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Abstract

Scaling deep learning models has been at the heart of recent revolutions in language modelling
and image generation. Practitioners have observed a strong relationship between model size,
dataset size, and performance. However, structure-based architectures such as Graph Neural
Networks (GNNs) are yet to show the benefits of scale mainly due to the lower efficiency of
sparse operations, large data requirements, and lack of clarity about the effectiveness of
various architectures. We address this drawback of GNNs by studying their scaling behavior.
Specifically, we analyze message-passing neural networks, graph transformers, and hybrid
architectures on the largest public collection of 2D molecular graphs. For the first time, we
observe that GNNs benefit tremendously from the increasing scale of width, depth, number
of molecules, number of labels, and the diversity in the pretraining datasets, resulting in a
30.25% improvement when scaling to 1 billion parameters and 28.98% improvement when
increasing size of dataset to eightfold. We further demonstrate strong finetuning scaling
behavior on 34 tasks, outclassing previous large models. We hope that our work will pave
the way for an era where foundational GNNs drive pharmaceutical drug discovery.

Keywords: Graph Neural Networks, Scaling Laws, Molecular Biology.

1 Introduction

Recent successes in language modelling (OpenAI, 2023; Touvron et al., 2023) and image
generation (Ramesh et al., 2021; Rombach et al., 2022) are driven by the increasing amount
of training data and computational resources. Across different domains, practitioners have
observed a direct relationship between model parameter count and performance on novel
tasks (Kaplan et al., 2020). In natural language processing, large transformer based models
have demonstrated impressive generalization capabilities utilizing a causal autoregressive
objective (Radford et al., 2019). In the meantime, image generation has undergone incredible
leaps with large models trained utilizing pixel level unsupervised objectives.

While data power law scaling behavior has been tremendously beneficial in language
and image domains, its practical impact on molecular reasoning and drug discovery has
remained limited. This is a direct consequence of complex scientific tasks requiring reasoning
regarding the underlying structure of the data (Bubeck et al., 2023). In the past, molecular
property prediction approaches have made use of graph-based methods, as these allow us to
reason about the structure and interaction of different components of a molecule. Molecules
are naturally represented as graphs, where the nodes represent atoms and edges correspond
to covalent bonds between the atoms.

Graph Neural Networks (GNNs) have emerged as a promising way of learning molecular
representations (Liu et al., 2023a; Galkin et al., 2023). GNN architectures are equipped with
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Figure 1: Summary of our GNN scaling hypotheses studied in the present work. The baseline
model is presented in dark grey, followed by different scaling hypotheses illustrated in lighter
colors. We analyze the scaling behavior of message-passing networks, graph transformer
and hybrid architectures with respect to the increasing scale of width, depth, number of
molecules, number of labels and diversity of datasets.

the flexibility of learning molecular structure while building general, powerful representations
over graphs utilizing backpropagation. These representations have been utilized in various
paradigms such as reasoning about drug properties (Stärk et al., 2022a), target binding
interactions (Stärk et al., 2022b), retrosynthesis of reagents (Liu et al., 2020), ligand-based
docking (Corso et al., 2023) and in-silico experiment design (Wang et al., 2023b).

Despite the growing applicability of GNNs in molecular tasks, the lack of supervised data
has significantly hindered our ability to proportionally scale model sizes. It remains unclear
whether graph-based architectures hold the promise of scale, similar to the paradigms of
language and unsupervised image generation.

Learning molecular properties with GNNs presents its own set of unique challenges.
First, multiple different GNN architectures are being actively researched. These include
convolution (Kipf and Welling, 2017), message passing architectures (Beaini et al., 2021),
graph transformers (Ying et al., 2021b) and hybrid architectures (Rampášek et al., 2022;
Masters et al., 2022). These approaches have shown recent progress, but their applicability
to practical applications remains an open question (Rong et al., 2020).

Second, the commonly used self-supervised training techniques do not transfer well when
applied to molecular graphs; e.g., retrieving masked bonds and atoms is not informative. This
is primarily due to large data requirements and the fact that graphs are limited in capturing
domain-specific aspects such as chemical interactions and biological compositions (Liu et al.,
2022). Other methods such as GPSE (Liu et al., 2023b) solely learns the graph structure,
thus providing a better positional encoding for another GNN.

Lastly, public datasets have insufficient high-quality data for effective GNN architecture
training. While recent attempts have been made to expand open-source datasets (Beaini
et al., 2024), their extensions towards multi-task settings remain an open question.

We aim to address these limitations and provide a concrete understanding of the required
data and architectures to build foundational models for molecular graphs. Specifically, we
want to answer the question: How do graph-based architectures scale in multi-task settings
of large molecular graphs?
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As summarized in Figure 1, we aim to answer the above question by studying the scaling
behavior of 2D molecular GNNs under different settings of width, depth, number of molecules,
number of labels, and the diversity in datasets. We analyze message-passing networks, graph
transformers, and hybrid architectures on the largest public collection of 2D molecular graphs.
All models are tested in 2 different settings; (1) pre-training performance for randomly
split train and test sets and (2) fine-tuning of pre-trained models on downstream tasks on
standard benchmarks.

Our work aims to provide a proper understanding of how different GNN architectures
scale for molecular GNNs and how it affects their performance in various settings. Our main
contributions are as follows:

• We study the scaling behavior of 2D molecular GNNs under varied settings of width,
depth, number of molecules, number of labels, the diversity in dataset and the archi-
tectural choice.

• We show that our largest 1 billion parameter models continue to scale with constant
gains in molecular property prediction. To the best of our knowledge, this is the first
work to demonstrate the continuous scaling behavior of molecular GNNs.

• We show that supervised pretraining over molecular graphs provides a rich fingerprint
embedding, useful for MLP probing, and more expressive as we scale the model and
datasets.

• We provide an in-depth analysis of scaling trends across different probing and finetuning
strategies. Specifically, we observe that model width and number of labels are the
most important factors driving finetuning performance.

• Finally, we show that, simply by scaling the width until 1B parameters, our largest
model outperforms other pre-trained models, while consistently achieving parity with
the state-of-the-art specialized models across a wide variety of tasks.

2 How Do Molecular GNNs Scale?

Our study aims to answer the question How do molecular GNNs scale? We begin by studying
GNNs in the multi-task supervised pretraining setup. Since our analysis consists of multiple
tasks on a large scale, we utilize the Graphium library (Beaini et al., 2024). Due to the
absence of a unified consensus on the best architecture for molecular GNNs, we focus our
efforts on three specific models. We select MPNN++ (Masters et al., 2022) which improves
quantum prediction over the MPNN (Gilmer et al., 2017), Graph Transformers (Müller
et al., 2023), and Hybrid GPS++ (Masters et al., 2022) along with the use of positional
encodings. Finally, we evaluate our models on a range of public benchmarks with 34 datasets
from Huang et al. (2021) and Polaris (Anonymous, 2024). Our study trains models in both
finetuning and probing (fingerprinting) settings.

In the supplementary material, we further provide a detailed description of the datasets
and benchmarks used for pre-training and finetuning (Sections A.1 and A.2) and of the
choices of architectures (Section A.3). Finally, we discuss the utilized finetuning and probing
strategies in Section A.4.
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Figure 2: (a) Effect of scaling different design choices (columns) to model evaluation
performance (rows). The standardized mean is calculated as mean of standardized scores for
every task in a dataset group, i.e. a mean and standard deviation per task were calculated
based on all our models in this study (signs of tasks with lower is better metrics were flipped).
(b) – top Scaling trend for two selected downstream tasks from the TDC benchmark
collection. (b) – bottom Finetuning and probing performance of pretrained MPNNs across
widths on the Polaris benchmark. Darker green shades denote better performance. Larger
models tend to perform better across different metrics on unseen tasks. Spearman correlation
values closer to 1 indicate that predictive performance correlates with larger model sizes.

2.1 Scaling Trends during Pretraining

In this section, we evaluate the scaling behaviour of our models according to various
parameters summarized in Figure 1, namely the architectural choice, width, depth, number
of molecules, labels and different datasets. We analyze our models on datasets from LargeMix
described in Section A.1. For additional results and experiments of our study, please refer
to the supplementary material.
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Overview. Figure 2a presents the variation of architectural choices between MPNN++,
GPS++ (Hybrid) and Transformer, with training curves and full fine-tuning results in the
supplemental material (Sections G and H). Notably, all models scale favourably with the
increasing scale of width (number of parameters), depth (number of GNN layers) and number
of molecules (dataset size). Models are not significantly affected by the number of labels,
a positive outcome indicating weight sharing between labels. In general, all models follow
monotonic trends, with differences partly occurring due to hyperparameter choices.

MPNN vs Transformer. MPNNs are found to be more parameter efficient as they
perform better with small width and depth compared to Transformers. MPNNs are also data
efficient as they perform significantly better when sub-sampling the quantum PCQM4M *
datasets, although molecular scaling is similar for biological datasets. Transformers being
data-hungry is consistent with recent works in other domains such as natural language
and computer vision (Radford et al., 2018; Alayrac et al., 2022; Galkin et al., 2023). The
hybrid GPS++ architecture seems to benefit from the MPNN expressivity in low-parameter
regimes, while also exhibiting a similar molecular-scaling to the transformer in low-data
regimes. Finally, we notice that MPNNs are unsurprisingly more affected by depth scaling
and improve (contrarily to transformers) as their receptive field depends on the number of
layers.

Width scaling. As seen in the first column of Figure 2a, increasing the width has a
significant impact on model performance across all tasks. Further, we trained our models
for fewer epochs as they were more likely to experience overfitting on the PCQM4M * tasks.

Depth scaling. Similar to width, depth of GNN models plays an important role in the
dataset fit during test time. Deeper models with larger layers capture intricate aspects of
the data resulting in 12.5 % improvement in test error. However, performance plateaus at
around 8-16 layers for quantum datasets, but could be mitigated by larger datasets. For
PCBA 1328, the performance continues to increase.

Molecule scaling. Unsurprisingly, the number of molecules in the training set correlates
strongly with the performance of all models. Contrary to width and depth, molecule scaling
is consistent across all models and test sets, although Transformer benefit more on quantum
tasks. For instance, increasing the dataset size by eight-fold (12.5 % to 100 %) yields a
significant 33.33 % improvement in model performance in the case of the hybrid GPS++
model.

2.2 Scaling Trends on Downstream Tasks

We now evaluate scaling of models when finetuning and probing on downstream tasks. As
detailed in Section A.4, both approaches make use of the head layer trimming strategy to
trim and append new task heads. In the case of finetuning, all weights are tuned, while for
fingerprinting the pretrained model is held fixed. Due to the large number of tasks spread
across the 34 tasks, we limit our evaluation to probing for most experiments, except for
MPNN++ where we also finetune the model.

In order to summarize scaling trends, we compute the Spearman’s rank correlation
coefficient (Schober et al., 2018) between model performance on a given metric and the scale
of model/data used. The correlation is given by a value in the range [−1, 1] , with a value
of 1 indicating perfect scaling (larger model/dataset is preferred), -1 indicating imperfect
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Figure 3: Comparison of our 1B MPNN++ model to the SOTA across TDC (left) and
Polaris (right) ADMET benchmarks.

scaling (smaller model/dataset is preferred) and 0 indicating no correlation. We note that
this evaluation scheme, although statistical, aims to answer the question What kind of design
decisions are necessary to build a foundational model for molecular representations?

MPNN vs Transformer. For probing on downstream tasks, we study the effect of
architecture choices of width, depth, and number of molecules. We find that transformers
benefit from increased width on downstream tasks compared to GPS++ and MPNN++.
Surprisingly, despite the number of molecules having a stronger impact on all model’s
performance, it only slightly impacts the downstream performance of all models, with a
small benefit to MPNN++. Finally, Transformer is the only model with a small positive
trend for depth scaling, while GPS++ and MPNN++ have close to no trend.

Width scaling. We evaluate width scaling on Polaris and TDC datasets in Figures 2b
(bottom) and Figure 14 (Section H.6 in supplemental material). We observe linear scaling
trends on all Polaris datasets, with an average spearman correlation of 0.91 during probing
and 0.85 during finetuning. On TDC, a similar trend is observed with a strong correlation of
> 0.75 for 15/22 datasets during probing and 17/22 during finetuning (using the MPNN++).
These results strongly indicate the benefits of larger pre-trained GNNs for downstream
tasks, a result consistent with prior findings in scaling of large models (Kaplan et al., 2020).
Additionally, we note that finetuning mostly leads to even better performance at different
scales when compared to naive probing.

Depth scaling. We evaluate the scaling of depth of MPNN models on TDC and Polaris
benchmarks in Figures 8 and 16. On average, we observe a weak positive trend, with
a scaling spearman correlation of 0.47 on Polaris, no significant trend of −0.11 on TDC
during probing, but a positive trend with 0.33 correlation when finetuning. While some
datasets strongly benefit from deeper networks, others strongly deteriorate. Most TDC
datasets are randomly affected. We conjecture that degradation with depth is related to
the oversmoothing issue described in supplemenary material (Section E). Certain molecular
properties can be well predicted only from small local substructures, hence eliminating
the need for long-range interactions that deeper networks enable. We further find that
transformers scale better with depth having probing correlations of 0.26.

Molecule scaling. In this setting, we randomly sub-sample a number of molecules in the
training set by 12.5%, 25% and 50% to study its effect on downstream tasks. Surprisingly,
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probing and finetuning performance does not correlate strongly with the amount of molecules
in the training set, as reported in Figures 10 and 17. We observe spearman correlations of
0.28 and 0.32 when probing and finetuning on TDC respectively. In the case of Polaris, mean
correlation is 0.3. The globally weak positive trend depends on the downstream dataset,
with many strong correlations and a few strong negative correlations. Contrarily to their
stronger trends on the pre-training tasks, transformer and GPS++ have lower correlations
during probing (0.13 and 0.14, respectively).
Label scaling. We now study the effect of target labels by randomly sub-sampling the
number of labels of each dataset in the training set by 12.5%, 25% and 50%. In Figures 12
and 18, we observe large spearman correlations of 0.56 on Polaris and 0.54 on TDC between
the ratio of training labels and the performance, and only a few negative correlations. In the
finetuning regime, this number lowers to 0.37 on TDC. These stronger correlations put label
scaling as the second-best strategy for improving the model’s downstream performance.
Dataset importance. We further conducted a study to determine the importance of
models in two ways. Firstly, we re-train models without specific datasets. Secondly, we
probe models specifically from certain task head MLPs compared to the base GNN model.
Observing the dataset ablations in Figure 19, we see that PCBA 1328 is the most beneficial
to a model’s performance while L1000 * could actually hinder the performance on certain
tasks. Observing task head probing in Figure 20, we see that probing from the common part
of the GNN outperformed all MLP task-heads most of the time. Further, we note that the
PCBA 1328 head is again the most beneficial, possibly due to synergies from pretraining
on a bio assay dataset, while the PCQM4M G25 head is found to be the worst. This is
expected since the downstream tasks are dissimilar from pretraining quantum datasets.

2.3 Comparison to other models

We now compare our largest best-performing model to strong existing baselines. In Fig-
ure 3, we notice that our MPNN++ consistently outperforms the MolE foundational
model (Méndez-Lucio et al., 2022), a gold standard for molecular property prediction. Fur-
thermore, MPNN++ performs on-par with state-of-the-art methods on majority of TDC
tasks. Finally, when comparing the MPNN++ to previous best metrics on the Polaris
benchmark, we note that our model is significantly better by large margins. We primarily
attribute the large-scale success of our model to purely scaling its width only up to 1B
parameters, despite the current trends suggesting us to scale further.

3 Conclusion

In this paper, we studied the scalability of GNN models including message-passing networks,
graph transformers and hybrid architectures on the largest public collection of 2D molecules
for the tasks of molecular property prediction. We showed major performance gains from
the growing amount of parameters, data and compute, both on the original test set and on
downstream finetuning. Importantly, our models benefit tremendously from the increasing
scale of width, number of molecules and number of labels. Our largest 1 billion parameter
models, including MPNN++, Transformer, and GPS++, continue to scale favourably result-
ing in peak 60 % improvement across precision and correlation metrics. More importantly,
we demonstrate a consistent performance improvement on downstream property prediction
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tasks. Finetuned 1B parameter models consistently produce results on par with specialized
state-of-the-art methods. We hope that our work paves the way for the development of
foundational GNNs and new architectures with applications in pharmaceutical advancements
and drug discovery.

3.1 Future Work

While our study demonstrates the benefits of increasing number of parameters far greater
than prior work, there are still orders of magnitude before we reach a general-purpose
foundational model of molecules. Our analysis is restricted to the effect of number of
parameters and molecules during pretraining and finetuning stages. Future work would
aim to uncover additional aspects of GNN training such as the increasing complexity of
aggregation functions and their effect on scaling properties.
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Pietro Liò. Directional graph networks. In International Conference on Machine Learning,
pages 748–758. PMLR, 2021.

Dominique Beaini, Shenyang Huang, Joao Alex Cunha, Gabriela Moisescu-Pareja, Olek-
sandr Dymov, Samuel Maddrell-Mander, Callum McLean, Frederik Wenkel, Luis Müller,
Jama Hussein Mohamud, et al. Towards foundational models for molecular learning on
large-scale multi-task datasets. ICLR 2024, 2024.

8



On the Scalability of GNNs for Molecular Graphs

Michael M Bronstein, Joan Bruna, Taco Cohen, and Petar Veličković. Geometric deep
learning: Grids, groups, graphs, geodesics, and gauges. arXiv preprint arXiv:2104.13478,
2021.
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Appendix A. Dataset and Architecture Details

A.1 Datasets

We study the scaling behavior of GNNs on the LargeMix dataset mixture (Beaini et al.,
2024). These datasets cover different types of molecules exhibiting variable properties. Thus,
the training is done in a multi-task setting consisting of thousands of labels, some being very
imbalanced and very sparse, a challenging scenario for learning representations with GNNs.

The LargeMix dataset mixture consists of 5 million molecules grouped into 5 different
tasks with each task having multiple labels. A moderate number of compounds spread across
multiple tasks and labels, making this dataset suitable for pretraining large GNNs. Below is
a description of the individual tasks contained within LargeMix.

• L1000 VCAP and L1000 MCF7 are two datasets of 16k and 20k molecules,
respectively, with 998 graph-level classification labels corresponding to transcriptomics
changes in the cell when exposed to drugs.

• PCBA 1328 is a dataset of 1.6M molecules with 1328 binary classification labels.
Each label corresponds to the activity tags of the molecules in a bioassay reported on
pubchem.

• PCQM4M G25 and PCQM4M N4 are two datasets of 3.8M molecules with 25
graph-level labels and 4 node-level labels. Labels are obtained using Density Functional
Theory (DFT) simulations, a highly accurate quantum simulation method (Saal et al.,
2013).

A.2 Finetuning and Probing Benchmarks

Foundational models benefit from downstream finetuning as a method to generalize across
novel unseen tasks. We build within this regime and study the scaling behavior of GNN
models during finetuning. Our finetuning evaluation consists of open-source therapeutic
benchmarks. For a fair and comprehensive evaluation, all models are first pretrained using a
common supervised learning strategy and then finetuned for molecular property prediction.
Benchmarks used for evaluating finetuning scaling behavior are listed below.

TDC (Therapeutics Data Common) (Huang et al., 2021) is one of the common benchmarks
for drug discovery. Our study focuses on 22 ADMET (Absorption, Distribution, Metabolism,
Excretion and Toxicity) tasks. While TDC serves as the bedrock for open-source drug
discovery evaluation, we note that it suffers from data collection and processing biases across
dissimilar molecules (Walters, 2023).

Polaris: Polaris is a recent collection of benchmarks addressing concerns over previous
datasets. Developed by an industry consortium of various biotech and pharmaceutical
organizations, it provides access to high-quality molecular samples across various tasks. Our
analysis considers 12 of the top ADMET tasks for molecular property prediction (Anonymous,
2024).

15



Anonymous Authors

A.3 Architectures

We broadly study three types of architectures; (1) message-passing networks, (2) graph
transformers and (3) hybrid models. In the case of message-passing networks, we focus on
MPNN++ as it provides a suitable testbed for evaluating molecular graphs while maintaining
performance across various tasks. Our graph Transformer and hybrid models make use
of GPS++, which is known for its scalable nature on quantum property predictions. In
addition to GNN models, we make use of Positional and Structural Encodings (PSEs) to
improve the expressivity of MPNNs and introduce a soft bias into the Transformer. We
discuss architectures and their design aspects below.

MPNN++ is a variation of the neural message passing architecture with edge and global
features (Gilmer et al., 2017; Battaglia et al., 2018; Bronstein et al., 2021). Choosing
the MPNN++ allows us to maximize architecture expressivity while minimizing the risk
of overfitting on larger datasets (Masters et al., 2022). Each MPNN block makes use of
sequential Dropout (Srivastava et al., 2014), MLP and LayerNorm (Ba et al., 2016) modules
followed by a skip connection (He et al., 2016b; Srivastava et al., 2015) across node and edge
features.

Ēl,Xl = Dropout(MLP([Xl|El]))

Xl = LayerNorm(Dropout(Xl)) + Xl

El+1 = Ēl + El

GPS++ is a hybrid model leveraging the MPNN++ inductive bias while providing the
flexibility of self-attention-based self attention (Ying et al., 2021a) modules to allow for a
rich feature extraction scheme across nodes and edges, and was empirically proven very
successful (Masters et al., 2022). Here, the standard self-attention weights are biased by a
structural prior B from the input graph. Mathematically, the GPS++ modules carries out
the following computation.

Xl+1, El+1 = MPNN++(Xl, El)

Zl = BiasedAttn(Xl+1,B)

Xl+1 = MLP(Xl+1 + Zl)

Transformer is an architecture identical to the GPS++, but without the MPNN++ module
nor the concatenation. Instead, it relies solely on the PSE’s for structural bias.

PSEs are an important design choice when training GNN architectures (Rampášek et al.,
2022; Liu et al., 2023b), as they allow each node to understand its position and surroundings
within a graph. This is essential for any graph Transformer, but it was also shown to improve
the expressivity of molecular GNNs. Specifically, we use three PSE schemes. First, we
use random-walk diagonals (Dwivedi et al., 2021) to allow one to decouple structural and
positional representations. Learned positional encodings are used to tackle isomorphic nodes.
Second, we use Laplacian eigenvectors (Beaini et al., 2021) as these form an expressive way
to encode node geometries and positions. Laplacian eigenvectors provide strong theoretical
guarantees against the 1- Weisfeiler-Lehman test, a useful insight in evaluating GNNs at
scale. Last, we use the Laplacian eigenvalues (Kreuzer et al., 2021) as a suitable PSE
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scheme to fully leverage the Laplacian spectrum. Additionally, they provide global structural
information about the graph.

A.4 Finetuning and Probing

Following pretraining, we finetune and probe our base models on a range of unseen tasks.
While there does not exist a clear guideline for finetuning GNNs, we explore this key
paradigm. Notably, our evaluation considers two finetuning and probing strategies which
present improved scaling behavior on downstream tasks.

Finetuning. Since our training distribution consists of multiple tasks and our architectures
incorporate multiple task heads, we need to identify a finetuning module, after which the
remaining pretraining architecture is removed and replaced by a newly initialized MLP, the
finetuning head. As all downstream tasks reside on the graph level, our main choice is the
graph output network, the MLP that processes features after being aggregated from the node
to the graph level, and further feeds into the task heads for graph-level tasks. Intuitively,
this layer’s output representations have benefited most from pretraining on diverse data and
tasks, as it feeds directly into the various task heads. We further investigate the effect of
choosing layers of the tasks heads as finetuning module to potentially leverage synergies
between specific pretraining and downstream tasks. As all downstream task are are on the
graph level, we trim the architecture by removing parts related to node level tasks and
unused task heads.

Probing and Fingerprinting. Similar finetuning, we employ probing using an MLP as a
suitable strategy for obtaining general representations on downstream tasks. In probing,
the base model is kept frozen and only the new layers are trained. This allows the training
procedure to focus the gradient on newly added parameters, resulting in task-specific
head layers. In the case of large model sizes, running features through the frozen base
model is expensive in memory and compute. We tackle this bottleneck by caching hidden
representations on disk and reusing them during probing. Since the gradient does not impact
parameters of the base model, fingerprints remain unchanged yielding an optimized strategy
for downstream tasks capable of parallelization across multiple inexpensive devices. In this
work, similar to the finetuning setup, we extract fingerprints from the task head MLPs of
graph-level tasks, and from the last layer of the graph output network, the MLP that directly
feeds in to the task heads.

Appendix B. Related Work

Foundation Models for Molecules. Recent work has relied on foundation models as a
generalist class of models for sequential modelling (Yuan, 2023; Liu et al., 2023a) as well as
knowledge retrieval (Galkin et al., 2023). Within molecular drug discovery, recent works rely
on structured models of ligands (Moret et al., 2020). Luo et al. (2022) and Moret et al. (2023)
study a general model for protein synthesis. Rao et al. (2020) construct a self-attention
driven architecture for contact prediction. Madani et al. (2023) learn to generate a family of
functional proteins. Nijkamp et al. (2023) present a class of protein-pretrained language
models. Similarly, Méndez-Lucio et al. (2022) study binding interactions between different
assays at the molecule-molecule interaction level.
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While many models focus on the design of molecules, a recent class of methods has
also focused on properties of molecules (Beaini et al., 2024). Cui et al. (2023) and Luo
et al. (2023) study a general architecture for predicting similar properties across different
molecules such as solubility and viscosity in a way generalizes across molecular domains
with a limited set of samples. Unsal et al. (2022) learn to predict functional properties of
proteins by exploiting learned structure. Our study explores similar molecular tasks for
property prediction.

Architecture Design. Recent methods in graph architecture design focus on attending
to structural information across nodes (Müller et al., 2023). Of specific interest are graph
transformer networks which extract node as well as edge information by composing sequential
attention modules over graph readouts (Yun et al., 2019). In parallel, graph attention
networks model attention weights across edges of a graph (Veličković et al., 2017).

While attention mechanisms have demonstrated modern progress, traditional architec-
tures such as neural message passing (Gilmer et al., 2017) and 3D infomax (Stärk et al.,
2022a) hold the promise of simplicity and expressivity in modelling molecular graphs. On
one hand, message passing provides a rich and expressive framework for constructing rep-
resentations. On the other hand, the provable lower bound of infomax results in strong
convergence guarantees. Godwin et al. (2021) study regularization based on noisy nodes
for the task of molecular property prediction. Provision of noise imputation in node-level
features leads to simple and expressive method for tackling sparse molecular graphs. Graph
bootstrapping (Thakoor et al., 2021) allows prior architectures to scale up to larger and
complex graphs for representation learning. Our exploration of different architectures is
aligned with the aforesaid works in literature, and with recent trends towards Transformers
in related machine learning fields.

Scaling Laws. Recent work in model scaling has demonstrated that performant models
follow a power law relationship between their parameter sizes and performance on new data
samples (Kaplan et al., 2020). Additionally, this relationship holds during the finetuning
stage (Hernandez et al., 2021), thus indicating a strong reliance on model parameters. Bahri
et al. (2021) explain this power law fit by observing learning as moving on a smooth data
manifold. Frantar et al. (2023) study the power law fit for sparsely connected models
capable of downstream generalization. Notably, sparsely connected foundation models reach
a computational bottleneck as a result of different sparsity structures impacting hardware
usage. (Aghajanyan et al., 2023) study the power law fit for mixed modality generative
models, indicating that the scaling behavior is modality agnostic across various datasets.
The result hints at the generality of scaling across different domains and applications.

Caballero et al. (2022) extend the study of scaling laws towards different training
regimes (such as finetuning, downstream transfer and inference) as well as different problem
domains (vision, language, audio, diffusion, generative modelling, contrastive learning and
reinforcement learning). The resulting functional form results in extrapolations which are
empirically accurate. Diaz and Madaio (2023) present a tangential result demonstrating
that dataset entities may not necessarily scale with the growing amount of parameters and
computational requirements, likely due to models leaving out essential data samples. Cherti
et al. (2023) study the reproducibility of scaling laws for contrastive learning scenarios at
the intersection of language and vision.
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While recent work on the scaling behavior of graph networks and other structural
inductive biases remains absent, a few notable works aim at studying the behavior of scaling
graph sizes. Grindrod (2022) evaluate the power law fit of growing graph sizes utilizing
random walk sampling and exploration. Similarly, J. (2021) study the scaling behavior of
macromolecule proteins with respect to their mean node degree. Our exploration of scaling
behaviors in graph networks is motivated by the aforesaid directions.

Appendix C. Preliminaries

C.1 Graph Neural Networks

Our problem setting consists of graphs of the form G = (V, E) where V denotes the set
of nodes and E denotes the set of edges. Each node i ∈ V indicates the atom and each
edge (u, v) ∈ E denotes a chemical bond between two atoms. Total number of atoms in
the molecule are N = |V| while total number of edges are M = |E|. Node features in
layer l are denoted by xl

i ∈ Rd and are concatenated into an N × d representation matrix
Xl = [xl

1;xl
2; ...xl

N ]⊤. Edge features eluv ∈ Rd are concatenated into the edge feature matrix
El = [eluv : (u, v) ∈ E ]⊤.

C.2 Scaling Laws

We denote the parameters of a model as θ with the total number of trainable parameters
being |θ|. We consider a training dataset D consisting of labeled data samples (G, y) ∈ D.
Here, G indicates the input graph and y ∈ RN denotes the categorical or continuous label.
Total size of the dataset is denoted as |D|. Given the study of large foundational models, we
note that |θ| is large in size and θ lies on a high dimensional manifold such that θ ∈ RB

where B >> |D|. Recent work has shown that increasing the size of dataset |D| or the
number of trainable parameters |θ| has a direct power law relationship on the loss function
Lθ(|D|) (Kaplan et al., 2020). Mathematically, we have the following,

Lθ(|D|) ∝ (|θC |/|θ|)α (1)
Equation 1 denotes the power-law relationship between the number of trainable parame-

ters and the loss obtained when utilizing the parameters θ. Further, θC denotes the critical
parameters and α ∈ RN is a scalar constant. Intuitively, as the number of parameters
approaches a critical value, with every gradient step, the test loss decreases at power-law
with a constant rate. A similar relationship holds for the size of datasets. Mathematically,
we have the following,

Lθ(|D|) ∝ (|DC |/|D|)β (2)
Equation 2 describes the power-law relationship between the size of dataset and loss

obtained when training the model on D. Here |DC | denotes the critical size of the dataset
and β ∈ RN is a scalar constant.

Appendix D. Experimental Details

D.1 Pretraining

All models use 2-layer MLPs to encode node and edge features, respectively, followed by
the core model of 16 layers of the MPNN, Transformer or Hybrid model (except for when
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scaling depth). The outputs are aggregated to the graph level and node and graph level
representations go through 2-layer MLPs. Finally, representations are processed by separate
task heads (2-layer MLPs) specific to each pretraining task. Further, all layers use layer
norm and dropout with p = 0.1. The encoder and model core additional have residual
connections similar to He et al. (2016a).

Our hyperparameter search for all base models was conducted on all oberserved data
samples with a constant model size of 10M ± 0.1M parameters. For scaling on width,
zero-shot scaling from µP (Yang et al., 2022) was used. For other scaling results, µP was
used to scale the model with 10M parameters used as the base model. In the case of depth
scaling, we adjusted the learning rate as suggested by depth-µP (Yang et al., 2023). We did
not consider adjusting the residual connections.

Our base MPNN, Transformer and Hybrid model is trained using Adam with a base
learning rate of 0.003, 0.001 and 0.001, respectively. We use 5 warm-up epochs followed by
linear learning rate decay. All pretraining has been conducted with a batch size of 1024.
Scaled version of the used models require advanced training strategies due to the large model
size. We used mutli-gpu training (with up to 8 NVIDIA A100-SXM4-40GB GPUs) and
gradient accumulation, while adjusting batch size to keep the effective batch size constant.

D.2 Finetuning and Probing

Finetuning. As outlined in Section A.4, a finetuning module is selected from one of the
layers of the pretraining architecture and a newly initialized MLP is appended to that layer.
Here, we use 2-layer MLPs with a hidden dimension of 256. For each experiment, when
retraining this model, we set set the dropout rate to zero and train for 40 epochs using
a batch size of 256 and a constant learning rate of 0.0001. To first adjust the finetuning
head – the newly initialized MLP after the finetuning module – we freeze the remaining
architecture for the first 10 epochs. To find a unified finetuning strategy for each pretrained
model/downstream task combination, we select the best number epoch where validation
performance was maximized across all seeded runs of the experiment.
Probing. Similar to finetuning, we apply a 2-layer MLP to the fingerprints derived from
the pretrained model. We choose a hidden dimension of 128 and train for 30 epochs with a
batch size of 128 and a constant learning rate of 0.0001. Further, we use the same approach
as for finetuning to select a unified number of epochs for each pretrained model/downstream
task combination based on validation.
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Appendix E. Trade-Off Between Over-smoothing and Depth

We note that GNN architectures exhibit over-smoothing phenomenon, which implies that
latent representations of a network become similar and coarser as the network grows in
size. Prior evidence suggests that over-smoothing occurs linearly with the increasing depth
of GNN networks (Hamilton, 2020; Xu et al., 2019). We observed similar behvaiors for
MPNN architectures during pretraining where the performance for node-level tasks degrades
significantly with very deep networks. However, it is difficult to determine without any
doubt that over-smoothing is the culprit.

On another hand, over-smoothing is believed to be aleviated by graph Transformers.
Recent works argue that Transformers present favorable properties which make them robust
towards over-smoothing, such as the provision of embeddings and the inductive bias of
attention (Dovonon et al., 2024). However, we still observe a degradation of performance
with depth of our Transformer models, in contradiction with this hypothesis. Its theoretical
understanding and empirical analysis remains an open question for future work.

Appendix F. Additional Related Work

F.1 Foundational Models for Molecules

Here, we present additional advancements in foundational models making use of molecular
graphs. Recent works have argued that the use of high-capacity models will be a significant
boon to scientific discovery tasks (Wang et al., 2023a). Of specific interest are tasks in the
quantum and molecular discovery paradigms (Zhang et al., 2023) which demand domain-
specific expertise such as knowledge of structure, provision of additional inductive biases and
large data requirements. Towards this hypothesis, (Fifty et al., 2023) present an in-context
learning framework for molecular property prediction without explicitly using a meta learning
procedure. This leads to a general algorithm capable of discovering high-level structures
from a pretraining sample set. Guo et al. (2021) propose a similar framework making use
of few-shot learning techniques resulting in a sample-efficient learning procedure. Xu et al.
(2023) present an alternative approach by modelling the full graphical structure of molecules
across different property prediction tasks. Although effective, modelling the entire graph
results in a computationally intensive learning procedure. Finally, Cao et al. (2023) scale up
learning to larger graph sizes by segmenting graph neighborhoods on the fly. An ad-hoc
partitioning procedure is employed and interleaved with the learning phase in order to
accelerate learning on larger and dense graphical clusters.

F.2 Expressivity of GNNs

Prior work highlights that GNN architectures are limited in their expressivity to distinguish
between graphs of similar node arrangements but different geometrical structures (Xu et al.,
2019). Various works indicate this as a consequence of aggregation functions and other
design factors involved in GNN training (Hamilton, 2020). On the other hand, recent work
argues that only specific architectures are found robust to over-smoothing when building
latent representations (Dovonon et al., 2024). For instance, graph transformers exhibit
over-smoothing robustness as they utilize strong inductive biases such as attention. Xu et al.
(2021) connect the limited expressivity of GNNs with their ability to extrapolate on simpler
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tasks. Contrary to multi-layer networks, GNNs struggle to extrapolate on simpler tasks but
show promise for improvement. Morris et al. (2019) aim to tackle over-smoothing by building
higher-order GNN architectures capable of capturing intricate node characteristics in their
deeper layers. Finally, Ying et al. (2018) present the differentiable pooling module capable of
pooling neighboring node features which aid in reducing noise across layer representations.

Appendix G. Training Curves of Pretraining Models
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1Figure 4: Model performance on the test set throughout training for MPNN++, Transformer
and GPS++ architectures with width scaling. Different colors represent models with varying
number of parameters.
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and GPS++ architectures with depth scaling. Different colors represent models with varying
number of network layers.
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1Figure 6: Model performance on the test set throughout training for MPNN++, Transformer
and GPS++ architectures with molecule scaling. Different colors represent models with
varying fraction of molecules used for training.
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Appendix H. Additional Finetuning Results

Figure 7: Comparison of probing and finetuning for different model sizes on top 3 Polaris
benchmark tasks. We additionally compare to the best model reported on Polaris Hub.
Compared to probing, finetuning is found to perform better at trainable parameter utilization.
Larger finetuned models further outperform previous best methods on the benchmark.

H.1 The Polaris Benchmark - Depth Scaling

Figure 8: Comparison of probing and finetuning for different MPNN++ model depths on the
Polaris benchmark. Darker green shades denote higher/desirable metric values. Average
spearman correlation between depth and performance is 0.46. Both probing and finetuning
strategies improve scaling behavior with increasing depth across the Polaris benchmark.
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Figure 9: Comparison of probing for different depth sizes on top 3 Polaris benchmark tasks.
We additionally compare to the best model reported on Polaris Hub. Probed models scale
well with increasing depth and outperform previous best methods on the benchmark.

H.2 The Polaris Benchmark - Molecule Scaling

Figure 10: Scaling behavior of probed 100M parameter MPNN++ models across differ-
ent dataset molecule fractions on the Polaris benchmark. Darker green shades denote
higher/desirable metric values. Average spearman correlation between molecule fraction
and performance is 0.30. Models show consistent improvement in performance with the
increasing size of datasets.

Figure 11: Comparison of probing for different molecule dataset sizes on top 3 Polaris
benchmark tasks. We additionally compare to the best model reported on Polaris Hub.
Probed models scale well with dataset sizes and outperform previous best methods on the
benchmark.
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H.3 The Polaris Benchmark - Label Scaling

Figure 12: Performance of probed 100M parameter MPNN++ models across different label
fractions in the Polaris benchmark. Darker green shades denote higher/desirable metric
values. Average spearman correlation between labell fraction and performance is 0.56.
Models continue to maintain consistent performance despite the increasing number of labels.

H.4 The Polaris Benchmark - Dataset Scaling

Figure 13: Comparison of probed 100M paramter MPNN++ models on the Polaris benchmark
tasks (in columns) when trained on different pretraining datasets (in rows). Darker green
shades denote higher/desirable metric values. Average spearman correlation between choice
of dataset and performance is -0.31. One can note that removing the PCBA 1328 dataset
significantly hinders performance across all tasks, while removing the L1000 datasets improves
performance on most tasks.

H.5 The TDC Benchmark - Data leakage

Considering that the pre-training dataset is supervised, it is important to consider data-
leakage as a source of experimental error. This is especially the case for the PCBA 1328
dataset.
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PCBA 1328 contains only classification assays with more than 6000 molecules each, which
automatically disqualifies most of TDC and all of Polaris. The TDC datasets remaining
after this constraint are the 3 CYP* Veith datasets, and the AMES dataset.

The AMES dataset is not present in PubChem, excluding it from the list of potential
leaks.

Regarding the 3 CYP* Veith datasets, they represent inibition assays against recombinant
enzymes (Veith et al., 2009). The three assays from TDC, and two others from the paper,
are all present and aggregated under assayID-1851. Therefore, whenever a molecule is active
against any of the enzyme, the value is 1, otherwise it is 0. Therefore, there is a minor leak,
although the datasets are not identical. Further, no evidence of leak was observed in terms
of abnormally high performance of the model on these assays, which is expected considering
that the model is learning more than 3000 labels simultaneously.

H.6 The TDC Benchmark - Width Scaling

Figure 14: Comparison of probing and finetuning of width-scaled models for (left) MPNN++,
(center) transformer and (right) hybrid models across different model sizes on the TDC
benchmark. Darker green shades denote higher/desirable metric values. Average spearman
correlations for MPNN, transformer and hybrid models are Both probing and finetuning
strategies improve scaling behavior with increasing number of parameters across the TDC
benchmark. The average spearman correlation between width and performance is 0.6 when
probing MPNNs and 0.72 when finetuning MPNNs, effectively showing that model size plays
an important role in predictive performance.
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Figure 15: Comparison of probing and finetuning for different (MPNN++) model sizes
on top 8 TDC benchmark tasks. Compared to probing, finetuning is found to perform
better at trainable parameter utilization. This leads to an improved scaling behavior during
downstream learning.

H.7 The TDC Benchmark - Depth Scaling

Figure 16: Comparison of probing and finetuning of depth-scaled models for (left) MPNN++,
(center) transformer and (right) hybrid models across different model depths on the TDC
benchmark. Darker green shades denote higher/desirable metric values. Average spearman
correlation between depth and performance is -0.11 for probed MPNNs and 0.33 for finetuned
MPNNs. While performance increases with depths up to 8 and 16, larger depths saturate
model representations.
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H.8 The TDC Benchmark - Molecule Scaling

Figure 17: Comparison of probing and finetuning of molecule-scaled 100M parameter models
for (left) MPNN++, (center) transformer and (right) hybrid models across different
dataset sizes on the TDC benchmark. Darker green shades denote higher/desirable metric
values. Average spearman correlation between molecule fraction and performance is 0.28
for probed MPNNs and 0.31 for finetuned MPNNs. Finetuned models scale better when
compared to probed models. However, increasing the size of finetuning datasets leads to
minor improvements beyond the 50% dataset size fraction.

H.9 The TDC Benchmark - Label Scaling

Figure 18: Comparison of probing and finetuning for 100M parameter MPNN++ across dif-
ferent label fractions on the TDC benchmark. Darker green shades denote higher/desirable
metric values. Average spearman correlation between label fraction and performance is 0.54
for probed MPNNs and 0.72 for finetuned MPNNs. Finetuned models scale better when
compared to probed models. Increasing label fractions do not deteriorate model performance.
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H.10 The TDC Benchmark - Dataset Scaling

Figure 19: Performance of probed 100M parameter MPNN++ model on TDC benchmark
tasks (in columns) when pretrained without certain datasets (in rows). Darker green
shades denote higher/desirable metric values. One can note that removing the PCBA 1328
dataset significantly hinders performance across all tasks, while removing the L1000 datasets
improves performance on most tasks.

H.11 The TDC and Polaris Benchmarks - Task-head ablations

Figure 20: Performance of probed 100M MPNN++ models on TDC benchmark (left)
and Polaris benchmark (right), with the tasks in columns, when probing is done from
different task heads without certain datasets (in rows). Darker green shades denote
higher/desirable metric values, and bold/underline indicates the best value in a given
column. One can observe that the graph output nn, e.g. the hidden dimension that is
fed to all task-heads, is generally the best choice for probing due to it containing general
and compressed information. The PCBA 1328 task-head is also a good choice due to its
proximity to the downstream task. The PCQM4M G25 task-head is the least interesting
due to it being significantly different from the downstream fine-tuning tasks.
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