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Abstract

This study intends to systematically disentan-001
gle pure logic reasoning and text understanding002
by investigating the contrast across abstract and003
contextualized logical problems from a com-004
prehensive set of domains. We explore whether005
LLMs demonstrate genuine reasoning capabil-006
ities across various domains when the under-007
lying logical structure remains constant. We008
focus on two main questions (1) Can abstract009
logical problems alone accurately benchmark010
LLMs’ reasoning ability in real-world scenar-011
ios, disentangled from contextual support in012
practical settings? (2) Does fine-tuning LLMs013
on abstract logic problems generalize to contex-014
tualized logic problems and vice versa? To in-015
vestigate these questions, we focus on standard016
propositional logic, specifically propositional017
deductive and abductive logic reasoning. We018
construct datasets for both reasoning types with019
four difficulty levels across 12 distinct domains020
based on the Wikipedia categorization in addi-021
tional to those with purely abstract variables.022
Our experiments aim to provide insights into023
disentangling context in logical reasoning, the024
genuine reasoning capabilities of LLMs, and025
their generalization potential. Coda and data026
are available at https://anonymous.4open.027
science/r/ContextHub-957E.028

1 Introduction029

Large language models (LLMs) (Team et al.,030

2024; Arrieta et al., 2025; Guo et al., 2025) have031

demonstrated significant potential in reasoning032

capabilities across a variety of reasoning bench-033

marks (Cobbe et al., 2021; Hendrycks et al., 2021;034

Wei et al., 2022a; Liang et al., 2023; bench authors,035

2023; Zhu et al., 2024; Fan et al., 2023a; Fu et al.,036

2024), broadening their potential applications in037

fields such as psychology, education, and social038

sciences (Gandhi et al., 2024; Li et al., 2024a; Fan039

et al., 2023b). The widespread use of LLMs ne-040

cessitates rigorous evaluation of their reasoning041

abilities, particularly in context-rich scenarios that 042

reflect real-world complexities. 043

While assessments on abstract logical prob- 044

lems (Sawada et al., 2023; Zhu et al., 2024; Fan 045

et al., 2023a, 2024; Fu et al., 2024) showcase 046

LLMs’ theoretical reasoning capacities, they do 047

not entirely capture their practical utility in real- 048

life applications where context drastically affects 049

outcomes. Conversely, focusing exclusively on 050

context-specific tasks (Guha et al., 2024; Liévin 051

et al., 2024; Han et al., 2022; Clark et al., 2020; 052

Hendrycks et al., 2020) may conceal the fundamen- 053

tal mechanisms that empower LLMs to process 054

and reason with information. Thus, exploring the 055

disparity between contextualized and abstract rea- 056

soning (Tang et al., 2023; Saparov and He, 2022) 057

is vital for advancing LLMs and ensuring their ef- 058

fectiveness across different domains. 059

To this end, we introduce ContextHub, a bench- 060

mark designed to systematically and meticulously 061

disentangle and evaluate the core reasoning capa- 062

bilities of LLMs from the influences of contex- 063

tual information. By leveraging a dual-assessment 064

framework, ContextHub compares LLMs’ perfor- 065

mance on identical logical constructs within both 066

abstract and richly contextualized settings (a con- 067

textualized example can be seen in step 3 of Figure 068

2). This approach not only identifies the significant 069

impacts of context on reasoning but also provides a 070

scalable and flexible methodology adaptable across 071

various domains. 072

ContextHub aims to address two main questions: 073

(1) Evaluation disentanglement: how accurate 074

and reliable are abstract logic problems versus con- 075

textualized problems in evaluating LLMs’ reason- 076

ing abilities? We examine this by comparing LLM 077

performance across both problem types to under- 078

stand context’s role in reasoning. (2) Fine-tuning 079

disentanglement: how do abstract versus contextu- 080

alized logic problems affect model generalization 081

during fine-tuning? We analyze LLM performance 082
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Figure 1: Benchmark Construction Procedure

on unseen problems of both types to determine083

which training data best improves reasoning while084

maintaining cross-domain consistency.085

We employ a dynamic graph-based construction086

method (Zhu et al., 2024) to generate formal logic087

templates at four levels of difficulty. These tem-088

plates are then instantiated in 13 distinct domains,089

comprising 12 contexts with specific settings and090

1 using purely abstract variables for comparison.091

Every instantiated question undergoes a rigorous092

two-step quality control process to ensure reliabil-093

ity. We evaluate these datasets using a variety of094

LLMs, including GPT-4o, GPT-3.5-Turbo, Qwen095

series, Yi-series, LLaMA-2, and LLaMA-3.1 series.096

In the fine-tuning phase, we compare three settings:097

models fine-tuned on abstract data only, on mixed098

contextualized data from all domains, and on single099

domain data. These settings enable us to investigate100

how abstract and contextualized logical problems101

affect LLMs’ generalization abilities. Our key find-102

ings are: (1) The relative performance of LLMs103

on abstract logic problems and corresponding con-104

textualized logic problems is dependent on model105

size or general model performance. Stronger106

models tend to perform better on abstract logic,107

while smaller models typically rely on contextual108

cues. (2) The domain of contextualization has a109

statistically significant impact on model perfor-110

mance, suggesting the choice of contextualization111

domain can affect the accuracy and reliability of112

LLMs for logical reasoning tasks. (3) The gener-113

alization power of abstract logic data is limited114

compared with that of contextualized logic data. 115

This indicates that LLMs fine-tuned on contextual- 116

ized logic data may be better equipped to handle a 117

wider range of real-world logical reasoning tasks. 118

2 Related Work 119

Evaluating the reasoning abilities of LLMs has 120

garnered significant attention across various disci- 121

plines, from biomedical informatics (Liévin et al., 122

2024; Chen et al., 2024; Jin et al., 2024b) and hu- 123

manities (Hua et al., 2023; Lin et al., 2024; Jin 124

et al., 2024a) to social sciences (Ziems et al., 2024; 125

Gandhi et al., 2024; Li et al., 2024a; Fan et al., 126

2023b). Research has predominantly concentrated 127

on diverse logical reasoning tasks, including deduc- 128

tion, induction, and abduction, addressed through 129

neural models (Pan et al., 2023; Li et al., 2024b; 130

Dasgupta et al., 2022; Han et al., 2022; Del and 131

Fishel, 2022). LogicBench (Parmar et al., 2024) 132

focuses on natural language logical reasoning ques- 133

tions. FOLIO (Han et al., 2022), RuleTaker (Clark 134

et al., 2020), and FLD (Morishita et al., 2023) build 135

logic questions based on deduction rules focusing 136

only on validity without semantics. Nevertheless, 137

no existing benchmark offers a systematic, fine- 138

grained investigation into how additional contex- 139

tual detail or scenario-specific variations can affect 140

the stability and reliability of LLMs’ logical reason- 141

ing—particularly in terms of how prior knowledge 142

might bolster performance or, conversely, how the 143

absence of such knowledge may lead to greater 144

degradation than performance in a purely abstract 145
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Figure 2: An illustration of abstract and contextualized logical problems.

context. While LLMs have demonstrated notable146

successes in certain reasoning tasks (Cobbe et al.,147

2021), their generalizable logical reasoning capa-148

bilities remain uncertain (Tang et al., 2023; Saparov149

and He, 2022).150

There are also many logic reasoning benchmarks151

such as LogicBench (Parmar et al., 2024) and FO-152

LIO (Han et al., 2022) using contextualized lan-153

guage over logic templates. Benchmarks such as154

RuleTaker (Clark et al., 2020) and FLD (Morishita155

et al., 2023) build synthetic logic questions based156

on logic templates without coherence semantics.157

However, none of these benchmarks systematically158

examine the influence of contextual factors on rea-159

soning performance or explore the stability of log-160

ical reasoning skills across diverse scenarios, in-161

cluding those that are purely abstract.162

Valmeekam et al. (Valmeekam et al., 2022)163

argued that LLMs often struggle with common164

planning and reasoning tasks, which are typically165

straightforward for humans. Similarly, Wei et166

al. (Wei et al., 2022b) noted that while chain-of-167

thought (CoT) techniques stimulate human-like168

thought processes, they do not necessarily indicate169

genuine neural reasoning. Further illustrating these170

limitations, Tang et al. (Tang et al., 2023) reported171

that LLaMA-2 predominantly relied on template172

matching for reasoning tasks and lacked the ability173

to generalize beyond learned logic rules, a chal-174

lenge exemplified in their studies using Symbolic175

Trees and ProofWriter. They questioned whether176

LLMs truly possess human-like inductive, deduc-177

tive, and abductive reasoning capabilities. Adding178

to this discourse, Saparov and He (Saparov and He,179

2022) introduced a synthetic question-answering180

dataset, PrOntoQA, to assess the logical reason-181

ing abilities of LLMs. Their findings indicated 182

that while LLMs can correctly perform individual 183

deduction steps, they struggle with complex sce- 184

narios requiring the exploration of multiple valid 185

deduction pathways. 186

3 Benchmark Construction 187

This section demonstrates the construction process 188

of ContextHub on deductive logic and abductive 189

logic. Deductive reasoning infers a logically cer- 190

tain conclusion from general statements, whereas 191

abductive reasoning hypothesizes the most likely 192

explanation based on observed data. As illustrated 193

in Figure 1, constructing instantiated logical rea- 194

soning benchmarks involves three steps: 195

(1) Creating Formal Logical Reasoning Ques- 196

tion Templates. We begin by developing formal 197

logic templates for deductive and abductive reason- 198

ing across four levels of difficulty, utilizing the Dy- 199

Val (Zhu et al., 2024) framework, which employs a 200

tree structure to dynamically generate formal logic 201

templates. These templates serve as the foundation 202

for subsequent contextualization. 203

(2) Instantiation. Each logical template T is in- 204

stantiated across 12 different domains drawn from 205

Wikipedia categories, plus one domain with purely 206

abstract variables. For each contextual domain, we 207

randomly select a sub-category to ensure diversity, 208

then instruct LLMs to contextualize the template 209

T accordingly. An example instantiation can be 210

found in Figure 2. 211

(3) Quality Control. To ensure the correctness 212

of the instantiated logic problems, we implement 213

a two-step quality control process. Initially, the 214

samples are assessed by Claude-3-Opus which val- 215

idates the samples against specified constraints. 216
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Subsequently, human verification with 5 annota-217

tors is applied iteratively to refine the quality of218

generated questions.219

3.1 Creating Formal Logical Reasoning220

Question Templates221

We generate formal logic templates X based on the222

dynamic evaluation framework: DyVal (Zhu et al.,223

2024). For deductive and abductive logic, DyVal224

utilize tree structure to generate template samples225

on the fly with controllable difficulty. The tree226

structure naturally aligns with the inference process227

of a logic reasoning question. Take deductive logic228

as an example, the premises are given by the leaf229

nodes, where the intermediate nodes represent the230

intermediate inference steps, and the final result is231

shown by the root node.232

Tree-based DyVal consists of three components:233

(1) Constraint C. It aims to modulate the eval-234

uation samples’ complexity and validity. In our235

experiment, we define the complexity level of for-236

mal logic template by the depth of the generated237

tree. The validity constraints ensure the correctness238

of the generated formal logic template, for exam-239

ple, constrain the ‘NOT’ operation to have only240

one children node. (2) Tree generation algorithm241

G. After defining the constraints, the generation242

algorithm G generates fixed complexity evaluation243

samples following the constraint C, during the gen-244

eration process, the final answer is also calculated245

automatically. (3) Description function F . It246

translates each node in the graph into natural lan-247

guages and finally forms all nodes into a formal248

logic template. For example, in deductive logic, a249

leaf node ‘A’ with truth value ‘True’ will be trans-250

lated as “A is True.”, a non-leaf node ‘C’ with251

‘OR’ operation and its children ‘A’ and ‘B’ will be252

translated as “(A OR B) → C”, where → means253

deductive operation.254

3.2 Instantiation255

The 13 instantiated domains include 12 domains256

based on Wikipedia’s categorization in addition to257

a purely abstract instantiation. These Wikipedia do-258

mains spanning from Culture and the arts to Geog-259

raphy, Health, and Human activities. Each category260

is further subdivided into specific sub-categories261

S to ensure diverse contextual challenges. We ex-262

clude the “History and events” domain because its263

fact-based questions often bypass the need for log-264

ical reasoning. Further details about the domains265

and sub-categories can be found in Appendix D.266

The instantiation process comprises two main 267

transformations: (10 Variable-based Transforma- 268

tion Tv: Each variable V in a template X is in- 269

stantiated into a sentence specific to a chosen sub- 270

category S . For example, within the “Mathematics 271

Education” sub-category, V might be instantiated 272

as “All of Galois theory was developed by Galois 273

alone.” (2) Template-based Transformation Tt: 274

This step transforms the collection of instantiated 275

sentences {sV} into a coherent natural language 276

query, preserving logical structure of original tem- 277

plates. 278

3.3 Quality Control 279

The quality verification of our instantiated bench- 280

marks is managed using a hybrid model involving 281

Claude-3-Opus, and a diverse panel of 5 human an- 282

notators. These verification steps are implemented 283

to maintain a high standard of quality and relevance 284

in our benchmarks, ensuring that they not only test 285

logical reasoning but also engage with the domain 286

knowledge in a meaningful way. 287

LLMs verification We deploy three primary 288

checks to ensure the validity of our benchmarks: (1) 289

Common Sense Checking: Ensures each problem 290

requires logical inference rather than recognition 291

of well-known facts. (2) Sensibility Checking: En- 292

sures the scenarios and questions are coherent and 293

clear, without internal contradictions or ambiguity. 294

(3) Tautology Checking: Identifies any tautological 295

statements, ensuring problems remain intellectually 296

challenging and meaningful. 297

Human verification Five human annotators fur- 298

ther assess the benchmarks to ensure quality and 299

relevance: (1) Template Adherence: Verifies that 300

the instantiated logic retains the structure and in- 301

tent of the original templates, maintaining the fun- 302

damental logical framework. (2) Fact Reckoning: 303

Checks that the problems necessitate logical deduc- 304

tion rather than simple fact recall, preserving the 305

benchmark’s complexity and educational value. 306

The human annotators1 are required to an- 307

swer these questions: (1) whether the contextu- 308

alized question matches with the logic template 309

(2) whether the contextualized question is against 310

actual facts. Four rounds of annotation and re- 311

1The panel of annotators include four males and one fe-
male, each holding a Ph.D. degree in a diverse range of fields,
including computer science, informatics, civil engineering,
and medicine. The participants’ ages ranged from 24 to 30,
with an average age of 27.
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view are conducted: in each round, every annotator312

manually reviewed a random sample of 220 ques-313

tions (20 for each category) and identified ques-314

tions that were not appropriately generated by the315

LLMs. Then all annotators participated in group316

review sessions to discuss potential issues with317

the generated questions and ways to improve the318

prompt design. After four rounds of verification319

and discussion, no further issues were identified320

in the questions generated by the LLMs across all321

categories. The following table 1 presents the ac-322

curacy of another randomly samples 220 questions323

for template adherence and fact reckoning:

data level template adherence fact reckoning
1 100% 95.45%
2 100% 94.54%
3 100% 96.36%
4 96.36% 93.18%

Table 1: Accuracy of Synthetically-generated Data

324

4 Experiment325

Our experimental setup defines 4 levels of diffi-326

culty for logical reasoning tasks, with tree depths327

of (2, 3, 4, 5) and a uniform width of 2 across nodes.328

The dataset comprises 10 deductive and 6 abductive329

formal logic templates at difficulty level 1, the max-330

imum number of distinct templates of reasoning331

that can be generated at this level. We then include332

40 deductive and 40 abductive reasoning formal333

logic templates at levels 2, 3, and 4, respectively.334

To ensure balanced data distribution, we assign335

equal counts of ‘True’, ‘False’, and ‘N/A’ truth336

values across all questions. The dataset spans 12337

domains for contextualization, generating 5 unique338

instances per domain, resulting in 18, 240 total dat-339

apoints across various levels and types of logic.340

The experiments are structured into two phases:341

benchmarking and fine-tuning. In the benchmark-342

ing phase, we assess model performance across var-343

ious domains and compare between contextualized344

and abstract logic, to explore whether LLMs consis-345

tently grasp the underlying logical structures. The346

fine-tuning phase uses the generated data points347

to investigate how different instantiation types (ab-348

stract vs. contextualized) and data domains influ-349

ence model generalization. This setup allows us to350

scrutinize the effects of model scaling and domain351

specificity on performance.352

Benchmarking We benchmark the logical rea- 353

soning performance of several advanced models, 354

including GPT series, Qwen-1.5 series (Bai et al., 355

2023), LLaMA-2 series (Touvron et al., 2023), 356

LLaMA-3.1 series (Touvron et al., 2023), and Yi- 357

1.5 series (Young et al., 2024). This evaluates 358

whether models understand the underlying logic 359

structures consistently, irrespective of contextual 360

variations. We use an average weighted F1 score 361

for model evaluation, detailed in Appendix E. 362

Fine-tuning In the fine-tuning phase, we exam- 363

ine how different data types affect model general- 364

ization in logic reasoning. Models are fine-tuned 365

using three settings: (1) solely with abstract logic 366

data to test base logical reasoning capabilities. (2) 367

with a sample of contextualized data across all 368

domains to evaluate generalization across varied 369

contexts. (3) with contextualized data from sin- 370

gle domains to investigate the impacts of domain 371

specificity and diversity. We utilize models ranging 372

from Qwen1.5-0.5b to GPT-3.5-turbo and employ 373

QLoRA for fine-tuning processes. Further details 374

are available in Appendix F. 375

4.1 Results Analysis 376

In this subsection, we present a comprehensive 377

analysis of the results obtained from our experi- 378

ments. The benchmark results provide a general 379

analysis of the performance trends, as well as a 380

statistical analysis of the impact of the domain on 381

model performance. Meanwhile, the fine-tuning 382

results offer insights into the factors that influence 383

model generalization for logic reasoning. By exam- 384

ining these two areas in detail, we aim to provide 385

a thorough understanding of the behavior of large 386

language models in the context of logic reasoning. 387

Full benchmark results can be found in Appendix I. 388

4.1.1 Benchmarking 389

Overview of Model Performance Table 2 390

presents a selected benchmark result for the 391

Qwen1.5 series, LLaMA-3.1 series, and GPT-4o 392

models on deductive logic data across all 4 diffi- 393

culty levels. The highest and lowest performance 394

scores for each row are highlighted in bold and un- 395

derlined, respectively. The full results are presented 396

in Figure 8 in Appendix I, which demonstrate the 397

varying performance by heatmap distributions. 398

At a granular level, GPT-4o models frequently 399

appear to excel, particularly in higher difficulty 400

levels. In contrast, smaller models like Qwen-0.5, 401
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Diff.
Level LLM Domain

Abs. Culture Geo. Math Sci. People Phi. Religion Tech. Health

Level 1

Qwen1.5-0.5 34.15 38.27 38.81 32.26 43.77 32.83 36.64 34.92 36.54 30.30
Qwen1.5-7 72.55 54.42 52.92 58.33 58.87 69.56 56.36 69.39 67.89 67.70
LLaMA-3.1-8 78.31 87.65 85.93 85.11 82.76 89.96 76.27 84.17 83.48 88.51
LLaMA-3.1-70 100.00 74.03 77.59 73.93 77.73 70.54 74.84 76.71 77.73 71.71
Qwen1.5-72 76.88 85.58 82.29 68.69 80.39 76.02 82.31 74.56 74.78 74.00
Qwen1.5-110 90.94 78.85 84.92 73.75 85.50 83.80 74.00 81.68 74.84 78.00
LLaMA-3.1-405 100.00 84.91 80.56 71.87 80.34 85.57 74.69 86.47 72.14 81.26
GPT-4o 100.00 88.04 81.45 67.37 81.15 84.59 79.53 83.90 89.50 86.48

Level 2

Qwen1.5-0.5 29.57 31.23 34.45 34.38 31.70 33.70 33.00 32.89 31.03 33.09
Qwen1.5-7 59.53 61.45 52.50 45.22 48.73 44.44 53.09 48.84 47.07 61.07
LLaMA-3.1-8 51.84 67.98 67.11 69.52 77.12 71.91 68.14 66.66 66.41 71.69
LLaMA-3.1-70 92.04 69.22 68.80 68.58 76.72 76.75 71.76 68.76 62.87 75.89
Qwen1.5-72 81.16 72.22 68.53 63.03 74.70 74.40 69.92 64.12 64.04 71.95
Qwen1.5-110 65.53 65.96 68.57 63.43 69.04 72.53 66.09 65.21 60.93 67.80
LLaMA-3.1-405 97.95 76.41 72.80 66.36 79.05 81.89 73.05 72.39 68.23 79.14
GPT-4o 98.50 69.23 68.12 62.65 72.76 74.51 68.60 66.96 63.30 68.14

Level 3

Qwen1.5-0.5 25.39 34.04 33.96 33.57 31.90 33.11 32.51 34.79 33.96 32.98
Qwen1.5-7 43.86 49.76 49.91 42.46 49.88 44.80 47.37 48.69 42.42 50.38
LLaMA-3.1-8 51.48 55.04 54.26 50.43 60.70 54.71 59.13 61.07 49.01 56.99
LLaMA-3.1-70 74.71 56.42 59.20 49.34 59.31 64.67 59.94 64.46 50.62 54.11
Qwen1.5-72 71.17 63.10 58.52 53.90 55.55 60.47 58.00 54.98 54.28 56.48
Qwen1.5-110 60.37 55.28 53.51 47.80 46.26 58.80 53.60 59.58 47.47 50.46
LLaMA-3.1-405 91.01 64.13 58.63 51.14 65.51 63.03 59.47 63.32 51.31 63.15
GPT-4o 91.65 52.30 50.90 46.96 56.56 61.96 51.75 59.58 45.83 56.26

Level 4

Qwen1.5-0.5 30.38 33.10 35.46 33.10 34.44 34.09 33.67 34.39 32.86 33.50
Qwen1.5-7 51.49 56.02 55.48 51.48 57.00 60.34 54.64 50.48 51.68 49.19
LLaMA-3.1-8 45.07 51.88 55.18 49.57 48.84 50.51 43.97 49.16 45.53 46.45
LLaMA-3.1-70 55.06 50.92 48.05 42.27 45.72 52.01 45.41 37.05 41.93 45.61
Qwen1.5-72 57.41 51.39 50.73 42.24 50.92 52.70 44.39 45.54 49.16 49.86
Qwen1.5-110 49.57 51.42 47.35 48.13 46.65 49.72 45.85 47.08 48.58 49.45
LLaMA-3.1-405 76.94 54.28 46.42 49.66 52.12 54.18 47.46 44.59 46.04 50.04
GPT-4o 83.51 46.93 47.19 45.56 48.03 52.87 43.94 39.80 44.74 41.62

Table 2: Selected Experiment Results on Benchmarking

Qwen-7, LLaMA-3.1-8 often lag, struggling no-402

tably with abstract reasoning tasks. This disparity403

underscores the influence of model size. When ag-404

gregating results across all models and logic levels,405

certain domains consistently present more chal-406

lenges. Specifically, the domains of Math and Phi-407

losophy appear to be the most demanding, likely408

due to their intrinsic requirement for deep logical409

structuring and abstract reasoning. Conversely, the410

domain labeled People generally shows the best411

performance, which is indeed less abstract, more412

intuitive, and features more contextual cues. The413

observed difference in performance across the dif-414

ferent domains has been tested with statistical sig-415

nificance, the details of which are provided in the416

following section. This indicates the significant417

impact that contexts can have on LLMs’ logical418

reasoning performance.419

Influence of Model Size A pivotal observation 420

from our data is the interaction between model size 421

and sample type, presented in Figure 3. Larger 422

models demonstrate a marked proficiency in ab- 423

stract logical reasoning samples compared to their 424

performance with their corresponding instantiated 425

samples. This trend holds regardless of the diffi- 426

culty level, suggesting that as models scale, their 427

ability to decipher and apply abstract logic pat- 428

terns improves significantly. While smaller mod- 429

els, like Qwen-0.5, LLaMA-2-7, LLaMA-3.1-8, 430

demonstrate either better performance on instanti- 431

ated samples than abstract samples or less differ- 432

ence between these two types. This discovery dif- 433

fers from previous observations (Tang et al., 2023; 434

Saparov and He, 2022) which in general state that 435

LLMs are better at instantiated data. 436

Inter-domain Disparities Further analysis of 437

specific model performance within different do- 438
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Figure 3: Abstract performance vs. Contextualized performance

mains reveals notable patterns. For abstract reason-439

ing tasks, performance is highly variable: smaller440

models like Qwen-0.5 and Qwen-1.8 perform sig-441

nificantly worse, while larger configurations often442

excel. In the domain of Math, both Yi and Qwen se-443

ries models exhibit consistently lower performance,444

reinforcing the notion of this domain’s complexity445

and implying the extent to which logic reasoning446

performance can be influenced by the context. In-447

terestingly, we also observe a general trend from448

observation where models that generally perform449

well show more pronounced disparities across do-450

mains, suggesting that higher capabilities amplify451

domain-specific challenges or advantages.452

Statistical Analysis on Domain-specific Perfor-453

mance Difference The statistical results are pre-454

sented in Figures 9 and 10 in Appendix I.1. Each455

row in either figure consists of four distinct sub-456

figures. The two sub-figures on the left side illus-457

trate the performance of the respective model for458

abductive reasoning, while the two on the right459

side demonstrate the deductive performance. In460

each pair of two sub-figures, the barplot shows the461

weighted F1-score for each category across diffi-462

culty levels calculated using equation (4), while463

the heatmap displays the results of the chi-square464

test (Bolboacă et al., 2011) with each cell corre-465

sponding to the p-value of the test regarding any466

pairwise categories. The application of the chi-467

square test in this regard aims to determine whether468

there is a significant association between two dis-469

tributions. As shown in each heatmap, the darker470

blue (p − value = 0.05 at different thresholds)471

implies a significant difference between the distri- 472

butions of the two categories, while the lightest 473

blue (p− value > 0.05) suggests no significance. 474

Based on the bar plots and heatmaps, there are 475

several observations to highlight in terms of mod- 476

els’ performance. First, most of these models per- 477

form better in deductive reasoning tasks than ab- 478

ductive reasoning tasks. This observed pattern is 479

consistent across most of the models and categories 480

under investigation in this study. Second, the mod- 481

els’ performance varies significantly across differ- 482

ent categories. For instance, based on the results 483

of Qwen-32, the weighted F1-score for the abstract 484

category is much higher than that of other cate- 485

gories. However, it is also noted that the math cat- 486

egory consistently displays a comparatively lower 487

weighted F1-score across these categories. Third, 488

the abstract category is more likely to display signif- 489

icant differences when compared to other models. 490

4.1.2 Generalization after Finetuning 491

This segment of our research is dedicated to ex- 492

amining the generalization capabilities of models 493

fine-tuned on different types of logic data. We ad- 494

dress several key research questions: (1) How do 495

models trained on abstract data compare in general- 496

ization to those trained on contextualized data? (2) 497

What is the effect of model scaling on generaliza- 498

tion performance across different data types? (3) 499

How well can models trained on data from a single 500

domain generalize across multiple domains, and 501

what role does the diversity of training domains 502

play in this context? 503
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Figure 4: Comparative Generalization Performance on Abstract and Contextualized Data.

Abstract vs. Contextualized Data We con-504

ducted experiments to compare the generalization505

abilities of models trained on purely abstract data506

against those trained on contextualized data. We507

utilized four models for this purpose: Qwen-4,508

Qwen-7, Qwen-14, and GPT-3.5-turbo, each fine-509

tuned on both types of data. The abstract dataset510

comprised 1280 data points generated from 256511

formal logic templates. For a balanced comparison,512

we selected a random sample of 1280 data points513

from a much larger pool of contextualized data,514

ensuring each template was equally represented.515

Our results in Figure 4 show that models fine-516

tuned on abstract data, while performing well on517

similar abstract test cases, exhibit a marked decline518

in performance when applied to contextualized519

data, particularly as the difficulty level increases.520

On the other hand, models fine-tuned on contextu-521

alized data (sampled-ctx) demonstrate robust gen-522

eralization capabilities, significantly outperforming523

those trained on abstract data across both similar524

and dissimilar tasks. This is especially evident525

in GPT-3.5, achieving near-perfect scores on the526

lower difficulty levels of contextualized data.527
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Figure 5: Model Performance by Finetuning on Differ-
ent Domains.

Model Scale Effect on Generalization Our528

study also explores how the size of models influ-529

ences their ability to generalize from training data. 530

In Figure 4, we observe that while larger models 531

exhibit only slight improvements when fine-tuned 532

on abstract data, suggesting a saturation point in 533

the complexity that abstract reasoning can model, 534

the same models show significantly better perfor- 535

mance improvements when fine-tuned on sampled- 536

ctx data. This suggests that the richness of con- 537

textualized data may better support the models in 538

learning to generalize across various logic tasks. 539

Single-domain vs. Multi-domain Generalization 540

One potential explanation for the superior general- 541

ization capacity of sampled-ctx data is the diversity 542

of domains from which it is sampled, as opposed 543

to the relative homogeneity of abstract data. Thus, 544

further investigations focused on whether training 545

on data from a single domain could match or ex- 546

ceed the generalization capabilities achieved by 547

training across multiple domains. We fine-tuned 548

GPT-3.5 on individual domain datasets as well as 549

on a mixed-domain dataset (sampled-ctx). Results 550

in Figure 5 indicate that models trained on single- 551

domain datasets often perform on par with or better 552

than those trained on multi-domain data, challeng- 553

ing the assumption that greater domain diversity 554

improves generalization. 555

5 Conclusion 556

This paper provides a comprehensive investigation 557

into the logic reasoning abilities of LLMs through 558

the ContextHub benchmark. Our approach effec- 559

tively separates logical reasoning from textual com- 560

prehension, enabling a focused analysis of models’ 561

reasoning capabilities. The study reveals that a 562

model’s performance on reasoning tasks is substan- 563

tially influenced by the context and domain-specific 564

variables involved. Also, finetuning on instanti- 565

ated data enhances the models’ ability to generalize 566

across various logic reasoning tasks, irrespective of 567

the domain complexity or the diversity of domains. 568
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6 Limitations569

Our study has several limitations. First, the syn-570

thetic nature of the datasets, particularly abstract571

logic data, may not fully capture the complexity572

and variability of real-world reasoning tasks. This573

limitation could affect the external validity of our574

findings, as models trained on such data might not575

perform equivalently on natural, less structured576

tasks. Second, the study’s focus on propositional577

logic might not translate directly to other forms of578

reasoning used in practical applications, such as579

probabilistic or causal reasoning. Future research580

should aim to address these limitations by incor-581

porating more diverse and complex reasoning for-582

mats, extending beyond propositional logic to in-583

clude other reasoning types that are prevalent in584

real-world scenarios.585

6.1 Template-Based Data Generation and586

Limited Complexity of Logical Rules587

A final area of concern relates to the templatized588

nature of our dataset and the relative simplicity of589

the inference rules involved, which some argue do590

not fully capture real-life reasoning:591

Modeling Real-World Reasoning. While our592

dataset leverages structured templates, we note that593

it primarily seeks to evaluate whether the inher-594

ent reasoning abilities of LLMs generalize beyond595

strictly abstract logic. We design contexts that,596

although templated, reflect more naturalistic sce-597

narios than purely formal problems. This design598

allows us to isolate the effects of contextual infor-599

mation on reasoning performance—an aspect often600

overlooked by benchmarks that focus either on en-601

tirely decontextualized logic or on unconstrained602

real-world data without rigorous comparisons. We603

acknowledge that fully simulating the variety and604

complexity of real-world language remains chal-605

lenging; however, our approach provides an inter-606

mediate step that systematically tests reasoning in607

contexts richer than purely symbolic logic.608

Potential for “Hacking” Templatized Data. Be-609

cause the data is templated, one might worry that610

targeted fine-tuning could exploit superficial pat-611

terns. Yet, our experiments indicate that such fine-612

tuning does not close the performance gap between613

reasoning in abstract contexts and reasoning under614

richer, diverse circumstances, suggesting that the615

dataset’s complexity is non-trivial. Furthermore,616

our generation pipeline can flexibly produce new617

templates or extended contexts, preserving diver- 618

sity and countering the risk of overfitting. Thus, 619

while we acknowledge that carefully crafted tem- 620

plates can, in principle, be exploited, our design 621

aims to mitigate this vulnerability through contin- 622

ual expansion and variation of the dataset. 623

Scope of Logical Rules. Our benchmark focuses 624

on relatively fundamental inference rules (e.g., 625

Modus Ponens) rather than the more intricate con- 626

structions found in advanced logic benchmarks 627

(e.g., LogicBench (Parmar et al., 2024)). We se- 628

lect simpler rules to illuminate a primary objec- 629

tive: examining how contextual information affects 630

model performance when abstract reasoning ap- 631

pears achievable in controlled settings. High per- 632

formance on purely abstract tasks highlights an un- 633

expected deficit once the same rules are embedded 634

in richer contexts. We acknowledge that extend- 635

ing the benchmark to incorporate more complex 636

rules remains a worthwhile direction, but our cur- 637

rent approach demonstrates that even foundational 638

inference (like Modus Ponens) can deteriorate sig- 639

nificantly with the introduction of contextual com- 640

plexity, underscoring the ongoing challenges for 641

LLMs in real-world-like reasoning tasks. 642
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with NVIDIA Tesla A100 GPUs (80GB of GPU886

memory each).887

D Formal Logic Template Instantiation888

D.1 Contextual Instantiation889

Domains of contextualization We instantiate the890

above formal logic templates in the below con-891

textual domains following the categorization of892

Wikipedia (Wik):893

1 Culture and the arts , Geography and894
places , Health and fitness , Human895
activities , Mathematics and logic ,896
Natural and physical science , People897
and self , Philosophy and thinking ,898

Religion and belief systems , Society899
and social sciences , Technology and900
applied sciences.901

Listing 1: Categories of Wikipedia

The domain of “History and events” is removed be-902

cause instantiated sentences are often about known903

fact and the question can be answer without go-904

ing through the reasoning process, thus nullify the905

reasoning problem.906

Each instantiation of a domain is created based907

on a randomly selected sub-categories in the do-908

main from above based on sub-categories estab-909

lished in Wikipedia to encourage diversity and spec-910

ification. For example, “Culture and the arts” has911

the following sub-categories:912

1 Classics , Critical theory , Cultural913
anthropology , Clothing , Folklore ,914
Food and drink culture , Language ,915
Literature , Museology , Mythology ,916
Philosophy , Popular culture , Science917
and culture , Traditions , Arts and918

crafts , Celebrity , Censorship in the919
arts , Festivals , Humor , Literature ,920
Museums , Parties , Poetry , Circuses ,921
Dance , Film , Music , Opera ,922

Storytelling , Theatre , Architecture ,923
Comics , Crafts , Design , Drawing ,924

Film Animation , New media art ,925
Painting , Photography , Sculpture ,926
Board games , Card games , Dolls ,927
Puppetry , Puzzles , Role -playing928
games , Video games , Air sports ,929
American football , Association930
football , Auto racing , Baseball ,931
Basketball , Boating , Boxing ,932
Canoeing , Cricket , Cycling , Exercise933
, Fishing , Golf , Gymnastics , Hobbies934
, Horse racing , Ice hockey , Lacrosse935
, Olympic Games , Rugby league , Rugby936
union , Sailing , Skiing , Swimming ,937

Tennis , Track and field , Walking938
trails , Water sports , Whitewater939
sports940

Listing 2: Sub-categories of Culture and the arts in
Wikipedia

Contextualization process After obtaining the 941

formal logic templates, for each domain, we first 942

randomly selected one sub-category c, then we ask 943

LLMs (in our experiment, Claude-3-Opus) to in- 944

stantiate each variable in the original logic tem- 945

plates with the relevant context in the selected sub- 946

category. This contextualizatin process is divided 947

into 2 steps: 948

1. Variable-based Transformation: Tv. For each 949

variable V contained in the logic template 950

X , a instantiated sentence sV is generated by 951

Tv(c,V ∈ X ). For example, a leaf node vari- 952

able V can be instantiated as “Alice studied hard 953

for the following math test” in the sub-category 954

of “Mathematics Education” in the category of 955

“Mathematics and Logic”. 956

2. Template-based Transformation: Tt. After gen- 957

erating {sV} for all {V} in the template X , a 958

coherent natural language description will be 959

generated by Tt({sV},X ) by forming a instan- 960

tiated version of the original formal logic tem- 961

plate. 962

E Evaluation Metrics for Benchmarking 963

To assess the reasoning capabilities of LLMs, we 964

employ the average F1 score. The calculation of 965

the average F1 score involves determining the aver- 966

age of the F1 scores for data points (d) that possess 967

the same truth values. For datapoints with identi- 968

cal ground truth (gt) truth value T , the F1 score 969

is computed by first ascertaining the true positive 970

(T T
p ), false positive(F T

p ), and false negative(F T
n ): 971

T T
p = {d ∈ D|f(d) = gt(d), gt(d) = T } (1) 972

F T
p = {d ∈ D|f(d) ̸= gt(d), f(d) = T } (2) 973

F T
n = {d ∈ D|f(d) ̸= gt(d), gt(d) = T } (3) 974

F T
1 for for datapoints with the truth value T is 975

then computed by: 976

F T
1 =

2T T
p

2T T
p + F T

p + F T
n

(4) 977

The average F1 score for the entire dataset is 978

calculated by determining the average of the F1T 979

scores for all possible truth values T . 980
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F Hyperparameters for Finetuning981

We leverage QLora (Dettmers et al., 2024) for fine-982

tuning on open-source models. Other relevant hy-983

perparameters are: epochs = 1, warmup proportion984

= 0.01, learning rage = 3e-4, weight decay = 0.01,985

lora rank = 64, lora dropout = 0.05, lora alpha = 16,986

batch size = 4, accumulate gradient steps = 8.987

F.1 Abstract Instantiation988

Other than the 11 contextual domains from989

Wikipedia, we also create an “abstract” domain990

where we simply substitute by heuristic rules the991

propositional variables in the formal logic tem-992

plate with arbitrary character sequences of vary-993

ing lengths, ranging from 3 to 5. The purpose of994

creating this domain is to augment the number of995

datapoints expressed in an abstract form, thereby996

enabling a fair comparison with other contextual-997

ized domains in terms of sample size. Furthermore,998

by employing multiple instantiations, we can miti-999

gate the impact of any potential outliers and obtain1000

a more reliable and generalizable estimate of the1001

performance of abstract data as we have only 2561002

formal logic templates in total.1003

Below is an example of instantiation in Table1004

3 of a formal logic template of difficulty level 1,1005

where propositional variables are represented by1006

strings such as "aaa", "aab", and "aac".1007

1 (aaa or aab) - aac. Given aac is False ,1008
what is the value of aab?1009

We provide an abstract instance and a contex-1010

tualized instance on the domain of “Geography1011

and Places”, where we provide the instantiations1012

of each proposition in the template and the final1013

combined logic reasoning task based on proposi-1014

tional instantiations. More examples can be found1015

in Appendix J.1016

G Length Correlation1017

It is possible that some may question whether the1018

observed differences in model performance are due1019

to the varying input lengths, rather than the effect1020

of different instantiations. To address this potential1021

concern, we have conducted a series of experiments1022

to investigate the correlation between input length1023

and model performance: we employ four models1024

of varying sizes (Qwen-0.5, Qwen-7, Qwen-32,1025

Qwen-110) and conduct length-based performance1026

ablation. We then analyze the performance of each1027

model based on the length of the input text. Specif-1028

ically, for each graph presented below, the x-axis1029

represents the text length, while the y-axis repre- 1030

sents the corresponding model performance. The 1031

y-axis value for each x-axis value x is the model 1032

performance on the part of the data whose corre- 1033

sponding input text length is smaller than x. 1034

Based on the two images Figure 6 and Figure 7, 1035

we cannot see any consistent correlation between 1036

model performance and input length after tokeniza- 1037

tion using model corresponding tokenizer. 1038

H Error Analysis 1039

We carefully selected 970 error samples of 5544 on 1040

GPT-4o’s result on abductive and deductive level 1 1041

and 2 datasets. We identified 4 different reasoning 1042

errors and have updated the manuscripts to elabo- 1043

rate them. 1044

• Fail to reason on counter-factual questions 1045

(24.94%): In the example: If the Earth’s oceans 1046

are warming due to climate change, or humans 1047

are emitting large amounts of greenhouse gases, 1048

then global temperatures will rise. Given that 1049

the statement “global temperatures are not ris- 1050

ing” is false, the correct logical answer should 1051

be False—meaning that humans emitting large 1052

amounts of greenhouse gases is not true. How- 1053

ever, the model might assume this outcome due 1054

to its pre-existing knowledge, leading to an incor- 1055

rect conclusion of True. 1056

• Laziness and shallow thinking (37.11%): The 1057

model occasionally exhibits a lazy approach, par- 1058

ticularly when dealing with complex premises 1059

or pre-conditions. Instead of thoroughly analyz- 1060

ing the situation, it tends to give a “N/A” or a 1061

simplified response without fully utilizing all the 1062

available information. 1063

• Inconsistent adherence to logical expressions 1064

(12.47%): At times, the model fails to follow 1065

basic logical rules in simple expressions. For 1066

example, in an “aaa OR aab” scenario, where ei- 1067

ther being true should lead to “aac” being true as 1068

well, the model sometimes incorrectly concludes 1069

otherwise. This suggests a lapse in the model’s 1070

ability to consistently apply fundamental logical 1071

reasoning. 1072

• Weak understanding of contrapositive logic 1073

(25.48%): The model consistently struggles with 1074

understanding and applying contrapositive logic 1075

(e.g., understanding that “If P, then Q” logically 1076

implies “If not Q, then not P”). 1077

13



Level 1 - Abstract Level 1 - Geography and Places

aaa: vxkgr aaa: The terrain has experienced significant uplift.
aab: caunc aab: Powerful erosional forces have shaped the land.
aac: ybyz aac: The area features tall, steep mountains.
reasoning task: (vxkgr or
caunc) → ybyz. Given
ybyz is False, what is the
value of caunc?

reasoning task: If an area of land has experienced significant uplift or
been shaped by powerful erosional forces, then the terrain will feature
tall, steep mountains. Given that the area does not have tall, steep
mountains, can it be determined if powerful erosional forces have shaped
the land?

Table 3: Example of abstract and instantiated logic reasoning task based on the original formal logic template.

Figure 6: Length-based performance collection on abductive logic. The four rows correspond to four models, and
four columns correspond to four difficulty levels.

I Main Benchmark Result1078

I.1 Statistical Analysis Result1079
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Figure 7: Length-based performance collection on deductive logic. The four rows correspond to four models, and
four columns correspond to four difficulty levels.
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Figure 8: Main Benchmark Performance
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Figure 9: Results of weighted F1-score and Chi-square test
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Figure 10: Results of weighted F1-score and Chi-square test (Cont.)
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J Data Examples1080

The following table presents several examples1081

showing abductive and deductive reasoning with1082

their respective difficulty levels and domains. The1083

left column shows examples of abstract instantia-1084

tions, while the right column shows contextually1085

instantiated examples in specific domains.1086
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Table 4: Examples of abductive and deductive reasoning.

Abstract Example Specific Domain Contextualized Example

Abductive Reasoning

Level 1 - Abstract Level 1 - Geography and Places

aaa: vxkgr aaa: The terrain has experienced significant uplift.
aab: caunc aab: Powerful erosional forces have shaped the land.
aac: ybyz aac: The area features tall, steep mountains.
reasoning task: (vxkgr or
caunc) - ybyz. Given ybyz
is False, what is the value
of caunc?

reasoning task: If an area of land has experienced significant uplift or
been shaped by powerful erosional forces, then the terrain will feature
tall, steep mountains. Given that the area does not have tall, steep
mountains, can it be determined if powerful erosional forces have shaped
the land?

Level 2 - Abstract Level 2 - Mathematics and Logic

aaa: ttjmx aaa: The prior probability is a uniform distribution
aab: kottz aab: The prior probability expresses existing beliefs about the parame-

ters.
aac: wqeq aac: A prior probability distribution is specified.
aad: mnze aad: New data is collected.
aae: zkx aae: The posterior probability is calculated using Bayes’ theorem.
aaf: pofk aaf: The posterior probability provides an improved estimate of the

parameters.
reasoning task: (wqeq or
mnze) - zkx. (NOT ttjmx) -
kottz. (kottz or zkx) - pofk.
Given pofk is False, what
is the value of ttjmx?

reasoning task: In Bayesian statistics, if a prior probability distribution
is specified or new data is collected, then the posterior probability can
be calculated using Bayes’ theorem to update the probability based on
the new evidence. If the prior probability is not a uniform distribution,
then it expresses existing beliefs or knowledge about the values of the
parameters. If the prior probability expresses existing beliefs or the
posterior probability is calculated, then there is sufficient information
to update the probability distribution. Given that the statement "The
posterior probability provides an improved estimate of the parameters"
is false, can it be determined whether the prior probability is a uniform
distribution or not?

Level 3 - Abstract Level 3 - Technology and Applied Sciences

aaa: dmacf aaa: Regular vulnerability scans are performed.
aab: my aab: Penetration testing is conducted quarterly.
aac: qnvj aac: Security weaknesses are proactively identified.
aad: lxnf aad: Operating systems are up to date with patches.
aae: jf aae: Antivirus software is installed on all computers.
aaf: ors aaf: Endpoint devices are protected.
aag: kuyl aag: The overall attack surface is minimized.
aah: jal aah: The firewall is properly configured.
aai: rqo aai: Intrusion detection systems are active.
aaj: vrmxo aaj: The network perimeter is secure.
aak: mcwe aak: Employees have completed security training.
aan: pdzyf aan: Security policies are strictly enforced.
aao: guwls aao: Employees follow secure computing practices.
aap: xjgwm aap: Internal systems and data are well-defended.

Continued
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Table 4 – continued from previous page
Abstract Example Specific Domain Contextualized Example

aaq: vv aaq: The organization has strong cybersecurity posture.
reasoning task: (wqeq or
mnze) - zkx. (NOT ttjmx) -
kottz. (kottz or zkx) - pofk.
Given pofk is False, what
is the value of ttjmx?

reasoning task: If the firewall is properly configured or intrusion detec-
tion systems are active, then the network perimeter is secure. When
employees have completed security training and security policies are
strictly enforced, it implies that employees follow secure computing
practices. If the network perimeter is secure or employees follow secure
practices, then internal systems and data are well-defended. Having up-
to-date operating systems with the latest patches or antivirus software
installed on all computers means the endpoint devices are protected.
Performing regular vulnerability scans or conducting quarterly penetra-
tion testing allows security weaknesses to be proactively identified. If
security weaknesses are proactively identified or endpoint devices are
protected, then the overall attack surface is minimized. When the attack
surface is minimized and internal systems and data are well-defended, it
indicates the organization has a strong cybersecurity posture. Given that
the organization does not have a strong cybersecurity posture, can it be
determined if operating systems are up to date with patches?

Level 4 - Abstract Level 4 - Culture and Arts

aaa: cg aaa: Sophie cannot practice her beam routine.
aab: ysjeo aab: Sophie needs to prepare new skills.
aac: uby aac: Sophie requires dedicated practice time.
aad: vwwf aad: The springboard is broken.
aae: lj aae: The vault is not stable.
aaf: qd aaf: Performing vault runs is risky.
aag: miz aag: Sophie is not able to practice effectively.
aah: tfxbc aah: Sophie’s coach is at practice.
aai: aaw aai: Sophie does not have supervision.
aaj: oftr aaj: Sophie is allowed to train.
aak: fzsq aak: Sophie is not making progress in her gymnastics.
aan: yxt aan: The balance beam is set up properly.
aao: ln aao: Sophie cannot practice her beam routine.
aap: qa aap: The uneven bars are not at the correct height.
aaq: py aaq: Sophie cannot work on her bar skills.
aar: qe aar: Sophie faces a major hindrance to her practice.
aas: ng aas: The floor mat has tears and needs to be replaced.
aat: bhjb aat: The floor area is not large enough for a full floor routine.
aau: djay aau: It is unsafe for Sophie to practice floor exercises.
aav: pvize aav: With an upcoming competition, Sophie needs to prepare new skills.
aaw: tk aaw: Sophie does not have enough energy to train effectively.
aax: vod aax: Sophie’s gymnastics career is at risk.
aay: dngja aay: Sophie’s gymnastics performance will likely be impacted nega-

tively.
aaz: ozyue aaz: Sophie may need to consider withdrawing from competitions.

Continued

21



Table 4 – continued from previous page
Abstract Example Specific Domain Contextualized Example

reasoning task: (NOT yxt)
-> ln. (NOT qa) -> py. (ln
or py) -> qe. (ng or bhjb)
-> djay. (vwwf or lj) ->
qd. (NOT tfxbc) -> aww.
(NOT aww) -> oftr. (NOT
pvize) -> tk. (cg or ysjeo)
-> uby. (uby or qd) -> miz.
(miz or oftr) -> fzsq. (djay
or tk) -> vod. (qe or vod)
-> dngja. (fzsq or dngja)
-> ozyue. Given ozyue is
False, what is the value of
yxt?

reasoning task: The balance beam not being set up properly means
Sophie cannot practice her beam routine. Similarly, if the uneven bars
are not at the correct height, Sophie cannot work on her bar skills. If
Sophie is unable to train on at least one apparatus, she faces a major
hindrance to her practice. Torn floor mats needing replacement or
insufficient floor space makes it unsafe for Sophie to practice floor
exercises. A broken springboard or unstable vault makes performing
vault runs risky. If it is unsafe to practice floor or vault exercises, Sophie
cannot train safely or productively. Sophie’s coach not being at practice
means she does not have supervision. Having supervision allows Sophie
to train. If Sophie did not fuel properly before practice, she will not
have enough energy to train effectively. With an upcoming competition,
Sophie needs to prepare new skills, requiring dedicated practice time. If
Sophie’s training is compromised by risky apparatus or lack of practice
time, she will not be able to practice effectively. If Sophie’s training
session is unproductive or she faces major hindrances, then she is not
making progress in her gymnastics. Lack of progress or likely negative
performance impacts put Sophie’s gymnastics career at risk. Given that
Sophie is not considering withdrawing from competitions, what can be
determined about the balance beam being set up properly?

Deductive Reasoning

Level 1 - Abstract Level 1 - Natural and Physical Sciences

aaa: pusvu aaa: A cold front is approaching the region
aab: hs aab: A warm air mass is stagnant over the area
aac: ivl aac: Atmospheric instability is likely to develop
reasoning task: pusvu is
True. hs is False. (pusvu
or hs) - ivl. Deduce the
result of ivl.

reasoning task: A cold front is approaching the region, but there is no
warm air mass stagnant over the area. If a cold front approaches or
a warm air mass is stagnant, then atmospheric instability is likely to
develop. Can we say that atmospheric instability will likely develop in
this scenario?

Level 2 - Abstract Level 2 - Society and Social Sciences

aaa: jd aaa: John Lee was born in the United States
aab: bfk aab: John Lee’s parents immigrated from South Korea
aac: wng aac: John Lee has Korean ancestry
aad: vko aad: The Lee family speaks Korean fluently
aae: cva aae: The Lee family identifies as Korean-American
aaf: qymwa aaf: The Lee family has a connection to Korean culture
aag: cr aag: John Lee is considered Korean-American

Continued
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Table 4 – continued from previous page
Abstract Example Specific Domain Contextualized Example

reasoning task: cva is True.
vko is False. (vko or cva)
- qymwa. jd is True. bfk
is True. (jd or bfk) - wng.
(wng and qymwa) - cr. De-
duce the result of cr.

reasoning task: The Lee family identifies as Korean-American, but they
do not speak Korean fluently. If the Lee family speaks Korean fluently
or identifies as Korean-American, then they have a connection to Korean
culture. John Lee was born in the United States, and his parents immi-
grated from South Korea. If John Lee was born in the U.S. or his parents
immigrated from South Korea, then he has Korean ancestry. If John Lee
has Korean ancestry and his family has a connection to Korean culture,
then he is considered Korean-American. Can we conclude that John Lee
is considered Korean-American based on the given information?

Level 3 - Abstract Level 3 - Culture and Arts

aaa: rfx aaa: The opera house was empty
aab: gurl aab: The soprano sang the aria beautifully
aac: imnsi aac: Some people attended the opera
aad: wjgx aad: The sets malfunctioned
aae: tg aae: The costumes were delivered late
aaf: kopg aaf: There were technical difficulties
aag: khh aag: The show faced some challenges
aah: ozro aah: The orchestra played flawlessly
aai: pg aai: The tenor forgot his lines
aaj: bill aaj: The performance went smoothly
aak: mek aak: There was a major disruption
aan: jp aan: The opening night was eventful
reasoning task: gurl is
True. pg is False. ozro is
True. (ozro or pg) - bill.
rfx is False. (rfx or gurl) -
imnsi. tg is False. wjgx
is False. (wjgx or tg) -
kopg. (imnsi or kopg) -
khh. (NOT bill) - mek.
(khh or mek) - jp. Deduce
the result of jp.

reasoning task: The soprano sang her aria beautifully and the orchestra
played flawlessly, but the tenor forgot his lines. If the orchestra played
well or the tenor forgot his lines, then the performance did not go entirely
smoothly. The opera house was not empty since the soprano’s beautiful
aria meant some people attended. The costumes were not delivered late
and the sets did not malfunction, so there were no technical difficulties.
If some people attended or there were technical difficulties, the show
would have faced some challenges. Since the performance did not go
smoothly, it implies there was a major disruption. If the show faced
challenges or had a major disruption, the opening night of this opera was
quite eventful. Given this, was the opening night of the opera eventful?

Level 4 - Abstract Level 4 - Health and Fitness

aaa: msta aaa: Sue did push-ups yesterday
aab: fo aab: Sue did not do pull-ups yesterday
aac: jfnrh aac: Sue did some upper body exercises yesterday
aad: ssb aad: Sue did squats yesterday
aae: ac aae: Sue did not do squats yesterday
aaf: dzda aaf: Sue only trained upper body yesterday
aag: hujcf aag: Sue did burpees yesterday
aah: pil aah: Sue did not do burpees yesterday
aai: dyue aai: Sue trained her core muscles yesterday
aaj: sgniu aaj: Sue did planks yesterday
aak: stbf aak: Sue had an effective core workout yesterday
aan: pswg aan: Sue did an intense workout yesterday
aao: fkyxi aao: Sue had a focused or intense workout yesterday

Continued
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Table 4 – continued from previous page
Abstract Example Specific Domain Contextualized Example

aap: outm aap: Sue did lunges yesterday
aaq: ybjj aaq: Sue did step-ups yesterday
aar: eek aar: Sue trained her leg muscles yesterday
aas: wmejd aas: Sue did wall sits yesterday
aat: rdbk aat: Sue did not do calf raises yesterday
aau: rqmc aau: Sue did some quad and hamstring exercises yesterday
aav: bw aav: Sue had an effective lower body workout yesterda
aaw: xvd aaw: Sue did not do a full body workout yesterday
aax: pg aax: Sue did a partial body workout yesterday
aay: qbli aay: Sue did a full body workout yesterday
aaz: qvb aaz: Sue had a comprehensive workout yesterday
reasoning task: fo is False.
msta is True. (msta or fo)
-> jfnrh. dyue is True. xvd
is False. (NOT xvd) -> pg.
ssb is True. (NOT ssb) -
> ac. (jfnrh and ac) ->
dzda. sgniu is True. (dyue
or sgniu) -> stbf. outm
is True. rdbk is False.
ybjj is True. (outm or
ybjj) -> eek. wmejd is
True. (wmejd or rdbk) -
> rqmc. (eek and rqmc)
-> bw. (NOT pg) -> qbli.
(bw or qbli) -> qvb. hu-
jcf is True. (NOT hujcf) ->
pil. (pil and stbf) -> pswg.
(dzda or pswg) -> fkyxi.
(fkyxi or qvb) -> abc. De-
duce the result of abc.

reasoning task: Sue did push-ups but not pull-ups yesterday. If she
did push-ups or pull-ups, then she did some upper body exercises. Sue
trained her core by doing planks. Since she did not do a full body
workout, it means she did a partial body workout. Sue did squats
yesterday, so it is not true that she did not do squats. If Sue did some
upper body exercises and did not do squats, then she only trained upper
body. If Sue did planks or trained her core muscles, then she had an
effective core workout. Sue did lunges and step-ups, but not calf raises.
If she did lunges or step-ups, then she trained her leg muscles. If Sue did
wall sits or calf raises, then she did some quad and hamstring exercises.
If Sue trained her leg muscles and did some quad/hamstring exercises,
then she had an effective lower body workout. If Sue did not do a
partial body workout, then she did a full body workout.If Sue had an
effective lower body workout or did a full body workout, then she had a
comprehensive workout. Sue did burpees yesterday, so it is not true that
she did not do burpees. If Sue did not do burpees and had an effective
core workout, then she did an intense workout. If Sue only trained
upper body or did an intense workout, then she had a focused or intense
workout. If Sue had a focused/intense workout or a comprehensive
workout, then she had a productive bodyweight training session. Did
Sue have a productive bodyweight training session yesterday?
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