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Abstract

Spiral acquisitions are preferred in real-time MRI because of their time efficiency. A fun-
damental limitation of spirals is image blurring due to off-resonance, which degrades image
quality significantly at air-tissue boundaries. Here, we demonstrate a simple CNN-based
deblurring method for spiral real-time MRI of human speech production. We show the CNN-
based deblurring is capable of restoring blurred vocal tract tissue boundaries, without a need
for exam-specific field maps. Deblurring performance is superior to a current auto-calibrated
method, and slightly inferior to ideal reconstruction with perfect knowledge of the field maps.
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1. Introduction

Spiral acquisitions are widely used in real-time magnetic resonance imaging (RT-MRI) due to
their time efficiency (Meyer et al., 1992), which has made it possible to capture vocal tract
dynamics during natural speech (Lingala et al., 2016a). A fundamental limitation of spirals
is image blurring due to off-resonance (Block and Frahm, 2005). This blurring is spatially
varying and degrades image quality most significantly at air-tissue boundaries (Schenck, 1996),
which are the exact locations of interest in speech RT-MRI.

Several methods exist to resolve this artifact (Nayak et al., 2001; Sutton et al., 2010; Lim
et al., 2019a), but most of them 1) are computationally slow and 2) require explicit knowledge
of field maps at the cost of scan time efficiency. Convention methods with these limitations
hardly resolve the artifact for RT-MRI applications where low-latency processing and high
temporal resolution are crucial. Recently, convolutional neural network (CNN) approaches
have shown promise in solving this specific deblurring task (Zeng et al., 2019; Lim et al.,
2019b). Compared to conventional methods, CNN would learn from training samples to
recognize and undo the characteristic effects of off-resonance. Once trained, the feedforward
operation of CNN is fast and does not rely on measuring exam-specific field maps but can
generate a desired sharp image given a blurry image input in an end-to-end manner.

In this work, we utilize a simple CNN-based method to restore blurred vocal tract articula-
tor boundaries for spiral RT-MRI of speech production. We consider this application because
off-resonance appears as spatially (and temporally) abruptly varying blur at the articulators
of interest and is a fundamental limitation to address. We evaluate the proposed method
quantitatively using image quality metrics and qualitatively via visual inspection, and via
comparison with conventional deblurring methods.
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Figure 1: (A) Generation of training data. (B) 3-layer residual CNN architecture

2. Materials and Methods

Training data We used 2D spiral RT-MRI data acquired from 33 subjects (each consisting
of 400 frames with an image size of 84×84×2) on a 1.5 Tesla scanner using a vocal-tract imag-
ing protocol (Lingala et al., 2016b). Ground truth images and field maps were obtained after
applying a recently proposed off-resonance deblurring method (Lim et al., 2019a) (Figure 1A).
Distorted images were simulated from the ground truth images with augmented field maps
f ′(x, y, t) frame-by-frame using two spiral trajectories with short and long readout durations
(Tread) of 2.52 and 7.936 ms, respectively. We augmented the field maps by f ′ = αf + β to
simulate varying range of off-resonance and global offset. Note that the severity of image blur-
ring would be proportional to |Tread · f ′|. We split data into 23, 5, and 5 subjects for training,
validation, and test sets, respectively. We tested the impact of augmentation strategies on
performance in a variety of settings (not shown here).

Network architecture The network is composed of 3 convolutional layers (Figure 1B).
The first 2 layers apply 2D convolution, followed by ReLU operation. The last layer applies
2D convolution with 1×1 spatial support only. We add a skip connection. Both the input
and output of the network consist of two channels (real and imaginary). The number of filter
width was set to 64, 32, and 2. We choose the filter sizes of 9, 5, and 1, based on performance
in terms of image quality metrics using the validation set. The model is trained using the
training set with a combination of L1 loss and gradient difference loss (Mathieu et al., 2016).

3. Experiments and Results

Evaluation on synthetic test data We applied multi-frequency interpolation (MFI) (Man
et al., 1997), model-based iterative reconstruction (IR) (Sutton et al., 2003), and the proposed
CNN into synthetically generated test data. It should be noted that we assume a reference field
map to be known for both the MFI and IR methods although it is not available in practice.
All those methods deblurred images frame-by-frame. In Figure 2, blurring is observed around
the lips, tongue surface, and soft palate in the uncorrected image. After deblurring, MFI even
deteriorates the delineation of boundaries in those regions, whereas the IR method almost
perfectly resolves the blurring artifact, which is also shown in Figure 2B and on quantitative
quality measures. The proposed method successfully resolves the blurring artifact in those
regions, which is visually comparable to the result from IR. Both IR and the proposed methods
exhibit sharp boundaries between the tongue and air and around the soft palate, which is found
consistent over time (yellow arrows, Figure 2B).

Evaluation on experimental in vivo data We applied the trained network to real data
acquired using the short and long spiral acquisitions. Note that the long spiral acquisition
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Figure 2: Representative synthetic images from the long spiral acquisition. (A) Images before
and after deblurring with various methods. (B) Intensity vs time plot marked by the dotted
line in (A). Mean and standard deviation of PSNR, SSIM, HFEN are present below, averaged
over time and across readouts and subjects.

Figure 3: Representative experimental results using the short and long spiral acquisitions
for comparison methods. Note that the short spiral uncorrected image represents one of the
current standard practice (Lingala et al., 2016b).

enables 1.7-fold higher scan efficiency than the short one (a current standard practice), but
inherently experiences much severe blurring (see red arrows in Figure 3). We compared results
with an IR-based method (Lim et al., 2019a). This auto-calibrated method estimates dynamic
field maps from distorted images itself with no scan time penalty. As shown in Figure 3, the
proposed method provides improved delineation of the boundaries, which is consistent for
both the short and long spiral acquisitions, whereas the IR method does not reliably work
at the longer spiral acquisition (yellow arrows). This is a practical limitation of conventional
methods where performance is limited by the quality of field map estimates.

4. Conclusion

We demonstrate an efficient, field-map-free approach for deblurring of spiral speech RT-MRI.
The CNN-based deblurring is shown to be effective at resolving spatially varying blur at the
vocal tract articulator boundaries, even with the longer spiral acquisition. In the context of
speech RT-MRI, this can enable 1.7-fold improvement in scan efficiency. The proposed method
is also computationally fast (12.3 ± 2.2 ms per-frame), enabling low-latency processing for
RT-MRI applications.
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