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Abstract

Kilometer-scale weather data is crucial for real-world applications but remains
computationally intensive to produce using traditional weather simulations. An
emerging solution is to use deep learning models, which offer a faster alternative
for climate downscaling. However, their reliability is still in question, as they are
often evaluated using standard machine learning metrics rather than insights from
atmospheric and weather physics. This paper benchmarks recent state-of-the-art
deep learning models and introduces physics-inspired diagnostics to evaluate their
performance and reliability, with a particular focus on geographic generalization
and physical consistency. Our experiments show that, despite the seemingly strong
performance of models such as CorrDiff, when trained on a limited set of European
geographies (e.g., central Europe), they struggle to generalize to other regions such
as Iberia, Morocco in the south, or Scandinavia in the north. They also fail to
accurately capture second-order variables such as divergence and vorticity derived
from predicted velocity fields. These deficiencies appear even in in-distribution
geographies, indicating challenges in producing physically consistent predictions.
We propose a simple initial solution: introducing a power spectral density loss
function that empirically improves geographic generalization by encouraging the
reconstruction of small-scale physical structures. The code for reproducing the
experimental results can be found at https://github.com/CarloSaccardi/
PSD-Downscaling

1 Introduction

Weather forecasts at kilometer-scale resolution are essential for many applications, including energy
system planning [34], agriculture [16], and natural disaster preparedness [30]. However, global
reanalysis datasets like ERA5 [21], commonly used to train models of weather dynamics, are
available only at coarse spatial resolutions (e.g., 25 km for ERA5 [21]). Consequently, global
machine learning (ML)-based weather forecasting systems trained on these datasets [4, 26, 33, 31, 3]
are inherently limited to the same coarse scale. This prevents them from capturing fine-scale dynamics
and physical processes vital for accurate local impact assessments, leading to systematic discrepancies
from real-world measurements [27].
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Traditionally, dynamical downscaling is widely used to address the aforementioned limitation by
deriving high-resolution information from coarse global forecasts [36]. This is achieved by numer-
ically integrating the governing equations on a nested, limited-area grid, allowing simulations to
capture small-scale physical processes. Still, computational cost grows steeply with domain size and
simulation length, making this approach infeasible for large scale and detailed runs [2]. Recently,
machine learning has been proposed as a faster alternative: statistical downscaling (often called
super-resolution in computer vision [18]) learns a data-driven coarse-to-fine mapping. Once trained,
the models can produce kilometer-scale fields several orders of magnitude faster than traditional
dynamical downscaling [42]. However, most existing deep learning approaches neither verify whether
their outputs are physically consistent nor test whether the learned mapping generalizes to climates
and geographic terrains unseen during training. This represents a literature gap as high performance
on in-distribution results may not fully reflect their reliability in other conditions.

In this work, we critically evaluate state-of-the-art deep-learning downscalers on physical consistency
and generalization and show that physics-informed loss can improve both. Our contributions can be
summarized as follows:

1. We assess generalization performance by benchmarking three state-of-the-art deep-learning
downscalers trained on a Central-European subset and tested on two held-out regions, the
Iberia, Morocco region and Northern Scandinavia. We assess geographic transfer using
standard machine-learning metrics and observe that the considered models significantly
underperform in out-of-distribution (OOD) geographic domains.

2. Guided by diagnostics from atmospheric-physics literature, we assess physical consistency
by examining power spectra of the following second order derived variables: horizontal
kinetic energy, mass-continuity/divergence, and relative vorticity. This broadens evaluation
beyond conventional ML scores and provides novel insights from atmospheric physics,
revealing a lack of physical consistency in the predictions.

3. We introduce a Power spectral density (PSD) loss that explicitly rewards the reconstruction
of small-scale physical dynamics, acts as a frequency-domain regularizer, and alleviates
both OOD generalization gaps and physics-consistency shortcomings.

2 Related work

Generalization Statistical downscaling focuses on learning the conditional distribution p(q|x)
from a set of paired data {(xi,qi)}Ni=1, where x ∈ RC×h×w and q ∈ Rc×H×W represent the
input and target, respectively. Here, N denotes the number of paired samples, C is the number
of meteorological variables given as input, and c is the number of meteorological variables to be
downscaled. Also, (h,w) and (H,W ) denote the height and width of the coarse and fine grids,
respectively. Global physics-based simulations are computationally expensive, so any statistical
downscaling scheme is useful only if it can be applied beyond the few regions where high-quality
training data exist [15]. This scarcity demands models that generalize across disparate climates
and topographies; otherwise, distribution shifts between the training and target domains can sharply
degrade skill and even produce physically implausible outputs. Nevertheless, most prior studies
still train and evaluate on the same geography, often limited to a single country [28], leaving the
cross-climate robustness of ML downscalers largely unexplored.

Physical consistency Assessing physical consistency is crucial as it is common to diagnose (i.e.,
derive) one set of variables from the set of prognosed (i.e., directly estimated) variables based on
known physical relationships [5]. An example is vertical wind speed, which is linked to horizontal
wind speed through the fundamental principle of continuity. However, as documented in previous
studies [39, 5, 17], physical consistency is not always given.

In atmospheric science, developing physics-informed approaches, such as incorporating full partial
differential equations (PDEs) like the Navier–Stokes equations directly into the loss function as done
by Raissi et al. [35], can be difficult. In practice, production-grade weather models like the Weather
Research and Forecasting Model [40] solve not only the momentum equations (Navier–Stokes),
but also the conservation equations for heat and moisture, all in three dimensions and over time.
Consequently, a faithful PDE constraint in atmospheric physics would have to enforce this full,
coupled 3D, time-dependent system. By contrast, the PDE-based constraints considered in the
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literature are often limited to idealized 2D flow cases (e.g., [35, 25, 11]). Another complication is that
these equations are typically solved on terrain-following native grids, whereas widely used reanalysis
products such as ERA5 are provided on pressure levels after interpolation from the native model grid.
This transformation can disrupt physical balances, making direct application of atmospheric PDEs as
constraints unreliable if the interpolation effects are ignored. Furthermore, atmospheric flows are
influenced by many processes beyond the resolved dynamics, including orography, surface properties
(e.g., roughness, heat capacity), solar radiation, cloud formation, and precipitation. Many of these are
parameterized in numerical models and enter the PDE solver as forcings or as auxiliary equations
coupled to the governing dynamics. Applying the full set of atmospheric PDEs with all relevant
forcings on the correct native grid would therefore require substantial additional development. A
practical compromise is to incorporate physical principles into the loss function design, as we explore
in this paper.

Spectral loss Many statistical downscaling studies rely on deterministic mappings [19, 24, 10, 22],
where the task reduces to estimating the conditional mean µ = E[q|x]. Deterministic estimates of µ
are obtained by minimizing a standard pixel-space loss (ℓ1 or ℓ2 loss), which often produce blurry
predictions [6]. Recently, attention has shifted to probabilistic approaches [29, 13, 28] that aim to
learn the full conditional distribution p(q|x), inspired by the remarkable success of diffusion models
for super-resolution tasks in computer vision. The probabilistic nature of these models allows them
to quantify uncertainty and achieve lower pixel-space errors (e.g., MAE) [29, 13, 28]. However,
whether these predictions are also physically consistent remains an open question.

Previous work has shown that incorporating Fourier-based losses helps restore high-frequency details
in efficient super-resolution models [14, 43]. Our PSD-based loss motivation is rooted in the physics
of weather and climate data: large-scale structures (e.g., pressure systems) and fine-scale details (e.g.,
local wind shifts, sharp temperature gradients) coexist, and the PSD quantifies how much variance
is present at each spatial scale. If a downscaling model reproduces the large-scale features but
underestimates smaller ones, its PSD will decay too rapidly at high frequencies, indicating missing
small-scale physics. By incorporating a PSD-based loss, we explicitly encourage the model to match
the observed scale-by-scale variance distribution, aiming to improve physical realism and mitigate
both generalization and physics-consistency shortcomings.

3 Methods

The next subsections present physical consistency checks comparing key variables like kinetic energy,
divergence, and vorticity, followed by a spectral loss term based on PSD to improve fine-scale detail.
Together, they evaluate the physical realism and spatial accuracy of the model predictions.

3.1 Physical consistency checks

In this work, to evaluate the physical consistency of the model predictions, we employ variable
interdependencies known from fluid mechanics and meteorology, similar to [5]. More specifically,
we compare each ground truth sample and its corresponding model prediction with respect to the
following variables:

1. Mean horizontal kinetic energy, defined as

Eh =
u2 + v2

2
. (1)

2. Horizontal continuity/divergence, given by

δh =
∂u

∂x
+

∂v

∂y
. (2)

3. Relative horizontal vorticity, expressed as

ζh = ∇h × vh =
∂v

∂x
− ∂u

∂y
. (3)

Here, u and v are the mean horizontal wind components in the zonal (x) and meridional (y) di-
rections, respectively. Since statistical downscaling does not consider the temporal evolution of a
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meteorological state, more complex dynamical physics-consistency checks (see, e.g., [39, 17]) are
not applicable.

Physically and mathematically, the three variables allow checking for different constraints that a
realistic and physically consistent wind field must satisfy. Comparing Eh between ground truth and
prediction, for example, assesses whether the nonlinear relationship between u and v is preserved.
Checking if divergence δh and vorticity ζh match is crucial, as a realistic differentiable wind vector
field can be decomposed into a divergence-free and a vorticity-free component via the Helmholtz
decomposition [9, 5]. Mathematically, the gradients in δh and ζh allow us to test whether the models
capture the differential relationships between their outputs u and v.

We note that, strictly speaking, all gradients should be horizontal gradients, which is not satisfied
in complex terrain when u and v are at 10 m height above the terrain (see Table 1). Consequently,
numerical values in mountainous regions are overestimated [23], but the metrics remain useful for
broadly assessing physical consistency.

3.2 PSD Loss Term

To encourage fidelity at high spatial frequencies, we include a PSD penalty alongside the pre-defined
loss of the considered baselines: Ltotal = Lbaseline + λLPSD. The specific baselines are described in
Section 4.1.

To elaborate, let q ∈ RH×W denote a single-channel atmospheric variable field on a grid of height
H and width W (here RH×W denotes the set of H × W real matrices). For multi-channel data
(e.g., multiple atmospheric variables), the PSD is computed independently for each channel. The
PSD is obtained from the squared magnitude of the Fourier coefficients, normalized by the spatial
dimensions and the grid spacing ∆x:

PSD(q)(kh, kw) =
|F(q)(kh, kw)|2

HW ∆x
, (4)

where kh = 0, . . . , H − 1 and kw = 0, . . . ,W − 1 are the discrete wavenumbers in the vertical and
horizontal directions, respectively, and F(q) is the 2D discrete Fourier transform.

To define LPSD, we weigh the contribution of each PSD coefficient in proportion to its normalized
isotropic wavenumber squared. The isotropic wavenumber k is obtained from kh and kw via
k =

√
k2h + k2w, and the weights are computed as w(kh, kw) = (k/kmax)

2. This quadratic weighting
emphasizes high-frequency components, where the largest discrepancies occur, and therefore guides
the model to reduce over-smoothing at small spatial scales.

The weighted PSD loss between ground truth q and prediction q̂ is then calculated as:

LPSD =

√√√√ 1

HW

H−1∑
kh=0

W−1∑
kw=0

w(kh, kw)
[
log

(
PSD(x)(kh, kw)

)
− log

(
PSD(x̂)(kh, kw)

)]2
. (5)

4 Experimental results

4.1 Experiments setup

We benchmark three state-of-the-art downscalers: the full probabilistic CorrDiff model of Mardani
et al. [28], its deterministic regression backbone (Regression-CorrDiff ), and a probabilistic U-Net
ensemble trained with a continuous ranked probability score (CRPS) loss (CRPS-UNets) following
Alet et al. [1]. Each architecture is retrained from scratch in two variants, one using its standard loss
and one augmented with the extra PSD loss term. All models take as input the set of coarse-resolution
variables listed in Table 1, taken from the ERA5 reanalysis at 25 km resolution [21] on multiple
pressure levels. Their task is to predict the corresponding high-resolution surface fields from the
CERRA reanalysis at 5.5 km resolution [37]: 10 m U-component of wind (u), 10 m V-component of
wind (v), and 2 m temperature (t2m). Training is performed on an ERA5–CERRA subset cropped
to Central Europe. To test geographic generalization, we create two additional, non-overlapping
ERA5–CERRA subsets, one over the Iberia, Morocco region and one over Northern Scandinavia.
They are used only for OOD evaluation and not for training or fine-tuning. We assess physical
consistency as indicated in Section 3.1. Further information on the datasets and training details can
be found in Appendix B.
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(a) Input: 25 km resolution (b) Target: 5km resolution (c) Predictions

Figure 1: Input, target, and CRPS UNets-PSD prediction of u in Central Europe (in-distribution
region) on 1st of January 2021

(a) Input: 25km resolution (b) Target: 5km resolution (c) Predictions

Figure 2: Input, target, and CRPS UNets-PSD prediction of u in the Iberia, Morocco region (OOD) on
1st of January 2021. The prediction is much blurrier compared to in-distribution as shown Figure 1.

Table 1: Meteorological variables used as inputs and outputs for the downscaling models.
Input variables Output variables
Pressure levels (500 hPa and 850 hPa)

Temperature
U-wind component
V-wind component

Surface level
10 m U-component of wind 10 m U-component of wind
10 m V-component of wind 10 m V-component of wind
2 m Temperature 2 m Temperature
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4.2 Results

Table 2 shows the mean-absolute error (MAE) and root-mean-square error (RMSE) for different
models over Central Europe, the Iberia, Morocco region, and Northern Scandinavia, while Table 3
reports the CRPS. Results for Regression-CorrDiff and Regression-CorrDiff-PSD are omitted from
this latter table as these models are deterministic, for which CRPS is equivalent to MAE [20].
Figure 3 shows the comparison of PSD curves computed between CERRA (ground truth) and model
predictions.

Table 2 indicates that, in the in-distribution test over Central Europe, the three baseline models
produce accurate downscalings showing low MAE and RMSE. Table 3 further shows that CRPS
values for CorrDiff and CRPS UNets are also low, consistent with the results reported by Mardani
et al. [28]. From Figure 3, we note that among the target variables, t2m is the most well-behaved and
easy to predict: it exhibits the lowest errors and shows little sensitivity to the PSD loss, reflecting its
smoother spatial structure and weaker small-scale variability compared to wind components [41].
The PSDs of u, v, and Eh closely follow the reference spectrum, whereas those of ζh and δh deviate
markedly. Particularly, the second row of Figure 3 indicates that these predictions are not fully
physically consistent. This gap narrows when both Regression-CorrDiff and CRPS-UNets are trained
with the PSD loss term, returning spectral curves that follow the reference more closely. Notably,
after adding the PSD loss, Regression-CorrDiff surpasses the full probabilistic CorrDiff architecture
in spectral fidelity, suggesting that frequency-domain regularization can offset some of the advantages
typically associated with probabilistic approaches. Training CorrDiff ’s diffusion component on
the residuals of the Regression-CorrDiff-PSD backbone yields no noticeable improvement in our
experiments. We hypothesize that training Regression-CorrDiff with a PSD loss already captures
high-frequency content, leaving little signal for the diffusion stage. Consequently, the diffusion step
adds negligible skill and we therefore omit that variant.
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Figure 3: PSD comparison of down-scaled (top row) and physics-derived (bottom row) variables
from CERRA (ground truth) and model predictions in Central Europe (in-distribution domain).
Wavenumber k is plotted on a logarithmic scale.

In OOD domains (the Iberia, Morocco region and Northern Scandinavia), MAE and RMSE rise
sharply relative to the in-distribution case (Table 2), and CRPS values (Table 3) also increase. Models
trained with the PSD loss term achieve slightly better scores, yet, their performance remains well
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below the in-distribution level and predictions look blurrier (see Figure 1 and 2). For more extensive
visual results see Appendix C, D, and E.

We also observe that variables the model is directly optimized for, such as u and v, tend to match
the ground truth more closely, particularly at low frequencies. This is expected, as loss functions
like MSE emphasize minimizing errors in low-frequency components and tend to suppress high-
frequency features such as sharp gradients. In contrast, derived variables such as δh and ζh exhibit a
consistent offset from the ground truth, even at low frequencies. This suggests that the model is not
merely missing high-frequency details, but is also failing to capture important underlying correlations
between physical variables: the model can learn to reproduce wind components while missing the
physics embedded in their spatial derivatives.

Table 2: MAE and RMSE of u, v, and t2m over Central Europe (in-distribution) and the Iberia,
Morocco region / Northern Scandinavia (OOD).

Region Variable CorrDiff Reg-CorrDiff Reg-CorrDiff-PSD CRPS UNets CRPS UNets-PSD
MAE RMSE MAE RMSE MAE RMSE MAE RMSE MAE RMSE

Central Europe
u, m/s 0.663 0.971 0.674 0.978 0.676 0.987 0.671 0.977 0.678 0.982
v, m/s 0.669 1.014 0.681 1.026 0.685 1.040 0.679 1.037 0.690 1.037
t2m, K 0.602 0.826 0.622 0.852 0.619 0.857 0.619 0.855 0.617 0.853

Iberia, Morocco
u, m/s 1.067 1.446 1.074 1.459 1.063 1.446 1.044 1.407 1.035 1.398
v, m/s 1.094 1.528 1.080 1.523 1.071 1.517 1.044 1.469 1.042 1.460
t2m, K 1.486 2.118 1.459 2.088 1.426 2.062 1.361 1.937 1.323 1.857

Northern Scandinavia
u, m/s 1.021 1.355 1.042 1.398 0.999 1.332 0.932 1.258 0.858 1.156
v, m/s 1.001 1.338 1.010 1.365 0.981 1.344 0.925 1.225 0.875 1.174
t2m, K 1.481 1.883 1.471 1.908 1.390 1.823 1.304 1.677 1.405 1.835

Table 3: CRPS of u, v, and t2m over Central Europe (in-distribution) and the Iberia, Morocco region
/ Northern Scandinavia (OOD).

Region Variable CorrDiff CRPS UNets CRPS UNets-PSD

Central Europe
u, m/s 0.480 0.515 0.516
v, m/s 0.476 0.520 0.520
t2m, K 0.432 0.470 0.467

Iberia, Morocco
u, m/s 0.828 0.801 0.786
v, m/s 0.849 0.815 0.797
t2m, K 1.197 1.077 1.033

Northern Scandinavia
u, m/s 0.760 0.718 0.661
v, m/s 0.750 0.727 0.692
t2m, K 1.102 1.017 1.075

4.3 Qualitative discussion

In atmospheric dynamics, preserving the PSD slope across different scales is crucial: deviations
imply that the model redistributes variance incorrectly among scales, leading to either excessive
smoothing (loss of small-scale structure) or spurious noise. Standard pixel-space losses (ℓ1 or ℓ2 loss)
implicitly weight low-k modes more heavily, since large-scale errors dominate the sum of squared
differences. This biases deep learning downscalers toward fitting coarse features accurately at the
expense of mesoscale and sub-mesoscale dynamics.

Further, δh and ζh are derived from spatial derivatives of the prognostic variables u and v. In Fourier
space, differentiation multiplies each mode by its wavenumber magnitude (see Appendix A), so
derivative-based diagnostics amplify high-frequency components. Thus, if the high-wavenumber part
of the PSD is under-represented, these derived variables systematically lose variance, even if the base
fields u and v have satisfactory accuracy in pixel-space metrics. This explains why our baselines
reproduce Eh more faithfully than δh or ζh: Eh depends on the square of the velocity itself (low- and
mid-k dominated), whereas divergence and vorticity are explicitly high-k weighted.

By directly optimizing a PSD-based term, we reward matching the observed scale-by-scale variance
distribution, rather than only minimizing pixel-space errors. This frequency-domain regularization
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reduces the high-k deficit in u and v and, through the k-weighting of derivatives, improves the
physical consistency of δh and ζh as well.

5 Conclusion
Our findings confirm that the considered baselines struggle to generalize to unseen geographic regions,
underscoring the need for downscaling models explicitly designed for both spatial transferability and
physical fidelity. We have also shown that a simple spectral loss has a clear and consistent impact on
the physical realism of the predictions: it substantially improves the match between predicted and
reference spectra, particularly at high spatial frequencies, and narrows the gap for physically derived
variables such as δh and ζh. These results indicate that, while geographic transferability remains
challenging, explicitly encouraging the reconstruction of scale-by-scale variance is an effective way to
preserve small-scale physical structures. In future work, it would be interesting to incorporate kinetic
energy, divergence, and vorticity as either soft constraints in the loss function to guide the optimization
of the velocities, following Sekiyama et al. [38] or integrating the constraints as part of the model
architecture akin to other research in the fluid dynamics and machine learning literature [12, 7, 8].
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Appendix

A Fourier Differentiation Amplifies High Frequencies

Fourier transform and wavenumbers. Let q ∈ RH×W be a real-valued scalar field defined on a
uniform H ×W grid with isotropic grid spacing ∆x. We denote its 2D discrete Fourier transform by
F(q)(kh, kw), where kh and kw are discrete mode indices. The corresponding physical wavenumbers
are

κx =
2πkw
W∆x

, and κy =
2πkh
H∆x

.

We define the horizontal wavenumber vector κ = (κx, κy) and its magnitude κ = ∥κ∥ =
√
κ2
x + κ2

y .
High values of κ correspond to high-frequency, small-scale features. Then, the discrete PSD of q is
given by

PSD(q)(kh, kw) =

∣∣F(q)(kh, kw)
∣∣2

HW ∆x
.

This quantity measures the contribution of each wavenumber mode to the field’s total variance.

Now we examine how spatial derivatives affect its spectral content.The discrete Fourier transform of
a spatial derivative is obtained by multiplying by i times the corresponding wavenumber:

F
(
∂q

∂x

)
= i κx F(q), and F

(
∂q

∂y

)
= i κy F(q).

Therefore, the PSDs of the derivatives are

PSD

(
∂q

∂x

)
= κ2

x PSD(q), and PSD

(
∂q

∂y

)
= κ2

y PSD(q).

Consequently, for the horizontal gradient ∇q = (∂xq, ∂yq), we have∥∥F(∇q)
∥∥2 =

∥∥∥[F(
∂q
∂x

)
F
(

∂q
∂y

)]∥∥∥2 = κ2
∣∣F(q)

∣∣2,
so that the corresponding PSD is

PSD(∇q) = κ2 PSD(q).

Since κ increases with frequency, the κ2 factor explicitly shows that high-frequency modes are
multiplied by larger factors, meaning they are amplified.

Example: horizontal divergence. Let δh be the horizontal divergence defined as

δh = ∇h · vh =
∂u

∂x
+

∂v

∂y
.

In Fourier space,
F(δh) = i κx F(u) + i κy F(v).

Its power spectrum is∣∣F(δh)
∣∣2 = κ2

x

∣∣F(u)
∣∣2 + κ2

y

∣∣F(v)
∣∣2 + 2κxκy ℜ

(
F(u)F(v)∗

)
.

The leading κ2
x and κ2

y factors again make the amplification of high-κ modes explicit, demonstrating
why high-frequency modes are strongly amplified.

Differentiation in Fourier space multiplies each mode by its wavenumber magnitude κ, so the power
in derivative-based diagnostics is weighted by κ2. For the horizontal wind components u and v,
any loss of high-frequency variance in PSD(u) or PSD(v) is magnified in the spectra of δh and ζh,
since their definitions involve first-order derivatives in both spatial directions. Consequently, models
that over-smooth u and v will not only misrepresent their own high-κ PSDs, but will show even
larger discrepancies in the PSDs of δh and ζh. By explicitly constraining the model to match the full
scale-dependent variance of u and v through a PSD-based loss, we reduce this high-frequency deficit
and thereby improve the physical consistency of all derivative-based diagnostics.
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B Dataset and training details

ERA5 [21] and CERRA [37] are both multi-decade reanalysis products produced by the European
Centre for Medium-Range Weather Forecasts (ECMWF) using state-of-the-art numerical weather
models with data assimilation. CERRA provides high-resolution fields over Europe at 5.5 km grid
spacing and a temporal resolution of three hours, whereas ERA5 covers the globe at 25 km resolution
and hourly intervals. This corresponds to a spatial super-resolution factor of approximately 4.54× in
each horizontal direction. Since the downscaling task requires temporally aligned input–target pairs,
we sub-sample ERA5 to every third hour to match the temporal availability of CERRA.

Training, validation, and test splits. For training, we select a Central European domain bounded
by [60◦N,−2◦E, 40◦N, 18◦E] The training period spans from 1 January 2014 to 31 December 2020.
We reserve the year 2021 for validation and in-distribution testing: January, March, May, July,
September, and November are used for testing, while the remaining months serve as the validation
set.

Geographic generalization experiments. To evaluate cross-regional generalization, we use the
same 2021 monthly split but replace the Central European domain with two non-overlapping target
regions:

• Iberia, Morocco: [45◦N,−15◦E, 25◦N, 5◦E]

• Northern Scandinavia: [70◦N, 24◦E, 50◦N, 44◦E]

These domains differ substantially in climate and topography from the training region, providing a
robust test of spatial transferability.

Training details. We train CorrDiff and its regression component, Regression-CorrDiff, by adapting
the original PhysicsNeMo code repository provided by the authors [32]. To train the CRPS-based
U-Net ensemble, we follow the methodology of Alet et al. [1], but still adapt the U-Net architecture
from the PhysicsNeMo repository to construct the ensemble. Unlike Alet et al. [1], who train four
models (M1, M2, M3, M4) each with its own ensemble, we restrict our experiments to a single model
configuration (M1).
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C Results Central Europe

(a) Input: ERA5 (b) Target: CERRA

(c) CorrDiff (d) CRPS UNets-PSD (e) Reg-CorrDiff-PSD

Figure 4: Input, target, and predictions of u in Central Europe (in-distribution) using CorrDiff,
Reg-CorrDiff-PSD, and CRPS UNets-PSD. CorrDiff yields a visually sharper prediction, while the
others appear slightly blurrier.

(a) Input: ERA5 (b) Target: CERRA

(c) CorrDiff (d) CRPS UNets-PSD (e) Reg-CorrDiff-PSD

Figure 5: Input, target, and predictions of t2m in Central Europe (in-distribution) using CorrDiff,
Reg-CorrDiff-PSD, and CRPS UNets-PSD. t2m is easier to predict, hence differences between
outputs are hard to spot visually.
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D Results Iberia, Morocco

(a) Input: ERA5 (b) Target: CERRA

(c) CorrDiff (d) CRPS UNets-PSD (e) Reg-CorrDiff-PSD

Figure 6: Input, target, and predictions of u in Iberia, Morocco (OOD) using CorrDiff, Reg-CorrDiff-
PSD, and CRPS UNets-PSD. CRPS UNets-PSD yields a visually sharper prediction, but still signifi-
cantly worse compared to the in-distribution scenario.

(a) Input: ERA5 (b) Target: CERRA

(c) CorrDiff (d) CRPS UNets-PSD (e) Reg-CorrDiff-PSD

Figure 7: Input, target, and predictions of t2m in Iberia, Morocco (OOD) using CorrDiff, Reg-
CorrDiff-PSD, and CRPS UNets-PSD. CRPS UNets-PSD yields a visually sharper prediction, but
still significantly worse compared to the in-distribution scenario.
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Figure 8: PSD comparison of down-scaled and physics-derived variables from CERRA (ground truth)
and model predictions in the Iberia, Morocco region (OOD). For all models, PSD curves deviate
more from CERRA at high frequencies than in the in-distribution case, with an even larger gap for δh
and ζh.

E Results Northern Scandinavia

(a) Input: ERA5 (b) Target: CERRA

(c) CorrDiff (d) CRPS UNets-PSD (e) Reg-CorrDiff-PSD

Figure 9: Input, target, and predictions of u in Northern Scandinavia (OOD) using CorrDiff, Reg-
CorrDiff-PSD, and CRPS UNets-PSD. Visually, all models miss many details of the target u, making
it difficult to see clear differences in quality.
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(a) Input: ERA5 (b) Target: CERRA

(c) CorrDiff (d) CRPS UNets-PSD (e) Reg-CorrDiff-PSD

Figure 10: Input, target, and predictions of t2m in Northern Scandinavia (OOD) using CorrDiff,
Reg-CorrDiff-PSD, and CRPS UNets-PSD. Visually, all models miss many details of the target t2m,
making it difficult to see clear differences in quality.
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Figure 11: PSD comparison of down-scaled and physics-derived variables from CERRA (ground
truth) and model predictions in Northern Scandinavia (OOD). For all models, PSD curves deviate
more from CERRA at high frequencies than in the in-distribution case, with an even larger gap for δh
and ζh.
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