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ABSTRACT

Multi-objective optimization (MOO) has emerged as a powerful approach to solving
complex optimization problems involving multiple objectives. In many practical
scenarios, function evaluations are unavailable or prohibitively expensive, necessi-
tating optimization solely based on a fixed offline dataset. In this setting, known
as offline MOO, the goal is to find out the Pareto set without access to the true
objective functions. This setting suffers from an out-of-distribution (OOD) issue,
where the surrogate model is not accurate for unseen designs. Due to OOD issue,
surrogate errors may cause the optimizer to select solutions that do not lie on the
true Pareto front and are biased toward its extremes. To address this, this paper
proposes Diversity-driven Offline Multi-Objective Optimization (DOMOO), which
aims to find out a diverse and high-quality set of solutions. Firstly, DOMOO
incorporates an accumulative risk control module that estimates the potential risk
of candidate solutions and alleviates OOD issue between the training data and
the generated solutions. In addition, a nested Pareto set learning (PSL) strategy
is proposed to jointly learn preference and PSL parameters, then optimize them,
enabling adaptation to diverse Pareto front geometries. To further enhance solution
quality, we design a diversity-driven selection strategy that extracts a representative
and well-distributed set of final solutions. To achieve this strategy, we propose
IGDoffline, a tailored indicator for the offline setting that considers both diversity and
convergence, and avoids the bias of hypervolume indicator. Extensive experiments
on synthetic and real-world benchmarks, such as neural architecture search, show
that, on average across benchmarks, DOMOO achieves a 1.38× improvement in
convergence and diversity over comparable methods.

1 INTRODUCTION

Multi-objective optimization (MOO) is widely used in fields ranging from neural architecture
search (Lu et al., 2020) to antenna structure design (Yu et al., 2019), where practitioners must
balance conflicting goals, for example, developing a drug (Ding et al., 2019) that is both highly
effective and minimally toxic. MOO seeks to discover the complete collection of Pareto optimal
solutions, where no objective can be improved without degrading others (Lin et al., 2022). Many
existing methods rely on surrogate models to approximate the true objectives. However, to maintain
the accuracy of the surrogates, they typically require actively querying new function evaluations
with the true objectives during training (Li et al., 2025). In many real-world applications, such as
protein engineering and molecular design (Xue et al., 2024), evaluating true objective functions can
be prohibitively expensive or hazardous (Yuan et al., 2024), making function evaluations difficult.
Fortunately, these domains often provide available historical data (i.e., offline dataset) in the form
of solution and the corresponding true objective function values. This motivates the offline MOO
setting, where the goal is to recommend a set of solutions that represent the best trade-offs among
multiple objectives, using only an offline dataset without any active evaluation.

A common approach to solving offline MOO is to train surrogate models (e.g., Gaussian processes
or deep neural networks) on the offline dataset. Then, optimization algorithms (e.g., evolutionary
algorithms) explore the solution space under the guidance of surrogate models to identify solutions
expected to perform well (Xue et al., 2024; Yuan et al., 2024). However, the trained surrogates are
susceptible to the out-of-distribution (OOD) issue, often producing unreliable predictions for solutions
that lie far from the training distribution (Lu et al., 2023; Brookes et al., 2019; Chen et al., 2023; Yun
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et al., 2024). As shown in the left part of Figure 1, we present an offline single-objective optimization
example for ease of visualization. In this setting, the surrogate model trained on an offline dataset
tends to underestimate the true objective far from the dataset. As a result, the optimizer selects
solutions that appear promising under the surrogate but perform poorly under the true objective due
to the OOD issue. In the multi-objective setting, OOD issue can cause the surrogates to underestimate
a few solutions, making them incorrectly dominate many others. This leads to a severely imbalanced
Pareto front (as shown in the blue dots in the right part of Figure 1), where most solutions are
eliminated and the diversity, as well as convergence, drops sharply (Xue et al., 2024).

Figure 1: Motivation illustration. The left figure il-
lustrates the OOD issue in offline single-objective op-
timization, while the right figure highlights OOD will
lead to reduced diversity and convergence in offline
multi-objective optimization.

Despite its significance, the OOD issue
in offline MOO remains largely underex-
plored. Although several methods have
been proposed to address OOD in single-
objective offline settings (Qi et al., 2022;
Kumar and Levine, 2020; Trabucco et al.,
2021), such as incorporating conservatism
into surrogate models to intentionally lower
the predictions of potentially overestimated
OOD solutions (Yu et al., 2021) in maxi-
mization problems. These techniques can-
not be directly applied to MOO due to
the intricate structure of Pareto dominance.
Thus, they often exhibit poorer diversity in
their solutions. Moreover, existing online
MOO methods, such as multi-objective Bayesian optimization (Ozaki et al., 2024) and evolutionary
algorithms (Li et al., 2015), are typically immune to the OOD issue in their native setting, as they can
actively query new data. However, when these methods are directly applied to the offline scenario,
where no additional data can be obtained, they often suffer from severe OOD-induced errors, leading
to degraded optimization performance. This highlights the urgent need for principled methods that
explicitly address OOD issue in offline MOO.

Contribution. To address the aforementioned problem in offline MOO, we propose Diversity-Driven
Offline Multi-Objective Optimization (DOMOO), a nested Pareto set learning framework designed to
improve the diversity and convergence of the candidate solutions. Specifically, DOMOO integrates
an accumulative risk control module with the proposed nested Pareto set learning to approximate
the Pareto set solely based on the offline dataset. The risk control component suppresses unreliable
surrogate predictions on OOD inputs. The nested Pareto set learning jointly learns preference-
conditioned mappings and optimizes preference vectors, allowing the model to adapt to various
Pareto front geometries. Furthermore, a diversity-driven solution selection strategy is designed to
extract a high-quality set of final recommendations, with a novel indicator IGDoffline to mitigate the
bias of hypervolume toward extreme solutions. This combination ensures that DOMOO maintains a
reliable approximation under OOD issue and produces diverse, representative solutions. Extensive
experiments on synthetic and real-world benchmarks verify that DOMOO significantly outperforms
the compared methods in both convergence and diversity by being 1.38 times better on average.

The subsequent sections present the related work and preliminaries, describe the proposed DOMOO
method, show the empirical results, and conclude the paper.

2 RELATED WORK

Offline single-objective optimization methods addressing OOD issue can be broadly categorized
into three types: forward approaches (e.g., COMs (Trabucco et al., 2021), NEMO (Fu and Levine,
2021)), generative models (e.g., MIN (Kumar and Levine, 2020), CbAS (Brookes et al., 2019)), and
trajectory-based methods (e.g., BONET (Mashkaria et al., 2023), PGS (Chemingui et al., 2024)).
These methods respectively focus on surrogate robustness, distribution learning with regularization,
and leveraging synthetic trajectories to explore high-quality solutions beyond the offline dataset.
While these methods address the OOD issue, extending them to the multi-objective setting remains
challenging due to the need to balance diversity and convergence across conflicting objectives.
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Offline Multi-objective Optimization. Offline MOO typically adopts three main approaches:
evolutionary algorithms, Bayesian optimization, and deep neural network-based methods. Population-
based search strategies are commonly used in evolutionary algorithms, where a trained surrogate
model serves as an oracle to guide the optimization process. Representative methods following this
paradigm include DDMOEA/GAN (Zhang et al., 2022), MS-RV (Yang et al., 2020), and IBEA-
MS (Liu et al., 2022). Similarly, Bayesian optimization also employs a surrogate model as an oracle,
but selects candidate solutions via acquisition functions and updates the selection iteratively. Various
methods and enhancements have been proposed under the multi-objective Bayesian optimization
(MOBO) framework, including MOBO-qNEHVI (Daulton et al., 2021), MOBO-qParEGO (Knowles,
2006), MOBO-JES (Hvarfner et al., 2022), and so on. Unlike the previous two categories, which
struggle to effectively address the OOD issue, neural network-based methods can mitigate this
problem by replacing traditional surrogate models with those adopted in forward approaches from
offline single-objective optimization (e.g., COMs (Trabucco et al., 2021), IOMs (Qi et al., 2022),
Tri-Mentoring (Chen et al., 2023)), and extending them using multiple models (Xue et al., 2024)
to handle offline MOO. While these methods achieve strong convergence properties, they do not
consider how to maintain solution diversity across the Pareto front (PF).

Pareto Set Learning. Pareto Set Learning (PSL) is a recently proposed model-based approach
that learns a mapping from preference vectors to Pareto optimal solutions by training a neural
network. PSL-MOBO (Lin et al., 2022), which is the first method to integrate PSL with MOBO,
enables efficient approximation of black-box PFs by learning a preference-conditioned solution
generator based on surrogate models. EPS (Ye et al., 2024) combines evolutionary algorithms
with PSL, enabling faster convergence and broader PF coverage through adaptive evolution of
preference vectors. CDM-PSL (Li et al., 2025) introduces diffusion models into Pareto set learning
for MOBO, achieving improved solution quality and diversity under limited evaluations through
conditional sampling and entropy-based guidance. However, PSL-MOBO heavily relies on Gaussian
process surrogates, which were primarily developed for online evaluation. When applied to offline
optimization, they often encounter severe OOD issues.

3 PRELIMINARIES

3.1 OFFLINE MULTI-OBJECTIVE OPTIMIZATION

In offline multi-objective optimization (MOO), the goal is to optimize multiple conflicting objectives
simultaneously given a static dataset D = {(xi,yi)}Ni , where xi ∈ X ⊂ RD denotes solution and
yi is the associated objective vector. The MOO problem can be formally stated as minx∈X f(x) =
(f1(x), f2(x), . . . , fM (x)), where f : X → RM is composed of M individual objective functions.

Definition 1 (Pareto-optimal Solution (Marler and Arora, 2004)). A solution x∗ ∈ X is called
Pareto-optimal if there exists no other solution x′ ∈ X such that ∀i ∈ {1, 2, . . . ,M}, fi(x′) ≤
fi(x

∗), with at least one strict inequality, i.e., ∃j ∈ {1, 2, . . . ,M} such that fj(x′) < fj(x
∗).

Definition 2 (Pareto Set and Pareto Front (Li et al., 2015)). The set of all Pareto-optimal solutions
is called Pareto set, denoted byMps, and its image under the mapping f , f(Mps) = {f(x) | x ∈
Mps} is called the Pareto front.

However, in MOO no single solution can optimize all objectives concurrently and trade-offs among
conflicting objectives are inevitable (Qian et al., 2013; Bian et al., 2025). Therefore, the primary goal
in offline MOO can be viewed as the pursuit of the Pareto solutions (i.e., solutions for which no other
solution can improve some objectives without causing detriment to at least one other objective, as
defined in Definition 1) and the effective approximation of the Pareto front (as Definition 2).

3.2 PARETO SET LEARNING FOR OFFLINE MOO

In multi-objective optimization (MOO), the preference λ reflects the relative importance or priority of
each objective. To learn a connection from all valid preferences Λ = {λ ∈ RM

+ |
∑

λi = 1} to their
corresponding Pareto solutions, Pareto set learning (PSL) (Lin et al., 2022) trains a Pareto set model
through scalarization methods, which bridge preferences and Pareto solutions by transforming the
multi-objective problem into a single-objective one for each preference. Specifically, PSL (Lin et al.,
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2022) uses the scalarization based on the augmented Tchebycheff approach (Kaliszewski, 1987):

gtch_aug(x | λ) = max
1≤i≤M

{λi (fi(x)− (z∗i − ε))}+ ρ

M∑
i=1

λifi(x), ∀λ ∈ Λ , (1)

where the z∗ = (z∗1 , · · · , z∗M ) is the ideal vector for the objective f(x), ε is a small positive scalar
and ρ is a small positive scalar that depends on the problem and the current solution location.

During the training process, for each sampled preference λ, the Pareto set model outputs a solution
hϕ(λ) and is optimized to minimize the scalarized objective gtch_aug(hϕ(λ)|λ) over all valid pref-
erences: ϕ∗ = argminϕ Eλ∼Λgtch_aug(x = hϕ(λ)|λ). However, in offline MOO, solutions cannot
be evaluated during the optimization process. Therefore, M surrogate models f̂i are built for each
objective based on the offline dataset D to predict solutions when calculating Equation 1. With the
trained Pareto set model hϕ∗ , we can obtain the Pareto set:Mps = {x = hϕ∗(λ) | λ ∈ Λ}, where
hϕ∗(λ) = argminx∈X gtch_aug(x | λ),∀λ ∈ Λ.

3.3 ENERGY MODEL

In offline MOO, the objective function cannot be evaluated during the optimization, so M surrogate
models are constructed for each objective given the offline dataset D to predict the objective values
for a given solution. However, most existing surrogate models typically ignore OOD risk, which
can lead to performance degradation or unsafe decisions. Therefore, explicit risk modeling and
suppression are necessary in offline multi-objective optimization . To mitigate the negative impact of
OOD solutions, ARCOO (Lu et al., 2023) introduces the energy model Eω to assign an energy value
Eω(x) to each solution x, which is realized as a neural network that maps solutions x ∈ RD to their
associated energy Eω(x) ∈ R.

Train the Energy Model. To train the energy model to identity low-risk and high-risk solutions,
ARCOO employs Contrastive Divergence (CD) (Hinton, 2002):

LCD(ω) = Ex∼P [Eω(x)]− Ex∼Q[Eω(x)] , (2)

where P denotes the low-risk distribution and Q denotes the high-risk distribution.

Before training the energy model, the high-risk distributionQ is still unfulfilled. SinceQ is intended to
represent OOD solutions that are prone to overestimation, ARCOO adopts Markov Chain Monte Carlo
(MCMC) methods (Geyer, 1992; Welling and Teh, 2011) with Langevin dynamics LDψ (Nijkamp
et al., 2019; Du and Mordatch, 2019) kernel to sample such solutions. Let Q = LDψ(P;KLD),
x0 ∼ P , xk ∼ Qk, and Qk is sampled as:

xk ← xk−1 + η∇xf̂ψ(xk−1) +αk, k = 1, . . . ,KLD , (3)

where αk,i denotes the i-th element of the αk, sampled independently as αk,i ∼ N (0, η) and KLD
is the total number of steps. Starting from a sample x0 drawn from the low-risk distribution P , the
Langevin dynamics LDψ(P;KLD) performs KLD iterations of noisy gradient ascent to approximate
a distribution Q that concentrates on overestimated OOD solutions.

Risk Suppression Factor. After training the energy model Eω, we use the output of the energy
model Eω(x), to compute a risk suppression factor R(x), defined as follows:

R(x) =
c
(
EQ̃ − Eω(x)

)
EQ̃ − EP̃

, (4)

where EQ̃ = Ex′∼Q̃[Eω(x
′)], EP̃ = Ex′∼P̃ [Eω(x

′)] and c denotes the initial momentum. The P̃

represents the empirical distribution over the high-quality batch of solutions in the offline dataset.
The Q̃ represents the high-risk distribution sampled by Langevin dynamics starting from P̃ . With the
risk suppression factor, we can suppress the risk to a corresponding level in each iteration of nested
Pareto set learning.
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在此处键入公式。

(b) Offline Multi-Objective Optimization via Bi-level Pareto Set Learning
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Figure 2: The framework of diversity-driven offline multi-objective optimization via nested Pareto
set learning: (a) Surrogate models are trained for each objective and energy model is trained for risk
control. (b) A nested Pareto set learning process with risk control is conducted to obtain a Pareto
set model. (c) Candidate solutions are generated and then sequentially selected using the IGDoffline
indicator to ensure diversity, followed by the HV indicator to guarantee convergence.

4 THE PROPOSED METHOD

In this section, we first provide an overview of the proposed method diversity-driven offline multi-
objective optimization (DOMOO), followed by a detailed description of the nested Pareto set learning
with accumulative risk control, and diversity-driven solution selection strategy, respectively.

4.1 METHODOLOGY OVERVIEW

Offline multi-objective optimization (MOO) struggles to alleviate the out-of-distribution (OOD)
issue, which results in a severely imbalanced Pareto front (i.e., solutions cluster in high-density
regions, failing to cover the entire Pareto front), damaging both the diversity and convergence of
the solutions. To alleviate this issue, we propose the DOMOO, a risk-aware offline MOO method
via nested Pareto set learning. We provide the framework of our algorithm in Figure 2 and the
corresponding pseudo-code in Appendix A. Specifically, we first train M surrogate model for each
objective. Based on these surrogate models, we perform nested Pareto set learning with accumulative
risk control to obtain a Pareto set model. Finally, candidate solutions are generated by both the trained
Pareto set model and the trained surrogate model, and then the proposed diversity-driven solution
selection strategy is employed, resulting in a solution set with balanced diversity and convergence.

4.2 NESTED PARETO SET LEARNING WITH RISK CONTROL

As describe in Section 3.2, PSL (Lin et al., 2022) trains a Pareto set model for mapping any valid
preferences Λ = {λ ∈ RM

+ |
∑

λi = 1} to their corresponding solutions with scalarization.
However, in offline settings, the OOD issue can mislead the Pareto set model by promoting solutions
with unreliably estimated high performance, creating an unexpected diversity on the Pareto front.
To mitigate the OOD issue, we propose a nested Pareto set learning approach with risk control.
This approach addresses the OOD-induced diversity loss by jointly optimizing the Pareto set model
parameters and preferences in a nested manner, where the upper-level preference optimization
explores underrepresented regions of the Pareto front to enhance diversity, while the lower-level
model optimization incorporates risk control to ensure solutions reliable.

Surrogate Model Training. Before the nested Pareto set learning, due to that in offline MOO the
objective function cannot be evaluated during the optimization, M surrogate models are constructed
for each objective given the offline dataset D. Then, we can predict objective values via the complete
surrogate model f̂(x) = (f̂1(x;θ

∗
1), . . . , f̂M (x;θ∗

M )).
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Modeling and Suppressing Accumulative Risk. In offline optimization, the risk of out-of-
distribution (OOD) is non-negligible, and neglecting this risk may result in performance degra-
dation (Lu et al., 2023). Therefore, explicit risk modeling and suppression are necessary in offline
MOO to mitigate OOD risk. Specifically, as shown in Figure 2(a), an energy model Eω is trained
following ARCOO (Lu et al., 2023) to measure the risk of solutions and then a risk suppression
factor is computed as R(x) = c(EQ̃ − Eω(x))

/
(EQ̃ − EP̃ ), where EQ̃ = Ex′∼Q̃[Eω(x

′)], EP̃ =

Ex′∼P̃ [Eω(x
′)] and c denotes the initial momentum (consistent with ARCOO). The P̃ is the empiri-

cal distribution over the high-quality batch of solutions in the offline dataset. The Q̃ is the high-risk
distribution sampled by Langevin dynamics starting from P̃ . For more details about the energy model
Eω , please refer to the Section 3.3.

Figure 3: Visualization of the nested PSL.
The solutions generated by DOMOO af-
ter each preference update phases in IN-
1K/MOP7 task are visualized.

Nested Pareto Set Learning. The nested Pareto set
learning process consists of three phases and the prefer-
ences are updated prior to updating the Pareto set model
hϕ. In the pretraining phase, we leverage the offline
Pareto front (Xoff,Yoff) to provide a better initialization
for the subsequent training process. Specifically, during
pretraining, we sample preferences from the offline pref-

erences Λoffline =
{
λ
(i)
off = λ

(i)
off

′/∥∥∥λ(i)
off

′∥∥∥
1

}n

i=1
, where

n is the number of solutions in the offline Pareto front
and λ

(i)
off

′
= (1/(y

(i)
off,1 − z∗1), · · · , 1/(y

(i)
off,M − z∗M )).

Here, z∗ = (z∗1 , · · · , z∗M ) is the ideal vector for the
objective f(x) and y

(i)
off is the objective vector of the

i-th solution in the offline Pareto front. By sampling
preferences in this way, the pretraining process lever-
ages the structure of the offline Pareto front, providing
a better initialization for the subsequent training stages
and enabling the Pareto set model to start closer to the optimal solution distribution.

Then, in the exploration phase, the preferences are sampled from the valid preference Λt = {λ(b)
t ∼

Dirichlet(α) ⊂ Λ}Bb=1, where B is the batch size of the solutions in each iteration. This stage serves
as a pure exploration phase, enabling the model to be trained over the entire preference space and
thus improving its generalization across different preferences.

Finally, in preference gradient update phase, preferences are adaptively updated using gradient
information. To mitigate OOD risk, we incorporate the explicit risk modeling and suppression into
the preference update. The preference gradient update phase with accumulative risk control is defined
as follows:

λ
(b)
t = λ

(b)
t−1 − ηprefR(x = hϕ(λ

(b)
t−1))∇λĝtch_aug(x = hϕ(λ)|λ) |λ(b)

t−1
, b = 1, 2, . . . , B , (5)

where R(x) is a risk suppression factor (Lu et al., 2023) that controls the OOD risk of solution x and
ĝtch_aug(·) is the augmented Tchebycheff scalarization with the trained surrogate models. Specifically,
the augmented Tchebycheff scalarization is defined as: ĝtch_aug(x | λ) = max1≤i≤M{λi(f̂i(x;θ

∗
i )−

(z∗i − ε))}+ ρ
∑M

i=1 λif̂i(x;θ
∗
i ), in which f̂i(·;θ∗

i ) denotes the trained surrogate model for the i-th
objective. By adaptively updating preferences in this way, the model is guided to focus on regions
where its performance is lacking, thus making the training process more effective. As shown in
Figure 3, it can be observed that after the exploration and preference gradient update phases, the
solutions generated by the Pareto set model become more uniformly distributed, which better ensures
the diversity of the solution set.

After updating the preferences, gradient descent are used to efficiently train the Pareto set model hϕ
with the trained surrogate model f̂(·), incorporating accumulative risk control as in Equation 5:

ϕ = ϕ−
ηpsl

B

B∑
b=1

R(x = hϕ(λ
(b)
t ))∇ϕĝtch_aug(x

(b)
t = hϕ(λ

(b)
t )|λ(b)

t ) . (6)

Through the nested Pareto set learning approach, we obtain the trained Pareto set model hϕ∗ ,which
can effectively adapt to diverse Pareto front geometries and approximate the Pareto set powerfully.
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4.3 DIVERSITY-DRIVEN SOLUTION SELECTION STRATEGY

After the nested Pareto set learning, we have obtained a practical Pareto set model hϕ∗ that can easily
approximate the Pareto set with the valid preferences Λ. However, in real offline MOO scenarios,
the deployment of solution sets is often constrained by scale limitations, e.g., only limited solutions
can be evaluated. Therefore, how to select the optimal subset from the learned Pareto solution set
becomes a key challenge. In this paper, we propose a diversity-driven solution selection strategy by
combining two indicators: offline inverse generation distance (IGDoffline) and hypervolume (HV), to
better balance diversity and convergence. The traditional inverse generation distance (IGD) assumes
access to the true Pareto front to evaluate how well a solution set covers it.

In offline MOO, however, the true front is not observable since no additional evaluations are permitted.
Therefore, we adapt IGD to the offline regime by replacing the unknown true front with an offline
Pareto front estimated from the dataset and by introducing a shift to form a stricter reference. The
full definition is given by

IGDoffline =
1

n

n∑
i=1

min
1≤j≤|Xcand|

∥∥∥y(i)
off − β · y′ − ŷ

(j)
cand

∥∥∥
2
, (7)

where n is the number of solutions in the offline Pareto front, y(i)
off is the objective vector of

the i-th solution in the offline Pareto front, |Xcand| denotes the number of candidate solutions
in Xcand and ŷ

(j)
cand is the objective vector of the j-th solution in the candidate solutions Xcand

predicted by the surrogate model. Here, β is a scaling factor and y′ is a shift value, defined
as y′ = max1≤i≤n min1≤m≤M y

(i)
off,m, where y

(i)
off,m denotes the m-th objective value of the i-th

solution in the offline Pareto front. The shift value y′ is introduced to construct a more challenging
reference front, allowing a stricter evaluation of optimization performance in terms of convergence
and diversity. It is worth noting that the construction of IGDoffline does not favor solutions that stay
close to the offline data, as the reference front is normalized and shifted toward the ideal point,
encouraging exploration and broad Pareto-front coverage rather than conservative interpolation.

Before performing the solution selection strategy, the trained Pareto set model hϕ∗ is employed to
generate K candidate solutions Xps = {x(k)

ps = hϕ∗(λ
(k)
ps )}Kk=1, where λ

(k)
ps ∼ Dirichlet(α) ⊂ Λ.

To further enhance the diversity of the candidate solution set, we combine the K solutions generated
by our trained Pareto set model h∗

ϕ with another K solutions produced by the surrogate model f̂ ,
thereby obtaining the complete candidate solutions Xcand.

Diversity-Driven Solution Selection. To address the diversity challenge posed by the HV indicator
in offline settings, which is demonstrated in Appendix G, we select solutions based on both IGDoffline
and HV indicators. Notably, IGDoffline and HV are complementary indicators: IGDoffline emphasizes
diversity and the uniform coverage of the Pareto front, whereas HV focuses more on solution quality.
Therefore, combining IGDoffline with HV allows us to better balance diversity and convergence while
mitigating the limitations of using HV alone.

Therefore, we first utilize the IGDoffline indicator to greedily select up to 128 solutions from the
candidate set Xcand. This encourages the selection of solutions that cover different regions of the
offline Pareto front, thereby enhancing the diversity of the solution set. Subsequently, we select the
remaining solutions from the candidate set Xcand using the HV indicator, maximizes the hypervolume
in the objective space, serving as a convergence-oriented filling. With the diversity-driven strategy
combining IGDoffline for screening and HV for filling, we obtain the final solution set with 256
solutions, which effectively balances between convergence and diversity.

5 EXPERIMENT

In this section, we conduct a comprehensive empirical evaluation of DOMOO against a series of
existing offline MOO approaches across multiple benchmark tasks. We begin by outlining the
experimental setup, encompassing tasks, compared methods, training settings, and evaluation metrics.
Subsequently, we report the experimental results, perform ablation study, and hyper-parameter
analysis. The experiments are designed to answer the following four significant questions:
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Q1: Can DOMOO handle offline MOO tasks and achieve better performance than other offline
MOO methods in terms of convergence?

Q2: Can the solutions generated by DOMOO balance diversity and convergence?
Q3: How do the three key modules affect the performance of DOMOO in terms of solution

diversity and convergence?
Q4: How do hyper-parameter affect the diversity of the solution set obtained by DOMOO?

The four questions are answered sequentially in this section. The full implementation is available at
https://anonymous.4open.science/r/DOMOO-0388.

5.1 EXPERIMENTAL SETTINGS

Benchmark and Tasks. We evaluate DOMOO on Off-MOO-Bench (Xue et al., 2024), which includes
five categories of offline multi-objective tasks: Synthetic functions, MO-NAS, MORL, Sci-Design,
and RE. These tasks span diverse domains, objective dimensionalities, and optimization difficulties,
providing a comprehensive testbed for offline MOO. Task details are provided in Appendix B.

Compared Methods. In line with Off-MOO-Bench (Xue et al., 2024), our evaluation includes two
primary categories of methods—deep neural network (DNN)-based and Gaussian process (GP)-based
approaches—as well as several prominent generative modeling techniques. DNN-based Methods.
These methods employ surrogate DNN models combined with evolutionary algorithms for solution
optimization. We evaluate three configurations: (a) End-to-End Model (E2E): Directly outputs an m-
dimensional objective vector for a given design x, enhanced by multi-task learning (Chen et al., 2018;
Yu et al., 2020) for improved objective performance. (b) Multi-Head Model (MH): uses multi-task
learning by a single surrogate model, with the same enhancements as the E2E model. (c) Multiple
Models (MM): Maintains m independent surrogates, each trained with OOD mitigating techniques,
such as COMs (Trabucco et al., 2021), RoMA (Yu et al., 2021), IOM (Qi et al., 2022), ICT (Yuan
et al., 2023), and Tri-mentoring (Chen et al., 2023). Following the original study (Xue et al., 2024), we
adopt NSGA-II (Deb et al., 2002) as the default evolutionary algorithm. (d) Flow-based preference-
conditioned generators: ParetoFlow Yuan et al. (2024) employs classifier-guided generation and
thus trains one surrogate predictor per objective, while conditioning the flow-based generator on
uniformly sampled preference weights to produce solutions along the Pareto front. GP-based
Methods. Bayesian optimization compute an acquisition function to guide the selection of solutions,
which are then evaluated using a surrogate model. We consider three representative techniques:
hypervolume-based qNEHVI (Daulton et al., 2021), scalarization-based qParEGO (Knowles, 2006),
and information-theoretic JES (Hvarfner et al., 2022).

Training Details. For all baseline methods, we adopt the same training settings as Off-MOO-
Bench (Xue et al., 2024) to ensure fair comparison. Training details for DOMOO are provided in
Appendix C, and the computational overhead is discussed in Appendix D due to space limitations.

Evaluation. Following Off-MOO-Bench (Xue et al., 2024), we evaluate each method by generating
256 solutions and querying the true objective functions. We report hypervolume (HV) (Yuan et al.,
2024), which measures the dominated volume with respect to a reference point (i.e., Nadir Point
in Figure 3), where a higher HV indicates better performance. To address the bias of HV toward
extreme solutions in offline settings, we also report IGDoffline as introduced in Section 4.3.

5.2 THE PERFORMANCE OF DOMOO

About superiority and convergence (To Q1). Table 1 reports the average HV rank of all compared
offline MOO methods. Detailed results at 100th and 50th percentiles are provided in Appendix E.
We make the following observations: (1) As shown in Table 1, DOMOO achieves the best average
rank across all tasks, verifying its effectiveness and convergence. (2) End-to-End, Multi-Head, and
Multiple Models consistently outperformD(best), highlighting the effectiveness of learned surrogates
and generative models in discovering solutions beyond the offline dataset. (3) GP-based methods
often tend to exhibit relatively less competitive. This is partly because they are primarily designed for
online optimization and may struggle in offline settings. Moreover, their high computational cost and
long runtime make them impractical for complex tasks, sometimes leading to failure to produce any
solution within the time budget (i.e., N/A in the Table 1). (4) Although DOMOO performs worse on
a few extremely discrete tasks (e.g., C-10/MOP1, C-10/MOP2, IN-1K/MOP5), this is mainly because
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Table 1: Comparison of average HV ranks achieved by different offline MOO methods across different
tasks in Off-MOO-Bench (Xue et al., 2024). For each task, the top three methods are highlighted
using (1st), (2nd), and

::::
(3rd) formatting. D(best) denotes the best subset in the offline dataset (i.e.,

with the highest HV), and the last column reports the average rank across all tasks.

Methods Synthetic MO-NAS MORL Sci-Design RE Average Rank
D(best) 11.79 ± 0.71 13.37 ± 0.37 6.80 ± 0.24 11.55 ± 0.61 14.46 ± 0.44 12.73 ± 0.48

End-to-End 7.46 ± 0.78 6.09 ± 0.40 4.10 ± 0.37 8.25 ± 1.30 6.77 ± 0.78 6.81 ± 0.54
End-to-End + GradNorm 9.96 ± 0.72 11.71 ± 0.71 12.30 ± 0.51 9.88 ± 1.20 11.55 ± 0.44 10.97 ± 0.39

End-to-End + PcGrad
:::
6.85

::
±

::::
0.61 7.23 ± 1.11 10.70 ± 0.51 7.17 ± 1.05 8.22 ± 1.03 7.50 ± 0.48

Multi Head 6.88 ± 1.07
:::
6.03

::
±

::::
0.50 10.20 ± 0.60 9.55 ± 1.25 6.28 ± 0.81 6.83 ± 0.62

Multi Head + GradNorm 10.90 ± 1.01 13.19 ± 1.25 12.20 ± 0.68 10.12 ± 0.86 12.22 ± 1.17 11.89 ± 0.97
Multi Head + PcGrad 7.94 ± 0.98 6.76 ± 0.63 8.70 ± 0.51 7.20 ± 1.14 9.49 ± 1.04 7.98 ± 0.61

Multiple Models 6.24 ± 0.58 6.63 ± 0.88 7.40 ± 0.49 9.18 ± 1.58 6.37 ± 0.70
::::
6.67

::
±

::::
0.37

Multiple Models + COMs 9.40 ± 0.44 6.63 ± 0.59 1.90 ± 0.37 5.12 ± 0.91 10.72 ± 0.38 8.30 ± 0.22
Multiple Models + RoMA 9.90 ± 1.02 6.91 ± 0.22 6.10 ± 0.37 7.30 ± 1.43 9.45 ± 0.97 8.56 ± 0.52
Multiple Models + IOM 7.36 ± 0.95 5.96 ± 1.09 3.50 ± 0.45 5.72 ± 0.36

:::
6.38

::
±

::::
1.30 6.41 ± 0.68

Multiple Models + ICT 9.38 ± 0.77 9.53 ± 0.71 9.10 ± 3.12 6.60 ± 1.25 6.80 ± 1.10 8.50 ± 0.60
Multiple Models + Tri-Mentoring 9.44 ± 0.67 10.49 ± 0.55 8.50 ± 2.07 9.93 ± 0.76 6.40 ± 0.45 8.93 ± 0.20

MOBO 10.23 ± 1.03 5.02 ± 0.12 N/A
:::
5.93

::
±

::::
2.10 8.91 ± 0.82 7.62 ± 0.50

MOBO-qParEGO 10.50 ± 0.97 12.80 ± 0.85 N/A 12.10 ± 1.59 8.76 ± 0.31 10.84 ± 0.19
MOBO-JES 15.81 ± 0.47 N/A N/A N/A 12.02 ± 1.06 13.91 ± 0.55
ParetoFlow 9.18 ± 1.55 11.31 ± 0.65 9.83 ± 1.31 13.58 ± 2.95 9.04 ± 0.66 10.19 ± 0.98

DOMOO (ours) 3.89 ± 0.56 6.65 ± 0.17
:::
3.60

::
±

::::
0.86 6.83 ± 1.28 3.26 ± 0.53 4.63 ± 0.38

Table 2: Comparison of average IGDoffline ranks. Details are the same as Table 1.

Methods Synthetic MO-NAS MORL Sci-Design RE Average Rank
D(best) 9.85 ± 0.96 12.83 ± 1.87 6.80 ± 0.24 9.62 ± 2.70 6.65 ± 0.73 9.71 ± 1.17

End-to-End 7.80 ± 1.38 3.89 ± 0.78 4.30 ± 0.60 8.68 ± 1.72 9.72 ± 1.44 7.12 ± 1.02
End-to-End + GradNorm 10.79 ± 1.23 10.93 ± 2.06 12.30 ± 0.51 9.25 ± 0.68 11.29 ± 0.62 10.90 ± 1.17

End-to-End + PcGrad
:::
6.80

::
±

::::
1.09 6.54 ± 1.37 10.20 ± 0.24 6.97 ± 1.25 9.94 ± 0.93 7.71 ± 0.83

Multi Head 7.71 ± 1.62 4.00 ± 0.70 7.50 ± 0.45 9.25 ± 2.27 8.74 ± 0.72 7.24 ± 0.96
Multi Head + GradNorm 10.99 ± 1.45 12.68 ± 1.42 12.10 ± 0.49 8.95 ± 2.09 10.42 ± 1.50 11.10 ± 1.41

Multi Head + PcGrad 7.55 ± 1.37 7.53 ± 1.18 9.40 ± 0.58 6.25 ± 1.27 9.33 ± 0.82 7.96 ± 0.66
Multiple Models 6.58 ± 0.93

:::
4.95

::
±

::::
0.44 6.10 ± 0.37 11.03 ± 1.95 9.43 ± 0.97

::::
7.20

::
±

::::
0.44

Multiple Models + COMs 9.40 ± 0.56 6.90 ± 0.53 5.40 ± 0.66 6.10 ± 1.07 9.72 ± 0.71 8.38 ± 0.27
Multiple Models + RoMA 9.90 ± 0.75 7.30 ± 0.53 2.60 ± 0.58 7.97 ± 3.25 8.75 ± 0.92 8.40 ± 0.44
Multiple Models + IOM 7.00 ± 0.77 7.68 ± 2.00 7.50 ± 0.45

:::
6.45

::
±

::::
0.87

:::
5.90

::
±

::::
0.90 6.63 ± 0.52

Multiple Models + ICT 8.99 ± 0.58 9.11 ± 0.81 7.70 ± 3.19 7.40 ± 2.16 7.86 ± 0.82 8.55 ± 0.57
Multiple Models + Tri-Mentoring 9.63 ± 0.48 9.52 ± 1.04 8.90 ± 2.42 11.62 ± 2.19 8.20 ± 0.63 9.32 ± 0.24

MOBO 8.99 ± 1.40 6.58 ± 0.92 N/A 4.95 ± 2.17 7.68 ± 1.00 7.41 ± 0.90
MOBO-qParEGO 9.20 ± 0.92 12.15 ± 0.63 N/A 8.30 ± 2.01 5.29 ± 0.36 9.07 ± 0.50

MOBO-JES 14.92 ± 0.80 N/A N/A N/A 10.01 ± 2.49 11.68 ± 1.99
ParetoFlow 8.82 ± 3.19 9.60 ± 0.70

:::
5.00

::
±

::::
2.94 3.21 ± 1.67 2.92 ± 0.25 8.20 ± 3.45

DOMOO (ours) 4.95 ± 0.70 7.14 ± 0.48 6.70 ± 1.54 7.55 ± 1.21 6.67 ± 0.47 6.27 ± 0.23

these tasks require very high-dimensional one-hot encodings, resulting in extremely sparse inputs
that are difficult for neural Pareto-set models to learn. Importantly, NAS tasks do not exhibit such
extreme sparsity, as their discrete operations have low cardinality and structured choices; therefore,
DOMOO still ranks among the top methods on most NAS subtasks. Consequently, their performance
is less impacted by such discrete optimization tasks. In a nutshell, the results verify that DOMOO can
handle offline MOO tasks well and achieves superior optimization performance compared to other
offline MOO methods, which answers Q1.

About diversity (To Q2). Table 2 reports the average IGDoffline ranks based on the 100th percentile.
Detailed results, including the 50th percentile, are provided in the Appendix F.1 and Appendix F.2.
We make the following observations: (1) As shown in Table 2, DOMOO achieves the highest
average ranks on most tasks, highlighting its strong solution diversity. (2) We observe that on RE
tasks, most methods outperform the offline dataset in terms of HV, yet many perform worse when
evaluated by IGDoffline. This discrepancy highlights practical limitations of HV in offline settings:
inaccurate reference-point estimation and model-induced errors can make HV fail to faithfully reflect
the diversity of the solution set. IGDoffline penalizes sparse or unbalanced distributions, providing a
more informative assessment of overall coverage. Overall, the results indicate that DOMOO makes a
better trade-off between the convergence and diversity of the solution set, which answers Q2.
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Table 3: Ablation Study on the HV and IGDoffline Indicator Performance of DOMOO.

Metric Methods DTLZ3 IN-1K/MOP7 MO-Hopper Regex RE24

HV

w.o. ARC 10.61 ± 0.02 4.45 ± 0.06 5.49 ± 0.52 5.72 ± 0.27 4.84 ± 0.00
w.o. BPSL 10.62 ± 0.02 3.89 ± 0.43 5.44 ± 0.60 4.98 ± 0.33 4.84 ± 0.00
w.o. PSMG 10.61±0.02 4.31±0.15 5.87±0.00 3.68±0.21 4.83±0.00
w.o. SMG 9.72±0.45 3.82±0.15 6.30±0.11 6.11±0.33 4.83±0.00
w.o. DDSS 10.62 ± 0.01 4.43 ± 0.07 5.36 ± 0.51 5.25 ± 0.35 4.83 ± 0.01
DOMOO 10.63 ± 0.01 4.48 ± 0.08 6.43 ± 0.24 6.01 ± 0.08 4.84 ± 0.00

IGDoffline

w.o. ARC 0.15 ± 0.01 0.38 ± 0.03 0.76 ± 0.11 1.08 ± 0.04 0.02 ± 0.02
w.o. BPSL 0.15 ± 0.01 0.53 ± 0.09 0.78 ± 0.11 1.04 ± 0.03 0.01 ± 0.02
w.o. PSMG 0.16±0.03 0.34±0.03 0.65±0.00 1.09±0.01 0.03±0.02
w.o. SMG 0.24±0.03 0.51±0.01 0.61±0.03 0.88±0.04 0.02±0.02
w.o. DDSS 0.15 ± 0.01 0.38 ± 0.04 0.78 ± 0.10 1.08 ± 0.04 0.02 ± 0.02
DOMOO 0.14 ± 0.01 0.38 ± 0.03 0.58 ± 0.07 0.90 ± 0.01 0.01 ± 0.02

5.3 ABLATION STUDY

About the benefit of key modules (To Q3). We conduct an ablation study to evaluate the contribution
of each essential module in DOMOO by alternatively removing each main component (introduced
in Section 4) and comparing the full version with its ablated variants. First, in version “Without
Accumulative Risk Control (w.o. ARC)”, we replace the accumulative risk control (as shown in
Equation 5) with learning rate in gradient descent. Then, in version “Without Nested Pareto Set
Learning (w.o. BPSL)”, we remove the “Preference Update” part and randomly sample λ from all
valid preferences Λ at the begin of each iteration. Third, in version “Without Pareto Set Model
Generation (w.o. PSMG)”, we remove the candidate generation step of the Pareto set model hϕ∗

and use the surrogate model alone to generate all candidate solutions. Fourth, instead, in version
“Without Surrogate Model Generation (w.o. SMG)”, we remove candidate generated by surrogate
model and rely solely on the Pareto set model to generate all candidate solutions. Finally, in version
“Without Diversity-Driven Solution Selection (w.o. DDSS)”, we omit the proposed solution selection
strategy and select all 256 solutions by HV. All other settings in the five versions are kept similar to
the original version.

The results are shown in Table 3, the full version outperforms all ablated variants across multiple
tasks, verifying the effects of its key components. In particular, removing w.o. BPSL leads to the
most significant performance drop, indicating the importance of preference-conditioned solution
refinement. In the w.o. SGM, excluding the surrogate model results in a noticeable drop in solution
quality, indicating that the surrogate model is crucial for high-quality solutions. Similarly, in w.o.
PSMG, removing the Pareto set model reduces solution diversity, confirming that both components
are necessary to maintain a diverse and high-quality candidate set. Finally, the degradation observed
in w.o. ARC and w.o. DDSS further validates the effectiveness of risk-aware optimization dynamics
and diversity-aware selection, respectively. An ablation study is detailed in Appendix H. In a nutshell,
the results verify that each module of DOMOO contributes meaningfully to its overall performance,
which answers Q3.

5.4 HYPER-PARAMETER ANALYSIS

About the robustness of DOMOO (To Q4). We found that the chosen hyper-parameters, the
exploration steps in nested Pareto set learning Texp , the scaling factor β in IGDoffline, K in DDSS and
the risk ratio of the energy models, verify robust performance across most experiments, with only a
few discrete problems necessitating fine-tuning. For further details, refer to Appendix I.

6 CONCLUSION AND DISCUSSION

This paper focuses on achieving better diversity while maintaining satisfactory convergence of the
solution set in offline MOO and proposes a novel offline MOO method diversity-driven offline multi-
objective optimization via nested Pareto set learning (DOMOO). DOMOO combines nested Pareto set
learning with risk control and the proposed solution selection strategy to efficiently generate diverse
solutions in offline MOO. However, DOMOO still has some room for improvement. It is relatively
less effective on highly discrete tasks, where non-continuous search spaces and high-cardinality
variables pose challenges for optimization.
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A PSEUDO-CODE OF DOMOO

The pseudo-code of DOMOO is shown in Algorithm 1. The algorithm aims to solve offline multi-
objective optimization problems and obtain a solution set with satisfactory diversity and convergence.
Given an offline dataset D, DOMOO trains the surrogate objectives f̂ and learns a Pareto set model
that maps diverse preference vectors to corresponding Pareto-optimal solutions. The inputs to the
algorithm include the offline dataset D, valid preferences Λ, offline preferences Λoffline, the number
of objectives M , total optimization steps T , the number of pretraining steps Tpre, the number of
exploration steps Texp, number of candidate solutions K, and batch size B.

At the beginning, DOMOO trains M surrogate models f̂i for each objective using the offline dataset
D and initializes a Pareto set model hϕ, as shown in lines 1–2. The Pareto set learning is performed
in a nested manner. In the inner loop (lines 5–14), DOMOO updates the preferences depending on
the current phase. During the pretraining phase (t ≤ Tpre), preferences are sampled directly from the
offline preference set Λoffline, providing a better initialization for the subsequent training stages, as
shown in line 7. In the exploration phase (Tpre < t ≤ Tpre + Texp), preferences are sampled from the
Dirichlet distribution over the preference set Λ, i.e., λ(b)

t ∼ Dirichlet(α) ⊂ Λ, enabling the model to
be trained over the entire preference space, as shown in line 9. In the later stage (t > Tpre + Texp),
preferences are updated via gradient descent according to Equation 5 to guide the Pareto set model to
focus on regions where its performance is lacking, as shown in lines 11-13.

In the outer loop (lines 15–19), the updated preferences are used to train the Pareto set model via
gradient descent according to Equation 6. After the nested Pareto set learning, diverse preferences
are sampled again, and the trained Pareto set model generates candidate solutions (lines 21–22).
These candidate solutions are merged with solutions generated by the surrogate model to form a
comprehensive candidate set (line 23).

Finally, DOMOO selects the final set of Pareto solutions using a two-stage selection strategy: it first
applies the IGDoffline indicator to select solutions and then uses the HV indicator to fill the remaining
solutions, as shown in lines 24–27. This selection mechanism ensures both diversity and convergence
of the final solution set.

B TASK DESCRIPTIONS

In this section, We describe a set of tasks included in the benchmark, explaining their information in
detail1. We benchmark our method on Off-MOO-Bench tasks (Xue et al., 2024), including diverse
real-world and synthetic tasks. We focus on five distinct task categories2. An overview of the tasks is
provided in Table 4.

• Synthetic Function (Synthetic): This task comprises 16 subtasks, each with 2–3 objectives, aiming
to identify potential solutions across the offline dataset. All synthetic problems feature continuous
solution spaces. Table 5 provides detailed information about each problem, including the shape of
the Pareto front and the reference point.

•Multi-Objective Neural Architecture Search (MO-NAS): This task involves 14 subtasks, each
aiming to optimize 2–3 objectives in neural architecture design, including prediction error, parameter
count, edge GPU latency, and so on. Detailed information of these search spaces X can be found in
Table 6.

•Multi-Objective Reinforcement Learning (MORL): This task encompasses two subtasks: (a)
MO-Swimmer: This task involves finding a control policy in a 9,734-dimensional space to optimize
both speed and energy efficiency for a robot. (b) MO-Hopper: This task involves finding a control

1In this study, we focus on tasks with up to three objectives. This choice is motivated by the significantly
increased complexity and computational cost associated with high-dimensional Pareto fronts. To ensure fair
comparison and reproducibility under a limited computational budget, we do not evaluate tasks with more than
three objectives. Extending our method to higher-dimensional objective spaces is left for future work.

2We communicated with the original authors and used updated benchmark data to complete the experimental
results for all tasks, rather than relying on those reported in the original paper. As a result, some discrepancies
may exist.
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Algorithm 1 Diversity-Driven Offline Multi-Objective Optimization via Nested Pareto Set Learning

Input: Offline dataset D, valid preferences Λ, offline preferences Λoffline, objective number M , total
steps T , pretraining steps Tpre, exploration steps Texp, candidate number K, batch size B

Procedure:
1: Train surrogate model f̂(x) = (f̂1(x;θ

∗
1), · · · , f̂M (x;θ∗

M )) using D
2: Initialize Pareto set model hϕ : λ 7→ x
3: /* Nested Pareto Set Learning */
4: for t = 1 to T do
5: /* Inner-Loop Preference Update */
6: if t ≤ Tpre then
7: Sample preferences Λt = {λ(b)

t ∼ Λoffline}Bb=1 ▷ Pretraining phase
8: else if Tpre < t ≤ Tpre + Texp then
9: Sample preferences Λt = {λ(b)

t ∼ Dirichlet(α) ⊂ Λ}Bb=1 ▷ Exploration phase
10: else
11: Generate Xt−1 = {x(b)

t−1 = hϕ(λ
(b)
t−1)}Bb=1 ▷ Preference gradient update phase

12: Evaluate objective values via the surrogate model
13: Find preference vectors Λt = {λ(b)

t }Bb=1 via gradient descent according to Equation 5
14: end if
15: /* Outer-Loop Set Model Update */
16: Generate Xt = {x(b)

t = hϕ(λ
(b)
t )}Bb=1

17: Evaluate objective values via the surrogate model
18: Update Pareto set model parameters ϕ via gradient descent according to Equation 6
19: end for
20: /* Candidate Solution Generation */
21: Sample diverse candidate preferences Λps = {λ(k)

ps ∼ Dirichlet(α) ⊂ Λ}Kk=1

22: Generate K candidates via the trained Pareto set model hϕ∗ : Xps = {x(k)
ps = hϕ∗(λ

(k)
ps )}Kk=1

23: Merge Xps with the K solutions generated by the surrogate model f̂(·) and obtain the final Xcand
24: /* Solution Selection based on Two Indicators */
25: Use the IGDoffline indicator to select the solutions greedy from Xcand for initial screening
26: Use the HV indicator to select remaining solutions from Xcand for final filling
27: return the solution set of the selected Pareto solutions

Table 4: Properties of the tasks.

Task Name Dataset size Dimensions # Objectives Search space

Synthetic 60000 2-30 2-3 Continuous

MO-NAS 9735-60000 5-34 2-3 Categorical

MORL 8571 9734 2 Continuous
4500 10184 2 Continuous

Sci-Design

49001 32 3 Continuous
42048 4 2 Sequence
4937 4 2 Sequence

48000 4 2 Sequence

RE 60000 3-6 2-6 Continuous & Mixed

policy in a 10,184-dimensional space to optimize 2 objectives related to running and jumping for a
single-legged robot.

• Scientific Design (Sci-Design): This task includes four representative subtasks: (a) Molecule
design—optimization in a pretrained 32-dimensional latent space to improve activity against GSK3β
and JNK3; (b) Regex—maximizing bigram frequencies in protein sequences; (c) ZINC—optimizing
molecular properties (logP and QED) on a small-scale dataset; (d) RFP—large-scale optimization of
red fluorescent protein variants for solvent-accessible surface area and stability.
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Table 5: Problem information and reference point for synthetic functions.

Name D M Type Pareto Front Shape Reference Point

DTLZ1 7 3 Continuous Linear (558.21, 552.30, 568.36)
DTLZ2 10 3 Continuous Concave (2.77, 2.78, 2.93)
DTLZ3 10 3 Continuous Concave (1703.72, 1605.54, 1670.48)
DTLZ4 10 3 Continuous Concave (3.03, 2.83, 2.78)
DTLZ5 10 3 Continuous Concave (2d) (2.65, 2.61, 2.70)
DTLZ6 10 3 Continuous Concave (2d) (9.80, 9.78, 9.78)
DTLZ7 10 3 Continuous Disconnected (1.10, 1.10, 33.43)
ZDT1 30 2 Continuous Convex (1.10, 8.58)
ZDT2 30 2 Continuous Concave (1.10, 9.59)
ZDT3 30 2 Continuous Disconnected (1.10, 8.74)
ZDT4 10 2 Continuous Convex (1.10, 300.42)
ZDT6 10 2 Continuous Concave (1.07, 10.27)
Omnitest 2 2 Continuous Convex (2.40, 2.40)
VLMOP1 1 2 Continuous Concave (4.0, 4.0)
VLMOP2 6 2 Continuous Concave (1.10, 1.10)
VLMOP3 2 3 Continuous Disconnected (9.07, 66.62, 0.23)

Table 6: An overview of the search spaces in MO-NAS tasks.

Search space X Type D |X |
NAS-Bench-101 micro 26 423K
NAS-Bench-201 micro 6 15.6K
NATS macro 5 32.8K
DARTS micro 32 ∼ 1021

ResNet50 macro 25 ∼ 1014

Transformer macro 34 ∼ 1014

MNV3 macro 21 ∼ 1020

• Real-World Application (RE): The task includes many real-world multi-objective engineering
design problems, such as four bar truss design, pressure vessel design, disc brake design, and so on.

C TRAINING DETAILS

For fair comparison, we adopt the same experimental settings as in the Off-MOO-Bench (Xue et al.,
2024). In our method, the predictor network is a multilayer perceptron (MLP) with the following
architecture:

Input→ MLP(2048)→ LeakyReLU→ MLP(2048)→ LeakyReLU→ MLP(1).

We use mean squared error (MSE) as the loss function and optimize the network using Adam with a
learning rate of η = 0.001 and exponential learning rate decay γ = 0.98. The model is trained on
the offline dataset for 100 epochs with a batch size of 256. Additionally, we apply data pruning to
alleviate model collapse on certain tasks.

For the energy-based model, we use a separate MLP with the following architecture:

Input→ MLP(512)→ LeakyReLU→ MLP(512)→ LeakyReLU→ MLP(1).

The energy-based model is trained using the Adam optimizer with the same learning rate. The energy
head is updated via contrastive loss, where negative samples are generated using Langevin dynamics.
This model is trained for 50 epochs with a batch size of 256.

We adopt task-specific hyper-parameters for different categories in the Off-MOO-Bench. For MO-
NAS tasks, the energy model uses K = 64 Langevin steps, the Pareto set model is pre-trained for
100 steps, followed by 400 steps of optimization with randomly sampled preferences and 400 steps
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of nested PSL optimization. For MORL tasks, due to the extremely high-dimensional input space,
we use a smaller configuration with K = 8 Langevin steps, 100 pre-training steps, and only 5 steps
each for random preference optimization and nested PSL. For all other tasks, we set K = 42 for the
energy model, and perform 200 steps of pre-training, 200 steps of random preference optimization,
and 100 steps of nested PSL.

D COMPUTATIONAL COST

All experiments are conducted on a workstation equipped with an Intel(R) Xeon(R) Gold 6354 CPU
(3.00GHz) and an NVIDIA RTX 3090 GPU. The total computational cost of our method consists of
five main components: training the surrogate model, training the energy model, initializing the Pareto
set model, training the Pareto set model, and performing data selection. The corresponding runtime
(measured in seconds) is provided in Table 7. Our method is efficient, completing most tasks within
10 minutes.

Table 7: Time cost of DOMOO.

Task ZDT2 C-10/MOP1 MO-Hopper Zinc RE23

training the surrogate model 51.55 24.70 50.23 79.15 45.60
training the energy model 397.64 87.69 36.46 308.84 364.98

initializing the Pareto set model 0.41 0.49 0.30 0.30 0.42
training the Pareto set model 3.36 3.37 0.21 3.85 3.20

data selection 30.20 26.77 41.78 17.50 57.64
Overall time cost (second) 483.16 143.02 128.98 409.64 471.85

Table 8: The runtime for each method to complete model training and optimization on the C-10/MOP1
and MO-Hopper tasks (unit: minutes).

Tasks C-10/MOP1 MO-Hopper

End2End 1.20 1.17
Multihead 1.24 1.17
Multiple Models 1.70 1.80
MOBO 0.12 33.68
DOMOO (ours) 2.38 2.15

As shown in Table 8, DOMOO takes longer than some baseline methods due to the additional
cumulative risk control module for handling OOD issues. Although DOMOO includes additional
components such as the energy model (Table 7), the overall runtime remains moderate. As shown
in Table 8, DOMOO is only slightly slower than lightweight surrogate-based baselines—typically
within one minute—while remaining competitive or even faster than several existing methods. More
importantly, in offline optimization the quality of the obtained Pareto set is far more critical than
marginal differences in runtime, since no additional evaluations or online interactions are permitted.
The modest overhead introduced by the risk-control module therefore represents a reasonable and
practical trade-off.

E HV EXPERIMENT RESULTS

E.1 THE 100th PERCENTILE RESULTS

As shown in Table 9, Table 10, Table 11, Table 12, and Table 13, we report the 100th percentile
hypervolume results with 256 solutions. DOMOO consistently performs well across tasks. Methods
within one standard deviation of the best are highlighted in bold.
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Table 9: Hypervolume results for synthetic functions with 256 solutions and 100th percentile
evaluations. For each task, algorithms within one standard deviation of having the highest performance
are bolded.

Methods DTLZ1 DTLZ2 DTLZ3 DTLZ4 DTLZ5 DTLZ6 DTLZ7 OmniTest VLMOP1 VLMOP2 VLMOP3 ZDT1 ZDT2 ZDT3 ZDT4 ZDT6
D(best) 10.6 9.91 10 10.76 9.35 8.88 8.56 4.53 0.08 1.78 45.65 4.17 4.68 5.15 5.46 4.61

End-to-End 10.63 ± 0.01 8.40 ± 1.10 10.28 ± 0.32 6.98 ± 1.19 7.63 ± 1.02 8.77 ± 1.20 10.68 ± 0.06 4.78 ± 0.01 0.32 ± 0.00 4.23 ± 0.02 45.92 ± 0.02 4.84 ± 0.01 5.66 ± 0.01 5.50 ± 0.14 4.91 ± 0.13 4.78 ± 0.00
End-to-End + GradNorm 10.64 ± 0.00 8.10 ± 1.15 10.40 ± 0.27 8.01 ± 1.91 7.00 ± 1.25 9.96 ± 0.43 10.73 ± 0.02 4.57 ± 0.32 0.31 ± 0.00 2.14 ± 0.86 44.45 ± 1.49 4.72 ± 0.03 5.51 ± 0.04 5.34 ± 0.13 4.75 ± 0.48 4.66 ± 0.05

End-to-End + PcGrad 10.64 ± 0.00 9.33 ± 1.19 10.46 ± 0.24 8.76 ± 0.99 9.23 ± 0.51 9.53 ± 0.31 10.66 ± 0.05 4.78 ± 0.01 0.32 ± 0.00 4.23 ± 0.02 45.93 ± 0.00 4.85 ± 0.00 5.64 ± 0.04 5.54 ± 0.05 3.73 ± 0.26 3.91 ± 1.05
Multi Head 10.65 ± 0.00 8.52 ± 1.26 10.52 ± 0.16 7.15 ± 1.12 8.04 ± 0.81 8.38 ± 1.31 10.66 ± 0.09 4.78 ± 0.00 0.32 ± 0.00 4.24 ± 0.01 45.93 ± 0.00 4.80 ± 0.04 5.55 ± 0.10 5.58 ± 0.08 4.62 ± 0.30 4.78 ± 0.00

Multi Head + GradNorm 10.64 ± 0.00 7.59 ± 1.82 10.46 ± 0.24 8.14 ± 1.03 8.45 ± 0.75 9.27 ± 0.99 10.18 ± 0.54 4.00 ± 0.84 0.05 ± 0.11 3.34 ± 0.51 42.08 ± 5.22 4.60 ± 0.19 5.36 ± 0.17 5.62 ± 0.18 3.76 ± 0.39 3.91 ± 0.99
Multi Head + PcGrad 10.64 ± 0.00 9.52 ± 0.60 10.52 ± 0.09 6.46 ± 1.42 9.10 ± 0.52 9.48 ± 0.44 10.62 ± 0.02 4.78 ± 0.00 0.31 ± 0.01 4.21 ± 0.03 45.93 ± 0.00 4.80 ± 0.09 5.57 ± 0.08 5.56 ± 0.04 4.22 ± 0.54 3.67 ± 1.32

Multiple Models 10.65 ± 0.00 8.19 ± 1.41 10.61 ± 0.02 8.07 ± 0.99 8.19 ± 1.04 8.52 ± 1.48 10.71 ± 0.08 4.78 ± 0.00 0.32 ± 0.00 4.24 ± 0.01 45.93 ± 0.00 4.80 ± 0.02 5.55 ± 0.07 5.55 ± 0.18 5.25 ± 0.22 4.73 ± 0.05
Multiple Models + COMs 10.64 ± 0.00 9.63 ± 0.55 10.39 ± 0.11 8.03 ± 0.54 9.32 ± 0.17 8.97 ± 0.28 9.94 ± 0.17 4.78 ± 0.00 0.31 ± 0.01 4.18 ± 0.03 45.92 ± 0.02 4.53 ± 0.04 5.11 ± 0.06 5.52 ± 0.03 5.01 ± 0.10 2.70 ± 0.70
Multiple Models + RoMA 10.64 ± 0.00 9.87 ± 0.26 10.37 ± 0.29 8.71 ± 0.54 7.08 ± 0.24 9.72 ± 0.07 10.57 ± 0.02 3.96 ± 0.32 0.32 ± 0.00 1.44 ± 0.00 41.21 ± 4.41 4.84 ± 0.00 5.59 ± 0.02 5.91 ± 0.01 3.99 ± 0.20 2.08 ± 0.51
Multiple Models + IOM 10.64 ± 0.00 9.81 ± 0.20 10.49 ± 0.11 9.46 ± 0.82 9.57 ± 0.37 9.54 ± 0.19 10.61 ± 0.06 4.78 ± 0.00 0.31 ± 0.01 3.93 ± 0.32 45.93 ± 0.00 4.64 ± 0.03 5.56 ± 0.06 5.64 ± 0.02 5.05 ± 0.19 4.75 ± 0.02
Multiple Models + ICT 10.64 ± 0.00 9.63 ± 0.55 10.18 ± 0.34 9.22 ± 1.07 8.65 ± 0.76 8.94 ± 0.66 10.42 ± 0.10 4.77 ± 0.02 0.32 ± 0.00 4.08 ± 0.10 45.92 ± 0.01 4.81 ± 0.02 5.55 ± 0.06 5.42 ± 0.18 4.37 ± 0.14 4.23 ± 0.53

Multiple Models + Tri-Mentoring 10.50 ± 0.28 9.17 ± 0.86 10.30 ± 0.37 8.92 ± 1.12 7.70 ± 1.14 9.33 ± 1.00 10.07 ± 0.15 4.76 ± 0.02 0.32 ± 0.00 3.97 ± 0.40 45.92 ± 0.01 4.78 ± 0.01 5.55 ± 0.17 5.13 ± 0.14 5.01 ± 0.12 3.40 ± 1.05

MOBO 10.65 ± 0.00 10.24 ± 0.09 10.35 ± 0.03 10.59 ± 0.01 9.23 ± 0.00 9.38 ± 0.18 10.34 ± 0.03 4.78 ± 0.00 0.32 ± 0.00 2.77 ± 0.03 N/A 4.34 ± 0.01 5.01 ± 0.00 5.32 ± 0.01 4.56 ± 0.08 3.18 ± 0.05
MOBO-qParEGO 10.65 ± 0.00 10.00 ± 0.02 10.17 ± 0.01 9.48 ± 0.70 9.38 ± 0.16 8.96 ± 0.31 10.19 ± 0.02 4.78 ± 0.00 0.32 ± 0.00 3.59 ± 0.15 45.93 ± 0.00 4.35 ± 0.02 5.08 ± 0.06 5.27 ± 0.02 5.01 ± 0.07 3.32 ± 0.12

MOBO-JES N/A N/A N/A N/A N/A N/A N/A 4.70 ± 0.06 0.30 ± 0.00 N/A N/A 4.01 ± 0.04 4.94 ± 0.07 5.10 ± 0.05 4.39 ± 0.08 2.73 ± 0.25

ParetoFlow 10.61 ± 0.02 10.30 ± 0.11 10.36 ± 0.09 10.46 ± 0.21 9.53 ± 0.31 9.62 ± 0.07 9.04 ± 0.10 4.78 ± 0.00 N/A 4.22 ± 0.00 N/A 4.19 ± 0.05 5.94 ± 0.36 5.21 ± 0.12 4.97 ± 0.12 4.50 ± 0.05

DOMOO (ours) 10.65 ± 0.00 9.91 ± 0.18 10.63 ± 0.01 9.49 ± 0.33 9.35 ± 0.19 9.41 ± 0.93 10.73 ± 0.03 4.78 ± 0.00 0.32 ± 0.00 4.21 ± 0.02 45.93 ± 0.00 4.85 ± 0.00 5.70 ± 0.00 5.62 ± 0.11 5.29 ± 0.16 4.75 ± 0.02

Table 10: Hypervolume results for MO-NAS with 256 solutions and 100th percentile evaluations. For
each task, algorithms within one standard deviation of having the highest performance are bolded.

Methods C-10/MOP1 C-10/MOP2 C-10/MOP3 C-10/MOP8 C-10/MOP9 IN-1K/MOP1 IN-1K/MOP2 IN-1K/MOP3 IN-1K/MOP4 IN-1K/MOP5 IN-1K/MOP6 IN-1K/MOP7 IN-1K/MOP8 NasBench201-Test
D(best) 4.72 10.42 9.21 4.38 9.64 4.36 4.45 9.86 4.15 4.3 9.15 3.7 9.13 9.89

End-to-End 4.75 ± 0.01 10.46 ± 0.01 10.19 ± 0.02 4.64 ± 0.09 10.21 ± 0.16 4.53 ± 0.08 4.54 ± 0.03 9.98 ± 0.03 4.58 ± 0.10 4.60 ± 0.05 10.00 ± 0.24 4.04 ± 0.31 9.38 ± 0.11 10.19 ± 0.10
End-to-End + GradNorm 4.64 ± 0.04 10.43 ± 0.02 9.19 ± 0.11 4.22 ± 0.16 9.92 ± 0.32 4.19 ± 0.23 4.40 ± 0.06 8.42 ± 0.28 4.50 ± 0.06 4.57 ± 0.02 9.59 ± 0.26 4.10 ± 0.14 8.35 ± 0.16 9.06 ± 1.63

End-to-End + PcGrad 4.75 ± 0.01 10.46 ± 0.03 10.17 ± 0.01 4.61 ± 0.04 10.29 ± 0.07 4.50 ± 0.05 4.51 ± 0.06 9.97 ± 0.09 4.36 ± 0.14 4.55 ± 0.06 9.74 ± 0.13 4.06 ± 0.11 9.50 ± 0.07 10.15 ± 0.11
Multi Head 4.75 ± 0.01 10.47 ± 0.03 10.07 ± 0.03 4.59 ± 0.05 10.09 ± 0.21 4.61 ± 0.04 4.51 ± 0.03 10.02 ± 0.04 4.54 ± 0.05 4.65 ± 0.08 10.02 ± 0.17 4.22 ± 0.17 9.51 ± 0.08 10.14 ± 0.02

Multi Head + GradNorm 4.46 ± 0.25 10.15 ± 0.23 9.36 ± 0.19 4.02 ± 0.17 8.67 ± 1.27 4.28 ± 0.17 3.98 ± 0.37 8.72 ± 1.07 4.41 ± 0.11 4.49 ± 0.08 9.63 ± 0.36 2.99 ± 0.59 6.23 ± 1.96 9.97 ± 0.24
Multi Head + PcGrad 4.75 ± 0.02 10.47 ± 0.01 10.05 ± 0.11 4.64 ± 0.03 10.28 ± 0.10 4.47 ± 0.04 4.55 ± 0.03 10.02 ± 0.01 4.40 ± 0.05 4.61 ± 0.01 9.75 ± 0.13 3.97 ± 0.07 9.28 ± 0.27 10.23 ± 0.08

Multiple Models 4.75 ± 0.01 10.44 ± 0.01 10.08 ± 0.06 4.64 ± 0.04 10.14 ± 0.13 4.43 ± 0.22 4.51 ± 0.04 9.97 ± 0.05 4.53 ± 0.06 4.61 ± 0.03 9.78 ± 0.20 4.17 ± 0.20 9.57 ± 0.05 10.08 ± 0.19
Multiple Models + COMs 4.76 ± 0.02 10.44 ± 0.01 10.14 ± 0.02 4.61 ± 0.07 10.03 ± 0.22 4.60 ± 0.03 4.54 ± 0.02 10.03 ± 0.05 4.43 ± 0.10 4.54 ± 0.04 9.90 ± 0.15 4.07 ± 0.05 9.52 ± 0.11 10.18 ± 0.07
Multiple Models + RoMA 4.75 ± 0.01 10.46 ± 0.01 10.17 ± 0.02 4.32 ± 0.05 9.84 ± 0.11 4.55 ± 0.07 4.56 ± 0.04 9.94 ± 0.01 4.53 ± 0.05 4.63 ± 0.05 9.91 ± 0.12 4.37 ± 0.09 9.39 ± 0.11 10.00 ± 0.28
Multiple Models + IOM 4.73 ± 0.02 10.38 ± 0.05 10.09 ± 0.04 4.68 ± 0.02 10.24 ± 0.12 4.63 ± 0.03 4.59 ± 0.03 10.06 ± 0.02 4.42 ± 0.06 4.58 ± 0.03 9.71 ± 0.10 4.18 ± 0.18 9.69 ± 0.04 10.20 ± 0.10
Multiple Models + ICT 4.73 ± 0.02 10.43 ± 0.16 9.82 ± 0.24 4.28 ± 0.24 9.54 ± 0.34 4.42 ± 0.07 4.42 ± 0.07 9.80 ± 0.15 4.53 ± 0.07 4.50 ± 0.05 9.99 ± 0.11 3.98 ± 0.13 9.01 ± 0.56 10.20 ± 0.13

Multiple Models + Tri-Mentoring 4.73 ± 0.02 10.49 ± 0.05 10.18 ± 0.01 4.29 ± 0.09 8.87 ± 0.33 4.40 ± 0.12 4.26 ± 0.10 9.47 ± 0.22 4.39 ± 0.05 4.47 ± 0.06 9.80 ± 0.14 4.08 ± 0.22 9.49 ± 0.14 9.37 ± 0.24

MOBO 4.76 ± 0.01 10.49 ± 0.02 10.22 ± 0.00 4.61 ± 0.02 10.24 ± 0.07 4.67 ± 0.02 4.56 ± 0.02 10.05 ± 0.01 4.39 ± 0.04 4.56 ± 0.03 9.69 ± 0.02 4.18 ± 0.08 9.65 ± 0.02 N/A
MOBO-qParEGO 4.75 ± 0.01 10.45 ± 0.07 8.55 ± 0.18 4.46 ± 0.04 9.98 ± 0.09 4.22 ± 0.04 4.17 ± 0.06 9.27 ± 0.03 4.09 ± 0.02 4.32 ± 0.10 9.18 ± 0.15 4.10 ± 0.02 9.09 ± 0.05 N/A

MOBO-JES N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A

ParetoFlow 4.74 ± 0.03 10.46 ± 0.01 9.44 ± 0.10 4.46 ± 0.04 9.76 ± 0.00 4.36 ± 0.03 4.33 ± 0.06 9.79 ± 0.05 4.32 ± 0.07 N/A 3.82 ± 0.02 9.19 ± 0.00 N/A

DOMOO (ours) 4.74 ± 0.01 10.42 ± 0.01 10.01 ± 0.09 4.65 ± 0.03 10.19 ± 0.04 4.68 ± 0.04 4.59 ± 0.04 9.96 ± 0.06 4.46 ± 0.10 4.58 ± 0.04 9.48 ± 0.27 4.48 ± 0.08 9.55 ± 0.02 10.16 ± 0.06

Table 11: Hypervolume results for MORL with 256 solutions and 100th percentile evaluations. For
each task, algorithms within one standard deviation of having the highest performance are bolded.

Methods MO-Swimmer MO-Hopper
D(best) 3.64 5.67

End-to-End 3.62 ± 0.00 6.04 ± 0.00
End-to-End + GradNorm 2.96 ± 0.00 5.69 ± 0.00

End-to-End + PcGrad 3.43 ± 0.00 5.63 ± 0.00
Multi Head 3.29 ± 0.00 5.83 ± 0.00

Multi Head + GradNorm 3.37 ± 0.00 4.77 ± 0.00
Multi Head + PcGrad 3.08 ± 0.00 6.06 ± 0.00

Multiple Models 3.49 ± 0.00 5.87 ± 0.00
Multiple Models + COMs 3.87 ± 0.00 6.15 ± 0.00
Multiple Models + RoMA 3.50 ± 0.00 6.03 ± 0.00
Multiple Models + IOM 3.59 ± 0.00 6.24 ± 0.00
Multiple Models + ICT 3.45 ± 0.26 5.73 ± 0.34

Multiple Models + Tri-Mentoring 3.42 ± 0.18 5.86 ± 0.14

MOBO N/A N/A
MOBO-qParEGO N/A N/A

MOBO-JES N/A N/A

ParetoFlow 3.41 ± 0.08 5.65 ± 0.00

DOMOO (ours) 3.61 ± 0.00 6.53 ± 0.24
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Table 12: Hypervolume results for RE with 256 solutions and 100th percentile evaluations. For each
task, algorithms within one standard deviation of having the highest performance are bolded.

Methods RE21 RE22 RE23 RE24 RE25 RE31 RE32 RE33 RE34 RE35 RE36 RE37 MO-Portfolio
D(best) 4.1 4.78 4.75 4.6 4.79 10.6 10.56 10.56 9.3 10.08 7.61 5.57 4.24

End-to-End 4.60 ± 0.00 4.84 ± 0.00 4.84 ± 0.01 4.65 ± 0.22 4.84 ± 0.01 10.55 ± 0.20 10.65 ± 0.00 10.61 ± 0.01 10.10 ± 0.01 10.38 ± 0.06 10.19 ± 0.07 6.67 ± 0.05 4.43 ± 0.03
End-to-End + GradNorm 4.57 ± 0.02 4.84 ± 0.00 4.12 ± 0.79 3.94 ± 1.06 4.80 ± 0.03 8.52 ± 4.26 10.64 ± 0.01 10.57 ± 0.02 9.80 ± 0.11 10.35 ± 0.01 0.02 ± 0.00 6.56 ± 0.03 4.41 ± 0.01

End-to-End + PcGrad 4.60 ± 0.00 4.84 ± 0.00 4.84 ± 0.00 4.43 ± 0.18 4.82 ± 0.01 10.65 ± 0.00 10.61 ± 0.02 10.59 ± 0.03 10.11 ± 0.01 10.55 ± 0.02 10.06 ± 0.10 6.68 ± 0.04 4.45 ± 0.03
Multi Head 4.60 ± 0.00 4.84 ± 0.00 4.84 ± 0.00 4.84 ± 0.00 4.84 ± 0.00 10.65 ± 0.00 10.64 ± 0.00 10.62 ± 0.00 10.11 ± 0.00 10.41 ± 0.08 10.16 ± 0.08 6.70 ± 0.02 4.39 ± 0.07

Multi Head + GradNorm 4.30 ± 0.40 4.26 ± 0.74 3.96 ± 1.06 3.94 ± 1.07 4.72 ± 0.10 10.08 ± 0.48 10.56 ± 0.12 9.31 ± 1.65 10.01 ± 0.11 10.23 ± 0.38 7.87 ± 3.39 6.11 ± 0.97 4.26 ± 0.12
Multi Head + PcGrad 4.59 ± 0.01 3.87 ± 1.94 4.84 ± 0.00 3.07 ± 0.53 4.79 ± 0.06 10.65 ± 0.00 10.63 ± 0.00 10.61 ± 0.01 10.11 ± 0.01 10.56 ± 0.03 9.73 ± 0.21 6.69 ± 0.04 4.33 ± 0.08

Multiple Models 4.60 ± 0.00 4.84 ± 0.00 4.83 ± 0.02 4.82 ± 0.03 4.64 ± 0.24 10.65 ± 0.00 10.60 ± 0.02 10.62 ± 0.00 10.11 ± 0.00 10.56 ± 0.01 10.23 ± 0.04 6.74 ± 0.01 4.59 ± 0.29
Multiple Models + COMs 4.36 ± 0.06 4.82 ± 0.01 4.83 ± 0.02 4.83 ± 0.00 4.83 ± 0.01 10.62 ± 0.02 10.64 ± 0.01 10.62 ± 0.01 9.94 ± 0.11 10.54 ± 0.02 9.37 ± 0.24 6.32 ± 0.07 3.64 ± 0.71
Multiple Models + RoMA 4.57 ± 0.00 4.83 ± 0.02 4.83 ± 0.01 3.85 ± 1.00 4.83 ± 0.01 10.65 ± 0.00 10.65 ± 0.00 10.57 ± 0.04 9.92 ± 0.01 10.56 ± 0.02 9.93 ± 0.11 6.67 ± 0.02 4.41 ± 0.09
Multiple Models + IOM 4.59 ± 0.00 4.84 ± 0.00 4.83 ± 0.01 4.82 ± 0.01 4.84 ± 0.00 10.65 ± 0.00 10.64 ± 0.00 10.60 ± 0.03 10.11 ± 0.00 10.58 ± 0.01 10.06 ± 0.20 6.70 ± 0.01 4.52 ± 0.30
Multiple Models + ICT 4.60 ± 0.00 4.84 ± 0.00 4.73 ± 0.17 4.65 ± 0.22 4.84 ± 0.00 10.65 ± 0.00 10.64 ± 0.00 10.61 ± 0.01 10.09 ± 0.01 10.56 ± 0.01 10.15 ± 0.12 6.73 ± 0.01 4.56 ± 0.23

Multiple Models + Tri-Mentoring 4.60 ± 0.00 4.84 ± 0.00 4.73 ± 0.06 4.83 ± 0.00 4.84 ± 0.00 10.65 ± 0.00 10.63 ± 0.01 10.61 ± 0.02 10.05 ± 0.05 10.45 ± 0.25 10.02 ± 0.11 6.73 ± 0.01 4.54 ± 0.17

MOBO 4.37 ± 0.06 4.84 ± 0.00 4.84 ± 0.00 4.83 ± 0.00 4.84 ± 0.00 10.20 ± 0.00 10.65 ± 0.00 10.63 ± 0.00 9.71 ± 0.00 10.57 ± 0.01 10.26 ± 0.00 6.78 ± 0.00 0.99 ± 1.23
MOBO-qParEGO 4.58 ± 0.01 4.84 ± 0.00 4.84 ± 0.00 4.83 ± 0.00 4.84 ± 0.00 10.65 ± 0.00 10.64 ± 0.00 10.59 ± 0.01 9.12 ± 0.05 10.50 ± 0.01 10.14 ± 0.00 6.61 ± 0.07 2.77 ± 2.49

MOBO-JES 4.51 ± 0.02 4.84 ± 0.00 4.84 ± 0.00 4.82 ± 0.00 4.84 ± 0.00 N/A N/A 10.53 ± 0.04 9.41 ± 0.00 10.55 ± 0.00 N/A N/A 0.00 ± 0.00

ParetoFlow 4.36 ± 0.20 4.78 ± 0.09 N/A N/A N/A 10.63 ± 0.08 11.17 ± 0.00 10.78 ± 0.15 10.70 ± 0.16 N/A 8.43 ± 0.22 6.92 ± 0.61 4.12 ± 0.10

DOMOO (ours) 4.60 ± 0.00 4.84 ± 0.00 4.84 ± 0.00 4.84 ± 0.00 4.84 ± 0.00 10.65 ± 0.00 10.64 ± 0.01 10.63 ± 0.00 10.12 ± 0.00 10.59 ± 0.01 10.21 ± 0.06 6.76 ± 0.00 6.33 ± 0.07

Table 13: Hypervolume results for scientific design with 256 solutions and 100th percentile evalua-
tions. For each task, algorithms within one standard deviation of having the highest performance are
bolded.

Methods Molecule Regex RFP ZINC
D(best) 2.91 3.96 4.06 4.52

End-to-End 2.64 ± 0.12 3.76 ± 0.27 4.49 ± 0.28 4.72 ± 0.05
End-to-End + GradNorm 0.59 ± 0.72 4.72 ± 0.22 4.45 ± 0.31 4.64 ± 0.08

End-to-End + PcGrad 2.22 ± 0.57 4.61 ± 0.27 4.37 ± 0.31 4.76 ± 0.01
Multi Head 2.47 ± 0.12 3.98 ± 0.00 4.43 ± 0.29 4.67 ± 0.04

Multi Head + GradNorm 2.64 ± 0.33 3.93 ± 0.18 4.52 ± 0.31 4.56 ± 0.02
Multi Head + PcGrad 2.37 ± 0.40 4.56 ± 0.22 4.58 ± 0.22 4.72 ± 0.06

Multiple Models 2.59 ± 0.14 3.98 ± 0.00 4.11 ± 0.04 4.74 ± 0.04
Multiple Models + COMs 3.01 ± 0.09 4.61 ± 0.27 4.36 ± 0.29 4.74 ± 0.04
Multiple Models + RoMA 2.86 ± 0.72 4.61 ± 0.27 4.26 ± 0.26 4.66 ± 0.01
Multiple Models + IOM 3.14 ± 0.19 4.83 ± 0.00 4.28 ± 0.26 4.66 ± 0.01
Multiple Models + ICT 2.83 ± 0.04 4.63 ± 0.24 4.58 ± 0.25 4.68 ± 0.03

Multiple Models + Tri-Mentoring 1.83 ± 0.30 4.72 ± 0.22 4.22 ± 0.25 4.62 ± 0.05

MOBO 3.03 ± 0.64 6.77 ± 0.04 4.05 ± 0.01 4.77 ± 0.00
MOBO-qParEGO N/A 6.47 ± 0.00 3.93 ± 0.03 4.61 ± 0.05

MOBO-JES N/A N/A N/A N/A

ParetoFlow 2.86 ± 0.81 3.26 ± 0.00 4.35 ± 0.11 N/A

DOMOO (ours) 2.78 ± 0.13 6.52 ± 0.11 4.24 ± 0.29 4.71 ± 0.06

E.2 THE 50th PERCENTILE RESULTS

As shown in Table 14, we report the 50th percentile HV average ranks with 256 solutions. As shown
in Table 15, Table 16, Table 17, Table 18, and Table 19, we report the 50th percentile hypervolume
results with 256 solutions. DOMOO consistently performs well across tasks. Methods within one
standard deviation of the best are highlighted in bold.
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Table 14: Comparison of average HV ranks at the 50th percentile achieved by different offline MOO
methods across different tasks in Off-MOO-Bench (Xue et al., 2024). For each task, the top three
methods are highlighted using (1st), (2nd), and

::::
(3rd) formatting. D(best) denotes the best subset in

the offline dataset (i.e., with the highest HV), and the last column reports the average rank across all
tasks.

Methods Synthetic MO-NAS MORL Sci-Design RE Average Rank
D(best) 9.45 ± 0.25 9.06 ± 0.35 1.10 ± 0.20 2.25 ± 0.45 12.23 ± 0.40 9.15 ± 0.23

End-to-End 6.83 ± 1.01
:::
5.94

::
±

::::
0.36 8.80 ± 0.60 8.30 ± 0.81 6.08 ± 0.64 6.58 ± 0.30

End-to-End + GradNorm 11.73 ± 1.05 12.99 ± 1.35 12.90 ± 0.58 11.65 ± 1.15 11.32 ± 0.34 12.02 ± 0.85
End-to-End + PcGrad 6.88 ± 0.82 7.56 ± 1.21 7.20 ± 0.51 8.60 ± 2.35 7.51 ± 0.63 7.39 ± 0.55

Multi Head
:::
6.45

::
±

::::
0.61 6.23 ± 0.45 4.70 ± 0.24 7.95 ± 1.08

:::
5.85

::
±

::::
0.60

::::
6.28

::
±

::::
0.32

Multi Head + GradNorm 10.74 ± 0.72 13.27 ± 0.94 13.00 ± 0.55 7.42 ± 1.34 12.25 ± 1.19 11.69 ± 0.69
Multi Head + PcGrad 7.83 ± 1.10 7.56 ± 1.19 8.80 ± 0.40 9.88 ± 1.07 9.54 ± 0.81 8.41 ± 0.70

Multiple Models 5.24 ± 0.51 6.73 ± 0.92 9.30 ± 0.40 7.88 ± 1.98 5.82 ± 0.77 6.20 ± 0.29
Multiple Models + COM 8.90 ± 0.46 6.91 ± 1.10 5.00 ± 0.32 7.90 ± 2.65 9.97 ± 0.71 8.38 ± 0.63

Multiple Models + RoMA 10.41 ± 1.05 6.24 ± 0.84 8.20 ± 0.40 8.47 ± 1.89 9.95 ± 0.92 8.85 ± 0.45
Multiple Models + IOM 7.21 ± 0.57 5.66 ± 0.80

:::
4.50

::
±

::::
0.32 8.62 ± 0.60 6.54 ± 0.65 6.59 ± 0.46

Multiple Models + ICT 8.62 ± 0.61 9.59 ± 0.90 8.20 ± 2.32
:::
7.62

::
±

::::
1.43 6.45 ± 0.85 8.22 ± 0.24

Multiple Models + Tri-Mentoring 9.54 ± 1.16 11.10 ± 0.54 8.60 ± 1.98 9.78 ± 1.49 7.34 ± 0.55 9.38 ± 0.46

MOBO 12.40 ± 0.95 4.21 ± 0.46 N/A 12.38 ± 1.33 11.66 ± 0.58 9.34 ± 0.43
MOBO-qParEGO 12.26 ± 0.97 13.19 ± 0.64 N/A 7.77 ± 0.53 10.55 ± 0.37 11.74 ± 0.39

MOBO-JES 15.25 ± 0.53 N/A N/A N/A 11.59 ± 0.97 13.38 ± 0.51

ParetoFlow 9.58 ± 1.83 12.04 ± 0.70 12.33 ± 3.77 9.88 ± 1.17 12.21 ± 0.28 11.02 ± 1.02

DOMOO (ours) 4.75 ± 0.81 8.36 ± 0.66 3.10 ± 2.46 7.70 ± 1.34 3.25 ± 0.74 5.45 ± 0.39

Table 15: Hypervolume results for synthetic functions with 256 solutions and 50th percentile
evaluations. For each task, algorithms within one standard deviation of having the highest performance
are bolded.

Methods DTLZ1 DTLZ2 DTLZ3 DTLZ4 DTLZ5 DTLZ6 DTLZ7 OmniTest VLMOP1 VLMOP2 VLMOP3 ZDT1 ZDT2 ZDT3 ZDT4 ZDT6
D(best) 10.6 9.91 10 10.76 9.35 8.88 8.56 4.53 0.08 1.78 45.65 4.17 4.68 5.15 5.46 4.61

End-to-End 10.56 ± 0.07 7.80 ± 0.99 9.84 ± 0.41 6.66 ± 0.97 7.02 ± 1.04 8.03 ± 1.38 10.64 ± 0.03 4.77 ± 0.01 0.32 ± 0.00 4.20 ± 0.03 45.90 ± 0.04 4.84 ± 0.01 5.65 ± 0.01 5.07 ± 0.75 4.48 ± 0.20 4.77 ± 0.00
End-to-End + GradNorm 10.60 ± 0.02 7.18 ± 1.37 10.37 ± 0.29 7.37 ± 1.70 6.01 ± 1.58 9.83 ± 0.45 10.01 ± 0.33 3.29 ± 0.55 0.03 ± 0.06 1.44 ± 0.00 41.29 ± 5.03 4.32 ± 0.77 3.94 ± 0.82 4.01 ± 0.98 3.76 ± 0.69 2.74 ± 0.70

End-to-End + PcGrad 10.63 ± 0.01 8.77 ± 1.34 10.21 ± 0.33 7.91 ± 0.86 8.17 ± 1.23 9.29 ± 0.35 10.60 ± 0.08 4.77 ± 0.01 0.19 ± 0.05 4.20 ± 0.04 45.92 ± 0.01 4.83 ± 0.03 5.63 ± 0.05 5.22 ± 0.34 3.44 ± 0.17 3.87 ± 1.03
Multi Head 10.64 ± 0.01 7.64 ± 1.28 10.23 ± 0.31 6.62 ± 0.77 7.18 ± 0.86 7.97 ± 1.22 10.47 ± 0.20 4.78 ± 0.00 0.32 ± 0.00 4.19 ± 0.06 45.93 ± 0.01 4.79 ± 0.04 5.52 ± 0.12 5.27 ± 0.39 4.28 ± 0.30 4.76 ± 0.00

Multi Head + GradNorm 10.60 ± 0.01 7.36 ± 1.72 10.33 ± 0.23 7.27 ± 1.30 7.86 ± 0.54 8.52 ± 1.05 9.92 ± 0.45 3.10 ± 0.44 0.00 ± 0.01 3.32 ± 0.49 38.74 ± 6.20 4.57 ± 0.18 4.99 ± 0.44 5.28 ± 0.45 3.21 ± 0.59 3.58 ± 1.35
Multi Head + PcGrad 10.62 ± 0.01 8.58 ± 0.97 10.06 ± 0.31 6.09 ± 1.37 8.41 ± 0.70 9.04 ± 0.32 10.47 ± 0.21 4.78 ± 0.00 0.18 ± 0.10 4.19 ± 0.04 45.93 ± 0.00 4.79 ± 0.09 5.51 ± 0.11 5.04 ± 0.48 3.87 ± 0.43 3.60 ± 1.35

Multiple Models 10.64 ± 0.01 7.87 ± 1.51 10.48 ± 0.10 7.55 ± 1.11 7.69 ± 1.04 8.30 ± 1.45 10.68 ± 0.12 4.78 ± 0.00 0.31 ± 0.01 4.22 ± 0.01 45.93 ± 0.01 4.78 ± 0.03 5.51 ± 0.09 5.43 ± 0.16 4.79 ± 0.21 4.71 ± 0.05
Multiple Models + COMs 10.62 ± 0.01 8.59 ± 0.61 9.80 ± 0.18 7.45 ± 0.33 8.32 ± 0.65 8.70 ± 0.24 9.55 ± 0.09 4.77 ± 0.01 0.31 ± 0.01 4.12 ± 0.03 45.92 ± 0.02 4.52 ± 0.04 5.06 ± 0.04 5.40 ± 0.04 4.52 ± 0.16 2.28 ± 0.55
Multiple Models + RoMA 10.59 ± 0.01 9.30 ± 0.53 9.99 ± 0.48 8.11 ± 0.94 6.91 ± 0.23 9.29 ± 0.20 10.20 ± 0.11 3.04 ± 0.05 0.15 ± 0.01 1.44 ± 0.00 37.17 ± 2.52 4.82 ± 0.02 5.36 ± 0.07 5.54 ± 0.07 3.56 ± 0.21 1.74 ± 0.17
Multiple Models + IOM 10.62 ± 0.00 9.13 ± 0.38 9.76 ± 0.31 8.38 ± 0.11 8.52 ± 0.86 8.76 ± 0.63 10.45 ± 0.16 4.77 ± 0.01 0.26 ± 0.06 3.84 ± 0.36 45.92 ± 0.00 4.56 ± 0.05 5.51 ± 0.07 5.41 ± 0.27 4.52 ± 0.37 4.72 ± 0.03
Multiple Models + ICT 10.61 ± 0.01 9.21 ± 0.54 9.57 ± 0.54 8.80 ± 1.07 7.54 ± 0.94 8.43 ± 1.17 9.82 ± 0.25 4.75 ± 0.03 0.30 ± 0.04 3.89 ± 0.25 45.91 ± 0.01 4.80 ± 0.03 5.30 ± 0.18 5.31 ± 0.18 3.92 ± 0.14 3.58 ± 1.01

Multiple Models + Tri-Mentoring 10.37 ± 0.47 8.76 ± 0.84 9.77 ± 0.55 8.31 ± 0.95 6.14 ± 0.24 8.23 ± 1.42 9.71 ± 0.17 4.74 ± 0.03 0.32 ± 0.00 3.74 ± 0.60 44.65 ± 2.41 4.76 ± 0.01 5.46 ± 0.21 4.90 ± 0.10 4.49 ± 0.18 2.34 ± 0.25

MOBO 10.64 ± 0.00 9.96 ± 0.21 9.09 ± 0.24 8.49 ± 0.02 8.56 ± 0.00 8.75 ± 0.07 7.76 ± 0.01 4.72 ± 0.03 0.18 ± 0.01 1.44 ± 0.00 N/A 4.26 ± 0.02 4.28 ± 0.01 5.02 ± 0.04 3.86 ± 0.02 2.63 ± 0.18
MOBO-qParEGO 10.60 ± 0.01 9.50 ± 0.16 8.22 ± 0.54 8.59 ± 0.01 7.89 ± 0.09 8.04 ± 1.00 9.26 ± 0.08 4.03 ± 0.11 0.18 ± 0.08 1.44 ± 0.00 45.79 ± 0.00 4.22 ± 0.01 4.62 ± 0.02 5.10 ± 0.02 4.36 ± 0.01 2.51 ± 0.60

MOBO-JES N/A N/A N/A N/A N/A N/A N/A 4.30 ± 0.05 0.06 ± 0.00 N/A N/A 3.86 ± 0.07 4.55 ± 0.10 4.93 ± 0.07 3.99 ± 0.07 1.91 ± 0.18

ParetoFlow 10.38 ± 0.04 9.83 ± 0.22 9.41 ± 0.44 8.64 ± 0.80 8.45 ± 0.85 9.41 ± 0.12 8.81 ± 0.04 4.78 ± 0.00 N/A 4.21 ± 0.00 N/A 4.13 ± 0.09 5.36 ± 0.25 5.10 ± 0.12 4.85 ± 0.13 4.36 ± 0.06

DOMOO (ours) 10.64 ± 0.01 9.75 ± 0.25 10.41 ± 0.12 6.91 ± 1.32 8.78 ± 0.52 9.09 ± 0.93 10.63 ± 0.10 4.77 ± 0.01 0.32 ± 0.00 4.11 ± 0.16 45.93 ± 0.00 4.80 ± 0.04 5.67 ± 0.02 5.37 ± 0.20 4.04 ± 0.34 4.71 ± 0.04

Table 16: Hypervolume results for MO-NAS with 256 solutions and 50th percentile evaluations. For
each task, algorithms within one standard deviation of having the highest performance are bolded.

Methods C-10/MOP1 C-10/MOP2 C-10/MOP3 C-10/MOP8 C-10/MOP9 IN-1K/MOP1 IN-1K/MOP2 IN-1K/MOP3 IN-1K/MOP4 IN-1K/MOP5 IN-1K/MOP6 IN-1K/MOP7 IN-1K/MOP8 NasBench201-Test
D(best) 4.72 10.42 9.21 4.38 9.64 4.36 4.45 9.86 4.15 4.3 9.15 3.7 9.13 9.89

End-to-End 4.68 ± 0.04 10.41 ± 0.02 9.99 ± 0.06 4.42 ± 0.15 9.78 ± 0.14 4.43 ± 0.17 4.48 ± 0.06 9.89 ± 0.04 4.44 ± 0.10 4.50 ± 0.06 9.57 ± 0.17 3.63 ± 0.28 9.24 ± 0.10 9.88 ± 0.19
End-to-End + GradNorm 4.44 ± 0.19 10.37 ± 0.06 9.01 ± 0.11 3.62 ± 0.31 8.80 ± 0.27 4.09 ± 0.23 4.32 ± 0.07 8.29 ± 0.32 3.82 ± 0.31 4.25 ± 0.30 7.43 ± 1.44 3.54 ± 0.44 8.07 ± 0.10 8.68 ± 1.49

End-to-End + PcGrad 4.69 ± 0.03 10.42 ± 0.01 9.95 ± 0.07 4.21 ± 0.13 9.92 ± 0.20 4.40 ± 0.05 4.39 ± 0.12 9.92 ± 0.09 4.15 ± 0.13 4.37 ± 0.08 9.34 ± 0.13 3.79 ± 0.11 9.29 ± 0.17 9.51 ± 0.39
Multi Head 4.71 ± 0.01 10.34 ± 0.11 9.86 ± 0.03 4.39 ± 0.10 9.47 ± 0.28 4.53 ± 0.07 4.37 ± 0.09 9.98 ± 0.04 4.41 ± 0.06 4.52 ± 0.09 9.58 ± 0.23 3.94 ± 0.33 9.38 ± 0.11 9.73 ± 0.37

Multi Head + GradNorm 3.51 ± 1.78 10.13 ± 0.23 8.60 ± 0.33 3.65 ± 0.19 7.64 ± 1.26 3.97 ± 0.52 3.63 ± 0.47 8.20 ± 1.33 4.25 ± 0.11 4.32 ± 0.14 9.10 ± 0.28 2.65 ± 0.59 5.59 ± 1.85 9.52 ± 0.10
Multi Head + PcGrad 4.68 ± 0.05 10.43 ± 0.01 9.59 ± 0.31 4.03 ± 0.17 9.78 ± 0.17 4.39 ± 0.02 4.48 ± 0.04 9.98 ± 0.02 4.15 ± 0.03 4.43 ± 0.05 9.32 ± 0.11 3.81 ± 0.07 9.05 ± 0.29 9.86 ± 0.27

Multiple Models 4.68 ± 0.06 10.08 ± 0.62 9.65 ± 0.40 4.47 ± 0.05 9.54 ± 0.15 4.31 ± 0.32 4.47 ± 0.03 9.91 ± 0.08 4.37 ± 0.05 4.49 ± 0.04 9.44 ± 0.31 3.96 ± 0.25 9.35 ± 0.09 9.76 ± 0.44
Multiple Models + COMs 4.73 ± 0.01 10.41 ± 0.02 9.85 ± 0.06 4.24 ± 0.06 9.38 ± 0.21 4.52 ± 0.04 4.51 ± 0.02 9.93 ± 0.07 4.24 ± 0.10 4.39 ± 0.06 9.37 ± 0.17 3.75 ± 0.12 9.28 ± 0.21 9.80 ± 0.33
Multiple Models + RoMA 4.70 ± 0.04 10.43 ± 0.01 9.91 ± 0.09 4.11 ± 0.09 9.09 ± 0.21 4.51 ± 0.06 4.49 ± 0.05 9.82 ± 0.03 4.41 ± 0.07 4.50 ± 0.05 9.50 ± 0.13 4.10 ± 0.12 9.18 ± 0.11 9.69 ± 0.32
Multiple Models + IOM 4.69 ± 0.04 10.34 ± 0.05 9.94 ± 0.02 4.51 ± 0.06 9.88 ± 0.11 4.51 ± 0.06 4.56 ± 0.04 10.02 ± 0.01 4.25 ± 0.05 4.44 ± 0.05 9.35 ± 0.08 3.74 ± 0.12 9.54 ± 0.06 9.92 ± 0.15
Multiple Models + ICT 4.69 ± 0.02 10.17 ± 0.51 9.61 ± 0.26 4.00 ± 0.25 8.94 ± 0.32 4.28 ± 0.08 4.31 ± 0.07 9.60 ± 0.22 4.36 ± 0.11 4.36 ± 0.04 9.49 ± 0.07 3.77 ± 0.18 8.72 ± 0.55 9.85 ± 0.19

Multiple Models + Tri-Mentoring 4.67 ± 0.03 10.35 ± 0.10 9.95 ± 0.05 3.88 ± 0.18 8.06 ± 0.25 4.29 ± 0.13 4.19 ± 0.10 9.15 ± 0.30 4.15 ± 0.04 4.29 ± 0.04 9.29 ± 0.12 3.75 ± 0.20 9.12 ± 0.30 8.86 ± 0.14

MOBO 4.71 ± 0.03 10.43 ± 0.01 10.07 ± 0.01 4.52 ± 0.02 10.02 ± 0.04 4.58 ± 0.02 4.52 ± 0.01 9.99 ± 0.04 4.17 ± 0.05 4.47 ± 0.02 9.15 ± 0.03 4.07 ± 0.02 9.56 ± 0.01 N/A
MOBO-qParEGO 4.70 ± 0.01 10.30 ± 0.06 8.46 ± 0.11 4.02 ± 0.03 9.43 ± 0.22 3.90 ± 0.07 3.64 ± 0.05 9.14 ± 0.10 3.98 ± 0.12 4.14 ± 0.36 9.14 ± 0.12 3.67 ± 0.03 8.66 ± 0.16 N/A

MOBO-JES N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A

ParetoFlow 4.66 ± 0.09 10.41 ± 0.00 9.15 ± 0.17 4.02 ± 0.21 9.25 ± 0.00 4.18 ± 0.01 4.20 ± 0.10 9.41 ± 0.16 4.17 ± 0.02 N/A N/A 3.40 ± 0.22 9.01 ± 0.00 N/A

DOMOO (ours) 4.67 ± 0.04 10.37 ± 0.02 9.83 ± 0.13 4.53 ± 0.06 9.72 ± 0.08 4.42 ± 0.17 4.48 ± 0.05 9.29 ± 0.42 3.14 ± 0.43 2.82 ± 0.45 7.16 ± 0.21 4.29 ± 0.06 9.29 ± 0.20 10.09 ± 0.05
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Table 17: Hypervolume results for MORL with 256 solutions and 50th percentile evaluations. For
each task, algorithms within one standard deviation of having the highest performance are bolded.

Methods MO-Swimmer MO-Hopper
D(best) 3.64 5.67

End-to-End 2.57 ± 0.00 4.80 ± 0.00
End-to-End + GradNorm 2.45 ± 0.00 4.78 ± 0.00

End-to-End + PcGrad 2.52 ± 0.00 4.98 ± 0.00
Multi Head 2.73 ± 0.00 4.93 ± 0.00

Multi Head + GradNorm 2.47 ± 0.00 4.76 ± 0.00
Multi Head + PcGrad 2.51 ± 0.00 4.92 ± 0.00

Multiple Models 2.54 ± 0.00 4.81 ± 0.00
Multiple Models + COMs 2.87 ± 0.00 4.86 ± 0.00
Multiple Models + RoMA 2.57 ± 0.00 4.85 ± 0.00
Multiple Models + IOM 2.62 ± 0.00 5.15 ± 0.00
Multiple Models + ICT 2.68 ± 0.18 4.93 ± 0.27

Multiple Models + Tri-Mentoring 2.67 ± 0.14 4.79 ± 0.01

MOBO N/A N/A
MOBO-qParEGO N/A N/A

MOBO-JES N/A N/A

ParetoFlow 2.18 ± 0.29 4.71 ± 0.00

DOMOO (ours) 3.12 ± 0.05 5.35 ± 0.44

Table 18: Hypervolume results for RE with 256 solutions and 50th percentile evaluations. For each
task, algorithms within one standard deviation of having the highest performance are bolded.

Methods RE21 RE22 RE23 RE24 RE25 RE31 RE32 RE33 RE34 RE35 RE36 RE37 MO-Portfolio
D(best) 4.1 4.78 4.75 4.6 4.79 10.6 10.56 10.56 9.3 10.08 7.61 5.57 4.24

End-to-End 4.59 ± 0.00 4.84 ± 0.00 4.84 ± 0.01 4.65 ± 0.22 4.78 ± 0.08 10.55 ± 0.20 10.65 ± 0.00 10.52 ± 0.16 10.07 ± 0.01 10.37 ± 0.04 9.73 ± 0.23 6.55 ± 0.08 4.40 ± 0.03
End-to-End + GradNorm 4.54 ± 0.04 4.81 ± 0.04 4.05 ± 0.75 3.19 ± 0.82 4.74 ± 0.07 8.52 ± 4.26 10.62 ± 0.03 10.27 ± 0.08 9.41 ± 0.25 10.34 ± 0.01 0.02 ± 0.00 6.53 ± 0.03 4.17 ± 0.14

End-to-End + PcGrad 4.59 ± 0.00 4.08 ± 1.52 4.83 ± 0.02 4.16 ± 0.17 4.81 ± 0.01 10.64 ± 0.00 10.61 ± 0.02 10.43 ± 0.13 10.04 ± 0.04 10.54 ± 0.02 9.68 ± 0.17 6.60 ± 0.05 4.41 ± 0.05
Multi Head 4.59 ± 0.00 4.84 ± 0.00 4.84 ± 0.00 4.57 ± 0.53 4.80 ± 0.06 10.58 ± 0.13 10.64 ± 0.01 10.58 ± 0.06 10.02 ± 0.05 10.32 ± 0.20 9.76 ± 0.17 6.63 ± 0.05 4.33 ± 0.08

Multi Head + GradNorm 4.28 ± 0.42 2.07 ± 1.86 3.08 ± 0.75 3.10 ± 0.43 3.95 ± 0.86 10.07 ± 0.49 10.47 ± 0.24 8.77 ± 1.49 9.69 ± 0.63 10.19 ± 0.47 6.53 ± 3.42 6.05 ± 0.96 4.10 ± 0.21
Multi Head + PcGrad 4.52 ± 0.08 3.02 ± 1.54 4.83 ± 0.01 2.75 ± 0.17 4.69 ± 0.17 10.55 ± 0.20 9.00 ± 1.58 10.13 ± 0.68 10.04 ± 0.03 10.51 ± 0.04 9.48 ± 0.18 6.62 ± 0.07 4.27 ± 0.07

Multiple Models 4.59 ± 0.01 4.76 ± 0.15 4.77 ± 0.10 4.82 ± 0.03 4.64 ± 0.24 10.64 ± 0.01 10.58 ± 0.03 10.62 ± 0.01 10.08 ± 0.02 10.55 ± 0.01 9.83 ± 0.20 6.67 ± 0.02 4.53 ± 0.29
Multiple Models + COMs 4.35 ± 0.05 4.78 ± 0.11 4.81 ± 0.02 4.41 ± 0.62 4.73 ± 0.10 10.62 ± 0.02 10.63 ± 0.01 10.19 ± 0.81 9.84 ± 0.19 10.45 ± 0.06 8.83 ± 0.27 6.28 ± 0.08 3.55 ± 0.63
Multiple Models + RoMA 4.54 ± 0.01 4.56 ± 0.49 4.42 ± 0.81 3.32 ± 0.89 4.73 ± 0.17 10.57 ± 0.08 10.64 ± 0.00 10.34 ± 0.18 9.28 ± 0.05 10.51 ± 0.04 7.57 ± 0.77 6.57 ± 0.08 4.24 ± 0.08
Multiple Models + IOM 4.58 ± 0.01 4.82 ± 0.04 4.80 ± 0.03 4.80 ± 0.02 4.83 ± 0.01 10.63 ± 0.02 10.64 ± 0.01 10.58 ± 0.03 10.03 ± 0.01 10.51 ± 0.04 9.53 ± 0.16 6.56 ± 0.08 4.44 ± 0.29
Multiple Models + ICT 4.58 ± 0.01 4.75 ± 0.19 4.72 ± 0.17 4.56 ± 0.20 4.82 ± 0.03 10.65 ± 0.00 10.63 ± 0.01 10.58 ± 0.02 10.03 ± 0.02 10.42 ± 0.22 9.71 ± 0.17 6.65 ± 0.05 4.50 ± 0.22

Multiple Models + Tri-Mentoring 4.59 ± 0.00 4.84 ± 0.00 4.34 ± 0.41 4.74 ± 0.18 4.76 ± 0.11 10.65 ± 0.00 10.63 ± 0.01 10.58 ± 0.05 9.97 ± 0.05 10.44 ± 0.25 7.13 ± 1.75 6.64 ± 0.03 4.39 ± 0.11

MOBO 3.99 ± 0.06 4.84 ± 0.00 4.18 ± 0.01 3.35 ± 0.09 4.83 ± 0.01 9.61 ± 0.00 10.64 ± 0.00 10.36 ± 0.07 7.27 ± 0.19 10.32 ± 0.09 8.51 ± 0.00 6.47 ± 0.00 0.39 ± 0.48
MOBO-qParEGO 4.14 ± 0.11 4.84 ± 0.00 4.71 ± 0.15 3.20 ± 0.21 4.83 ± 0.00 10.63 ± 0.00 10.64 ± 0.00 10.52 ± 0.07 7.28 ± 0.16 10.28 ± 0.03 8.19 ± 0.00 6.22 ± 0.21 1.82 ± 2.23

MOBO-JES 4.33 ± 0.08 4.84 ± 0.00 4.75 ± 0.00 4.59 ± 0.00 4.81 ± 0.01 N/A N/A 10.34 ± 0.24 9.06 ± 0.00 10.44 ± 0.00 N/A N/A 0.00 ± 0.00

ParetoFlow 4.23 ± 0.12 4.63 ± 0.04 N/A N/A N/A 10.16 ± 0.16 10.59 ± 0.00 10.72 ± 0.17 9.30 ± 0.12 N/A 7.52 ± 0.19 6.12 ± 0.45 4.03 ± 0.07

DOMOO (ours) 4.60 ± 0.00 4.84 ± 0.00 4.84 ± 0.00 4.83 ± 0.01 4.64 ± 0.24 10.65 ± 0.00 10.64 ± 0.01 10.62 ± 0.00 10.10 ± 0.01 10.54 ± 0.08 9.72 ± 0.18 6.72 ± 0.00 5.55 ± 0.52

Table 19: Hypervolume results for scientific design with 256 solutions and 50th percentile evaluations.
For each task, algorithms within one standard deviation of having the highest performance are bolded.

Methods Molecule Regex RFP ZINC
D(best) 2.91 3.96 4.06 4.52

End-to-End 1.67 ± 1.00 2.99 ± 0.00 4.02 ± 0.02 4.45 ± 0.04
End-to-End + GradNorm 0.00 ± 0.00 2.99 ± 0.00 3.99 ± 0.02 4.36 ± 0.07

End-to-End + PcGrad 2.03 ± 0.63 2.99 ± 0.00 4.02 ± 0.07 4.37 ± 0.06
Multi Head 0.61 ± 0.75 2.99 ± 0.00 4.05 ± 0.04 4.46 ± 0.04

Multi Head + GradNorm 2.10 ± 0.58 3.67 ± 0.34 4.06 ± 0.02 4.27 ± 0.05
Multi Head + PcGrad 1.70 ± 0.37 2.99 ± 0.00 3.92 ± 0.15 4.40 ± 0.04

Multiple Models 1.99 ± 0.59 2.99 ± 0.00 4.02 ± 0.03 4.42 ± 0.02
Multiple Models + COMs 2.53 ± 0.52 3.16 ± 0.34 4.03 ± 0.03 4.33 ± 0.10
Multiple Models + RoMA 1.96 ± 0.61 2.99 ± 0.00 4.03 ± 0.02 4.33 ± 0.06
Multiple Models + IOM 2.32 ± 0.43 2.99 ± 0.00 4.04 ± 0.04 4.33 ± 0.08
Multiple Models + ICT 2.53 ± 0.54 3.25 ± 0.52 3.98 ± 0.05 4.40 ± 0.04

Multiple Models + Tri-Mentoring 1.54 ± 0.05 2.99 ± 0.00 4.03 ± 0.08 4.31 ± 0.11

MOBO 0.00 ± 0.00 4.54 ± 0.11 3.98 ± 0.01 4.34 ± 0.01
MOBO-qParEGO N/A 4.75 ± 0.19 3.67 ± 0.03 4.57 ± 0.09

MOBO-JES N/A N/A N/A N/A

ParetoFlow 1.58 ± 0.05 3.26 ± 0.00 N/A 4.05 ± 0.25

DOMOO (ours) 1.74 ± 0.36 4.78 ± 0.26 3.95 ± 0.06 4.46 ± 0.06
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F IGDOFFLINE EXPERIMENT RESULTS

F.1 THE 100th PERCENTILE RESULTS

As shown in Table 20, Table 21, Table 22, Table 23, and Table 24, we report the 100th percentile
IGDoffline results with 256 solutions. DOMOO consistently performs well across tasks. Methods
within one standard deviation of the best are highlighted in bold.

Table 20: IGDoffline results for synthetic functions with 256 solutions and 100th percentile evaluations.
For each task, algorithms within one standard deviation of having the highest performance are bolded.

Methods DTLZ1 DTLZ2 DTLZ3 DTLZ4 DTLZ5 DTLZ6 DTLZ7 OmniTest VLMOP1 VLMOP2 VLMOP3 ZDT1 ZDT2 ZDT3 ZDT4 ZDT6
D(best) 0.25 0.27 0.23 0.01 0.35 0.43 0.61 0.46 0.06 1.34 0.08 0.48 0.45 0.55 0.07 0.14

End-to-End 0.20 ± 0.03 0.75 ± 0.08 0.21 ± 0.05 0.87 ± 0.10 0.85 ± 0.03 0.58 ± 0.11 0.29 ± 0.01 0.22 ± 0.00 0.11 ± 0.08 0.91 ± 0.00 0.08 ± 0.05 0.14 ± 0.00 0.21 ± 0.00 0.38 ± 0.04 0.38 ± 0.07 0.11 ± 0.00
End-to-End + GradNorm 0.17 ± 0.00 0.85 ± 0.05 0.22 ± 0.05 0.87 ± 0.22 0.98 ± 0.03 0.42 ± 0.05 0.29 ± 0.01 0.29 ± 0.08 0.05 ± 0.02 1.24 ± 0.26 0.34 ± 0.21 0.29 ± 0.03 0.27 ± 0.02 0.47 ± 0.02 0.48 ± 0.27 0.18 ± 0.04

End-to-End + PcGrad 0.17 ± 0.01 0.58 ± 0.08 0.18 ± 0.01 0.66 ± 0.14 0.62 ± 0.06 0.54 ± 0.05 0.28 ± 0.01 0.22 ± 0.00 0.03 ± 0.00 0.91 ± 0.00 0.07 ± 0.01 0.14 ± 0.00 0.21 ± 0.00 0.37 ± 0.03 0.85 ± 0.12 0.41 ± 0.36
Multi Head 0.17 ± 0.00 0.74 ± 0.09 0.18 ± 0.03 0.96 ± 0.11 0.77 ± 0.03 0.61 ± 0.10 0.31 ± 0.03 0.22 ± 0.00 0.09 ± 0.05 0.91 ± 0.00 0.05 ± 0.00 0.16 ± 0.02 0.24 ± 0.05 0.32 ± 0.03 0.48 ± 0.12 0.11 ± 0.00

Multi Head + GradNorm 0.17 ± 0.00 0.78 ± 0.17 0.18 ± 0.06 0.94 ± 0.04 0.86 ± 0.11 0.52 ± 0.07 0.41 ± 0.04 0.46 ± 0.25 0.82 ± 0.24 0.91 ± 0.00 0.19 ± 0.18 0.29 ± 0.09 0.29 ± 0.06 0.32 ± 0.05 0.79 ± 0.14 0.43 ± 0.36
Multi Head + PcGrad 0.17 ± 0.00 0.57 ± 0.05 0.18 ± 0.02 1.02 ± 0.08 0.60 ± 0.04 0.52 ± 0.03 0.31 ± 0.03 0.22 ± 0.00 0.11 ± 0.13 0.91 ± 0.00 0.06 ± 0.01 0.18 ± 0.07 0.23 ± 0.05 0.36 ± 0.02 0.66 ± 0.24 0.48 ± 0.44

Multiple Models 0.17 ± 0.00 0.70 ± 0.01 0.16 ± 0.03 0.76 ± 0.01 0.76 ± 0.08 0.62 ± 0.11 0.29 ± 0.03 0.22 ± 0.00 0.09 ± 0.09 0.91 ± 0.00 0.05 ± 0.00 0.16 ± 0.01 0.21 ± 0.01 0.35 ± 0.06 0.22 ± 0.10 0.13 ± 0.03
Multiple Models + COMs 0.17 ± 0.00 0.44 ± 0.04 0.21 ± 0.02 0.67 ± 0.04 0.51 ± 0.04 0.59 ± 0.02 0.35 ± 0.02 0.22 ± 0.00 0.11 ± 0.11 0.91 ± 0.00 0.16 ± 0.09 0.23 ± 0.02 0.29 ± 0.02 0.38 ± 0.01 0.32 ± 0.04 0.90 ± 0.19
Multiple Models + RoMA 0.18 ± 0.00 0.66 ± 0.01 0.21 ± 0.04 0.95 ± 0.02 0.90 ± 0.04 0.48 ± 0.01 0.28 ± 0.00 0.47 ± 0.10 0.03 ± 0.00 1.45 ± 0.00 0.19 ± 0.15 0.14 ± 0.00 0.21 ± 0.00 0.22 ± 0.00 0.75 ± 0.09 1.08 ± 0.17
Multiple Models + IOM 0.18 ± 0.00 0.38 ± 0.04 0.18 ± 0.02 0.48 ± 0.01 0.42 ± 0.04 0.56 ± 0.02 0.27 ± 0.01 0.22 ± 0.00 0.12 ± 0.09 0.91 ± 0.00 0.18 ± 0.04 0.23 ± 0.04 0.21 ± 0.01 0.29 ± 0.01 0.30 ± 0.08 0.12 ± 0.00
Multiple Models + ICT 0.17 ± 0.01 0.50 ± 0.04 0.22 ± 0.04 0.70 ± 0.08 0.61 ± 0.10 0.59 ± 0.06 0.31 ± 0.00 0.23 ± 0.00 0.07 ± 0.02 0.91 ± 0.00 0.09 ± 0.05 0.16 ± 0.01 0.23 ± 0.01 0.43 ± 0.06 0.59 ± 0.06 0.32 ± 0.18

Multiple Models + Tri-Mentoring 0.21 ± 0.06 0.65 ± 0.08 0.20 ± 0.03 0.72 ± 0.13 0.74 ± 0.11 0.57 ± 0.07 0.35 ± 0.02 0.23 ± 0.00 0.06 ± 0.02 0.91 ± 0.01 0.06 ± 0.00 0.19 ± 0.01 0.24 ± 0.05 0.48 ± 0.06 0.33 ± 0.05 0.57 ± 0.35

MOBO 0.16 ± 0.00 0.31 ± 0.00 0.20 ± 0.00 0.42 ± 0.00 0.39 ± 0.00 0.56 ± 0.01 0.29 ± 0.01 0.22 ± 0.00 0.03 ± 0.00 0.99 ± 0.02 N/A 0.33 ± 0.00 0.32 ± 0.00 0.41 ± 0.01 0.52 ± 0.03 0.81 ± 0.00
MOBO-qParEGO 0.17 ± 0.00 0.31 ± 0.00 0.19 ± 0.00 0.43 ± 0.01 0.38 ± 0.00 0.59 ± 0.02 0.29 ± 0.00 0.22 ± 0.00 0.03 ± 0.00 0.95 ± 0.02 0.12 ± 0.00 0.33 ± 0.02 0.31 ± 0.02 0.42 ± 0.00 0.33 ± 0.03 0.75 ± 0.02

MOBO-JES N/A N/A N/A N/A N/A N/A N/A 0.23 ± 0.01 0.08 ± 0.00 N/A N/A 0.51 ± 0.02 0.39 ± 0.02 0.56 ± 0.01 0.56 ± 0.02 0.95 ± 0.00

ParetoFlow 0.11 ± 0.02 0.39 ± 0.10 0.20 ± 0.04 0.00 ± 0.00 0.48 ± 0.03 0.77 ± 0.06 0.52 ± 0.04 0.19 ± 0.00 N/A 0.84 ± 0.00 N/A 0.46 ± 0.02 0.38 ± 0.03 0.53 ± 0.01 0.05 ± 0.03 0.09 ± 0.08

DOMOO (ours) 0.16 ± 0.00 0.40 ± 0.03 0.14 ± 0.01 0.77 ± 0.01 0.46 ± 0.02 0.51 ± 0.09 0.26 ± 0.01 0.22 ± 0.00 0.03 ± 0.00 0.91 ± 0.00 0.05 ± 0.00 0.15 ± 0.01 0.21 ± 0.00 0.33 ± 0.03 0.21 ± 0.07 0.12 ± 0.01

Table 21: IGDoffline results for MO-NAS with 256 solutions and 100th percentile evaluations. For
each task, algorithms within one standard deviation of having the highest performance are bolded.

Methods C-10/MOP1 C-10/MOP2 C-10/MOP3 C-10/MOP8 C-10/MOP9 IN-1K/MOP1 IN-1K/MOP2 IN-1K/MOP3 IN-1K/MOP4 IN-1K/MOP5 IN-1K/MOP6 IN-1K/MOP7 IN-1K/MOP8 NasBench201-Test
D(best) 0.11 0.1 0.34 0.36 0.33 0.34 0.32 0.37 0.35 0.29 0.37 0.64 0.62 0.32

End-to-End 0.10 ± 0.00 0.08 ± 0.00 0.29 ± 0.00 0.25 ± 0.01 0.25 ± 0.02 0.26 ± 0.01 0.28 ± 0.00 0.33 ± 0.00 0.24 ± 0.01 0.22 ± 0.01 0.31 ± 0.03 0.43 ± 0.08 0.55 ± 0.01 0.25 ± 0.00
End-to-End + GradNorm 0.15 ± 0.02 0.10 ± 0.00 0.40 ± 0.02 0.39 ± 0.06 0.27 ± 0.01 0.32 ± 0.01 0.31 ± 0.01 0.48 ± 0.02 0.28 ± 0.04 0.24 ± 0.02 0.39 ± 0.05 0.42 ± 0.04 0.63 ± 0.01 0.49 ± 0.34

End-to-End + PcGrad 0.11 ± 0.00 0.08 ± 0.01 0.29 ± 0.00 0.27 ± 0.01 0.25 ± 0.02 0.28 ± 0.01 0.29 ± 0.00 0.33 ± 0.00 0.30 ± 0.03 0.23 ± 0.02 0.33 ± 0.02 0.41 ± 0.04 0.55 ± 0.00 0.26 ± 0.01
Multi Head 0.10 ± 0.00 0.08 ± 0.00 0.28 ± 0.00 0.26 ± 0.01 0.27 ± 0.02 0.24 ± 0.01 0.29 ± 0.00 0.33 ± 0.00 0.25 ± 0.01 0.22 ± 0.02 0.33 ± 0.03 0.37 ± 0.03 0.55 ± 0.00 0.26 ± 0.00

Multi Head + GradNorm 0.21 ± 0.12 0.12 ± 0.01 0.35 ± 0.02 0.38 ± 0.06 0.36 ± 0.05 0.35 ± 0.08 0.48 ± 0.17 0.43 ± 0.02 0.30 ± 0.05 0.25 ± 0.03 0.36 ± 0.05 0.80 ± 0.21 0.68 ± 0.00 0.27 ± 0.01
Multi Head + PcGrad 0.11 ± 0.00 0.08 ± 0.00 0.29 ± 0.01 0.27 ± 0.02 0.28 ± 0.02 0.28 ± 0.01 0.29 ± 0.01 0.33 ± 0.00 0.28 ± 0.01 0.22 ± 0.01 0.33 ± 0.02 0.42 ± 0.02 0.55 ± 0.00 0.26 ± 0.00

Multiple Models 0.10 ± 0.01 0.09 ± 0.01 0.28 ± 0.00 0.25 ± 0.01 0.25 ± 0.01 0.26 ± 0.03 0.28 ± 0.00 0.33 ± 0.00 0.25 ± 0.02 0.22 ± 0.01 0.34 ± 0.03 0.39 ± 0.05 0.56 ± 0.01 0.26 ± 0.00
Multiple Models + COMs 0.10 ± 0.00 0.09 ± 0.01 0.28 ± 0.00 0.27 ± 0.01 0.27 ± 0.02 0.25 ± 0.01 0.29 ± 0.00 0.33 ± 0.00 0.27 ± 0.03 0.23 ± 0.01 0.31 ± 0.01 0.40 ± 0.01 0.56 ± 0.00 0.27 ± 0.01
Multiple Models + RoMA 0.10 ± 0.01 0.09 ± 0.01 0.29 ± 0.00 0.29 ± 0.02 0.27 ± 0.01 0.24 ± 0.01 0.30 ± 0.02 0.35 ± 0.00 0.27 ± 0.01 0.22 ± 0.01 0.31 ± 0.01 0.40 ± 0.03 0.58 ± 0.01 0.27 ± 0.02
Multiple Models + IOM 0.11 ± 0.00 0.11 ± 0.01 0.29 ± 0.00 0.24 ± 0.02 0.26 ± 0.02 0.25 ± 0.00 0.28 ± 0.00 0.33 ± 0.00 0.28 ± 0.01 0.22 ± 0.01 0.32 ± 0.02 0.43 ± 0.02 0.54 ± 0.00 0.27 ± 0.01
Multiple Models + ICT 0.11 ± 0.00 0.09 ± 0.02 0.32 ± 0.02 0.37 ± 0.11 0.26 ± 0.03 0.29 ± 0.01 0.30 ± 0.01 0.34 ± 0.01 0.26 ± 0.02 0.26 ± 0.01 0.31 ± 0.01 0.45 ± 0.05 0.57 ± 0.01 0.27 ± 0.02

Multiple Models + Tri-Mentoring 0.10 ± 0.01 0.08 ± 0.01 0.30 ± 0.00 0.34 ± 0.04 0.29 ± 0.02 0.29 ± 0.03 0.33 ± 0.01 0.37 ± 0.01 0.28 ± 0.01 0.25 ± 0.02 0.32 ± 0.01 0.41 ± 0.06 0.55 ± 0.00 0.30 ± 0.02

MOBO 0.10 ± 0.00 0.08 ± 0.00 0.29 ± 0.00 0.28 ± 0.01 0.29 ± 0.02 0.25 ± 0.01 0.29 ± 0.00 0.33 ± 0.00 0.32 ± 0.01 0.20 ± 0.01 0.35 ± 0.01 0.46 ± 0.02 0.54 ± 0.00 N/A
MOBO-qParEGO 0.11 ± 0.00 0.11 ± 0.00 0.37 ± 0.00 0.27 ± 0.01 0.28 ± 0.00 0.34 ± 0.01 0.33 ± 0.01 0.37 ± 0.00 0.35 ± 0.01 0.30 ± 0.03 0.36 ± 0.02 0.43 ± 0.01 0.56 ± 0.00 N/A

MOBO-JES N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A

ParetoFlow 0.09 ± 0.02 0.05 ± 0.02 0.32 ± 0.01 0.31 ± 0.02 0.24 ± 0.00 0.30 ± 0.02 0.33 ± 0.02 0.36 ± 0.01 0.30 ± 0.01 N/A N/A 0.59 ± 0.03 0.58 ± 0.00 N/A

DOMOO (ours) 0.11 ± 0.00 0.10 ± 0.00 0.29 ± 0.00 0.25 ± 0.01 0.26 ± 0.01 0.25 ± 0.01 0.29 ± 0.00 0.34 ± 0.00 0.26 ± 0.02 0.23 ± 0.01 0.35 ± 0.04 0.38 ± 0.03 0.57 ± 0.01 0.27 ± 0.01

Table 22: IGDoffline results for MORL with 256 solutions and 100th percentile evaluations. For each
task, algorithms within one standard deviation of having the highest performance are bolded.

Methods MO-Swimmer MO-Hopper
D(best) 0.43 0.8

End-to-End 0.47 ± 0.00 0.64 ± 0.00
End-to-End + GradNorm 0.59 ± 0.00 0.76 ± 0.00

End-to-End + PcGrad 0.49 ± 0.00 0.77 ± 0.00
Multi Head 0.48 ± 0.00 0.70 ± 0.00

Multi Head + GradNorm 0.50 ± 0.00 0.91 ± 0.00
Multi Head + PcGrad 0.53 ± 0.00 0.67 ± 0.00

Multiple Models 0.48 ± 0.00 0.65 ± 0.00
Multiple Models + COMs 0.45 ± 0.00 0.68 ± 0.00
Multiple Models + RoMA 0.45 ± 0.00 0.64 ± 0.00
Multiple Models + IOM 0.54 ± 0.00 0.59 ± 0.00
Multiple Models + ICT 0.49 ± 0.03 0.70 ± 0.08

Multiple Models + Tri-Mentoring 0.49 ± 0.04 0.73 ± 0.05

MOBO N/A N/A
MOBO-qParEGO N/A N/A

MOBO-JES N/A N/A

ParetoFlow 0.45 ± 0.00 0.80 ± 0.00

DOMOO (ours) 0.49 ± 0.00 0.58 ± 0.07
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Table 23: IGDoffline results for RE with 256 solutions and 100th percentile evaluations. For each task,
algorithms within one standard deviation of having the highest performance are bolded.

Methods RE21 RE22 RE23 RE24 RE25 RE31 RE32 RE33 RE34 RE35 RE36 RE37 MO-Portfolio
D(best) 0.56 0.00 0.00 0.00 0.03 0.01 0.02 0.04 0.34 0.09 0.69 0.65 0.47

End-to-End 0.45 ± 0.00 0.21 ± 0.02 0.03 ± 0.02 0.11 ± 0.10 0.09 ± 0.05 0.27 ± 0.00 0.09 ± 0.02 0.05 ± 0.00 0.30 ± 0.00 0.33 ± 0.05 0.36 ± 0.02 0.52 ± 0.00 0.55 ± 0.00
End-to-End + GradNorm 0.46 ± 0.00 0.15 ± 0.06 0.32 ± 0.35 0.36 ± 0.43 0.07 ± 0.00 0.61 ± 1.18 0.06 ± 0.01 0.07 ± 0.01 0.32 ± 0.00 0.34 ± 0.03 3.08 ± 0.00 0.52 ± 0.00 0.56 ± 0.00

End-to-End + PcGrad 0.45 ± 0.00 0.15 ± 0.08 0.03 ± 0.02 0.23 ± 0.05 0.07 ± 0.00 0.22 ± 0.03 0.11 ± 0.01 0.07 ± 0.02 0.30 ± 0.00 0.16 ± 0.04 0.39 ± 0.03 0.52 ± 0.00 0.55 ± 0.01
Multi Head 0.45 ± 0.00 0.17 ± 0.04 0.03 ± 0.01 0.01 ± 0.01 0.09 ± 0.05 0.26 ± 0.02 0.09 ± 0.02 0.07 ± 0.00 0.30 ± 0.00 0.18 ± 0.08 0.36 ± 0.02 0.51 ± 0.00 0.56 ± 0.01

Multi Head + GradNorm 0.47 ± 0.03 0.25 ± 0.23 0.41 ± 0.48 0.37 ± 0.42 0.11 ± 0.08 0.17 ± 0.04 0.04 ± 0.00 0.20 ± 0.20 0.31 ± 0.01 0.27 ± 0.13 0.74 ± 0.68 0.61 ± 0.17 0.60 ± 0.04
Multi Head + PcGrad 0.45 ± 0.00 9.99 ± 19.92 0.02 ± 0.02 0.69 ± 0.24 0.10 ± 0.05 0.19 ± 0.06 0.08 ± 0.03 0.06 ± 0.01 0.30 ± 0.00 0.12 ± 0.05 0.47 ± 0.02 0.52 ± 0.00 0.58 ± 0.02

Multiple Models 0.45 ± 0.00 0.07 ± 0.00 0.04 ± 0.00 0.04 ± 0.03 0.12 ± 0.03 0.26 ± 0.01 0.11 ± 0.00 0.08 ± 0.02 0.30 ± 0.00 0.14 ± 0.05 0.35 ± 0.01 0.52 ± 0.00 0.57 ± 0.02
Multiple Models + COMs 0.45 ± 0.00 0.10 ± 0.06 0.01 ± 0.01 0.04 ± 0.04 0.11 ± 0.07 0.19 ± 0.05 0.11 ± 0.01 0.06 ± 0.00 0.30 ± 0.00 0.06 ± 0.00 0.40 ± 0.02 0.53 ± 0.01 1.07 ± 0.20
Multiple Models + RoMA 0.47 ± 0.00 0.09 ± 0.07 0.02 ± 0.02 0.43 ± 0.38 0.11 ± 0.08 0.01 ± 0.00 0.02 ± 0.00 0.05 ± 0.00 0.31 ± 0.00 0.08 ± 0.01 0.40 ± 0.03 0.52 ± 0.00 0.57 ± 0.01
Multiple Models + IOM 0.45 ± 0.00 0.02 ± 0.02 0.00 ± 0.01 0.00 ± 0.00 0.02 ± 0.02 0.21 ± 0.04 0.06 ± 0.01 0.05 ± 0.00 0.30 ± 0.00 0.06 ± 0.00 0.37 ± 0.04 0.52 ± 0.00 0.59 ± 0.01
Multiple Models + ICT 0.45 ± 0.00 0.13 ± 0.09 0.08 ± 0.06 0.10 ± 0.12 0.03 ± 0.02 0.04 ± 0.03 0.07 ± 0.02 0.06 ± 0.01 0.30 ± 0.00 0.09 ± 0.02 0.36 ± 0.02 0.52 ± 0.00 0.57 ± 0.01

Multiple Models + Tri-Mentoring 0.45 ± 0.00 0.20 ± 0.02 0.06 ± 0.03 0.00 ± 0.00 0.06 ± 0.02 0.02 ± 0.01 0.09 ± 0.01 0.07 ± 0.02 0.30 ± 0.00 0.10 ± 0.07 0.39 ± 0.03 0.52 ± 0.00 0.55 ± 0.00

MOBO 0.48 ± 0.01 0.00 ± 0.00 0.00 ± 0.00 0.03 ± 0.01 0.01 ± 0.00 0.04 ± 0.00 0.02 ± 0.00 0.07 ± 0.00 0.32 ± 0.00 0.06 ± 0.00 0.33 ± 0.00 0.51 ± 0.00 1.33 ± 0.18
MOBO-qParEGO 0.45 ± 0.00 0.00 ± 0.00 0.00 ± 0.00 0.01 ± 0.01 0.01 ± 0.00 0.04 ± 0.00 0.04 ± 0.00 0.04 ± 0.00 0.35 ± 0.00 0.07 ± 0.00 0.35 ± 0.00 0.51 ± 0.00 0.38 ± 0.01

MOBO-JES 0.45 ± 0.00 0.02 ± 0.00 0.00 ± 0.00 0.00 ± 0.00 0.07 ± 0.02 N/A N/A 0.07 ± 0.01 0.36 ± 0.00 0.09 ± 0.00 N/A N/A N/A

ParetoFlow 0.37 ± 0.07 0.00 ± 0.00 N/A N/A N/A 0.00 ± 0.00 0.00 ± 0.00 0.03 ± 0.01 0.22 ± 0.05 N/A 0.47 ± 0.12 0.44 ± 0.06 0.41 ± 0.04

DOMOO (ours) 0.45 ± 0.00 0.06 ± 0.01 0.04 ± 0.00 0.01 ± 0.02 0.06 ± 0.01 0.22 ± 0.01 0.05 ± 0.02 0.06 ± 0.01 0.30 ± 0.00 0.08 ± 0.00 0.35 ± 0.01 0.52 ± 0.00 0.39 ± 0.01

Table 24: IGDoffline results for scientific design with 256 solutions and 100th percentile evaluations.
For each task, algorithms within one standard deviation of having the highest performance are bolded.

Methods Molecule Regex RFP ZINC
D(best) 0.84 1.05 0.39 0.2

End-to-End 0.94 ± 0.01 1.09 ± 0.02 0.31 ± 0.05 0.17 ± 0.01
End-to-End + GradNorm 1.44 ± 0.01 1.04 ± 0.00 0.31 ± 0.07 0.17 ± 0.01

End-to-End + PcGrad 1.10 ± 0.24 1.04 ± 0.00 0.33 ± 0.05 0.16 ± 0.00
Multi Head 0.94 ± 0.01 1.08 ± 0.00 0.30 ± 0.07 0.17 ± 0.01

Multi Head + GradNorm 0.94 ± 0.10 1.06 ± 0.01 0.30 ± 0.06 0.18 ± 0.00
Multi Head + PcGrad 1.02 ± 0.17 1.04 ± 0.00 0.28 ± 0.04 0.16 ± 0.01

Multiple Models 0.94 ± 0.01 1.08 ± 0.00 0.39 ± 0.01 0.17 ± 0.01
Multiple Models + COMs 0.79 ± 0.06 1.04 ± 0.00 0.33 ± 0.06 0.16 ± 0.00
Multiple Models + RoMA 0.87 ± 0.26 1.04 ± 0.00 0.35 ± 0.07 0.17 ± 0.00
Multiple Models + IOM 0.75 ± 0.08 1.04 ± 0.00 0.35 ± 0.06 0.18 ± 0.00
Multiple Models + ICT 0.85 ± 0.00 1.04 ± 0.00 0.29 ± 0.05 0.18 ± 0.00

Multiple Models + Tri-Mentoring 1.24 ± 0.15 1.04 ± 0.00 0.37 ± 0.06 0.18 ± 0.00

MOBO 0.76 ± 0.22 0.75 ± 0.01 0.38 ± 0.01 0.14 ± 0.00
MOBO-qParEGO N/A 0.88 ± 0.00 0.39 ± 0.01 0.16 ± 0.01

MOBO-JES N/A N/A N/A N/A

ParetoFlow 0.64 ± 0.47 0.87 ± 0.00 N/A 0.15 ± 0.01

DOMOO (ours) 0.86 ± 0.02 0.90 ± 0.01 0.35 ± 0.06 0.17 ± 0.01

F.2 THE 50th PERCENTILE RESULTS

As shown in Table 25, we report the 50th percentile IGDoffline average ranks with 256 solutions. As
shown in Table 26, Table 27, Table 28, Table 29, and Table 30, we report the 50th percentile IGDoffline
results with 256 solutions. DOMOO consistently performs well across tasks. Methods within one
standard deviation of the best are highlighted in bold.
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Table 25: Comparison of average IGDoffline ranks at the 50th percentile achieved by different offline
MOO methods across different tasks in Off-MOO-Bench (Xue et al., 2024). Details are the same as
Table 14.

Methods Synthetic MO-NAS MORL Sci-Design RE Average Rank
D(best) 8.11 ± 0.55 9.31 ± 1.28 1.20 ± 0.24 1.80 ± 0.43

:::
5.63

::
±

::::
0.60 7.00 ± 0.68

End-to-End 7.38 ± 1.31 4.64 ± 1.07 10.50 ± 0.55 8.97 ± 0.53 9.06 ± 1.08 7.30 ± 0.89
End-to-End + GradNorm 12.01 ± 1.47 12.10 ± 2.39 11.40 ± 0.66 9.57 ± 1.41 11.18 ± 0.81 11.59 ± 1.36

End-to-End + PcGrad
:::
6.40

::
±

::::
0.87 6.99 ± 1.13 8.90 ± 0.58 7.47 ± 1.72 9.26 ± 0.65 7.52 ± 0.65

Multi Head 6.88 ± 1.15 5.01 ± 0.52 4.90 ± 0.58 7.17 ± 0.19 7.71 ± 0.41 6.62 ± 0.45
Multi Head + GradNorm 10.56 ± 1.28 12.58 ± 1.29 13.00 ± 0.63 6.20 ± 1.50 11.75 ± 1.32 11.10 ± 1.22

Multi Head + PcGrad 7.83 ± 1.23 7.42 ± 1.06 6.20 ± 0.68 8.35 ± 2.09 9.71 ± 1.03 8.18 ± 0.85
Multiple Models 5.75 ± 0.80

:::
5.28

::
±

::::
1.02 10.40 ± 0.80 9.57 ± 2.30 7.96 ± 0.51

::::
6.74

::
±

::::
0.32

MultipleModels + COMs 8.57 ± 0.49 6.56 ± 0.87 6.00 ± 0.77 6.72 ± 2.72 9.12 ± 0.95 7.96 ± 0.48
Multiple Models + RoMA 10.45 ± 0.53 7.12 ± 1.27 7.20 ± 0.40 8.15 ± 0.56 9.43 ± 0.90 8.93 ± 0.68
Multiple Models + IOM 7.02 ± 0.73 7.85 ± 2.72

:::
4.60

::
±

::::
0.49 9.78 ± 1.59 5.32 ± 0.79 6.51 ± 0.54

Multiple Models + ICT 8.81 ± 0.69 8.80 ± 1.05 8.00 ± 2.63 9.55 ± 2.04 7.62 ± 0.69 8.50 ± 0.26
Multiple Models + Tri-Mentoring 9.77 ± 0.71 9.71 ± 0.92 8.40 ± 1.59 10.30 ± 1.93 8.49 ± 0.50 9.36 ± 0.45

MOBO 10.85 ± 1.13 6.26 ± 0.68 N/A 10.27 ± 1.29 10.57 ± 0.83 9.08 ± 0.91
MOBO-qParEGO 10.82 ± 1.15 11.27 ± 0.71 N/A 8.00 ± 1.14 7.56 ± 0.53 9.92 ± 0.32

MOBO-JES 14.58 ± 0.63 N/A N/A N/A 9.51 ± 1.88 11.08 ± 2.03

ParetoFlow 8.63 ± 2.25 9.19 ± 0.65 10.83 ± 5.54
:::
6.21

::
±

::::
1.74 5.35 ± 0.43 8.55 ± 2.23

DOMOO (ours) 5.66 ± 0.94 8.70 ± 0.62 3.10 ± 2.26 8.60 ± 0.87 6.21 ± 0.31 6.77 ± 0.57

Table 26: IGDoffline results for synthetic functions with 256 solutions and 50th percentile evaluations.
For each task, algorithms within one standard deviation of having the highest performance are bolded.

Methods DTLZ1 DTLZ2 DTLZ3 DTLZ4 DTLZ5 DTLZ6 DTLZ7 OmniTest VLMOP1 VLMOP2 VLMOP3 ZDT1 ZDT2 ZDT3 ZDT4 ZDT6
D(best) 0.25 0.27 0.23 0.01 0.35 0.43 0.61 0.46 0.06 1.34 0.08 0.48 0.45 0.55 0.07 0.14

End-to-End 0.24 ± 0.03 0.83 ± 0.06 0.28 ± 0.03 0.89 ± 0.10 0.93 ± 0.05 0.65 ± 0.12 0.30 ± 0.01 0.22 ± 0.00 0.11 ± 0.08 0.91 ± 0.00 0.09 ± 0.05 0.14 ± 0.00 0.21 ± 0.00 0.48 ± 0.16 0.55 ± 0.08 0.13 ± 0.00
End-to-End + GradNorm 0.23 ± 0.01 0.93 ± 0.07 0.23 ± 0.05 0.95 ± 0.14 1.04 ± 0.05 0.45 ± 0.05 0.48 ± 0.08 0.81 ± 0.13 0.38 ± 0.18 1.45 ± 0.00 0.40 ± 0.20 0.40 ± 0.21 0.74 ± 0.25 0.76 ± 0.21 0.83 ± 0.24 0.78 ± 0.25

End-to-End + PcGrad 0.21 ± 0.02 0.67 ± 0.11 0.26 ± 0.01 0.72 ± 0.15 0.73 ± 0.08 0.58 ± 0.05 0.29 ± 0.03 0.22 ± 0.00 0.03 ± 0.00 0.91 ± 0.00 0.07 ± 0.01 0.14 ± 0.00 0.21 ± 0.00 0.45 ± 0.03 0.97 ± 0.07 0.42 ± 0.35
Multi Head 0.18 ± 0.01 0.82 ± 0.08 0.25 ± 0.03 0.97 ± 0.12 0.86 ± 0.04 0.67 ± 0.09 0.35 ± 0.04 0.22 ± 0.00 0.09 ± 0.05 0.91 ± 0.00 0.06 ± 0.01 0.16 ± 0.02 0.26 ± 0.06 0.38 ± 0.08 0.63 ± 0.12 0.12 ± 0.00

Multi Head + GradNorm 0.22 ± 0.01 0.82 ± 0.15 0.22 ± 0.05 0.97 ± 0.03 0.91 ± 0.09 0.59 ± 0.06 0.47 ± 0.05 0.79 ± 0.12 0.86 ± 0.16 0.91 ± 0.00 0.34 ± 0.22 0.31 ± 0.09 0.38 ± 0.14 0.39 ± 0.07 0.97 ± 0.16 0.52 ± 0.47
Multi Head + PcGrad 0.22 ± 0.01 0.69 ± 0.05 0.29 ± 0.02 1.03 ± 0.08 0.69 ± 0.04 0.57 ± 0.03 0.34 ± 0.06 0.22 ± 0.00 0.14 ± 0.11 0.91 ± 0.00 0.06 ± 0.01 0.18 ± 0.07 0.24 ± 0.05 0.45 ± 0.05 0.82 ± 0.19 0.51 ± 0.45

Multiple Models 0.18 ± 0.01 0.77 ± 0.03 0.20 ± 0.04 0.82 ± 0.04 0.81 ± 0.08 0.66 ± 0.11 0.30 ± 0.03 0.22 ± 0.00 0.10 ± 0.10 0.91 ± 0.00 0.06 ± 0.00 0.16 ± 0.01 0.22 ± 0.02 0.38 ± 0.06 0.40 ± 0.10 0.14 ± 0.02
Multiple Models + COMs 0.22 ± 0.01 0.52 ± 0.06 0.33 ± 0.02 0.72 ± 0.07 0.60 ± 0.06 0.61 ± 0.01 0.42 ± 0.01 0.22 ± 0.00 0.12 ± 0.11 0.92 ± 0.00 0.17 ± 0.09 0.23 ± 0.02 0.31 ± 0.01 0.41 ± 0.01 0.49 ± 0.05 0.99 ± 0.16
Multiple Models + RoMA 0.25 ± 0.01 0.75 ± 0.02 0.27 ± 0.05 0.99 ± 0.02 0.94 ± 0.03 0.54 ± 0.01 0.39 ± 0.02 0.82 ± 0.02 0.03 ± 0.00 1.45 ± 0.00 0.34 ± 0.09 0.14 ± 0.00 0.32 ± 0.03 0.28 ± 0.01 0.95 ± 0.08 1.18 ± 0.08
Multiple Models + IOM 0.22 ± 0.00 0.47 ± 0.11 0.31 ± 0.05 0.52 ± 0.01 0.49 ± 0.02 0.64 ± 0.06 0.32 ± 0.04 0.23 ± 0.00 0.13 ± 0.09 0.91 ± 0.01 0.20 ± 0.04 0.26 ± 0.04 0.21 ± 0.01 0.35 ± 0.02 0.52 ± 0.16 0.12 ± 0.01
Multiple Models + ICT 0.22 ± 0.01 0.59 ± 0.04 0.33 ± 0.04 0.73 ± 0.07 0.76 ± 0.08 0.65 ± 0.09 0.43 ± 0.07 0.23 ± 0.01 0.08 ± 0.03 0.91 ± 0.00 0.11 ± 0.07 0.17 ± 0.01 0.31 ± 0.06 0.47 ± 0.05 0.78 ± 0.06 0.52 ± 0.31

Multiple Models + Tri-Mentoring 0.27 ± 0.06 0.71 ± 0.06 0.30 ± 0.04 0.77 ± 0.13 0.89 ± 0.05 0.71 ± 0.09 0.37 ± 0.02 0.23 ± 0.01 0.06 ± 0.03 0.93 ± 0.04 0.10 ± 0.07 0.19 ± 0.01 0.27 ± 0.07 0.56 ± 0.05 0.54 ± 0.08 0.90 ± 0.08

MOBO 0.17 ± 0.00 0.35 ± 0.00 0.36 ± 0.03 0.49 ± 0.01 0.43 ± 0.00 0.61 ± 0.02 0.60 ± 0.00 0.27 ± 0.02 0.03 ± 0.00 1.45 ± 0.00 N/A 0.38 ± 0.01 0.59 ± 0.00 0.53 ± 0.03 0.81 ± 0.01 0.93 ± 0.03
MOBO-qParEGO 0.22 ± 0.00 0.36 ± 0.00 0.39 ± 0.01 0.46 ± 0.00 0.45 ± 0.00 0.64 ± 0.06 0.43 ± 0.01 0.50 ± 0.07 0.04 ± 0.01 1.45 ± 0.00 0.13 ± 0.00 0.38 ± 0.01 0.46 ± 0.00 0.48 ± 0.01 0.59 ± 0.01 1.00 ± 0.16

MOBO-JES N/A N/A N/A N/A N/A N/A N/A 0.48 ± 0.01 0.08 ± 0.00 N/A N/A 0.58 ± 0.01 0.49 ± 0.06 0.65 ± 0.02 0.74 ± 0.02 1.21 ± 0.00

ParetoFlow 0.18 ± 0.02 0.45 ± 0.07 0.35 ± 0.03 0.16 ± 0.07 0.55 ± 0.06 0.79 ± 0.06 0.56 ± 0.03 0.19 ± 0.00 N/A 0.84 ± 0.00 N/A 0.46 ± 0.02 0.46 ± 0.04 0.55 ± 0.05 0.10 ± 0.01 0.12 ± 0.09

DOMOO (ours) 0.18 ± 0.01 0.42 ± 0.05 0.22 ± 0.05 0.95 ± 0.07 0.52 ± 0.07 0.55 ± 0.08 0.29 ± 0.02 0.22 ± 0.00 0.05 ± 0.03 0.91 ± 0.00 0.11 ± 0.04 0.18 ± 0.03 0.22 ± 0.01 0.40 ± 0.04 0.74 ± 0.14 0.13 ± 0.01

Table 27: IGDoffline results for MO-NAS with 256 solutions and 50th percentile evaluations. For each
task, algorithms within one standard deviation of having the highest performance are bolded.

Methods C-10/MOP1 C-10/MOP2 C-10/MOP3 C-10/MOP8 C-10/MOP9 IN-1K/MOP1 IN-1K/MOP2 IN-1K/MOP3 IN-1K/MOP4 IN-1K/MOP5 IN-1K/MOP6 IN-1K/MOP7 IN-1K/MOP8 NasBench201-Test
D(best) 0.11 0.1 0.34 0.36 0.33 0.34 0.32 0.37 0.35 0.29 0.37 0.64 0.62 0.32

End-to-End 0.12 ± 0.01 0.10 ± 0.01 0.30 ± 0.01 0.32 ± 0.02 0.31 ± 0.02 0.28 ± 0.03 0.29 ± 0.00 0.34 ± 0.00 0.27 ± 0.02 0.25 ± 0.02 0.36 ± 0.04 0.54 ± 0.09 0.57 ± 0.02 0.29 ± 0.02
End-to-End + GradNorm 0.27 ± 0.10 0.11 ± 0.01 0.42 ± 0.02 0.59 ± 0.13 0.40 ± 0.04 0.34 ± 0.02 0.32 ± 0.01 0.50 ± 0.02 0.48 ± 0.11 0.35 ± 0.07 0.65 ± 0.19 0.60 ± 0.14 0.68 ± 0.02 0.54 ± 0.32

End-to-End + PcGrad 0.13 ± 0.02 0.10 ± 0.01 0.31 ± 0.00 0.39 ± 0.03 0.31 ± 0.02 0.31 ± 0.01 0.30 ± 0.01 0.34 ± 0.01 0.35 ± 0.04 0.28 ± 0.02 0.37 ± 0.02 0.50 ± 0.04 0.56 ± 0.01 0.32 ± 0.04
Multi Head 0.11 ± 0.00 0.11 ± 0.01 0.30 ± 0.00 0.32 ± 0.02 0.34 ± 0.03 0.26 ± 0.01 0.30 ± 0.01 0.33 ± 0.00 0.27 ± 0.01 0.26 ± 0.02 0.38 ± 0.04 0.46 ± 0.10 0.55 ± 0.00 0.31 ± 0.03

Multi Head + GradNorm inf ± nan 0.12 ± 0.01 0.39 ± 0.03 0.48 ± 0.07 0.52 ± 0.02 0.45 ± 0.14 0.60 ± 0.22 0.48 ± 0.03 0.35 ± 0.05 0.30 ± 0.04 0.42 ± 0.06 0.92 ± 0.21 0.73 ± 0.00 0.30 ± 0.01
Multi Head + PcGrad 0.14 ± 0.05 0.09 ± 0.01 0.31 ± 0.01 0.48 ± 0.06 0.34 ± 0.03 0.30 ± 0.01 0.30 ± 0.00 0.33 ± 0.00 0.34 ± 0.02 0.27 ± 0.01 0.36 ± 0.02 0.47 ± 0.02 0.56 ± 0.00 0.29 ± 0.02

Multiple Models 0.12 ± 0.01 0.15 ± 0.07 0.30 ± 0.01 0.30 ± 0.02 0.33 ± 0.02 0.28 ± 0.06 0.29 ± 0.00 0.33 ± 0.00 0.28 ± 0.01 0.25 ± 0.01 0.38 ± 0.04 0.45 ± 0.06 0.56 ± 0.01 0.30 ± 0.02
Multiple Models + COMs 0.11 ± 0.00 0.10 ± 0.01 0.31 ± 0.00 0.38 ± 0.03 0.34 ± 0.02 0.28 ± 0.01 0.30 ± 0.00 0.34 ± 0.00 0.32 ± 0.03 0.27 ± 0.01 0.35 ± 0.01 0.51 ± 0.05 0.57 ± 0.01 0.34 ± 0.04
Multiple Models + RoMA 0.12 ± 0.01 0.10 ± 0.01 0.32 ± 0.01 0.34 ± 0.02 0.36 ± 0.01 0.25 ± 0.01 0.32 ± 0.02 0.37 ± 0.01 0.31 ± 0.03 0.25 ± 0.01 0.35 ± 0.01 0.46 ± 0.05 0.60 ± 0.02 0.32 ± 0.02
Multiple Models + IOM 0.12 ± 0.01 0.12 ± 0.01 0.31 ± 0.00 0.32 ± 0.03 0.32 ± 0.02 0.27 ± 0.01 0.29 ± 0.00 0.33 ± 0.01 0.33 ± 0.03 0.26 ± 0.00 0.36 ± 0.03 0.51 ± 0.04 0.55 ± 0.00 0.33 ± 0.03
Multiple Models + ICT 0.12 ± 0.01 0.13 ± 0.06 0.34 ± 0.03 0.46 ± 0.11 0.33 ± 0.03 0.32 ± 0.02 0.32 ± 0.01 0.36 ± 0.01 0.31 ± 0.02 0.29 ± 0.01 0.35 ± 0.01 0.51 ± 0.07 0.59 ± 0.01 0.31 ± 0.01

Multiple Models + Tri-Mentoring 0.11 ± 0.01 0.09 ± 0.01 0.32 ± 0.01 0.48 ± 0.07 0.36 ± 0.02 0.32 ± 0.04 0.35 ± 0.01 0.39 ± 0.01 0.33 ± 0.01 0.29 ± 0.01 0.35 ± 0.01 0.49 ± 0.06 0.56 ± 0.01 0.36 ± 0.01

MOBO 0.11 ± 0.00 0.09 ± 0.01 0.30 ± 0.01 0.33 ± 0.01 0.33 ± 0.02 0.28 ± 0.00 0.31 ± 0.00 0.34 ± 0.00 0.35 ± 0.01 0.25 ± 0.02 0.38 ± 0.01 0.49 ± 0.01 0.55 ± 0.01 N/A
MOBO-qParEGO 0.11 ± 0.00 0.11 ± 0.00 0.37 ± 0.00 0.33 ± 0.01 0.37 ± 0.01 0.39 ± 0.00 0.45 ± 0.01 0.39 ± 0.00 0.38 ± 0.02 0.35 ± 0.11 0.37 ± 0.01 0.51 ± 0.00 0.59 ± 0.00 N/A

MOBO-JES N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A

ParetoFlow 0.10 ± 0.02 0.06 ± 0.02 0.33 ± 0.00 0.38 ± 0.03 0.29 ± 0.00 0.33 ± 0.01 0.33 ± 0.02 0.37 ± 0.01 0.34 ± 0.02 N/A N/A 0.65 ± 0.01 0.58 ± 0.00 N/A

DOMOO (ours) 0.12 ± 0.00 0.11 ± 0.00 0.30 ± 0.01 0.31 ± 0.01 0.34 ± 0.01 0.33 ± 0.06 0.31 ± 0.00 0.41 ± 0.04 0.66 ± 0.14 0.78 ± 0.12 0.62 ± 0.06 0.43 ± 0.03 0.59 ± 0.02 0.28 ± 0.01
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Table 28: IGDoffline results for MORL with 256 solutions and 50th percentile evaluations. For each
task, algorithms within one standard deviation of having the highest performance are bolded.

Methods MO-Swimmer MO-Hopper
D(best) 0.43 0.8

End-to-End 0.81 ± 0.00 0.90 ± 0.00
End-to-End + GradNorm 0.77 ± 0.00 0.91 ± 0.00

End-to-End + PcGrad 0.78 ± 0.00 0.89 ± 0.00
Multi Head 0.71 ± 0.00 0.89 ± 0.00

Multi Head + GradNorm 0.82 ± 0.00 0.91 ± 0.00
Multi Head + PcGrad 0.77 ± 0.00 0.88 ± 0.00

Multiple Models 0.78 ± 0.00 0.90 ± 0.00
Multiple Models + COMs 0.66 ± 0.00 0.90 ± 0.00
Multiple Models + RoMA 0.76 ± 0.00 0.90 ± 0.00
Multiple Models + IOM 0.75 ± 0.00 0.85 ± 0.00
Multiple Models + ICT 0.74 ± 0.03 0.89 ± 0.04

Multiple Models + Tri-Mentoring 0.72 ± 0.05 0.91 ± 0.00

MOBO N/A N/A
MOBO-qParEGO N/A N/A

MOBO-JES N/A N/A

ParetoFlow 0.87 ± 0.18 0.93 ± 0.00

DOMOO (ours) 0.62 ± 0.04 0.81 ± 0.09

Table 29: IGDoffline results for RE with 256 solutions and 50th percentile evaluations. For each task,
algorithms within one standard deviation of having the highest performance are bolded.

Methods RE21 RE22 RE23 RE24 RE25 RE31 RE32 RE33 RE34 RE35 RE36 RE37 MO-Portfolio
D(best) 0.56 0.00 0.00 0.00 0.03 0.01 0.02 0.04 0.34 0.09 0.69 0.65 0.47

End-to-End 0.45 ± 0.00 0.22 ± 0.01 0.04 ± 0.00 0.12 ± 0.10 0.10 ± 0.05 0.27 ± 0.00 0.09 ± 0.02 0.07 ± 0.03 0.30 ± 0.00 0.36 ± 0.05 0.41 ± 0.03 0.53 ± 0.01 0.56 ± 0.01
End-to-End + GradNorm 0.47 ± 0.02 0.15 ± 0.06 0.34 ± 0.34 0.66 ± 0.33 0.12 ± 0.09 0.68 ± 1.17 0.06 ± 0.02 0.15 ± 0.01 0.35 ± 0.02 0.34 ± 0.04 3.08 ± 0.00 0.53 ± 0.01 0.56 ± 0.01

End-to-End + PcGrad 0.45 ± 0.00 0.49 ± 0.63 0.03 ± 0.02 0.30 ± 0.08 0.07 ± 0.00 0.26 ± 0.04 0.11 ± 0.01 0.12 ± 0.04 0.31 ± 0.00 0.18 ± 0.03 0.44 ± 0.04 0.52 ± 0.00 0.56 ± 0.01
Multi Head 0.45 ± 0.00 0.18 ± 0.04 0.03 ± 0.01 0.11 ± 0.20 0.09 ± 0.05 0.27 ± 0.02 0.09 ± 0.02 0.08 ± 0.01 0.30 ± 0.00 0.19 ± 0.09 0.38 ± 0.02 0.52 ± 0.00 0.58 ± 0.02

Multi Head + GradNorm 0.47 ± 0.03 2.65 ± 3.53 0.79 ± 0.36 0.68 ± 0.19 0.45 ± 0.39 0.20 ± 0.02 0.05 ± 0.02 0.30 ± 0.16 0.33 ± 0.04 0.28 ± 0.12 0.96 ± 0.89 0.62 ± 0.17 0.65 ± 0.07
Multi Head + PcGrad 0.45 ± 0.00 10.21 ± 19.81 0.03 ± 0.02 0.84 ± 0.08 0.13 ± 0.09 0.21 ± 0.05 0.32 ± 0.26 0.13 ± 0.10 0.30 ± 0.00 0.13 ± 0.05 0.48 ± 0.02 0.52 ± 0.00 0.59 ± 0.02

Multiple Models 0.45 ± 0.00 0.08 ± 0.01 0.06 ± 0.03 0.04 ± 0.03 0.15 ± 0.05 0.26 ± 0.01 0.11 ± 0.00 0.08 ± 0.02 0.30 ± 0.00 0.15 ± 0.05 0.38 ± 0.02 0.52 ± 0.00 0.59 ± 0.03
Multiple Models + COMs 0.45 ± 0.00 0.10 ± 0.05 0.02 ± 0.01 0.16 ± 0.24 0.16 ± 0.06 0.20 ± 0.06 0.11 ± 0.01 0.11 ± 0.06 0.31 ± 0.02 0.06 ± 0.00 0.47 ± 0.02 0.54 ± 0.01 1.08 ± 0.20
Multiple Models + RoMA 0.48 ± 0.00 0.16 ± 0.13 0.21 ± 0.36 0.63 ± 0.35 0.14 ± 0.10 0.02 ± 0.00 0.03 ± 0.00 0.12 ± 0.04 0.33 ± 0.01 0.08 ± 0.00 0.70 ± 0.06 0.53 ± 0.00 0.58 ± 0.01
Multiple Models + IOM 0.45 ± 0.00 0.07 ± 0.06 0.01 ± 0.01 0.00 ± 0.00 0.02 ± 0.02 0.21 ± 0.04 0.08 ± 0.02 0.05 ± 0.00 0.30 ± 0.00 0.07 ± 0.00 0.42 ± 0.04 0.52 ± 0.00 0.60 ± 0.02
Multiple Models + ICT 0.45 ± 0.00 0.14 ± 0.07 0.08 ± 0.06 0.11 ± 0.11 0.06 ± 0.05 0.04 ± 0.02 0.08 ± 0.03 0.11 ± 0.04 0.31 ± 0.00 0.10 ± 0.02 0.43 ± 0.04 0.52 ± 0.00 0.58 ± 0.01

Multiple Models + Tri-Mentoring 0.45 ± 0.00 0.20 ± 0.02 0.23 ± 0.18 0.02 ± 0.04 0.11 ± 0.05 0.03 ± 0.01 0.09 ± 0.01 0.09 ± 0.00 0.31 ± 0.00 0.11 ± 0.07 0.70 ± 0.22 0.52 ± 0.00 0.57 ± 0.01

MOBO 0.59 ± 0.01 0.01 ± 0.00 0.26 ± 0.00 0.57 ± 0.04 0.03 ± 0.02 0.07 ± 0.00 0.03 ± 0.00 0.20 ± 0.02 0.53 ± 0.03 0.07 ± 0.00 0.54 ± 0.00 0.51 ± 0.00 1.96 ± 0.02
MOBO-qParEGO 0.48 ± 0.01 0.01 ± 0.00 0.04 ± 0.06 0.63 ± 0.10 0.01 ± 0.00 0.06 ± 0.00 0.04 ± 0.00 0.05 ± 0.00 0.52 ± 0.01 0.08 ± 0.00 0.54 ± 0.00 0.52 ± 0.00 0.54 ± 0.02

MOBO-JES 0.46 ± 0.01 0.03 ± 0.00 0.00 ± 0.00 0.00 ± 0.00 0.12 ± 0.01 N/A N/A 0.09 ± 0.02 0.37 ± 0.00 0.10 ± 0.00 N/A N/A N/A

ParetoFlow 0.37 ± 0.06 0.03 ± 0.02 N/A N/A N/A 0.07 ± 0.04 0.02 ± 0.00 0.04 ± 0.01 0.35 ± 0.07 N/A 0.56 ± 0.12 0.48 ± 0.06 0.42 ± 0.03
DOMOO (ours) 0.45 ± 0.00 0.07 ± 0.01 0.04 ± 0.00 0.03 ± 0.02 0.14 ± 0.04 0.22 ± 0.01 0.05 ± 0.01 0.07 ± 0.01 0.30 ± 0.00 0.10 ± 0.02 0.39 ± 0.02 0.52 ± 0.00 0.49 ± 0.08

Table 30: IGDoffline results for scientific design with 256 solutions and 50th percentile evaluations.
For each task, algorithms within one standard deviation of having the highest performance are bolded.

Methods Molecule Regex RFP ZINC
D(best) 0.84 1.05 0.39 0.2

End-to-End 1.23 ± 0.24 1.19 ± 0.00 0.41 ± 0.00 0.27 ± 0.01
End-to-End + GradNorm 1.44 ± 0.00 1.19 ± 0.00 0.40 ± 0.00 0.24 ± 0.01

End-to-End + PcGrad 1.20 ± 0.25 1.19 ± 0.00 0.40 ± 0.00 0.24 ± 0.01
Multi Head 1.42 ± 0.03 1.19 ± 0.00 0.40 ± 0.00 0.23 ± 0.02

Multi Head + GradNorm 1.15 ± 0.22 1.09 ± 0.05 0.40 ± 0.00 0.27 ± 0.00
Multi Head + PcGrad 1.31 ± 0.19 1.19 ± 0.00 0.42 ± 0.03 0.25 ± 0.02

Multiple Models 1.21 ± 0.23 1.19 ± 0.00 0.41 ± 0.00 0.28 ± 0.03
Multiple Models + COMs 0.97 ± 0.21 1.19 ± 0.00 0.40 ± 0.00 0.28 ± 0.02
Multiple Models + RoMA 1.22 ± 0.24 1.19 ± 0.00 0.40 ± 0.00 0.25 ± 0.01
Multiple Models + IOM 1.03 ± 0.20 1.19 ± 0.00 0.41 ± 0.00 0.30 ± 0.01
Multiple Models + ICT 0.98 ± 0.23 1.14 ± 0.07 0.42 ± 0.01 0.28 ± 0.02

Multiple Models + Tri-Mentoring 1.39 ± 0.03 1.19 ± 0.00 0.41 ± 0.01 0.28 ± 0.03

MOBO 1.44 ± 0.00 1.05 ± 0.00 0.40 ± 0.00 0.30 ± 0.01
MOBO-qParEGO N/A 1.05 ± 0.00 0.43 ± 0.01 0.18 ± 0.02

MOBO-JES N/A N/A N/A N/A

ParetoFlow 1.19 ± 0.19 0.87 ± 0.00 N/A 0.26 ± 0.08

DOMOO (ours) 1.29 ± 0.18 1.03 ± 0.06 0.42 ± 0.02 0.17 ± 0.01
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G RESULTS OF SELECTION INDICATORS FOR DIVERSITY

About the impact of the selection indicator on diversity. The resulting solution distributions are
shown in Figure 4. The results clearly demonstrate that the HV selection leads to a poorly distributed
set with solutions clustered in a narrow region. The IGDoffline selection produces a well-distributed
front that covers the entire spectrum of known trade-offs, underscoring its effectiveness in preserving
diversity.

(a) Solution Distribution using HV Indicator. (b) Solution Distribution using IGDoffline Indica-
tor.

Figure 4: Comparison of final solution sets selected by different indicators.

H EFFECTIVENESS OF DIVERSITY-DRIVEN SELECTION MECHANISM

About the effectiveness of diversity-driven selection. To demonstrate the necessity of our proposed
DDSS, we compare the solution distributions with and without this mechanism on a representative
benchmark task, as shown in Figure 5. Without DDSS, solution distribution shows a poorly diver-
sified front along the f2 axis, while our DDSS effectively produces a well-distributed Pareto front.
This contrast highlights DDSS’s crucial role in balancing diversity and convergence under OOD
constraints.
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(a) Solution Distribution Without DDSS.
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(b) Solution Distribution With DDSS.

Figure 5: Comparison of solution distributions with and without the DDSS mechanism.
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I HYPER-PARAMETER ANALYSIS

About the impact of hyper-parameter. To explore the sensitivity of DOMOO to different hyper-
parameters, we analyze the exploration steps in nested Pareto set learning Texp on three representative
tasks, with results shown in in Tables 31 and 32. DOMOO is robust on continuous and sequence-based
tasks, but shows higher sensitivity on discrete tasks, likely due to the difficulty of optimizing over
high-cardinality categorical spaces. Nonetheless, performance remains stable when Texp is set within
a reasonable range.

About the K in diversity-driven solution selection. To examine the effect of the DDSS selection
budget on performance, we analyze the maximum number of solutions selected by the IGDoffline-based
stage before HV filling. As described in Section 4.3, DOMOO first selects at most 128 solutions from
Xcand using IGDoffline, and then uses HV to fill the remaining slots to obtain 256 solutions for final
evaluation. This maximum number therefore plays a key role in balancing diversity and convergence.
We evaluate different settings of this hyper-parameter on several representative tasks, with results
reported in Tables 33 and 34. The results show that DOMOO remains stable across a broad range
of values, and setting the maximum number to 128 provides a good balance between convergence
quality and front coverage.

About the robustness to scaling factor in the IGDoffline indicator. As shown in Table 35, we further
investigate the sensitivity of IGDoffline to the scaling factor β. When β is increased from 0.5 to 5.0,
the average ranks of all methods exhibit only minor fluctuations, and their relative order remains
largely unchanged. Within a reasonable range, the choice of the scaling value does not substantially
affect the comparative evaluation results under IGDoffline, verifying the robustness of this indicator
with respect to the scaling hyper-parameter. What’s more, DOMOO consistently achieves the best
average rank across all choices of β.

About the robustness of DOMOO to the energy model risk-ratio hyper-parameter in energy-
based tasks. As shown in Tables 36 and 37, we further analyze the sensitivity of DOMOO to the
risk ratio used in the construction of the energy models across different tasks. When the risk ratio
varies from 0.2 to 1.6, most tasks (e.g., re24, re25, re34, dtlz4) exhibit almost unchanged
HV and IGDoffline, indicating very low sensitivity and strong robustness to this hyper-parameter.
For tasks such as in1kmop7 and mo_hopper_v2, the performance shows only mild and smooth
variation without any abrupt degradation, suggesting controlled and predictable sensitivity rather
than instability. Overall, these results demonstrate that DOMOO maintains stable performance under
a wide range of risk ratios, verifying the robustness of the algorithm with respect to the risk-ratio
hyper-parameter in energy-based tasks.

Table 31: HV results under different Texp/T values.

Tasks 0% 12.5% 25% 37.5% 50% 62.5% 75% 87.5% 100%
dtlz3 10.6026 10.5864 10.6024 10.5850 10.5912 10.5857 10.6026 10.5850 10.5946
in1kmop7 4.4498 4.4221 4.4399 4.4068 4.4693 4.3824 4.4477 4.3824 4.4300
re21 4.6001 4.5974 4.6001 4.5976 4.6000 4.5974 4.6000 4.5976 4.6000
zdt1 4.8207 4.8198 4.8191 4.8184 4.8205 4.8186 4.8191 4.8199 4.8195
c10mop1 4.7270 4.7574 4.7455 4.7484 4.7245 4.7553 4.7269 4.7579 4.7473
re31 10.6481 10.6481 10.6481 10.6481 10.6481 10.6481 10.6481 10.6481 10.6481
vlmop1 0.3168 0.3168 0.3168 0.3168 0.3168 0.3168 0.3168 0.3168 0.3168

J HOW DOMOO PERFORMANCE VARIES WITH DIFFERENT TRAINING SET
SIZES

To further examine the robustness of DOMOO with respect to the amount of available training data,
we conduct an additional sensitivity analysis in which the dataset is randomly subsampled to 25%,
50%, 75%, and 100% of its original size. As reported in Tables 38 and 39, DOMOO maintains highly
stable performance across all data scales. For most tasks (e.g., in1kmop7, regex, re24), both
HV and IGDoffline vary only marginally as the amount of training data changes, indicating that the
method does not rely on large datasets to achieve strong performance.
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Table 32: IGDoffline results under different Texp/T values.

Tasks 0% 12.5% 25% 37.5% 50% 62.5% 75% 87.5% 100%
dtlz3 0.1662 0.1893 0.1690 0.1898 0.1855 0.1898 0.1736 0.1896 0.1784
in1kmop7 0.3385 0.3413 0.3465 0.3560 0.3470 0.3663 0.3436 0.3663 0.3458
re21 0.4449 0.4454 0.4449 0.4453 0.4449 0.4454 0.4449 0.4453 0.4449
zdt1 0.1399 0.1399 0.1388 0.1412 0.1401 0.1410 0.1409 0.1404 0.1400
c10mop1 0.1064 0.1067 0.1105 0.1151 0.1167 0.1097 0.1092 0.1084 0.1094
re31 0.0278 0.0252 0.0296 0.0313 0.0309 0.0363 0.0296 0.0338 0.0364
vlmop1 0.0289 0.0290 0.0291 0.0289 0.0292 0.0289 0.0289 0.0290 0.0289

Table 33: HV results under different maximum numbers.

Tasks 0 32 64 128 160 192 224 256

re22 4.8399 4.8399 4.8399 4.8399 4.8399 4.8399 4.8399 4.8399
dtlz1 10.6462 10.6457 10.6462 10.6460 10.6456 10.6456 10.6456 10.6456

in1kmop1 4.5600 4.5844 4.6191 4.6191 4.6191 4.6191 4.6191 4.6191
in1kmop2 4.3242 4.4885 4.4885 4.4987 4.4987 4.4987 4.4987 4.4987
in1kmop3 9.6707 9.7966 9.7967 9.8696 9.8696 9.8696 9.8696 9.8696

Interestingly, the HV metric for mo_hopper_v2 exhibits a slight downward trend as data size
increases, while its IGDoffline values remain consistent across all subsampling ratios. This suggests
that the convergence behavior of DOMOO is not significantly affected by the available data volume.
Overall, these results demonstrate that DOMOO is robust and sample-efficient, and its effectiveness
persists even when the training data is substantially reduced.

To further investigate the performance of DOMOO under varying levels of OOD severity, we prune
the dataset by removing some high-quality data to simulate different OOD levels. The experimental
results are shown in Tables 40–45. The experimental results show that DOMOO can effectively
balance diversity and quality across different OOD levels. Notably, even under severe OOD conditions
(Tables 40 and 41), DOMOO still maintains strong performance.

K PERFORMANCE OF ONLINE PARETO SET LEARNING METHODS UNDER
OFFLINE OPTIMIZATION

As shown in Table 46, online Pareto set learning methods, namely EPS Ye et al. (2024) and PSL-
MOBO Lin et al. (2022), are not well-suited for offline optimization. When applied to offline
optimization, they often encounter severe out-of-distribution (OOD) issues Lu et al. (2023); Brookes
et al. (2019) , i.e., they yield solutions that are overconfident on the surrogate model, leading to
significant deterioration or even invalidation of the solutions.
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Table 34: IGDoffline results under different maximum numbers.

Tasks 0 32 64 128 160 192 224 256

re22 0.0599 0.0457 0.0457 0.0457 0.0457 0.0457 0.0457 0.0457
dtlz1 0.1681 0.1687 0.1675 0.1687 0.1696 0.1696 0.1696 0.1696

in1kmop1 0.2406 0.2450 0.2328 0.2328 0.2328 0.2328 0.2328 0.2328
in1kmop2 0.3089 0.3149 0.3149 0.3103 0.3103 0.3103 0.3103 0.3103
in1kmop 0.3712 0.3678 0.3678 0.3618 0.3618 0.3618 0.3618 0.3618

Table 35: Comparison of average IGDoffline ranks under different β.

Methods 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0

End2End + GradNorm 9.93 9.95 9.69 9.45 9.28 9.19 9.09 9.03 9.10 9.07
End2End + PcGrad 7.47 7.04 7.07 7.04 7.08 7.01 6.98 6.94 6.98 7.00
End2End + Vallina 6.96 6.42 6.23 6.23 6.32 6.40 6.45 6.44 6.44 6.49
MOBO + JES 9.74 10.46 10.55 10.36 10.45 10.35 10.52 10.51 10.61 10.62
MOBO + ParEGO 7.36 8.35 8.65 8.67 8.70 8.68 8.66 8.67 8.61 8.57
MOBO + Vallina 6.31 6.89 7.26 7.00 6.89 6.74 6.82 6.78 6.89 6.86
MultiHead + GradNorm 10.15 10.14 9.96 9.83 9.76 9.72 9.70 9.67 9.67 9.66
MultiHead + PcGrad 7.36 7.21 7.35 7.39 7.37 7.37 7.40 7.39 7.41 7.33
MultiHead + Vallina 6.89 6.52 6.43 6.29 6.21 6.28 6.27 6.30 6.34 6.31
MultipleModels + COM 6.80 7.72 7.93 8.01 8.09 8.14 8.08 8.13 8.16 8.13
MultipleModels + ICT 7.55 7.82 7.83 7.92 7.90 7.89 7.84 7.81 7.79 7.75
MultipleModels + IOM 5.56 5.96 6.33 6.41 6.46 6.47 6.53 6.47 6.48 6.46
MultipleModels + RoMA 7.98 7.72 7.59 7.79 7.85 7.94 8.05 8.11 8.12 8.19
MultipleModels + TriMentoring 8.29 8.56 8.30 8.35 8.43 8.34 8.31 8.30 8.24 8.23
MultipleModels + Vallina 7.23 6.52 6.46 6.52 6.45 6.48 6.46 6.54 6.48 6.53
DOMOO 6.19 5.66 5.62 5.79 5.87 5.95 5.97 6.03 5.91 5.99

Table 36: Comparison of average HV ranks across different energy model risk ratios in Off-MOO-
Bench.

Tasks 0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6

dtlz4 9.617±0.083 9.742±0.046 9.729±0.050 9.740±0.045 9.742±0.046 9.437±0.005 9.712±0.037 9.718±0.048
in1kmop7 4.519±0.002 4.501±0.002 4.434±0.004 4.432±0.002 4.444±0.002 4.429±0.000 4.509±0.003 4.428±0.001
mo_hopper 6.449±0.035 6.396±0.020 6.474±0.126 6.448±0.069 6.396±0.071 6.358±0.057 6.396±0.055 6.440±0.024
re24 4.835±0.000 4.835±0.000 4.835±0.000 4.835±0.000 4.835±0.000 4.835±0.000 4.835±0.000 4.835±0.000
re25 4.840±0.000 4.840±0.000 4.840±0.000 4.840±0.000 4.840±0.000 4.840±0.000 4.840±0.000 4.840±0.000
re34 10.122±0.000 10.122±0.000 10.122±0.000 10.122±0.000 10.122±0.000 10.122±0.000 10.122±0.000 10.122±0.000
regex 6.189±0.138 6.198±0.147 6.034±0.006 6.034±0.006 6.034±0.006 6.034±0.006 6.254±0.090 6.254±0.090
vlmop1 0.317±0.000 0.317±0.000 0.317±0.000 0.317±0.000 0.317±0.000 0.317±0.000 0.317±0.000 0.317±0.000

Table 37: Comparison of average IGDoffline ranks across different energy model risk ratios in Off-
MOO-Bench.

Tasks 0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6

dtlz4 0.640±0.035 0.739±0.001 0.739±0.001 0.738±0.001 0.738±0.001 0.744±0.002 0.738±0.002 0.743±0.002
in1kmop7 0.361±0.000 0.372±0.000 0.361±0.001 0.365±0.001 0.357±0.001 0.363±0.000 0.366±0.000 0.364±0.001
mo_hopper 0.565±0.005 0.559±0.005 0.495±0.015 0.569±0.002 0.581±0.005 0.610±0.002 0.603±0.000 0.600±0.000
re24 0.016±0.000 0.016±0.000 0.024±0.000 0.024±0.000 0.024±0.000 0.024±0.000 0.023±0.001 0.024±0.000
re25 0.083±0.000 0.091±0.001 0.091±0.001 0.091±0.001 0.091±0.001 0.091±0.001 0.091±0.001 0.091±0.001
re34 0.297±0.000 0.297±0.000 0.297±0.000 0.297±0.000 0.297±0.000 0.297±0.000 0.297±0.000 0.297±0.000
regex 0.896±0.002 0.893±0.003 0.897±0.000 0.897±0.000 0.897±0.000 0.897±0.000 0.897±0.000 0.897±0.000
vlmop1 0.029±0.000 0.030±0.000 0.032±0.000 0.030±0.000 0.030±0.000 0.031±0.000 0.030±0.000 0.032±0.000

Table 38: Comparison of average HV ranks across different tasks in Off-MOO-Bench under varying
training dataset sizes (25%, 50%, 75%, and 100% of the full training data).

Tasks 25% 50% 75% 100%

in1kmop7 4.458±0.003 4.414±0.012 4.486±0.004 4.480±0.080
mo_hopper_v2 5.168±0.212 5.451±1.100 4.881±0.394 6.530±0.240
re24 4.682±0.046 4.789±0.009 4.749±0.022 4.840±0.000
regex 6.383±0.115 6.440±0.034 6.449±0.119 6.520±0.110
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Table 39: Comparison of average IGDoffline ranks across different tasks in Off-MOO-Bench under
varying training dataset sizes (25%, 50%, 75%, and 100% of the full training data).

Tasks 25% 50% 75% 100%

in1kmop7 0.357±0.000 0.389±0.001 0.403±0.001 0.380±0.030
mo_hopper_v2 0.845±0.009 0.785±0.041 0.921±0.022 0.580±0.070
re24 0.084±0.012 0.034±0.003 0.049±0.049 0.010±0.020
regex 0.878±0.000 0.873±0.000 0.866±0.000 0.900±0.010

Table 40: Results on the subset of data with quality scores between the 0th and 50th percentiles. HV
values are reported and higher HV indicates better performance.

Methods DTLZ1 DTLZ3 IN1KMOP7 MO_HOPPER_V2 OMNITEST RE24 RE32 RE35 REGEX VLMOP3
End2End 10.64 10.61 3.60 5.82 4.57 4.49 10.64 10.57 3.98 45.65

MultiHead 10.64 10.50 3.92 5.45 4.42 3.25 10.61 10.58 3.83 38.74
MultipleModels 10.64 10.61 3.74 5.95 4.64 4.16 10.64 10.57 3.87 45.62

DOMOO 10.64 10.63 4.27 4.95 4.66 4.73 10.64 10.59 5.58 45.88

Table 41: Results on the subset of data with quality scores between the 0th and 50th percentiles.
IGDoffline are reported and lower IGDoffline indicates better performance.

Methods DTLZ1 DTLZ3 IN1KMOP7 MO_HOPPER_V2 OMNITEST RE24 RE32 RE35 REGEX VLMOP3
End2End 0.18 0.16 0.57 0.78 0.28 0.12 0.03 0.08 1.07 0.07

MultiHead 0.17 0.15 0.54 0.76 0.30 0.61 0.05 0.18 1.08 0.32
MultipleModels 0.17 0.14 0.53 0.76 0.29 0.25 0.04 0.14 1.08 0.07

DOMOO 0.12 0.12 0.47 0.69 0.38 0.20 0.03 0.10 0.89 0.03

Table 42: Results on the subset of data with quality scores between the 0th and 75th percentiles. HV
values are reported and higher HV indicates better performance.

Methods DTLZ1 DTLZ3 IN1KMOP7 MO_HOPPER_V2 OMNITEST RE24 RE32 RE35 REGEX VLMOP3
End2End 10.64 10.54 3.76 5.54 4.60 4.48 10.64 10.58 3.98 45.85

MultiHead 10.64 10.25 3.99 4.82 4.35 2.78 10.60 10.56 3.54 41.00
MultipleModels 10.64 10.41 3.67 5.90 4.40 3.89 10.64 10.58 3.76 44.79

DOMOO 10.64 10.61 4.33 5.34 4.62 4.69 10.65 10.58 4.77 45.52

Table 43: Results on the subset of data with quality scores between the 0th and 75th percentiles.
IGDoffline are reported and lower IGDoffline indicates better performance.

Methods DTLZ1 DTLZ3 IN1KMOP7 MO_HOPPER_V2 OMNITEST RE24 RE32 RE35 REGEX VLMOP3
End2End 0.17 0.19 0.53 0.78 0.29 0.13 0.03 0.10 1.06 0.07

MultiHead 0.17 0.21 0.46 0.90 0.33 0.83 0.04 0.25 1.07 0.27
MultipleModels 0.17 0.18 0.56 0.63 0.33 0.37 0.03 0.09 1.09 0.08

DOMOO 0.15 0.14 0.50 0.72 0.29 0.21 0.03 0.08 0.90 0.04

Table 44: Results on the full dataset (quality scores from 0th to 100th percentile). HV values are
reported and higher HV indicates better performance.

Methods DTLZ1 DTLZ3 IN1KMOP7 MO_HOPPER_V2 OMNITEST RE24 RE32 RE35 REGEX VLMOP3
End2End 10.64 10.58 3.67 5.89 4.68 4.45 10.64 10.57 3.80 45.70

MultiHead 10.64 10.41 4.14 5.41 4.67 2.85 10.64 10.50 3.98 43.36
MultipleModels 10.64 10.57 3.60 5.65 4.10 4.05 10.64 10.58 3.98 44.20

DOMOO 10.65 10.46 4.25 5.32 4.63 4.71 10.64 10.58 6.06 44.91

Table 45: Results on the full dataset (quality scores from 0th to 100th percentile). IGDoffline are
reported and lower IGDoffline indicates better performance.

Methods DTLZ1 DTLZ3 IN1KMOP7 MO_HOPPER_V2 OMNITEST RE24 RE32 RE35 REGEX VLMOP3
End2End 0.17 0.17 0.55 0.64 0.26 0.14 0.04 0.11 1.08 0.13

MultiHead 0.17 0.21 0.43 0.78 0.25 0.79 0.04 0.27 1.06 0.19
MultipleModels 0.17 0.16 0.58 0.73 0.41 0.30 0.03 0.08 1.06 0.09

DOMOO 0.15 0.19 0.51 0.72 0.28 0.21 0.01 0.07 0.91 0.05

Table 46: Hypervolume results of online Pareto set learning methods under the offline optimization.

Methods DTLZ1 DTLZ3 DTLZ4 DTLZ5 DTLZ6 DTLZ7 MO-Hopper MO-Swimmer OmniTest MO-Portfolio RE21 RE22 RE23 RE24 RE25 RE31
Dbest 10.6 10 10.76 9.35 8.88 8.56 5.67 3.64 4.53 4.24 4.1 4.78 4.75 4.6 4.79 10.6
EPS 4.81 N/A N/A N/A N/A N/A 4.75 2.086 2.003 1.004 4.182 2.643 2.583 10.639 10.599 N/A

PSL-MOBO 7.15 6.84 8.77 7.47 8.87 10.36 4.75 3.086 3.754 N/A 4.84 2.63 2.84 0.84 0.84 9.00
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