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A clipart of V* reading a book

A clipart of V* holding a cake

A clipart of V* with blue wings

A clipart of V* holding flowers

… V* holding an umbrella … V* listening to music… V* spreading wings

… V* sitting on a boat … V* standing on tree stump… V* wearing a hat

Figure 1: Text-guided vector graphics customization results. Given an exemplar vector graphic in SVG format (a), our model
can generate customized vector graphics (b) based on diverse text inputs while keep the visual identity (𝑉 ∗) of the exemplar
SVG. Exemplar SVGs: the 1𝑠𝑡 row is from ©iconfont; the 2𝑛𝑑 row is from illustac creator ©Zarame.

ABSTRACT
Vector graphics are widely used in digital art and valued by de-
signers for their scalability and layer-wise topological properties.
However, the creation and editing of vector graphics necessitate cre-
ativity and design expertise, leading to a time-consuming process. In
this paper, we propose a novel pipeline that generates high-quality
customized vector graphics based on textual prompts while preserv-
ing the properties and layer-wise information of a given exemplar
SVG. Our method harnesses the capabilities of large pre-trained
text-to-image models. By fine-tuning the cross-attention layers of
the model, we generate customized raster images guided by textual
prompts. To initialize the SVG, we introduce a semantic-based path
alignment method that preserves and transforms crucial paths from
the exemplar SVG. Additionally, we optimize path parameters using
both image-level and vector-level losses, ensuring smooth shape
deformation while aligning with the customized raster image. We
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extensively evaluate ourmethod usingmultiple metrics from vector-
level, image-level, and text-level perspectives. The evaluation re-
sults demonstrate the effectiveness of our pipeline in generating
diverse customizations of vector graphics with exceptional quality.
The project page is https://intchous.github.io/SVGCustomization.
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1 INTRODUCTION
Vector graphics is a type of art composed of geometric shapes,
such as lines, curves, and polygons. It plays essential roles under
various practical scenarios (e.g., animations, cartoons, and graphic
designs) due to its scalability, precision, and versatility for creating
high-quality visuals and designs [Quint 2003]. With the feature of
being resolution-independent, vector graphics ensures consistent
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image quality across different media and devices, and it also enables
easy manipulation, making it efficient to create intricate designs.
However, creating high-quality vector graphics requires expertise
and can be time-consuming [Diebel 2008]. Inspired by the recent
success of text-to-image (T2I) generation [Ramesh et al. 2021; Rom-
bach et al. 2022; Ruiz et al. 2022], one question raises whether the
model can assist in automating the creation of vector graphics.

One approach for adapting from text-to-image to text-to-vector
(T2V) is to first generate raster images from text and then con-
vert them into vectors using existing image vectorization methods
such as Potrace [Selinger 2003], Effective Vectorization [Yang et al.
2015], Photo2Clipart [Favreau et al. 2017], or Layer-Wise Vector-
ization [Ma et al. 2022]. However, image vectorization methods
often generate undesired vector elements (e.g., irregular shapes
or overcomplicated paths) and layer relationships, complicating
further graphic manipulation. Recently, a new category of T2V
methods (e.g., VectorFusion [Jain et al. 2022]) has emerged that di-
rectly optimizes the paths of vector graphics using some pre-trained
vision-language models such as the CLIP model[Radford et al. 2021]
or the Diffusion model[Rombach et al. 2022]. These methods can
generate diverse vector graphics given the same text input. How-
ever, restricting the appearance of generated subjects and ensuring
path regularity can be challenging with these methods.

To address the aforementioned issues in T2V, we propose a novel
task called text-guided vector graphics customization. Following the
previous works [Frans et al. 2022; Ma et al. 2022], we use Scalable
Vector Graphics (SVGs) with a set of parametric shape primitives
(e.g., cubic Bézier curves) to represent vector graphics. Our objective
is to generate customized SVGs that maintain the visual identity,
vector properties, and layer relationships of an exemplar SVG, based
on a given text prompt. Such a method can benefit a lot of practical
use cases, imagining that you have created a new character or
logo (e.g., a cute bird), but want to adapt it into a different context
(e.g., the cute bird reading a book) or generate more variations, as
shown in Fig. 1. However, this task poses several unique challenges.
First, the visual identity of the input SVG should be well preserved
in the customized results, which is a difficult task given only a single
SVG input. Second, to fit into diverse contexts, the geometry and
appearance features of the customized SVG can be really different,
how to maintain the correct path relationships and incorporate
newly added contents/paths at the same time remains unsolved.
Lastly, the method must generate visually pleasing results alongside
valid vector paths, further increasing the complexity of the task.

To this end, we propose a pipeline for text-guided vector graph-
ics customization. We leverage a powerful pre-trained diffusion
model [Rombach et al. 2022] that has been proven to be efficient
in multiple T2I generation and editing tasks. By fine-tuning the
cross-attention layers of the pre-trained diffusion model with ex-
emplar SVG and input text prompt, we first generate a customized
raster image that preserves the visual identity of the exemplar.
Inspired by experts’ design process that reuses essential seman-
tic elements across a series of SVGs to achieve coherence with
the concept[Ambrose et al. 2019], we propose a semantic-based
path alignment method that keeps important paths based on se-
mantic correspondence between the exemplar and the customized
raster image. We apply rigid transformations to these kept paths to
provide a good initialization of the output customized SVG. Path

parameters (e.g., control point positions and fill colors) of the SVG
are further optimized with a set of image-level loss and vector-level
loss to reconstruct the customized raster image while preserving
path regularity. The image-level loss measures the distance between
the rendered SVG and customized image in the CLIP latent space,
promoting fidelity to the customized image. The vector-level loss
incorporates a local Procrustes loss, enforcing path regularity by
minimizing local deformation of control points. After optimization,
a customized SVG corresponding to the text prompt and preserving
the visual identity of the exemplar SVG is generated.

We assess our method using vector-level, image-level and text-
level metrics, confirming its efficacy in creating high-quality text-
guided vector graphics customizations. Our key contributions are:

• We propose the first pipeline for vector graphics customization
that generates customized SVGs based on text prompts while
preserving the visual identity of the exemplar SVG.

• We present a semantic-based path alignment method that allows
for the reuse of paths in the exemplar SVG, thus better main-
taining the valid path properties and layer relationships of the
exemplar SVG in customized SVGs.

• We propose a path optimization method for image vectorization
that uses both image-level loss and vector-level loss to reconstruct
the target image while retaining the path regularity.

2 RELATEDWORK
2.1 Text-to-Image Generation and Manipulation
Rapid progress of deep learning has driven advancements in T2I
tasks. Early methods, such as text-conditional GANs [Li et al. 2019;
Reed et al. 2016], offer end-to-end architectures but are limited to
specific domains. Autoregressive models like DALL-E [Ramesh et al.
2021] use transformers and large-scale datasets for open-domain
generation. Recently, diffusion models become state-of-the-art in
T2I generation. GLIDE [Nichol et al. 2021] innovatively employs
a conditional diffusion model to guide the noise diffusion process
of images with text. By further introducing image latent features,
Stable Diffusion [Rombach et al. 2022] overcomes resolution con-
straints and generates amazing high-res results. Diffusion models
also support flexible text-guided image editing and customization.
By embedding images and text into a unified latent space, diffusion
models can generate customized images of specific concepts based
on limited user-provided images and text prompts as guidance [Gal
et al. 2022; Kumari et al. 2022; Ruiz et al. 2022]. However, these
diffusion methods are primarily designed for image customization,
and a further vectorization step is required to convert them into
vector graphics.

2.2 Image Vectorization
Image vectorization aims at representing an image using paramet-
ric shape primitives, such as control points and color parameters
of vector paths [Quint 2003]. Traditional vectorization methods
follow a pipeline that involves segmenting images into regions
based on color similarity [Kopf and Lischinski 2011] and fitting
curves to the region boundaries [Favreau et al. 2017; Selinger 2003;
Yang et al. 2015]. Furthermore, Perception [Hoshyari et al. 2018]
and PolyFit [Dominici et al. 2020] refine the curve-fitting process
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Figure 2: Text-Guided vector graphics customization pipeline. Given an exemplar SVG and a text prompt as input (a), the
method consists of three stages. (b) Concept Fine-tuning: By fine-tuning a pre-trained T2I model, a customized raster image
is generated based on the text prompt. (c) Path Alignment: Important paths from the exemplar SVG are adapted based on
semantic correspondences with the customized raster image, providing an initial customized SVG. (d) Path Optimization: The
path parameters are optimized using both image-level and vector-level losses to produce the final customized SVG (e). The
exemplar SVG is from envatoelements creator ©Telllu.

to better align with perceptions. However, these traditional vector-
ization approaches ignore the topological information inherent in
raster images and are thus incapable of obtaining layer-wise paths
in SVGs. The advent of differentiable rendering techniques [Li et al.
2020] has improved image vectorization by enabling the optimiza-
tion of path parameters using loss functions defined in image space.
LIVE [Ma et al. 2022] uncovers layer-wise topology by directly
optimizing path parameters under the reconstruction supervision
of the input image. SketchRNN [Ha and Eck 2017] combines dif-
ferentiable rendering with a recurrent neural network (RNN) to
predict vector paths in order. Subsequently, Sketchformer [Ribeiro
et al. 2020] uses a transformer network to recover sketch strokes
from raster images. Im2vec [Reddy et al. 2021] introduces a VAE
to predict ordered vector paths from raster images. Despite their
success, inadequate path initialization and optimization can result
in messsy and redundant paths.

2.3 Text-to-Vector Generation
Besides combining T2I generation and image vectorization, another
line of work for T2V generation is to directly optimize SVG paths
guided by pre-trained vision-language models, such as the CLIP
model [Radford et al. 2021] or the diffusion model [Rombach et al.
2022]. CLIPDraw [Frans et al. 2022] optimizes the image-text simi-
larity metric in CLIP latent space to generate vector graphics from
text prompts. StyleCLIPDraw [Schaldenbrand et al. 2022] augments
CLIPDraw by introducing a style loss, enabling both artistic and
textual control over the synthesized drawings. ES-CLIP [Tian and
Ha 2022] adopts an evolution strategy to optimize triangle-based
vector elements. To vectorize and edit the input image based on text
prompts, CLIPVG [Song et al. 2022] progressively enhances SVG
details by adding additional paths. Building upon the strong visual
and semantic priors of pre-trained diffusion models, VectorFusion
[Jain et al. 2022] optimizes an SVG consistent with a text prompt
using Score Distillation Sampling (SDS) loss. However, challenges
persist in applying these methods to vector graphics customization.
Ensuring that the resulting SVG maintains the characteristics of
the exemplar SVG, even with initialization, can be difficult due to

diverse optimization processes. Without regularization, resulting
SVGs may have messy and stacked paths, complicating further
editing and modification.

3 OVERVIEW
Given an exemplar SVG and a text prompt, our goal is to generate
a customized SVG that conforms to the semantics of the given
text prompt while preserving the visual identity of the exemplar
SVG. Additionally, the customized SVG should maintain the valid
path properties and layer relationships of the exemplar SVG. Since
an SVG is composed of a set of paths, we define each path as a
piecewise Bézier spline composed of several cubic Bézier curves
connected end-to-end and filled with a uniform color 𝑐 . Therefore,
we can represent a path as 𝑃𝑎𝑡ℎ = (𝑝1, 𝑝2, . . . , 𝑝𝑑 , 𝑐), where {𝑝 𝑗 }𝑑𝑗=1
are 𝑑 control points used to define the cubic Bézier curves. Given
an exemplar SVG consisting of 𝑛 parametric paths, denoted as
𝑆𝑉𝐺𝐸 = {𝑃𝑎𝑡ℎ1, 𝑃𝑎𝑡ℎ2, ..., 𝑃𝑎𝑡ℎ𝑛}, and a text prompt 𝑇 , our goal
is to obtain a customized SVG composed of 𝑚 optimized paths,
denoted as 𝑆𝑉𝐺𝐶 = {𝑃𝑎𝑡ℎ∗1, 𝑃𝑎𝑡ℎ

∗
2, . . . , 𝑃𝑎𝑡ℎ

∗
𝑚}.

Our framework, as shown in Fig. 2, is inspired by experts’ design
process. When designing a series of SVGs for a specific concept,
designers initially select essential semantic elements to reuse across
SVGs, place them in appropriate regions, and progressively adjust
the paths concerning their position, shape, color, and hierarchical
order to generate a set of SVGs that share the same visual identity
but have different contexts [Ambrose et al. 2019]. Inspired by this
process, our text-guided vector graphics customization framework
can be decomposed into three stages: concept fine-tuning, path
alignment, and path optimization.

Concept Fine-tuning (Sec. 4.1). To avoid the need for training
on large vector graphics datasets, our first step is to leverage the
powerful visual and semantic priors induced by a pre-trained T2I
generation model for image customization. Specifically, we use a
differentiable rasterizer [Li et al. 2020], denoted as R, to obtain
a rasterized exemplar SVG, denoted as I𝐸 = R(𝑆𝑉𝐺𝐸 ). We then
fine-tune the pre-trained Stable Diffusion model [Rombach et al.
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2022] based on the exemplar image I𝐸 to generate a customized
raster image, denoted as I𝐶 , that reflect the desired modifications
indicated by the text prompt 𝑇 (see Fig. 2 (b)).

Path Alignment (Sec. 4.2). To preserve path properties and layer-
wise information from the exemplar SVG, we use pre-trained DINO-
ViT features [Caron et al. 2021] to establish semantic correspon-
dences between the exemplar image I𝐸 and the customized image
I𝐶 . We then transform reusable paths from 𝑆𝑉𝐺𝐸 to their corre-
sponding connected component in I𝐶 , adjusting their positions and
scales as necessary. For unmatched components in I𝐶 , we add new
paths. As a result, we obtain 𝑆𝑉𝐺0

𝐶
= {𝑃𝑎𝑡ℎ01, 𝑃𝑎𝑡ℎ

0
2, ..., 𝑃𝑎𝑡ℎ

0
𝑚} as

an initialization (see Fig. 2 (c)) for the customized SVG.

Path Optimization (Sec. 4.3). After initialization, we optimize the
geometric and color parameters of paths based on both image-level
loss and vector-level loss. The differentiable rasterizer connects
the path parameters 𝑆𝑉𝐺𝐶 and the customized image I𝐶 . Path
optimization refines the path parameters to more accurately fit
I𝐶 , while maintaining smooth path deformation. This process ulti-
mately yields the customized SVG with optimized paths 𝑆𝑉𝐺𝐶 =

{𝑃𝑎𝑡ℎ∗1, 𝑃𝑎𝑡ℎ
∗
2, ..., 𝑃𝑎𝑡ℎ

∗
𝑚} (see Fig. 2 (d)).

4 METHOD
4.1 Concept Fine-tuning
Instead of training a T2V model directly for SVG generation and
editing, which requires a large dataset of vector graphics that may
not be readily available, we utilize a pre-trained T2I generation
model like Stable Diffusion [Rombach et al. 2022]. We first generate
a customized image using this model and then proceed to vectorize
it. However, since the Stable Diffusionmodel is solely trained on text
prompts, it cannot maintain the visual identity of our exemplar SVG.
To overcome this limitation, we introduce a Concept Fine-tuning
approach, where the model is fine-tuned on the rasterized exemplar
SVG. This fine-tuning enables the model to generate customized
images that reflect the desired modifications specified by the text
prompt while preserving the visual identity of the exemplar.

Given an exemplar image I𝐸 , which is rendered from 𝑆𝑉𝐺𝐸 , we
aim to fine-tune the Stable Diffusion model to generate an image
that resembles I𝐸 under a specific text prompt denoted as ’A clipart
of 𝑉 ∗’. 𝑉 ∗ is initialized with a rarely occurring token embedding
and optimized concurrently with the fine-tuning. However, fine-
tuning all the weights of the Stable Diffusion model may lead to
overfitting on I𝐸 , resulting in reduced editing variations. Thus, we
adopt an effective concept fine-tuning strategy that only fine-tunes
the cross-attention blocks between text and image, following the
approach in [Kumari et al. 2022]. Specifically, latent image features
form the query, while text features are projected into the key and
value using the projection matrices𝑊𝑘 and𝑊𝑣 . The cross-attention
operation is conducted between the query, key and value, and we
only fine-tune the parameters𝑊𝑘 and𝑊𝑣 , as shown in Fig. 2 (b).

We fine-tune the Stable Diffusion model "SD-V1-5" on I𝐸 , then
we can concatenate𝑉 ∗ with the input text prompt𝑇 to form a new
prompt such as "𝑉 ∗ running, holding a trophy," to generate a cus-
tomized raster image I𝐶 that reflects the intended edits. To further
promote the generation of customized images with flat vector style,
we add a suffix to the prompt during inference: "minimal flat 2d

𝑭𝑬
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…

(a) Dual Semantic Matching
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Customized 
Features

…

Paths from Exemplar
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Exemplar Customized
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Figure 3: Our path alignment module for generating initial
paths for customized SVG based on deep DINO-ViT features.

vector. no outlines. trending on artstation." As sampling results may
not always align well with text prompts, we generate 𝐾 images and
select the sample that exhibits the highest consistency with the text
prompt based on similarities in CLIP ViT-B/32 features [Radford
et al. 2021]. For generated images containing backgrounds, we use
U2-Net [Qin et al. 2020] to automatically mask out background.

4.2 Path Alignment
After obtaining a customized image I𝐶 , our goal is to convert it
into a vectorized version 𝑆𝑉𝐺𝐶 . However, the quality of image
vectorization strongly relies on initialization. Random initialization
often leads to unsuccessful topological extraction and generates
redundant shapes. To address this issue, LIVE [Ma et al. 2022]
attempts to determine the initial path location based on the color
and size of each connected component. However, color and size
features are inadequate for retrieving topological path information
due to the complex occlusion relationships among elements.

To tackle this challenge, our proposed solution is to reuse suitable
paths from the exemplar 𝑆𝑉𝐺𝐸 as initialization. To accomplish this,
we need to establish correspondences between paths in 𝑆𝑉𝐺𝐸 and
connected components in I𝐶 . We can then transform and scale
selected paths of 𝑆𝑉𝐺𝐸 to match their corresponding components
in I𝐶 . As customization may require appearance changes, we use
semantic features from the pre-trained deep DINO-ViT model "dino-
vitb8" [Caron et al. 2021] instead of relying on lower-level features
such as color and shape for matching. This approach enables us to
establish more reliable semantic correspondences.

Dual Semantic Matching. Deep DINO-ViT features have been
explored and applied to various visual tasks, such as image co-
segmentation and object part correspondence [Amir et al. 2021;
Hadjivelichkov et al. 2023], providing fine-grained local semantic
features of object parts. Therefore, we adopt DINO-ViT features
to represent paths in 𝑆𝑉𝐺𝐸 and components in I𝐶 in order to find
semantic correspondences between them. In DINO-ViT, each layer
contains a set of features, including a query, key, value, and token.
Following the analysis in DeepViT [Amir et al. 2021], we utilize
the key features to represent the semantic information of images.
Therefore, both I𝐸 and I𝐶 are fed into a pre-trained DINO-ViT
model to obtain the corresponding key feature maps 𝐹𝐸 and 𝐹𝐶 ,
where each point in the feature map represents semantic feature of
an 8 × 8 image patch, as illustrated in Fig. 3 (a).
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To perform semantic matching, we compute corresponding fea-
tures for each path. Specifically, we segment I𝐸 according to the
paths in 𝑆𝑉𝐺𝐸 , where each segment corresponds to a path with
no overlaps. We then down-sample the segmentation map with
the same resolution as 𝐹𝐸 and calculate the average features of 𝐹𝐸
within each segment. This process generates the feature represen-
tation for the 𝑛 paths, forming a path feature vector {𝐹𝑃𝑎𝑡ℎ𝑖 }𝑛𝑖=1.
Similarly, to obtain a feature vector for the𝑚 components in I𝐶 , we
segment the image into connected components with a uniformly-
filled color and accumulate feature points in 𝐹𝐶 . This feature vector
is denoted as {𝐹𝐶𝑜𝑚𝑝 𝑗

}𝑚
𝑗=1. We then compute the pairwise cosine

similarity between the feature vectors 𝐹𝑃𝑎𝑡ℎ𝑖 and 𝐹𝐶𝑜𝑚𝑝 𝑗
to con-

struct a similarity matrix 𝑆𝑖𝑚, where 𝑆𝑖𝑚(𝑖, 𝑗) denotes the similar-
ity between the 𝑖-th path and the 𝑗-th component. To build robust
correspondence between paths and components, we perform dual
semantic matching. This involves applying a dual softmax to 𝑆𝑖𝑚
by normalizing it in both row and column dimensions, resulting in
a dual similarity matrix 𝑆𝑖𝑚2 as follows:

𝑆𝑖𝑚2 = softmax(𝑆𝑖𝑚,𝑑𝑖𝑚 = 𝑟𝑜𝑤) ⊙ softmax(𝑆𝑖𝑚,𝑑𝑖𝑚 = 𝑐𝑜𝑙) (1)

where ⊙ indicates the element-wise product.
As shown in Fig. 3 (b), for each component with index 𝑗 , we

match it with the 𝑖-th path if 𝑆𝑖𝑚2 (𝑖, 𝑗) is the largest value in the
𝑗-th column. However, we only consider the match to be valid
if 𝑆𝑖𝑚2 (𝑖, 𝑗) exceeds a predefined threshold 𝜏𝑡ℎ = 0.0625. Scores
falling below this threshold indicate low similarity and are dis-
carded. By leveraging the dual semantic matching mechanism, we
can obtain more accurate semantic correspondence.

Path Pre-align. As shown in Fig. 3 (c), to initialize paths that
align with I𝐶 , we transform and scale the matched paths from
𝑆𝑉𝐺𝐸 to their corresponding components in I𝐶 . Specifically, we
compute the convex hull for matched image components that have a
corresponding SVG path, estimate the affine transformation matrix
between the hull and path boundary points using the coherent point
drift (CPD) algorithm [Myronenko and Song 2010], and accordingly
transform the path. For unmatched components in I𝐶 , we use a
curve fittingmethod [Selinger 2003] to fit their boundaries with new
paths composed of piecewise cubic Bézier curves. This results in a
new path set 𝑆𝑉𝐺0

𝐶
= {𝑃𝑎𝑡ℎ01, 𝑃𝑎𝑡ℎ

0
2, . . . , 𝑃𝑎𝑡ℎ

0
𝑚}, which consists of

the matched and transformed paths from the exemplar SVG, along
with the fitted paths for the unmatched components.

4.3 Path Optimization
The path alignment step provides a good initialization for the cus-
tomized vector graphic, which does not need to be highly accurate.
To better reconstruct the customized image with our customized
SVG, we perform a path optimization process. Given the initial
path parameters 𝑆𝑉𝐺0

𝐶
, the goal is to obtain a refined set of path

parameters 𝑆𝑉𝐺𝐶 by optimizing control point positions and fill
colors to better align with I𝐶 while preserving the regularity of the
initial paths. To accomplish this, we employ both image-level and
vector-level losses to guide the path optimization process (Fig. 4).

Image-Level Loss. The differentiable rasterizer [Li et al. 2020]
establishes a connection between the SVG parameters and the raster
image, enabling backpropagation of image-level losses to optimize
path parameters such as control point positions and filling colors.

Initialized Paths

Image-Level LossVector-Level Loss

Customized Image

CLIP Loss

Local Procrustes loss

Loss ↓Rigid

Abrupt

Differentiable 
Render

…

Loss ↑

Rendered SVG

CLIP

Figure 4: The path optimization module of our method.

Drawing inspiration from CLIPasso [Vinker et al. 2022], we employ
a CLIP-based loss to evaluate the image-level similarity between
the rendered image of the customized SVG 𝑆𝑉𝐺𝑖

𝐶
at the current

𝑖-th iteration and the target image I𝐶 . We compute the 𝐿2 distance
between their intermediate-level activations of CLIP as follows:

𝐿𝐶𝐿𝐼𝑃 =
∑︁
𝑙

∥𝐶𝐿𝐼𝑃𝑙 (I𝐶 ) −𝐶𝐿𝐼𝑃𝑙 (R(𝑆𝑉𝐺𝑖
𝐶 ))∥

2
2, (2)

where 𝐶𝐿𝐼𝑃𝑙 denotes the CLIP encoder activation at layer 𝑙 . For
this purpose, we utilize layers 3 and 4 of the ResNet101 CLIP model.
By employing the CLIP-based loss, we encourage the customized
SVG to be faithful to the customized image.

Vector-Level Loss. To avoid messy paths during optimization
while still allowing for necessary deformation, we incorporate the
Procrustes distance [Wang and Mahadevan 2008] into our optimiza-
tion process. The Procrustes distance ProDist(𝑃1, 𝑃2) measures the
similarity between two point sets 𝑃1 and 𝑃2 by minimizing their
dissimilarity through a sequence of rigid transformations, includ-
ing translation, scaling, and rotation operations. After applying
these rigid transformations, the Procrustes distance is computed by
summing up the Euclidean distances between the corresponding
points in the aligned two point sets.

We apply the Procrustes distance to a local window of every
control point for every path. Let 𝑝𝑖

𝑗,𝑘
denote the 𝑘-th control point

in the 𝑗-th path of the optimizing 𝑆𝑉𝐺𝑖
𝐶
in the current 𝑖-th iteration,

while 𝑝0
𝑗,𝑘

denotes the same control point in the initialized 𝑆𝑉𝐺0
𝐶
.

Our local Procrustes loss is defined as:

𝐿𝑃𝑟𝑜𝑐𝑟𝑢𝑠𝑡𝑒𝑠 =

𝑚∑︁
𝑗

𝑑 𝑗∑︁
𝑘

ProDist(W(𝑝0
𝑗,𝑘
),W(𝑝𝑖

𝑗,𝑘
)). (3)

Here, W(𝑝) denotes a neighboring point set with a local window
centered at the control point 𝑝 . The window size can be adjusted to
balance local and global rigidity, with a larger window size implying
a stronger constraint on global rigidity. In our experiments, we set
the window size to be 4 neighboring control points. Procrustes
distances are accumulated for all 𝑑 𝑗 control points, where 𝑗 ranges
from 1 to𝑚, the total number of paths.

This local Procrustes loss applies geometric constraints to control
points, regulating the shape deformation of paths to be as locally
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rigid as possible. As illustrated in Fig. 4, the local Procrustes loss is
small when the shape deformation remains locally rigid, while it
becomes larger in the presence of curve intersections or abrupt cur-
vature changes. By constraining path optimization in this manner,
we preserve the regularity of the paths while allowing for some
degree of deformation to match the desired customization.

The overall loss function 𝐿 is defined as a combination of both
CLIP loss and local Procrustes loss:

L = LCLIP + 𝜆LProcrustes (4)

where 𝜆 is a balance factor. As there is a trade-off between the
CLIP loss and the local Procrustes loss, we prioritize the CLIP loss
in the early stages of optimization to achieve a better fit to the
customized image, and then increase the importance of the local
Procrustes loss to regularize the path shape. Specifically, we linearly
increase 𝜆 from 0.01 to 0.04 over 200 iterations. After convergence,
we obtain the optimized customized SVG, denoted as 𝑆𝑉𝐺𝐶 =

{𝑃𝑎𝑡ℎ∗1, 𝑃𝑎𝑡ℎ
∗
2, ..., 𝑃𝑎𝑡ℎ

∗
𝑚}.

5 EXPERIMENT
Experiment Setup. To evaluate our method, we collected 100

vector graphics from freepik1 and iconfont2, including 45 characters,
35 animals, and 20 scenes. We select text prompts from the Stable
Diffusion Prompts dataset [Dehouche and Kullathida 2023], which
includes diverse actions and scenes. For each SVG, we randomly
select 5 prompts and generate corresponding customized SVGs,
resulting in 500 pairs of exemplar and customized vector graphics.
The average number of paths in our customized SVGs is 28.

5.1 Evaluation Metrics
To assess the quality of text-to-SVG synthesis, we evaluate the
generated SVGs at vector-level, image-level and text-level.

Vector-level Evaluation. Evaluating text-to-SVG synthesis is chal-
lenging without ground truth SVGs. We directly compare the cus-
tomized SVG paths with the input exemplar SVG paths based on
shape similarity, since the exemplar SVGs can be regarded as well-
designed SVGs. Higher similarity indicates that the customized SVG
better preserves the original shape properties. In addition, we evalu-
ate vectorization quality based on smoothness criteria derived from
the prior perception and computer graphics research [Dominici
et al. 2020]. Specifically, the vector-level evaluation metrics include:
(a) Shape similarity (𝑆𝑖𝑚𝑠ℎ𝑎𝑝𝑒 ): 1 − 𝐷𝐻 , where 𝐷𝐻 is Hausdorff
distance between path control points of the exemplar SVG and the
customized SVG. (b) Smoothness: Inverse of the average curvature
variation of the paths in customized vector graphics.

Image-level Evaluation. As the customized image should keep
the same visual identity as the exemplar image, and the customized
SVG should follow the customized image after rendering, we de-
fine the image-level metrics as: (a) Exemplar image similarity
(𝑆𝑖𝑚𝑒𝑥𝑝 ): Cosine similarity between the exemplar image and the
rendered customized SVG result in CLIP space [Vinker et al. 2022].
(b) Customized image similarity (𝑆𝑖𝑚𝑐𝑢𝑠 ): 1 −𝑀𝑆𝐸, where𝑀𝑆𝐸

1https://www.freepik.com/
2https://icofont.com/

Table 1: Quantitative comparison with existing methods.
𝑆𝑖𝑚𝑠 , 𝑆𝑖𝑚𝑐𝑢𝑠 and 𝑆𝑖𝑚𝑒𝑥𝑝 denote shape similarity between
𝑆𝑉𝐺𝐸 and 𝑆𝑉𝐺𝐶 , RGB similarity between I𝐶 and rendered
𝑆𝑉𝐺𝐶 , CLIP similarity between I𝐸 and rendered 𝑆𝑉𝐺𝐶 .

Methods Vector Level Image Level Text level
𝑆𝑖𝑚𝑠 ↑ Smooth ↑ 𝑆𝑖𝑚𝑐𝑢𝑠 ↑ 𝑆𝑖𝑚𝑒𝑥𝑝 ↑ 𝑆𝑖𝑚𝐶𝐿𝐼𝑃 ↑

Potrace - 0.7919 0.9937 0.9076 0.3218
LIVE - 0.5929 0.9906 0.8576 0.2859

CLIPDraw 0.1380 0.4613 - 0.7862 0.3175
Vectorfusion 0.1434 0.4895 - 0.7214 0.2718

Ours 0.8121 0.7931 0.9944 0.9111 0.3227

(a) Exemplar SVG (b) CLIPDraw (c) Vectorfusion (d) Ours

… V* at skateboarding

… V* wearing a hat

… V* holding flower

Figure 5: Qualitative comparison with text-guided SVG op-
timization methods. Exemplar SVGs: the 1𝑠𝑡 row is from
©Freepik; the 2𝑛𝑑 row is from illustac creator ©Zarame; the
3𝑟𝑑 row is from envatoelements creator ©Telllu.

is the mean squared error between the customized image and the
rendered customized SVG result in RGB space.

Text-level Evaluation. To compute whether the customized SVG
is aligned with the input text prompt, we define the text-level
similarity by calculating the CLIP cosine simlairty between the text
prompt and rendered customized SVG (𝑆𝑖𝑚𝐶𝐿𝐼𝑃 ).

5.2 Comparison with Existing Methods
We compare our proposed pipeline with two types of T2V works:
vectorization with T2I and text-guided SVG optimization methods.
For vectorization with T2I methods, we use the same customized
images generated by our concept fine-tuning method, and select
both traditional and deep learning-based vectorization methods
for comparisons: (a) Potrace [Selinger 2003]: A traditional vec-
torization method that segments images into regions and then
fits piecewise cubic Bézier curves to the region boundaries. (b)
LIVE [Ma et al. 2022]: A deep learning method generates SVGs by
initializing path locations based on region colors and then uses loss
functions to optimize paths. We use the same number of paths as
our method for fairness, and set the control points of each path to
12, consistent with their paper. For text-guided SVG optimiza-
tion, we compare our method with CLIP-based and diffusion-based
optimization approaches: (c) CLIPDraw [Frans et al. 2022]: This
method optimizes CLIP’s image-text similarity metric to generate
vector graphics from text prompts. (d) VectorFusion [Jain et al.



Text-Guided Vector Graphics Customization SA Conference Papers ’23, December 12–15, 2023, Sydney, NSW, Australia

2022]: This approach employs SDS loss to optimize SVGs to be
consistent with given text prompts. We use the exemplar SVG as
initialization. For a fair comparison, if the exemplar SVG has fewer
paths than our initialization, we randomly add paths to match the
number of paths as our method. The quantitative result is shown
in Tab. 1 and the qualitative results are shown in Fig. 5 and Fig. 9.

Vectorization with T2I Methods. Potrace [Selinger 2003] segments
images into regions based solely on color, thus it can generate multi-
ple redundant paths for a single semantic element, such as multiple
paths for a single pants in the 3𝑟𝑑 row of Fig. 9 (c). This leads to
higher complexity. It also loses the layer-wise relationships pro-
vided by the exemplar SVG and curve smoothness along boundaries
due to the lack of pixel-level supervision. As for LIVE [Ma et al.
2022], due to the path complexity caused by the occlusion, only
relying on color and size features to reconstruct the customized
image fails to maintain the topological path properties, such as the
broken paths in Fig. 9 (d). When using the same number of paths as
our method, the similarity to the customized image reduces a lot as
shown in Tab. 1. In contrast, our model employs a semantic-based
path alignment module that preserves layer-wise path properties
and a path optimization module to obtain smooth and accurate final
paths, outperforming these two methods quantitatively.

Text-guided SVG Optimization Methods. Although these methods
directly inherit the original layer-wise properties, neither the CLIP
loss nor the SDS loss is sufficient for preserving path quality. The
original paths may undergo complex transformations to generate
text-conforming SVGs, resulting in low shape similarity with the
exemplar SVG (Tab. 1). As shown in Fig. 5, there are instances of
intersecting paths and abrupt curvature changes, which lead to
diminished path smoothness (Tab. 1) and visually unappealing out-
comes. While CLIPDraw directly optimizes CLIP loss and achieves
high CLIP metrics, the rendered SVGs appear messy. Our pipeline
generates much clearer vector graphics than CLIPDraw and Vector-
Fusion, by finetuning the diffusion model as a prior for customized
images and preserving the desirable path properties of the exemplar
SVG during the vectorization process.

5.3 User Study
We conduct a perceptual study to evaluate our vector graphics cus-
tomization from three perspectives: overall SVG quality, alignment
with text prompt, and similarity in visual identity with the exem-
plar SVG. We randomly select 12 pairs of exemplar SVGs and text
prompts from our test set, and generate customized SVGs using the
baseline methods in Sec. 5.2 and our approach. In each question,
we display the results of different methods in random order and ask
30 participants to select the best result among five options for each
evaluation metric. Fig. 6 demonstrates the superior performance of
our method, as it achieves the highest preference in all evaluation
metrics. Specifically, our method obtains 82.5% of votes for overall
SVG quality, 83.7% for text alignment, and 89.1% for similarity in
visual identity. The results show the effectiveness of our method in
generating high-quality customized SVGs based on text prompts
while preserving the visual identity of the exemplar SVG.

Visual Identity
Text Alignment

SVG Quality

60% 70% 80% 90% 100%
Ours Potrace LIVE CLIPDraw VectorFusion

Figure 6: User Study. We show the human preferences in %.

Table 2: Ablation study on path alignment and path optimiza-
tion modules.

Methods 𝑆𝑖𝑚𝑠 ↑ Smooth ↑ 𝑆𝑖𝑚𝑐𝑢𝑠 ↑

Path
Alignment

(PA)

w/o PA 0.2280 0.6217 0.9879
Shape 0.7435 0.7902 0.9934
Color 0.7271 0.7304 0.9912
Polyfit - 0.7922 0.9948
Polyfit + Palette - 0.7923 0.9946

Path
Optimization

w/o 𝐿𝐶𝐿𝐼𝑃 0.9998 0.8078 0.7197
w/o 𝐿𝑃𝑟𝑜𝑐𝑟𝑢𝑠𝑡𝑒𝑠 0.4153 0.5030 0.9951

Ours 0.8121 0.7931 0.9944

(a) Exemplar SVG (c) w/o PA

(b) Customized Image

(e) PA (Color)(d) PA (Shape)

V* rowing a boat

(h) Ours (j) w/o ProcrusLoss(i) w/o CLLoss

(g) PA (Polyfit + Palette)(f) PA (Polyfit)

Figure 7: Qualitative results on ablation study. The exemplar
SVG is from Freepik creator ©Alexdndz.

5.4 Ablation Study
The Effectiveness of Path Alignment. To investigate the effec-

tiveness of our path alignment module, we compare it with five
baselines. The first one is using the input exemplar SVG directly
as the path initialization (w/o PA). Due to the lack of the path
alignment module, with the large visual difference between the
customized image and the rendered exemplar SVG, significant dis-
tortions occur after path optimization, as shown in Fig. 7 (c). Rather
than using our semantic features for finding the matched paths,
the other two baselines are using Color and Shape similarities,
respectively. For color, we directly compute the MSE in RGB space
and for shape, we compute the distance after normalizing paths
under rigid transformations. Given that many paths share similar
colors and the large structure/shape deformation exists in the cus-
tomized image, using shape and color similarities leads to incorrect
path matches as shown in Fig. 7 (d, e). Thus the final optimized
paths become messy (Tab. 2). We also ablate with standard vector-
ization methods: PolyFit [Dominici et al. 2020] and PolyFit with
Palette compaction [Yang et al. 2023] to get initial paths. The latter
method reduces noisy SVG paths by compacting the color palette
of the customized image. Although their initial vectorizations fit
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(a) Inappropriate Text Prompt 

V* holding a trophy

Exemplar SVG

Customized
Image

V* smiling

Exemplar SVG

Customized
Image

(b) Large Deviation

Ours

Figure 8: Failure cases. Exemplar SVGs: the left is from
©iconfont; the right is from illustac creator ©Rico.

images well, the topological problem remains, as image segmenta-
tion cannot reflect occlusion relationships (Fig. 7 (f, g)). Instead, our
model derives layer-wise paths from the exemplar SVG, preserving
favorable path properties.

The Effectiveness of Path Optimization. We ablate the loss de-
sign by individually removing each of the CLIP loss and local Pro-
crustes loss in the path optimization module. As shown in Fig. 7
(i), when the CLIP loss is removed (w/o 𝐿𝐶𝐿𝐼𝑃 ), the optimization
retains initialization and fails to deform paths to align with the
customized image, resulting in low customized image similarity
(𝑆𝑖𝑚𝑐𝑢𝑠 in Tab. 2). When the local Procrustes loss is removed (w/o
𝐿𝑃𝑟𝑜𝑐𝑟𝑢𝑠𝑡𝑒𝑠 ), the deformed paths suffer from intersection issues and
abrupt curvature changes, generating SVG paths of poor quality
with low smoothness. Furthermore, the reduced shape similarity
(𝑆𝑖𝑚𝑠 in Tab. 2) suggests that image-level loss alone is insufficient
to preserve the shape properties inherited from the exemplar SVG.

6 CONCLUSION
In this paper, we investigate a novel problem called text-guided vec-
tor graphics customization, and propose a pipeline that generates
customized SVGs based on input text prompts while preserving
the visual identity of the input exemplar SVG. Our method reuses
paths from the exemplar SVG through newly designed semantic-
based path alignment and path optimization modules, maintaining
the valid path properties and layer relationships in the final SVGs.
Though our method can achieve high-quality SVG results, we still
suffer from failure cases as shown in Fig. 8. First, our method relies
on the generative capabilities of diffusion model, thus inappropriate
pairs of exemplar SVGs and text promptsmay result in unreasonable
customizations. For example, requesting a car to "hold a trophy"
could yield a nonsensical outcome. Second, if the customized im-
age deviates significantly from the exemplar, the path alignment
method may fail to find correct matches. For instance, if the exem-
plar depicts a side view of a running squirrel, but the customized
image shows a frontal view of a smiling squirrel, the path alignment
fails to find correct path matches from the exemplar SVG.

Ethics. Our work aims to enhance, not replace, the creative flows
of vector artists. We acknowledge potential ethical concerns with
models trained on internet data (e.g. property rights). Solutions
such as content detection systems can help mitigate these risks.

Future Work. Our text-guided vector graphics customization ex-
hibits visual creativity. In future work, we plan to integrate human-
in-the-loop methods to assist designers in achieving more precise
vector graphics generation and editing.
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(b) Customized image & Matched paths(a) Exemplar SVG (c) Potrace (d) LIVE (e) Ours

… V* wearing a red hat

… V* playing guitar

… V* holding a bag

green V* with a bird on the top

… V* holding blue cake, wearing hat

… V* with cactus

… V* holding a bag

… V* wearing a crown

Figure 9: Qualitative comparison to vectorization with T2I methods. Exemplar SVGs: the 1𝑠𝑡 and 4𝑡ℎ rows are from ©iconfont;
the 2𝑛𝑑 row is from envatoelements creator ©Masastarus; the 3𝑟𝑑 and 6𝑡ℎ rows are from Freepik creator ©Alexdndz; the 5𝑡ℎ and
7𝑡ℎ rows are from ©Freepik; the 8𝑡ℎ row is from ©Vectorportal.
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(b) Text-Guided Vector Graphics Customization(a) Exemplar SVG

A clipart of V* rowing a boat A clipart of V* with red color… V* raising a golden trophy … V* taking a selfieA clipart of V* saying Hi

A clipart of V* rowing a boat V* wearing high heels… V* holding a bag … V* holding a bookV* walking a dog

V* wearing a hat V* with long hair… V* with blue hair … V* wearing a maskV* wearing a tie

V* angry V* mix with bird… V* with a cake … V* in a cupV* wearing a hat

V* wearing a hat V* driving a red truck… V* looking a laptop … V* mix with birdV* holding a trophy

V* running V* holding a plant… V* wearing a hat … V* walkingV* holding a bag

Figure 10: More results of our text-guided vector graphics customization. Exemplar SVGs: the 1𝑠𝑡 and 5𝑡ℎ rows are from Freepik
creator ©Alexdndz; the 2𝑛𝑑 row is from envatoelements creator ©Telllu; the 3𝑟𝑑 and 4𝑡ℎ rows are from ©Freepik; the 6𝑡ℎ row is
from Iconduck creator ©Pavan Kondapuram.
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