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Abstract

Hippocampal place cells can encode spatial locations of an animal in physical or task-
relevant spaces. We simulated place cell populations that encoded either Euclidean- or
graph-based positions of a rat navigating to goal nodes in a maze with a graph topology,
and used manifold learning methods such as UMAP and Autoencoders (AE) to analyze
these neural population activities. The structure of the latent spaces learned by the AE
reflects their true geometric structure, while PCA fails to do so and UMAP is less robust to
noise. Our results support future applications of AE architectures to decipher the geometry
of spatial encoding in the brain.
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1. Introduction

Animals including humans navigate by representing spatial locations in the combined neu-
ral activity of the hippocampal formation. Place cells represent spatial locations by firing
when the animal is at a specific location in physical Euclidean space (at particular (x, y)
coordinates) (O’Keefe and Dostrovsky, 1971; O’Keefe and Nadel, 1978). However, recent
work has shown that when animals perform complex tasks, these neurons represent ‘places’
in spaces that are task-relevant but not always Euclidean (Behrens et al., 2018; Whittington
et al., 2020). We are interested in developing a methodology that can resolve this apparent
divide about the role of place cells. To do so, we explore spatial navigation in the context
of graphs, as simple topological objects defined only by the adjacency of a finite number
of nodes connected by edges. In a physical maze apparatus, we will present various routes
that share a common underlying graph topology to a moving rat while recording from hip-
pocampal place cells. Across trials, the topology of graphs remains the same whereas their
physical Euclidean locations change. In this work, we simulate the activity of place cells
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whose firing rates conform to one of two competing hypotheses: they represent locations in
Euclidean space as classically defined, or they represent locations in graph space, reflecting
the structure of the task. Upon using manifold learning methods such as UMAP and Au-
toencoder networks to encode the simulated neural activity in a latent space, we examined
how such a latent representation can be identified with the two hypotheses.

2. Methods

2.1. Behavioural and neural data generation

Our neurophysiological experiments will utilize a novel dynamic maze apparatus, which
consists of a 7×7 grid of octagonal tiles (Figure 1a). Any desired maze configuration can be
formed by opening and closing specific gates (Figure S1). In the maze, rats will navigate to
goal positions to receive reward. We simulated these goal-seeking behavioural trajectories
and corresponding place cell firing data. For a given configuration, we modeled the motion
of a rat by setting up a goal position g ∈ R2 and simulating a discrete random walk that
is biased towards g (detailed in Appendix A). We simulated the time series of the neural
state associated with such a trajectory as the firing rate of N neurons. To do so, we first
assigned a specific field center position c to each neuron. For a given position x of the rat,
the firing rate f(x, c) is

f(x, c) = Fmax

(
exp

[
−1

2

√
d(x, c)

σ

]
+ εN (0, 1)

)
,

where d is a distance function over the maze, Fmax > 0 is the maximum firing rate of
the neuron, σ > 0, ε ≥ 0 and N (0, 1) > 0 is Gaussian white noise. In practice, we used
Fmax = 40Hz, σ = 0.3 and ε = 0 or ε = 0.1 (for additive noise). σ parameterizes the place
field size. Parameters were chosen so that the fields have biologically realistic firing rates
and areas (Huxter et al., 2003; Neher et al., 2017). The distance function d(.) depends on the
geometry that the place fields represent, which is derived from one of the two hypotheses:

1. Euclidean hypothesis: Neurons fire according to 2D Euclidean distance from the field
center, such that d = ∥ · ∥2, or d(x, y) =

√
||x− y||2.

2. Graph hypothesis: Neurons fire locally according to the Euclidean distances as in
1, but within a range defined by the number of tiles connecting x and y. That is,
d(x, y) =

√
||x− y||2 if dg(x, y) ≤ 1 and ∞ elsewhere, where dg(x, y) is the number of

tiles in the shortest path along the graph between x and y (Figure 1b, second panel).

Under the Euclidean hypothesis, the place field centers c are distributed randomly across
the whole platform (Figure 1b) in a particular maze configuration, and remain in the same
physical position across configurations. Under the graph hypothesis, the physical positions
of the place fields change across configurations, to preserve the same relative position in the
graph (see Appendix B).

2.2. Autoencoder design

We applied Autoencoders (AEs) (Tschannen et al., 2018) to our datasets. The AEs take
a neural state S ∈ RN as input (rescaled firing rate of N neurons ∈ [0, 1]N ) and learn an
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embedding in a 3-dimensional latent space (sufficient to capture the 2D Euclidean space
and any graph topology in our apparatus). The encoder and decoder are fully connected
networks, with 4 hidden layers of sizes 64, 32, 16 and 8, and leaky ReLU activation functions.
The encoder and decoder output layers are respectively linear and sigmoidal. The data is
split into training (70%), validation (20%) and testing (10%) sets, with training performed
in batches of 32 data points, using the ADAM optimizer.

2.3. Implementation and Code Availability

The code for simulations was developed using Python 3.8.0. The Autoencoder design and
training was performed using PyTorch 1.11.0 and PyTorch-Lightning 1.6.5. The code and
datasets are available in our Github repository.

3. Results

3.1. Simulating place field cells firing according to different representations

Figure 1: Maze configurations and simulated firing. (a) Three maze configurations show-
ing place field centers of three example neurons for both hypotheses, Euclidean
distance and dg(.) (here dg(.) = 2), and an example simulated trajectory. (b)
Place fields of the three neurons under both hypotheses. (c) Firing rates of 10
neurons for both hypotheses, for the trajectory shown in (a).

We considered 25 maze configurations (3 examples shown in Figure 1a). While different
in shape, these mazes describe the same graph topology, which consists of a home tile
connected to a central choice tile that connects to 3 other goal tiles. The goal tiles sometimes
overlap across configurations in Euclidean space (e.g. goals 2,3,2 in configurations 1,2,3,
resp.), which allows for dissociating if the neural representation conforms to the Euclidean
or graph hypothesis. To compare the firing rates produced under these two hypotheses, we
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considered two sets of N = 100 place cells sampled across the grid. Our final dataset thus
consisted of the firing rates of 100 neurons for 2 trajectories × 3 goal locations × 25 maze
configurations × 2 hypotheses × 2 noise conditions (ε = 0 and ε = 0.1) (e.g. Figure 1c).

Figure 2: Latent space comparison (a) AE Latent states learned from the Euclidean
dataset. Trajectories converge towards the same goal in the latent space and in
the maze configurations. (b) Same as a, for the Graph dataset. (c) Comparison
between pairwise latent space distances and pairwise Euclidean and normalized
graph distances for 100 sets of 104 pairs of points sampled from each dataset.

3.2. Using an Auto-Encoder to represent neural firing rate geometry

We separately trained two AEs, described in Section 2.2, on the graph and Euclidean
datasets without noise (ε = 0), to learn a representation of the neural states within a latent
space (shown in Figure S2). As we set the dimension of the latent space to 3, we found that
after running standard PCA, 96.3% and 95.8% of the variance of the data in the graph and
Euclidean AE latent space were explained by the first two principal components (PC’s),
suggesting that the rat’s motion on the 2D platform is well captured. We further confirmed
this result by visualizing the latent states associated with the trajectories on the 2 PC’s
in Figure 2a-b. For the Euclidean data, the goal location shared across all configurations
appears as a single location in the latent space (see Figure 2a). Similarly, for the graph data,
the same goal, although being located at different positions across configurations, appears at
relatively close positions in the latent space (see Figure 2b). Finally, we compared in Figure
2c the pairwise Euclidean distances in the latent space (for 100 sets of 104 sampled pairs
of data points) to the corresponding pairwise Euclidean and normalized graph distances
in the maze (for a definition of the normalized graph distance, see Appendix C). With a
better correlation achieved when using the Euclidean (normalized graph) distance for the
Euclidean (graph) dataset, this comparison shows that the standard metric in the learned
latent space reflects the choice of the neural representation. In contrast, we failed to observe
such a separation using PCA instead of AEs (see Figure S5).
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Figure 3: UMAP Latent space comparison (a) Latent states learned from the Euclidean
dataset. Trajectories converge towards the same goal in the latent space and in
the maze configurations. (b) Same as a, for the graph dataset. (c) Comparison
between pairwise latent space distances and pairwise Euclidean and normalized
graph distances.

3.3. Using UMAP to represent neural firing rate geometry

We used UMAP (McInnes et al., 2018) to embed neural data into a 2-dimensional latent
space. Trajectories and pairwise distances show results comparable to the AEs. Similarities
between trajectories towards the same goal are less apparent (Figure 3a-b). Correlations
obtained with the pairwise distance metrics are better (Figure 3c). UMAP fails to capture
the structure in noisy Euclidean data while it does not degrade severely in noisy graph
data (see Figures S6 and S7). The Euclidean data is sparser since place field centers are
distributed across the whole platform rather than a subset of tiles. This suggests that AEs
are better suited for representing the structure of sparser codes in noisy real-world data.

4. Conclusion

We presented two models of place cells in a maze, associated with Euclidean or graph repre-
sentations. Applying UMAP and AE to a set of 25 maze configurations, we found that the
latent representation reflected the geometry inherent to the way population neural activity
was simulated. This suggests that UMAP and AE architectures can discriminate between
geometric representations and outperform linear methods such as PCA. AEs may outper-
form UMAP in the presence of noise. We will more thoroughly explore the performance
of different architectures (e.g. Miolane and Holmes (2019)) on more complex tasks; this
would require a more refined and parametric quantification of the geometry and topology
of the latent space, beyond the correlations presented in this work. In addition, a more
realistic model of neural activity should be considered, by taking into account remapping
of the place cells, path integration, and temporal dynamics.
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Appendix A. Simulating rat trajectories using a biased random walk

For a given maze configuration and goal location g ∈ R2, we generate a rat moving trajectory
as a discrete-time random walk over the maze. More precisely, given the rat at position
x(n) (n ∈ N), we simulate its next position as x(n+1) = x(n)+ lv, where l ∼ U(lmin, lmax)
is the displacement length, uniformly sampled between 0 < lmin < lmax, and v is a random
unit vector, such that

v =

{
vg(x(n)) w.p. pdrift

vr w.p. 1− pdrift,
(1)

where pdrift ∈ (0, 1) is the probability that the rat moves towards the goal, with vg(x(n))
being the unit vector towards the centre of the next tile to be taken on the shortest path
from x(n) to g, and vr being a random unit vector whose direction is uniformly sampled
over (0, 2π). In practice, we set pdrift = 0.1, lmin = 0.009, lmax = 0.011 and the maze
octagonal tiles are inscribed in 1× 1 squares (for some examples of trajectories, see Figures
1a and 2b).

Appendix B. Sampling place field locations under the graph hypothesis

Under the Euclidean hypothesis, we sample the place cell centers over the whole grid once,
so they remain invariant with respect to the maze configurations. However, under the graph
hypothesis, each center that gets sampled has to remain invariant according to the graph
topology, and thus translates, rotates and scales accordingly across the maze configurations.
This section describes our procedure to sample the centers under the graph hypothesis. With
all the mazes in our study mapping to the same graph topology (see Section 3.1 and Figure
1a), we first label the coordinates of the tile centers as (see Figure S3):

• v0 the center of the home tile.

• v1, v2 and v3 the centers of the goal tiles.

• v4 the center of the central tile.

We then introduce the 4 “edge” vectors (ei) = −−→v4vi, with the corresponding direct or-
thogonal unit vectors (e⊥i ). For any maze configuration, we sample a place field center as
c = v4 + δek + ρe⊥k , where

• k ∼ U({0, 1, 2, 3}) is the index of the sampled edge ek.

• δ ∼ U(0, 1) is the relative distance of the cell along the sampled edge.

• ρ ∼ U(−1, 1) is the lateral shift associated with the sampled edge.

Appendix C. Normalized graph distance

We introduce a normalized graph distance to measure the graph distance between two points
located in different maze configurations from our study. For two points x and y in different
maze configurations, with corresponding edge indices (kx and ky), and relative positions
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along edges (δx and δy) (see Appendix B), the normalized graph distance between x and y
is given by

dnorm(x, y) =

{
|δx − δy|, if kx = ky
δx + δy, if kx ̸= ky

(2)
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Supplementary Figures

Figure S1: Maze apparatus. The apparatus consists of a 7×7 grid of octagonal tiles. Gates
can be opened and closed to form any desired maze configuration. Configuration
1 (Figure 1a) is currently activated and the portion of the maze available to the
rat is highlighted in red for illustrative purposes
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Figure S2: Latent states in R3. (a) Latent space of the Euclidean dataset, color-coded with
the Euclidean positions on the maze platform. (b) Latent space of the graph
dataset, color-coded with the normalized graph distance from home.
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Figure S3: Example of a place field center ci in maze configuration 1. The edge index is
ki=3, the relative distance on the edge is δi = 0.66 and the lateral shift is ρi =
0.4
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Figure S4: Trajectories in behavioral and latent spaces for example trajectories to three
goals in maze configuration 1. (a) Trajectories in the physical maze. (b) Tra-
jectories in latent space for neural firing generated according to the Euclidean
hypothesis. Shaded colored regions are the union of all generated trajectories.
(c) Trajectories in latent space for neural firing generated according to the graph
hypothesis.
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Figure S5: Comparative analysis in the spaces spanned by the first two principal compo-
nents of PCA. (a) Under the Euclidean hypothesis, PCA partly captures the
Euclidean structure of the data. The common Euclidean location in the maze
apparatus also appears as one common location in the PC space. Maze con-
figurations appear to be separated in the latent space. (b) Under the graph
hypothesis, PCA fails to capture the underlying structure of the data. Latent
states corresponding to trajectories towards different goals highly overlap. Tra-
jectories leading to the same goal in different maze configurations appear as
relatively far from each other in the latent space. (c) Comparison between pair-
wise PC space distances and pairwise Euclidean and normalized graph distances
for 100 sets of 104 pairs of points sampled from each dataset. Better correlation
is achieved using the Euclidean (normalized graph) distance for the Euclidean
(graph) dataset, however, the correlations are similar and fairly low for both
metrics and we can no longer claim that the standard metric in the learned
latent space reflects the choice of the neural representation.

13



Niederhauser Lester Miolane Dao Duc Madhav

Figure S6: Impact of noise on the pairwise latent space distances from UMAP, plotted
against pairwise Euclidean and normalized graph distances. Compared with the
AE (Figure 2), a better correlation is still achieved using the normalized graph
distance for the graph dataset, and UMAP might still be suitable to discriminate
between the hypotheses. However, in the Euclidean dataset, the correlations are
low for both metrics, so the learned latent space does not reflect the underlying
structures of the neural representations.
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Figure S7: Impact of noise on the pairwise latent space distances from AE, plotted against
the pairwise Euclidean and normalized graph distances. The standard metric
in the learned latent space still reflects the underlying structure of the neural
representation.
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