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Abstract

Kilometer-scale weather data is crucial for real-world applications but remains1

computationally intensive to produce using traditional weather simulations. An2

emerging solution is to use deep learning models, which offer a faster alternative3

for climate downscaling. However, their reliability is still in question, as they are4

often evaluated using standard machine learning metrics rather than insights from5

atmospheric and weather physics. This paper benchmarks recent state-of-the-art6

deep learning models and introduces physics-inspired diagnostics to evaluate their7

performance and reliability, with a particular focus on geographic generalization8

and physical consistency. Our experiments show that, despite the seemingly strong9

performance of models such as CorrDiff, when trained on a limited set of European10

geographies (e.g., central Europe), they struggle to generalize to other regions such11

as Iberia, Morocco in the south, or Scandinavia in the north. They also fail to12

accurately capture second-order variables such as divergence and vorticity derived13

from predicted velocity fields. These deficiencies appear even in in-distribution14

geographies, indicating challenges in producing physically consistent predictions.15

We propose a simple initial solution: introducing a power spectral density loss16

function that empirically improves geographic generalization by encouraging the17

reconstruction of small-scale physical structures.18

1 Introduction19

Weather forecasts at kilometer-scale resolution are essential for many applications, including energy20

system planning [34], agriculture [16], and natural disaster preparedness [30]. However, global21

reanalysis datasets like ERA5 [21], commonly used to train models of weather dynamics, are22

available only at coarse spatial resolutions (e.g., 25 km for ERA5 [21]). Consequently, global23

machine learning (ML)-based weather forecasting systems trained on these datasets [4, 26, 33, 31, 3]24

are inherently limited to the same coarse scale. This prevents them from capturing fine-scale dynamics25

and physical processes vital for accurate local impact assessments, leading to systematic discrepancies26

from real-world measurements [27].27

Traditionally, dynamical downscaling is widely used to address the aforementioned limitation by28

deriving high-resolution information from coarse global forecasts [36]. This is achieved by numer-29

ically integrating the governing equations on a nested, limited-area grid, allowing simulations to30

capture small-scale physical processes. Still, computational cost grows steeply with domain size and31

simulation length, making this approach infeasible for large scale and detailed runs [2]. Recently,32

machine learning has been proposed as a faster alternative: statistical downscaling (often called33

super-resolution in computer vision [18]) learns a data-driven coarse-to-fine mapping. Once trained,34

the models can produce kilometer-scale fields several orders of magnitude faster than traditional35

dynamical downscaling [42]. However, most existing deep learning approaches neither verify whether36
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their outputs are physically consistent nor test whether the learned mapping generalizes to climates37

and geographic terrains unseen during training. This represents a literature gap as high performance38

on in-distribution results may not fully reflect their reliability in other conditions.39

In this work, we critically evaluate state-of-the-art deep-learning downscalers on physical consistency40

and generalization and show that physics-informed loss can improve both. Our contributions can be41

summarized as follows:42

1. We assess generalization performance by benchmarking three state-of-the-art deep-learning43

downscalers trained on a Central-European subset and tested on two held-out regions, the44

Iberia, Morocco region and Northern Scandinavia. We assess geographic transfer using45

standard machine-learning metrics and observe that the considered models significantly46

underperform in out-of-distribution (OOD) geographic domains.47

2. Guided by diagnostics from atmospheric-physics literature, we assess physical consistency48

by examining power spectra of the following second order derived variables: horizontal49

kinetic energy, mass-continuity/divergence, and relative vorticity. This broadens evaluation50

beyond conventional ML scores and provides novel insights from atmospheric physics,51

revealing a lack of physical consistency in the predictions.52

3. We introduce a Power spectral density (PSD) loss that explicitly rewards the reconstruction53

of small-scale physical dynamics, acts as a frequency-domain regularizer, and alleviates54

both OOD generalization gaps and physics-consistency shortcomings.55

2 Related work56

Generalization Statistical downscaling focuses on learning the conditional distribution p(q|x)57

from a set of paired data {(xi,qi)}Ni=1, where x ∈ RC×h×w and q ∈ Rc×H×W represent the58

input and target, respectively. Here, N denotes the number of paired samples, C is the number59

of meteorological variables given as input, and c is the number of meteorological variables to be60

downscaled. Also, (h,w) and (H,W ) denote the height and width of the coarse and fine grids,61

respectively. Global physics-based simulations are computationally expensive, so any statistical62

downscaling scheme is useful only if it can be applied beyond the few regions where high-quality63

training data exist [15]. This scarcity demands models that generalize across disparate climates64

and topographies; otherwise, distribution shifts between the training and target domains can sharply65

degrade skill and even produce physically implausible outputs. Nevertheless, most prior studies66

still train and evaluate on the same geography, often limited to a single country [28], leaving the67

cross-climate robustness of ML downscalers largely unexplored.68

Physical consistency Assessing physical consistency is crucial as it is common to diagnose (i.e.,69

derive) one set of variables from the set of prognosed (i.e., directly estimated) variables based on70

known physical relationships [5]. An example is vertical wind speed, which is linked to horizontal71

wind speed through the fundamental principle of continuity. However, as documented in previous72

studies [39, 5, 17], physical consistency is not always given.73

In atmospheric science, developing physics-informed approaches, such as incorporating full partial74

differential equations (PDEs) like the Navier–Stokes equations directly into the loss function as done75

by Raissi et al. [35], can be difficult. In practice, production-grade weather models like the Weather76

Research and Forecasting Model [40] solve not only the momentum equations (Navier–Stokes),77

but also the conservation equations for heat and moisture, all in three dimensions and over time.78

Consequently, a faithful PDE constraint in atmospheric physics would have to enforce this full,79

coupled 3D, time-dependent system. By contrast, the PDE-based constraints considered in the80

literature are often limited to idealized 2D flow cases (e.g., [35, 25, 11]). Another complication is that81

these equations are typically solved on terrain-following native grids, whereas widely used reanalysis82

products such as ERA5 are provided on pressure levels after interpolation from the native model grid.83

This transformation can disrupt physical balances, making direct application of atmospheric PDEs as84

constraints unreliable if the interpolation effects are ignored. Furthermore, atmospheric flows are85

influenced by many processes beyond the resolved dynamics, including orography, surface properties86

(e.g., roughness, heat capacity), solar radiation, cloud formation, and precipitation. Many of these are87

parameterized in numerical models and enter the PDE solver as forcings or as auxiliary equations88

coupled to the governing dynamics. Applying the full set of atmospheric PDEs with all relevant89
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forcings on the correct native grid would therefore require substantial additional development. A90

practical compromise is to incorporate physical principles into the loss function design, as we explore91

in this paper.92

Spectral loss Many statistical downscaling studies rely on deterministic mappings [19, 24, 10, 22],93

where the task reduces to estimating the conditional mean µ = E[q|x]. Deterministic estimates of µ94

are obtained by minimizing a standard pixel-space loss (ℓ1 or ℓ2 loss), which often produce blurry95

predictions [6]. Recently, attention has shifted to probabilistic approaches [29, 13, 28] that aim to96

learn the full conditional distribution p(q|x), inspired by the remarkable success of diffusion models97

for super-resolution tasks in computer vision. The probabilistic nature of these models allows them98

to quantify uncertainty and achieve lower pixel-space errors (e.g., MAE) [29, 13, 28]. However,99

whether these predictions are also physically consistent remains an open question.100

Previous work has shown that incorporating Fourier-based losses helps restore high-frequency details101

in efficient super-resolution models [14, 43]. Our PSD-based loss motivation is rooted in the physics102

of weather and climate data: large-scale structures (e.g., pressure systems) and fine-scale details (e.g.,103

local wind shifts, sharp temperature gradients) coexist, and the PSD quantifies how much variance104

is present at each spatial scale. If a downscaling model reproduces the large-scale features but105

underestimates smaller ones, its PSD will decay too rapidly at high frequencies, indicating missing106

small-scale physics. By incorporating a PSD-based loss, we explicitly encourage the model to match107

the observed scale-by-scale variance distribution, aiming to improve physical realism and mitigate108

both generalization and physics-consistency shortcomings.109

3 Methods110

The next subsections present physical consistency checks comparing key variables like kinetic energy,111

divergence, and vorticity, followed by a spectral loss term based on PSD to improve fine-scale detail.112

Together, they evaluate the physical realism and spatial accuracy of the model predictions.113

3.1 Physical consistency checks114

In this work, to evaluate the physical consistency of the model predictions, we employ variable115

interdependencies known from fluid mechanics and meteorology, similar to [5]. More specifically,116

we compare each ground truth sample and its corresponding model prediction with respect to the117

following variables:118

1. Mean horizontal kinetic energy, defined as119

Eh =
u · u+ v · v

2
. (1)

2. Horizontal continuity/divergence, given by120

δh = ∇h · vh =
∂u

∂x
+

∂v

∂y
. (2)

3. Relative horizontal vorticity, expressed as121

ζh = ∇h × vh =
∂v

∂x
− ∂u

∂y
. (3)

Here, u and v are the mean horizontal wind components in the zonal (x) and meridional (y)122

directions, respectively. Since statistical downscaling does not consider the temporal evolution123

of a meteorological state, more complex dynamical physics-consistency checks (see, e.g., [39, 17])124

are not applicable.125

Physically and mathematically, the three variables allow checking for different constraints that a126

realistic and physically consistent wind field must satisfy. Comparing Eh between ground truth and127

prediction, for example, assesses whether the nonlinear relationship between u and v is preserved.128

Checking if divergence δh and vorticity ζh match is crucial, as a realistic differentiable wind vector129

field can be decomposed into a divergence-free and a vorticity-free component via the Helmholtz130
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decomposition [9, 5]. Mathematically, the gradients in δh and ζh allow us to test whether the models131

capture the differential relationships between their outputs u and v.132

We note that, strictly speaking, all gradients should be horizontal gradients, which is not satisfied133

in complex terrain when u and v are at 10 m height above the terrain (see Table 1). Consequently,134

numerical values in mountainous regions are overestimated [23], but the metrics remain useful for135

broadly assessing physical consistency.136

3.2 PSD Loss Term137

To encourage fidelity at high spatial frequencies, we include a PSD penalty alongside the pre-defined138

loss of the considered baselines: Ltotal = Lbaseline + λLPSD. The specific baselines are described in139

Section 4.1.140

To elaborate, let q ∈ RH×W denote a single-channel atmospheric variable field on a grid of height141

H and width W (here RH×W denotes the set of H × W real matrices). For multi-channel data142

(e.g., multiple atmospheric variables), the PSD is computed independently for each channel. The143

PSD is obtained from the squared magnitude of the Fourier coefficients, normalized by the spatial144

dimensions and the grid spacing ∆x:145

PSD(q)(kh, kw) =
|F(q)(kh, kw)|2

HW ∆x
, (4)

where kh = 0, . . . ,H − 1 and kw = 0, . . . ,W − 1 are the discrete wavenumbers in the vertical and146

horizontal directions, respectively, and F(q) is the 2D discrete Fourier transform.147

To define LPSD, we weigh the contribution of each PSD coefficient in proportion to its normalized148

isotropic wavenumber squared. The isotropic wavenumber k is obtained from kh and kw via149

k =
√
k2h + k2w, and the weights are computed as w(kh, kw) = (k/kmax)

2. This quadratic weighting150

emphasizes high-frequency components, where the largest discrepancies occur, and therefore guides151

the model to reduce over-smoothing at small spatial scales.152

The weighted PSD loss between ground truth q and prediction q̂ is then calculated as:153

LPSD =

√√√√ 1

HW

H−1∑
kh=0

W−1∑
kw=0

w(kh, kw)
[
log

(
PSD(q)(kh, kw)

)
− log

(
PSD(q̂)(kh, kw)

)]2
. (5)

(a) Input: ERA5 (b) Target: CERRA (c) CRPS UNets-PSD

Figure 1: Input, target, and CRPS UNets-PSD prediction of u in Central Europe (in-distribution
region) on 1st of January 2021

4 Experimental results154

4.1 Experiments setup155

We benchmark three state-of-the-art downscalers: the full probabilistic CorrDiff model of Mardani156

et al. [28], its deterministic regression backbone (Regression-CorrDiff ), and a probabilistic U-Net157
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(a) Input: ERA5 (b) Target: CERRA (c) CRPS UNets-PSD

Figure 2: Input, target, and CRPS UNets-PSD prediction of u in the Iberia, Morocco region (OOD) on
1st of January 2021. The prediction is much blurrier compared to in-distribution as shown Figure 1.

ensemble trained with a continuous ranked probability score (CRPS) loss (CRPS-UNets) following158

Alet et al. [1]. Each architecture, except for CorrDiff, is retrained from scratch in two variants, one159

using its standard loss and one augmented with the extra PSD loss term. All models take as input160

the set of coarse-resolution variables listed in Table 1, taken from the ERA5 reanalysis at 25 km161

resolution [21] on multiple pressure levels. Their task is to predict the corresponding high-resolution162

surface fields from the CERRA reanalysis at 5.5 km resolution [37]: 10 m U-component of wind163

(u), 10 m V-component of wind (v), and 2 m temperature (t2m). Training is performed on an164

ERA5–CERRA subset cropped to Central Europe. To test geographic generalization, we create two165

additional, non-overlapping ERA5–CERRA subsets, one over the Iberia, Morocco region and one166

over Northern Scandinavia. They are used only for OOD evaluation and not for training or fine-tuning.167

We assess physical consistency as indicated in Section 3.1. Further information on the datasets and168

training details can be found in Appendix B.169

Table 1: Meteorological variables used as inputs and outputs for the downscaling models.
Input variables Output variables
Pressure levels (500 hPa and 850 hPa)

Temperature
U-wind component
V-wind component

Surface level
10 m U-component of wind 10 m U-component of wind
10 m V-component of wind 10 m V-component of wind
2 m Temperature 2 m Temperature

4.2 Results170

Table 2 shows the mean-absolute error (MAE) and root-mean-square error (RMSE) for different171

models over Central Europe, the Iberia, Morocco region, and Northern Scandinavia, while Table 3172

reports the CRPS. Results for Regression-CorrDiff and Regression-CorrDiff-PSD are omitted from173

this latter table as these models are deterministic, for which CRPS is equivalent to MAE [20].174

Figure 3 shows the comparison of PSD curves computed between CERRA (ground truth) and model175

predictions.176

Table 2 indicates that, in the in-distribution test over Central Europe, the three baseline models177

produce accurate downscalings showing low MAE and RMSE. Table 3 further shows that CRPS178

values for CorrDiff and CRPS UNets are also low, consistent with the results reported by Mardani179

et al. [28]. From Figure 3, we note that among the target variables, t2m is the most well-behaved180

and easy to predict: it exhibits the lowest errors and shows little sensitivity to the PSD loss, reflecting181

its smoother spatial structure and weaker small-scale variability compared to wind components [41].182

The PSDs of u, v, and Eh closely follow the reference spectrum, whereas those of ζh and δh deviate183
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markedly. Particularly, the second row of Figure 3 indicates that these predictions are not fully184

physically consistent. This gap narrows when both Regression-CorrDiff and CRPS-UNets are trained185

with the PSD loss term, returning spectral curves that follow the reference more closely. Notably,186

after adding the PSD loss, Regression-CorrDiff surpasses the full probabilistic CorrDiff architecture187

in spectral fidelity, suggesting that frequency-domain regularization can offset some of the advantages188

typically associated with probabilistic approaches. Training CorrDiff ’s diffusion component on189

the residuals of the Regression-CorrDiff-PSD backbone yields no noticeable improvement in our190

experiments. We hypothesize that training Regression-CorrDiff with a PSD loss already captures191

high-frequency content, leaving little signal for the diffusion stage. Consequently, the diffusion step192

adds negligible skill and we therefore omit that variant.193

10 3 10 2 10 1

10 3

10 1

101

Wavenumber k (cycles deg 1)

PS
D

(a) PSD of u

10 3 10 2 10 1

10 3

10 1

101

Wavenumber k (cycles deg 1)
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D

(b) PSD of v
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Figure 3: PSD comparison of down-scaled (top row) and physics-derived (bottom row) variables
from CERRA (ground truth) and model predictions in Central Europe (in-distribution domain).
Wavenumber k is plotted on a logarithmic scale.

In OOD domains (the Iberia, Morocco region and Northern Scandinavia), MAE and RMSE rise194

sharply relative to the in-distribution case (Table 2), and CRPS values (Table 3) also increase. Models195

trained with the PSD loss term achieve slightly better scores, yet, their performance remains well196

below the in-distribution level and predictions look blurrier (see Figure 1 and 2). For more extensive197

visual results see Appendix C, D, and E.198

We also observe that variables the model is directly optimized for, such as u and v, tend to match199

the ground truth more closely, particularly at low frequencies. This is expected, as loss functions200

like MSE emphasize minimizing errors in low-frequency components and tend to suppress high-201

frequency features such as sharp gradients. In contrast, derived variables such as δh and ζh exhibit a202

consistent offset from the ground truth, even at low frequencies. This suggests that the model is not203

merely missing high-frequency details, but is also failing to capture important underlying correlations204

between physical variables: the model can learn to reproduce wind components while missing the205

physics embedded in their spatial derivatives.206

4.3 Qualitative discussion207

In atmospheric dynamics, preserving the PSD slope across different scales is crucial: deviations208

imply that the model redistributes variance incorrectly among scales, leading to either excessive209
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Table 2: MAE and RMSE of u, v, and t2m over Central Europe (in-distribution) and the Iberia,
Morocco region / Northern Scandinavia (OOD).

Region Variable CorrDiff Reg-CorrDiff Reg-CorrDiff-PSD CRPS UNets CRPS UNets-PSD
MAE RMSE MAE RMSE MAE RMSE MAE RMSE MAE RMSE

Central Europe
u, m/s 0.663 0.971 0.674 0.978 0.676 0.987 0.671 0.977 0.678 0.982
v, m/s 0.669 1.014 0.681 1.026 0.685 1.040 0.679 1.037 0.690 1.037
t2m, K 0.602 0.826 0.622 0.852 0.619 0.857 0.619 0.855 0.617 0.853

Iberia, Morocco
u, m/s 1.067 1.446 1.074 1.459 1.063 1.446 1.044 1.407 1.035 1.398
v, m/s 1.094 1.528 1.080 1.523 1.071 1.517 1.044 1.469 1.042 1.460
t2m, K 1.486 2.118 1.459 2.088 1.426 2.062 1.361 1.937 1.323 1.857

Northern Scandinavia
u, m/s 1.021 1.355 1.042 1.398 0.999 1.332 0.932 1.258 0.858 1.156
v, m/s 1.001 1.338 1.010 1.365 0.981 1.344 0.925 1.225 0.875 1.174
t2m, K 1.481 1.883 1.471 1.908 1.390 1.823 1.304 1.677 1.405 1.835

Table 3: CRPS of u, v, and t2m over Central Europe (in-distribution) and the Iberia, Morocco
region / Northern Scandinavia (OOD).

Region Variable CorrDiff CRPS UNets CRPS UNets-PSD

Central Europe
u, m/s 0.480 0.515 0.516
v, m/s 0.476 0.520 0.520
t2m, K 0.432 0.470 0.467

Iberia, Morocco
u, m/s 0.828 0.801 0.786
v, m/s 0.849 0.815 0.797
t2m, K 1.197 1.077 1.033

Northern Scandinavia
u, m/s 0.760 0.718 0.661
v, m/s 0.750 0.727 0.692
t2m, K 1.102 1.017 1.075

smoothing (loss of small-scale structure) or spurious noise. Standard pixel-space losses (ℓ1 or ℓ2 loss)210

implicitly weight low-k modes more heavily, since large-scale errors dominate the sum of squared211

differences. This biases deep learning downscalers toward fitting coarse features accurately at the212

expense of mesoscale and sub-mesoscale dynamics.213

Further, δh and ζh are derived from spatial derivatives of the prognostic variables u and v. In Fourier214

space, differentiation multiplies each mode by its wavenumber magnitude (see Appendix A), so215

derivative-based diagnostics amplify high-frequency components. Thus, if the high-wavenumber part216

of the PSD is under-represented, these derived variables systematically lose variance, even if the base217

fields u and v have satisfactory accuracy in pixel-space metrics. This explains why our baselines218

reproduce Eh more faithfully than δh or ζh: Eh depends on the square of the velocity itself (low-219

and mid-k dominated), whereas divergence and vorticity are explicitly high-k weighted.220

By directly optimizing a PSD-based term, we reward matching the observed scale-by-scale variance221

distribution, rather than only minimizing pixel-space errors. This frequency-domain regularization222

reduces the high-k deficit in u and v and, through the k-weighting of derivatives, improves the223

physical consistency of δh and ζh as well.224

5 Conclusion225

Our findings confirm that the considered baselines struggle to generalize to unseen geographic regions,226

underscoring the need for downscaling models explicitly designed for both spatial transferability and227

physical fidelity. We have also shown that a simple spectral loss has a clear and consistent impact on228

the physical realism of the predictions: it substantially improves the match between predicted and229

reference spectra, particularly at high spatial frequencies, and narrows the gap for physically derived230

variables such as δh and ζh. These results indicate that, while geographic transferability remains231

challenging, explicitly encouraging the reconstruction of scale-by-scale variance is an effective way to232

preserve small-scale physical structures. In future work, it would be interesting to incorporate kinetic233

energy, divergence, and vorticity as either soft constraints in the loss function to guide the optimization234

of the velocities, following Sekiyama et al. [38] or integrating the constraints as part of the model235

architecture akin to other research in the fluid dynamics and machine learning literature [12, 7, 8].236
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Appendix386

A Fourier Differentiation Amplifies High Frequencies387

Fourier transform and wavenumbers. Let q ∈ RH×W be a real-valued scalar field defined on a388

uniform H ×W grid with isotropic grid spacing ∆x. We denote its 2D discrete Fourier transform by389

F(q)(kh, kw), where kh and kw are discrete mode indices. The corresponding physical wavenumbers390

are391

κx =
2πkw
W∆x

, and κy =
2πkh
H∆x

.

We define the horizontal wavenumber vector κ = (κx, κy) and its magnitude κ = ∥κ∥ =
√
κ2
x + κ2

y .392

High values of κ correspond to high-frequency, small-scale features. Then, the discrete PSD of q is393

given by394

PSD(q)(kh, kw) =

∣∣F(q)(kh, kw)
∣∣2

HW ∆x
.

This quantity measures the contribution of each wavenumber mode to the field’s total variance.395

Now we examine how spatial derivatives affect its spectral content.The discrete Fourier transform of396

a spatial derivative is obtained by multiplying by i times the corresponding wavenumber:397

F
(
∂q

∂x

)
= i κx F(q), and F

(
∂q

∂y

)
= i κy F(q).

Therefore, the PSDs of the derivatives are398

PSD

(
∂q

∂x

)
= κ2

x PSD(q), and PSD

(
∂q

∂y

)
= κ2

y PSD(q).

Consequently, for the horizontal gradient ∇q = (∂xq, ∂yq), we have399 ∥∥F(∇q)
∥∥2 =

∥∥∥[F(
∂q
∂x

)
F
(

∂q
∂y

)]∥∥∥2 = κ2
∣∣F(q)

∣∣2,
so that the corresponding PSD is400

PSD(∇q) = κ2 PSD(q).

Since κ increases with frequency, the κ2 factor explicitly shows that high-frequency modes are401

multiplied by larger factors, meaning they are amplified.402

Example: horizontal divergence. Let δh be the horizontal divergence defined as403

δh = ∇h · vh =
∂u

∂x
+

∂v

∂y
.

In Fourier space,404

F(δh) = i κx F(u) + i κy F(v).

Its power spectrum is405 ∣∣F(δh)
∣∣2 = κ2

x

∣∣F(u)
∣∣2 + κ2

y

∣∣F(v)
∣∣2 + 2κxκy ℜ

(
F(u)F(v)∗

)
.

The leading κ2
x and κ2

y factors again make the amplification of high-κ modes explicit, demonstrating406

why high-frequency modes are strongly amplified.407

Differentiation in Fourier space multiplies each mode by its wavenumber magnitude κ, so the power408

in derivative-based diagnostics is weighted by κ2. For the horizontal wind components u and v,409

any loss of high-frequency variance in PSD(u) or PSD(v) is magnified in the spectra of δh and ζh,410

since their definitions involve first-order derivatives in both spatial directions. Consequently, models411

that over-smooth u and v will not only misrepresent their own high-κ PSDs, but will show even412

larger discrepancies in the PSDs of δh and ζh. By explicitly constraining the model to match the full413

scale-dependent variance of u and v through a PSD-based loss, we reduce this high-frequency deficit414

and thereby improve the physical consistency of all derivative-based diagnostics.415
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B Dataset and training details416

ERA5 [21] and CERRA [37] are both multi-decade reanalysis products produced by the European417

Centre for Medium-Range Weather Forecasts (ECMWF) using state-of-the-art numerical weather418

models with data assimilation. CERRA provides high-resolution fields over Europe at 5.5 km grid419

spacing and a temporal resolution of three hours, whereas ERA5 covers the globe at 25 km resolution420

and hourly intervals. This corresponds to a spatial super-resolution factor of approximately 4.54× in421

each horizontal direction. Since the downscaling task requires temporally aligned input–target pairs,422

we sub-sample ERA5 to every third hour to match the temporal availability of CERRA.423

Training, validation, and test splits. For training, we select a Central European domain bounded424

by [60◦N,−2◦E, 40◦N, 18◦E] The training period spans from 1 January 2014 to 31 December 2020.425

We reserve the year 2021 for validation and in-distribution testing: January, March, May, July,426

September, and November are used for testing, while the remaining months serve as the validation427

set.428

Geographic generalization experiments. To evaluate cross-regional generalization, we use the429

same 2021 monthly split but replace the Central European domain with two non-overlapping target430

regions:431

• Iberia, Morocco: [45◦N,−15◦E, 25◦N, 5◦E]432

• Northern Scandinavia: [70◦N, 24◦E, 50◦N, 44◦E]433

These domains differ substantially in climate and topography from the training region, providing a434

robust test of spatial transferability.435

Training details. We train CorrDiff and its regression component, Regression-CorrDiff, by adapting436

the original PhysicsNeMo code repository provided by the authors [32]. To train the CRPS-based437

U-Net ensemble, we follow the methodology of Alet et al. [1], but still adapt the U-Net architecture438

from the PhysicsNeMo repository to construct the ensemble. Unlike Alet et al. [1], who train four439

models (M1, M2, M3, M4) each with its own ensemble, we restrict our experiments to a single model440

configuration (M1).441
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C Results Central Europe442

(a) Input: ERA5 (b) Target: CERRA

(c) CorrDiff (d) CRPS UNets-PSD (e) Reg-CorrDiff-PSD

Figure 4: Input, target, and predictions of u in Central Europe (in-distribution) using CorrDiff,
Reg-CorrDiff-PSD, and CRPS UNets-PSD. CorrDiff yields a visually sharper prediction, while the
others appear slightly blurrier.

(a) Input: ERA5 (b) Target: CERRA

(c) CorrDiff (d) CRPS UNets-PSD (e) Reg-CorrDiff-PSD

Figure 5: Input, target, and predictions of t2m in Central Europe (in-distribution) using CorrDiff,
Reg-CorrDiff-PSD, and CRPS UNets-PSD. t2m is easier to predict, hence differences between
outputs are hard to spot visually.
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D Results Iberia, Morocco443

(a) Input: ERA5 (b) Target: CERRA

(c) CorrDiff (d) CRPS UNets-PSD (e) Reg-CorrDiff-PSD

Figure 6: Input, target, and predictions of u in Iberia, Morocco (OOD) using CorrDiff, Reg-CorrDiff-
PSD, and CRPS UNets-PSD. CRPS UNets-PSD yields a visually sharper prediction, but still signifi-
cantly worse compared to the in-distribution scenario.

(a) Input: ERA5 (b) Target: CERRA

(c) CorrDiff (d) CRPS UNets-PSD (e) Reg-CorrDiff-PSD

Figure 7: Input, target, and predictions of t2m in Iberia, Morocco (OOD) using CorrDiff, Reg-
CorrDiff-PSD, and CRPS UNets-PSD. CRPS UNets-PSD yields a visually sharper prediction, but
still significantly worse compared to the in-distribution scenario.
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Figure 8: PSD comparison of down-scaled and physics-derived variables from CERRA (ground truth)
and model predictions in the Iberia, Morocco region (OOD). For all models, PSD curves deviate
more from CERRA at high frequencies than in the in-distribution case, with an even larger gap for
δh and ζh.

E Results Northern Scandinavia444

(a) Input: ERA5 (b) Target: CERRA

(c) CorrDiff (d) CRPS UNets-PSD (e) Reg-CorrDiff-PSD

Figure 9: Input, target, and predictions of u in Northern Scandinavia (OOD) using CorrDiff, Reg-
CorrDiff-PSD, and CRPS UNets-PSD. Visually, all models miss many details of the target u, making
it difficult to see clear differences in quality.
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(a) Input: ERA5 (b) Target: CERRA

(c) CorrDiff (d) CRPS UNets-PSD (e) Reg-CorrDiff-PSD

Figure 10: Input, target, and predictions of t2m in Northern Scandinavia (OOD) using CorrDiff,
Reg-CorrDiff-PSD, and CRPS UNets-PSD. Visually, all models miss many details of the target t2m,
making it difficult to see clear differences in quality.
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Figure 11: PSD comparison of down-scaled and physics-derived variables from CERRA (ground
truth) and model predictions in Northern Scandinavia (OOD). For all models, PSD curves deviate
more from CERRA at high frequencies than in the in-distribution case, with an even larger gap for
δh and ζh.
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