architecture is essential for leveraging
this variability to produce robust long-horizon plans.
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Table 3: Ablation study of UCF components on MuJoCo and Antmaze tasks. We compare the full
model against variants without the Counterfactual Transition Generation (w/o Count) and without
the Causally-Structured Hybrid Architecture (w/o Arch). Bold numbers denote the best score and
any scores within 5% of the best for each dataset.

Method H-Cheetah Hopper Walker2d Antmaze
-m -m-r -m-e -m -m-r -m-e -m -m-r -m-e -umaze -umaze-d

UCF 44.9 43.5 93.1 93.4 94.8 112.0 82.5 77.0 110.7 83.1 84.5
w/o Count 43.8 42.7 93.0 92.8 94.3 111.2 81.5 76.8 110.0 81.5 82.5
w/o Arch 43.2 41.0 91.0 84.2 91.5 110.0 79.8 73.5 109.2 78.0 79.5

DT 42.6 36.6 86.8 67.6 82.7 107.6 74.0 66.6 108.1 69.8 70.3
DC 43.0 41.3 93.0 92.6 94.2 110.4 79.2 76.6 109.6 82.2 78.5
LSDT 43.6 42.9 93.2 87.2 93.9 111.7 81.0 74.7 109.8 80.0 83.2

Figure 2: Ablation on the causal supervision weight λ across MuJoCo locomotion tasks and
Antmaze. Each plot reports normalized returns (mean ± standard deviation over 5 seeds).

Effect of Causal Supervision Weight λ. We investigate the effect of the causal supervision weight
λ, which balances the action prediction loss and the mask supervision loss. Setting λ = 0 removes
causal supervision entirely, reducing UCF to a standard Transformer; λ = 1 enforces full adherence
to the causal mask. Figure 2 shows that moderate values of λ typically yield the best trade-off.
In simple environments such as Hopper, larger λ improves stability and performance. In more
complex domains such as HalfCheetah or Antmaze, too much supervision can constrain the model,
and intermediate λ values achieve the strongest results. This confirms that causal supervision is
beneficial, but its strength should adapt to task complexity.

4.4 ROBUSTNESS TO SPURIOUS CORRELATIONS

To test whether UCF mitigates causal confusion, we construct semi-synthetic datasets by injecting a
binary distractor feature into standard D4RL benchmarks (HalfCheetah-medium, Hopper-medium,
and Walker2d-medium). The distractor is correlated with reward in the training set but has no causal
effect on the environment. At test time, we intervene by fixing the distractor to 0.0, breaking the
correlation. Figure 3 reports normalized returns (mean ± standard deviation across 5 seeds) un-
der this intervention. DT suffers a severe collapse in performance, confirming that it overfit to
the spurious distractor. DC shows moderate robustness, but its reliance on correlation still leads
to a significant drop. In contrast, UCF maintains strong performance, with only a minor degra-
dation compared to training on the original dataset. These results provide direct evidence that
UCF’s design—combining counterfactual data augmentation and causally supervised attention—
successfully prevents the model from treating the distractor as causal. Full dataset construction and
evaluation details are in Appendix G.4.

5 RELATED WORK

5.1 TRANSFORMER ARCHITECTURES FOR REINFORCEMENT LEARNING

Recent work has reframed sequential decision making as a sequence modeling problem, where tra-
jectories of returns-to-go, states, and actions are treated as tokens processed by Transformer-based
architectures. DT (Chen et al., 2021) demonstrated that conditioning on return-to-go enables policy
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(a) HalfCheetah-medium (b) Hopper-medium (c) Walker2d-medium

Figure 3: Robustness to spurious distractors. Expert-normalized returns for DT, DC, and UCF when
trained on datasets with a spurious binary feature and evaluated under intervention.

learning without value functions or explicit dynamics models. Trajectory Transformer (Janner et al.,
2021) extended this perspective by discretizing trajectories and using beam search for planning. Be-
yond purely autoregressive modeling, masked prediction has been explored as an alternative training
paradigm. Uni[MASK] (Carroll et al., 2022) proposed a unified framework where diverse inference
tasks are cast as different masking patterns, while MaskDP (Liu et al., 2022) applied masked au-
toencoding to state–action trajectories, showing strong zero-shot and fine-tuning performance. At
the architectural level, several works have explored combining attention with convolution to better
align with the structure of decision-making problems. DC (Kim et al., 2024) replaced most atten-
tion blocks with lightweight convolutional mixers, showing that local filtering is often sufficient for
Markovian dynamics while retaining a final attention block for long-range reasoning. LSDT (Wang
et al., 2025a) proposed a parallel hybrid design where each block splits into a convolution branch for
local dependencies and an attention branch for global dependencies, with channel ratios controlling
their relative contributions. This sequence modeling paradigm has also been extended to recommen-
dation tasks. CDT4Rec (Wang et al., 2023) incorporated a causal reward estimator, EDT4Rec (Chen
et al., 2024) leveraged entropy regularization and reward relabeling for learning from suboptimal
data, and MaskRDT (Wang et al., 2025b) improved efficiency on long user histories through re-
tentive networks and adaptive masking. Our approach UCF, differs from prior architectures by its
explicit causal grounding. Unlike DC and LSDT, which combine convolution and attention with-
out causal guidance, UCF augments offline data with counterfactual trajectories that preserve causal
consistency and constrains attention to focus on true causal parents. This integration of causal aug-
mentation and causal priors yields policies that are more robust and generalizable.

5.2 CAUSAL REINFORCEMENT LEARNING

A complementary line of research introduces causality into RL to address spurious correlations
and improve generalization (Zeng et al., 2025). CDL (Wang et al., 2022) learns task-independent
state abstractions by uncovering the causal structure of environment dynamics. ACE (?) proposes
causality-aware entropy regularization that weights action dimensions by their causal influence on
rewards, improving exploration efficiency in continuous control. CSR (Yang et al., 2025) develops
causality-guided self-adaptive representations that detect distribution shifts, expand causal graphs
to accommodate new variables, and prune irrelevant factors, enabling more generalizable policy
transfer. A particularly active direction focuses on counterfactual reasoning. MOCODA (Pitis et al.,
2022) generates counterfactual transitions using a factored dynamics model for improved out-of-
distribution generalization. CAIAC (Urpı́ et al., 2024) targets robotic manipulation, augmenting
data by swapping action-independent factors between trajectories. ACAMDA (Sun et al., 2024b)
applies adversarial counterfactual augmentation to enforce causally consistent dynamics. More re-
cently, CIP (Cao et al., 2025) combines counterfactual data augmentation with causality-aware em-
powerment to improve sample efficiency across domains. Unlike prior counterfactual augmentation
methods, which either assume factored environments with independent entities (MOCODA, CA-
IAC) or rely on online interaction with the environment (ACAMDA, CIP), our method is explicitly
tailored for strictly offline RL where only a fixed dataset is available. Crucially, we do not assume a
factorized state space, making our approach applicable to standard continuous-control benchmarks
such as Mujoco. On the model side, we further introduce a causally structured hybrid architecture
with supervised attention, ensuring that the agent can fully benefit from counterfactual augmentation
by aligning its reasoning with true causal dependencies rather than spurious correlations.

9
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6 CONCLUSION

We presented the Unified Causal Transformer (UCF), a framework that strengthens offline reinforce-
ment learning through causal consistency at both the data and model levels. On the data side, UCF
introduces counterfactual augmentation by combining a causal reward model with a counterfactual
state generator, producing reward-preserving transitions that expand the training set without requir-
ing online interaction or factorized environments. On the model side, UCF employs a causally struc-
tured hybrid architecture that integrates convolutional modeling of local dynamics with supervised
attention for global reasoning, ensuring that predictions align with true causal parents. Experiments
on robotic control and recommendation tasks demonstrate that UCF achieves improved robustness,
generalization, and resistance to spurious correlations compared to existing baselines.

While UCF advances causal consistency in offline RL, several limitations remain. First, the quality
of counterfactual augmentation depends on the accuracy of the learned causal reward model; in-
accuracies in modeling complex reward mechanisms may reduce the validity of generated samples.
Second, although our causal supervision improves interpretability and robustness, it introduces addi-
tional hyperparameters (e.g., supervision strength, window size) that require careful tuning. Finally,
UCF has so far been evaluated on standard continuous-control and recommendation benchmarks; its
effectiveness in large-scale, high-dimensional environments with richer structure remains an open
question. Future work will explore integrating stronger causal discovery techniques into the aug-
mentation process, extending UCF to partially observable or multi-agent settings, and studying how
causal supervision can be dynamically adapted during training to further improve scalability and
generalization.
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A THE USAGE OF LLM

In preparing this manuscript, we employed a large language model (LLM) strictly as a writing
assistant. Its role was limited to grammar checking, stylistic polishing, and improving readability of
the text. All technical content, experimental design, and results were produced by the authors.

B BACKGROUND ON CAUSAL INFERENCE

Here, we introduce fundamental causal modeling concepts (Pearl, 2009; Peters et al., 2017) that
underpin our methodology and theoretical analysis.

Structural Causal Models Structural Causal Models (SCMs) formalize the data-generating pro-
cess by specifying how each variable is causally determined by its parents and exogenous noise.
An SCM is associated with a directed acyclic graph (DAG) that encodes causal relationships among
variables.

Definition B.1 (Structural Causal Model (Pearl, 2009)). A Structural Causal Model (SCM)M =
(G,S, PU) consists of:
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• A directed acyclic graph (DAG) G = (V, E), where V is a set of endogenous variables and
E is the set of directed edges representing direct causal relationships;

• A collection of structural assignments S = {Xi = fi(PAi, Ui)} for each Xi ∈ V, where
PAi ⊆ V \ {Xi} are the parent variables of Xi in G, and Ui ∈ U are exogenous noise
variables;

• A joint distribution PU over the exogenous variables U = {U1, . . . , Un}, typically as-
sumed to be mutually independent.

An SCM M induces a joint observational distribution over V according to the structural assign-
ments and exogenous distribution.
Definition B.2 (Intervention (Pearl, 2009)). An intervention in an SCM M = (G,S, PU) corre-
sponds to replacing the structural assignment for a variable Xj ∈ V with a new mechanism:

Xj = f̂j(P̂Aj , Ûj),

resulting in a modified model M̂. The new model M̂ induces a different distribution over the
variables V, referred to as the interventional distribution:

PM̂(V) = PM(V | do(Xj = f̂j(P̂Aj , Ûj))).

Definition B.3 (Causal Effect Identifiability (Pearl, 2009)). The causal effect of X on Y is iden-
tifiable from a graph G if the quantity P (y | do(x)) can be computed uniquely from any positive
probability of the observed variables. That is, if

PM1
(y | do(x)) = PM2

(y | do(x))
for every pair of models M1 and M2 such that PM1(ν) = PM2(ν) > 0 and G(M1) = G(M2) = G.
Theorem B.1 (Three Steps of Counterfactual Reasoning (Pearl, 2009)). Computing a counterfactual
requires a three-step process:

1. Abduction: Condition the distribution of the exogenous variables ur on the observed evi-
dence e, obtaining P (ur | e).

2. Action: Modify the SCM by performing a surgical intervention using the do()-operator,
forcing variables to take hypothetical values (e.g., setting the state to sc).

3. Prediction: Use the modified model together with P (ur | e) to compute the counterfactual
outcome.

C ASSUMPTIONS AND PROPOSITIONS

C.1 ASSUMPTIONS

A1 (Markov property) (Pearl, 2009). The environment is Markovian. The joint over V =
{st, at, rt, st+1} factorizes as p(st) p(at | st) p(rt | st, at) p(st+1 | st, at). Use: underlies the
SCM in Eq. (1), CRM training, and the counterfactual edit that changes only st.

A2 (Faithfulness) (Pearl, 2009). The observed distribution is faithful to the causal DAG G: condi-
tional independences coincide with d-separations (no cancellation). Use: justifies that the supervised
attention mask encodes true parent sets of at.

A3 (Causal minimality) (Pearl, 2009). The DAG has no redundant edges: for every edge X→Y ,
X ⊥̸⊥ Y | Pa(Y ) \ {X}. Use: prevents spurious parents in the mask and supports interpretability.

A4 (Temporal causality). No backward or instantaneous cycles; edges respect time order. Use:
supports abduction at time t and interventions on st while holding at and exogenous variables fixed.

C.2 PROPOSITION ON CAUSAL CONSISTENCY

We restate Proposition 1 in an assumption–guarantee form. The argument follows Pearl’s abduction–
action–prediction framework.
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Additional conditions.

1. Approximate reward model. The learned Causal Reward Model (CRM) approximates
the true reward mechanism with error at most δ, i.e.,∣∣f̂r(s, a, z)− fr(s, a, ur)∣∣ ≤ δ,
whenever z is produced by the CRM encoder from (s, a, r).

2. Generator training. The Counterfactual State Generator (CSG) is trained with the objec-
tive in Eq. equation 3 and proposes edits within an upper move bound ρhigh.

3. Acceptance test. A proposed counterfactual state sc is accepted only if it satisfies∣∣f̂r(sc, at, zt)− rt∣∣ ≤ εr and ∥(sc − st)/σs∥2 ≤ ρhigh.

Guarantee. Under Assumptions A1–A4 and the above conditions, every accepted counterfactual
transition (sc, at, rt) corresponds to an approximate sample from the interventional distribution

P (r | do(st←sc), at, ur),

with approximation error bounded by δ + εr.

Argument. The reward SCM is defined as r = fr(s, a, ur) with exogenous noise ur ∼ P (ur)
independent of (s, a).

Abduction. Given (st, at, rt), we infer a posterior over ur; in practice, the CRM encoder provides
zt as a proxy for the abduced ur.

Action. A counterfactual state sc = gψ(st, at, zt) is generated, corresponding to the intervention
do(st←sc) while keeping (at, ur) fixed.

Prediction. The CRM decoder evaluates f̂r(sc, at, zt). By the approximation property,
f̂r(sc, at, zt) ≈ fr(sc, at, ur) within δ.

Acceptance. If f̂r(sc, at, zt) is within εr of rt = fr(st, at, ur), then∣∣fr(sc, at, ur)− fr(st, at, ur)∣∣ ≤ δ + εr.

Thus the counterfactual reward matches the factual reward up to tolerance, while the move constraint
ensures sc remains near the support of the data. Therefore, (sc, at, rt) is an approximate sample from
the interventional distribution under the factual action and abduced exogenous variables.

D EXTENDED RELATED WORK

D.1 CAUSALITY IN ATTENTION MECHANISMS

Recent work has explored integrating causality into attention to enhance interpretability and gener-
alization. Some studies interpret attention through a causal lens, such as Rohekar et al. (2023), who
treat self-attention as estimating an SCM via constraint-based methods. Others embed attention into
causal frameworks, like CAL (Sui et al., 2022) and CAL+ (Sui et al., 2024), which use attention
to identify causal features in GNNs. Intervention-based designs have also emerged, e.g., Ge et al.
(2023) introduce Social Cross Attention with learnable variables representing confounder strata to
deconfound human trajectory prediction. In contrast, our approach directly supervises attention
heads using a predefined causal graph, aligning attention patterns with known structural dependen-
cies in sequential decision-making tasks.

E DATASETS AND BASELINES

E.1 ROBOTIC CONTROL TASK

Datasets For robotic control experiments, we use datasets from the D4RL benchmark (Fu et al.,
2020), which are widely used in offline reinforcement learning research. These datasets are gen-
erated using the MuJoCo physics simulator and consist of pre-collected trajectories from various
environments and policy qualities. Specifically, we evaluate on:
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• HalfCheetah: A 2D bipedal cheetah-like robot aiming to run.
• Hopper: A 2D one-legged hopper robot aiming to hop forward.
• Walker2d: A 2D bipedal robot aiming to walk.

For each of these environments, we use three dataset types reflecting different data quality and
collection strategies:

• -medium (m): Trajectories collected by a policy trained to a medium level of perfor-
mance and then rolled out.

• -medium-replay (m-r): The full replay buffer contents of an agent trained to a
medium level of performance.

• -medium-expert (m-e): A 50/50 mix of trajectories from a medium policy and an
expert policy.

Baselines We compare CaDM against several state-of-the-art and representative offline RL algo-
rithms in the robotic control domain.

• Offline RL Methods:
– IQL (Implicit Q-Learning) (Kostrikov et al., 2021): An of-

fline Q-learning method that learns Q-functions by implicitly defining them via ex-
pectile regression, avoiding explicit policy constraints or out-of-distribution action
queries.

– CQL (Conservative Q-Learning) (Kumar et al., 2020): A
widely used offline RL algorithm that learns a conservative Q-function by adding a
regularization term to the standard Bellman error. This term penalizes high Q-values
for actions outside the dataset distribution and encourages low Q-values for them,
mitigating overestimation issues.

• Decision Transformer (DT) and Variants:
– DT (Decision Transformer) (Chen et al., 2021): The standard

Decision Transformer that models RL as a sequence modeling problem, predicting
actions autoregressively based on desired returns-to-go, past states, and actions.

– DC (Decision ConvFormer) (Kim et al., 2024): A DT variant that
integrates convolutional layers, potentially to better capture local features or spatial
relationships in states, which can be beneficial in certain control tasks.

– LSDT (Long-Short Decision Transformer) (Wang et al.,
2025a): A Decision Transformer variant that augments the model with a long–short
temporal module, enabling it to capture both short-term transitions and long-range
dependencies more effectively.

E.2 RECOMMENDATION TASK

Datasets For evaluating CaDM on recommendation tasks, we selected the following publicly
available datasets, known for their scale and real-world relevance:

• KuaiRand: An unbiased sequential recommendation dataset collected from the recom-
mendation logs of the Kuaishou video-sharing mobile app (Gao et al., 2022b). It is no-
table for including millions of intervened interactions where items were randomly exposed
within standard recommendation feeds, which helps in studying and mitigating exposure
bias. It provides rich side information, including user IDs, interaction timestamps, and
features for users and items, across various collection policies.

• KuaiRec: Another dataset from Kuaishou, KuaiRec is distinguished by its ”fully-
observed” user-item interaction matrix for a subset of users and items, meaning nearly
all preferences are known (Gao et al., 2022a). This dense interaction data (e.g., 1,411 users
and 3,327 items with 99.6% density in its ”small matrix”) is valuable for evaluating rec-
ommendation models without suffering severely from missing data issues, and for research
in unbiased recommendation, interactive RL, and off-policy evaluation. It also contains a
larger, sparser ”big matrix” and side information like item categories and a social network.
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• VirtualTB (Virtual Taobao): An online simulation platform that mimics a real-
world e-commerce environment (Taobao) for developing and testing recommender systems
(Shi et al., 2019). It is trained on hundreds of millions of real user data points and generates
virtual customers with dynamic and static features. VirtualTB allows RL agents to interact
with the simulated environment, receive feedback (e.g., clicks), and be evaluated on metrics
like Click-Through Rate (CTR).

Baselines For the recommendation tasks, we compare CaDM with the following state-of-the-art
Decision Transformer-based models designed for recommender systems:

• CDT4Rec (Causal Decision Transformer for Recommender
Systems) (Wang et al., 2023): This model adapts the Decision Trans-
former framework for recommendation by incorporating a causal mechanism. It aims to
address the challenge of reward function design by estimating rewards based on the causal
relationships inferred from user behavior within the transformer architecture.

• DT4Rec (Decision Transformer for Recommender Systems) (Zhao
et al., 2023): This approach applies the Decision Transformer to focus on user
retention in recommender systems . It often employs specific reward prompting strategies
tailored for recommendation scenarios to guide the DT model.

• EDT4Rec (Max-Entropy enhanced Decision Transformer with
Reward Relabeling for Offline RLRS) (Chen et al., 2024): This
model enhances Decision Transformer-based methods for recommendation by tackling
limitations such as ”stitching” suboptimal trajectories and insufficient online exploration.
It integrates max-entropy regularization to encourage exploration and a reward relabeling
technique (often based on learned Q-values from methods like CQL) to improve learning
from suboptimal data.

F ALGORITHMS FOR UCF

Algorithm 1 Unified Causal Transformer (UCF): End-to-end training on augmented data

Require: Offline dataset D; CRM encoder qϕ and decoder pθ; CSG gψ; UCF policy model πω (hy-
brid conv + final attention); mask weight λ; augmentation budget K per trajectory; thresholds
(εr, ρhigh); state normalization σs; optimizers Optϕ,Optθ,Optψ,Optω

1: Train CRM (qϕ, pθ) on D by maximizing the ELBO (Alg. 2)
2: Train CSG gψ with banded move and reward-preservation (Alg. 3)
3: Augment D using (qϕ, pθ, gψ) and the acceptance gate (Alg. 5, 4); get Daug
4: Train UCF policy πω on Daug with action loss + mask loss (Alg. 6)
5: return trained policy πω
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Algorithm 2 Training the Causal Reward Model (CRM) as a CVAE

Require: Offline dataset D = {(st, at, rt)}; prior p(z) (e.g., N (0, I)); encoder qϕ(z | s, a, r);
decoder pθ(r | s, a, z); ELBO weight β; optimizer Opt

1: Initialize parameters ϕ, θ
2: while not converged do
3: Sample minibatch {(st, at, rt)}Bt=1 ∼ D
4: Encode: (µϕ,Σϕ)← qϕ(z | st, at, rt)
5: Sample latent zt ∼ N (µϕ,Σϕ) ▷ via reparameterization
6: Decode: r̂t ∼ pθ(r | st, at, zt)
7: ELBO objective:

LCVAE = 1
B

B∑
t=1

(
log pθ(rt | st, at, zt)− βKL

(
qϕ(z | st, at, rt) ∥ p(z)

))
8: Update ϕ, θ ← ϕ, θ + η∇ϕ,θLCVAE with Opt
9: end while

10: return trained CRM: encoder qϕ, decoder pθ (defining f̂r(s, a, z))

Algorithm 3 Training the Counterfactual State Generator (CSG)

Require: Trained CRM (qϕ, pθ); generator gψ; state normalization σs; band radii (ρlow, ρhigh);
weights (λr, λband); optimizer Opt

1: Initialize parameters ψ
2: while not converged do
3: Sample minibatch {(st, at, rt)}Bt=1
4: Abduction: zt ← µϕ(st, at, rt) ▷ posterior mean from CRM encoder
5: Generate counterfactual proposal: sc ← gψ(st, at, zt)
6: Normalized move: ∆t ← (sc − st)/σs
7: Reward consistency:

Lr =
1
B

∑
t

(
f̂r(sc, at, zt)− rt

)2
8: Band penalty:

Lband = 1
B

∑
t

(
[ρlow − ∥∆t∥2]2+ + [∥∆t∥2 − ρhigh]2+

)
9: Total loss: LCSG = λrLr + λbandLband

10: Update ψ ← ψ − η∇ψLCSG with Opt
11: end while
12: return trained generator gψ

Algorithm 4 Acceptance gate for a counterfactual proposal

Require: (st, at, rt); posterior mean zt = µϕ(st, at, rt); proposal sc = gψ(st, at, zt); thresholds
(εr, ρhigh); normalization σs

1: Reward proximity: ∆r ←
∣∣f̂r(sc, at, zt)− rt∣∣

2: Move size: m←
∥∥∥ sc−stσs

∥∥∥
2

3: if ∆r ≤ εr and m ≤ ρhigh then
4: return ACCEPT
5: else
6: return REJECT
7: end if
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Algorithm 5 Offline counterfactual augmentation

Require: Dataset D = {τ} with trajectories τ = (s0, a0, r0, . . . ); trained CRM (qϕ, pθ); trained
CSG gψ; per-trajectory budget K (proposals per trajectory); acceptance thresholds (εr, ρhigh);
normalization σs

1: Daug ← D ▷ start from the original dataset
2: for all trajectory τ ∈ D do
3: Initialize counter c← 0
4: for all time indices t in τ in random order do
5: if c ≥ K then break
6: Compute zt ← µϕ(st, at, rt)
7: Propose sc ← gψ(st, at, zt)
8: if ACCEPT((st, at, rt), zt, sc) then
9: Replace (st) by (sc) in a copy of τ to form τ̃

10: Append modified trajectory τ̃ to Daug

11: c← c+ 1
12: end if
13: end for
14: end for
15: return Daug

Algorithm 6 Train UCF policy on augmented dataset

Require: Daug; hybrid model πω with modality-specific conv blocks and a final multi-head attention
layer; mask weight λ; optimizer Optω

1: while not converged do
2: Sample trajectory windows (RTG, states, actions) from Daug
3: Encode with modality-specific 1D convolutional blocks (RTG/state/action)
4: Apply final multi-head self-attention to the token sequence
5: Action loss Laction: negative log-likelihood (discrete) or MSE (continuous) for at
6: Mask loss Lmask: cross-entropy to target qi,j ∝ 1[j ∈ Si] where Si are causal parents (state

and RTG at time t)
7: Total loss: Ltotal ← Laction + λLmask
8: Descend ∇ωLtotal with Optω
9: end while

10: return πω

G IMPLEMENTATION DETAILS

We implement UCF on top of the official Decision Transformer codebase1, incorporating (i) a
Causal Reward Model (CRM) trained as a conditional VAE, (ii) a Counterfactual State Genera-
tor (CSG) trained to edit states under causal constraints, and (iii) a hybrid causal policy architecture
that combines modality-specific convolutions for local dynamics with a final self-attention layer
trained with a causal mask loss. Unless otherwise stated, all experiments follow the D4RL protocol
with expert-normalized returns.

G.1 CAUSAL REWARD MODEL (CRM)

The CRM is parameterized as a conditional variational autoencoder. The encoder qϕ(z | s, a, r)
and decoder pθ(r | s, a, z) are implemented as two-layer MLPs with hidden size 256 and ReLU
activations. The latent variable dimension is 32. We optimize the ELBO with β = 0.1, which
balances reward reconstruction accuracy and latent regularization. Larger values (e.g., β = 1.0) led
to worse reward prediction in preliminary runs. We use Adam with a learning rate of 3 × 10−4,
weight decay 10−4, and batch size 256. Training runs for 106 steps with early stopping.

1https://github.com/kzl/decision-transformer

19

https://github.com/kzl/decision-transformer


1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079

Under review as a conference paper at ICLR 2026

Table 4: Hyperparameters for the Causal Reward Model (CRM).

Hyperparameter Value

Latent dimension 16 (MuJoCo) / 32 (Antmaze)
Network 2-layer MLP (ReLU, 256)
Optimizer Adam
Learning rate 3× 10−4

Weight decay 1× 10−4

Batch size 256
KL weight β 0.1
Training epochs 40

G.2 COUNTERFACTUAL STATE GENERATOR (CSG)

The generator gψ(s, a, z) is a three-layer MLP (hidden size 256, ReLU). States are normalized by
dataset statistics and the move band acts in normalized space. The loss combines reward consistency
under fixed (a, z) and a band penalty that encourages ∥∆t∥2 = ∥(sc−st)/σs∥2 to lie in [ρlow, ρhigh].
We train with Adam (learning rate 5 × 10−4, batch size 256) for 40 epochs. At acceptance, a
counterfactual is kept if |r̂(sc, a, z)−r| ≤ εr (adaptive: 0.1×reward std if unspecified) and ∥∆t∥2 ≤
ρhigh.

Table 5: Hyperparameters for the Counterfactual State Generator (CSG).

Hyperparameter Value

Network 3-layer MLP (ReLU, 256)
Optimizer Adam
Learning rate 5× 10−4

Batch size 256
Training epochs 40
Move-band radii (ρlow, ρhigh) = (0.2, 0.5)
Band weight λband 0.1
Reward tolerance εr adaptive (0.1×std of rewards)
Acceptance gate |r̂(sc, a, z)− r| ≤ εr, ∥∆t∥2 ≤ ρhigh
Training subset Top-70% reward transitions

G.3 HYBRID CAUSAL POLICY ARCHITECTURE

Tokenization and embeddings Trajectories are tokenized as repeating triplets (Ĝt, st, at) with
context length K=15. We use learned positional embeddings and layer normalization. The model
dimension is dmodel=128 by default and 256 for Hopper-medium and Hopper-medium-replay.

Local processing We build three parallel streams (RTG, state, action). Each stream applies depth-
wise 1D convolutions followed by pointwise projections with residual connections (kernel size 3,
stride 1). Outputs are concatenated along the channel axis and projected back to dmodel.

Global reasoning A single multi-head self-attention block operates on the fused sequence. We
supervise the final attention block, with all heads constrained to place probability mass only on the
direct parents of at, namely st and Ĝt, and optionally a short window of recent states. Let A be the
attention matrix and qi,· the target distribution over valid parents Si. The mask loss is

Lmask =
1

L

L∑
i=1

∑
j∈Si

− qi,j log(Ai,j + ϵ), ϵ=10−8.

The total loss is
Ltotal = Laction + λmaskLmask.
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Table 6: Hybrid causal architecture: convolutional stream details.

Component Setting Notes

Streams RTG / State / Action Parallel, modality-specific
Conv blocks per stream 2 Depthwise 3×1 + pointwise 1×1
Hidden channels 128 (default) 256 for Hopper-m / m-r
Activation / dropout GELU / 0.1 Residual + LayerNorm
Fusion Concat + Linear To dmodel

Table 7: Hybrid causal architecture: attention and supervision.

Hyperparameter Value Notes

dmodel 128 (default) / 256 (Hopper-m / m-r) Embedding size
Transformer layers 1 (final only) On top of conv fusion
Attention heads 2 Matches implementation
Supervised heads All heads Last block only
Supervise window w 0–4 Default w=2 (recent states)
Decay for st−k 0.6k Geometric weights
Parent tokens st, Ĝt (+ st−k) Small weight on at−1 optional
ϵ in loss 10−8 Numerical stability
Optimizer / LR Adam / 1×10−4 Linear warmup

Policy training protocol. We use Adam, batch size 64, weight decay 10−4, dropout 0.1, GELU
activations, and a linear warmup schedule. Evaluation follows D4RL. Model selection uses valida-
tion return.

Embedding dimension. We use an embedding dimension of 256 in hopper-medium and
hopper-medium-replay, and 128 in all other environments. This matches prior findings that
higher-dimensional embeddings improve stability in Hopper tasks but provide limited benefit else-
where.

Table 8: Common hyperparameters of UCF policy (based on DC).

Hyperparameter Value

Number of layers 1
Hidden size 128 (default) / 256 (Hopper-medium / replay)
Context length K (MuJoCo / AntMaze) 20 / 50
Dropout 0.1
Activation GELU
Learning rate 10−4 (MuJoCo, AntMaze)
Weight decay 10−4

Batch size 64
Optimizer Adam
Learning rate schedule Linear warmup

G.4 DETAILS FOR SPURIOUS CORRELATION EXPERIMENT

This appendix describes how we construct the spurious datasets and the exact evaluation protocol
used in the robustness experiment.

Dataset construction. We create spurious variants of HalfCheetah-medium-v2 and
Hopper-medium-v2 (D4RL) as follows: (1) Load the original offline trajectories. (2) Com-
pute the global median of per-step rewards. (3) Define a binary distractor feature dt := I{rt >
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(a) HalfCheetah-medium (b) Hopper-medium (c) Walker2d-medium

Figure 4: Robustness to spurious distractors. Expert-normalized returns for DT, DC, and UCF when
trained on datasets with deterministic spurious and stochastic spurious.

median(r)}. (4) Append dt to each state vector (state dimension increases by one). (5) Save the
modified dataset. This makes dt highly predictive of reward in the training data while having no
causal effect on the environment.

Training protocol. DT and DC are trained directly on the modified datasets (with dt appended to
states). For UCF, we first apply counterfactual augmentation to the same spurious dataset: the Causal
Reward Model (CRM) and Counterfactual State Generator (CSG) generate candidate counterfactual
states that are then filtered by the acceptance gates (reward consistency and move-band checks). The
distractor dt is treated as part of the state input but is not used in abduction beyond its presence in st
and does not enter the reward-preservation objective directly. Accepted counterfactuals are merged
with the spurious dataset to form the augmented training set.

Evaluation protocol. At test time, we break the learned correlation by a direct intervention in the
evaluation loop. Policies are evaluated in the original, unmodified environments. For each observed
state, we append a fixed distractor value of 0.0 before passing it to the policy, matching the training
input dimension but removing any predictive content from the distractor.2

Robustness to Stochastic Distractors In our main robustness experiment (Section 4.4), we uti-
lized a deterministic distractor dt = I[rt > median(r)], which creates a perfect correlation
(R = 1.0) between the feature and the reward class. To further validate our method against the
reviewer’s question regarding noisy sensors, we evaluated all models on a stochastic distractor sce-
nario.

We define a noisy distractor with a flip probability p = 0.15:

dt = I[rt > median(r)]⊕ Bernoulli(0.15) (6)

This distractor preserves the reward-aligned bit with probability 0.85 and randomly flips it with
probability 0.15, reducing its reliability while keeping a noticeable correlation with reward. We
trained DT, DC, and UCF on this stochastic dataset and evaluated them under the same intervention
protocol (fixing dt = 0 at test time).

Figure 4 shows the expert-normalized returns for DT, DC, and UCF under three settings: no distrac-
tor, the deterministic distractor, and the stochastic distractor. Adding noise to the spurious feature
weakens its predictive value, and the degradation in DT and DC is correspondingly smaller than
in the deterministic case. This occurs because the stochastic distractor is a “noisier” predictor than
the deterministic one; consequently, the models rely on it slightly less during training, leading to
a smaller collapse when the feature is removed. However, their performance remains significantly
degraded compared to the standard setting, confirming that they still suffer from causal confusion.
In contrast, UCF demonstrates remarkable stability, achieving returns comparable to the clean base-
line. These empirical results confirm that UCF’s robustness benefits are not limited to deterministic
artifacts but extend to stochastic correlations.

2We use the same feature normalization as in training; the added distractor coordinate is standardized with
the training statistics and set to the normalized value corresponding to dt=0.
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H DETAILS ON THE PROPOSED METHOD

Counterfactual Construction. Counterfactual Construction follows the Pearl’s three-step causal
procedure: abduction, action, and prediction (Pearl et al., 2000; Pearl, 2009).

1. Abduction: Infer the latent disturbance zt ∼ qϕ(z | st, at, rt), which captures the unob-
served factors that, together with (st, at), produced the factual reward.

2. Action (Intervention): Define the counterfactual intervention by holding the action at fixed.
In our reward SCM, at is a direct causal parent of rt. To ensure the counterfactual is valid
with respect to the reward mechanism, we hold the action parent fixed and solve for a state
edit.

3. Prediction: Compute the counterfactual state sc = CSG(st, at, zt). This step generates the
value of the state variable in the counterfactual world, ensuring it remains on-manifold and
preserves the reward under the fixed action and abduced context.

In this procedure, st provides the factual state as the basis for editing (prediction step), at ensures the
counterfactual remains consistent with the reward mechanism (intervention step), and zt ensures the
generator respects the unobserved disturbance inferred from evidence (abduction step). Together,
these allow UCF to follow the full abduction–action–prediction pipeline and generate valid counter-
factual states.

On the move-band constraint. The move band [ρlow, ρhigh] in Equation (3) serves two purposes
beyond reward preservation: (i) avoiding trivial augmentations — without a lower bound, the gener-
ator can collapse to near-identity edits that add little diversity; and (ii) preventing off-manifold edits
— without an upper bound, large moves can drift outside dataset support and destabilize policy
learning. We normalize state coordinates and apply the constraint in normalized space. Empirically,
(ρlow, ρhigh) = (0.2, 0.5) yields non-trivial yet plausible edits.

Acceptance gates at generation time. After training, we generate counterfactuals and accept sc
only if ∣∣f̂r(sc, at, zt)− rt∣∣ ≤ εr and

∥∥∥∥sc − stσs

∥∥∥∥
2

≤ ρhigh.

The tolerance εr is set adaptively to 0.1× std(r) if not specified; only accepted sc are written back.

Data augmentation procedure For each factual trajectory τ = {(st, at, rt)}T−1
t=0 , we create a

small number of augmented copies. In each copy, we scan time steps that pass a reward quantile
filter and propose sc = gψ(st, at, µϕ(st, at, rt)). If the candidate passes the two acceptance gates
above, we replace only the observation token st with the counterfactual sc. The next observation
st+1 is kept factual; we do not treat it as the successor of sc. The final dataset on disk is the union
of all original trajectories and their edited copies; no in-batch replacement is performed later.

I ABLATION STUDIES ON COUNTERFACTUAL GENERATION

We conduct ablations to evaluate the design choices in the counterfactual generation pipeline. Exper-
iments are performed on hopper-medium-v2 and halfcheetah-medium-v2, with results
reported as expert-normalized return (mean ± std over 5 seeds).

I.1 REWARD CONSISTENCY GATE

The counterfactual generator accepts a proposal only if∣∣f̂r(sc, at, zt)− rt∣∣ ≤ εr,
which ensures counterfactuals remain consistent with the factual reward. Without this gate, coun-
terfactuals may provide contradictory training signals. In implementation, εr is automatically set to
0.1× std(r), scaling the tolerance relative to reward variability in the dataset.
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Table 9: Ablation on reward consistency gate. Expert-normalized returns (mean± std over 5 seeds).

Method Hopper-medium HalfCheetah-medium

UCF (full) 93.4 ± 1.5 44.9 ± 0.7
w/o reward gate 74.7 ± 3.3 42.1 ± 1.1

We find that removing the gate significantly degrades Hopper performance, with a smaller but con-
sistent drop on HalfCheetah. This confirms that label-preservation under the Causal Reward Model
is critical for stable counterfactual training.

I.2 BAND CONSTRAINT

The move band constrains the normalized edit magnitude ∥∆t∥2 = ∥(sc − st)/σs∥2 to lie within
[ρlow, ρhigh]. This discourages both trivial near-copies (∥∆t∥2 < ρlow) and implausible off-manifold
shifts (∥∆t∥2 > ρhigh). We default to (ρlow, ρhigh) = (0.2, 0.5) and weight the penalty with λband =
0.1.

Table 10 shows that this constraint is critical for performance. Removing the band constraint entirely
(λband = 0) causes a significant performance collapse on both environments. Relaxing only the lower
bound (ρlow = 0), which allows for trivial copies, also degrades performance, confirming the value
of encouraging meaningful state edits.

Table 10: Ablation on the band constraint. Expert-normalized returns (mean ± std over 5 seeds).

Method Hopper-medium HalfCheetah-medium

UCF (full) 93.4 ± 1.5 44.9 ± 0.7
w/o band constraint (λband = 0) 68.2 ± 4.1 41.9 ± 1.8
w/o lower band (ρlow = 0) 85.9 ± 2.4 43.7 ± 0.9

The diagnostics in Figure 5 and Figure 6 explain these choices.

Move histograms. The empirical ∥∆∥2 distributions are unimodal, with modes around 0.33–0.37.
This suggests that the generator naturally prefers moderate edits rather than extremely small or large
ones. Our default band of (0.2, 0.5) brackets this region, retaining the majority of plausible moves
while excluding both trivial near-copies (< 0.2) and overly aggressive shifts (> 0.5). This bal-
ance prevents the generator from collapsing to identity mappings while also discouraging unrealistic
counterfactuals.

Acceptance heatmaps. We further sweep (ρlow, ρhigh) and report acceptance rates. The heatmaps
show that our chosen range (0.2, 0.5) maintains high acceptance (around 90% 95% on Hopper-
medium and around 70% 75% for HalfCheetah-medium) while keeping edits within a safe move
region. Tightening the lower bound (e.g., ρlow = 0.3) sharply decreases acceptance, discarding
many otherwise valid counterfactuals. Conversely, relaxing the upper bound (e.g., ρhigh > 0.6)
increases acceptance but allows off-manifold edits(because the ρhigh term is used in Acceptance
Gate).

PCA overlays. To assess the geometric plausibility of generated states, we visualize original and
counterfactual states in the top two PCA components. Counterfactuals (red) largely overlap with
the support of the original dataset (blue), indicating that edits remain on-manifold under our chosen
range (0.2, 0.5). The necessity of the band constraint and the reward consistency gate is paramount
to achieving this result; ablation studies confirm that relaxing these constraints leads to off-manifold
drift and subsequent degradation in policy performance. This visual confirmation of on-manifold
generation validates the safety mechanism of the counterfactual pipeline.
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(a) Move histogram. (b) Acceptance vs. band. (c) PCA overlay.

Figure 5: Hopper-medium diagnostics. The default band (0.2, 0.5) achieves high acceptance while
counterfactuals stay on-manifold.

(a) Move histogram. (b) Acceptance vs. band. (c) PCA overlay.

Figure 6: HalfCheetah-medium diagnostics. The default band (0.2, 0.5) balances coverage and
precision; counterfactuals remain aligned with the original manifold.

J SHORT-CONTEXT DECISION TRANSFORMER DOES NOT ADDRESS
CAUSAL CONFUSION

Several recent works have tested whether reducing the Decision Transformer (DT) context length
improves stability. This idea was evaluated directly by the Decision ConvFormer (Kim et al., 2024).
In their Appendix G.3 (Table 19), they report that DT performance decreases as the context window
is shortened. These findings are consistent with our robustness results in Figure 3 and Figure 4. Our
experiments show that the standard DT fails because it overfits to spurious correlations, a problem
of causal confusion that is not resolved by simply reducing the context length.
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