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ABSTRACT

Multi-objective optimization (MOO) has emerged as a powerful approach to solving
complex optimization problems involving multiple objectives. In many practical
scenarios, function evaluations are unavailable or prohibitively expensive, necessi-
tating optimization solely based on a fixed offline dataset. In this setting, known
as offline MOO, the goal is to find out the Pareto set without access to the true
objective functions. This setting suffers from an out-of-distribution (OOD) issue,
where the surrogate model is not accurate for unseen designs. Due to OOD issue,
surrogate errors may cause the optimizer to select solutions that do not lie on the
true Pareto front and are biased toward its extremes. To address this, this paper
proposes Diversity-driven Offline Multi-Objective Optimization (DOMOO), which
aims to find out a diverse and high-quality set of solutions. Firstly, DOMOO
incorporates an accumulative risk control module that estimates the potential risk
of candidate solutions and alleviates OOD issue between the training data and
the generated solutions. In addition, a nested Pareto set learning (PSL) strategy
is proposed to jointly learn preference and PSL parameters, then optimize them,
enabling adaptation to diverse Pareto front geometries. To further enhance solution
quality, we design a diversity-driven selection strategy that extracts a representative
and well-distributed set of final solutions. To achieve this strategy, we propose
IGDofine, a tailored indicator for the offline setting that considers both diversity and
convergence, and avoids the bias of hypervolume indicator. Extensive experiments
on synthetic and real-world benchmarks, such as neural architecture search, show
that, on average across benchmarks, DOMOO achieves a 1.38x improvement in
convergence and diversity over comparable methods.

1 INTRODUCTION

Multi-objective optimization (MOO) is widely used in fields ranging from neural architecture
search (Lu et al.l 2020) to antenna structure design (Yu et al., 2019), where practitioners must
balance conflicting goals, for example, developing a drug (Ding et al., 2019) that is both highly
effective and minimally toxic. MOO seeks to discover the complete collection of Pareto optimal
solutions, where no objective can be improved without degrading others (Lin et al.| 2022)). Many
existing methods rely on surrogate models to approximate the true objectives. However, to maintain
the accuracy of the surrogates, they typically require actively querying new function evaluations
with the true objectives during training (Li et al.| 2025). In many real-world applications, such as
protein engineering and molecular design (Xue et al.,[2024)), evaluating true objective functions can
be prohibitively expensive or hazardous (Yuan et al.| 2024), making function evaluations difficult.
Fortunately, these domains often provide available historical data (i.e., offline dataset) in the form
of solution and the corresponding true objective function values. This motivates the offline MOO
setting, where the goal is to recommend a set of solutions that represent the best trade-offs among
multiple objectives, using only an offline dataset without any active evaluation.

A common approach to solving offline MOO is to train surrogate models (e.g., Gaussian processes
or deep neural networks) on the offline dataset. Then, optimization algorithms (e.g., evolutionary
algorithms) explore the solution space under the guidance of surrogate models to identify solutions
expected to perform well (Xue et al., 2024; [Yuan et al., 2024). However, the trained surrogates are
susceptible to the out-of-distribution (OOD) issue, often producing unreliable predictions for solutions
that lie far from the training distribution (Lu et al., 2023 Brookes et al.,[2019; (Chen et al., [2023 [Yun
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et al.l [2024). As shown in the left part of Figure[I] we present an offline single-objective optimization
example for ease of visualization. In this setting, the surrogate model trained on an offline dataset
tends to underestimate the true objective far from the dataset. As a result, the optimizer selects
solutions that appear promising under the surrogate but perform poorly under the true objective due
to the OOD issue. In the multi-objective setting, OOD issue can cause the surrogates to underestimate
a few solutions, making them incorrectly dominate many others. This leads to a severely imbalanced
Pareto front (as shown in the blue dots in the right part of FigureI), where most solutions are
eliminated and the diversity, as well as convergence, drops sharply (Xue et al.| [2024).

Despite its significance, the OOD issue
in offline MOO remains largely underex-
plored. Although several methods have
been proposed to address OOD in single-
objective offline settings (Q1 et al., 2022
Kumar and Levinel [2020; [ Trabucco et al.,
2021)), such as incorporating conservatism
into surrogate models to intentionally lower Solution Objective Function 1

the predictions of potentially overestimated

OOD solutions (Yu et al [2021)) in maxi- Figure 1: Motivation illustration. The left figure il-
mization problems. These techniques can- lustrates the OOD issue in offline single-objective op-
not be directly applied to MOO due to timization, while the right figure highlights OOD will
the intricate structure of Pareto dominance. lead to reduced diversity and convergence in offline
Thus, they often exhibit poorer diversity in multi-objective optimization.

their solutions. Moreover, existing online

MOO methods, such as multi-objective Bayesian optimization (Ozaki et al.| 2024)) and evolutionary
algorithms (L1 et al.} 2015)), are typically immune to the OOD issue in their native setting, as they can
actively query new data. However, when these methods are directly applied to the offline scenario,
where no additional data can be obtained, they often suffer from severe OOD-induced errors, leading
to degraded optimization performance. This highlights the urgent need for principled methods that
explicitly address OOD issue in offline MOO.
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Contribution. To address the aforementioned problem in offline MOO, we propose Diversity-Driven
Offline Multi-Objective Optimization (DOMOO), a nested Pareto set learning framework designed to
improve the diversity and convergence of the candidate solutions. Specifically, DOMOO integrates
an accumulative risk control module with the proposed nested Pareto set learning to approximate
the Pareto set solely based on the offline dataset. The risk control component suppresses unreliable
surrogate predictions on OOD inputs. The nested Pareto set learning jointly learns preference-
conditioned mappings and optimizes preference vectors, allowing the model to adapt to various
Pareto front geometries. Furthermore, a diversity-driven solution selection strategy is designed to
extract a high-quality set of final recommendations, with a novel indicator IGD iy to mitigate the
bias of hypervolume toward extreme solutions. This combination ensures that DOMOO maintains a
reliable approximation under OOD issue and produces diverse, representative solutions. Extensive
experiments on synthetic and real-world benchmarks verify that DOMOO significantly outperforms
the compared methods in both convergence and diversity by being 1.38 times better on average.

The subsequent sections present the related work and preliminaries, describe the proposed DOMOO
method, show the empirical results, and conclude the paper.

2 RELATED WORK

Offline single-objective optimization methods addressing OOD issue can be broadly categorized
into three types: forward approaches (e.g., COMs (Trabucco et al.,[2021), NEMO (Fu and Levine,
2021))), generative models (e.g., MIN (Kumar and Levine} 2020), CbAS (Brookes et al.,2019))), and
trajectory-based methods (e.g., BONET (Mashkaria et al., 2023)), PGS (Chemingui et al., [2024])).
These methods respectively focus on surrogate robustness, distribution learning with regularization,
and leveraging synthetic trajectories to explore high-quality solutions beyond the offline dataset.
While these methods address the OOD issue, extending them to the multi-objective setting remains
challenging due to the need to balance diversity and convergence across conflicting objectives.
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Offline Multi-objective Optimization. Offline MOO typically adopts three main approaches:
evolutionary algorithms, Bayesian optimization, and deep neural network-based methods. Population-
based search strategies are commonly used in evolutionary algorithms, where a trained surrogate
model serves as an oracle to guide the optimization process. Representative methods following this
paradigm include DDMOEA/GAN (Zhang et al., [2022), MS-RV (Yang et al.| [2020), and IBEA-
MS (Liu et al.l 2022). Similarly, Bayesian optimization also employs a surrogate model as an oracle,
but selects candidate solutions via acquisition functions and updates the selection iteratively. Various
methods and enhancements have been proposed under the multi-objective Bayesian optimization
(MOBO) framework, including MOBO-gNEHVI (Daulton et al., 2021), MOBO-qParEGO (Knowles,
2006), MOBO-JES (Hvarfner et al.,[2022)), and so on. Unlike the previous two categories, which
struggle to effectively address the OOD issue, neural network-based methods can mitigate this
problem by replacing traditional surrogate models with those adopted in forward approaches from
offline single-objective optimization (e.g., COMs (Trabucco et al., [2021]), IOMs (Qi et al., [2022]),
Tri-Mentoring (Chen et al., |2023)), and extending them using multiple models (Xue et al., |2024)
to handle offline MOO. While these methods achieve strong convergence properties, they do not
consider how to maintain solution diversity across the Pareto front (PF).

Pareto Set Learning. Pareto Set Learning (PSL) is a recently proposed model-based approach
that learns a mapping from preference vectors to Pareto optimal solutions by training a neural
network. PSL-MOBO (Lin et al., [2022)), which is the first method to integrate PSL with MOBO,
enables efficient approximation of black-box PFs by learning a preference-conditioned solution
generator based on surrogate models. EPS (Ye et al 2024) combines evolutionary algorithms
with PSL, enabling faster convergence and broader PF coverage through adaptive evolution of
preference vectors. CDM-PSL (Li et al.| 2025) introduces diffusion models into Pareto set learning
for MOBO, achieving improved solution quality and diversity under limited evaluations through
conditional sampling and entropy-based guidance. However, PSL-MOBO heavily relies on Gaussian
process surrogates, which were primarily developed for online evaluation. When applied to offline
optimization, they often encounter severe OOD issues.

3 PRELIMINARIES

3.1 OFFLINE MULTI-OBJECTIVE OPTIMIZATION

In offline multi-objective optimization (MOO), the goal is to optimize multiple conflicting objectives
simultaneously given a static dataset D = {(z;,y;)}, where z; € X C R denotes solution and
y; is the associated objective vector. The MOO problem can be formally stated as mingecx f(x) =
(fi(x), f2(x), ..., far(x)), where f : X — RM is composed of M individual objective functions.

Definition 1 (Pareto-optimal Solution (Marler and Arora, 2004)). A solution x* € X is called
Pareto-optimal if there exists no other solution ' € X such that Vi € {1,2,..., M}, fi(z') <
fi(x*), with at least one strict inequality, i.e., 3j € {1,2,..., M} such that f;(x') < f;(x*).

Definition 2 (Pareto Set and Pareto Front (Li et al.,[2015)). The set of all Pareto-optimal solutions
is called Pareto set, denoted by M,,, and its image under the mapping f, f(M,) = {f(z) |z €
M.} is called the Pareto front.

However, in MOO no single solution can optimize all objectives concurrently and trade-offs among
conflicting objectives are inevitable (Qian et al., 2013} [Bian et al.,|2025). Therefore, the primary goal
in offline MOO can be viewed as the pursuit of the Pareto solutions (i.e., solutions for which no other
solution can improve some objectives without causing detriment to at least one other objective, as
defined in Definition[T)) and the effective approximation of the Pareto front (as Definition [2)).

3.2 PARETO SET LEARNING FOR OFFLINE MOO

In multi-objective optimization (MOO), the preference X reflects the relative importance or priority of
each objective. To learn a connection from all valid preferences A = {X € R} | 3" \; = 1} to their
corresponding Pareto solutions, Pareto set learning (PSL) (Lin et al.,|2022) trains a Pareto set model
through scalarization methods, which bridge preferences and Pareto solutions by transforming the
multi-objective problem into a single-objective one for each preference. Specifically, PSL (Lin et al.,
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[2022) uses the scalarization based on the augmented Tchebycheff approach (Kaliszewskil [1987):

M
Gene(@ | X) = max (X (fi(e) = (5 =)} +pY_Aifilw), YAEA, (D)

== i=1
where the z* = (27, - , 23,) is the ideal vector for the objective f(x), € is a small positive scalar

and p is a small positive scalar that depends on the problem and the current solution location.

During the training process, for each sampled preference A, the Pareto set model outputs a solution
he(A) and is optimized to minimize the scalarized objective gich_aug(72¢(A)|A) over all valid pref-
erences: ¢* = argming Exa gich_aug (T = hg(A)|X). However, in offline MOO, solutions cannot
be evaluated during the optimization process. Therefore, M surrogate models fl are built for each
objective based on the offline dataset D to predict solutions when calculating Equation[I} With the
trained Pareto set model hg-, we can obtain the Pareto set: Mps = {& = hg-(A) | A € A}, where
he=(A) = argmingc x gich aug (€ | A), VA € A.

3.3 ENERGY MODEL

In offline MOO, the objective function cannot be evaluated during the optimization, so M surrogate
models are constructed for each objective given the offline dataset D to predict the objective values
for a given solution. However, most existing surrogate models typically ignore OOD risk, which
can lead to performance degradation or unsafe decisions. Therefore, explicit risk modeling and
suppression are necessary in offline multi-objective optimization . To mitigate the negative impact of
00D solutions, ARCOO introduces the energy model E,, to assign an energy value
E,,(x) to each solution @, which is realized as a neural network that maps solutions & € R” to their
associated energy E,,(x) € R.

Train the Energy Model. To train the energy model to identity low-risk and high-risk solutions,
ARCOO employs Contrastive Divergence (CD) 2002):

Lep(w) = Egnp[Ew ()] — Eznol[Eu ()], 2)

where P denotes the low-risk distribution and ) denotes the high-risk distribution.

Before training the energy model, the high-risk distribution Q is still unfulfilled. Since Q is intended to
represent OOD solutions that are prone to overestimation, ARCOO adopts Markov Chain Monte Carlo
(MCMC) methods (Geyer, [1992} Welling and Tehl 2011) with Langevin dynamics LD,
let al., 2019; |Du and Mordatch, 2019) kernel to sample such solutions. Let Q = LD, (P; Kip),
xg ~ P, x ~ QF and QF is sampled as:

Ty Tp1 + Ve fp(@p) o, k=1,...,Kip, 3

where o, ; denotes the i-th element of the o, sampled independently as oy, ; ~ N(0,7n) and K1 p
is the total number of steps. Starting from a sample @y drawn from the low-risk distribution P, the
Langevin dynamics LD, (P; Kip) performs K p iterations of noisy gradient ascent to approximate
a distribution Q that concentrates on overestimated OOD solutions.

Risk Suppression Factor. After training the energy model E,,, we use the output of the energy
model E,,(x), to compute a risk suppression factor R(x), defined as follows:

c(Es — Ey(x)
R(w) = (EQQ_EP ) @

where E5 =E_,_5[Ew(2')], Ep =E,, _p[Ew(x’)] and ¢ denotes the initial momentum. The P
represents the empirical distribution over the high-quality batch of solutions in the offline dataset.

The @ represents the high-risk distribution sampled by Langevin dynamics starting from P. With the
risk suppression factor, we can suppress the risk to a corresponding level in each iteration of nested
Pareto set learning.



Under review as a conference paper at ICLR 2026

S s 2 " s \
,' (a) Preparation Phase tor Model Training |I’ (¢) Solution Generation and Solution Selection |
1 : \ 2 2 1
: Ofﬂme E> i ol 1 . v . v 4
i dataset u :: o ) oy *e, :
: %% ¢ |l Thetrained  Solution o So 1
1 ': surrogate model Generation ° o4 1
| - 0 04 Les i
A TS " . o I
[ G 0 I P8 | o.ordisvibuion " A :
1 5 =1L . .
| ols solution : Before selection 1 After selection 4
Irain  surrogate models i ; I . . q 1
! ainelinereyjodc] ! Select candidate solutions via IGDqgfline |
1 for each objective for risk control. 1 . . 5 !
1 et o o 1 I . Select remaining candidate solutions via HV !
i redict the objective values ~ Compute risk \uppre\smnl ¥ Reference solution ® Offline Pareto solution !
= 1
H "O=Cali D ) factor (). ,' Candidate solution 4 Solution selected by HV & Solution selected by IGDggiine h

________________________________________________________________

Obtain the trained surrogate models
and the energy model

_________________________________________________________________

(b) Offline Multi-Objective Optimization via Bi-level Pareto Set Learning
Update Pareto set model  via gradient descent

'a' = = (O Ceman( V= ()

Obtain a trained Pareto set model

Exploration Phase Preference gradient update Phase

'
1

(= Cpre < = pret exp) ! Cpret ep< =)

i

i

i

:

O_irichlet( ) A O O e (= () “wnan( = ODIZo

1
1

1

1

1

1

1 Pretraining Phase
1

| pre)
1

1

1

O Notiine

_________________________________________________________________

Figure 2: The framework of diversity-driven offline multi-objective optimization via nested Pareto
set learning: (a) Surrogate models are trained for each objective and energy model is trained for risk
control. (b) A nested Pareto set learning process with risk control is conducted to obtain a Pareto
set model. (¢) Candidate solutions are generated and then sequentially selected using the IGD¢gine
indicator to ensure diversity, followed by the HV indicator to guarantee convergence.

4 THE PROPOSED METHOD

In this section, we first provide an overview of the proposed method diversity-driven offline multi-
objective optimization (DOMOO), followed by a detailed description of the nested Pareto set learning
with accumulative risk control, and diversity-driven solution selection strategy, respectively.

4.1 METHODOLOGY OVERVIEW

Offline multi-objective optimization (MOQO) struggles to alleviate the out-of-distribution (OOD)
issue, which results in a severely imbalanced Pareto front (i.e., solutions cluster in high-density
regions, failing to cover the entire Pareto front), damaging both the diversity and convergence of
the solutions. To alleviate this issue, we propose the DOMOO, a risk-aware offline MOO method
via nested Pareto set learning. We provide the framework of our algorithm in Figure [2 and the
corresponding pseudo-code in Appendix [A] Specifically, we first train M surrogate model for each
objective. Based on these surrogate models, we perform nested Pareto set learning with accumulative
risk control to obtain a Pareto set model. Finally, candidate solutions are generated by both the trained
Pareto set model and the trained surrogate model, and then the proposed diversity-driven solution
selection strategy is employed, resulting in a solution set with balanced diversity and convergence.

4.2 NESTED PARETO SET LEARNING WITH RISK CONTROL

As describe in Section[3.2] PSL (Lin et al.l [2022) trains a Pareto set model for mapping any valid
preferences A={XeRY | XN = 1} to their corresponding solutions with scalarization.
However, in offline settings, the OOD issue can mislead the Pareto set model by promoting solutions
with unreliably estimated high performance, creating an unexpected diversity on the Pareto front.
To mitigate the OOD issue, we propose a nested Pareto set learning approach with risk control.
This approach addresses the OOD-induced diversity loss by jointly optimizing the Pareto set model
parameters and preferences in a nested manner, where the upper-level preference optimization
explores underrepresented regions of the Pareto front to enhance diversity, while the lower-level
model optimization incorporates risk control to ensure solutions reliable.

Surrogate Model Training. Before the nested Pareto set learning, due to that in offline MOO the
objective function cannot be evaluated during the optimization, M surrogate models are constructed
for each objective given the offline dataset D. Then, we can predict objective values via the complete

surrogate model f(x) = (f1(x; 67),.. .,fM(w;Oj/[)).
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Modeling and Suppressing Accumulative Risk. In offline optimization, the risk of out-of-
distribution (OOD) is non-negligible, and neglecting this risk may result in performance degra-
dation (Lu et al.l 2023). Therefore, explicit risk modeling and suppression are necessary in offline
MOO to mitigate OOD risk. Specifically, as shown in Figure 2(a), an energy model E,, is trained
following ARCOO (Lu et al.l [2023) to measure the risk of solutions and then a risk suppression
factor is computed as R(x) = c(Eg — Ew(w))/(EQ — Ep),where E5 =E_,_5[Eu(2')], Ep =

E, . 5[Fw(2")] and c denotes the initial momentum (consistent with ARCOO). The P is the empiri-

cal distribution over the high-quality batch of solutions in the offline dataset. The @ is the high-risk

distribution sampled by Langevin dynamics starting from P. For more details about the energy model
E,,, please refer to the Section[3.3]

Nested Pareto Set Learning. The nested Pareto set

learning process consists of three phases and the prefer- 10 Y Dlest
ences are updated prior to updating the Pareto set model 091 o, A
he. In the pretraining phase, we leverage the offline 08 ° * Alter bi-level PSL
Pareto front (X, Yofr) to provide a better initialization 0.7 ¢ k¥
for the subsequent training process. Specifically, during ~ ~o.6/
pretraining, we sample preferepses from/ the %fﬂme pref- 0.5
erences Aofftine = {/\((;2 = /\((;2 / /\(();) } , where 0.4 e L
174=1 .

n is the number of solutions in the offline Pareto front 0:3

@ _ (4) (@) 0.2
and Ay = (1/(yoff,1 —27), 71/(yoff,M = 2ir))- 00 02 04 _06 08 10
Here, z* = (2f,---,z},) is the ideal vector for the fi

objective f(a) and g is the objective vector of the ~Figure 3: Visualization of the nested PSL.
i-th solution in the offline Pareto front. By sampling The solutions generated by DOMOO af-
preferences in this way, the pretraining process lever- ter each preference update phases in IN-
ages the structure of the offline Pareto front, providing 1K/MOP7 task are visualized.

a better initialization for the subsequent training stages

and enabling the Pareto set model to start closer to the optimal solution distribution.

Then, in the exploration phase, the preferences are sampled from the valid preference A; = { )\Eb) ~
Dirichlet(o) C A}2_|, where B is the batch size of the solutions in each iteration. This stage serves
as a pure exploration phase, enabling the model to be trained over the entire preference space and
thus improving its generalization across different preferences.

Finally, in preference gradient update phase, preferences are adaptively updated using gradient
information. To mitigate OOD risk, we incorporate the explicit risk modeling and suppression into
the preference update. The preference gradient update phase with accumulative risk control is defined
as follows:

AP = APt R = hg(A”))V Adich ang (@ = hep(A)|A) b=1,2,....B, (5

| )\(b) 5

t—1
where R(x) is a risk suppression factor (Lu et al.,|2023) that controls the OOD risk of solution & and
Gich_aug (+) is the augmented Tchebycheff scalarization with the trained surrogate models. Specifically,
the augmented Tchebycheff scalarization is defined as: Gich_aug (@ | A) = maxi<;<ar{i( fl (z;07)—
(zF—e)}t+p Zf\il i fi(; 0%), in which f;(-; ) denotes the trained surrogate model for the i-th
objective. By adaptively updating preferences in this way, the model is guided to focus on regions
where its performance is lacking, thus making the training process more effective. As shown in
Figure 3] it can be observed that after the exploration and preference gradient update phases, the
solutions generated by the Pareto set model become more uniformly distributed, which better ensures
the diversity of the solution set.

After updating the preferences, gradient descent are used to efficiently train the Pareto set model hg
with the trained surrogate model f(-), incorporating accumulative risk control as in Equation

B
Tpsl b N b b b
$=¢— 2" Ri@ = ho(A")Vader we(@l” = ha(A)AL). ©)
b=1

Through the nested Pareto set learning approach, we obtain the trained Pareto set model /.4~ ,which
can effectively adapt to diverse Pareto front geometries and approximate the Pareto set powerfully.
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4.3 DIVERSITY-DRIVEN SOLUTION SELECTION STRATEGY

After the nested Pareto set learning, we have obtained a practical Pareto set model hg- that can easily
approximate the Pareto set with the valid preferences A. However, in real offline MOO scenarios,
the deployment of solution sets is often constrained by scale limitations, e.g., only limited solutions
can be evaluated. Therefore, how to select the optimal subset from the learned Pareto solution set
becomes a key challenge. In this paper, we propose a diversity-driven solution selection strategy by
combining two indicators: offline inverse generation distance (IGDggine) and hypervolume (HV), to
better balance diversity and convergence. The traditional inverse generation distance (IGD) assumes
access to the true Pareto front to evaluate how well a solution set covers it.

In offline MOO, however, the true front is not observable since no additional evaluations are permitted.
Therefore, we adapt IGD to the offline regime by replacing the unknown true front with an offline
Pareto front estimated from the dataset and by introducing a shift to form a stricter reference. The
full definition is given by

- (9)

ys 8-y — 5 %)

1 n
IGDoftine = — . min ’ ,
n 2

. 1§.j§|chnd|
i=1

where n is the number of solutions in the offline Pareto front, y(E;g is the objective vector of

the i-th solution in the offline Pareto front, | X aa| denotes the number of candidate solutions

in X.ung and g)c(jgd is the objective vector of the j-th solution in the candidate solutions X ,ng
predicted by the surrogate model. Here, 3 is a scaling factor and 3/ is a shift value, defined
as ¥y = maxj<i<p Minj<m<pm yézf)’m, where y(();f)m denotes the m-th objective value of the ¢-th
solution in the offline Pareto front. The shift value 3 is introduced to construct a more challenging
reference front, allowing a stricter evaluation of optimization performance in terms of convergence
and diversity. It is worth noting that the construction of IGDsis. does not favor solutions that stay
close to the offline data, as the reference front is normalized and shifted toward the ideal point,
encouraging exploration and broad Pareto-front coverage rather than conservative interpolation.

Before performing the solution selection strategy, the trained Pareto set model h - is employed to
generate K candidate solutions X, = {xéf) = hg~ (/\;(,f))}le, where ,\fjf) ~ Dirichlet(a) C A.
To further enhance the diversity of the candidate solution set, we combine the K solutions generated
by our trained Pareto set model h;"b with another K solutions produced by the surrogate model f ,
thereby obtaining the complete candidate solutions X -

Diversity-Driven Solution Selection. To address the diversity challenge posed by the HV indicator
in offline settings, which is demonstrated in Appendix [@ we select solutions based on both IGDgine
and HV indicators. Notably, IGDgine and HV are complementary indicators: IGDgsine €mphasizes
diversity and the uniform coverage of the Pareto front, whereas HV focuses more on solution quality.
Therefore, combining IGD i With HV allows us to better balance diversity and convergence while
mitigating the limitations of using HV alone.

Therefore, we first utilize the IGDgine indicator to greedily select up to 128 solutions from the
candidate set X anq. This encourages the selection of solutions that cover different regions of the
offline Pareto front, thereby enhancing the diversity of the solution set. Subsequently, we select the
remaining solutions from the candidate set X,,q using the HV indicator, maximizes the hypervolume
in the objective space, serving as a convergence-oriented filling. With the diversity-driven strategy
combining IGDgine for screening and HV for filling, we obtain the final solution set with 256
solutions, which effectively balances between convergence and diversity.

5 EXPERIMENT

In this section, we conduct a comprehensive empirical evaluation of DOMOO against a series of
existing offline MOO approaches across multiple benchmark tasks. We begin by outlining the
experimental setup, encompassing tasks, compared methods, training settings, and evaluation metrics.
Subsequently, we report the experimental results, perform ablation study, and hyper-parameter
analysis. The experiments are designed to answer the following four significant questions:
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Q1: Can DOMOO handle offline MOO tasks and achieve better performance than other offline
MOO methods in terms of convergence?

Q2: Can the solutions generated by DOMOO balance diversity and convergence?

Q3: How do the three key modules affect the performance of DOMOO in terms of solution
diversity and convergence?

Q4: How do hyper-parameter affect the diversity of the solution set obtained by DOMOQO?

The four questions are answered sequentially in this section. The full implementation is available at
https://anonymous.4open.science/r/DOMOO-0388,

5.1 EXPERIMENTAL SETTINGS

Benchmark and Tasks. We evaluate DOMOO on Off-MOO-Bench (Xue et al., 2024), which includes
five categories of offline multi-objective tasks: Synthetic functions, MO-NAS, MORL, Sci-Design,
and RE. These tasks span diverse domains, objective dimensionalities, and optimization difficulties,
providing a comprehensive testbed for offline MOO. Task details are provided in Appendix

Compared Methods. In line with Off-MOO-Bench (Xue et al.,[2024)), our evaluation includes two
primary categories of methods—deep neural network (DNN)-based and Gaussian process (GP)-based
approaches—as well as several prominent generative modeling techniques. DNN-based Methods.
These methods employ surrogate DNN models combined with evolutionary algorithms for solution
optimization. We evaluate three configurations: (a) End-to-End Model (E2E): Directly outputs an m-
dimensional objective vector for a given design «, enhanced by multi-task learning (Chen et al.|[2018];
Yu et al., 2020) for improved objective performance. (b) Multi-Head Model (MH): uses multi-task
learning by a single surrogate model, with the same enhancements as the E2E model. (c) Multiple
Models (MM): Maintains m independent surrogates, each trained with OOD mitigating techniques,
such as COMs (Trabucco et al., 2021), RoMA (Yu et al.,|2021)), IOM (Qi et al.,|2022), ICT (Yuan
et al.L[2023)), and Tri-mentoring (Chen et al.|[2023). Following the original study (Xue et al.,[2024), we
adopt NSGA-II (Deb et al.||2002)) as the default evolutionary algorithm. (d) Flow-based preference-
conditioned generators: ParetoFlow [Yuan et al.| (2024) employs classifier-guided generation and
thus trains one surrogate predictor per objective, while conditioning the flow-based generator on
uniformly sampled preference weights to produce solutions along the Pareto front. GP-based
Methods. Bayesian optimization compute an acquisition function to guide the selection of solutions,
which are then evaluated using a surrogate model. We consider three representative techniques:
hypervolume-based gNEHVI (Daulton et al., 2021), scalarization-based qParEGO (Knowles}, 2006),
and information-theoretic JES (Hvarfner et al.| 2022).

Training Details. For all baseline methods, we adopt the same training settings as Off-MOO-
Bench (Xue et al., |2024) to ensure fair comparison. Training details for DOMOQO are provided in
Appendix [C] and the computational overhead is discussed in Appendix [D]due to space limitations.

Evaluation. Following Off-MOO-Bench (Xue et al., 2024), we evaluate each method by generating
256 solutions and querying the true objective functions. We report hypervolume (HV) (Yuan et al.,
2024)), which measures the dominated volume with respect to a reference point (i.e., Nadir Point
in Figure [3)), where a higher HV indicates better performance. To address the bias of HV toward
extreme solutions in offline settings, we also report IGDgine as introduced in Section

5.2 THE PERFORMANCE OF DOMOO

About superiority and convergence (To Q1). Table[I|reports the average HV rank of all compared
offline MOO methods. Detailed results at 100" and 50" percentiles are provided in Appendix
We make the following observations: (1) As shown in Table[I], DOMOO achieves the best average
rank across all tasks, verifying its effectiveness and convergence. (2) End-to-End, Multi-Head, and
Multiple Models consistently outperform D(best), highlighting the effectiveness of learned surrogates
and generative models in discovering solutions beyond the offline dataset. (3) GP-based methods
often tend to exhibit relatively less competitive. This is partly because they are primarily designed for
online optimization and may struggle in offline settings. Moreover, their high computational cost and
long runtime make them impractical for complex tasks, sometimes leading to failure to produce any
solution within the time budget (i.e., N/A in the Table[I). (4) Although DOMOO performs worse on
a few extremely discrete tasks (e.g., C-10/MOP1, C-10/MOP2, IN-1K/MOPY), this is mainly because
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Table 1: Comparison of average HV ranks achieved by different offline MOO methods across different
tasks in Off-MOO-Bench (Xue et al.,[2024). For each task, the top three methods are highlighted
using (1st), (2nd), and (3rd) formatting. D(best) denotes the best subset in the offline dataset (i.e.,
with the highest HV), and the last column reports the average rank across all tasks.

Methods | Synthetic MO-NAS MORL Sci-Design RE | Average Rank
D(best) | 1179+ 071 13374037 6804024 11.55+0.61 14.46+044 | 1273 +048
End-to-End 746 £0.78 6.09+040 4.10+037 825+130 6.77£0.78 6.81 £0.54
End-to-End + GradNorm 996+0.72 11.71+£0.71 1230+£0.51 9.88+1.20 11.55+044 | 10.97 £0.39
End-to-End + PcGrad 6.854+0.61 723+1.11 1070051 7.17+1.05 822+1.03 7.50 £ 0.48
Multi Head 6.88+1.07 6.03+£050 1020+£0.60 9554+1.25 6.28 4+ 0.81 6.83 £ 0.62
Multi Head + GradNorm 1090 £1.01 13.19+1.25 1220+£0.68 10.12+£0.86 12.22+1.17 11.89 £ 0.97
Multi Head + PcGrad 794+£098 6.76+0.63 870+051 720+1.14 949+ 1.04 7.98 £0.61
Multiple Models 624 +£0.58 6.63+088 740+049 9.18+158 637+0.70 | 6.67£0.37
Multiple Models + COMs 940+044 6.63+059 1.90+037 512+091 10.72+0.38 8.30 £0.22
Multiple Models + RoOMA 990+£1.02 691+£022 6.10+037 730+143 9.45£0.97 8.56 +£0.52
Multiple Models + IOM 7364+095 596+1.09 3504+045 5724036 6.38+1.30 6.41 £ 0.68
Multiple Models + ICT 938£0.77 9.53+0.71 9.10+3.12 6.60+125 6.80=£1.10 8.50 + 0.60
Multiple Models + Tri-Mentoring | 9.44 +0.67 1049 +0.55 850+£2.07 9.93+0.76 6404 0.45 8.93 +£0.20
MOBO 1023 £1.03  5.02 £ 0.12 N/A 5934+£210 891+0.82 7.62 £ 0.50
MOBO-¢ParEGO 10.50 £ 0.97 12.80 £ 0.85 N/A 1210 £1.59 8.76 + 0.31 10.84 £ 0.19
MOBO-JES 15.81 £ 0.47 N/A N/A N/A 12.02 £ 1.06 | 1391 +£0.55
ParetoFlow 9.18+ 155 11.314+0.65 9.83+1.31 13.58 £2.95 9.04 £ 0.66 10.19 +0.98
DOMOO (ours) | 3.89+0.56 6.65+0.17 360£086 683128 326+0.53 | 4.63+0.38

Table 2: Comparison of average IGDggine ranks. Details are the same as Table

Methods | Synthetic MO-NAS MORL Sci-Design RE | Average Rank
D(best) ‘ 9.85+096 12.83 £1.87 6.80+0.24 9.62 +2.70 6.65 +£0.73 ‘ 9.71 £ 1.17
End-to-End 7.80 £+ 1.38 3.89 +0.78 4.30 + 0.60 8.68 £ 1.72 9.72 + 1.44 7.12 £ 1.02
End-to-End + GradNorm 10.79 £1.23 1093 +£2.06 1230+0.51 9.254+0.68 11.29+0.62 10.90 £+ 1.17
End-to-End + PcGrad 6.80 £ 1.09 6.54 £ 137 1020+024 697 £1.25 9.94 +£0.93 7.71 £0.83
Multi Head 7.71 £1.62 4.00 £ 0.70 7.50 £ 0.45 9.25 +£2.27 8.74 £ 0.72 7.24 +0.96
Multi Head + GradNorm 1099 + 145 12.68 £1.42 12.10+049 895+2.09 1042+1.50 11.10 £ 1.41
Multi Head + PcGrad 7.55 +1.37 7.53 £ 1.18 9.40 £ 0.58 6.25 +1.27 9.33 £0.82 7.96 £+ 0.66
Multiple Models 6581093 4954044 6104037 11034195 9434097 | 7.20+044
Multiple Models + COMs 9.40 £+ 0.56 6.90 + 0.53 5.40 £+ 0.66 6.10 = 1.07 9.72 £ 0.71 8.38 +£0.27
Multiple Models + RoMA 9.90 £+ 0.75 7.30 +0.53 2.60 + 0.58 7.97 + 3.25 8.75 +0.92 8.40 +0.44
Multiple Models + IOM 700£077 7.68+£200 750+£045 645087 590£090 | 6.63+0.52
Multiple Models + ICT 8.99 £+ 0.58 9.11 £0.81 7.70 £3.19 7.40 £ 2.16 7.86 £ 0.82 8.55 £ 0.57
Multiple Models + Tri-Mentoring | 9.63 4 0.48 9.52 + 1.04 890+242 11.62+2.19 8.20+0.63 9.32 £0.24
MOBO 8.99 + 1.40 6.58 +0.92 N/A 495 +£2.17 7.68 + 1.00 7.41 £0.90
MOBO-qParEGO 9.20£0.92 12.15+0.63 N/A 8.30 £2.01 5.29 £0.36 9.07 £ 0.50
MOBO-JES 14.92 + 0.80 N/A N/A N/A 10.01 +2.49 11.68 + 1.99
ParetoFlow 8.82 +3.19 9.60 + 0.70 5.00 £2.94 3.21 +1.67 2.92 +0.25 8.20 + 3.45
DOMOQO (ours) ‘ 4.95 + 0.70 7.14 +£0.48 6.70 + 1.54 7.55+1.21 6.67 +£0.47 ‘ 6.27 + 0.23

these tasks require very high-dimensional one-hot encodings, resulting in extremely sparse inputs
that are difficult for neural Pareto-set models to learn. Importantly, NAS tasks do not exhibit such
extreme sparsity, as their discrete operations have low cardinality and structured choices; therefore,
DOMOO still ranks among the top methods on most NAS subtasks. Consequently, their performance
is less impacted by such discrete optimization tasks. In a nutshell, the results verify that DOMOO can
handle offline MOO tasks well and achieves superior optimization performance compared to other
offline MOO methods, which answers Q1.

About diversity (To Q2). Table reports the average IGD,ggine ranks based on the 100t percentile.
Detailed results, including the 50" percentile, are provided in the Appendix |F.1|and Appendix
We make the following observations: (1) As shown in Table 2] DOMOO achieves the highest
average ranks on most tasks, highlighting its strong solution diversity. (2) We observe that on RE
tasks, most methods outperform the offline dataset in terms of HV, yet many perform worse when
evaluated by IGD,in.. This discrepancy highlights practical limitations of HV in offline settings:
inaccurate reference-point estimation and model-induced errors can make HV fail to faithfully reflect
the diversity of the solution set. IGDine penalizes sparse or unbalanced distributions, providing a
more informative assessment of overall coverage. Overall, the results indicate that DOMOO makes a
better trade-off between the convergence and diversity of the solution set, which answers Q2.
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Table 3: Ablation Study on the HV and IGDipe Indicator Performance of DOMOO.

Metric | Methods | DTLZ3 IN-1K/MOP7  MO-Hopper Regex RE24

w.o. ARC | 10.61 £0.02 445+0.06 549+052 572+0.27 4.84+0.00
w.o. BPSL | 10.62+0.02 3.80+043 544+£0.60 4.98+0.33 4.84+0.00

HY w.o. PSMG | 10.61£0.02 4.31£0.15 5.87+0.00  3.68+£0.21  4.83+0.00
w.o. SMG 9.7240.45 3.8240.15 6.30+0.11 6.11+0.33  4.83+0.00

w.o. DDSS | 10.62+£0.01 4.43+£0.07 536+051 5254035 4.83+0.01

DOMOO | 10.63 £0.01 4.48+0.08 6.43+0.24 6.01+0.08 4.84+0.00

w.o. ARC 0.15 £ 0.01 038+£0.03 076+0.11 1.08+0.04 0.02=+0.02

IGDyine | "% BPSL | 0.15+0.01 053+0.09 0.78+0.11 1.044+0.03 0.01 +0.02

w.o. PSMG | 0.16+0.03 0.34+0.03 0.65+0.00 1.09+£0.01 0.03£0.02
w.o. SMG 0.24+0.03 0.51+0.01 0.61£0.03 0.88+0.04  0.02+0.02
w.o. DDSS | 0.15 £ 0.01 038+£0.04 0.78+0.10 1.084+0.04 0.02+0.02
DOMOO 0.14 £ 0.01 038+0.03 0.58+0.07 090+0.01 0.01=+0.02

5.3 ABLATION STUDY

About the benefit of key modules (To Q3). We conduct an ablation study to evaluate the contribution
of each essential module in DOMOO by alternatively removing each main component (introduced
in Section ) and comparing the full version with its ablated variants. First, in version “Without
Accumulative Risk Control (w.0. ARC)”, we replace the accumulative risk control (as shown in
Equation [5) with learning rate in gradient descent. Then, in version “Without Nested Pareto Set
Learning (w.o. BPSL)”, we remove the “Preference Update” part and randomly sample A from all
valid preferences A at the begin of each iteration. Third, in version “Without Pareto Set Model
Generation (w.o. PSMG)”, we remove the candidate generation step of the Pareto set model /.4~
and use the surrogate model alone to generate all candidate solutions. Fourth, instead, in version
“Without Surrogate Model Generation (w.o. SMG)”, we remove candidate generated by surrogate
model and rely solely on the Pareto set model to generate all candidate solutions. Finally, in version
“Without Diversity-Driven Solution Selection (w.0. DDSS)”, we omit the proposed solution selection
strategy and select all 256 solutions by HV. All other settings in the five versions are kept similar to
the original version.

The results are shown in Table 3] the full version outperforms all ablated variants across multiple
tasks, verifying the effects of its key components. In particular, removing w.o. BPSL leads to the
most significant performance drop, indicating the importance of preference-conditioned solution
refinement. In the w.o. SGM, excluding the surrogate model results in a noticeable drop in solution
quality, indicating that the surrogate model is crucial for high-quality solutions. Similarly, in w.o.
PSMG, removing the Pareto set model reduces solution diversity, confirming that both components
are necessary to maintain a diverse and high-quality candidate set. Finally, the degradation observed
in w.o. ARC and w.o. DDSS further validates the effectiveness of risk-aware optimization dynamics
and diversity-aware selection, respectively. An ablation study is detailed in Appendix [H] In a nutshell,
the results verify that each module of DOMOO contributes meaningfully to its overall performance,
which answers Q3.

5.4 HYPER-PARAMETER ANALYSIS

About the robustness of DOMOO (To Q4). We found that the chosen hyper-parameters, the
exploration steps in nested Pareto set learning 1, , the scaling factor 8 in IGDfgine, K in DDSS and
the risk ratio of the energy models, verify robust performance across most experiments, with only a
few discrete problems necessitating fine-tuning. For further details, refer to Appendix I|

6 CONCLUSION AND DISCUSSION

This paper focuses on achieving better diversity while maintaining satisfactory convergence of the
solution set in offline MOO and proposes a novel offline MOO method diversity-driven offline multi-
objective optimization via nested Pareto set learning (DOMOQO). DOMOO combines nested Pareto set
learning with risk control and the proposed solution selection strategy to efficiently generate diverse
solutions in offline MOO. However, DOMOO still has some room for improvement. It is relatively
less effective on highly discrete tasks, where non-continuous search spaces and high-cardinality
variables pose challenges for optimization.

10
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7 ETHICS AND REPRODUCIBILITY STATEMENTS

Ethics. This work does not include any human subjects, personal data, or sensitive information. All
testing datasets utilized are publicly accessible, and no proprietary or confidential information has
been employed.

Reproducibility. Experimental settings are described in Section [5| with further details of the methods
included in Appendix [C] The datasets utilized in this paper are all publicly available and open-source.
The link to our anonymous code repository is https://anonymous.4open.science/r/
DOMOO- 0388l No LLMs were used in conducting the research or writing this paper.
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A PSEUDO-CODE OF DOMOO

The pseudo-code of DOMOO is shown in Algorithm [I] The algorithm aims to solve offline multi-
objective optimization problems and obtain a solution set with satisfactory diversity and convergence.
Given an offline dataset D, DOMOO trains the surrogate objectives f and learns a Pareto set model
that maps diverse preference vectors to corresponding Pareto-optimal solutions. The inputs to the
algorithm include the offline dataset D, valid preferences A, offline preferences Aoine, the number
of objectives M, total optimization steps 7', the number of pretraining steps Tp, the number of
exploration steps T¢xp, number of candidate solutions K, and batch size B.

At the beginning, DOMOO trains M surrogate models ﬁ for each objective using the offline dataset
D and initializes a Pareto set model 14, as shown in lines 1-2. The Pareto set learning is performed
in a nested manner. In the inner loop (lines 5-14), DOMOO updates the preferences depending on
the current phase. During the pretraining phase (f < T ), preferences are sampled directly from the
offline preference set Aqmine, providing a better initialization for the subsequent training stages, as
shown in line 7. In the exploration phase (Tpre < t < Tpre + Tixp), preferences are sampled from the

Dirichlet distribution over the preference set A, i.e., )\gb) ~ Dirichlet(«) C A, enabling the model to
be trained over the entire preference space, as shown in line 9. In the later stage (t > Tpre + Toxp),
preferences are updated via gradient descent according to Equation [5|to guide the Pareto set model to
focus on regions where its performance is lacking, as shown in lines 11-13.

In the outer loop (lines 15-19), the updated preferences are used to train the Pareto set model via
gradient descent according to Equation[6] After the nested Pareto set learning, diverse preferences
are sampled again, and the trained Pareto set model generates candidate solutions (lines 21-22).
These candidate solutions are merged with solutions generated by the surrogate model to form a
comprehensive candidate set (line 23).

Finally, DOMOO selects the final set of Pareto solutions using a two-stage selection strategy: it first
applies the IGD,ipe indicator to select solutions and then uses the HV indicator to fill the remaining
solutions, as shown in lines 24-27. This selection mechanism ensures both diversity and convergence
of the final solution set.

B TASK DESCRIPTIONS

In this section, We describe a set of tasks included in the benchmark, explaining their information in
detaiﬂ We benchmark our method on Off-MOO-Bench tasks (Xue et al.,2024)), including diverse
real-world and synthetic tasks. We focus on five distinct task categorie An overview of the tasks is
provided in Table[d]

o Synthetic Function (Synthetic): This task comprises 16 subtasks, each with 2-3 objectives, aiming
to identify potential solutions across the offline dataset. All synthetic problems feature continuous
solution spaces. Table [5|provides detailed information about each problem, including the shape of
the Pareto front and the reference point.

e Multi-Objective Neural Architecture Search (MO-NAS): This task involves 14 subtasks, each
aiming to optimize 2-3 objectives in neural architecture design, including prediction error, parameter
count, edge GPU latency, and so on. Detailed information of these search spaces X’ can be found in
Table

e Multi-Objective Reinforcement Learning (MORL): This task encompasses two subtasks: (a)
MO-Swimmer: This task involves finding a control policy in a 9,734-dimensional space to optimize
both speed and energy efficiency for a robot. (b) MO-Hopper: This task involves finding a control

'In this study, we focus on tasks with up to three objectives. This choice is motivated by the significantly
increased complexity and computational cost associated with high-dimensional Pareto fronts. To ensure fair
comparison and reproducibility under a limited computational budget, we do not evaluate tasks with more than
three objectives. Extending our method to higher-dimensional objective spaces is left for future work.

2We communicated with the original authors and used updated benchmark data to complete the experimental
results for all tasks, rather than relying on those reported in the original paper. As a result, some discrepancies
may exist.
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Algorithm 1 Diversity-Driven Offline Multi-Objective Optimization via Nested Pareto Set Learning

Input: Offline dataset D, valid preferences A, offline preferences Ayggine, Objective number M, total
steps T', pretraining steps T, exploration steps T¢yp, candidate number K, batch size B
Procedure: . . .
1: Train surrogate model f(x) = (f1(x; 07),- - , fa;(x;0%)) using D
2: Initialize Pareto set model hg : A — @
3: /* Nested Pareto Set Learning */
4: fort =1toT do

5:  /* Inner-Loop Preference Update */
6: ift < T then
7: Sample preferences A; = {)\,Eb) ~ Aoffline } {73:1 > Pretraining phase
8: elseif T, <t < Ty + Toxp then
9: Sample preferences A; = {)\Eb) ~ Dirichlet(a) C A}E > Exploration phase
10:  else
11: Generate X;_1 = {a:gli)l = h¢(A£li)1)}l§:1 > Preference gradient update phase
12: Evaluate objective values via the surrogate model
13: Find preference vectors A; = { )\Eb) }sz1 via gradient descent according to Equation
14:  end if

15: /¥ Outer-Loop Set Model Update */

16:  Generate X; = {z\"” = he(A")}B_|

17:  Evaluate objective values via the surrogate model

18:  Update Pareto set model parameters ¢ via gradient descent according to Equation 6]

19: end for

20: /* Candidate Solution Generation */ N

21: Sample diverse candidate preferences Aps = {)\1(35) ~ Dirichlet(a) C A},

22: Generate K candidates via the trained Pareto set model hgx: X, = {w[(,f) = hg~ ()\éf))},{,{:l
23: Merge X, with the K solutions generated by the surrogate model f (+) and obtain the final X yq
24: /* Solution Selection based on Two Indicators */

25: Use the IGDgine indicator to select the solutions greedy from X.,,q for initial screening

26: Use the HV indicator to select remaining solutions from X ,nq for final filling
27: return the solution set of the selected Pareto solutions

Table 4: Properties of the tasks.

Task Name | Dataset size Dimensions # Objectives ~ Search space

Synthetic | 60000 2-30 2-3 Continuous
MO-NAS | 9735-60000 5-34 2-3 Categorical
8571 9734 2 Continuous
MORL 4500 10184 2 Continuous
49001 32 3 Continuous
Sci-Desion 42048 4 2 Sequence
& 4937 4 2 Sequence
48000 4 2 Sequence
RE | 60000 3-6 2-6 Continuous & Mixed

policy in a 10,184-dimensional space to optimize 2 objectives related to running and jumping for a
single-legged robot.

o Scientific Design (Sci-Design): This task includes four representative subtasks: (a) Molecule
design—optimization in a pretrained 32-dimensional latent space to improve activity against GSK3/
and JNK3; (b) Regex—maximizing bigram frequencies in protein sequences; (c) ZINC—optimizing
molecular properties (logP and QED) on a small-scale dataset; (d) RFP—large-scale optimization of
red fluorescent protein variants for solvent-accessible surface area and stability.
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Table 5: Problem information and reference point for synthetic functions.

Name | D M Type Pareto Front Shape Reference Point

DTLZ1 7 3  Continuous Linear (558.21, 552.30, 568.36)
DTLZ2 10 3 Continuous Concave (2.77,2.78,2.93)
DTLZ3 10 3 Continuous Concave (1703.72, 1605.54, 1670.48)
DTLZ4 10 3 Continuous Concave (3.03, 2.83, 2.78)
DTLZ5 10 3 Continuous Concave (2d) (2.65,2.61,2.70)
DTLZ6 10 3 Continuous Concave (2d) (9.80,9.78, 9.78)
DTLZ7 10 3 Continuous Disconnected (1.10, 1.10, 33.43)
ZDT1 30 2 Continuous Convex (1.10, 8.58)

ZDT2 30 2 Continuous Concave (1.10, 9.59)

ZDT3 30 2 Continuous Disconnected (1.10, 8.74)

ZDT4 10 2 Continuous Convex (1.10, 300.42)

ZDT6 10 2 Continuous Concave (1.07, 10.27)

Omnitest 2 2 Continuous Convex (2.40, 2.40)

VLMOP1 1 2  Continuous Concave 4.0, 4.0)

VLMOP2 | 6 2 Continuous Concave (1.10, 1.10)

VLMOP3 | 2 3  Continuous Disconnected (9.07, 66.62, 0.23)

Table 6: An overview of the search spaces in MO-NAS tasks.

Search space X | Type D |X|
NAS-Bench-101 | micro 26 423K
NAS-Bench-201 | micro 6 15.6K
NATS macro 5 32.8K
DARTS micro 32 ~ 102!
ResNet50 macro 25 ~ 1014
Transformer macro 34 ~ 101
MNV3 macro 21 ~ 10%

o Real-World Application (RE): The task includes many real-world multi-objective engineering
design problems, such as four bar truss design, pressure vessel design, disc brake design, and so on.

C TRAINING DETAILS

For fair comparison, we adopt the same experimental settings as in the Off-MOO-Bench (Xue et al.|
2024). In our method, the predictor network is a multilayer perceptron (MLP) with the following
architecture:

Input — MLP(2048) — LeakyReLU — MLP(2048) — LeakyReLU — MLP(1).

We use mean squared error (MSE) as the loss function and optimize the network using Adam with a
learning rate of » = 0.001 and exponential learning rate decay v = 0.98. The model is trained on
the offline dataset for 100 epochs with a batch size of 256. Additionally, we apply data pruning to
alleviate model collapse on certain tasks.

For the energy-based model, we use a separate MLP with the following architecture:
Input - MLP(512) — LeakyReLU — MLP(512) — LeakyReLU — MLP(1).

The energy-based model is trained using the Adam optimizer with the same learning rate. The energy
head is updated via contrastive loss, where negative samples are generated using Langevin dynamics.
This model is trained for 50 epochs with a batch size of 256.

We adopt task-specific hyper-parameters for different categories in the Off-MOO-Bench. For MO-
NAS tasks, the energy model uses K = 64 Langevin steps, the Pareto set model is pre-trained for
100 steps, followed by 400 steps of optimization with randomly sampled preferences and 400 steps
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of nested PSL optimization. For MORL tasks, due to the extremely high-dimensional input space,
we use a smaller configuration with K = 8 Langevin steps, 100 pre-training steps, and only 5 steps
each for random preference optimization and nested PSL. For all other tasks, we set K = 42 for the
energy model, and perform 200 steps of pre-training, 200 steps of random preference optimization,
and 100 steps of nested PSL.

D COMPUTATIONAL COST

All experiments are conducted on a workstation equipped with an Intel(R) Xeon(R) Gold 6354 CPU
(3.00GHz) and an NVIDIA RTX 3090 GPU. The total computational cost of our method consists of
five main components: training the surrogate model, training the energy model, initializing the Pareto
set model, training the Pareto set model, and performing data selection. The corresponding runtime
(measured in seconds) is provided in Table[7] Our method is efficient, completing most tasks within
10 minutes.

Table 7: Time cost of DOMOO.

Task | ZDT2 C-10/MOP1 MO-Hopper  Zinc RE23

training the surrogate model 51.55 24.70 50.23 79.15  45.60

training the energy model 397.64 87.69 36.46 308.84 364.98
initializing the Pareto set model | 0.41 0.49 0.30 0.30 0.42
training the Pareto set model 3.36 3.37 0.21 3.85 3.20
data selection 30.20 26.77 41.78 17.50  57.64

Overall time cost (second) \ 483.16 143.02 128.98 409.64 471.85

Table 8: The runtime for each method to complete model training and optimization on the C-10/MOP1
and MO-Hopper tasks (unit: minutes).

Tasks C-10/MOP1  MO-Hopper
End2End 1.20 1.17
Multihead 1.24 1.17
Multiple Models 1.70 1.80
MOBO 0.12 33.68
DOMOO (ours) 2.38 2.15

As shown in Table [§] DOMOO takes longer than some baseline methods due to the additional
cumulative risk control module for handling OOD issues. Although DOMOO includes additional
components such as the energy model (Table[7), the overall runtime remains moderate. As shown
in Table[§] DOMOO is only slightly slower than lightweight surrogate-based baselines—typically
within one minute—while remaining competitive or even faster than several existing methods. More
importantly, in offline optimization the quality of the obtained Pareto set is far more critical than
marginal differences in runtime, since no additional evaluations or online interactions are permitted.
The modest overhead introduced by the risk-control module therefore represents a reasonable and
practical trade-off.

E HV EXPERIMENT RESULTS

E.1 THE 100" PERCENTILE RESULTS

As shown in Table |§|, Table Table Table (12} and Table we report the 100" percentile
hypervolume results with 256 solutions. DOMOO consistently performs well across tasks. Methods
within one standard deviation of the best are highlighted in bold.
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Table 9: Hypervolume results for synthetic functions with 256 solutions and 10

evaluations.
are bolded.

Oth

percentile
For each task, algorithms within one standard deviation of having the highest performance

Methods DTLZI DTLZ2 DTLZ3 DTLZ4 DTLZS  DTLZ6 DTLZ7  OmniTet VLMOPI _ VLMOP2  VLMOP3 ZDT1 ZDT2 ZDT3 ZDT4 ZDT6

Dibest) 106 991 10 1076 935 8.88 5.56 453 008 178 45.65 417 468 515 546 461
End-to-End 10634001 840110 1028£032 698+ 119 8.7 1068006 4785001 0325000 4235002 45924002 48442001 5664001 5504014 491013 478+ 000
End-to-End + GradNorm 10.64 +0.00 : 1040 £027 801+ 191 9.9¢ 10734002 4574032 0314000 21441086 4445+ 149 551£004 534013 4754048 4.66+0.05
End-to-End + PcGrad 10.64 +0.00 1046 £024 876+ 099 9.5 10664005 4785001 0325000 4231002 4593+ 0.00 645004 554005 373£026 391+ 1.05
Multi Head 1065 £ 0.00 10524016 715+ 112 8.3 10664009 4785000 0324000 4241001 4593+ 0.00 5554010 5584008 4624030 478000
Multi Head + GradNorm 10.64 +0.00 1046 £024 8144103 9.2 1018 £054 400£084 005+011 3341051 42084522 536£0.17 3764039 391 +099
Multi Head + PcGrad 10.64 +0.00 10524009 646+ 142 9.4 10624002 4784000 031+001 4214003 4593 5574008 422£054 367132
Multiple Models 1065 £ 0.00 1061 £002  8.07+099 8.5 10714008 4784000 0324000 4244001 5.55+007 54022 4734005
Multiple Models + COMs 10.64 +0.00 1039 0.1 8.03+054 8.9 9944017 478-000 031001 4.18+003 5114006 5014010 270070
Multiple Models + RoMA 10.64 +0.00 10374029 8714054 9.7 10574002 3964032 0324000 144000 5594002 94020 2,08+ 051
Multiple Models + IOM 10.64 +0.00 1049 £0.11 946+ 082 9.5 10614006 4784000 0314001 393+032 464+003 556006 5054019 4754002
Multiple Models + ICT 10644000 9.63£055 10184034 922+ 1.07 8.9 10424010 4774002 0324000 408010 4814002 5554006 4374014 4234053
Multiple Models + Tri-Mentoring | 1050 028 917086 1030 £037 892+ 112 770+ 114 9.3 10074015 4764002 0324000 3974040 45924001 4784001 5554017 5134014 5014012 3404 105
MOBO 10654000 1024009 10355003 1059=001 923000 938=018 10344003 475+000 032+0.00 277+003 N/A 4345001 5014000 5324001 4564008 3184005
MOBO-gParEGO 10.65+0.00 1000002 1017001 9484070 938+0.16 896+031 10194002 4784000 0324000 359+015 4593000 4354002 5084006 5274002 501+007 3324012
MOBO-JES N/A N/A N/A N/A 4704006 030£000  NA N/A 4014004 4944007 5104005 4394008 2734025
ParetoFlow 1061 +002 10304011 1036+009 1046021 9625007 9044010 4784000  NA 4224000 N/A 4194005 5944036 5204012 4974012 4504005
DOMOO (ours) 1065 £0.00 991 =018 1063 +£0.01 949 +033 9415093 10735003 4781000 0324000 4215002 4593000 485000 570000 562011 529£016 475+002

Table 10: Hypervolume results for MO-NAS with 256 solutions and 100" percentile evaluations. For
each task, algorithms within one standard deviation of having the highest performance are bolded.

Methods C-1/MOPI  C-1/MOP2  C-10/MOP3  C-10/MOP§ _ C-1/MOP9 IN-IK/MOP1 IN-IK/MOP2 IN-IK/MOP3 IN-IK/MOP4 IN-IK/MOPS IN-IK/MOP6 _IN-IK/MOP7 _ IN-IK/MOPS _ NasBench201-Test
Dibest) 472 10.42 9.21 438 9.64 436 445 9.86 415 9.15 37 9.13 9.89
End-to-End 4754001 1046001 10194002 4644009 10214016 4534008 454003  998+003 4584010 10004024 404031 938011 10.19 + 0.10
End-to-End + GradNorm 4642004 10432002 019011 4224016 9922032 4194023 440006  8A2+028  4.50+0.06 9594026  410£0.14  BIS+0.16 9.06 + 1.63
End-to-End + PcGrad 4754001 1046003 1017£001 461 +£004 10294007 450£005 4514006 9974009 4364014 9744013 406011  9.50+0.07 10.15+0.11
Mulii Head 475£001 1047003 1007£003 4594005 10094021 461 +£004 4512003  1002£004  454+005 1002017 4225017 951 £008 10.14 + 0.02
Multi Head + GradNorm 446025 1015+£023 936+019 402+£017 867=127 428+017 3982037 8724107  441£011 9634036 299059  623+1.96 997 £024
Multi Head + PeGrad 4754002 1047001 1005+£011 4644003 10284010 4474004 4552003  1002£001 4404005 9754013 397007  928+027 1023 0.08
Multiple Models 4754001 1044001 1008+£006 4644004 10144013 4434022 4514004  997+005 4534006 978+£020 4172020  9.574005 10,08 +0.19
Multiple Models + COMs 476002 10442001 1014£002 461 +£007 10034022 460+£003 4542002  1003£005  4.43+0.10 990015 4072005  9.52+0.11 1018 = 0.07
Multiple Models + RoMA 4754001 1046001 1017002 4324005 984011  455+£007 456004 994001 4534005 9914012 4372009  939+011 10.00 +0.28
Multiple Models + IOM 473£002 10382005 1009£004 468+£002 10244012 463+£003 459003 1006002 4424006 9714010 418018 9.69+0.04 1020 +0.10
Multiple Models + ICT 4734002 1043016 9824024 4284024 9542034 4424007 442007  980+015 4534007 999£011 398013 901 +0.56 1020 +0.13
Multiple Models + Tri-Mentoring | 4.73 £ 002 1049 £0.05 10185001 4294009 887 4404002 4264010 947£022 4394005 980£0.14 4084022  9.49+0.14 9374024
MOBO 476001 10492002 1022000 4614002 10244007 4674002 456002  1005£001  439+004 9.69+£002  418£008  9.65+0.02 NIA
MOBO-gPurEGO 475+£001 10452007 855018 4464004 998000 4224004  417£006  927+003 4094002 918£015 410002 9.09+005 N/A
MOBO-JES NIA i NIA N/A N/A NIA N/A NIA N/A NIA N/A NIA NIA
ParetoFlow 4742003 1046£001 9442010 4464004 976000 4364003 4332006 9794005 4324007 3824002 9.1940.00 N/A
DOMOO (ours) 4744001 1042001 1001 £009 4654003 10194004 468+ 004 4595004  996+006 4464010 9482027 448008 9554002 10.16  0.06

Table 11: Hypervolume results for MORL with 256 solutions and 100" percentile evaluations. For

each task, algorithms within one standard deviation of having the highest performance are bolded.

Methods

| MO-Swimmer

MO-Hopper

D(best) \

3.64

5.67

End-to-End
End-to-End + GradNorm
End-to-End + PcGrad
Multi Head
Multi Head + GradNorm
Multi Head + PcGrad
Multiple Models
Multiple Models + COMs
Multiple Models + RoMA
Multiple Models + IOM
Multiple Models + ICT
Multiple Models + Tri-Mentoring

3.62 £0.00
2.96 &+ 0.00
3.43 £0.00
3.29 £0.00
3.37 £ 0.00
3.08 £ 0.00
3.49 £0.00
3.87 + 0.00
3.50 £ 0.00
3.59 £0.00
3.45£0.26
3.42+0.18

6.04 £ 0.00
5.69 + 0.00
5.63 £ 0.00
5.83 £ 0.00
4.77 £ 0.00
6.06 & 0.00
5.87 £ 0.00
6.15 + 0.00
6.03 &+ 0.00
6.24 £+ 0.00
573 £0.34
5.86 £ 0.14

MOBO
MOBO-¢ParEGO
MOBO-JES

N/A
N/A
N/A

N/A
N/A
N/A

ParetoFlow \

3.41 £0.08

5.65 £ 0.00

DOMOO (ours) \

3.61 +£0.00

6.53 +0.24
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Table 12: Hypervolume results for RE with 256 solutions and 100" percentile evaluations. For each
task, algorithms within one standard deviation of having the highest performance are bolded.

Methods | RE21 RE22 RE23 RE24 RE25 RE31 RE32 RE33 RE34 RE35 RE36 RE37 MO-Portfolio
D(best) | 4.1 4.78 4.75 4.6 4.79 10.6 10.56 10.56 9.3 10.08 7.61 5.57 4.24
End-to-End 4.60 +0.00 4844000 484001 465022 484001 10554020 10.65+0.00 10.61 4001 1010001 10384006 10.19+007 6.67+005 443 +003
End-to-End + GradNorm 4574002 484+£0.00 412+£079 394106 480+£003 852+426 1064=001 1057002 980+0.11 1035+£001 002£000 656+003 4.41+0.01
End-to-End + PcGrad 4.60 £ 0.00 4.84+0.00 484+000 443+0.18 4824001 10.65+0.00 10.61+0.02 10594003 10.11+£0.01 10554002 10.06+0.10 6.68+0.04 4454003

Multi Head 4.60 £ 0.00 4.84+£0.00 484+000 4.84+£0.00 4844000 10.65+0.00 10.64+0.00 10624000 10.11+£0.00 10414008 10.16+0.08 6.70+0.02 4394007

Multi Head + GradNorm 430+£040 426+074 396+1.06 394+107 47240.10 10.08+048 1056+0.12 9314165 1001 +£0.11 1023+038 7.87+339 6.11+£097 4.26+0.12
Multi Head + PcGrad 4594001 3874194 484+000 307£053 479+006 10.65+0.00 10.63+000 1061001 10.11£001 10564003 973+£021 6.69+004 433+008
Multiple Models 4.60+0.00 4844000 483+£002 482+003 4.64+£024 1065000 10.60+0.02 10624000 10.11+£0.00 10564001 1023004 674+001 459 +0.29
Multiple Models + COMs 436+006 482+001 483+002 483+0.00 4834001 1062+002 10.64+£001 1062+001 994+0.11 10544002 937+024 632+£0.07 3.64+071
Multiple Models + RoMA 4574000 4834002 483+001 385+100 4834001 10.65+0.00 10.65+0.00 10.57+0.04 9924001 10564002 993+0.11 6.67+£0.02 4414009
Multiple Models + IOM 459+£000 4.84+0.00 483+001 482+001 484+0.00 10.65=0.00 10.64+0.00 10.60+003 10.11+£0.00 10.58+0.01 10.06+0.20 6.70 +0.01 4.52 +£0.30
Multiple Models + ICT 4.60 £0.00 4.84+£0.00 473+£0.17 465022 484+0.00 10.65=0.00 10.64£0.00 10.61+001 10.09+0.01 10.56+0.01 10.15+0.12 6.73 +0.01 4.56 +£0.23
Multiple Models + Tri-Mentoring | 4.60 +0.00 4.84 +0.00 4.73+0.06 4.83+000 484000 10.65+0.00 10.63+001 1061002 1005+005 10454025 1002+0.11 673+001 454+0.17
MOBO 4374006 4.84+0.00 484+000 4 4.84+000 1020£0.00 10.65+=0.00 10.63+£0.00 9.71+0.00 1057 +001 1026+0.00 678+0.00 099 +1.23
MOBO-¢ParEGO 458 +0.01 4.84+0.00 484+0.00 4.84 4000 10.65+0.00 10.64+000 10594001 9124005 10.50+0.01 10.14+0.00 6614007 2.77+249
MOBO-JES 451 +£0.02 4.84+0.00 4.84+000 4.84 +0.00 N/A N/A 1053 £0.04 9414000 10.55 + 0.00 N/A N/A 0.00 + 0.00
ParetoFlow | 436 £0.20 4.78 +0.09 N/A N/A N/A 1063008 1117 +0.00 1078 £ 0.15  10.70 + 0.16 N/A 8434022 692:+0.61 4124010
DOMOO (ours) | 4.60£0.00 4.84+0.00 4844000 4.84+0.00 484+000 10.65+0.00 10.64+001 10634000 1012000 10594001 1021+006 6.76+000 633 +0.07

Table 13: Hypervolume results for scientific design with 256 solutions and 100" percentile evalua-
tions. For each task, algorithms within one standard deviation of having the highest performance are
bolded.

Methods | Molecule Regex RFP ZINC

D(best) ‘ 291 3.96 4.06 4.52
End-to-End 2.64+£0.12 376 £0.27 4.494+0.28 4.72 +0.05
End-to-End + GradNorm 0.59+0.72 472+0.22 4454+031 4.64+0.08
End-to-End + PcGrad 222+0.57 4.61+027 4374031 4.76+0.01
Multi Head 247 £0.12 398 £0.00 4.434+0.29 4.67+0.04
Multi Head + GradNorm 2.64+033 393+4+0.18 4524031 4.56+0.02
Multi Head + PcGrad 237+£040 4564+0.22 458+0.22 4.72+0.06
Multiple Models 259 +0.14 398+0.00 4.11+0.04 4.74+0.04
Multiple Models + COMs 3.01 £0.09 4.61+£0.27 436+0.29 4.74+0.04
Multiple Models + RoOMA 2.86 £0.72 4.61 £0.27 4.26+026 4.66+0.01
Multiple Models + IOM 314 +0.19 4.83+0.00 4284026 4.66+0.01
Multiple Models + ICT 2.83£0.04 4.63+024 4.58+0.25 4.68+0.03
Multiple Models + Tri-Mentoring | 1.83 +£0.30 4.724+0.22 4.224+0.25 4.62+£0.05
MOBO 3.03+£0.64 6.77 +£0.04 4.05+0.01 4.77+0.00
MOBO-¢ParEGO N/A 6.47+0.00 3934+0.03 4.61+0.05

MOBO-JES N/A N/A N/A N/A

ParetoFlow | 286 £0.81 326+£0.00 4.35+0.11 N/A
DOMOO (ours) ‘ 278 +0.13 652+0.11 4244+029 4.71+0.06

E.2 THE 50" PERCENTILE RESULTS

As shown in Table[14] we report the 50*" percentile HV average ranks with 256 solutions. As shown
in Table 15} Table |16} Table Table and Table |19} we report the 50*" percentile hypervolume
results with 256 solutions. DOMOO consistently performs well across tasks. Methods within one
standard deviation of the best are highlighted in bold.
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Table 14: Comparison of average HV ranks at the 5
methods across different tasks in Off-MOO-Bench (Xue et al.,|2024). For each task, the top three
methods are highlighted using (1st), (2nd), and (3rd) formatting. D(best) denotes the best subset in
the offline dataset (i.e., with the highest HV), and the last column reports the average rank across all

Oth

percentile achieved by different offline MOO

tasks.
Methods | Synthetic MO-NAS MORL Sci-Design RE | Average Rank
D(best) | 945+£025 9.06+035 110+£020 225+045 1223040 | 9.15+023
End-to-End 6.83+1.01  594+036 880+0.60 830+081 6.08+0.64 | 658030
End-to-End + GradNorm 1173+ 1.05 1299+ 135 1290+058 11.65+1.15 11324034 | 12.02+0.85
End-to-End + PcGrad 688082 7.56+£121 720+£051 860+235 751+0.63 | 7.39+0.55
Multi Head 645£061 623+£045 470+024 795+1.08 585+060 | 628+032
Multi Head + GradNorm 1074 £072 13.27+094 13.00+055 742+1.34 1225+ 1.19 | 11.69 £ 0.69
Multi Head + PcGrad 783+ 110 756+1.19 880+040 988 +1.07 954+081 | 841+0.70
Multiple Models 524+£051 673+£092 930+040 7.88+198 582+077 | 6.20£0.29
Multiple Models + COM 890+046 691+1.10 500+£032 7904265 997+071 | 838+0.63
Multiple Models + RoMA 1041 +£105 6244084 8204040 847+1.89 995+092 | 885+045
Multiple Models + IOM 7214057 566080 450£032 862+060 654+0.65 | 6.59+0.46
Multiple Models + ICT 862+0.61 9359+090 820+232 7.62£143 645+085 | 822+024
Multiple Models + Tri-Mentoring | 9.54 £ 1.16 11.10+£0.54 8.60+1.98 978+ 1.49 734+0.55 | 9.38+046
MOBO 1240 £0.95  4.21 + 0.46 N/A 1238+ 133 11.66 £ 058 | 9.34 +0.43
MOBO-qParEGO 1226 +0.97 13.19 + 0.64 N/A 7774053 10554037 | 1174 +0.39
MOBO-JES 1525 £0.53 N/A N/A N/A 11.59£0.97 | 13.38 £0.51
ParetoFlow | 9.58+1.83 1204070 1233+377 9.88+1.17 1221+028 | 11.02+ 1.02
DOMOO (ours) | 475+081 836+0.66 3.10+246 7.70+134 325074 | 545039
Table 15: Hypervolume results for synthetic functions with 256 solutions and 50" percentile

evaluations. For each task, algorithms within one standard deviation of having the highest performance

are bolded.

Methods DTLZI DTLZ2 DTLZ3 DTLZ4 DTLZ3 DTLZ6 DTLZ7  OmniTest VLMOPI VLMOP2  VLMOP3 ZDT1 ZDT2 ZDT3 ZDT4 ZDT6
Dibest) 106 991 10 10.76 9.35 8.88 8.56 453 0.08 178 45.65 417 468 515 546 4.61

End-to-End 1056007 780099 984041 666097 702+104 803138 1064003 4774001 032+000 420003 4590 +£004 484=001 565001 507+075 448020 477 +0.00

End-to-End + GradNorm 10604002 7A8+137 10374029 7374170 601+ 158 9.83+045 1001033 3294055 0034006 1444000 41294503 4 77 394+£082 401+098 376069 274+070

End-to-End + PcGrad 10634001 8774134 10214033 7914086 817+123 9294035 1060008 4774001 0.19+005 420+004 4592001 03 5634005 5224034 344£017 387103

Mulii Head 10644001 7644128 1023+£031 6624077 £086 7974122 1047+020 478000 0322000 4194006 4593+ 001 04 5524012 5274039 4284030 4.76+000

Multi Head + GradNorm 1060001 736+ 172 1033+023 7274130 4 8524105 992+045 310044 000+001 3324049 38744620 18 499044 528+045 3214059 358=135

Multi Head + PcGrad 1062001 858097 10.06+031 6094137 0 9044032 1047+021 478000 018+010 419+004 45934000 09 SSI+£011 5044048 3874043 360+ 135

Multiple Models 10.64 +£0.01 7874151 1048010 755+ 111 M4 830+£145 10.68=0.02 478000 031+£001 422001 45934001 4 03 5514009 543£016 479021 471005

Multiple Models + COMs 1062001 859061 980018 745+033 5 870£024 9554009 477+£001 031+001 4122003 4592£002 4 04 506+£004 540£004 452£016 228+055

Multiple Models + RoMA 1059001 930053 999048 8114094 39294020 1020011 304£005 0.15+001 1442000 37.17+£252 4 02 536+£007 554+007 356+£021 174+017

Multiple Models + IOM 1062000 9134038 9764031 838L0.11 6 8764063 1045+0.16 477001 0264006 3844036 45924000 05 5514007 5414027 4524037 4724003

Multiple Models + ICT 1061001 9214054 957054 880+107 7.54+094 843+ LI7 9824025 4754003 0304004 389+025 45914001 480=003 530+£018 S3I+0.18 392+014 358101

Multiple Models + Tri-Mentoring | 10.37+0.47 8764084 977+055 8314095 6.14=024 823+ 142 971017 474003 032000 374060 4465+241 476001 546+021 490+0.10 449+0.18 234+025

MOBO 1064000 9964021 9.09+024 849002 856+000 875007 7764001 4724003 0.18+£001 144 +000 N/A 426002 428+001 5024004 386+002 263018

MOBO-gParEGO 1060001 950+0.16 822054 859+001 789+009 804+ 100 926+008 403+0.11 0.I8+008 144=000 4579+£000 4225001 462002 510+002 436+001 251 +060

5 NIA N/A N/A NIA N/A 4304005 0.06 +0.00 N/A N/A 3864007 4554010 4934007 3994007 191+0.18

ParetoFlow 10385004 983022 041044 864080 845-085 941012 881 +004 478+ 0.00 N/A 421%000 N/A 4132009 536+025 5.10£0.02 485+0.13 436 =006

DDOMOO (ours) 10.64 £ 0.01 9754025 10414012 6914132 878052 9094093 10.63+0.10 4774001 03246000 4.11+0.16 45934000 480+004 5674002 537020 4044034 4714004

Table 16: Hypervolume results for MO-NAS with 256 solutions and 50" percentile evaluations. For
each task, algorithms within one standard deviation of having the highest performance are bolded.

Methods C-10/MOPI__C-10/MOP2_ C-10/MOP3 _ C-1/MOPS _ C-10/MOP9 _IN-IK/MOP1 _IN-IK/MOP2 IN-IK/MOP3 _IN-IK/MOP4 _IN-IK/MOPS _IN-IK/MOPG6__IN-IK/MOP7 _IN-IK/MOPS _ NasBench201-Test
Dibest) 472 1042 9.21 438 9.64 436 445 9.86 9.15 37 9.13 9.89
End-to-End 4685004 10415002 999006 442+£015 978014 4432017 4485006 989 £0.04 957£017  363£028  924+010 9.88 +0.19
End-to-End + GradNorm 4445019 1037£006 901+£011 3624031 880027 4094023 4324007 8294032 TA3LIA 3545044 B0TL010 8.68 + 149
End-to-End + PcGrad 4694003 10424001 995+007 4214013 9922020 4404005 4394002 9924009 9344013 379011 9294017 9.51+039
Multi Head 4714001 1034011 986003 4394010 947=028 4534007 4374009  998+004 9584023 3944033 938+0.11 9.73 4037
Multi Head + GradNorm 3514178 10134023 860+033 3654019 764126 3974052 3634047 8204133 9104028  265+059 559+ 185 9.524+0.10
Multi Head + PcGrad 4684005 1043001 959031 403017 9T8£017 4394002 4485004 998002 9324011 3814007  9.05+029 9.86 +0.27
Multiple Models 4684006 10085062 965+040 447005 954015 4314032 447£003 991008 944031 396025  935+009 9.76 + 0.4
Multiple Models + COMs 4734001 10415002 9854006 424+006 938021 4524004 4514002 9934007 9374017 3754012 928+021 9.80 +033
Multiple Models + RoMA 4704004 1043-£0.01 9912009 4112009 909021 4514006 449005 9824003 9504013 410012 9.18+0.11 9.69 4+ 032
Multiple Models + IOM 4694004 10344005 9944002 4514006 988011 4514006 4564004  10.02+0.01 9354008 374012 954006 9924015
Multiple Models + ICT 4694002 1007051 961026 400+£025 894032  428+008  431+£007  960+022  436+011 436004 949007  37T+0I8 8724055 9.85+0.19
Multiple Models + Tri-Mentoring | 4674003 1035 +0.10 9954005 383+0.8 806+025 4204003 4194010 9155030 4155004 4205004 9294012 3755020  9.12+030 8.86 +0.14
MOBO 4715003 1043001 10075001 4524002 10025004 458002 4525001 999:004 4175005 4472002 915003  407£002 956+ 0.01 N/A
MOBO-gParEGO 470001 1030006 846001 4024003 9435022 390007  364£005 914010 3984012  414£036  914+£012 367003 866016 N/A
MOBO-IES N/A Z NA N/A NA NA N/A NA N/A NA N/A NA NA
ParetoFlow 466009 1041000 915+017  402+021 9255000 418001 420£010 9415016 417+002 NA N/A 3405022 9.01£000 N/A
DOMOO (ours) 4675004 10374002 983+013 453+006 972008 442+017 4485005 9294042 314+043 282045  716+021 4295006  929+020 10.09 + 005
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Table 17: Hypervolume results for MORL with 256 solutions and 50" percentile evaluations. For
each task, algorithms within one standard deviation of having the highest performance are bolded.

Methods | MO-Swimmer MO-Hopper
D(best) \ 3.64 5.67
End-to-End 2.57 £ 0.00 4.80 £+ 0.00
End-to-End + GradNorm 2.45 £+ 0.00 4.78 £+ 0.00
End-to-End + PcGrad 2.52 +0.00 4.98 +0.00
Multi Head 2.73 £+ 0.00 4.93 £+ 0.00
Multi Head + GradNorm 2.47 £ 0.00 4.76 £ 0.00
Multi Head + PcGrad 2.51 £0.00 4.92 £+ 0.00
Multiple Models 2.54 £+ 0.00 4.81 £+ 0.00
Multiple Models + COMs 2.87 £ 0.00 4.86 + 0.00
Multiple Models + RoOMA 2.57 £ 0.00 4.85 £ 0.00
Multiple Models + IOM 2.62 + 0.00 5.15 £+ 0.00
Multiple Models + ICT 2.68 £ 0.18 493 +0.27
Multiple Models + Tri-Mentoring 2.67 £0.14 4.79 £ 0.01
MOBO N/A N/A
MOBO-¢ParEGO N/A N/A
MOBO-JES N/A N/A
ParetoFlow | 2.18+£029 4.71 £+ 0.00
DOMOO (ours) | 3.12+0.05 535+ 044

Table 18: Hypervolume results for RE with 256 solutions and 50" percentile evaluations. For each
task, algorithms within one standard deviation of having the highest performance are bolded.

Methods ‘ RE21 RE22 RE23 RE24 RE25 RE31 RE32 RE33 RE34 RE35 RE36 RE37 MO-Portfolio
Di(best) ‘ 4.1 4.78 4.75 4.6 4.79 10.6 10.56 10.56 9.3 10.08 7.61 5.57 4.24
End-to-End 4.59+£0.00 4844000 484+0.01 465022 478008 10554020 10.65+0.00 1052+0.16 1007001 1037 £0.04 973+023 6.55+0.08 440 =003
End-to-End + GradNorm 454 +£004 481+004 405+075 3.19+082 474+007 852+426 10.62+0.03 1027008 941+0.25 1034 £0.01  0.02£0.00 6.53 +0.03 417 £0.14
End-to-End + PcGrad 459+£000 4084152 4834002 416+0.17 481 =001 10.64+0.00 10.61+0.02 1043 +0.13 10.04+£0.04 1054 +£002 9.68+0.17 6.60+0.05 441 £0.05
Multi Head 459+0.00 484+0.00 484+000 457+053 480+006 1058+0.13 10.64+0.01 1058 +0.06 10024005 1032+020 9.76+0.17 6.63 +0.05 433 £0.08
Multi Head + GradNorm 428+042 2074186 3.08+075 3.10+043 395+086 10.07+049 1047+024 877+ 149 9.69 + 0.63 10.19 £0.47 653 +342 6.05+096 4.10 £0.21
Multi Head + PcGrad 4524008 3024154 483+001 275+0.17 469+0.17 10554020 9.00+1.58 10.13+0.68 10.04+0.03 1051 +0.04 948+0.18 6.62+0.07 427 +0.07
Multiple Models 4594001 4764015 4774010 4824003 464+024 10644001 1058+0.03 10.62+001 10084002 1055+0.01 9.83+020 6.67+002 453+029
Multiple Models + COMs 4354005 4784011 4814002 4414062 473+0.10 10624002 10634001 10.19+081 984+0.19 1045+0.06 883+027 6284008 3.55+0.63
Multiple Models + RoMA 4544001 4564049 4424081 3324089 473+0.17 1057 +0.08 10.64+£0.00 1034+0.18 9284005 1051+0.04 7574077 6.57+0.08 4.24+0.08
Multiple Models + IOM 458 £0.01 4824004 480+0.03 480+0.02 483+0.01 10634002 10.64+001 1058+0.03 10034001 10514004 953+0.16 6.56+0.08 4.44+029
Multiple Models + ICT 458 +£001 4754019 4724017 456+020 4.82+003 10.65+0.00 10.63+£001 1058+0.02 10034002 1042+£022 971+0.17 6.65+0.05 450022
Multiple Models + Tri-Mentoring | 4.59 = 0.00 4.84 £0.00 4344041 474+0.18 476+0.11 10.65+£0.00 10.63+0.01 1058005 997+005 1044+025 7.03£175 6.64+003 439011
MOBO 399+006 484000 418001 335+009 483001 961000 10.64+000 1036007 727+0.19 1032+£009 851+000 647000 039048
MOBO-¢ParEGO 4144011 4844000 471+015 3204021 483+000 10.63+000 10.64+0.00 1052+007 728+0.16 1028+0.03 8.19+000 622+021 1.82+£223
MOBO-JES 433+£0.08 484000 475+000 459+0.00 481001 N/A N/A 1034 £024  9.06 £0.00 10.44 £ 0.00 N/A N/A 0.00 £ 0.00
ParetoFlow 423£0.12 4.63 +£0.04 N/A N/A N/A 1016 £0.16  10.59 = 0.00 10.72+0.17  9.30 +0.12 N/A 752+£0.19 6.12+045 4.03 £0.07
DOMOO (ours) 4.60 £0.00 4.84+0.00 484+000 483+0.01 464+024 10.65+0.00 10.64+001 1062+000 10.10+0.01 1054+0.08 972+0.18 6.72+0.00 5.55+0.52
. . . . . . th . .
Table 19: Hypervolume results for scientific design with 256 solutions and 50*" percentile evaluations.

For each task, algorithms within one standard deviation of having the highest performance are bolded.

Methods | Molecule Regex RFP ZINC

D(best) \ 291 3.96 4.06 4.52
End-to-End 1.67+£1.00 299 +0.00 4.02+£0.02 445+0.04
End-to-End + GradNorm 0.00 £0.00 2.99£0.00 3.99+0.02 4.36=+0.07
End-to-End + PcGrad 2.034+0.63 299+0.00 4.02+0.07 4.37+0.06
Multi Head 0.61 £0.75 2.99+0.00 4.05+0.04 4.46+0.04
Multi Head + GradNorm 210+ 0.58 3.67+034 4.06+0.02 427+0.05
Multi Head + PcGrad 1.70 £037 2.99+£0.00 392+0.15 4.40+0.04
Multiple Models 1.994+£0.59 299 +0.00 4.02+0.03 4.42+0.02
Multiple Models + COMs 2534+052 3.16+£034 4.03+£0.03 4.33+0.10
Multiple Models + RoMA 1.96 £0.61 2.99 +0.00 4.03+0.02 4.33+0.06
Multiple Models + IOM 2324043 299+0.00 4.04+0.04 4.33+0.08
Multiple Models + ICT 253 +£054 3254052 398+0.05 4.40+0.04
Multiple Models + Tri-Mentoring | 1.54 +0.05 2.99 £0.00 4.03 £0.08 4.31 £0.11
MOBO 0.00 £0.00 4.54+0.11 398+0.01 4.34+0.01
MOBO-¢ParEGO N/A 475+0.19 3.67+0.03 4.57£0.09

MOBO-JES N/A N/A N/A N/A
ParetoFlow | 1.58 £0.05 3.26+0.00 N/A 4.05+0.25
DOMOO (ours) | .74 £ 036 4.78+0.26 3.95+0.06 4.46+0.06

21



Under review as a conference paper at ICLR 2026

F IGDgine EXPERIMENT RESULTS

F.1 THE 100*" PERCENTILE RESULTS

As shown in Table Table Table 22| Table and Table we report the 100" percentile
IGDyfgiine results with 256 solutions. DOMOO consistently performs well across tasks. Methods
within one standard deviation of the best are highlighted in bold.

Table 20: IGDggipne results for synthetic functions with 256 solutions and 100" percentile evaluations.
For each task, algorithms within one standard deviation of having the highest performance are bolded.

Methods DTLZL DTLZ2 DTLZ3 DTLZ4 DTLZS DTLZ6 DTLZ7  OmniTest VLMOPI VLMOP2 VLMOP3  ZDT1 ZDT2 ZDT3 ZDT4 ZDT6
Dibest) 025 027 023 035 043 061 046 0.06 134 0.08 048 045 055 0.07 0.14
End-to-End 020003 0754008 021 +005 0854003 058+011 029+001 0224000 0.11+008 091+000 008+005 0.14=000 0214000 038+004 038=007 0.110.00

End-to-End + GradNorm 017000 085+005 022+005 0984003 042+005 029+001 0294008 005+002 124+026 034021 029=003 0274002 047+002
End-to-End + PeGrad 0172001 0584008 0.I8+001 0624006 0544005 028+001 0224000 0034000 091000 007-001 0145000 021£000 0.37-+003
Multi Head 017000 074009 0.18+003 0774003 061+010 031003 0224000 009+005 091+000 005000 0.16+002 024+005 032+003
Multi Head + GradNorm 0172000 078017 0.18 +0.06 086+0.11 0524007 041004 0464025 082024 091£000 019018 029009 029+006 0.32:+005
Multi Head + PeGrad 017000 0574005 0.18+0.02 0604004 0524003 0314003 0224000 0.11+013 091+000 006+001 018007 023+005 0.36+002
Multiple Models 017000 070001 0.16+003 0764008 0.62+011 029+003 022000 0.09+009 091000 005000 016=001 0.21+001 0.35+006
Multiple Models + COMs 017000 0444004 021 +002 0514004 059+002 035002 0224000 0.11+011 091000 016+0.09 023+002 029+002 038 =001
Multiple Models + RoMA 018000 0.66+001 021 +0.04 090+004 048+001 028+000 0472010 003=000 145000 019015 0.14=0.00 021£000 0.22+0.00
Multiple Models + [OM 018000 0384004 0.18+0.02 0424004 0564002 027+001 0224000 0.12+009 091+000 0.18+004 0234004 0.21+001 029 %001
Multiple Models + ICT 017001 050+004 022004 061 +0.10 059+006 031000 023£000 007£002 091£000 009£005 016=001 023+001 043+006

Multiple Models + Tri-Mentoring | 0.21 +0.06 0.65 £ 0.08 0.20 - 0.03 074£0.11 057£007 035002 0234000 006+002 091001 0064000 019001 0244005 0481006 033£005 0574035

MOBO 0.16 £0.00 031 +0.00 020+ 0.00 0.39£000 056+001 029001 0224000 0.03+£000 099002 N/A 033£000 032+000 041£001 052+003 081000
MOBO-gParEGO 0175000 031=000 019000 038000 059002 029=000 022+000 0.03=000 095002 012000 033002 031+002 042000 033=003 075002
N/ N/A N/A N/A N/A N/A 0.23 £ 001 0.08 £ 0.00 N/A N/A 051£002 039+002 056+001 0.56+002 0954000

ParetoFlow 0.11£002 039+0.10 020£0.04 0.00£000 048+003 077006 052£004 019+ 0.00 N/A 0.84 £ 0.00 N/A 046002 038+003 053£001 0.05£003 0.09+008
DOMOO (ours) 0165000 040%003 004001 07700 046+002 051 £009 026=001 0224000 003000 091000 005000 0.15=001 021000 033003 0212007 0124001

Table 21: IGDqine results for MO-NAS with 256 solutions and 100" percentile evaluations. For
each task, algorithms within one standard deviation of having the highest performance are bolded.

Methods C-1/MOP1  C-1/MOP2  C-10/MOP3  C-10/MOPS _ C-10/MOP9 IN-IK/MOP1 _IN-IK/MOP2 IN-IK/MOP3 IN-IK/MOP4 IN-IK/MOP5 IN-IK/MOP6 IN-IK/MOP7 IN-1K/MOPS  NasBench201-Test

Dibest) 0.11 [ 034 036 033 034 032 037 035 029 037 064 062 032
End-to-End 0105000 008+000 029+000 025=001 0255002 026+001 028000 033=000 024001  022+001  031+003 055+ 001 025+ 0.00
End-to-End + GradNorm 0154002 0104000 040 +0.02 0274001 0324001 031£001 048002 0284004 0244002 0394005 063 +001 0494034
End-to-End + PcGrad 0.11£000  008£001 029 +000 0255002 028+001  029£000 0332000  030£003  023£002  033£002 055 £ 000 026001
Mulii Head 0104000 0084000 028+ 0.00 0272002 024:001  029£000 0252001 0224002  033+003 055 £ 0.00 026 4 0.00
Multi Head + GradNorm 0214012 0124001  0.35+002 036005 0354008  048+0.17 030005 0254003  036=005 0.68 +0.00 027001
Multi Head + PeGrad 0114000  0.08+0.00 029001 0284002 0284001  029+001 0284001 0224001 0334002 055+ 000 0264 0.00
Multiple Models 0. 025001 026£003  0.28+0.00 025£002  022+001  034£003 056 + 001 0264 0.00
Multiple Models + COMs 28 = 0. 027002 025+001  029+000 027+£003  023+001  031=001 056 £ 0.00 0274001
Multiple Models + RoMA 0104001 0094001 029 £0. 0274001 024+001  030£002 0. 0274001 0224001  031+001 058 £ 001 0274002
Multiple Models + I0M 0114000  0.11+001 029 +0.00 026002 0254000  028+000 033000 028001 0224001  032+002 0.54+0.00 0274001
Multiple Models + ICT 0114000 0094002  0.32+002 0264003 0294001  030+£001 034001 0264002 0264001  031£001 0452005 057001 0274002
Multiple Models + Tri-Mentoring | 0.10+0.01  0.08+0.01  0.30 £ 0.00 020002 0294003 033£001 0372001 028+001 0254002 032+001 0412006  0.55+0.00 0304002

MOBO 010£000 008+000 029+000 028001 0295002  025+001 029000 0332000  032+£001  020£001 035001 046002  0.54+0.00 N/A

MOBO-gPurEGO 0114000 0114000 037000 027001 0282000 034+001  033£001 0372000 035£001 0304003 036002  043£001 056000 NIA

NIA NIA NIA 7 N/A NIA y N/A NIA y NIA

ParetoFlow 0091002 0054002 0324001 0315002 0245000 0304002 0334002 0364001 030£001 N/A NIA 0595003 0584 0.00 NIA
DOMOO (ours) 0114000 0104000 0294000 025£001 026001 0254001 029000 0345000  026+002 0234001 0352004 038003  057+001 027 4001

Table 22: IGD,sine results for MORL with 256 solutions and 100" percentile evaluations. For each
task, algorithms within one standard deviation of having the highest performance are bolded.

Methods \ MO-Swimmer MO-Hopper
D(best) \ 0.43 0.8

End-to-End 0.47 + 0.00 0.64 + 0.00
End-to-End + GradNorm 0.59 4+ 0.00 0.76 + 0.00
End-to-End + PcGrad 0.49 + 0.00 0.77 + 0.00
Multi Head 0.48 + 0.00 0.70 + 0.00

Multi Head + GradNorm 0.50 £ 0.00 0.91 £ 0.00
Multi Head + PcGrad 0.53 + 0.00 0.67 + 0.00
Multiple Models 0.48 + 0.00 0.65 + 0.00
Multiple Models + COMs 0.45 + 0.00 0.68 + 0.00
Multiple Models + RoOMA 0.45 + 0.00 0.64 + 0.00
Multiple Models + IOM 0.54 + 0.00 0.59 + 0.00
Multiple Models + ICT 0.49 +0.03 0.70 +0.08
Multiple Models + Tri-Mentoring 0.49 £+ 0.04 0.73 £ 0.05

MOBO N/A N/A
MOBO-¢ParEGO N/A N/A
MOBO-JES N/A N/A

ParetoFlow | 0.45+0.00 0.80 £ 0.00
DOMOO (ours) | 0.49 £0.00 0.58 £+ 0.07
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Table 23: IGDgine results for RE with 256 solutions and 100*" percentile evaluations. For each task,
algorithms within one standard deviation of having the highest performance are bolded.

Methods ‘ RE21 RE22 RE23 RE24 RE25 RE31 RE32 RE33 RE34 RE35 RE36 RE37 MO-Portfolio
D(best) 0.56 0.00 0.00 0.00 0.03 0.01 0.02 0.04 0.34 0.09 0.69 0.65 0.47

End-to-End 0454£000 021+£002 003£002 0.11+010 009£0.05 027=000 0.09+0.02 005£000 030+000 033£005 036+002 052+000 0.55+0.00
End-to-End + GradNorm 0.46 +0.00  0.15 £ 0.06 036043 0.07£000 061=1.18 0.06£001 007+001 032£000 034+003 3.08£000 052+0.00 0.56+0.00
End-to-End + PcGrad 0.4540.00 0.15 £ 0.08 023+0.05 0.07+£000 022+0.03 0.11£001 007+0.02 030+£000 0.16+0.04 039+£003 052+0.00 0554001
Multi Head 0454000 017 £0.04 0. 0.01 =001 0.09+005 026+002 009+002 007+000 030+000 0.18+0.08 036+0.02 051+000 0.56+0.01
Multi Head + GradNorm 0.47+0.03 025+023 037+042 0.11£008 0.17+0.04 0.04£000 020+020 031£001 027+0.13 074£068 061+0.17 0.60+0.04
Multi Head + PcGrad 0.4540.00 9.99 + 19.92 0.69+024 0.10£005 0.19+0.06 0.08+003 006+001 030+£000 0.12+0.05 047+£0.02 052+0.00 0.58+0.02
Multiple Models 0.45+0.00  0.07 +0.00 0.04+0.03 0.12+003 026+0.01 0.11+£000 0.08+002 030+000 0.14+005 035+001 052+0.00 057+0.02
Multiple Models + COMs 0.45£0.00  0.10 £ 0.06 004004 0.11£0.07 019005 011001 006000 030=000 0.06=£0.00 040002 053+001 1.07 £ 0.20
Multiple Models + RoMA 0.4740.00 0.09+0.07 0. 043 +038 0.11£008 001+0.00 0.02+000 005+0.00 031+000 008+001 040+003 0524000 0574001
Multiple Models + IOM 0454000 0.02 +0.02 0.00 000 0.02+0.02 021+0.04 006+001 0.05+0.00 030+0.00 0.06+0.00 037+004 052+000 0594001
Multiple Models + ICT 0454000  0.13+£0.09 010012 0.03£0.02 004003 007+002 006001 030+000 009+002 036002 052+000 0.57+0.01

Multiple Models + Tri-Mentoring | 0.45 £0.00 0.2040.02 0.06 £0.03 0.00 £0.00 0.06£0.02 0.02+0.01 0.09£001 007+0.02 030£000 0.10+0.07 039+£003 052+0.00 055+0.00

MOBO 048 £0.01  0.00£0.00 0.00=000 003=001 001000 0.04=000 002+0.00 007000 032=000 0.06=0.00 0.33=0.00 051000 133 £0.18
MOBO-qParEGO 0454000  0.00+0.00 000000 001001 001£0.00 004000 004+000 004£000 035+000 007+0.00 035+£000 051+000 0.38+0.01
MOBO-JES 0454000 0.02+0.00 0.00+0.00 0.00+0.00 0.07+0.02 N/A N/A 0.07+0.01  0.36+0.00 0.09+0.00 N/A N/A N/A
ParetoFlow 0.37 £0.07  0.00 + 0.00 N/A N/A N/A 0.00 = 0.00  0.00£0.00 0.03=0.01 0.22+0.05 N/A 047 £0.12 044 £0.06 041 +0.04
DOMOO (ours) | 0454000 0.06+001 0.04+000 001+002 0.06+001 022+001 005+002 0.06+001 030+000 008+000 035+001 052+000 0.39+001

Table 24: IGDgine results for scientific design with 256 solutions and 100%™ percentile evaluations.
For each task, algorithms within one standard deviation of having the highest performance are bolded.

Methods \ Molecule Regex RFP ZINC

D(best) \ 0.84 1.05 0.39 0.2
End-to-End 094 £0.01 1.09+0.02 0.314+0.05 0.17+0.01
End-to-End + GradNorm 1.444+0.01 1.04£0.00 0.31+£0.07 0.17=+0.01
End-to-End + PcGrad 1.10£024 1.04+0.00 0.33+0.05 0.16+0.00
Multi Head 094 +0.01 1.08+0.00 030=£0.07 0.17+£0.01
Multi Head + GradNorm 094 £0.10 1.06+0.01 0.30+0.06 0.18+0.00
Multi Head + PcGrad 1.02+0.17 1.04+0.00 0.28+0.04 0.16+£0.01
Multiple Models 094 +001 1.08+0.00 039+0.01 0.17£0.01
Multiple Models + COMs 0.79 £0.06 1.04+0.00 0.334+0.06 0.16+0.00
Multiple Models + RoMA 0.87+0.26 1.04+0.00 0.35=+0.07 0.17=£0.00
Multiple Models + IOM 0.75£0.08 1.04+0.00 0.35+0.06 0.18+0.00
Multiple Models + ICT 0.85+0.00 1.04+0.00 0.29+0.05 0.18=£0.00
Multiple Models + Tri-Mentoring | 1.24 £0.15 1.04 £0.00 0.37 £0.06 0.18 £ 0.00
MOBO 0.76 =022 0.75+0.01 038=+0.01 0.14 £ 0.00
MOBO-¢ParEGO N/A 0.88£0.00 0.39+0.01 0.16+0.01

MOBO-JES N/A N/A N/A N/A
ParetoFlow | 0.64 =047 0.87 & 0.00 N/A 0.15 £ 0.01
DOMOOQO (ours) | 0.86£0.02 090+0.01 0354006 0.17+0.01

F.2 THE 50"" PERCENTILE RESULTS

As shown in Table we report the 50t percentile IGD i, average ranks with 256 solutions. As
shown in Table[26] Table Table Table[29] and Table[30] we report the 50th percentile IGD yggiine
results with 256 solutions. DOMOO consistently performs well across tasks. Methods within one
standard deviation of the best are highlighted in bold.
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Table 25: Comparison of average IGD,qine ranks at the 50tk percentile achieved by different offline
MOO methods across different tasks in Off-MOO-Bench (Xue et al.,[2024). Details are the same as

Table @

Methods | Synthetic MO-NAS MORL Sci-Design RE | Average Rank
D(best) | 8114055 931+128 120024 1.80+043 563+£060 | 7.00+0.68
End-to-End 7.38 +1.31 4.64 +1.07 10.50+0.55 8.97+0.53 9.06 £ 1.08 7.30 +0.89
End-to-End + GradNorm 12.01 £ 147 12.10£2.39 11404+0.66 9.57 +1.41 11.18 £ 0.81 11.59 + 1.36
End-to-End + PcGrad 6.40 £ 0.87 6.99 +1.13 8.90 £ 0.58 747 +£1.72 9.26 £+ 0.65 7.52 +£0.65
Multi Head 6.88 £ 1.15 5.01 +£0.52 4.90 + 0.58 7.17 £0.19 7.71 £0.41 6.62 £ 0.45
Multi Head + GradNorm 10.56 +£1.28 1258 £1.29 13.00+0.63 620+ 1.50 11.75+1.32 11.10 £ 1.22
Multi Head + PcGrad 7.83 +1.23 7.42 + 1.06 6.20 4+ 0.68 8.35 £2.09 9.71 + 1.03 8.18 £ 0.85
Multiple Models 5754080 528+£102 1040+£080 9.57+£230 796051 | 674+032
MultipleModels + COMs 8.57 £0.49 6.56 + 0.87 6.00 £+ 0.77 6.72 £2.72 9.12 +£0.95 7.96 +0.48
Multiple Models + RoOMA 1045 +0.53  7.12+1.27 7.20 £+ 0.40 8.15 £ 0.56 9.43 +0.90 8.93 £ 0.68
Multiple Models + IOM 7024073 7854272  460+049 978+ 159 5324079 | 6.51+0.54
Multiple Models + ICT 8.81 £ 0.69 8.80 £+ 1.05 8.00 £ 2.63 9.55 +2.04 7.62 £ 0.69 8.50 + 0.26
Multiple Models + Tri-Mentoring | 9.77 4 0.71 9.71 £0.92 840 £1.59 1030+1.93 8.49+0.50 9.36 + 0.45
MOBO 10.85 £ 1.13  6.26 = 0.68 N/A 10.27 +£1.29 10.57 £ 0.83 9.08 + 0.91
MOBO-¢ParEGO 10.82 £ 1.15 11.27 £0.71 N/A 8.00 £ 1.14 7.56 + 0.53 9.92 +0.32
MOBO-JES 14.58 £ 0.63 N/A N/A N/A 9.51 £ 1.88 11.08 +2.03
ParetoFlow | 8634225 9.09+065 1083+554 621+174 535+043 | 855+223
DOMOQO (ours) ‘ 5.66 + 0.94 8.70 £+ 0.62 3.10 +2.26 8.60 £+ 0.87 6.21 +0.31 ‘ 6.77 £ 0.57

Table 26: IGDjqine results for synthetic functions with 256 solutions and 50" percentile evaluations.
For each task, algorithms within one standard deviation of having the highest performance are bolded.

Methods DTLZ1 DTLZ2  DTLZ3 DTLZ4  DTLZ5S  DTLZ6  DTLZ7 _ OmniTest VLMOPI VLMOP2 VLMOP3  ZDTI 7DT2 ZDT3 ZDT4 7DT6
Dibest) 0.27 023 0.01 0.35 043 061 046 0.06 134 0.08 048 045 055 007 0.14
End-to-End 3 083006 028+003 089=010 093+£005 065012 030001 022+£000 011£008 091000 009005 014000 021000 048£016 055+008 013+000
End-to-End + GradNorm 093007 0234005 0954014 1044005 0454005 0484008 0814013 038+018 1454000 0404020 040+021 0744025 076+021 083+024 078025
End-to-End + PcGrad 0674011 0264001 072+015 073+£008 058+005 029+0.03 0224000 0.03+0.00 091+£000 007+001 0.14+0.00 0214000 045+003 097+007 042+035
Multi Head 0824008 0254003 0974012 0864004 0674000 0354004 0224000 009005 0914000 0.06+001 016002 0264006 0384008 063012 0124000
Multi Head + GradNorm 0824015 0224005 097+003 0914009 059+006 047+005 0794012 086+0.16 091+£000 034+022 031+009 038+0.14 039+007 097+0.16 0.52+047
Multi Head + PcGrad 0694005 0294002 1034008 0694004 0574003 0344006 0224000 014+011 0914000 0.06+001 0I8+007 0244005 045+005 082019 0514045
Multiple Models 0774003 0204004 0825004 0814008 066=011 030+003 0224000 010£010 0914000 006+000 0.16+001 0224002 038+006 040=0.10 0.14+002
Multiple Models + COMs 0526006 0334002 0724007 0604006 0614001 0424001 0224000 012£011 0924000 0174009 023£002 031+001 041+001 049005 099+0.16
Multiple Models + RoMA 075002 0274005 099+002 0944003 054+001 039+002 0824002 0.03+000 145+000 034+009 014=000 0324003 028+0.01 095+008 118008
Multiple Models + IOM 047011 0314£005 052001 049£002 064+006 032+004 0234000 013£009 091001 0204004 026=004 021001 035+002 052:0.16 0.12+0.01
Multiple Models + ICT 0596004 0334004 0734007 0764008 065+000 043£007 0234001 008+003 0914000 0.11+007 017+001 0314006 0474005 078006 0524031
Multiple Models + Tri-Mentoring 071£006 030004 077+0.13 089005 071+009 037+002 0234001 006+003 093+£0.04 010+007 019£001 0274007 056+005 0.54=008 0.90+0.08
MOBO 0172000 0354000 036+003 049+001 043+000 0614£002 060+000 0274002 003£000 1455000  NA 038001 0594000 053003 081=001 0934003
MOBO-ParEGO 0222000 036+000 039+001 046=000 045+000 0.64+006 043+001 0504007 004001 145000 013+000 038=001 046+000 043001 059+001 1004016
MOBO-JES N/A NA N/A NA NA N/A NA  048+001 008000  NA N/A 058001 049006 065+£002 074+002 121000
ParetoFlow 0185002 0454007 0354003 0162007 0554006 0794006 0562003 0194000  NA 0842000  NA 046002 046+£004 0554005 0.10=001 0124009
DOMOO (ours) 0185001 0424005 022+005 095007 052+007 055+008 029+002 022+000 005£003 091000 0.11£004 018003 0225001 0404004 074=014 0.13%001

Table 27: IGDggine results for MO-NAS with 256 solutions and 50" percentile evaluations. For each
task, algorithms within one standard deviation of having the highest performance are bolded.

Methods C-10/MOP1  C-10/MOP2  C-10/MOP3  C-10/MOP8  C-10/MOP9 IN-IK/MOP1 IN-1IK/MOP2 IN-IK/MOP3 IN-1K/MOP4 IN-1K/MOP5 IN-IK/MOP6 IN-1K/MOP7 IN-1K/MOP8 NasBench201-Test
Dibest) o.11 0.1 034 036 033 034 032 037 035 029 037 064 062 032
End-to-End 0026001 010001 0305001 0325002 031002 0284003 0295000 0342000 0274002 0254002 036004 0542009 0574002 029002
End-to-End + GradNorm 0274010  0.11£001 042£002 059+013 040+ 004 0.34 +0.02 032+ 001 0.50 £ 0.02 048 £0.11 035 +0.07 0.65 +£0.19 0.60 +0.14 0.68 +0.02 0.54 + 032
End-to-End + PeGrad 0134002 010001 0315000 0394003 031002 0314001 0304001 0345001 0354004  028+002 037002 0350004 0564001 0324004
Multi Head 0114000 001+001  030£000 032+002 034003 026001 030001 033000 0274001 0264002 0384004  046+010  055+000 0314003
Multi Head + GradNorm infnan 012001 0395003 0482007 052002 0455014  060£022  048£003  035:005 030004  042£006 092021 073000 0.30£001
Multi Head + PeGrad 0044005 009%001 031+001 0485006 034003 030£001  030£000 0334000 0344002 0274001  036-002 0472002 056000 029002
Multiple Models 0124001 0.15+£007 030001 030002 033002 0.28 + 0.06 0.29 -+ 0.00 0.33 £ 0.00 0.28 +0.01 0.25 +0.01 0.38 + 0.04 0.45 £ 0.06 0.56 +0.01 0.30 +0.02
Multiple Models + COMs 0.11£000  0.10£001 031000 038003 0345002 0.28 +0.01 0.30 + 0.00 0.34 £ 0.00 0.32+0.03 0.27 +0.01 0.35+0.01 0.51 +0.05 0.57 +0.01 0.34 £ 0.04
Multiple Models + RoMA | 012001 0.10£001 032001 034002 036001  025+001 0324002 037001 031003  025£001 0355001 0465005  0.60+002 0324002
Multiple Models + OM 0024001 0122001 0312000 032:003 032002 027£001 0295000 0332001 033003 0264000  036+0035 051004  055%0.00 0334003
Multiple Models + ICT 0024001 013006 0345003 046+011 0332003 0324002 0324001  036+00l 0314002 029001 0354001 0512007 0594001 0314001
Multiple Models + Tri-Mentoring | 0.11 4001 0094001 032%001 0485007 0364002 0324004 0354001 0395001 0334001 0294001 0354001 049006 0536+001 0.36 4001
MOBO 0.11£000  009£001 030001 033001 033002 0.28 + 0.00 0.31 £ 0.00 0.34 £ 0.00 0.35 +0.01 0.25 4+ 0.02 0.38 £ 0.01 0.49 £ 0.01 0.55 +0.01 N/A
MOBO-gParEGO 0.11£000  0.11£000 037£000 033£001 037+001 0.39 +0.00 0.45 £ 0.01 0.39 £ 0.00 0.38 +0.02 035+ 0.11 0.37 £ 0.01 0.51 +0.00 0.59 +0.00 N/A
MOBO-JES N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A
ParcloFlow 0005002 0065002 0335000 038003 0295000 033001 033002 037=001 __034+002 NIA NIA 065001 0.58+000 NA
DOMOO (ours) 0124000 0015000 0305001 031001 034001 033006 031000 041004 066+004 0784012 062+006 0435003 059002 0.28 %001
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Table 28: IGDjgine results for MORL with 256 solutions and 50" percentile evaluations. For each
task, algorithms within one standard deviation of having the highest performance are bolded.

Methods | MO-Swimmer MO-Hopper
D(best) \ 0.43 0.8
End-to-End 0.81 + 0.00 0.90 + 0.00
End-to-End + GradNorm 0.77 + 0.00 0.91 + 0.00
End-to-End + PcGrad 0.78 £ 0.00 0.89 + 0.00
Multi Head 0.71 + 0.00 0.89 + 0.00
Multi Head + GradNorm 0.82 +0.00 0.91 +0.00
Multi Head + PcGrad 0.77 = 0.00 0.88 +0.00
Multiple Models 0.78 + 0.00 0.90 + 0.00
Multiple Models + COMs 0.66 + 0.00 0.90 + 0.00
Multiple Models + RoOMA 0.76 + 0.00 0.90 + 0.00
Multiple Models + IOM 0.75 £+ 0.00 0.85 £ 0.00
Multiple Models + ICT 0.74 + 0.03 0.89 + 0.04
Multiple Models + Tri-Mentoring 0.72 £ 0.05 0.91 £ 0.00
MOBO N/A N/A
MOBO-¢ParEGO N/A N/A
MOBO-JES N/A N/A
ParetoFlow | 0.87+0.18 0.93 + 0.00
DOMOO (ours) | 0.62+0.04 0.81 + 0.09

Table 29: IGDggine results for RE with 256 solutions and 50" percentile evaluations. For each task,
algorithms within one standard deviation of having the highest performance are bolded.

Methods RE21 RE22 RE23 RE24 RE25 RE31 RE32 RE33 RE34 RE35 RE36 RE37 MO-Portfolio

D(best) 0.56 0.00 0.00 0.00 0.03 0.01 0.02 0.04 0.34 0.09 0.69 0.65 047
End-to-End 0.45 +0.00 0.22 +0.01 0.04 £0.00 0.124+0.10 0.10+£005 027+0.00 0.09+002 0.07+003 030+000 036+005 041 +003 0.53+0.01 0.56 £ 0.01
End-to-End + GradNorm 0.47 £+ 0.02 0.15 + 0.06 034+034 066+033 0.12+009 068+ 1.17 0.06+002 0.15+001 035+002 0.34+0.04 3.08+0.00 0.53+0.01 0.56 +0.01
End-to-End + PcGrad 0.45 £ 0.00 0.49 + 0.63 0.03+0.02 030+0.08 007+000 026+0.04 0.11+001 0.12+0.04 031+000 0.18+0.03 044+0.04 0.52+0.00 0.56 + 0.01
Multi Head 0.45 £+ 0.00 0.18 £ 0.04 0.03+£0.01 0.114+£020 0.09+005 027+0.02 009+002 0.08+001 030+£0.00 0.19+0.09 038+0.02 0.52+0.00 0.58 £ 0.02
Multi Head + GradNorm 0.47 +0.03 2.65+3.53 079 +036 068+0.19 045+039 020+0.02 005+002 030+0.16 033+0.04 028+0.12 096+0.89 0.62+0.17 0.65 +0.07
Multi Head + PcGrad 045+000 1021 +£19.81 0.03+0.02 084+008 0.13+0.09 0214005 032+026 0.13+0.10 030+0.00 0.13+005 048+0.02 0.52+0.00 0.59 +0.02
Multiple Models 0.45 £ 0.00 0.08 +0.01 0.06 £0.03 0.04+003 0.15+£005 026+001 0.11+£000 0.08+0.02 030+0.00 0.15+005 038+0.02 0.52+0.00 0.59 £+ 0.03
Multiple Models + COMs 0.45 £ 0.00 0.10 £ 0.05 0.02+£001 0.16+024 0.16+£006 020+006 0.11+001 0.11+006 031+0.02 0.06+0.00 047+0.02 0.54+0.01 1.08 £+ 0.20
Multiple Models + RoMA 0.48 + 0.00 0.16 = 0.13 021 +036 063+035 0.14+0.10 0.02+0.00 003+000 0.12+0.04 033+0.01 0.08+0.00 0.70+0.06 0.53+0.00 0.58 +0.01
Multiple Models + IOM 0.45 + 0.00 0.07 +0.06 0.01 £0.01  0.00+0.00 0.02+002 021 +0.04 008+0.02 005+000 030+0.00 007000 042+004 0.52+0.00 0.60 + 0.02
Multiple Models + ICT 0.45 £ 0.00 0.14 £ 0.07 0.08£0.06 0.11+0.11 0.06+005 0.04+002 008+003 0.11+004 031+£000 0.10£0.02 043+0.04 0.52+0.00 0.58 £ 0.01
Multiple Models + Tri-Mentoring | 0.45 + 0.00 0.20 +0.02 023+0.18 0024004 0.11+£005 0.03+001 009+001 0.09+000 031+000 0.11+0.07 070+022 0.52+0.00 0.57 £0.01
MOBO 0.59 +0.01 0.01 +0.00 026 +0.00 057+0.04 003+002 0.07+000 003+000 020+0.02 053+003 0.07+0.00 054+0.00 0.51+0.00 1.96 + 0.02
MOBO-¢ParEGO 0.48 +0.01 0.01 +0.00 0.04 £0.06 0.63+0.10 0.01+0.00 0.06+0.00 004+000 005+000 0524001 008000 0.54+000 0.52+0.00 0.54 +0.02

MOBO-JES 0.46 +0.01 0.03 +0.00 0.00 £0.00 0.00 +0.00 0.12+0.01 N/A N/A 0.09£0.02 0.37+0.00 0.10 £ 0.00 N/A N/A N/A
ParetoFlow ‘ 0.37 + 0.06 0.03 +0.02 N/A N/A N/A 0.07 £0.04 0.02+0.00 0.04+0.01 0.35+0.07 N/A 0.56+0.12  0.48 + 0.06 0.42 +0.03
DOMOO (ours) ‘ 0.45 + 0.00 0.07 +0.01 0.04 £0.00 003+0.02 0.14+004 022+001 005+001 0.07+001 030+0.00 0.10+0.02 039+0.02 0.52+0.00 0.49 +0.08

. . . . . . th . .
Table 30: IGDgine results for scientific design with 256 solutions and 50*” percentile evaluations.

For each task, algorithms within one standard deviation of having the highest performance are bolded.

Methods | Molecule Regex RFP ZINC

D(best) \ 0.84 1.05 0.39 0.2
End-to-End 123 4+£024 1.19+0.00 0.41=£0.00 0.27+£0.01
End-to-End + GradNorm 144 £0.00 1.19+0.00 0.40+0.00 0.24+0.01
End-to-End + PcGrad 1.20+£025 1.19+£0.00 0.40+0.00 0.24+0.01
Multi Head 1.424+0.03 1.19+0.00 0.40=£0.00 0.23+0.02
Multi Head + GradNorm 1.154+£022 1.09+0.05 0.40+0.00 0.27+0.00
Multi Head + PcGrad 1.31£0.19 1.19£0.00 042+0.03 0.25+0.02
Multiple Models 1.214+£023 1.19+0.00 0.41+0.00 0.28+0.03
Multiple Models + COMs 097+021 1.19£0.00 0.40=£0.00 0.28+0.02
Multiple Models + RoMA 122 £024 1.19+£0.00 0.40+0.00 0.25=+0.01
Multiple Models + IOM 1.03+£020 1.19+0.00 0.41=+0.00 0.30+0.01
Multiple Models + ICT 098 £023 1.14+0.07 042+0.01 0.28+0.02
Multiple Models + Tri-Mentoring | 1.39 +0.03 1.19 +£0.00 0.41 £0.01 0.28 £0.03
MOBO 144 £0.00 1.05+0.00 0.40+0.00 0.30=+0.01
MOBO-¢ParEGO N/A 1.05+0.00 0.43+0.01 0.18=£0.02

MOBO-JES N/A N/A N/A N/A
ParetoFlow | .19+ 0.19  0.87 £ 0.00 N/A 0.26 + 0.08
DOMOO (ours) | 1.29+£0.18 1.03+£0.06 0424002 0.17+0.01
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G RESULTS OF SELECTION INDICATORS FOR DIVERSITY

About the impact of the selection indicator on diversity. The resulting solution distributions are
shown in Figure ] The results clearly demonstrate that the HV selection leads to a poorly distributed
set with solutions clustered in a narrow region. The IGDgine selection produces a well-distributed
front that covers the entire spectrum of known trade-offs, underscoring its effectiveness in preserving
diversity.

Results of RE22-Exact-v0 Results of RE22-Exact-v0
1.0 e Nadir Point . 1.0 * Nadir Point
Do(best) D(best)
e Solu. Performance e Solu. Performance
0.8 0.8
0.6 0.6
[a'] o~
0.4 0.4
0.2 0.2 ,
. i
0.0 == 0.0] bommememmenms
0.0 0.2 0.4 0.6 0.8 1.0 0.0 0.2 0.4 0.6 0.8 1.0
fi fi
(a) Solution Distribution using HV Indicator. (b) Solution Distribution using IGDgine Indica-
tor.

Figure 4: Comparison of final solution sets selected by different indicators.

H EFFECTIVENESS OF DIVERSITY-DRIVEN SELECTION MECHANISM

About the effectiveness of diversity-driven selection. To demonstrate the necessity of our proposed
DDSS, we compare the solution distributions with and without this mechanism on a representative
benchmark task, as shown in Figure@ Without DDSS, solution distribution shows a poorly diver-
sified front along the f» axis, while our DDSS effectively produces a well-distributed Pareto front.
This contrast highlights DDSS’s crucial role in balancing diversity and convergence under OOD
constraints.

+  Nadir Point +  Nadir Point
D(best) D(best)
+  Solu. Performance +  Solu. Performance

(a) Solution Distribution Without DDSS. (b) Solution Distribution With DDSS.

Figure 5: Comparison of solution distributions with and without the DDSS mechanism.
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I HYPER-PARAMETER ANALYSIS

About the impact of hyper-parameter. To explore the sensitivity of DOMOO to different hyper-
parameters, we analyze the exploration steps in nested Pareto set learning T, on three representative
tasks, with results shown in in Tables[3Tand[32} DOMOO is robust on continuous and sequence-based
tasks, but shows higher sensitivity on discrete tasks, likely due to the difficulty of optimizing over
high-cardinality categorical spaces. Nonetheless, performance remains stable when T¢y, is set within
a reasonable range.

About the K in diversity-driven solution selection. To examine the effect of the DDSS selection
budget on performance, we analyze the maximum number of solutions selected by the IGDgin.-based
stage before HV filling. As described in Section 4.3, DOMOO first selects at most 128 solutions from
Xeand using IGDggine, and then uses HV to fill the remaining slots to obtain 256 solutions for final
evaluation. This maximum number therefore plays a key role in balancing diversity and convergence.
We evaluate different settings of this hyper-parameter on several representative tasks, with results
reported in Tables [33]and 34} The results show that DOMOO remains stable across a broad range
of values, and setting the maximum number to 128 provides a good balance between convergence
quality and front coverage.

About the robustness to scaling factor in the IGD i, indicator. As shown in Table|§_5[ we further
investigate the sensitivity of IGD;pe to the scaling factor 5. When £ is increased from 0.5 to 5.0,
the average ranks of all methods exhibit only minor fluctuations, and their relative order remains
largely unchanged. Within a reasonable range, the choice of the scaling value does not substantially
affect the comparative evaluation results under IGDi,e, Verifying the robustness of this indicator
with respect to the scaling hyper-parameter. What’s more, DOMOO consistently achieves the best
average rank across all choices of .

About the robustness of DOMOO to the energy model risk-ratio hyper-parameter in energy-
based tasks. As shown in Tables 36 and[37] we further analyze the sensitivity of DOMOO to the
risk ratio used in the construction of the energy models across different tasks. When the risk ratio
varies from 0.2 to 1.6, most tasks (e.g., re24, re25, re34, dt1z4) exhibit almost unchanged
HV and IGDggipe, indicating very low sensitivity and strong robustness to this hyper-parameter.
For tasks such as inlkmop7 and mo_hopper_v2, the performance shows only mild and smooth
variation without any abrupt degradation, suggesting controlled and predictable sensitivity rather
than instability. Overall, these results demonstrate that DOMOO maintains stable performance under
a wide range of risk ratios, verifying the robustness of the algorithm with respect to the risk-ratio
hyper-parameter in energy-based tasks.

Table 31: HV results under different Tty /T values.

Tasks 0% 12.5% 25% 37.5% 50% 62.5% 75% 87.5% 100 %
dtlz3 10.6026 10.5864 10.6024 10.5850 10.5912 10.5857 10.6026 10.5850 10.5946
inlkmop7  4.4498 44221 44399 44068 44693 43824 44477 43824  4.4300
re21 4.6001 45974 4.6001 45976  4.6000 4.5974  4.6000 4.5976  4.6000
zdtl 48207 4.8198  4.8191 48184  4.8205 4.8186 4.8191 4.8199  4.8195
c10mopl 47270 47574 47455 47484 477245 47553 47269 47579  4.7473
re31 10.6481 10.6481 10.6481 10.6481 10.6481 10.6481 10.6481 10.6481 10.6481

vimop1 03168  0.3168 0.3168 03168 03168  0.3168  0.3168 0.3168  0.3168

J How DOMOO PERFORMANCE VARIES WITH DIFFERENT TRAINING SET
S1ZES

To further examine the robustness of DOMOO with respect to the amount of available training data,
we conduct an additional sensitivity analysis in which the dataset is randomly subsampled to 25%,
50%, 75%, and 100% of its original size. As reported in Tables[38]and[39] DOMOO maintains highly
stable performance across all data scales. For most tasks (e.g., inlkmop7, regex, re24), both
HV and IGDgine vary only marginally as the amount of training data changes, indicating that the
method does not rely on large datasets to achieve strong performance.
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Table 32: IGDyfgine results under different Teyp /T values.

Tasks 0% 125% 25% 37.5% S0% 625% 75% 87.5% 100%
dtlz3 0.1662 0.1893 0.1690 0.1898 0.1855 0.1898 0.1736 0.1896 0.1784
inlkmop7 0.3385 0.3413 0.3465 0.3560 0.3470 0.3663 0.3436 0.3663 0.3458
re21 0.4449 0.4454 0.4449 0.4453 0.4449 0.4454 0.4449 0.4453 0.4449
zdtl 0.1399 0.1399 0.1388 0.1412 0.1401 0.1410 0.1409 0.1404 0.1400
clOmopl  0.1064 0.1067 0.1105 0.1151 0.1167 0.1097 0.1092 0.1084 0.1094
re31 0.0278 0.0252 0.0296 0.0313 0.0309 0.0363 0.0296 0.0338 0.0364

vimopl 0.0289 0.0290 0.0291 0.0289 0.0292 0.0289 0.0289 0.0290 0.0289

Table 33: HV results under different maximum numbers.

Tasks | 0 32 64 128 160 192 224 256

re22 4.8399 48399 4.8399 48399 4.8399 4.8399  4.8399  4.8399
dtlz1 10.6462 10.6457 10.6462 10.6460 10.6456 10.6456 10.6456 10.6456
inlkmopl | 4.5600  4.5844  4.6191 4.6191 4.6191 4.6191 4.6191 4.6191
inlkmop2 | 4.3242 44885  4.4885 44987  4.4987 44987 44987  4.4987
inlkmop3 | 9.6707  9.7966  9.7967  9.8696  9.8696  9.8696  9.8696  9.8696

Interestingly, the HV metric for mo_hopper_v2 exhibits a slight downward trend as data size
increases, while its IGDmine values remain consistent across all subsampling ratios. This suggests
that the convergence behavior of DOMOQO is not significantly affected by the available data volume.
Overall, these results demonstrate that DOMOO is robust and sample-efficient, and its effectiveness
persists even when the training data is substantially reduced.

To further investigate the performance of DOMOO under varying levels of OOD severity, we prune
the dataset by removing some high-quality data to simulate different OOD levels. The experimental
results are shown in Tables F0HA5] The experimental results show that DOMOO can effectively
balance diversity and quality across different OOD levels. Notably, even under severe OOD conditions
(Tables [40] and fT), DOMOO still maintains strong performance.

K PERFORMANCE OF ONLINE PARETO SET LEARNING METHODS UNDER
OFFLINE OPTIMIZATION

As shown in Table [46] online Pareto set learning methods, namely EPS and PSL-
MOBO (2022)), are not well-suited for offline optimization. When applied to offline
optimization, they often encounter severe out-of-distribution (OOD) issues [Lu et al.| (2023)); Brookes
, i.e., they yield solutions that are overconfident on the surrogate model, leading to
significant deterioration or even invalidation of the solutions.
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Table 34: IGDggine results under different maximum numbers.

Tasks \ 0 32 64 128 160 192 224 256
re22 0.0599 0.0457 0.0457 0.0457 0.0457 0.0457 0.0457 0.0457
dtlz1 0.1681 0.1687 0.1675 0.1687 0.1696 0.1696 0.1696 0.1696
inlkmopl | 0.2406 0.2450 0.2328 0.2328 0.2328 0.2328 0.2328 0.2328
inlkmop2 | 0.3089 0.3149 0.3149 0.3103 0.3103 0.3103 0.3103 0.3103
inlkmop | 0.3712 0.3678 0.3678 0.3618 0.3618 0.3618 0.3618 0.3618
Table 35: Comparison of average IGD ;e ranks under different /.
Methods \ 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0
End2End + GradNorm 9.93 9.95 9.69 9.45 9.28 9.19 9.09 9.03 9.10 9.07
End2End + PcGrad 7.47 7.04 7.07 7.04 7.08 7.01 6.98 6.94 6.98 7.00
End2End + Vallina 6.96 6.42 6.23 6.23 6.32 6.40 6.45 6.44 6.44 6.49
MOBO + JES 9.74 1046 10.55 1036 1045 1035 10.52 10.51 10.61 10.62
MOBO + ParEGO 7.36 8.35 8.65 8.67 8.70 8.68 8.66 8.67 8.61 8.57
MOBO + Vallina 6.31 6.89 7.26 7.00 6.89 6.74 6.82 6.78 6.89 6.86
MultiHead + GradNorm 10.15 10.14 9.96 9.83 9.76 9.72 9.70 9.67 9.67 9.66
MultiHead + PcGrad 7.36 7.21 7.35 7.39 7.37 7.37 7.40 7.39 7.41 7.33
MultiHead + Vallina 6.89 6.52 6.43 6.29 6.21 6.28 6.27 6.30 6.34 6.31
MultipleModels + COM 6.80 7.72 7.93 8.01 8.09 8.14 8.08 8.13 8.16 8.13
MultipleModels + ICT 7.55 7.82 7.83 7.92 7.90 7.89 7.84 7.81 7.79 7.75
MultipleModels + IOM 5.56 5.96 6.33 6.41 6.46 6.47 6.53 6.47 6.48 6.46
MultipleModels + RoMA 7.98 7.72 7.59 7.79 7.85 7.94 8.05 8.11 8.12 8.19
MultipleModels + TriMentoring 8.29 8.56 8.30 8.35 8.43 8.34 8.31 8.30 8.24 8.23
MultipleModels + Vallina 7.23 6.52 6.46 6.52 6.45 6.48 6.46 6.54 6.48 6.53
DOMOO 6.19 5.66 5.62 5.79 587 595 5.97 6.03 5.91 5.99

Table 36: Comparison of average HV ranks across different energy model risk ratios in Off-MOO-
Bench.

Tasks 0.2 0.4 0.6 0.8 1.0 12 1.4 1.6

dtlz4 9.617+0.083  9.74240.046  9.729+0.050  9.740+0.045  9.742+£0.046  9.4374+0.005  9.712+£0.037  9.718+0.048
inlkmop7 4.519£0.002  4.501+0.002  4.434+£0.004  4.432+0.002  4.44440.002  4.429+0.000  4.509+0.003  4.428+0.001
mo_hopper  6.44940.035  6.396+0.020  6.474+0.126  6.448+0.069  6.396+0.071  6.358+£0.057  6.3964+0.055  6.440+0.024
re24 4.835£0.000  4.835+0.000  4.835£0.000  4.835+0.000  4.835+0.000  4.835£0.000  4.8354+0.000  4.835+0.000
re25 4.840£0.000  4.840+0.000  4.840£0.000  4.840+0.000  4.840+0.000  4.840+0.000  4.8404+0.000  4.840+0.000
re34 10.12240.000  10.12240.000  10.122+0.000  10.12240.000  10.122+0.000  10.12240.000  10.122£0.000  10.1224-0.000
regex 6.189+0.138  6.198+0.147  6.034+£0.006  6.034+0.006  6.034£0.006  6.034+0.006  6.254+0.090  6.25440.090
vlmopl 0.317£0.000  0.3174£0.000  0.317£0.000  0.3174£0.000  0.317£0.000  0.31740.000  0.317£0.000  0.31740.000

Table 37: Comparison of average IGD,mine ranks across different energy model risk ratios in Off-

MOO-Bench.

Tasks 0.2 0.4 0.6 038 1.0 12 14 1.6
dtlz4 0.640+0.035  0.739+0.001 0.739+0.001 0.738+0.001 0.738+0.001 0.744-0.002 0.738+0.002 0.743:0.002
inlkmop7  0.361:£0.000 0.372+0.000 0361+0.001 0.365£0.001 0.357+0.001 0363+0.000 0.366::0.000 0.364-0.001
mo_hopper  0.565+0.005 0.559+£0.005 0.495+0.015 0.569+0.002 0.581::0.005 0.610+0.002 0.603+0.000 ~0.600-:0.000
re24 0.016+0.000 0.016+0.000 0.024+0.000 0.0240.000 0.024-0.000 0.024+0.000 0.023+0.001 ~0.024-:0.000
re2s 0.083+0.000 0.091+£0.001  0.0910.001  0.09140.001 0.091+0.001 ~0.091£0.001 0.091+0.001 0.091+0.001
re34 0.2974+0.000 0.297+0.000 0.297-+0.000 0.297+0.000 0.297+0.000 0.297-£0.000 0.297+0.000 0.297+0.000
regex 0.89610.002  0.893+0.003 0.897-£0.000 0.897+0.000 0.897+0.000 0.897-£0.000 0.897+0.000 0.897+0.000
vlmopl 0.029+0.000 0.030+0.000 0.032-£0.000 0.030+0.000 0.030£0.000 0.031-£0.000 0.030+0.000 0.032:-0.000

Table 38: Comparison of average HV ranks across different tasks in Off-MOO-Bench under varying
training dataset sizes (25%, 50%, 75%, and 100% of the full training data).

Tasks 25% 50% 75% 100%

inlkmop?7 4.458+0.003 4.414£0.012 4.486+0.004 4.480+0.080
mo_hopper_v2 5.168+0.212 5.451+1.100 4.881+£0.394 6.530+0.240
re24 4.6821+0.046 4.789£0.009 4.749+0.022 4.840+0.000
regex 6.383+0.115 6.440£0.034 6.449+0.119 6.520+0.110
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Table 39: Comparison of average IGDine ranks across different tasks in Off-MOO-Bench under
varying training dataset sizes (25%, 50%, 75%, and 100% of the full training data).

Tasks 25% 50% 75% 100%

inlkmop?7 0.357£0.000 0.3894£0.001 0.403+0.001 0.380+0.030
mo_hopper_v2 0.845+0.009 0.785+0.041 0.921£0.022 0.580+0.070
re24 0.084+0.012  0.034£0.003  0.049+0.049 0.010£0.020
regex 0.8784+0.000 0.873£0.000  0.866+0.000 0.900+0.010

Table 40: Results on the subset of data with quality scores between the Oth and 50th percentiles. HV
values are reported and higher HV indicates better performance.

Methods | DTLZ1 DTLZ3 INIKMOP7 MO_HOPPER_V2 OMNITEST RE24 RE32 RE35 REGEX VLMOP3
End2End 10.64 10.61 3.60 5.82 4.57 449  10.64 10.57 3.98 45.65
MultiHead 10.64 10.50 3.92 545 4.42 325 1061 1058 3.83 38.74
MultipleModels 10.64 10.61 3.74 5.95 4.64 4.16  10.64 10.57 3.87 45.62
DOMOO 10.64 10.63 4.27 4.95 4.66 473  10.64 10.59 5.58 45.88

Table 41: Results on the subset of data with quality scores between the
IGDyqiine are reported and lower IGD e indicates better performance.

Oth and 50th percentiles.

Methods | DTLZ1 DTLZ3 INIKMOP7 MO_HOPPER_V2 OMNITEST RE24 RE32 RE35 REGEX VLMOP3
End2End 0.18 0.16 0.57 0.78 0.28 012 0.03 0.08 1.07 0.07
MultiHead 0.17 0.15 0.54 0.76 0.30 0.61 0.05 0.18 1.08 0.32
MultipleModels 0.17 0.14 0.53 0.76 0.29 0.25 0.04 0.14 1.08 0.07
DOMOO 0.12 0.12 0.47 0.69 0.38 020  0.03 0.10 0.89 0.03

Table 42: Results on the subset of data with quality scores between the Oth and 75th percentiles. HV
values are reported and higher HV indicates better performance.

Methods | DTLZ1 DTLZ3 INIKMOP7 MO_HOPPER_V2 OMNITEST RE24 RE32 RE35 REGEX VLMOP3
End2End 10.64 10.54 3.76 5.54 4.60 448 10.64 10.58 3.98 45.85
MultiHead 10.64 10.25 3.99 4.82 4.35 2.78  10.60 10.56 3.54 41.00
MultipleModels 10.64 10.41 3.67 5.90 4.40 389 10.64 10.58 3.76 44.79
DOMOO 10.64 10.61 4.33 534 4.62 4.69 10.65 10.58 4.77 45.52

Table 43: Results on the subset of data with quality scores between the
IGDofine are reported and lower IGD¢ine indicates better performance.

Oth and 75th percentiles.

Methods | DTLZ1 DTLZ3 IN1IKMOP7 MO_HOPPER_V2 OMNITEST RE24 RE32 RE35 REGEX VLMOP3
End2End 0.17 0.19 0.53 0.78 0.29 013 0.03 0.10 1.06 0.07
MultiHead 0.17 0.21 0.46 0.90 0.33 0.83 0.04 0.25 1.07 0.27
MultipleModels 0.17 0.18 0.56 0.63 0.33 0.37 0.03 0.09 1.09 0.08
DOMOO 0.15 0.14 0.50 0.72 0.29 0.21 0.03 0.08 0.90 0.04

Table 44: Results on the full dataset (quality scores from Oth to 100th percentile). HV values are
reported and higher HV indicates better performance.

Methods | DTLZ1 DTLZ3 INIKMOP7 MO_HOPPER_V2 OMNITEST RE24 RE32 RE35 REGEX VLMOP3
End2End 10.64 10.58 3.67 5.89 4.68 445 10.64 10.57 3.80 45.70
MultiHead 10.64 10.41 4.14 5.41 4.67 285 10.64 10.50 3.98 43.36
MultipleModels 10.64 10.57 3.60 5.65 4.10 4.05 10.64 10.58 3.98 44.20
DOMOO 10.65 10.46 4.25 532 4.63 471 10.64 10.58 6.06 4491

Table 45: Results on the full dataset (quality scores from Oth to 100th percentile). IGDygine are
reported and lower IGDipe indicates better performance.

Methods | DTLZ1 DTLZ3 INIKMOP7 MO_HOPPER_V2 OMNITEST RE24 RE32 RE35 REGEX VLMOP3
End2End 0.17 0.17 0.55 0.64 0.26 0.14  0.04 0.11 1.08 0.13
MultiHead 0.17 0.21 0.43 0.78 0.25 0.79 0.04 0.27 1.06 0.19
MultipleModels 0.17 0.16 0.58 0.73 0.41 030 0.03 0.08 1.06 0.09
DOMOO 0.15 0.19 0.51 0.72 0.28 0.21 0.01 0.07 0.91 0.05

Table 46: Hypervolume results of online Pareto set learning methods under the offline optimization.

Methods | DTLZ1 DTLZ3 DTLZ4 DTLZ5 DTLZ6 DTLZ7 MO-Hopper MO-Swimmer OmniTest MO-Portfolio RE21 RE22 RE23 RE24 RE25 RE31
Drest | 106 10 10.76 9.35 8.88 8.56 5.67 3.64 4.53 4.24 4.1 478 475 4.6 4.79 10.6
EPS 4.81 N/A N/A N/A N/A N/A 4.75 2.086 2.003 1.004 4182 2643 2583 10.639 10.599 N/A

PSL-MOBO 7.15 6.84 8.77 7.47 8.87 10.36 4.75 3.086 3.754 N/A 4.84 2.63 2.84 0.84 0.84 9.00
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