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Abstract
As large language models (LLMs) increasingly power web appli-
cations, including social networks, the challenge of moderating
hate speech has become a critical concern for the Web. These LLM-
powered applications, while offering near-human interaction ca-
pabilities, are vulnerable to harmful or biased content due to im-
perfect training data scraped from the Web. Current hate speech
detection methods often struggle with limited annotated data, es-
pecially for real-time moderation on these platforms. This paper
introduces Sentiment-Aided Hate Speech Detection (SAHSD), a
novel approach designed to enhance hate speech detection specifi-
cally in LLM-powered web applications. By treating hate speech
detection as a few-shot learning task, SAHSD utilizes sentiment
analysis to refine pre-trained language models (LM) for improved
accuracy in recognizing harmful content. SAHSD first employs
publicly available sentiment datasets to train a sentiment analysis
model, which is then fine-tuned by merging sentiment prompts
with hate speech prompts, enabling efficient and accurate detection
even with limited training samples. The effectiveness of SAHSD is
demonstrated through experiments on widely used web-sourced
datasets like SBIC and HateXplain. SAHSD achieves an exceptional
F1-score of 0.99 with only 64 training samples and outperforms
advanced techniques such as ToKen, MRP, and HARE, with signifi-
cant improvements of 33% on SBIC and 95% on HateXplain. SAHSD
surpasses GPT-4 in generalization performance across multiple
datasets, showing an 8% improvement when trained on equal-sized
samples. These results underscore SAHSD’s potential to enhance
content moderation in LLM-driven web platforms, contributing to
a safer, more inclusive and accountable Web ecosystem.

CCS Concepts
• Security and privacy→ Social aspects of security and pri-
vacy.
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1 Introduction
With the burgeoning advancement of LLMs (LLMs) like OpenAI’s
GPT series and others, the potential for these models to inadver-
tently generate or fail to identify hate speech in both inputs and out-
puts has become a grave concern. The propagation of hate speech
through LLM-based web applications (i.e., ChatGPT) can magnify
discrimination and prejudice against target groups, leading to sig-
nificant psychological harm [29, 33]. Ferrara et al. [11] revealed
that LLMs can sometimes perpetuate and amplify harmful biases in
their training data. Similarly, Zhao et al. [33] reported that LLMs, if
inappropriately moderated, could produce outputs that reinforce
negative stereotypes. Given the pervasive use of LLMs in appli-
cations ranging from chatbots to content generation, robust hate

speech detection within these systems is critical and plays an indis-
pensable role in natural language processing (NLP).

Motivation. The motivation behind this research stems from the
critical and urgent need to address the proliferation of hate speech
within proliferating LLM-based web applications and its potential
negative impacts. However, existing research still faces significant
performance bottlenecks, especially in a few-shot context.

Earlier studies on hate speech detection focused on rule-based
methods [17]. With the rapid advancement of deep learning, neu-
ral networks [13] and word embedding methods [10] have been
increasingly employed. The rise of pre-trained LMs, exemplified
by models like Bidirectional Encoder Representations from Trans-
formers (BERT) [9], has become foundational in hate speech detec-
tion subsequent studies. Aluru et al. [3] demonstrated that BERT-
based models outperform recurrent neural network-based models,
while Kim et al. [16] introduced a masked rationale prediction pre-
finetuning method to enhance detection performance. Caselli et
al. [5] re-trained BERT on the Reddit Abusive Language English
(RAL-E) dataset to create HateBERT for detecting abusive language
in social media. ToKen [2] introduced a method that relies on task
decomposition and knowledge infusion in a few-shot context to
enhance hate speech detection, but its performance is not partic-
ularly impressive. The urgent necessity for effective hate speech
detection within LLM-based web applications, coupled with the
inadequacies of current methodologies, provides the impetus for
our research endeavors.

Challenge. The primary challenge lies in effectively detecting hate
speech within LLMs, particularly in scenarios with limited anno-
tated datasets. Acquiring comprehensive, real-world hate speech
datasets for training hate speech detection models is notoriously
challenging due to the sensitive nature of hate speech and ethical
considerations. AlKhamissi et al. [2] proposed the Token method
and tried to address this challenge by breaking a detection task into
conditional generation subtasks and incorporating common sense
to handle limited sample availability. Mehdad et al. [22] utilized
n-grams, character-level, and text-level sentiment features and em-
ployed support vector machines (SVMs), which require relatively
fewer labeled samples for hate speech detection. Zhou et al. [34] in-
troduced a hate speech detection framework centered on sentiment
knowledge sharing. While these methods mitigate the challenge
of limited annotated datasets to some extent, they fail to identify
hate speech effectively and overlook the semantic comprehension
afforded by pre-trained LMs.

Contribution of this study. In this paper, we propose Sentiment-
Aided Hate Speech Detection (SAHSD), a novel and effective ap-
proach to hate speech detection in a few-shot context for LLM-based
web applications. SAHSD takes advantage of the typical display of
negative sentiments in hate speech. It integrates sentiment analysis
into prompt-tuning, thereby fine-tuning a pre-trained LM to more
effectively identify potential hate speech. Moreover, SAHSD creates
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an intermediate task that injects sentiment knowledge into prompts,
guiding the pre-trained LM to prioritize sentiment analysis. As a
result, SAHSD can significantly improve hate speech detection in
scenarios with limited data samples.

The key contributions of this paper are summarized as follows.
• We propose SAHSD, a novel framework that effectively in-

tegrates sentiment analysis into prompts for hate speech de-
tection in LLM-based web applications. This integration of
sentiment knowledge effectively captures the subtle seman-
tics of hate speech within sentences of natural language,
and improves the detection rate of hate speech.

• A two-stageworkflow is designed to transform a pre-trained
light weight LM into a hate speech detector: It first con-
structs sentiment analysis as an intermediate task during
pre-fine-tuning, followed by a dedicated fine-tuning phase
focused on hate speech detection.

• Comprehensive experiments substantiate the efficacy of
SAHSD. The performance of SAHSD with larger sample
sizes is particularly remarkable, nearly perfect beyond 64
samples. On the HateXplain dataset, SAHSD exhibits an
average detection rate of 95%, outperforming the closest
competitor across all sample settings tested. This superi-
ority extends consistently to out-of-distribution datasets
and significantly outperforms many other SOTA solutions,
including GPT-4.

The proposed SAHSD framework addresses a critical need for ro-
bust and scalable hate speech detection, which directly impacts con-
tent moderation, online harassment prevention, and the mitigation
of harmful content propagation—key concerns within the security
and privacy community. Hate speech detection is inherently chal-
lenging due to its subjective nature and potential annotator biases.
Our approach goes beyond simply aligning with possibly biased la-
bels. It offers semantic understanding that is independent of specific
annotator perspectives. By focusing on the underlying sentiment
patterns associated with hate speech, our approach introduces a
more objective criterion for detection.

Moreover, the use of a few-shot learning framework allows
SAHSD to generalize across different datasets and contexts, mak-
ing it less reliant on the peculiarities or biases of any individual
dataset. The model learns from broader sentiment cues and linguis-
tic features, enabling it to perform robustly even when faced with
variations in labeling criteria. Our experiments show that SAHSD
outperforms existing methods not just by conforming to dataset la-
bels, but by leveraging sentiment analysis to capture more intrinsic
and contextually appropriate elements of hate speech.

2 Sentiment-Aided Hate Speech Detection
In this section, we first formulate the target problem and then pro-
vide an overall design of the proposed SAHSD framework, followed
by a detailed explanation of its individual components.

2.1 Problem Formulation
Hate speech detection can be conceptualized as a text classification
challenge. Consistent with conventional hate speech classification
methods, we adopt a binary classification framework to classify
texts into either a “hate speech” or “non-hate speech” category. Let

D = {(𝑿 (𝑘 ) , 𝑦 (𝑘 ) }𝑁
𝑘=1 be a hate speech dataset of 𝑁 text samples,

where 𝑿 (𝑘 ) is the 𝑘-th sentence in the dataset D and 𝑦 (𝑘 ) ∈ 𝒀 =

{0, 1} is a binary label indicating whether the sentence contains
hate speech (𝑦 (𝑘 ) = 1) or not (𝑦 (𝑘 ) = 0). Hate speech detection
aims to learn a function 𝑓 that maps a given sentence 𝑿 (𝑘 ) to its
corresponding label 𝑦 (𝑘 ) , i.e., 𝑓 (𝑿 (𝑘 ) ) → 𝑦 (𝑘 ) .

2.2 Overall Design
As depicted in Fig. 1, a schematic representation of SAHSD com-
prises two stages: sentiment injection and hate speech detection.

In the first stage of sentiment injection, SAHSD enhances a pre-
trained LM through the use of prompts for an intermediate task
(i.e., sentiment analysis). The objective is to formulate a prompt
that injects sentiment knowledge. As shown on the left-hand side
(LHS) of Fig. 1, this involves the integration of sentiment knowledge
through prompts.

Within the SAHSD framework, we identify labels associated
with the sentiment, i.e., positive, neutral, and negative, respectively.
The tokens corresponding to these three label words in the model’s
vocabulary are denoted as:

{𝑒 (𝑃𝑜𝑠), 𝑒 (𝑁𝑒𝑢), 𝑒 (𝑁𝑒𝑔)} (1)

which are directly derived from the label words, and 𝑒 (·) indicate
am embedding function.

All above-mentioned tokens are optimized during training in the
sentiment injection stage. The injected sentiment, stored as prompts,
will be leveraged in the second stage of hate speech detection.

In the second stage of hate speech detection, we refine the pre-
trained LM using prompts developed in the first stage. This phase
involves employing a hate speech detection prompt, and the cor-
responding tokens to label words (i.e., Hate speech or Non-hate
speech), denoted as {𝐻𝐴𝑇𝐸1, 𝐻𝐴𝑇𝐸2}, and {𝑒 (𝐻𝑎𝑡𝑒), 𝑒 (𝑁𝑜𝑛𝐻𝑎𝑡𝑒)},
respectively. These are illustrated on the right-hand side (RHS) of
Fig. 1. The core idea in the second stage is prompt-tuning a pre-
trained LM with sentiment prediction as part of the inputs for hate
speech detection.

2.3 Sentiment Injection
Obtaining a high-quality dataset for hate speech detection is a
significant challenge, largely due to the presence of annotator biases
in existing datasets. To address this, we develop a new prompt-
tuning strategy that leverages sentiment analysis as an intermediate
task, which shows great potential to enhance hate speech detection.

The proposed SAHSD approach adopts sentiment classification
as an intermediate task, aiming to first predict the sentiment of
each input sentence. In this approach, sentiment is categorized into
three types: positive, neutral, and negative.

First, we define the sentence under hate speech detection 𝑿 =

{𝑥1, 𝑥2, · · · , 𝑥𝑁 }, where 𝑥𝑖 is the 𝑖-th (𝑖 = 1, 2, · · · , 𝑁 ) token in
the sentence 𝑿 , and 𝑁 is the total token count of the sentence.
Before feeding the sentence 𝑿 to the pre-trained LM, 𝑿 merges
with prompt templates and special tokens, transforming into a fixed
token sequence:

�̂� = [CLS]𝑿 [SEP] [SENTI] [SEP], (2)
2



SAHSD: Enhancing Hate Speech Detection in LLM-Powered Web Applications via Sentiment Analysis and Few-Shot Learning

e(This) e(is) e(like) e(the) e(worst)e(satire)e(ever)
h([SENTI1]) h([SENTI2]) e([MASK])

Token embeddings

e(Do) e(not) e(pick) e(that) e(up) e(you) e(are) e(a) e(girl) e([SEP])
h([SENTI1]) h([SENTI2]) h(e(Neg)) e([SEP])

h([HATE1]) h([HATE2]) e([MASK])

Token embeddings

Few-shot examples

Do not pick that up, you are a girl. 
[SENTI1] [SENTI2] [MASK]

Stage 1: Sentiment Knowledge Injection Prompting Stage 2: Hate Speech Detection

This is like the worst satire ever. [SENTI1] [SENTI2] [MASK]

Sentiment Data

Non-hate speech
 Hate speech

Sentiment Knowledge
Injection Prompt

Sentiment Prediction

Do not pick that up, you are a girl. 
[SENTI1] [SENTI2] [e(Neg)].
 [HATE1] [HATE2] [MASK]

Finetuning SENT and �  with easily available sentiment data Finetuning HATE and �  by using few-shot learning

Pre-trained Language Model 
�

❶ ❷

e(Pos)
e(Neu)
e(Neg)

❸

❹

Figure 1: An overview of the training process for SAHSD. In Stage 1 (the sub-figure on the left), we utilizes readily available sentiment data to
finetune a sentiment analysis prompt “𝑆𝐸𝑁𝑇𝐼1, 𝑆𝐸𝑁𝑇 𝐼2”, as well as the pre-trained LM 𝜙 , resulting in a Sentiment Knowledge Injection Prompt
(see ❶), which is then used in Stage 2 for sentiment prediction (see ❷). In Stage 2 (the sub-figure on the right), the hate speech detection template
“𝐻𝐴𝑇𝐸1, 𝐻𝐴𝑇𝐸2” is appended to the few-shot example, sentiment prompt, and sentiment prediction as input to the pre-trained LM for hate
speech detection (see ❸). The hidden representations of the hate speech template and the pre-trained LM 𝜙 are finetuned to generate the correct
detection result (see ❹). In both stages, 𝑒 ( ·) represents the embedding of a token.

where [CLS] and [SEP] are special tokens that stand for classifica-
tion and separator, respectively.

𝑆𝐸𝑁𝑇𝐼 is the sentiment analysis prompt template defined as

𝑆𝐸𝑁𝑇𝐼 = {[𝑆𝐸𝑁𝑇𝐼0:𝑚], [MASK]} (3)

where 𝑆𝐸𝑁𝑇𝐼𝑖 (1 ≤ 𝑖 ≤ 𝑚) is the 𝑖-th token in the sentiment
analysis template 𝑆𝐸𝑁𝑇𝐼 , and𝑚 is the length of the template in
terms of tokens.

The sentiment knowledge injection prompt is initialized from
the meticulously crafted template 𝑆𝐸𝑁𝑇𝐼 . Then, the sequence �̂�
is mapped to a sequence of vectors by the pre-trained LM’s input
layer, denoted as {ℎ𝑖 ∈ R𝑑 }, where 0 ≤ 𝑖 ≤ 𝑚, and𝑚 is the number
of trainable word embeddings in the sentiment analysis prompt
template 𝑆𝐸𝑁𝑇𝐼 , and 𝑑 is the dimension of the word embedding.

To inject sentiment into the prompts, we employ pseudo-tokens
to design templates and use manual templates to initialize, as shown
in (3). For instance, we can employ “It was” as the initial prompt
element for the sentiment analysis stage, represented by the two to-
kens: 𝑆𝐸𝑁𝑇𝐼1 and 𝑆𝐸𝑁𝑇𝐼2. These pseudo-tokens correspond to un-
used tokens in the vocabulary of the pre-trained LM and aremapped
to word embeddings by the pre-trained LM’s input layer. Specifi-
cally, we map the template [𝑆𝐸𝑁𝑇𝐼 ] = {[𝑆𝐸𝑁𝑇𝐼0:𝑚], [MASK]} to
the following structure:

{ℎ0, ℎ1, · · · , ℎ𝑚, ℎ( [MASK])}, (4)

where ℎ𝑖 is the hidden representation of the token 𝑆𝐸𝑁𝑇𝐼𝑖 , and
ℎ( [MASK]) is the hidden representation of the token MASK.

Since these hidden representations in (4) can be trained, the hate
speech related sentiment can be incorporated as:

ℎ̂0:𝑚 = argmin
𝜃

L𝑠 (𝜙 (𝑋 ;𝜃 ), 𝑦𝑠 ), (5)

where 𝜃 represents the collection of learnable parameters of the
pre-trained LM, including the weights, bias, and the hidden repre-
sentations in (4); L𝑠 (·, ·) is a cross-entropy loss of the sentiment

injection intermediate task (i.e., lower sentiment prediction ac-
curacy indicate larger loss, and vise versa); 𝜙 (·, ·) represents the
pre-trained LM; 𝑦𝑠 is the label of the sentiment class.

This strategy takes advantage of the abundance of readily avail-
able sentiment analysis datasets. Specifically, we fine-tune a pre-
trained LM by embedding sentiment knowledge into a learned
continuous-style prompt during the adaptation process. This en-
riched prompt provides a robust foundation for the subsequent hate
speech detection. By doing so, we effectively augment the model’s
understanding and capabilities, making it more adept at detecting
hate speech. This method not only compensates for the limitations
of available hate speech datasets but also taps into the nuanced
relationship between sentiment analysis and hate speech, leading
to more accurate and reliable hate speech detection.

2.4 Hate Speech Detection
Hate speech detection is defined as a binary text classification task,
where the objective of the model is to determine whether a given
input sentence is hate speech or non-hate speech. The hate speech
detection model builds upon the sentiment-injection technique
described in Section 2.3. Prior to hate speech detection, the detec-
tion model inherits the parameters acquired from the sentiment
injection stage and uses the sentiment knowledge-injected prompts
developed in that stage to predict the sentiment polarity of each
potential hate speech.

The hate speech detection model is constructed based on the
sentiment-injection technique described in Section 2.3. Given an
input sequence 𝑿 , the formatted input for hate speech detection is

�̃� = [CLS]𝑿 [SEP] [SENTI_P] [SEP] [HATE] [SEP], (6)

where [SENTI_P] is the template containing the sentiment knowledge-
injected prompt and the sentiment prediction. Meanwhile, [HATE]
follows the template structure of the sentiment injection stage, tai-
lored for the hate speech detection task. [SENTI_P] and [HATE]
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are given by
[SENTI_P] = {ℎ0, ℎ1, · · · , ℎ𝑚1 , ℎ( [𝑣s])};

[HATE] = {ℎ0, ℎ1, · · · , ℎ𝑚2 , ℎ( [MASK])}, (7)

where𝑚1 and𝑚2 denote the numbers of trainable hidden represen-
tations in [SENTI_P] and [HATE], respectively; ℎ( [𝑣s]) represents
the hidden representation of the token corresponding to the senti-
ment prediction verb for the original input sentence 𝑿 .

As in the sentiment injection stage, the cross-entropy loss func-
tion is employed, leading to the final objective function:

argmin
𝜃

Lℎ (𝑓 (�̃� ;𝜃 ), 𝑦ℎ), (8)

where Lℎ (·, ·) is a cross-entropy loss of hate speech detection; 𝑦ℎ
is the label word of the hate speech class.

3 Experiment
This section introduces the datasets and evaluation metrics used
in our study. We also outline the comparative model methods and
the experimental settings. Finally, we analyze the results of our
experiments and discuss the generalizability of the method. Unless
otherwise specified, we use the BERT-base-uncased model [9] as the
pre-trained LM. This is because the BERT-base-uncased model has
only 0.34 billion parameters (compared to the 13 billion parameters
in the LLaMA2 model) and can achieve near-perfect performance
in hate speech detection with just 64 training samples (see Table 1).
This strategy allows us to fully leverage the language understanding
capabilities of the backbone model with lower computational cost.
The experiment setup is detailed in Appendix C.

3.1 Performance of Hate Speech Detection
In the proposed SAHSD framework, we fine-tune both the to-
ken embeddings and the pre-trained LM (BERT) to fully leverage
the model’s capabilities while integrating sentiment knowledge.
This strategy strikes a balance between performance and computa-
tional efficiency, particularly in low-resource settings. Our SAHSD
method achieves superb performance even with relatively few hate
speech samples, evident for the near-perfect F1-score of 0.99 using
only 64 samples (see the fifth column of Table 1).

While more extensive fine-tuning (e.g., fine-tuning with the en-
tire training dataset of a hate speech task) could offer additional
performance insights, the gain is likely to be marginal over the
already achieved F1-score of 0.99. Moreover, we are particularly
interested in scenarios where labeled hate speech data and compu-
tational resources are limited. This makes the SAHSD practical and
scalable, even without the need for a large amount of labeled hate
speech data and heavy resource investments.

Table 1 presents the performance of hate speech detection as
measured by the F1-score of state-of-the-art methods, along with
our proposed SAHSD framework, on the SBIC and HateXplain
datasets. It is noted that both the BERT-H and BERT-M methods
rely on a unique feature in the HateXplain dataset, specifically, the
keywords that assist in determining whether a data point should
be classified as hate speech. These two methods are not compatible
with the SBIC dataset. Furthermore, the task decomposition strategy
used by the ToKen method [2] is limited to binary classification,
making it unsuitable for the HateXplain dataset, which includes

Methods Sample Size
16 32 64 128 256 512 1024 Avg.

SB
IC

BERT [9] 0.59 0.61 0.71 0.73 0.77 0.80 0.83 0.72
BART-P [18] 0.45 0.53 0.56 0.60 0.64 0.70 0.73 0.60
ToKen [2] 0.59 0.63 0.70 0.70 0.70 0.72 0.73 0.68
HARE [31] 0.58 0.66 0.73 0.76 0.78 0.82 0.86 0.74
Ours 0.76 0.96 0.99 0.99 0.99 0.99 0.99 0.96

H
at
eX

pl
ai
n BERT [9] 0.28 0.33 0.41 0.48 0.52 0.57 0.60 0.45

BART-P [18] 0.26 0.34 0.43 0.52 0.58 0.60 0.62 0.48
BERT-H [21] 0.27 0.29 0.35 0.49 0.53 0.57 0.60 0.44
BERT-M [16] 0.20 0.23 0.24 0.35 0.55 0.55 0.59 0.39
Ours 0.74 0.92 0.98 0.98 0.98 0.98 0.98 0.94

Table 1: Hate speech detection performance of the considered
methods on the SBIC and HateXplain datasets. Each F1-score
represents the average from ten random seeds.

three label categories. To showcase the optimal performance of the
HARE method [31], the experiments did not modify the details of
the CoT prompts. Therefore, HARE was solely used for the binary
classification task on the SBIC dataset.

As shown in Table 1, the proposed SAHSD technique consis-
tently surpasses its counterparts, achieving the highest scores by
a substantial margin on both the SBIC and HateXplain datasets.
Overall, the SBIC dataset records higher scores than the HateXplain
dataset. The HateXplain dataset, designed for three-class classifi-
cation, is presumed to present a more complex challenge than the
SBIC dataset. In the case of the SBIC dataset, ToKen demonstrates
superior performance with a sample size of 16, while HARE prevails
for sample sizes above 16. This indicates that the ToKen method
has a distinct advantage in scenarios with extremely limited sam-
ple sizes. At the same time, the HARE method fully leverages the
performance of large LMs and achieves a performance level that is
just below our proposed method.

Regarding the HateXplain dataset, techniques focused on identi-
fying critical segments of sentences—pre-labeled within the dataset
itself (like BERT-H and BERT-M)—tend to underperform. This may
be due to these methods requiring a large volume of samples to accu-
rately identify key sentence segments indicative of hate speech. No-
tably, the proposed SAHSD approaches near-perfect performance
once the sample size exceeds 64. On average, it achieves a relative
improvement of 33% compared to the second-best method on the
SBIC dataset. Similarly, when tested on the HateXplain dataset, our
method shows a relative improvement of 95% over the next best
method. These findings highlight the effectiveness of SAHSD, estab-
lishing it as a crucial intermediary task that significantly enhances
the efficiency of hate speech detection.

3.2 Generalizability
Since the out-of-distribution datasets are binary-labeled, we eval-
uate the proposed SAHSD model, which was trained on the SBIC
dataset, in a zero-shot manner on these two datasets without ad-
ditional training. Fig. 2 illustrates the detection performance of
SAHSD on these out-of-distribution datasets. Each point on the
graph represents the average F1 score corresponding to a specific
sample size. We conduct ten tests for each sample size and then
calculate the average F1 score.
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Figure 2: Zero-shot performance of out-of-distribution
datasets HS18 and Ethos

We see from Fig. 2 that SAHSD consistently outperforms the
other alternative techniques on both datasets, approaching 100 af-
ter the number of samples reaches 64. Particularly on the HS18
dataset, the F1 scores of the other methods remain below 40 ex-
cept for HARE, indicating their limited generalization capabilities.
In contrast, SAHSD demonstrates commendable generalizability,
especially in scenarios with limited sample sizes.

3.3 Performance on LLM-Generated Content
To measure the performance of the SAHSD framework on potential
hate speech generated by LLMs, we evaluate the model in a zero-
shot manner on the ToxiGen dataset, which was trained on the SBIC
dataset with different training sample sizes without any additional
training. Fig. 3 displays the results of our experiments, where each

16 32 64 128 256 512 1024
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BERT
BART-Prompt
ToKen
HARE
Ours

Figure 3: The performance of the proposed method on the
ToxiGen dataset in a zero-shot setting.

result represents the average F1-score of the model trained with
the corresponding number of training samples. For each model, we
conduct ten tests with a certain number of training samples and
took the average.

As shown in Fig. 3, the other methods slightly improve as the
number of training samples increases. However, overall, they per-
form significantly worse than the proposed SAHSD method. More-
over, our SAHSD method demonstrates nearly perfect results when
𝑁 ≥ 64. It is evident that our method maintains robust detection
for potential hate speech generated by LLMs.

3.4 Performance Comparison with LLMs
To compare the performance with LLMs in terms of generalization,
we continue to conduct zero-shot comparisons. Our SAHSDmethod
follows the settings mentioned in the generalizability section. For
the experiments with the LLMs, we follow the CoT method outlined
in the method proposed in [12]. Fig. 4 presents the experimental
results on three generalization datasets. Since all experiments with
the LLMs are conducted in a zero-shot scenario, the corresponding
results are represented by a horizontal line in Fig. 4.

We see from Fig. 4 that among the LLMs, the GPT series, partic-
ularly GPT-4, exhibits the best performance. Our SAHSD method
demonstrates comparable zero-shot performance to GPT-4 when
trained on 32 samples. Moreover, as the number of training samples
exceeds 32, our method achieve an average generalization perfor-
mance that surpasses GPT-4 by 8%. This indicates that SAHSD en-
ables the detector, trained on a small amount of data, to outperform
the current state-of-the-art LLMs in terms of generalization. These
results highlight the superior performance of our method. Notably,
the BERT-base-uncased model used in our approach, with only 0.34
billion parameters, is dramatically smaller than the smallest of the
LLMs compared, such as Vicuna-13b with 13 billion parameters.
This explains why our method performs slightly worse than these
LLMs when using just 16 samples. However, obtaining more than
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Figure 4: Zero-shot performance comparison with LLMs

No. Conf. Sample Size
16 32 64 128 256 512 1024 Avg.

0 default 0.76 0.96 0.99 0.99 0.99 0.99 0.99 0.96
1 w/o SAHSD 0.63 0.68 0.73 0.77 0.81 0.83 0.83 0.75
2 w/o Prompts 0.62 0.69 0.73 0.79 0.82 0.84 0.84 0.76
3 w/o PM 0.65 0.69 0.73 0.78 0.83 0.83 0.84 0.76

Table 2: Ablation Study. (1) w/o SAHSD: Instead of execut-
ing pre-finetuning intermediate tasks, we solely rely on
prompt-tuning for hate speech detection; (2) w/o Prompts:
We omit the sentiment knowledge-injected prompts from
the first stage during second-stage training, employing only
the prompts and the pre-finetuned model specifically crafted
for hate speech detection; (3) w/o PM: We exclude the pre-
finetunedmodel from the first stage in the second-stage train-
ing. We use the pre-trained model, incorporating sentiment
prediction obtained from the pre-finetuned model, for de-
tecting hate speech.

32 hate speech samples from web-based social networks is straight-
forward, ensuring that our method delivers excellent performance
in real-world scenarios.

4 Empirical Analysis
In this section, we conduct an ablation study of the proposed SAHSD
framework. Additionally, we analyze the impact of initialization
and model scale on SAHSD.

4.1 Ablation Study
Table 2 presents the results of our ablation study on the SBIC dataset.
The first group demonstrates the outcomes when SAHSD is not
used as an intermediate task. This results in a 21% reduction in
average hate speech detection performance relative to the default
setting, underscoring the importance of SAHSD in the process.
The second group showcases the results without incorporating
sentiment knowledge-injected prompts for hate speech detection.
This leads to a 20% drop in average performance compared to the
default setting, but a 1% improvement over the first group. This
suggests that the pre-finetuned model can integrate some external
sentiment knowledge that benefits the hate speech detection task.

The third group represents the outcomes without using the pre-
finetuned model as the backbone for hate speech detection. Instead,
it employs sentiment prediction derived from the pre-finetuned
model in lieu of sentiment knowledge-injected prompts. Since these
prompts depend on the model’s vocabulary, they are not applied
here. The results show a 1% improvement compared to the first
group and a 0.6% enhancement relative to the second group. This
indicates that sentiment predictions from the pre-finetuned model
can aid hate speech detection, with their influence outweighing
that of the pre-finetuned model itself.
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4.2 Correlation between Sentiment and Hate
Speech

(a) SBIC

(d) ToxiGen(c) Ethos

(b) HS18

Figure 5: Correlation Heatmap between sentiment and hate
speech on datasets SBIC, HS18, Ethos and ToxiGen

Next, we validate the rationale behind the proposed SAHSDmethod,
demonstrating why embedding sentiment analysis into the hate
speech task outperforms the existing approaches. To explore the
correlation between sentiment and hate speech, we employ the
most effective sentiment classifier from the first-stage training to
conduct sentiment analysis on the SBIC, HS18, Ethos, and ToxiGen
datasets. We specifically filtered out samples with a confidence level
exceeding 0.99 and subsequently generated a correlation heatmap
between the predicted sentiment labels and the hate speech labels.
As shown in Fig. 5, a strong correlation is between negative senti-
ment and the presence of hate speech in sentences. Conversely, pos-
itive sentiment tends to correlate with the absence of hate speech.
These observations provide empirical support for the efficacy of our
approach in identifying hate speech based on sentiment analysis.

4.3 Impact of Prompt Initialization
Tables 3 and 4 present the hate speech detection performance
achieved using different initialization templates for the first-stage
sentiment analysis and the second-stage hate speech detection tasks,
respectively, on the SBIC dataset. Our approach involves employing
manually designed templates for initializing prompt tokens. An
analysis of the two tables reveals that changing the initialization
templates impacts performance, particularly with smaller train-
ing sample sizes. For example, with a training sample size of 16,
Template-1 yields optimal results in the first stage, while Template-
3 is most effective in the second stage. As the training sample size
increases to 32, the default initialization template performs better.
With further increases in training sample size, the performances of

Prompt Sample Size
Initialization 16 32 64 128 256 512 1024

default 0.76 0.96 0.99 0.99 0.99 0.99 0.99
Template-1 0.78 0.93 0.99 0.99 0.99 0.99 0.99
Template-2 0.77 0.94 0.99 0.99 0.99 0.99 0.99

Table 3: Impact of different prompt initialization templates
on the sentiment analyses performance of the proposed
method on the SBIC dataset. Under the default setting, the
initialization template used is “It was”. Template-1 refers to
“The sentiment of this statement is”, and Template-2 corre-
sponds to “The emotion of this sentence is”.

Prompt Sample Size
Initialization 16 32 64 128 256 512 1024

default 0.76 0.96 0.99 0.99 0.99 0.99 0.99
Template-3 0.82 0.94 0.99 0.99 0.99 0.99 0.99
Template-4 0.77 0.93 0.99 0.99 0.99 0.99 0.99

Table 4: Impact of different prompt initialization templates
on the hate speech detection performance of the proposed
method on the SBIC dataset. Under the default setting, the
initialization template used is “Offensive towards a group?”.
Template-3 refers to “Verbal abuse directed at a group?”, and
Template-4 corresponds to “Hate speech?”.

Prompt Sample Size
method 16 32 64 128 256 512 1024

default 0.76 0.96 0.99 0.99 0.99 0.99 0.99
PET 0.44 0.52 0.63 0.65 0.66 0.66 0.66
P-tuning v2 0.54 0.62 0.68 0.71 0.72 0.73 0.74

Table 5: Impact of different prompt-tuning methods on the
performance of the proposedmethod under the SBICDataset.

different templates tend to converge. The influence of the initial-
ization template diminishes as the sample size grows, allowing for
more effective training of the prompt tokens.

4.4 Impact of Prompt Tuning
Table 5 showcases the hate speech detection performance achieved
using various prompt tuning methods within our proposed method
on the SBIC dataset. The Pattern-Exploiting Training (PET) method,
serving as a foundational prompt learning approach in this exper-
iment, involves pattern learning first for sentiment analysis and
then for hate speech detection. In contrast, the P-tuning v2 method
employs multi-layer prefixes for prompt learning, following a two-
stage prompt learning process similar to PET. According to the
table’s results, the PET method exhibits the lowest performance,
suggesting its limited capability to retain sentiment knowledge
despite undergoing the first-stage sentiment analysis task. On the
other hand, P-tuning v2 outperforms PET due to its greater num-
ber of task-specific parameters, which allows for better retention
and optimization of external sentiment knowledge. Our proposed
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HS detection Sample Size
Sample Size 16 32 64 128 256 512 1024

32 0.60 0.68 0.74 0.88 0.92 0.95 0.95
64 0.59 0.65 0.73 0.87 0.93 0.99 0.99

Table 6: Impact of different sentiment training sample sizes
on the performance of the proposed method, under the SBIC
dataset.

Sentiment Analyse Sample Size
Model 16 32 64 128 256 512 1024

default 0.76 0.96 0.99 0.99 0.99 0.99 0.99
distilbert(setting 1) 0.59 0.65 0.69 0.71 0.73 0.74 0.74
distilbert(setting 2) 0.69 0.74 0.81 0.84 0.85 0.85 0.86
twitter-roberta(setting 1) 0.58 0.64 0.69 0.70 0.73 0.73 0.74
twitter-roberta(setting 2) 0.69 0.73 0.79 0.83 0.83 0.84 0.84

Table 7: Impact of different sentiment analysis models on
the performance of the proposed method, under the SBIC
Dataset.

method surpasses both, indicating the effectiveness of our specific
prompt learning approach. This approach not only successfully
injects sufficient sentiment knowledge into the prompts during the
first stage but also efficiently utilizes this knowledge in the second
stage. Such findings emphatically demonstrate the superiority of
our method in hate speech detection performance.

4.5 Impact of Sentiment Training Samples
Table 6 displays the hate speech detection performance achieved
using various sentiment training sample sizes within our proposed
method on the SBIC dataset. The table reveals that when the train-
ing samples for hate speech detection are fixed at 32 and 64, there is
a notable improvement in experimental results with an increase in
the training samples for the first-stage sentiment analysis. Notably,
when the training sample size reaches 512, the experimental results
align closely with those obtained under the default settings. This
suggests that the performance of hate speech detection is consid-
erably enhanced when a sufficient number of training samples for
sentiment analysis are provided.

4.6 Impact of Sentiment Analyse Model
Table 7 presents the hate speech detection performance achieved
using different sentiment analysis models within our proposed
method on the SBIC dataset. We select two state-of-the-art senti-
ment analysismodels, distilbert-base-multilingual-cased-sentiments-
student and twitter-roberta-base-sentiment-latest, to replace the
model obtained from the first-stage sentiment analysis, thereby
investigating their impact. ‘Setting 1’ involves using the sentiment
analyzer directly in the second stage of hate speech detection for
sentiment inference, with the results then being used to complete
this stage. ‘Setting 2’ involves using the sentiment analyzer for
sentiment inference in the second stage and mapping the sentiment
results to sentiment knowledge-injection prompt tokens, which
were trained in the default method, to complete the second stage.

Backbone Model Sample Size
Model Size 16 32 64 128 256 512 1024

BERT-base 110 M 0.76 0.96 0.99 0.99 0.99 0.99 0.99
BERT-large 340 M 0.78 0.96 0.99 0.99 0.99 0.99 0.99

Table 8: Impact of backbone model size on the hate speech
detection of the proposed method under the SBIC Dataset.

The results in the table show that the performances of the two
sentiment analysis models are comparable under the same setting.
However, for the same model, Setting 2 consistently outperforms
Setting 1. This suggests that while effective sentiment inference
in Setting 1 aids the second stage to some extent, our method of
injecting sentiment knowledge into the prompt tokens is more effi-
cient in achieving the objectives of the second stage. Compared to
Setting 2, the superiority of the default setting is most likely attrib-
uted to the unique representation of our trained sentiment prompt
knowledge tokens, which are specifically tailored for sentiment
knowledge injection after training and may not completely align
with the representations used in other sentiment analysis models.

4.7 Impact of Model Size
Table 8 displays the F1-scores for hate speech detection achieved
using BERT-base-uncased and BERT-large-uncased as the backbone
models in our proposed method on the SBIC dataset. We observe
that at sample sizes 𝑁 = 16 and 32, the F1-score with BERT-large-
uncased shows an improvement of 1.9% and 0.6% respectively,
compared to BERT-base-uncased. However, for larger sample sizes
(𝑁 > 64), the detection performance of the two models converges
and becomes comparable. This suggests that increasing the model
size improves results when dealing with very small sample sizes,
but the impact diminishes with larger sample sizes. Based on these
findings, we can infer that switching to a larger LM may not sig-
nificantly enhance performance in cases of ample data. However,
it is important to consider that while using a larger LM might not
drastically boost detection performance, it could lead to substantial
reductions in inference time and deployment costs.

5 Conclusion
In response to growing concerns about hate speech in LLM-based
web applications, we propose SAHSD, a framework designed to
enhance hate speech detection. LLMs risk spreading biased or inap-
propriate content due to unfiltered training data or user interactions.
SAHSD tackles this with a two-stage training process, starting with
sentiment analysis and then fine-tuning using both sentiment and
hate speech prompts. This approach improves detection and adapts
to various scenarios. Our experiments show that SAHSD achieves
near-perfect F1-scores with minimal data and excels in zero-shot
generalization, outperforming benchmarks. Future work will ex-
tend SAHSD to large-scale labeling of social media data.
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Appendix A: Notation and Definition
Table 9 summarizes the notation used in this paper.

Table 9: Notation and definition

Notation Definition
𝑿 A sentence under hate speech detection
𝑦 Hate speech label
𝒀 The collection of hate speech labels,
𝑓 (·) Hate speech detection function

𝑆𝐸𝑁𝑇𝐼 A sentiment analysis template
𝑆𝐸𝑁𝑇𝐼𝑖 The 𝑖-th token in a sentiment analysis template
𝐻𝐴𝑇𝐸 A hate speech detection template
𝐻𝐴𝑇𝐸𝑖 The 𝑖-th token in a hate speech detection template
𝑒 (·) The embedding function
ℎ𝑖 The hidden representation of the 𝑖-th token
ℎ̂𝑖 The optimized ℎ𝑖
𝜙 (·) The pre-trained LM

L𝑠 (·, ·) The loss function of sentiment analysis
Lℎ (·, ·) The loss function of hate speech detection
F1𝑖 The F1 score of the 𝑖-th class

Appendix B: Related Work
In this section, we present a brief overview of related research
work in the realm of hate speech detection. We start by discussing
recent progress in hate speech detection, particularly focusing on
advancements made in few-shot learning scenarios. Following this,
we explore studies that utilize pre-finetuning as an intermediary
step to enhance hate speech detection models. Finally, we assess
the effectiveness of prompting techniques within LLMs and their
implications for hate speech detection systems.

B.1 Few-shot Hate Speech Detection
Gathering a large, high-quality labeled dataset of hate speech is
challenging, primarily because genuine hate speech instances are
relatively rare, and labeling is labor-intensive. This issue compli-
cates the task of sampling online content (e.g., from social media)
that contains hate speech without relying on specific keywords [25].
Additionally, hate speech often manifests subtly, without explicit
profanity or obscenity, leaving no proper keywords for detection,
which further complicates large-scale data collection [14].

Several studies in few-shot hate speech detection have focused
on zero-shot or few-shot cross-lingual transfers. These methods
use data-rich source languages to assist in detecting hate speech
in target languages with less data [24]. For example, ToKen [2]
introduced a method that relies on task decomposition and knowl-
edge infusion, utilizing the BART pre-training model in a few-shot
context to enhance hate speech detection, but its performance is
not particularly impressive.

Mathew et al. [21] leverages the annotated labels in the Hat-
eXplain dataset to discern which segments of the posts should
be emphasized. It integrates an attention supervision mechanism
into the BERT model targeting those segments. Kim et al. [16] in-
troduce the Masked Rationale Prediction (MRP) intermediate task
before fine-tuning for hate speech detection based on method Hat-
eXplain [21]. However, these methods require a significant amount

of manual labor to annotate key sentence segments in the dataset,
and their performance is not particularly impressive. HARE [31] is
built upon the reasoning capability of LLMs, which are fine-tuned
using chain-of-thought (CoT) prompts to train the model in iden-
tifying text categorized as hate speech. This method utilizes the
powerful language capabilities of LLMs for multi-turn analysis of
sentences to detect hate speech.

In contrast, our work delves into the effectiveness of a pre-
trained-LM-based fine-tuning method combined with sentiment
analysis. We explore how this approach can significantly improve
hate speech detection, even with limited data availability.

B.2 Pre-finetuning on an Intermediate Task
Pre-finetuning pre-trained models for subsequent tasks has recently
gained traction [15]. This strategy involves training models to ori-
ent them before they engage with the target task. As explained by
the Muppet method [1], pre-finetuning allows models to familiarize
themselves with patterns relevant to the finetuning task, subse-
quently reducing the tuning duration, accelerating convergence,
and enhancing task performance. Another approach proposed by
[16] introduced an intermediate pre-finetuning task of masked ra-
tionale prediction, improving hate speech detection.

Recent studies have also utilized sentence sentiment features
to refine hate speech detection. Malmasi et al. [20] conducted ef-
fective experiments demonstrating the fruitful application of n-
gram and sentiment features in hate speech detection. Rodriguez et
al. [26] compiled a hate speech dataset from Facebook and intro-
duced a comprehensive suite of sentiment features closely linked
to sentences—including negative sentiment words and symbols—to
identify hate speech. Del et al. [8] used word sentiment values as
the primary criterion for discerning hate speech within sentences.
Furthermore, Zhou et al. [34] presented a hate speech detection
framework based on sentiment knowledge sharing, which leverages
external sentiment data sources and assimilates sentiment traits
inherent to the target sentence. These studies collectively highlight
the critical role of sentiment features in hate speech detection.

In line with insights from the Muppet method [1], a strong cor-
relation between intermediate and target tasks can optimize pre-
finetuning outcomes. Accordingly, we have developed a two-stage
fine-tuning procedure for a pre-trained LM, designating sentiment
analysis as an intermediate pre-finetuning task. This approach
guides model learning using external sentiment insights and in-
fuses the prompt with sentiment knowledge.

B.3 Prompting for LLMs
Prompt tuning for LLMs evolved from the few-shot learning capa-
bilities demonstrated by GPT-3 [4]. This method uses handcrafted
prompts (contextual learning) to achieve remarkable few-shot per-
formance. Pattern-Exploiting Training (PET) [28] converts NLP
tasks into cloze-style questions. However, due to the continuous
nature of neural network gradient optimization algorithms, dis-
crete prompts are often sub-optimal. P-tuning [19] was developed
to address this issue by employing an LSTM to encode the prompt
as a continuous, trainable variable. This strategy requires optimiz-
ing network parameters external to the LLM, which can lead to
complex label spaces. In contrast, method DART [32] introduced
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the integration of word input layer parameters within the LLM
(as unused tokens). These tokens are treated as pseudo tokens for
prompts and optimized alongside the model during the gradient
descent process.

Building on this continuous prompt-tuning technique, we pro-
pose a two-stage training scheme. This approach aims to enhance
learning efficacy in few-shot scenarios. Additionally, we incorpo-
rate sentiment knowledge into the prompts during intermediate
tasks. The resulting augmented prompt is used in the primary task
of hate speech detection. This enables the model to conduct effi-
cient and precise sentiment analysis, substantially improving the
performance of the primary task.

Appendix C: Experiment Setup
C.1 Dataset
Considering the practical challenges in obtaining a large amount of
data generated by LLMs, we conduct experiments using widely used
public hate speech datasets. First, we utilize a sentiment dataset
and two publicly available hate speech datasets. The hate speech
datasets mimic the potential output generated by an LLM-based
web application. Moreover, we select two other public hate speech
datasets to assess out-of-distribution performance. Lastly, we in-
corporate a hate speech dataset generated by GPT-3 to evaluate
detection performance, specifically targeting the outputs of LLM-
based web applications. We have carefully ensured that there is
no overlap between the datasets used in our experiments. Our pro-
posed method is inherently language-agnostic and can be easily
extended to support multilingual hate speech detection. However,
to expedite evaluations, we use only English data.

C.1.1 Hate Speech Datasets. We utilize two public hate speech
datasets, i.e., SBIC [27] andHateXplain [21].We select these datasets
to simulate outputs from an LLM-based web application under eval-
uation, as the text in these datasets is collected from the Internet,
resembling the samples that are scraped from the Internet and used
for training an LLM. For both datasets, we randomly choose 16 to
1024 samples for few-shot learning.

• SBIC [27]. We utilize the Social Bias Inference Corpus
(SBIC) to create one of the few-shot hate speech detec-
tion datasets. The corpus comprises structured annotations
of 150,000 social media posts (e.g., Reddit or Twitter) span-
ning approximately 1,000 demographic groups. In line with
previous studies defining hate speech [2, 6], we employ
annotations for offensiveness and demographic group tar-
geting to determine whether a post qualifies as hate speech,
i.e., if a post uses language targeting offensively a demo-
graphic group.

• HateXplain [21]. We also leverage the HateXplain dataset
to create a few-shot hate speech detection dataset. This
dataset consists of 20,000 samples gathered from Twitter
and Gab, with labels categorized into three groups: Hate
speech, offensive language, and normal language. Each sam-
ple is paired with a relevant target group and explainable
rationales.

C.1.2 Sentiment Datasets. We adopt the Twitter for Sentiment Anal-
ysis (T4SA) [30] to assemble the training and testing sets for the

intermediate task of Sentiment-Aided Hate Speech Detection. This
corpus accumulates Twitter posts over a span of six months, begin-
ning in December 2016. It determines the text sentiment polarity
(negative = 0, neutral = 1, positive = 2) for each post using a com-
bined LSTM-SVM structure. The dataset contains approximately
1.18 million samples. We randomize and divide the dataset in a 99:1
ratio for the training and testing of the intermediate task.

C.1.3 Out-of-Distribution Datasets. To gauge the out-of-distribution
performance of our approach, we employ the following two datasets
for evaluation:

• HS18 [7]. This corpuswas collected from awhite supremacist
forum called Stormfront. Each sample in this dataset has a
binary label indicating whether it is hate speech.

• Ethos [23]. This corpus comprises comments from social
media platforms, i.e., YouTube and Reddit. Each comment
has a binary label designating it as hate speech or not.

C.1.4 Hate Speech Datasets for LLM Outputs. To validate the per-
formance of our approach in detecting hate speech generated by
LLMs, we use the ToxiGen dataset [14]. ToxiGen is a large-scale
hate speech dataset generated using GPT-3, which includes 274,000
toxic and benign statements and involves approximately 13 minor-
ity groups. The ToxiGen dataset contains a significant amount of
implicit hate speech, which further challenges the capabilities of
our hate speech detection method.

C.2 Performance Metrics
Following ToKen [2], we use the macro F1-score to evaluate various
classifiers for hate speech detection. The macro F1-score is a widely
used metric in NLP tasks. It measures the harmonic mean of preci-
sion and recall. The macro F1-score for a multi-class classification
problem is determined by averaging the individual F1-scores for
each class. The macro F1-score for a specific class 𝑖 is given by

F1𝑖 =
2 · precision𝑖 · recall𝑖
precision𝑖 + recall𝑖

. (9)

The macro F1-score across all classes is given by

Macro F1-score =
1
𝑁

𝑁∑︁
𝑖=1

F1𝑖 , (10)

where 𝑁 is the number of classes. The macro F1-score provides a
balanced performance assessment by giving equal importance to
each class, regardless of its size.

C.3 State-of-the-Art Methods
Although there are various works based on traditional machine
learning (e.g, the SVM with n-grams [22]) or deep learning (e.g.,
the standard neural network with multi-head attention [34]), state-
of-the-art (SOTA) hate speech detection solutions are mostly based
on pretrained transform based LMs, such as BERT, BART, or GPT.
Therefore, the following SOTA methods are considered as bench-
marks to be compared with the proposed method.

• BERT [9]: This method fine-tunes the BERT-base-uncased
model and appends a fully connected layer as the classifi-
cation head.
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• BART-P [18]: This approach incorporates prompts with
manually constructed templates and harnesses the pre-
trained BART-Largemodel. For training on the SBIC dataset,
the approach adopts the strategy presented in ToKen [2] to
use the template “Hate speech?". For the HateXplain dataset,
it employs the template "Offensive towards a group?".

• ToKen [2]: This method is anchored on the BART-Large
model and integrates the principles of task decomposition
and knowledge infusion.

• HARE [31]: This method is built upon the reasoning capa-
bility of LLMs, which are fine-tuned using chain-of-thought
(CoT) prompts to train the model in identifying text cat-
egorized as hate speech. We employ the state-of-the-art
T5-large model and Fr-HARE method, which demonstrated
the best performance in [31].

• BERT-H [21]: This method leverages the annotated labels
in the HateXplain dataset to discern which segments of the
posts should be emphasized. It integrates an attention su-
pervision mechanism into the BERT model targeting those
segments. It aligns the attention scores of the CLS token
in the final layer with genuine attention. It also supple-
ments the attention loss to the label prediction loss for loss
computation.

• BERT-M [16]: This approach initially fine-tunes theMasked
Rationale Prediction (MRP) intermediate task before subse-
quently fine-tuning for hate speech detection.

C.4 Hyperparameter Settings
This section provides an overview of the training process and hy-
perparameters used for each dataset.

To construct the few-shot training sets, we adhere to the method-
ology outlined by ToKen [2], employing stratified sampling from
the SBIC and HateXplain corpora. We draw samples from the inof-
fensive (termed “normal” in HateXplain), offensive but not targeting
any specific group (labeled “offensive” in HateXplain), and hate
speech categories in a ratio of 1:1:2. We create datasets of varying
sizes, ranging from 16 samples to 1024 samples. Given the inherent
instability of few-shot learning, we compile ten distinct datasets
with the size of 𝑁 per dataset, using ten different random seeds.
We then compute the average performance under each set size.

The fine-tuning of models in our approach utilizes a batch size
of 16, and the fine-tuned models incorporate early stopping with
a maximum of 20 epochs. The learning rate is set to 1 × 𝑒−5 for
the SBIC, HateXplain, and T4SA datasets. Our experiments are
conducted using PyTorch 2.0 on anNVIDIAA100 GPU. The AdamW
optimizer is employed, complemented by a linear warm-up schedule
and a weight decay of 0.01.
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