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Not All Asians are the Same: A Disaggregated Approach to
Identifying Anti-Asian Racism in Social Media

Anonymous Author(s)

ABSTRACT

Recent policy initiatives have acknowledged the importance of dis-
aggregating data pertaining to diverse Asian ethnic communities
to gain a more comprehensive understanding of their current sta-
tus and to improve their overall well-being. However, research on
anti-Asian racism has thus far fallen short of properly incorporat-
ing data disaggregation practices. Our study addresses this gap by
collecting 12-month-long data from X (formerly known as Twit-
ter) that contain diverse sub-ethnic group representations within
Asian communities. In this dataset, we break down anti-Asian toxic
messages based on both temporal and ethnic factors and conduct a
series of comparative analyses of toxic messages, targeting different
ethnic groups. Using temporal persistence analysis, 𝑛-gram-based
correspondence analysis, and topic modeling, this study provides
compelling evidence that anti-Asian messages comprise various
distinctive narratives. Certain messages targeting sub-ethnic Asian
groups entail different topics that distinguish them from those tar-
geting Asians in a generic manner or those aimed at major ethnic
groups, such as Chinese and Indian. By introducing several tech-
niques that facilitate comparisons of online anti-Asian hate towards
diverse ethnic communities, this study highlights the importance
of taking a nuanced and disaggregated approach for understanding
racial hatred to formulate effective mitigation strategies.

CCS CONCEPTS

• General and reference→ General conference proceedings;
• Social and professional topics → Race and ethnicity; • Net-
works→ Social media networks.
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1 INTRODUCTION

In 2023, the U.S. government released its inaugural report of the
White House Initiative on Asian Americans, Native Hawaiians, and
Pacific Islanders (WHIAANHPI) [40], which aims to develop strate-
gies to enhance justice, equity, and the overall well-being of this pop-
ulation (collectively referred to as Asians hereafter). One of the key
priorities of this initiative is to “make disaggregated data collection
and reporting the norm” across the federal agencies (WHIAANHI,
[40, p.22]). Given the diverse range of ethnic groups within the
Asian American population, the use of disaggregated data prac-
tices is imperative for attaining a thorough understanding of these
distinct Asian communities and relevant policy-making [44]. For
example, when information is reported in an aggregated manner,
the average cancer rate for Asian women is lower than that for
white women. However, when examining segmented records, it
becomes evident that Laotian women have cancer rates more than
nine times higher than those for white women (WHIAANHI, [40,
p.22]). This difference highlights the critical need for disaggregated
data, as it reveals the significant disparities within the Asian Amer-
ican population, enabling policymakers to develop targeted and
effective interventions for specific communities like Laotianwomen.
Indeed, the importance of collecting and reporting disaggregated
data extends beyond Asian Americans and should be applied to all
“panethnic” communities worldwide [29].

Addressing anti-Asian hate can also benefit from disaggregated
data practices. Research on anti-Asian hate has attracted significant
attention, especially in response to the surge in Sinophobia, a fear
or dislike of China or its people, and hate crimes targeting Asians
in the midst of the COVID-19 pandemic. Negative sentiments to-
wards China and Chinese, as evidenced by derogatory labels such
as “Chinese virus,” along with implicit biases against Asians, have
increased during the pandemic [6, 39, 46]. Federal law enforcement
agencies in the U.S. have alerted the surge in anti-Asian hate crimes
during this period [23]. Various advocacy efforts, including hashtag
campaigns such as “#racismisvirus" and “#stopAsianhate" have also
emerged to counter such anti-Asian sentiments and hate crimes.

As a result, the majority of recent studies on anti-Asian hate
have utilized datasets pertaining to the influence of the COVID-19
pandemic, focusing on the evidence and consequences of Sinopho-
bia [35, 36, 38]. While the pandemic has undoubtedly served as an
important backdrop for recent Asian hate research, existing liter-
ature has failed to fully acknowledge the problem of anti-Asian
sentiments as an enduring social issue that transcends being merely
a byproduct of the pandemic. Furthermore, it does not adequately
acknowledge that the problem of anti-Asian hate affects a wide
range of ethnic groups within Asian populations, extending beyond
the Chinese community.

The purpose of this study is to fill this void by examining online
anti-Asian hate using a disaggregated-data approach. In particular,
this study broadens the observation period to cover an extended
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time frame that encompasses the pre-pandemic, peak pandemic, and
post-peak pandemic phases, and conducts comparative analyses
using disaggregated data based on both temporal and sub-ethnic
breakdowns. This disaggregated approach enables the identification
of nuanced distinctions in the animosity directed toward different
ethnic groups within Asian populations. Moreover, it facilitates a
deeper understanding of the intricate inter-ethnic dynamics within
pan-Asian communities.1

The study aims to contribute to the literature by (1) creating
a longitudinal multi-ethnic Asian hate dataset, (2) investigating
temporal trends of anti-Asian messages on X (formerly known as
Twitter), and (3) introducing techniques that enable comparisons of
anti-Asian topics across multiple ethnic communities within pan-
Asian populations. The empirical results presented in this paper
address the following research questions.

(1) RQ1: (a) Are there changes in the magnitude of anti-Asian
messages over time? (b) How do the trends over time vary
across different ethnic groups?

(2) RQ2: (a) How semantically distant are anti-Asian messages
when comparing those aimed at Asians in a general sense
to those directed at specific sub-ethnic groups? (b) How do
the semantic distances change over time?

(3) RQ3: (a) How are these topics distributed among messages
targeting Asians in a general sense, those targeting major
ethnic groups like Chinese and Indian, and those directed
at smaller ethnic groups? (b) What are the prevalent topics
of anti-Asian messages?

We collect a 12-month-long social conversations on X (formerly
known as Twitter) that contain diverse sub-ethnic group represen-
tations within Asian communities. Using this dataset, we disag-
gregate anti-Asian toxic messages based on temporal and ethnic
breakdowns and conduct a series of comparative analyses of toxic
messages targeting various ethnic groups.

Findings from temporal persistence analysis,𝑛-gram-based corre-
spondence analysis, and topic modeling reveal several key insights.
First, there is a substantial increase in the number of anti-Asian mes-
sages (especially anti-Chinese) in response to the declaration of the
pandemic, but the average toxicity score has not much affected by
the pandemic. Second, results align with previous research focused
on online hatred towards the Chinese ethnicity, highlighting that
toxic messages, broadly referring to ‘Asians’, had more semantic
similarities with those targeting the Chinese ethnicity than mes-
sages aimed at other specific groups within the Asian community
and that the volume of messages targeting other sub-Asian ethnic
groups was relatively low. Third, 𝑛-gram-based analysis shows that
toxic messages that attack minority ethnic groups display orthog-
onal semantic features compared to majority-ethnicity-attacking
(e.g., Chinese, Indian) or generic-Asian-attacking messages. In con-
trast, when analyzing minority ethnic groups collectively using
topic modeling, generic-Asian-attacking messages demonstrate
more similar narrative patterns to the collective set of minority
Asian ethnic groups than to a single large group such as Chinese
or Indian.

1https://www.pewresearch.org/race-ethnicity/2022/08/02/what-it-means-to-be-
asian-in-america/

In essence, this study underscores the importance of recognizing
and addressing the diversity of anti-Asian hate speech. Online anti-
Asian hate speech is complex and nuanced, encompassing various
ethnic backgrounds and the intricate web of biases that exist both
within and beyond the Asian community. In this sense, a multifac-
eted and disaggregated data approach is necessary to understand
and combat the hateful discourse. The methodological approaches
we develop in this paper may be useful to researchers and policy-
makers striving to better comprehend and confront these pressing
challenges, fostering a more inclusive and equitable digital land-
scape for all. Importantly, while the primary focus of this study is
on Asians, “panethnicity” is a form of identification observed glob-
ally, encompassing communities like Latino, Yoruba, or Roma [29].
Therefore, disaggregated data practices have universal applicability
in addressing social issues relevant to panethnic communities.

2 RELATEDWORK AND PROBLEM

STATEMENT

2.1 Online Hate/toxic Speech Research

Hate and toxic speech involves abusive and aggressive language
that attacks a person or group based on attributes such as race,
religion, ethnic origin, national origin, sex, disability, sexual orien-
tation, or gender identity [4, 11, 20, 34]. Much effort in this research
domain has been put on message discovery solutions based on nat-
ural language techniques and models to detect and classify hate
speeches more efficiently [30, 31, 37, 45]. Especially, deep learn-
ing has emerged as a powerful technique that learns hidden data
representations and achieves better performance in detecting on-
line hate speech [20, 33]. As a computational aide, state-of-the-art
deep learning models such as BERT2, a BERT fine-tuning model,
RoBERTa [22] have been extensively employed [10, 31].

2.2 Online Anti-Asian Hate Speech Research

Anti-Asian hate speech has recently received attention in response
to the outbreak of COVID-19, during which racism and hateful
messages against Asians have become rampant [12, 17, 20, 47]. On-
line anti-Asian hate speech research has evolved into four types—
COVID-specific hate speech, general anti-Asian sentiments, anti-
Chinese political sentiments, and counter-hate movements such
as “#racismisvirus” and “#stopAsianhate” [21]. Like previous stud-
ies on racist hate speech, anti-Asian speech research has focused
on detecting and classifying anti-Asian toxic contents [20, 21, 43].
Most of these studies have centered specifically on the COVID-19
pandemic. For example, a study introduced a new classifier that
identifies and categorizes online anti-Asian tweets during COVID-
19 into four classes: hostility against East Asia, criticism of East
Asia, meta-discussions of East Asian prejudice, and a neutral class
[43]. Several studies have focused on the trends and features of
anti-Asian sentiment during COVID-19 [12, 19, 27] and found that
antipathy against Chinese had spillover effects on Asians in gen-
eral [28]. One study uses a large-scale web-based media database
to compare global sentiments toward Asians across 20 countries
before and after the pandemic, finding that even though anti-Asian

2Bidirectional Encoder Representations from Transformers [7]
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sentiments are deep-seated and predicated on structural under-
currents of culture, the pandemic has indirectly and inadvertently
exacerbated those anti-Asian sentiments [27].

2.3 Filling the Void: Considering Temporal and

Ethnic Heterogeneity in Asian Hate Speech

While existing research has developed various statistical/machine
learning (ML) techniques (e.g., hate speech detection) to identify
patterns in anti-Asian sentiments of online speech, the vast amount
of research has been situated in a specific empirical context, that
is, the COVID-19 pandemic, resulting in a rather skewed research
trend. Although COVID-19 has resurfaced the concerns about anti-
Asian hate, anti-Asian racism has been an enduring problem of
inter-ethnic relations. Furthermore, empirical datasets related to
COVID-19 often feature a disproportionately large number of mes-
sages concerning China and Chinese, leading to an assessment of
anti-Asian sentiments that is centered around Chinese-related con-
tents [35, 36, 38]. Even many studies, which examine a generically-
defined ‘Asians’, have (misleadingly) alluded to Asians as being a
homogeneous unity, dismissing the essence of “panethnicity” [29]
that Asian is a concept that bridges very diverse sub-ethnic groups.

While those statistical/ML methods have gained traction as a
pragmatic solution to mitigate the discursive “pollution” in digital
information commons [26], critics point out that such models often
miss contextual nuances, such as bias in different demographic and
psycho-graphic subgroups [13]. Some researchers have call for a
more proactivemitigation strategy beyond automated detection. For
example, one study suggested that the polarized opinions sentiment
analyzer system can be used as a plug-in by Twitter to detect and
stop hate speech on its platform [42]. This study recognizes this void
in the existing literature: the predominant focus on the context of
COVID-19 and the negligence of the importance of disaggregating
online hatred messages directed at Asians.

3 DATASETS

3.1 Data Collection

We collect 2.6 million messages from X (Twitter at the time of the
data collection) using its APIs for academic access. The search
period is set from August 2019 to July 2020 to include tweets
from pre-COVID-19 and post-COVID-19 peak periods. We use
search keywords that are related to Asia and 21 sub-ethnic cat-
egories based on the U.S. Census Bureau breakdown.3 We pur-
posely choose generic keywords to avoid collecting tweets that are
only specific to an event (e.g., COVID-19). A complete list of the
chosen search keywords is shown in Appendix B.1. With the speci-
fied period and keywords, the initial data set includes 10 million
tweets, out of which 96.3% of tweets contain with eight major key-
words, ‘China’(+‘Chinese’) (31.5%), ‘India’(+‘Indian’) (19%), ‘Japan’
(+‘Japanese’) (16.7%), ‘Korea’(+‘Korean’) (11.‘%), ‘Asia’+(’Asian’)
(10.8%), ‘Pakistan’+(‘Pakistanis’) (3.1%), ‘Vietnam’+(‘Vietnamese’)
(2.3%), and ‘Indonesia’+(‘Indonesian’) (1.7%). Other search key-
words result in less than 1∼2% of the collected tweets.

3https://www.census.gov/library/stories/2022/05/aanhpi-population-diverse-
geographically-dispersed.html

Table 1: Examples of tweets with high toxicity score but not

being toxic towards the search keywords: Tweets that include

Asian-related keywords, but do not target them

1. “We’re 1/4 of China’s population and we’re number 1
in COVID-19 cases, god this country is so fucking shitty”
(Score=0.92)
2. “Every fucking human country in world, CHINA, JAPAN,
ENGLAND, ETC has video games!!!! ... Its radical white
supremacy...” (Score = 0.92)

3.2 Preprocessing

3.2.1 Perspective API. Among the Perspective’s emotional at-
tributes, we refer to the ‘toxicity’ score for initial examination of
our data. Here, the score lies in between [0, 1], with the highest
score 1 being the most toxic. Toxicity is defined as “a rude, disre-
spectful, or unreasonable comment that is likely to make you leave
a discussion”. Toxicity is known to result in the most reliable score
and has been widely used in previous studies [14, 16]. However,
solely relying on toxicity score could both include false positive and
omit false negative anti-Asian tweets because anti-Asian sentiment
is not always expressed in a toxic manner (see Table 1 for example).
Accordingly, in addition to the toxicity score, we introduce a man-
ually annotated label, which indicates whether a tweet contains
anti-Asian sentiment. We elaborate it in detail in the following.

3.2.2 Manual coding. Although the Perspective API provides the
scores that reflect the likelihood of assessed tweets being toxic in a
reliable manner, it is challenging to see whether the toxic expression
was being made towards Asian or specific ethnic groups we are in-
terested in. Likewise, it is possible to dismiss anti-Asian tweets that
have low toxicity score. To address this issue, we manually annotate
subsampled tweets to obtain more target-indicative information.
For subsampling, we first divide the collected tweets into weekly
batches and sort them based on the corresponding toxicity scores.
From each weekly batch, we randomly sample 20 tweets from ten
groups which are broken down based on the toxicity scores (=200
tweets per week), resulting in 10400 tweets in total:

• Group 1: 20 tweets with the scores lie in [0, 0.1],
.
.
.

• Group 10: 20 tweets with the scores lie in [0.9, 1.0].
Then human annotators manually label the tweets on:

[Anti-Asian] Does this tweet contain “anti-
Asian” sentiment? (True/False).

This label Anti-Asian is to determine if the negative expression
was being directed towards Asian.

Training annotators. Graduate student annotators are trained
with multiple training sessions, during which they are instructed
to make step-wise judgements before annotating the focal attribute.
(Step 1) they judge whether a tweet is interpretable at all. (Step 2)
they judge whether a tweet is an expression of feeling, thought,
opinion, attitude or judgement or perspective about something or
someone. (Step 3) only if the tweets meet the first two criteria,
they judge whether it is a negative sentiment about Asia, Asian

3
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or Asian-signaling object, with satisfactory inter-coder reliability
based on Cohen’s kappa =0.882 and percent agreement = 95%.

Results of the annotation. After removing illegible, meaning-
less, or double-edged remarks without providing a context (e.g.,
“@China_Crazy Instagram”), we keep around 10300 annotated
tweets. Among them, 34% contain “anti-Asian” sentiment (Anti-
Asian is True). We refer readers to Appendix B.2 for details of
annotators and the annotation results.

3.3 Deep Language Models

To label the remaining tweets that have not been manually anno-
tated, we train and employ deep language models for annotating
unlabeled data.We test three deep languagemodels, Bert [7], ELEC-
TRA [5], and RoBERTa [22], and choose one that performs the best
in a 5-fold cross-validation. For all training and validation tasks,
the stratified split of training/validation/test sets as 80/10/10 is con-
sidered as there exists class imbalance in the manually annotated
label. We find that RoBERTa performs the best with the average
validation accuracy of 81.95. For training all models, we use the
minibatch of size 32, learning rate 0.0001, and dropout rate 0.15. The
patience of 20 epochs for early stopping is employed to prevent the
overfitting. All the implementation is based on TensorFlow 2 [1].

4 ANALYSIS

4.1 Data Statistics

Applying the best performed RoBERTa model results in 383,546
tweets satisfying the condition: [Anti-Asian = T] (See Table 2).
The average toxicity scores of the tweets is 0.299, which is about
2.4 times larger than that of the counterpart. The rest of analyses
are based on the use of these machine-labeled anti-Asian tweets.

Table 2: The number of tweets with the labels annotated via

deep language models and average toxicity scores.

Anti-Asian

True False Total
Tweet count 383,546 2,250,141 2,633,687

Average toxicity score 0.298 0.124 0.149

Wemainly present results related to messages, referencing Asian,
Indian, Korean, Vietnamese, Chinese, Japanese, Pakistani, or In-
donesian, are presented because messages that attack other ethnic
groups are identified minimally or not at all. Table 3 provides more
information, including the averaged toxicity scores for these eight
ethnicity references. The toxicity score of Asian is the highest,
followed by those of Korean, Japanese, Indonesian, Vietnamese,
Chinese, Indian, and Pakistani.

Figure 1 shows the weekly changes in the tweet counts and
the average toxicity score for the tweets that satisfy the condition,
where Week 1 corresponds to the week starting at Aug 1st, 2019.
Figure 1a presents the aggregated weekly tweet counts , in which a
big surge occurs in Week 32 (March 12–19, 2020) when the Trump
Administration declares a nationwide emergency due to COVID-
19. Figure 1c presents the cumulative weekly proportion of tweets
containing each ethnicity. Comparable to Figure 1a, Figure 1c shows

Table 3: Per ethnicity, the total number of tweets (# total),

the number of tweets satisfying the condition (# cond), pro-

portions of tweets satisfying the condition (i.e.,
# cond

# total
), and

averaged toxicity scores.

Asian Chinese Indian Japanese
# total 219,690 1,000,385 461,885 387,387
# cond 19,666 230,496 96,611 9,370

Proportion 8.95 % 23.04 % 20.91 % 2.41 %
Avg. Score 0.4273 0.2795 0.3012 0.3492

Korean Pakistani Vietnamese Indonesian
# total 256,341 104,027 63,873 49,795
# cond 11,767 31,390 1,389 2,370

Proportion 4.59% 30.17 % 2.17 % 4.75 %
Avg. Score 0.3576 0.3182 0.3343 0.2910

(a) Tweet counts summed up for the

eight major keywords

(b) Weekly average toxicity scores for

the eight major keywords

(c) Proportion of tweets containing

each keywords

(d) Weekly average toxicity scores of

the tweets containing each keywords

Figure 1: Weekly counts and average toxicity scores of the

tweets withmajor ethnic keywords that satisfy all conditions

a peak in the proportion of the Chinese-related tweets in Week 32.
However, the aggregated tweet counts in other weeks (Figure 1a) do
not necessarily correspond to the peaks of Chinese-related tweets
in Figure 1c (e.g., peaks in Week 2 and 22, weeks after Week 32).

Figures 1b and 1d present the weekly average toxicity score, ag-
gregated (Figure 1b) and disaggregated by ethnicity (Figure 1d). We
again observe increases in the average scores of overall and China-
related tweets in Week 32. However, Japanese and Korean tend to
have higher toxicity scores than Chinese over the entire period

4
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(a) Asian (b) Chinese

(c) Indian (d) Korean

Figure 2: Monthly distribution of toxicity scores towards

selected ethnic groups, [Asian, Chinese, Indian, Korean].

and aligned more with the overall average. More importantly, the
figures reveal that the average toxicity was at its highest not during
the pandemic but in August 2019, a period when both the protests
in Hong Kong were on-going and India revoked the special status
of Jammu and Kashmir. While we do not include Vietnamese and
Indonesian in the graph to enhance interpretability, see Appendix
for Figure1d that includes the two.

4.2 Temporal Changes of Toxicity Scores:

Persistence Analysis

To explore RQ1a about the overtime trends of anti-Asian mes-
sages, we investigate the temporal evolution of toxicity scores. For
this analysis, we disaggregate tweets by ethnicity using ethnicity-
related keywords (See Appendix C.2), constructmonthly histograms
based on toxicity scores distributions per ethnic group, and perform
a statistical analysis to determine the significance in toxicity distri-
bution changes over monthly histograms. Each histogram contains
10 bins with a uniform width, 0.1, i.e., 𝑆𝑒,𝑚 =

[
𝑠
𝑒,𝑚

[0,0.1] , . . . , 𝑠
𝑒,𝑚

[0.9,1]

]
for an ethnicity group 𝑒 in month𝑚. Here, 𝑠 [𝑎,𝑏 ] is the percentage
of tweets with toxicity scores ranging from 𝑎 to 𝑏.

Figure 2 presents the monthly histograms of toxicity scores to-
wards selected ethnic groups. Consistent with the information in
the earlier section, higher toxicity bins take a larger part of the
histograms among the Asia group compared to other groups and
lower toxicity bins take a larger part of the histograms among the
Chinese group.

To examine RQ1b about the (dis)similarity of temporal trends
across ethnic groups, we use the monthly histograms to statistically
measure the consistency in the toxicity scores over time, calculating
persistence scores [46]. The persistence analysis has been frequently
used to capture changes over time, such as dynamical patterns in

Figure 3: Persistence scores of monthly distribution of toxic-

ity scores.

spending and consumption of bank customers [41] and emotional
changes in Twitter [46]. In our study, we define persistence as the
cosine similarity between an ethnicity group’s histograms in two
consecutive months, i.e., 𝑆𝑒,𝑚 and 𝑆𝑒,𝑚−1:

𝑃𝑒,𝑚 = simcos (𝑆𝑒,𝑚, 𝑆𝑒,𝑚−1) . (1)

Persistence scores range from 0 to 1; the score 1 indicates the high-
est persistence, meaning that there is no change in the toxicity
score distribution between two consecutive months whereas the
score 0 indicates the drastic changes. Figure 3 shows the monthly
persistence scores (circles) and the fitted line (solid lines) using a
linear regression for each ethnicity group.

Several points are worth noting. First, all of the monthly persis-
tence scores are over 0.96, indicating that the distribution of toxicity
scores towards each ethnic group is relatively consistent over time.
Second, the patterns of toxicity scores are quite different among
various groups. In terms of statistical significance, only Japanese
and Korean among the eight ethnic groups we observe present a
downward trend (𝑏 = −0.0025, 𝑝 = 0.004; 𝑏 = −0.0014, 𝑝 = 0.038,
respectively) although the coefficients are close to zero, suggesting
a minuscule change. Also, the results suggest that the change in
the distribution of toxicity scores seems to be influenced by events
of which the impact are limited to the focal ethnic group. For exam-
ple, the persistence score for Chinese-referencing messages drops
between Month 6 (February 2020) and Month 7 (March 2020 when
the COVID-19 was spread all over the world), while it becomes rela-
tively stable at the previous level afterwards. This result, along with
the toxicity distribution in the anti-Chinese messages as seen in Fig-
ure 2(b), indicates that the distribution of toxicity against Chinese
has increased during the peak of COVID-19 and then continued the
elevated level afterwards (Figure 3). By comparison, no such trend
is shown among other ethnic groups, implying that the COVID-19,
or any other events that may have increased anti-Chinese toxic
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Figure 4: Accumulated explained variances captured by the first 𝑘 principal axes (computed based on singular values).

(a) Q1 (b) Q2 (c) Q3 (d) Q4

Figure 5: Mean and standard deviation of distance to Asia measured in the embedding spaces with increasing dimensions (i.e.,

incrementally adding principal axes up to the 8-dimensional space).

messages during early 2020, have not influenced the distribution of
the toxic messages that target other ethnic groups.

In sum, we find that while the toxicity of Asian-referencing
messages is largely stable over time, nuanced differences exist in
the temporal patterns when the data are disaggregated by ethnicity.

4.3 Semantic Distances among anti-Asian

Messages: Multiple Correspondence

Analysis

RQ2s examine semantic distances among anti-Asian messages that
target different ethnic groups (RQ2a) and how these distances vary
over time (RQ2b). To address RQ2s, we break down the dataset into
quarterly datasets. We perform multiple correspondence analysis
(MCA) [18] on these quarterly datasets. MCA reveals an underlying
structure or relationships of nominal categorical variables; in short,
the closer the variables are in the 𝑑-dimensional Euclidean space,
the more semantically similar they are. Based on the results of MCA,
we investigate cross-ethnic differences in terms of the distances
from the [Asian] variable to the other ethnicity categorical variables
in the embedding space.

To perform MCA, we first construct a contingency table whose
columns consist of the major ethnic group variables [Chinese, In-
dian, Japanese, Korean, Asian, Pakistani, Vietnamese, Indonesian],
and whose rows consist of the𝑛-grams (uni-, bi-, and tri-grams) that
appear in the dataset. Once the contingency table is constructed,
a singular value decomposition is applied to the preprocessed ma-
trix to obtain orthogonal vectors that represent the ethnic group
variables. For this analysis, we focus on explicitly toxic tweets by
setting the toxicity score threshold to be 𝜏 = 0.8. We repeatedly
apply MCA to quarterly datasets, Q1, Q2, Q3, and Q4, with varying
hyper-parameters (𝑛 in𝑛-grams, etc) and report statistical quantities

(a) Q1 (b) Q2

(c) Q3 (d) Q4

Figure 6: Mean and standard deviation of distance to Asia in

the 8-dimensional embedding space, the space spanned by

all 8 principal axes.

(mean and standard deviation) of results. We refer readers to Ap-
pendix for more details on preprocessing (C.4.1), hyper-parameters
(C.4.2) and additional results (C.4.5).
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Figures 4–6 show the results of the MCA. Figure 4 shows the
accumulated explained variances captured by increasing the num-
ber of principal axes; the principal axes are sorted in a decreasing
order based on the explained variance that each principal axis cap-
tures; that is, the largest explained variance is captured by the first
principal axis. Figure 4 essentially shows that ∼90% and ∼99% are
captured by the first five and six principal axes for all quarters.
Figure 5 shows the distances from the categorical variable [Asian]
to other categorical variables [Chinese, Indian, Japanese, Korean,
Pakistani, Vietnamese, Indonesian], measured in the Euclidean dis-
tance (i.e., the L2-distance) in the embedding space generated by
MCA. We vary the dimensionality of the embedding space from
𝑑 = 1 to 𝑑 = 8 and Figure 6 summarizes the distances from [Asian]
to other variables with 𝑑 = 8 (which is the full space as there are 8
categorical variables).

We make some notable observations from Figures 4 and 5. First,
for all quarters, the distances to three categorical variables [Pak-
istani, Vietnamese, Indonesian] increase by adding the 5, 6, and
7th principal components, while the distances to other ethnicities
[Chinese, Indian, Japanese, Korean] remain unchanged after the 4th
principal component. This observation suggests that there are some
discussions relevant to [Pakistani, Vietnamese, Indonesian] that
are orthogonal to other ethnicities, which makes the distance to
these categorical variables greater. Second, [Indian, Pakistani] and
[Japanese, Korean], respectively, tend to be similarly affected by the
same principal components, suggesting that there are some discus-
sions that are common between Indian and Pakistani, and Japanese
and Korean, respectively ([Japanese, Korean] in Q4 appears to be
an exception, though). Third, the categorical variable [Chinese]
has the closest distance to [Asian] in all quarters (Figure 6). This
finding appears to be partly driven by the fact that anti-Chinese
toxic messages take the largest volume in the sample, which makes
the its distance to [Asian] the closest among other messages that
target other ethnicities. Moreover, in Q3, Asian’s distances to other
ethnicities (i.e., except [Chinese]) tend to become larger than those
in other quarters (Figure 6c), which suggests that the influence of
the COVID-19 during the peak pandemic phase is concentrated to
targeting the Chinese ethnicity. This makes China-hate messages
semantically more distant from messages attacking other Asian
subethnicities. Fourth, while [Chinese] has the closest distance to
[Asian], its distance is not the closest when including only the first
4 or 5 principal components (explaining 80% or higher variances).
This finding suggests that frequent topics of anti-China messages
are different from those of anti-hate discussions of other ethnicities.

In sum, the results from the MCA suggest that toxic anti-Asian
messages encompass a range of discussions that vary over time and
depending on the targeted sub-Asian ethnicities.

4.4 Topic Similarities among Anti-Asian

Messages: BERTopic Modeling

To further investigate topical narratives in anti-Asian tweets (RQs
3), we perform topic modeling. Topic modeling supplements the 𝑛-
gram based assessment in the earlier MCA section by enabling the
examination of actual narratives of anti-Asianmessages. To perform
topic modeling, we use the BERTopic API [15], a Transformer-based
topic modeling technique that provides human-interpretable results.

We choose BERTopic over other alternatives such as latent Dirich-
let allocation (LDA) or non-negative matrix factorization (NMF)
because BERTopic outperforms the other methods (LDA, NMF)
in terms of two performance measures, topic coherence and topic
diversity (see Appendix C.5 for the definitions and performance
outcomes of these metrics).

BERTopic takes a collection of documents, embeds the docu-
ments into vector representations, reduces them via dimensionality
reduction to cluster them, and computes latent topics via identify-
ing the most representative words in each cluster. In our modeling,
we consider Sentence-Transformer [32], UMAP [25], and HDB-
SCAN [24] for document embedding, dimensionality reduction,
and clustering. We run BERTopic model instances with 100 combi-
nations of various hyper-parameter settings. We report the results
in statistics. For descriptions on preprocessing and the considered
hyper-parameters, we refer readers to Appendix.

To be consistent, we apply the same threshold in data selection
as in the MCA (i.e., the toxicity scores greater than or equal to
0.8). Given that the total volume of tweets exceeding the toxic-
ity score of 0.8 is not substantial, we group the sample into four
categories for topic modeling: [Asian, Chinese, Indian, and Other
Asian (i.e., the union of Japanese, Korean, Pakistani, Vietnamese,
and Indonesian)] and without temporal partitioning. The Chinese
and Indian groups are compared separately due to their relatively
large message volumes.

Topic modeling results in the probability score of each topic
within each tweet, which describes how likely a tweet contains
a given topic. As a total of 30 topics are inferred from the topic
modeling, 30-dimensional vector is given to a tweet, where an
element of the vector describes a probability of the tweet being
assigned to a topic. After assigning topic probabilities within each
tweet, we disaggregate the dataset by splitting tweets into four
ethnicity-based groups [Asian, Chinese, Indian, OtherAsian], based
on the same keyword-based selection process, as described in the
earlier section (and also detailed in Appendix C.2). Finally, we
average the topic probabilities (the 30-dimensional vector) assigned
to each tweet in a group-wise manner, resulting in four averaged
topic probabilities associated with each group.

First, before examining the contents of topics, we perform statis-
tical tests using the Spearman’s rank-order correlation coefficients
to measure topical similarity between messages that broadly target
Asian in general and those that target other groups, [Chinese, In-
dian, OtherAsian], respectively. The higher the coefficient is, the
more similar the rank order of topic probabilities between the two
compared groups is. The results suggest that messages broadly
targeting Asian in general ([Asian]) have a more similar topic rank-
order to that of the OtherAsian group (𝜌 =0.688, 𝑝 =0.004), i.e.,
the collection of messages directed at relatively small-sized ethnic
groups rather than to that of the large ethnic groups, Chinese (𝜌
=0.398, 𝑝 =0.033) and Indian (𝜌 =0.430, 𝑝 =0.020). This observa-
tion suggests that [OtherAsian] has the closest topical distance to
[Asian]. This point is also consistent with the fourth finding in the
MCA; that is, [China] or [India] are not the closest group to [Asian]
in the low-dimensional space (i.e., 𝑑 ≤ 4) where the principal axes
are relevant to narratives that are common to all groups.

Next, we examine the topics that yield the highest average prob-
ability within each group. Table 4 presents the most representative
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Table 4: Representative topics obtained from BERTopic (the

obvious words, e.g., ‘China’ in the Chinese group’s topic, are

omitted from the representative words).

Group Topic Prob. Representative words
Asian Asian-on-other-race-trop 0.474 black, white, racist
Chinese Hate against Chinese commu-

nism
0.408 realdonaldtrump, commu-

nist, government
Indian India-Pakistan tension 0.643 terrorist, muslim, country

OtherAsian Blasphemy surrounding K-pop 0.228 kpop, fan, bitch
Anti-Pakistan 0.187 terrorist, muslim, country

topics of each group with their topic probability. See Appendix C.5
for top-5 topics in each group with example tweets. First, we find
that the most predominant topics for each group are different from
one another. The most frequently discussed anti-Asian narratives
are uniquely shaped by ‘whom’ the message attacks.

Among themessages that broadly target Asian in general ([Asian]),
the topic with the highest average probability score contains themes
related to domestic inter-racial conflicts. By comparison, the most
likely topics directed at Chinese and Indian revolve around global
politics and ideological tensions, including expressions of anti-
communism and Hindu-Muslim conflict, respectively. In all of these
three groups, each of the most prominent topic stands out with
a substantially higher probability score than the topic with the
second-highest probability score (e.g., the highest and the second
high scores of topics in the Asian group are 0.474 and 0.090). On the
other hand, within the OtherAsian group, the topic probabilities
are distributed more evenly. The topic that earns the highest score
was negative attitudes towards K-pop culture with the score of
0.228, followed by anti-Pakistan narratives, with the score of 0.187,
showing only a 0.04 percentage point difference between them.
These results suggest that a unique topic highly dominates hate
narratives towards the Chinese and the Indian group, respectively,
which makes their topical distance farther away from those topic
narratives directed at Asian in general, as evidenced in Table 4.

In sum, findings from the topic modeling suggest that there
are distinct and pronounced thematic differences in the narratives
targeting different groups, with varying degrees of intensity and
focus on specific topics. Understanding these variations is essential
for grasping the diversity of perspectives and concerns within the
larger Asian community.

5 DISCUSSION AND CONCLUSION

This study takes a disaggregated data practice approach to examine
online anti-Asian hate, in line with the emphasis that policymakers
have placed on gaining a more comprehensive understanding of
Asian communities. Drawn from three analytic techniques– toxic-
ity score-based persistence analysis, 𝑛-gram based MCA, and topic
modeling-based Spearman’s rank correlation– help deepen our
understanding of anti-Asian hate that occurs online. We disaggre-
gate the dataset based on the two axes of temporality and ethnicity,
which allow us to identify specific patterns in the changes in toxicity
levels of anti-Asian messages directed at various sub-ethnic groups.
Moreover, the identification of unique orthogonal clusters of hate
messages targeting minority Asian ethnic groups, as revealed by

the MCA results as well as evidenced by the topic analysis, reiter-
ates the importance of data disaggregation. Overall, the findings
highlight the distinct nature of anti-Asian hate directed at various
ethnic groups, reaffirming the need for a nuanced computational
approach in addressing the issue of anti-Asian hate.

Our approach of using various methodological techniques re-
quires careful consideration as different analytical techniques may
yield varying insights when assessing the problem of anti-Asian
hate. For example, the 𝑛-gram-based MCA with granular data dis-
aggregation suggests that hate messages targeting larger ethnic
groups, such as Chinese and Indian, are semantically close to those
targeting Asian in general, when all of the eight principal compo-
nents are included even though they are not as close when only
the first 4 or 5 principal components. This result may have been in-
fluenced by the sheer volume of anti-messages targeting the larger
groups. By comparison, the application of rank-order correlation
tests using topic modeling outputs is less sensitive to the relative
data size and suggests that prominent narratives in messages tar-
geting smaller ethnic groups are more similar to the narratives
of hate messages targeting Asian in general, as opposed to those
specifically targeting Chinese or Indian communities. As such, it is
important to consider appropriate techniques and models that align
with specific objectives and interests to identify patterns of data for
effective data disaggregation practices. For example, if one should
weigh the absolute volume of conversations in their assessment, 𝑛-
gram based MCAwould be a more appropriate technique than topic
modeling-based Spearman’s rank correlation. Conversely, if the
focus is on emphasizing the actual discursive content, topic model-
ing and Spearmans’ rank correlation may provide more nuanced
insights than 𝑛-gram based MCA.

Regarding the data size imbalance across ethnicities, it is also
worth to note that a limitation lies in the nature of historical data
collection as opposed to real-time data collection. The platform
may have already filtered out some of highly toxic tweets before
our data collection, and its moderation could have served majority
ethnicities better than minority ethnicities.

Having said that, one of the significant takeaways from this
study is the broader applicability of disaggregated data practices.
While this study primarily focuses on anti-Asian hate, “panethnic”
communities are prevalent globally, encompassing various subset
of world populations. The universal applicability of disaggregated
data practices in addressing social issues relevant to panethnic
communities is a noteworthy aspect. It emphasizes the broader
significance of this research beyond the specific context of anti-
Asian hate.

In conclusion, this study has highlighted the importance of dis-
aggregating data to gain a more nuanced understanding of on-
line anti-Asian hate. The findings underscore the complexities and
unique challenges faced by marginalized Asian communities. By
scrutinizing nuanced ethnicity-based hatred, this study encour-
ages critical reflection on inter-ethnic relations and corresponds
to a multicultural society’s needs to value diversity, equity, and
inclusion.
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A BROADER PERSPECTIVE, ETHICS AND

COMPETING INTERESTS

By scrutinizing nuanced ethnicity-based hatred, this study encour-
ages critical reflection on inter-ethnic relations and corresponds to
a multicultural society’s needs to value diversity, equity, and inclu-
sion. While it is important to look into the nature of hate speech, we
also acknowledge a possibility to cause unintended priming effects
by surfacing the details of undesirable messages. This concern may
apply not only to the current study but to all public research and
media coverage that report incidents of hate and toxic messages.

We collected data complying with the protocol approved by the
Institutional Review Boards (IRBs) at the researchers’ institutions
that ensures user privacy; we have collected data complying with
the protocol that ensures user privacy; 1) Twitter master ID-list is
separately restored and 2) only tweets and their timestamps have
been used for analysis, i.e., user profiles have not been utilized for
analysis. We plan to release this dataset publicly available with the
stipulation that those who use it must comply with X’s Terms and
Conditions and must not attempt to (de)-identify user profiles.

B MORE DETAILS ON DATASET COLLECTION

B.1 Search Keywords

Table 5 lists a complete set of search keywords. We use search
keywords that are related to Asia and 21 sub-ethnic categories
based on the U.S. Census Bureau breakdown4.

Table 5: Twitter search keywords (alphabetically-ordered)

Ethnicity-based search keywords

Asia, Asian, Cambodia, China, Chinese, Filipino, Hmong, India,
Indian, Indonesia, Indonesian, Japan, Japanese, Korea, Korean,
Laos, Laotian, Malaysia, Malaysian, Mongol, Mongolian, Ok-
inawan, Nepal, Nepalese, Pakistan, Pakistani, Philippine, Sri
Lanka, Sri Lankan, Thailand, Vietnam, Vietnamese

We also attempt to collect tweets containing Asian-targeting
slurs for which we reference the Wikipedia article5; the keywords
used include [‘abcd’,‘banana’,‘buddhahead’,‘charlie’,‘chinaman’,’ching
chong’, ’chink’, ’coconut’, ’coolie’, ’dink’, ’flip’, ’gook’, ’gook-eye’,
’gooky’, ’hajji’, ’hadji’, ’haji’, ’jap’, ’nip’, ’slope’, ’slopehead’, ’slopy’,
’slopey’, ’sloper’, ’slant’, ’slant–eye’, ’twinkie’, ’zip’, ’zipperhead’].
However, no tweets including such keyword are collected except
the ones containing the general meanings such as ‘coconut’. We sus-
pect that tweets including such words have already been removed
from the archive as they do not appear in our search. This can be
considered as a limitation regarding the use of a keyword-based
sampling, which we further elaborate in the following.

Limitation on a keyword-based sampling. Even if a keyword-
based sampling is widely used and often an essential step for text
mining in social media, there is an unavoidable constraint due to an
“undocumented upper limit known as streaming cap” [9], however

4https://www.census.gov/library/stories/2022/05/aanhpi-population-diverse-
geographically-dispersed.html
5https://en.wikipedia.org/wiki/List_of_ethnic_slurs

a researcher builds an extensive keyword list. Further, a static set
of keywords may not capture evolution of language uses such as
appearances of new words or (sometimes intentional) misspellings.
Although we may lose some information that can be obtained from
those non-permanent terms, we choose to include only general and
permanent terms to reliably perform longitudinal analysis.

B.2 Annotation result details and potential

limitation

Two doctoral students (one male and one female, Chinese descen-
dants) in journalism/communication were annotators, with sat-
isfactory intercoder reliability: Cohen’s Kappa = 0.882, percent
agreement = 95% for Anti-Asian, respectively. A random subset
of manually coded tweets were further reviewed for validation by
the authors–a mixture of genders, ethnicities (Indian, Korean, and
Chinese), and age (20s-40s).

Although we strived to provide a reliable and generalizable
dataset, online hate is essentially a nuanced and subjective construct
and annotators’ experiences could have influenced the annotation
output.

C DETAILS ON ANALYSIS TOOLS

C.1 Perspective API

Perspective is an API developed by Jigsaw6 and Google’s Counter
Abuse Technology team under a collaborative research initiative
called Conversation-AI. Perspective API scores the perceived im-
pact a comment (e.g., a tweet on Twitter) might have on a con-
versation by using machine learning models. The perceived impact
is evaluated by assessing a variety of emotional concepts, denoted
as attributes, including toxic, insulting, threatening, and so on. The
score on each attribute is represented as a numerical value between
0 and 1, representing a probability; the higher the score, the greater
the likelihood that a reader would perceive the comment as contain-
ing the given attribute. The machine learning models are trained
with the probability scores that have been manually coded by the
crowdsourced human annotators. To be more precise, the probabil-
ity scores are marked as the ratio of raters who tagged a comment
as the one that contains one of the attributes; for example, if 6 out
of 10 annotators tagged a comment as toxic, 0.6 is given to the
comment as its probability score.

Figure 7 depicts the weekly average toxicity scores of the tweets
with all ethnic keywords that satisfy all conditions.

C.2 Ethnicity Grouping based-on Keywords

Ethnicity-specific groups are defined based-on ethnicity-related
keywords. Each group is mutually exclusive, meaning that for con-
structing each dataset, tweets containing the following keywords
exclusively are collected:

• Asian: “Asia”, “Asian”, “Asian’s”,
• Chinese: “China”, “Chinese”, “China’s”,
• Indian: “India”, “Indian”, “India’s”,
• Japanese: “Japan”, “Japanese”, “Japan’s”,
• Korean: “Korea”, “Korean”, “Korea’s”,
• Pakistani: “Pakistan”, “Pakistanis”, “Pakistan’s”,

6https://jigsaw.google.com/
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Figure 7: Weekly average toxicity scores of the tweets with

major ethnic keywords that satisfy all conditions

• Vietnamese: “Vietnam”, “Vietnamese”, “Vietnam’s”,
• Indonesian: “Indonesia”, “Indonesian”, “Indonesia’s”.

For example, the “Chinese” group includes tweets containing the
keywords, “China”, “Chinese”, “China’s”, but not other ethnicity-
related keywords.

For computational analysis, we further downsample the groups
based on the tweets’ toxicity scores. We use three values 𝜏 =

{0.7, 0.8, 0.9} for thresholding the groups and keep only the tweets
that satisfying the condition, the toxicity score ≥ 𝜏 . Figure 8 shows
the per-ethnicity counts and averaged toxicity scores of tweets
filtered based on the toxicity score threshold 𝜏 = {0.7, 0.8, 0.9}.

(a) Counts of tweets (b) Average of tweets

Figure 8: Counts and average of tweets with the toxicity score

greater than or equal to a threshold 𝜏 = {0.7, 0.8, 0.9}.

C.3 Persistence Analysis

C.4 MCA

MCA is a statistical technique to reveal the underlying structure or
the relationship of nominal categorical data; MCA operates simi-
larly with the principal component analysis (PCA) for continuous-
values data, representing the data as points in a low-dimensional
Euclidean space identified by a set of important vectors. In short,
the closer the variables are in the low-dimensional Euclidean space,
the more semantically similar they are.

To perform MCA, we first construct a contingency table, whose
columns consist of the major keywords, [China, India, Japan, Korea,
Asia, Pakistan, Vietnam, Indonesia], and whose rows consist of the
𝑛-grams (uni-, bi-, and tri-grams) that appear in the tweets contain-
ing each major keyword. Once the contingency table is constructed,

standard preprocessing (including centering) steps to the contin-
gency table is followed and, finally, a singular value decomposition
is applied to the resulting matrix to obtain orthogonal vectors that
represent the categorical variables (such as in PCA).

C.4.1 Text preprocessing for𝑛-grams. To compute𝑛-grams, we first
apply following preprocessing to clean up texts: (1) url and HTML
tags are removed, (2) the texts are lower cased and special characters
along with unnecessary tabs and white spaces are removed. (3)
emojis are removed, (4) decontraction of the text is performed (e.g.,
from “I’ve” to “I have”), and (5) finally, English stopwords defined
by Natural Language Toolkit (NLTK) [2] are removed.

C.4.2 Hyper-parameters. The hyper-parameters we consider in
MCA are:

• 𝑛_𝑔𝑟𝑎𝑚 in {1, 2, 3}, which represents three combinations of
𝑛_𝑔𝑟𝑎𝑚, ’1’ denotes uni-gram, ’2’ denotes the combination
of uni-gram and bi-grams, and ’3’ denotes the combination
of uni-gram, bi-grams, and tri-grams.

• 𝑐𝑢𝑡𝑜 𝑓 𝑓 in {5, 10, 15, 20}, which represents the minimum
total frequency of words across different ethnicities. The
frequency of words below the cutoff values are considered
as insignificant to analyze.

Figure 9: [MCA] 2-dimensional representation of the cate-

gorical variables.

C.4.3 A visual example of MCA results. Figure 9 shows an example
result of applying MCA to the contingency table: The ethnicity
variables and the 𝑛-grams are projected in the two-dimensional
embedding space, a space spanned by the first two principal axes.
Here, the principal axes are sorted in a decreasing order based on
the explained variance that each principal axes captures; that is, the
largest explained variance is captured by the first principal axes.
The distances presented in Figure 5 are measured in the Euclidean
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Table 6: Ranks determined in distances from Asian to other

ethnicities in the 8-dimensional embedding space (the closest

one has the rank one).

Rank Q1 Q2 Q3 Q4

1 Chinese Chinese Chinese Chinese
2 Indian Indian Indian Indian
3 Pakistani Korean Indonesian Vietnamese
4 Korean Vietnamese Korean Korean
5 Vietnamese Pakistani Vietnamese Indonesian
6 Japanese Japanese Pakistani Japanese
7 Indonesian Indonesian Japanese Pakistani

distance in each 𝑑-dimensional spaces, spanned by the first 𝑑 prin-
cipal axes (i.e., the number of the principal axes are incrementally
added when 𝑑 gets increased).

C.4.4 Extra information on the result with 𝜏 = 0.8. Table 6 presents
the orders of the ethnicities in each quarter sorted by the distance
from the Asian variable; the distance is measured in the full 8-
dimensional space. Table 6 shows that the ranks of the two closest
ethnicity variables, ‘Chinese’ and ‘Indian’, are invariant over the
period of the investigation, while those of other variables are vary-
ing.

C.4.5 Additional Results. Figures 10 and 11 show the distances
from the categorical variable [Asia] to other categorical variables
[China, India, Japan, Korea, Pakistan, Vietnam, Indonesia], mea-
sured in the Euclidean distance (i.e., the L2-distance) in the embed-
ding space generated by MCA. To filter the tweets for each ethnic
group, different values of toxicity score threshold are employed
in these experiments, i.e,. 𝜏 = 0.7, 0.9. Figures 12 (𝜏 = 0.7) and 13
(𝜏 = 0.9) show the accumulated explained variances captured by
increasing the number of principal axes; again, ∼90% and ∼99% are
captured by the first five and six principal axes for all quarters.

C.5 Topic modeling

We evaluate the model performance by utilizing two commonly
used metrics, topic coherence (TC) and topic diversity (TD) that
operate on the top 10 words of top 10 topics. After training the
topic models (BERTopic, LDA, NMF), a topic is represented by 𝑛
words that have the highest probability of association with that
specific topic. TC measures the interpretability of topics for human
comprehension; a greater resemblance among the words within
a topic corresponds to a higher coherence. The evaluation of TC
for the topic model is conducted using the normalized pointwise
mutual information (NPMI) [3], a metric ranging from -1 to 1, where
-1 implies that the top 𝑛 words never occur together within a topic,
0 denotes independence, and 1 indicates that the top 𝑛 words are
completely co-occurrence. TD assesses the distinctiveness of topics,
quantified by the percentage of unique words of top 10 words in top
10 topics [8]. TD ranges in [0,1], where 0 indicates redundant topics
and 1 indicates more various topics. A higher topic diversity implies
better coverage of various aspects within the analyzed corpus.

Table 7 demonstrates that BERTopic outperforms the other two
models, achieving the highest scores for both TC and TD. Table 8

(a) Q1, scores ≥ 0.7 (b) Q2, scores ≥ 0.7

(c) Q3, scores ≥ 0.7 (d) Q4, scores ≥ 0.7

Figure 10: Mean and standard deviation of distance to Asia

measured in the embedding spaces with increasing dimen-

sions (i.e., incrementally adding principal axes up to the

8-dimensional space).

further investigates the performance of three different topic mod-
eling approaches with a value for thresholding the toxicity score
𝜏 = {0.7, 0.8, 0.9}; the table essentially shows that BERTopic pro-
duces the best results in terms of TC and TD. We note that in all
three methods, topic diversity becomes worse with 𝜏 = 0.9 as the
number of remaining tweets becomes decreased.

Table 7: Topic coherence and topic diversity

TC TD

BERTopic 0.1562 0.92
LDA 0.0176 0.73
NMF 0.0313 0.59

Table 8: Topic coherence and topic diversity of three different

topic modeling approaches

BERTopic LDA NMF
𝜏 TC TD TC TD TC TD

0.7 0.0725 0.82 -0.0055 0.47 0.0129 0.52
0.8 0.0747 0.89 -0.0344 0.37 -0.0006 0.53
0.9 0.0152 0.66 -0.0378 0.32 -0.029 0.46

13



1509

1510

1511

1512

1513

1514

1515

1516

1517

1518

1519

1520

1521

1522

1523

1524

1525

1526

1527

1528

1529

1530

1531

1532

1533

1534

1535

1536

1537

1538

1539

1540

1541

1542

1543

1544

1545

1546

1547

1548

1549

1550

1551

1552

1553

1554

1555

1556

1557

1558

1559

1560

1561

1562

1563

1564

1565

1566

Conference acronym ’XX, June 03–05, 2018, Woodstock, NY Anon.

1567

1568

1569

1570

1571

1572

1573

1574

1575

1576

1577

1578

1579

1580

1581

1582

1583

1584

1585

1586

1587

1588

1589

1590

1591

1592

1593

1594

1595

1596

1597

1598

1599

1600

1601

1602

1603

1604

1605

1606

1607

1608

1609

1610

1611

1612

1613

1614

1615

1616

1617

1618

1619

1620

1621

1622

1623

1624

(a) Q1, scores ≥ 0.9 (b) Q2, scores ≥ 0.9

(c) Q3, scores ≥ 0.9 (d) Q4, scores ≥ 0.9

Figure 11: Mean and standard deviation of distance to Asia

measured in the embedding spaces with increasing dimen-

sions (i.e., incrementally adding principal axes up to the

8-dimensional space).

(a) Q1 (b) Q2

(c) Q3 (d) Q4

Figure 12: Accumulated explained variances captured by the

first 𝑘 principal axes (computed based on singular values).

Preprocessing. Each tweet is preprocessed by using theOCTISAPI7
to lemmatize and remove stop words.
7https://github.com/MIND-Lab/OCTIS/tree/master

(a) Q1 (b) Q2

(c) Q3 (d) Q4

Figure 13: Accumulated explained variances captured by the

first 𝑘 principal axes (computed based on singular values).

Hyper-parameters. The following list describes the hyper-parameters
and their meanings:

• 𝑛_𝑐𝑜𝑚𝑝𝑜𝑛𝑒𝑛𝑡𝑠 is a parameter of UMAP that determines the
dimensionality of embedding that is reduced into.

• 𝑛_𝑛𝑒𝑖𝑔ℎ𝑏𝑜𝑟𝑠 is a parameter that determines the size of the
local neighbors that UMAPwill look at to learn themanifold
structure of the data. A high value of 𝑛_neighbors will force
UMAP to consider a global view, which may lose some de-
tailed information. Conversely, a low value of 𝑛_neighbors
makes UMAP focus on a very small-scale structure.

• 𝑚𝑖𝑛_𝑐𝑙𝑢𝑠𝑡𝑒𝑟_𝑠𝑖𝑧𝑒 is a parameter of HDBSCAN that deter-
mines the smallest group size that is considered to be a
cluster. A larger𝑚𝑖𝑛_𝑐𝑙𝑢𝑠𝑡𝑒𝑟_𝑠𝑖𝑧𝑒 will reduce the number
of clusters by merging some clusters together.

• 𝑚𝑖𝑛_𝑠𝑎𝑚𝑝𝑙𝑒𝑠 is a parameter of HDBSCAN that measures
the conservative of the cluster. The larger 𝑚𝑖𝑛_𝑠𝑎𝑚𝑝𝑙𝑒𝑠 ,
the more conservative the cluster, which means that more
points will be considered as noise that are not clustering.

• 𝑚𝑖𝑛_𝑑 𝑓 is a parameter that indicates the minimum fre-
quency of words when building the vocabulary. If the num-
ber of documents in the dataset that have a specific word
is lower than the𝑚𝑖𝑛_𝑑 𝑓 , then the word will be ignored.
A lower value of 𝑚𝑖𝑛_𝑑 𝑓 may contain some words that
cannot represent enough information. A higher value of
𝑚𝑖𝑛_𝑑 𝑓 may include some words that occur too frequently
but are meaningless as the topic representation.

• 𝑛𝑟_𝑡𝑜𝑝𝑖𝑐 is a parameter that indicates the number of topics
that will be reduced after training the topic model. After
training BERTopic, if the number of topics is higher than
𝑛𝑟_𝑡𝑜𝑝𝑖𝑐 , then the number of topics will be reduced to equal
to 𝑛𝑟_𝑡𝑜𝑝𝑖𝑐 . If the number of topics is lower than or equal
to 𝑛𝑟_𝑡𝑜𝑝𝑖𝑐 , no reduction will be applied.
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For generating the results in Tables 7 and 8, we consider hyper-
parameter combinations: 𝑛_𝑐𝑜𝑚𝑝𝑜𝑛𝑒𝑛𝑡𝑠 ∈ {5, 10}, 𝑛_𝑛𝑒𝑖𝑔ℎ𝑏𝑜𝑟𝑠 ∈
{5, 10, 15, 20, 50},𝑚𝑖𝑛_𝑐𝑙𝑢𝑠𝑡𝑒𝑟_𝑠𝑖𝑧𝑒 ∈ {10, 20},𝑚𝑖𝑛_𝑠𝑎𝑚𝑝𝑙𝑒𝑠 ∈ {1, 10, 20},
𝑚𝑖𝑛_𝑑 𝑓 ∈ {5, 10}, and 𝑛𝑟_𝑡𝑜𝑝𝑖𝑐 ∈ {50, 100}. For generating the re-
sults in the main text, we consider the same hyper-parameter com-
binations except 𝑛𝑟_𝑡𝑜𝑝𝑖𝑐 ∈ {30, 50, 100}. With the larger values of
𝑛𝑟_𝑡𝑜𝑝𝑖𝑐 (i.e., 50, 100), BERTopic starts to extract less meaningful
topics; for examples, topics including only a single tweet.

Additional results. Tables 9–12 list the representative topics, cor-
responding probability, and example tweets in [Asian, Chinese,
Indian, OtherAsian] data. As noted in the main text, there exist
standing-out (in terms of topic probability) topics in [Asian, Chi-
nese, Indian] while in the OtherAsian data, the topic probabilities
are distributed more evenly between different topics.
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Table 9: Representative topics in the “Asian” group

Topic Prob. Example Tweet
1. Asian-on-other-races trope 0.474 “this is an attack by racist asian scumbags on young white men they need locking up our

society is well and truly fucked”
2. General expressions of hate 0.090 “lets kill asians”
3. Derogation of food culture 0.036 “if i have to see that weird asian bitch eat something alive or gross anymore on the internet i

am gonna be the first person ever to defeat the internet”
4. Asian-on-black trope 0.027 “need more black beauty stores fuck these racist ass asian people”
5. Virus-related hate 0.023 “why the fuck is it always asian countries that come up with these crazy ass sshit diseases lol”

Table 10: Representative topics in the “Chinese” group

Topic Prob. Example Tweet
1. Hate against Chinese commu-
nism

0.408 “donaldjtrumpjr realdonaldtrump joebiden your ridiculous father is still praising china you
asshole while people protest and want democracy your daddy is kissing china s ass your
sister feeds her family using child labor and begging china for trademarks shut your tiny little
mouth”

2. Derogation of food culture 0.051 “all of this because of those stupid chinese people who eat anything they see even human stool
like they lack food to eat avoid all chinese people before they eat you alive”

3. Virus-related hate 0.049 “chuckcallesto hell to the yes i even refuse to call it covid 19 i commonly refer to it as the
chinese virus crap chinesevirus”

4. China’s dealing with muslims 0.018 “oh and it s cute and rather revealing how this maggot motherfucker doesn t care about the
muslims china tortures and murders anything to own trump no wonder majid can t keep a
fucking job”

5. anti-business that partner with
Chinese company

0.010 “a big fuck you to blizzard_ent for going against freedom of speech and supporting the
oppressing chinese government i really wish your company bankruptcy fuck you and fuck
your games i ll never buy a blizzard game ever in my life”

Table 11: Representative topics in the “Indian” group

Topic Prob. Example Tweet
1. india-Pakistan tension 0.643 “you bunch of liars how come we end up with a bunch of east indian and pakis that treat their

women like s and end up pouring gas on them or drowning them or killing him outright”
2. Anti-globalism 0.034 “jimmydox2 jhcansouth seanhannity 1 no globalism 2 little kids in chink and indian sweatshops

are the reason its so cheap the price jump is people getting paid for labor”
3. Blasphemy due to lagging in
game/computing

0.015 “fix ur garbage game u stupid indian i keep lagging”

4. Derogation of Indian Tiktok 0.004 “this is the same shit as those indian tik toks”
5. Mistreatment of muslims in In-
dia

0.002 “mkula welcome to malaysia zakir naik in india is bullshit country for you this country is safe
for you nobody will harm you even this lol minister in india they were killing muslim for no
reason that a muslim cannot eat cow here can eat everyday”

Table 12: Representative topics in the “OtherAsian” group

Topic Prob. Example Tweet
1. Blasphemy surrounding K-pop 0.228 “tomhollandisoverparty let me guess this is another k fuck oh sorry kpop douche fuck thing

jesus fuck stay on korea with you weak ass loser shit this is what our pussified society has
become a bend over up the ass society to korean pop fucks great”

2. Anti-Pakistan 0.187 “fawadchaudhry seriously this asshole is the minister of science in pakistan no wonder you
only produce terrorists”

3. Anti-communism/ authoritarin-
ism

0.122 “deplorablereeg1 patrici76267702 i am ready to hunt amp kill communists at any time i did it
in vietnam and i would do it again fucking sons of bitches”

4. Anti-Japan 0.104 “crunchy roll said fuck the japanese black people made this shit”
5. Asian-on-Black 0.089 “brooooo the fucking vietnamese coworker always saying it always the black guy fault and

our black coworker is here listening to him like bruh this man is a savage”
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