MIAU: MEMBERSHIP INFERENCE ATTACK UNLEARNING SCORE FOR QUANTIFYING THE FORGETTING QUALITY OF UNLEARNING METHODS

Anonymous authors

000

001

002

004

006

012 013

014

016

017

018

019

021

024

025

026

027

028

029

031

032

034

037 038

040

041

042

043

044

046

047

048

049

051

052

Paper under double-blind review

ABSTRACT

Machine unlearning aims to adapt the model's internal representations as if the forget set was never part of training set. In this context, a central challenge lies in accurately evaluating whether forgetting has actually occurred. Membership Inference Attacks (MIAs) are commonly used for this purpose; however, existing approaches are limited, often relying on single comparison and lacking reference points such as baseline and retrained model performance. We propose the Membership Inference Attack Unlearning Score (MIAU), a systematic metric that quantifies how closely an unlearning method mirrors the behavior of a fully retrained model. MIAU evaluates the unlearned model by comparing how easily it can separate three different pairs of data: forgotten samples versus test samples, forgotten samples versus retained samples, and retained samples versus test samples. These comparisons are then normalized between the performance of the original model and fully retrained model, providing an interpretable and balanced score of unlearning quality. The MIAU is intended to be used as an offline auditing benchmark to select the most suitable unlearning method for a given model setup and application setting, so that once this choice is made, the method can be applied in practice without performing any additional retraining. Extensive experiments demonstrate that MIAU consistently distinguishes effective unlearning methods across various image classification benchmarks and model architectures. Further statistical tests and empirical evaluations on retrained models—trained on 25%, 50%, and 75% of the forget set—highlight inherent limitations of MIAs in capturing gradual forgetting, presenting need for complementary evaluation methods in unlearning assessment.

1 Introduction

Machine learning (ML) models have achieved remarkable success across diverse applications, fueled by increasingly large datasets and powerful computing (LeCun et al., 2015; Jordan & Mitchell, 2015). This growth, however, has brought increased concerns about user privacy and data governance. Regulations such as the *European Union's General Data Protection Regulation (GDPR)*, specifically Article 17, known as the "Right to be Forgotten", give individuals the legal authority to request the erasure of their personal data from digital systems (European Union, 2016). In the ML context, this has led to the emergence of machine unlearning which aims to update the model so that it behaves as if the designated data were never part of the training set, thereby complying with deletion requests while preserving the model's utility (Guo et al., 2020; Bourtoule et al., 2021; Cao & Yang, 2015; Ginart et al., 2019). However, a central challenge lies in rigorously verifying whether the influence of the forgotten data has indeed been eliminated, both in terms of the model's predictions and internal representations (Golatkar et al., 2020).

To address this, privacy-driven evaluation through membership inference attacks (MIAs) has become a cornerstone in auditing unlearning (Shokri et al., 2017; Chen et al., 2021b). MIAs aim to determine whether a sample was in the training set based on the model's outputs, serving as an empirical proxy for residual memorization (Shokri et al., 2017). In the context of unlearning, a successful method should render forgotten samples indistinguishable from unseen test data under such attacks.

1.1 PROBLEM STATEMENT

054

055 056

057

058

060

061

062

063

064

065

066

067

068

069

071

072 073

074

075

076

077

079

080

081

083

084

085

087

880

089

090

091

092

094

095

096

097

098

100

101

102

103 104

105

106

107

Despite the widespread adoption of membership inference attacks (MIAs) for evaluating unlearning, current evaluation methods remain limited. Most prior works compute MIA performance on only a single subset comparison—Forget vs Test, Retain vs Forget, or Retain vs Test (Chen et al., 2021a; Kurmanji et al., 2023; Chundawat et al., 2023a; Graves et al., 2021). Each captures a distinct aspect of model behavior, but relying on one gives an incomplete and potentially misleading picture. The Forget vs Test comparison measures whether the forget set remains more distinguishable than unseen data, capturing residual overfitting. Low separability here does not imply successful forgetting if the model has lost generalization and predictions become less confident. The Retain vs Forget comparison evaluates whether the model still treats forgotten samples like retained training data (Chundawat et al., 2023b). Because both sets come from the training distribution, effective unlearning should make model behavior on the forget set diverge from that on the retain set. High separability therefore signals successful forgetting, as the model no longer treats the forget set as part of training. However, separability alone cannot distinguish targeted forgetting from broader shifts in model behavior, such as unintended changes in handling retained data. The Retain vs Test setup measures whether the model behaves consistently on retained training data and unseen test data, serving as a sanity check for generalization. Although it does not directly show that the forget set was removed, it is essential for ruling out trivial explanations like underfitting or global degradation that could mimic forgetting. Thus, *Retain vs Test* provides context for interpreting the other two comparisons.

Each configuration examines a necessary but not sufficient condition for verifying unlearning. Evaluating only one cannot reveal whether a change in MIA performance comes from targeted forgetting or unrelated model degradation. Only by jointly analyzing all three can one isolate forgetting-specific effects from confounders such as underfitting, representation collapse, or loss of utility. An effective evaluation must integrate these perspectives into a unified measure capturing both completeness and correctness of forgetting.

Existing MIA-based evaluations also often lack proper baselines or reference points, making privacy gains hard to interpret. Many studies omit membership inference results on baseline or retrained models (Graves et al., 2021; Jia et al., 2023; Li et al., 2024). The baseline model, trained on the full dataset, represents worst-case privacy leakage. The retrained model, trained from scratch without the forget set, represents the best-case "complete forgetting." An unlearned model's MIA score without these two reference points cannot show how much forgetting has been achieved or how close the method is to the ideal.

1.2 PROPOSED SOLUTION

While most prior evaluations omit such baselines, a limited number of studies retrain a model without the forget set to obtain a gold-standard benchmark, to use this reference solely for empirical, non-quantitative comparison with their proposed methods (Foster et al., 2024). While this single retrained reference is valuable for research, repeating such full retraining during deployment contradicts the purpose of machine unlearning and imposes additional computational cost. Therefore, in deployment settings, it is essential to establish a reliable metric that enables us to more accurately evaluate the practical utility of existing unlearning methods for our use case. Prior studies indicate that the effectiveness of unlearning techniques can vary significantly across different tasks (Cheng & Amiri, 2024). Consequently, identifying which approach is most suitable for our deployment scenario is critical, particularly given that continuous model retraining is infeasible in practice. To address this challenge, we introduce the Membership Inference Attack Unlearning Score (MIAU) as an offline auditing framework rather than an operational component of the unlearning pipeline. The resulting score computed once for each model-dataset pair guides researchers and practitioners in selecting the most effective unlearning method for their specific context. Thus, it facilitates the consistent application of the most suitable unlearning method for a given model-dataset context, while eliminating the need for additional retraining overhead during model deployment.

In this context, we propose the Membership Inference Attack Unlearning Score (MIAU)—a metric that quantifies how much of the performance difference between the original baseline model and the fully retrained model is closed by an unlearning method. MIAU captures the degree to which the unlearned model approximates the ideal privacy behavior of a retrained model that has never seen the forget set. It combines three complementary MIA comparisons—Forget vs Test, Retain vs

Figure 1: MIAU as a practical audit–deploy workflow. Left: a one-time offline audit selects the top-scoring method m^* . Right: in deployment, data erasure requests are served by applying m^* ; no full retraining is performed.

Forget, and Retain vs Test—each measuring a distinct property of forgetting: residual memorization, removal effectiveness, and generalization stability, respectively. MIAU normalizes the unlearning method's performance between the baseline and retrain endpoints, producing a single interpretable score that reflects the completeness of forgetting. We evaluate MIAU on four standard image classification benchmarks—MNIST (LeCun et al., 1998), CIFAR-10, CIFAR-20 (Krizhevsky & Hinton, 2009), and MUCAC (Choi & Na, 2023) —using three model architectures: ResNet-18 (He et al., 2016), All-CNN (Springenberg et al., 2015), and Vision Transformer (Dosovitskiy et al., 2021). The evaluation includes four representative unlearning methods: Fine-tune (Bourtoule et al., 2021), SSD (Foster et al., 2024), Amnesiac (Graves et al., 2021), and Teacher (Chundawat et al., 2023b).

Figure 2: General pipeline of Membership Inference Attack Unlearning Score (MIAU) calculation.

Results demonstrate that MIAU provides a reliable and consistent measure of forgetting quality, distinguishing methods that closely approximate retraining from those that do not. Unlike raw MIA accuracy metrics, which are sensitive to attack strength, calibration shifts, or global degradation, MIAU provides an interpretable score between the *baseline* and *retrain* endpoints, enabling consistent comparisons across methods and datasets. To further assess its robustness, we evaluate MIAU under varying unlearning levels—removing 25%, 50%, and 75% of the forget set and assess improvements in score as more of the unlearning data is preserved. Statistical significance tests are further established via paired p-value tests comparing MIAU across methods.

2 RELATED WORK

Several machine unlearning studies assess forgetting by comparing model accuracy on the forget and retain subsets of the training data (Golatkar et al., 2020; 2021; Bourtoule et al., 2021). After unlearning, accuracy on the forget set is expected to drop slightly, ideally approaching test-level per-

formance, while retain-set accuracy should remain close to the original model or a retrained counterpart, indicating preserved utility on non-forgotten data. Additionally, test accuracy is typically used to ensure that overall generalization is not adversely affected by the unlearning process. However, relying on forget and retain accuracy alone introduces several limitations. A model can exhibit low forget-set accuracy by superficially suppressing predictions on the forget set, without eliminating the underlying learned representations (Golatkar et al., 2021; Nguyen et al., 2022). At the same time, a high retain accuracy does not guarantee that forgetting was targeted, as the model may have degraded uniformly or adapted in a way that preserves training performance without isolating the forgotten information. In contrast, MIAU evaluates all three membership-inference comparisons together, separating targeted forgetting from uniform degradation and clarifying whether accuracy changes reflect genuine unlearning or indiscriminate loss of predictive capacity.

To complement or replace these accuracy-based metrics, researchers have proposed dedicated unlearning evaluation scores. Zero-Retrain Forgetting (ZRF) (Chundawat et al., 2023b) score quantifies whether the model's predictions on the forget set become indistinguishable from those of a weak "incompetent" teacher. However, ZRF assumes that prediction randomness alone equates to forgetting, potentially overlooking residual information retained in the feature space. Meanwhile, the Normalized Machine Unlearning Score (NoMUS) (Choi & Na, 2023) balances forgetting and utility into a single normalized score. Despite its convenience, NoMUS relies on the particular formulation of the forgetting score and the fixed weight assigned to privacy versus utility, which may obscure whether high scores result from balanced forgetting and retention or from prioritizing one at the expense of the other. In contrast, MIAU combines the three MIA outcomes with explicitly adjustable coefficients, offering a transparent and theoretically grounded means to balance privacy protection for $\mathcal{D}_{\text{forget}}$ with predictive utility on $\mathcal{D}_{\text{retain}}$ and $\mathcal{D}_{\text{test}}$.

3 Preliminaries

Let $\mathcal{D} = \{(x_i, y_i)\}_{i=1}^N$ be a supervised dataset with features $x_i \in \mathbb{R}^n$ and labels $y_i \in \{1, \dots, K\}$. Machine unlearning aims to remove the influence of a subset $\mathcal{D}_{\text{forget}} \subset \mathcal{D}$ while retaining performance on the remaining data $\mathcal{D}_{\text{retain}} = \mathcal{D} \setminus \mathcal{D}_{\text{forget}}$. The model is modified so that its predictions and internal representations are indistinguishable from those of a model trained only on $\mathcal{D}_{\text{retain}}$.

We additionally define a disjoint test set $\mathcal{D}_{\text{test}}$ for generalization and privacy evaluation. The *base-line model* $\phi_{\theta_{\text{base}}}$ is trained on \mathcal{D} , and the *retrain model* $\phi_{\theta_{\text{retrain}}}$ is trained from scratch on $\mathcal{D}_{\text{retain}}$, representing ideal forgetting.

Unlearning quality is measured with three Membership Inference Attack (MIA) tasks, each implemented by training a binary classifier on model outputs to distinguish samples from two subsets. The *Forget vs Test* setup checks whether forgotten samples remain identifiable; perfect forgetting yields random guessing. The *Retain vs Forget* setup assesses removal effectiveness by testing separability between retained and forgotten data. The *Retain vs Test* setup evaluates whether retained data and unseen test data elicit similar predictions, reflecting generalization.

4 PROPOSED METHOD

The Membership Inference Attack Unlearning Score (MIAU) quantifies the extent to which an unlearning method approximates the privacy behavior of an ideal retrained model. It operates by comparing the outputs of the unlearned model to both the baseline and retrained models across multiple membership inference attack (MIA) tasks. Each task captures a distinct aspect of forgetting: residual memorization, separation between forgotten and retained data, and consistency on unseen samples. MIAU aggregates these evaluations into a single bounded score, enabling standardized assessment of unlearning effectiveness across different settings.

4.1 GAP CLOSURE FRACTION

Let the objective be to quantify the effectiveness of an unlearning method in approximating the privacy behavior of a model trained from scratch without the forgotten data. We consider three models evaluated on a given membership inference attack (MIA) task *i*: the *Baseline* model, trained on the full dataset; the *Retrain* model, trained with the forget set excluded from the beginning;

and the *Unlearning* model, which applies a forgetting algorithm to the baseline. Denote by B_i , R_i , and M_i the membership-inference accuracies measured on task i for the Baseline, Retrain, and Unlearning models, respectively.

To measure how much of the privacy gap between the Baseline and Retrain models has been closed by the unlearning method, we define the gap closure fraction as Eq. equation 1:

$$f_i = \frac{|B_i - R_i| - |M_i - R_i|}{|B_i - R_i|} \tag{1}$$

The quantity f_i represents the relative reduction in distance to the retrain reference point. When $|B_i-R_i|=0$, we directly set $f_i=0$ to avoid division by zero. A value of $f_i=1$ implies perfect alignment with the retrain model $(M_i=R_i)$, indicating ideal forgetting. When $f_i=0$, the unlearning method does not reduce the privacy gap relative to the baseline, and $f_i<0$ indicates that the unlearning method increases the divergence from the retrain behavior.

4.2 MATCHING UNLEARNING SCORE ON METRIC i

While f_i provides a normalized measure of forgetting effectiveness, it is unbounded and may be sensitive to outliers. To obtain a bounded and smooth score in the range (0, 100), we apply a logistic transformation to f_i and define the Matching Unlearning Score (MUS) as Eq. equation 2:

$$MUS_i = 100 \cdot \frac{1}{1 + e^{-\alpha(f_i - 0.5)}}$$
 (2)

This formulation ensures several desirable properties. First, the score remains bounded in the open interval (0,100) without requiring manual clipping. Second, it centers the neutral reference point at $f_i=0.5$, assigning a score of $\mathrm{MUS}_i=50$ to methods that close half the gap to retraining. Third, the parameter α controls the sensitivity of the transformation: larger values of α produce a steeper transition around the midpoint, amplifying differences in intermediate performance. To ensure that the MUS_i score on baseline is near 0, and MUS_i score on retrain is near 100, the α value for our setup was calculated to be 13.8. The detailed derivation of the $\alpha=13.8$ calibration, which ensures that the MUS_i score approaches 0 for the baseline and 100 for the retrain setting, is provided in Appendix A.1.

The logistic transformation is chosen because it maps the unbounded f_i into a stable, interpretable percentage scale (0--100) while preserving the relative ordering of methods, enabling direct comparison across metrics. From a mathematical standpoint, the transformation satisfies the following limits: $\text{MUS}_i \to 0$ as $f_i \to -\infty$, $\text{MUS}_i = 50$ when $f_i = 0.5$, and $\text{MUS}_i \to 100$ as $f_i \to 1$. The logistic function is continuous and differentiable, making it suitable for ranking, visualization, or integration into gradient-based optimization procedures such as hyperparameter tuning or automated model selection.

4.3 MEMBERSHIP INFERENCE ATTACK UNLEARNING SCORE (MIAU)

To produce a unified assessment of forgetting quality across multiple MIA tasks, we define the final unlearning score as the average of the individual MUS values computed for each MIA setup. Specifically, the Membership Inference Attack Unlearning Score (MIAU) is given as Eq. equation 3:

$$MIAU = \beta MUS_{Forget \ vs \ Retain} + \gamma MUS_{Forget \ vs \ Test} + \delta MUS_{Retain \ vs \ Test}$$
(3)

The three MIA tasks correspond to the following subset pairs: $\mathcal{D}_{\text{forget}}$ vs. $\mathcal{D}_{\text{retain}}$ (Forget vs Retain), $\mathcal{D}_{\text{forget}}$ vs. $\mathcal{D}_{\text{test}}$ (Forget vs Test), and $\mathcal{D}_{\text{retain}}$ vs. $\mathcal{D}_{\text{test}}$ (Retain vs Test). Each task captures a distinct dimension of inference risk: the first reflects removal effectiveness, the second measures residual memorization, and the third assesses generalization consistency. The coefficients β , γ , and δ are non-negative weights that represent the relative importance assigned to each MIA direction and satisfy the constraints $\beta + \gamma + \delta = 1$ and $0 \le \beta, \gamma, \delta \le 1$. Depending on the desired emphasis, these weights can be chosen differently; however, for our experiments we set them equal $(\beta = \gamma = \delta = \frac{1}{3})$ to provide a balanced evaluation of unlearning performance, ensuring that no single MIA direction dominates the assessment.

5 EXPERIMENTAL SETUP

Datasets and base models. We evaluate the performance of our proposed MIAU score on four different datasets—*MNIST* (LeCun et al., 1998), *CIFAR-10*, its coarse-label variant *CIFAR-20* (Krizhevsky & Hinton, 2009), and the unlearning-specific face-attribute dataset *MUCAC* (Choi & Na, 2023). MNIST provides 28×28 grayscale digits (10 classes), CIFAR-10/20 contain 32×32 natural images with 10 and 20 superclasses, and MUCAC offers 128×128 celebrity portraits for binary smiling-attribute prediction. Models include *ResNet-18* (He et al., 2016), *All-CNN* (Springenberg et al., 2015), and the *Vision Transformer* (*ViT*) (Dosovitskiy et al., 2021). Dataset details, data preprocessing, training conditions, and all hyperparameter settings appear in Appendix A.4.

Data splits. Each dataset is partitioned into three disjoint subsets: the forget set \mathcal{D}_{forget} , the retain set $\mathcal{D}_{retain} = \mathcal{D}_{train} \setminus \mathcal{D}_{forget}$, and the test set \mathcal{D}_{test} , which is held out for evaluation. The forget set consists of 10% of the training data, sampled uniformly from each class to preserve the original class distribution. To ensure statistical robustness, the splitting and evaluation are repeated across 10 random seeds. For additional non-random evaluations, we also perform full-class forgetting of the electric_devices class in the CIFAR-20 All-CNN setup and 10% subclass forgetting of the veg category.

Unlearning methods. We evaluate four representative unlearning methods: Fine-tune, SSD, Amnesiac, and Teacher. Fine-tune (Bourtoule et al., 2021) retrains the model on the retain set with partial weight updates, SSD (Foster et al., 2024) penalizes parameters most influenced by the forget set, Amnesiac (Graves et al., 2021) reverses their gradient contributions, and Teacher (Chundawat et al., 2023b) distills knowledge from a full-data teacher into a student trained only on the retain set. All unlearning hyperparameters are detailed in Appendix A.4.4.

Attack training protocol. To quantify residual memorization and forgetting, we employ membership inference attacks using the model's softmax output distributions as input features. For each pair of data subsets involved in a given MIA task, a binary logistic regression classifier is trained to discriminate between them, similar to the setup offered by (Chundawat et al., 2023a). The training set for the attack model consists of 80% of the available logits, while 20% is held out for evaluation. Both entropy and maximum class confidence are implicitly captured in the softmax vectors, serving as indicators of memorization and decision margin. To avoid sampling bias during training, all subset pairs used in MIA tasks are size-matched by uniformly subsampling the larger set to match the cardinality of the smaller one. We further report the membership-inference accuracies obtained on the attack model's test split. Attack classifiers are trained independently for each of the three MIA setups: Forget vs Test ($\mathcal{D}_{\text{forget}}$ vs. $\mathcal{D}_{\text{forget}}$), Retain vs Forget ($\mathcal{D}_{\text{retain}}$ vs. $\mathcal{D}_{\text{forget}}$), and Retain vs Forget ($\mathcal{D}_{\text{retain}}$ vs. $\mathcal{D}_{\text{forget}}$).

In addition to the softmax-based attack, we also evaluate a saliency-map-driven MIA. For this variant, we compute input-gradient saliency maps of the target model and XGBoost classifier to distinguish the saliency distributions of member and non-member samples, inspired by the attack setup in (Huang et al., 2024).

5.1 EVALUATION METRICS

Gradual unlearning. A desirable property of any unlearning evaluation metric is consistency under progressive removal of the forgotten data. That is, as a larger portion of the forget set is preserved in retraining, the unlearning score should increase accordingly. To verify that MIAU exhibits this behavior, we construct partial retraining baselines that simulate intermediate levels of forgetting.

Let $\mathcal{D}_{\text{forget}}^{(p)} \subset \mathcal{D}_{\text{forget}}$ denote a subset comprising a proportion $p \in \{0.25, 0.50, 0.75\}$ of the original forget set. The remaining portion (1-p) is excluded from the unlearning procedure. The corresponding partial retrain set is given by $\mathcal{D}_{\text{retrain}}^{(p)} = \mathcal{D}_{\text{retain}} \cup \mathcal{D}_{\text{forget}}^{(1-p)}$, and the model $\phi_{\theta_{\text{retrain}-p}}$ is trained from scratch on this subset.

These models represent intermediate stages of unlearning and serve as graded reference points between the baseline model (trained on $\mathcal{D}_{retain} \cup \mathcal{D}_{forget}$) and the full retrain model (trained solely

on \mathcal{D}_{retain}). We evaluate MIAU for Retrain 75%, Retrain 50%, and Retrain 25% to validate that the score increases as a larger proportion of the forget set is preserved. A consistent ordering of MIAU $_{25} <$ MIAU $_{50} <$ MIAU $_{75} <$ MIAU $_{full}$ supports that MIAU faithfully captures the extent of forgetting.

P-Value test. To validate the consistency and discriminative capacity of MIAU under progressive unlearning, we perform statistical hypothesis testing across partial retrain levels. Specifically, we employ one-sided paired t-tests to evaluate whether the MIAU score at a higher unlearning level is significantly greater than at a lower level. For example, we test whether MIAU₅₀ > MIAU₂₅, MIAU₇₅ > MIAU₅₀, and MIAU₇₅ > MIAU₂₅. All tests are conducted over multiple seeds, and we report the corresponding p-values to determine statistical significance at standard confidence levels.

6 DISCUSSION OF RESULTS

The results in Table 1 show that the proposed MIAU metric effectively quantifies unlearning performance by measuring how closely each method approximates the privacy behavior of a fully retrained model. For example, Amnesiac and Teacher achieve MIAU scores of 40.07% and 38.36%, respectively, meaning they close approximately 40% of the gap between the baseline model (MIAU \approx 0.10%) and the ideal retraining model (MIAU \approx 99.9%). In contrast, Finetune closes only 30.89%, and SSD just 8.55%, indicating less progress toward ideal forgetting. This design overcomes key limitations of individual MIA scores, which only reflect a single perspective and can be misleading without context. For instance, Amnesiac's Forget vs Test score is 56.58% and Forget vs Retain is 55.88%, but without knowing the corresponding baseline or retrain values, these numbers offer little interpretability. Similarly, accuracy-based metrics like Forget Accuracy (e.g., 83.99% for Amnesiac) and ZRF (95.95%) may not not distinguish between targeted forgetting and overall degradation. Each individual MIA configuration tests a necessary but not sufficient condition for successful unlearning. MIAU, on the other hand, provides a structured solution by integrating all three configurations and referencing the performance bounds, making it better suited for evaluating the completeness and correctness of forgetting. The remaining experimental results for all unlearning methods across additional datasets and configurations are provided in the Appendix A.6.

Table 1: Experiments on CIFAR-20 AllCNN

Metric	Baseline	Amnesiac	Finetune	Teacher	SSD
Retain Accuracy	90.2862 ± 0.1332	88.5177 ± 0.1718	86.8171 ± 0.6593	80.6776 ± 0.6884	90.3103 ± 0.1159
Test Accuracy	79.8926 ± 0.0000	76.7656 ± 0.3392	76.5400 ± 0.4834	69.2578 ± 0.6123	79.8936 ± 0.0031
Forget Accuracy	90.2968 ± 0.4404	83.9966 ± 0.6690	81.9508 ± 0.7104	78.8545 ± 0.8649	90.3999 ± 0.3387
ZRF Score	91.1786 ± 0.0670	95.9513 ± 0.0945	91.2336 ± 0.3110	96.6893 ± 0.1198	91.1546 ± 0.0700
MIA (Forget vs Retain)	50.2150 ± 0.8686	55.8800 ± 1.3683	51.8950 ± 1.6075	52.5300 ± 0.8687	50.6250 ± 0.9044
MIA (Forget vs Test)	49.6600 ± 0.9703	56.5800 ± 0.8619	51.8750 ± 1.1660	55.4050 ± 0.8880	49.5950 ± 0.6950
MIA (Test vs Retain)	49.7500 ± 0.3450	51.3775 ± 0.7146	50.3700 ± 0.9752	53.1900 ± 0.5757	49.6475 ± 0.5362
MIA (Train vs Test)	54.4750 ± 0.0000	55.5575 ± 0.3060	54.1125 ± 0.7029	53.8525 ± 0.4610	54.4750 ± 0.0000
MIAU	0.1007 ± 0.0000	40.0764 ± 23.3662	30.8884 ± 15.2037	38.3645 ± 20.3545	8.5516 ± 13.4617

The gradual unlearning results shown in Tables 2, and 3 confirm that MIAU scores increase monotonically with greater retraining data. For the three experiments, we observe that MIAU $_{25} < MIAU_{50} < MIAU_{75} < MIAU_{full}$ validating that MIAU reflects the expected partial unlearning behavior. This progressive rise aligns with the theoretical property of consistency under partial data removal, which is not inherently guaranteed by other metrics like forget accuracy or ZRF.

Despite this expected pattern in the tables, additional experiments uncover inherent limitations of MIAs. In particular, we can observe empirically, that the bar graph (Figure 3) shows that for several datasets, the expected progression MIAU $_{25} <$ MIAU $_{50} <$ MIAU $_{75} <$ MIAU $_{full}$ does not hold consistently. For example, on MNIST_AllCNN and CIFAR10_ResNet, the increase in MIAU is not strictly observed across retraining levels. Statistically, the p-value heatmap (Figure 4) supports these irregularities: only a subset of datasets show meaningful p-values (< 0.05) for comparisons like MIAU $_{75} >$ MIAU $_{25}$ or MIAU $_{75} >$ MIAU $_{50}$. This suggests that individual MIA components (which our MIAU depends on) may still be unreliable in isolation. In particular, the bar graph

Figure 3: Average MIAU scores across 10 random seeds for each dataset at three retraining levels: 25%, 50%, and 75%.

Table 2: Gradual unlearning on CIFAR-10 ViT

Metric	Retrain 25%	Retrain 50%	Retrain 75%	Retrain
D	00.7200 + 0.4105	02 1270 + 21 2400	00 0020 + 20 0000	02 2022 + 22 0112
Retain Accuracy	98.7300 ± 0.4185	92.1279 ± 21.3489	89.9830 ± 28.0999	83.3823 ± 33.0112
Test Accuracy	97.1084 ± 0.3366	90.4990 ± 21.2237	88.5742 ± 27.5882	82.2012 ± 32.2264
Forget Accuracy	95.9102 ± 0.3428	89.7123 ± 20.3195	87.5362 ± 27.3287	81.1884 ± 31.9368
ZRF Score	77.2600 ± 0.6070	78.8569 ± 6.6877	76.7375 ± 0.6512	78.7411 ± 7.2286
MIA (Forget vs Retain)	50.3000 ± 1.8720	53.1400 ± 3.8696	52.3667 ± 1.9312	52.5300 ± 2.2833
MIA (Forget vs Test)	52.2600 ± 1.5665	52.9000 ± 1.2944	52.4200 ± 1.4104	51.8600 ± 1.0723
MIA (Test vs Retain)	50.9500 ± 1.1756	51.2375 ± 0.9500	51.2750 ± 1.3260	51.1075 ± 1.0631
MIA (Train vs Test)	51.2500 ± 0.4518	51.4275 ± 0.7186	51.2325 ± 0.6836	51.0725 ± 0.6412
MIAU	24.4963 ± 17.9590	40.3098 ± 29.5193	48.2700 ± 23.4669	99.8993 ± 0.0000

(Figure 3) reveals substantial standard deviation across seeds for the same retraining level, indicating instability in per-run MIA behavior that may propagate into MIAU.

Figure 4: One-sided p-values from paired t-tests comparing MIAU scores between successive retraining levels across multiple datasets. Each cell reflects the statistical significance of whether the MIAU score from a higher retraining level is significantly greater than that of a lower one.

Further limitations may arise in scenarios where the model exhibits strong generalization across all data splits. As shown in Figure 5, MIA score distributions before and after unlearning often remain closely aligned, indicating minimal separability even when full retraining is performed. High variance in certain scores, especially under simple datasets like MNIST (see Figure 2), also implies that models with low memorization may naturally yield less distinct MIA signals. These observa-

Table 3: Gradual unlearning on MUCAC ResNet-18

Metric	Retrain 25%	Retrain 50%	Retrain 75%	Retrain
Retain Accuracy	93.4748 ± 2.1251	93.4056 ± 1.2176	92.8468 ± 2.3045	91.9656 ± 4.6271
Test Accuracy	93.4268 ± 1.8102	93.7485 ± 0.9387	93.1357 ± 1.9662	92.5286 ± 3.8284
Forget Accuracy	92.5586 ± 4.2547	92.9687 ± 0.8326	91.5788 ± 2.5153	90.9297 ± 4.5826
ZRF Score	76.1309 ± 4.2882	78.0748 ± 4.4559	78.4498 ± 6.1267	79.1186 ± 6.2524
MIA (Forget vs Retain)	50.0000 ± 3.0162	49.4811 ± 3.2181	51.3249 ± 3.7769	50.4976 ± 1.9714
MIA (Forget vs Test)	53.5849 ± 4.1433	54.3396 ± 1.7338	55.7098 ± 2.1354	53.8863 ± 2.1638
MIA (Test vs Retain)	51.5254 ± 1.5284	51.9855 ± 1.1699	52.8208 ± 1.8111	52.3729 ± 1.0212
MIA (Train vs Test)	53.7772 ± 1.4660	52.7240 ± 0.8974	52.7119 ± 0.6782	52.7240 ± 1.5242
MIAU	14.3358 ± 19.8046	21.6582 ± 20.1905	26.3585 ± 15.5590	99.8993 ± 0.0000

tions suggest that in well-generalized regimes, MIAs may become less sensitive as an unlearning diagnostic, and supplementary indicators may be needed to confirm forgetting efficacy.

Detailed results of all experiment are outlined in Appendix A.6.

Figure 5: Comparison of MIA score distributions before and after unlearning. The figure illustrates the distributions of Membership Inference Attack (MIA) scores for three comparisons—Forget vs Retain, Forget vs Test, and Test vs Retain—across the baseline and retrain phases across all experiments.

7 Conclusion

This paper introduces the Membership Inference Attack Unlearning Score (MIAU), metric designed to provide more structured and interpretable performance assessment of machine unlearning methods. Unlike prior evaluation approaches that rely on a single MIA configuration or raw accuracy measures, MIAU integrates multiple attack comparisons—Forget vs Test, Forget vs Retain, and Retain vs Test. It further relates them to the baseline and fully retrained models to quantify the degree of gap closure. Through experiments across diverse datasets and model architectures, we illustrate that MIAU aligns with desirable properties for unlearning evaluation, including consistency under progressive removal and clear separation between effective and ineffective methods.

At the same time, our results highlight potential limitations in relying solely on MIAs for evaluation. In particular, we observe that individual MIA scores can be unstable across seeds and less informative for highly generalized models. These findings suggest that future work may investigate augmenting MIAU with models' internal behavioral indicators, such as latent space drift, neuron activation shifts, or feature attribution dynamics. As a result, these directions may help establish a more reliable understanding of the metric's sensitivity and consistency under varied unlearning regimes.

LLM USAGE

Large Language Models (LLMs) were used only as a general-purpose writing assistant. They helped with grammar correction, phrasing, and minor style edits after the technical content, experiments, and analyses were completed by the authors. No part of the research ideation, methodology design or data analysis was generated by an LLM.

REPRODUCIBILITY STATEMENT

To enable faithful reproduction of all results, we provide a complete specification of training and unlearning settings, implementation artifacts, and per-seed outputs. The full hyperparameter schedule is listed in Appendix A.4.4; dataset preprocessing and construction details (including any remapping and normalization) are in Appendix A.4.3; hardware and software environments are documented in Appendices A.3.1 and A.3.2; and training/validation loss traces used to monitor convergence are shown in Appendix A.4.5. The accompanying code and usage documentation (entry-point scripts, configuration files, and commands to regenerate tables and figures) are provided in the supplementary file Code_Appendix.zip. All per-seed experimental outputs—including metrics, logs, and CSVs of split indices—are contained in the supplementary file Data_Appendix.zip; using the fixed seeds and instructions included in these archives enables full reproduction of every figure and table in the paper.

REFERENCES

- Lucas Bourtoule, Varun Chandrasekaran, Christopher A. Choquette-Choo, Hengrui Jia, Adelin Travers, Baiwu Zhang, David Lie, and Nicolas Papernot. Machine unlearning. In *2021 IEEE Symposium on Security and Privacy (SP)*, pp. 141–159, 2021. doi: 10.1109/SP40001.2021.00019.
- Yinzhi Cao and Junfeng Yang. Towards making systems forget with machine unlearning. In 2015 IEEE Symposium on Security and Privacy (SP), pp. 463–480. IEEE, 2015.
- Min Chen, Zhikun Zhang, Tianhao Wang, Michael Backes, Mathias Humbert, and Yang Zhang. When Machine Unlearning Jeopardizes Privacy. In *Proceedings of the 2021 ACM SIGSAC Conference on Computer and Communications Security (CCS '21)*, pp. 896–911, 2021a. doi: 10.1145/3460120.3484756.
- Min Chen, Zhikun Zhang, Tianhao Wang, Michael Backes, Mathias Humbert, and Yang Zhang. When machine unlearning jeopardizes privacy. In *Proceedings of the 2021 ACM SIGSAC Conference on Computer and Communications Security (CCS)*, pp. 896–911, 2021b.
- Jiali Cheng and Hadi Amiri. Mu-bench: A multitask multimodal benchmark for machine unlearning, 2024. URL https://arxiv.org/abs/2406.14796.
- Dasol Choi and Dongbin Na. Towards machine unlearning benchmarks: Forgetting the personal identities in facial recognition systems. *CoRR*, abs/2311.02240, 2023.
- Vikram S. Chundawat, Ayush K. Tarun, Murari Mandal, and Mohan Kankanhalli. Zero-shot machine unlearning. *IEEE Transactions on Information Forensics and Security*, 18:2345–2354, 2023a. doi: 10.1109/TIFS.2023.3265506.
- Vikram Singh Chundawat, Ayush Kumar Tarun, Murari Mandal, and Mohan Kankanhalli. Can Bad Teaching Induce Forgetting? Unlearning in Deep Networks using an Incompetent Teacher. In *Proceedings of the AAAI Conference on Artificial Intelligence*, volume 37, pp. 7210–7217, 2023b.
- Alexey Dosovitskiy, Lucas Beyer, Alexander Kolesnikov, Dirk Weissenborn, Xiaohua Zhai, Thomas Unterthiner, Mostafa Dehghani, Matthias Minderer, Georg Heigold, Sylvain Gelly, Jakob Uszkoreit, and Neil Houlsby. An image is worth 16x16 words: Transformers for image recognition at scale. In *Proc. International Conference on Learning Representations (ICLR)*, 2021.
- European Union. General Data Protection Regulation (GDPR) Article 17: Right to Erasure. https://gdpr-info.eu/art-17-gdpr/, 2016.

- Jack Foster, Stefan Schoepf, and Alexandra Brintrup. Fast Machine Unlearning without Retraining through Selective Synaptic Dampening. In *Proceedings of the AAAI Conference on Artificial Intelligence*, volume 38, 2024.
 - Antonio Ginart, Melody Y. Guan, Gregory Valiant, and James Zou. Making AI forget you: Data deletion in machine learning. In *Advances in Neural Information Processing Systems 32 (NeurIPS 2019)*, pp. 3513–3526, 2019.
 - Aditya Golatkar, Alessandro Achille, and Stefano Soatto. Eternal sunshine of the spotless net: Selective forgetting in deep networks. In *Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR)*, pp. 9304–9312, 2020.
 - Aditya Golatkar, Alessandro Achille, Avinash Ravichandran, Marzia Polito, and Stefano Soatto. Mixed-privacy forgetting in deep networks. In *Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR)*, pp. 792–801, 2021.
 - Lukas Graves, Vasilis Nagisetty, and Vijay Ganesh. Amnesiac machine learning. In *Proceedings of the AAAI Conference on Artificial Intelligence*, volume 35, pp. 11516–11524, 2021.
 - Chuan Guo, Tom Goldstein, Awni Hannun, and Laurens van der Maaten. Certified data removal from machine learning models. In *Proceedings of the 37th International Conference on Machine Learning (ICML)*, pp. 3832–3842, 2020.
 - Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep residual learning for image recognition. In *Proc. IEEE Conference on Computer Vision and Pattern Recognition (CVPR)*, pp. 770–778, 2016.
 - Catherine Huang, Martin Pawelczyk, and Himabindu Lakkaraju. Explaining the model, protecting your data: Revealing and mitigating the data privacy risks of post-hoc model explanations via membership inference, 2024. URL https://arxiv.org/abs/2407.17663.
 - Jinghan Jia, Jiancheng Liu, Parikshit Ram, Yuguang Yao, Gaowen Liu, Yang Liu, Pranay Sharma, and Sijia Liu. Model Sparsity Can Simplify Machine Unlearning. In *Advances in Neural Information Processing Systems (NeurIPS)* 36, 2023.
 - Michael I. Jordan and Tom M. Mitchell. Machine learning: Trends, perspectives, and prospects. *Science*, 349(6245):255–260, 2015.
 - Alex Krizhevsky and Geoffrey Hinton. Learning multiple layers of features from tiny images. Technical report, University of Toronto, 2009.
 - Meghdad Kurmanji, Peter Triantafillou, Jamie Hayes, and Eleni Triantafillou. Towards Unbounded Machine Unlearning. In *Advances in Neural Information Processing Systems, Vol. 36 (NeurIPS 2023)*, 2023.
 - Yann LeCun, Léon Bottou, Yoshua Bengio, and Patrick Haffner. Gradient-based learning applied to document recognition. *Proceedings of the IEEE*, 86(11):2278–2324, 1998. doi: 10.1109/5.726791.
 - Yann LeCun, Yoshua Bengio, and Geoffrey Hinton. Deep learning. *Nature*, 521(7553):436–444, 2015.
 - Jiaqi Li, Qianshan Wei, Chuanyi Zhang, Guilin Qi, Miaozeng Du, Yongrui Chen, Sheng Bi, and Fan Liu. Single Image Unlearning: Efficient Machine Unlearning in Multimodal Large Language Models. In *Advances in Neural Information Processing Systems (NeurIPS)* 37, 2024.
 - Thanh Tam Nguyen, Thanh Trung Huynh, Phi Le Nguyen, Alan Wee-Chung Liew, Hongzhi Yin, and Quoc Viet Hung Nguyen. A survey of machine unlearning. *arXiv preprint arXiv:2209.02299*, 2022.
 - Reza Shokri, Marco Stronati, Congzheng Song, and Vitaly Shmatikov. Membership inference attacks against machine learning models. In 2017 IEEE Symposium on Security and Privacy (SP), pp. 3–18. IEEE, 2017.

Jost Tobias Springenberg, Alexey Dosovitskiy, Thomas Brox, and Martin Riedmiller. Striving for simplicity: The all convolutional net. In Proc. 3rd International Conference on Learning Representations, Workshop Track, 2015. URL http://arxiv.org/abs/1412.6806.

APPENDIX

CHOICE OF ALPHA PARAMETER

To ensure that the MUS score maps the gap closure fraction f_i to values close to 0 for baseline models and close to 100 for fully retrained models, we select the steepness parameter α in the logistic transformation accordingly.

Recall that the MUS score is defined as:

$$MUS_i = 100 \cdot \frac{1}{1 + e^{-\alpha(f_i - 0.5)}}$$
 (4)

We require the MUS score to satisfy:

$$MUS_i(f_i = 0) \approx 0.1 \tag{5}$$

$$MUS_i(f_i = 1) \approx 99.9 \tag{6}$$

Substituting $f_i = 0$ into Equation (1), we get:

$$100 \cdot \frac{1}{1 + e^{\alpha \cdot 0.5}} = 0.1 \tag{7}$$

$$\Rightarrow \frac{1}{1 + e^{0.5\alpha}} = 0.001$$

$$\Rightarrow e^{0.5\alpha} = 999$$
(8)

$$\Rightarrow e^{0.5\alpha} = 999 \tag{9}$$

Solving for α :

$$0.5\alpha = \ln(999) \tag{10}$$

$$\Rightarrow \quad \alpha = 2 \cdot \ln(999) \approx 2 \cdot 6.9068 = 13.8136$$
 (11)

Note that Equation (3) holds automatically by symmetry of the logistic function, given the same choice of α derived in Equation (2).

Therefore, setting $\alpha = 13.8$ ensures that the MUS score yields values close to 0.1 and 99.9 for the endpoints $f_i = 0$ and $f_i = 1$, respectively. This choice results in a sharp transition around $f_i = 0.5$ while maintaining bounded scores within (0, 100), effectively amplifying the distinction between poorly and effectively unlearned models.

A.2 EFFECT SIZES AND CONFIDENCE INTERVALS

Table 4: Pairwise retraining-level comparisons across datasets

Dataset	Comparison	n	Mean diff	95% CI lower	95% CI upper	Cohen's d	p-value
CIFAR10_AllCNN	retrain50 > retrain25	10	-3.440051	-19.742765	12.862664	-0.150948	0.677751
CIFAR10_AllCNN	retrain75 > retrain25	10	5.617811	-8.623302	19.858924	0.282193	0.197713
CIFAR10_AllCNN	retrain75 > retrain50	10	9.057862	-7.586946	25.702669	0.389287	0.124755
CIFAR10_ResNet	retrain50 > retrain25	10	-8.750156	-32.399339	14.899026	-0.264681	0.787869
CIFAR10_ResNet	retrain75 > retrain25	10	4.321670	-21.245215	29.888556	0.120920	0.355526
CIFAR10_ResNet	retrain75 > retrain50	10	13.071826	-9.122867	35.266520	0.421318	0.107751
CIFAR20_AllCNN	retrain50 > retrain25	10	19.914799	5.568661	34.260938	0.993033	0.005962
CIFAR20_AllCNN	retrain75 > retrain25	10	39.839401	15.771734	63.907069	1.184136	0.002297
CIFAR20_AllCNN	retrain75 > retrain50	10	19.924602	3.345701	36.503503	0.859719	0.011830
CIFAR20_ResNet	retrain50 > retrain25	10	10.822943	-10.688412	32.334298	0.359915	0.142223
CIFAR20_ResNet	retrain75 > retrain25	10	10.051177	-8.748205	28.850559	0.382469	0.128646
CIFAR20_ResNet	retrain75 > retrain50	10	-0.771766	-14.208242	12.664710	-0.041089	0.550262
CIFAR10_ViT	retrain50 > retrain25	10	15.813495	0.375409	31.251582	0.732752	0.022849
CIFAR10_ViT	retrain75 > retrain25	10	23.773717	-2.499854	50.047288	0.647293	0.035483
CIFAR10_ViT	retrain75 > retrain50	10	7.960222	-22.164509	38.084952	0.189027	0.282369
MNIST_ResNet	retrain50 > retrain25	10	15.072583	2.911955	27.233210	0.886655	0.010291
MNIST_ResNet	retrain75 > retrain25	10	2.361378	-13.059572	17.782327	0.109541	0.368502
MNIST_ResNet	retrain75 > retrain50	10	-12.711205	-31.113758	5.691348	-0.494119	0.923702
MNIST_AllCNN	retrain50 > retrain25	10	26.016491	13.618136	38.414846	1.501092	0.000524
MNIST_AllCNN	retrain75 > retrain25	10	6.293896	-6.688195	19.275986	0.346815	0.150619
MNIST_AllCNN	retrain75 > retrain50	10	-19.722595	-34.374532	-5.070659	-0.962924	0.993048
MUCAC_ResNet	retrain50 > retrain25	10	7.322414	-12.579052	27.223880	0.263204	0.213380
MUCAC_ResNet	retrain75 > retrain25	10	12.022749	-6.469253	30.514751	0.465096	0.087716
MUCAC_ResNet	retrain75 > retrain50	10	4.700335	-16.996604	26.397275	0.154972	0.317906
CIFAR10_ResNet_Saliency	retrain50 > retrain25	10	11.629649	0.526751	22.732547	0.749295	0.020972
CIFAR10_ResNet_Saliency	retrain75 > retrain25	10	8.229491	-1.789463	18.248445	0.587589	0.048050
CIFAR10_ResNet_Saliency	retrain75 > retrain50	10	-3.400158	-19.863704	13.063389	-0.147740	0.674268

COMPUTING INFRASTRUCTURE

A.3.1 HARDWARE SPECIFICATIONS

Table 5: Hardware specifications of the Google Colab Pro+ environment with NVIDIA A100. Component Specification

NVIDIA A100-SXM4-40GB, 40 GB HBM2

CUDA Cores Tensor Cores

GPU

432 (3rd Generation) GPU Memory Bandwidth 1.6 TB/s

CUDA Version 12.4 (runtime), 12.5 (nvcc compiler)

6,912

Driver Version 550.54.15

CPU Intel(R) Xeon(R) @ 2.20GHz (12 vCPUs) Threads per Core

87.5 GB system memory

A.3.2 SOFTWARE SPECIFICATIONS

Host RAM

Table 6: Software packages and versions used in the Google Colab Pro+ A100 environment.

Library / Component	Version
Operating System	Ubuntu 22.04.4 LTS (Jammy Jellyfish)
Python	3.11.13
PyTorch	2.6.0+cu124
Torchvision	0.21.0+cu124
CUDA Toolkit	12.4 (linked), 12.5 (compiler nvcc)
NumPy	2.0.2
Pandas	2.2.2
Matplotlib	3.10.0
Pillow	11.3.0
scikit-learn	1.6.1
XGBoost	3.0.2
Transformers (HuggingFace)	4.54.0
TQDM	4.67.1
Seaborn	0.13.2
SciPy	1.16.0
Requests	2.32.3

A.4 TRAINING CONFIGURATIONS

A.4.1 DATASETS

We evaluate on four image classification datasets (MNIST, Cifar-10, Cifar-20, MUCAC) with varying resolution, label structure, and domain characteristics. *MNIST* (LeCun et al., 1998) is a handwritten digit dataset with 10 classes (0–9), containing 60,000 training and 10,000 test grayscale images of size 28×28 , uniformly distributed. *CIFAR-10* (Krizhevsky & Hinton, 2009) consists of natural 32×32 color images across 10 object categories, with 50,000 training and 10,000 test samples. *CIFAR-20* (Krizhevsky & Hinton, 2009) is a coarse-label variant of *CIFAR-100*, containing 20 superclasses (e.g., insects, vehicles) with 50,000 training and 10,000 test images, evenly split across classes. *MUCAC* (*Machine Unlearning for Celebrity Attribute Classifier*) (Choi & Na, 2023) is a binary attribute classification dataset derived from CelebA-HQ, used to evaluate unlearning on face attributes. For this study, we focus only on Smiling attribute as an independent binary classification task. The dataset contains of 10,548 training and 2,065 test samples, with 5284 negative and 4210 positive labels in each case.

A.4.2 BASE MODELS

We evaluate unlearning performance across three representative architectures: ResNet-18, All-CNN, and Vision Transformer (ViT). *ResNet-18* (He et al., 2016) is a deep convolutional network utilizing residual connections to facilitate optimization and gradient flow. *All-CNN* (Springenberg et al., 2015) is a fully convolutional architecture with no max-pooling, preserving spatial locality and emphasizing robustness. *ViT* (Dosovitskiy et al., 2021) replaces convolutions with self-attention mechanisms, modeling global dependencies via patch embeddings and transformer layers.

A.4.3 DATA PREPROCESSING

We adopt dataset-specific preprocessing strategies to enhance generalization performance and ensure consistency across training, unlearning, and evaluation phases. All image data are normalized to zero mean and unit variance using dataset-specific statistics.

For training from scratch on CIFAR-10 and CIFAR-20 datasets, we apply random cropping (with 4-pixel padding), random horizontal flipping, and random rotation of up to 15 degrees, followed by normalization using the dataset-specific mean (0.5071, 0.4865, 0.4409) and standard deviation (0.2673, 0.2564, 0.2762) values. For unlearning and test phases, no augmentation is applied; only normalization is used to maintain evaluation consistency. CIFAR-20 is constructed by remapping the

100 fine labels of CIFAR-100 into 20 coarse classes using a predefined superclass mapping derived from prior work.

MNIST images are first converted to three-channel grayscale format to align with the input expectations of RGB-based models. Training images are augmented with random rotation of up to 10 degrees. Test and unlearning images are not augmented. All images are normalized using a mean of 0.1307 and a standard deviation of 0.3081.

For MUCAC (CelebA-HQ) dataset, each face image is resized to 128×128 pixels. Training data are augmented with random horizontal flipping, affine transformation (shear angle of 10 degrees and scale factor between 0.8 and 1.2), and color jittering (brightness, contrast, and saturation set to 0.2). For unlearning and test data, only resizing and normalization are applied. The binary label is derived from the "smiling" attribute in the CelebA-HQ metadata. Images are split into training, forget, and test sets based on person identity ranges to enforce disjoint subsets.

A.4.4 LIST OF HYPERPARAMETERS

Table 7: Summary of hyperparameters used for training and unlearning.

Hyperparameter	Value
Batch size (\mathcal{B})	256
Unlearning batch size	128
Initial learning rate (η_0)	0.1
Optimizer (70)	SGD
Momentum	0.9
Weight decay	5×10^{-4}
Loss function	CrossEntropyLoss
Learning rate scheduler	MultiStepLR
Scheduler gamma (γ)	0.2
Warmup epochs	1
CIFAR-10 epochs	20
CIFAR-10 milestones	[8, 12, 16]
CIFAR-20 epochs	40
CIFAR-20 milestones	[15, 30, 35]
MNIST epochs	5
MNIST milestones	[2, 3, 4]
MUCAC epochs	31
MUCAC milestones	[10, 20]
CIFAR-10 (ViT) epochs	8
CIFAR-10 (ViT) milestones	[7]
Fine-tuning epochs	5
Fine-tuning learning rate	0.02
Amnesiac unlearning epochs	3
Amnesiac learning rate	0.0001
Dampening constant	1
Selection weighting	$10 \times \text{model_size_scaler}$ (default = 10)
Model size scaler	1
Device	GPU

A.4.5 Training and test loss analysis

Figure 6: Training and validation loss and accuracy curves of the AllCNN model on the CIFAR-10 dataset.

Figure 7: Training and validation loss and accuracy curves of the ResNet-18 model on the CIFAR-10 dataset.

Figure 8: Training and validation loss and accuracy curves of the ViT model on the CIFAR-10 dataset.

Figure 9: Training and validation loss and accuracy curves of the AllCNN model on the CIFAR-20 dataset.

Figure 10: Training and validation loss and accuracy curves of the ResNet-18 model on the CIFAR-20 dataset.

Figure 11: Training and validation loss and accuracy curves of the AllCNN model on the MNIST dataset.

Figure 12: Training and validation loss and accuracy curves of the ResNet-18 model on the MNIST dataset.

Figure 13: Training and validation loss and accuracy curves of the ResNet-18 model on the MUCAC dataset.

A.5 RESULTS OF EXPERIMENTS ON NON-GENERALIZED MODELS

Figure 14: Training and validation loss and accuracy curves of the overfitted ResNet-18 model on the CIFAR-10 dataset. An underfitted model was obtained by taking the 1st epoch model, while overfitted obtained taking the 10th epoch model.

Table 8: Experiments on CIFAR10 underfitted ResNet-18

Metric	Baseline	Amnesiac	Finetune	Teacher	SSD
Retain Accuracy	44.8112 ± 0.0532	88.6696 ± 0.8549	90.2865 ± 2.0526	44.8467 ± 0.8808	44.8083 ± 0.0528
Test Accuracy	43.7793 ± 0.0000	76.9658 ± 0.8425	75.9062 ± 1.6650	43.8945 ± 0.7836	43.7793 ± 0.0000
Forget Accuracy	45.4627 ± 0.4842	71.4473 ± 1.1740	77.1919 ± 1.8680	45.6693 ± 1.0187	45.4247 ± 0.5211
ZRF Score	90.7447 ± 0.8915	95.6467 ± 0.5602	80.4635 ± 0.9641	98.3065 ± 0.1286	90.7469 ± 0.8908
MIA (Forget vs Retain)	56.2250 ± 0.8898	62.5450 ± 2.3834	55.2100 ± 4.2645	52.9350 ± 1.9764	56.4500 ± 1.0247
MIA (Forget vs Test)	50.0650 ± 0.6377	58.5450 ± 0.9576	49.2550 ± 0.7500	50.9700 ± 0.6638	49.9200 ± 0.6273
MIA (Test vs Retain)	60.0875 ± 0.2875	56.3450 ± 2.7112	58.0300 ± 4.0428	57.1175 ± 1.5528	60.0875 ± 0.2875
MIA (Train vs Test)	50.2000 ± 0.0000	53.5025 ± 0.4382	54.3250 ± 0.9622	50.5850 ± 0.4961	50.2000 ± 0.0000
MIAU	0.1007 ± 0.0000	6.9812 ± 13.4431	14.8824 ± 21.2491	31.2930 ± 22.8420	13.7048 ± 16.9481

Table 9: Gradual unlearning on CIFAR-10 underfitted ResNet-18

Metric	Retrain 25%	Retrain 50%	Retrain 75%	Retrain
Retain Accuracy	45.9210 ± 8.1250	48.7542 ± 8.5905	45.3409 ± 4.5958	47.8767 ± 6.4984
Test Accuracy	45.1240 ± 7.8977	47.6611 ± 8.5742	44.5781 ± 4.5092	46.8799 ± 6.5235
Forget Accuracy	45.2158 ± 8.2025	48.2742 ± 8.8719	45.0027 ± 4.0382	47.3834 ± 6.2705
ZRF Score	89.4216 ± 2.7347	89.5791 ± 4.4070	89.7330 ± 2.8897	90.6504 ± 1.5962
MIA (Forget vs Retain)	60.3400 ± 5.4740	55.7600 ± 4.6058	54.4133 ± 3.7214	54.1800 ± 2.9321
MIA (Forget vs Test)	49.5200 ± 2.3117	50.5200 ± 1.7093	50.1200 ± 1.4208	50.1000 ± 0.4859
MIA (Test vs Retain)	59.9825 ± 4.5312	57.5825 ± 3.5780	58.4325 ± 3.9309	57.7300 ± 2.9314
MIA (Train vs Test)	49.6600 ± 0.5480	50.0700 ± 0.5820	50.0150 ± 0.5300	49.8100 ± 0.6517
MIAU	4.1438 ± 9.7553	21.9061 ± 19.9868	9.9082 ± 12.7532	96.5727 ± 10.5197

Table 10: Experiments on CIFAR-10 overfitted ResNet-18

Metric	Baseline	Amnesiac	Finetune	Teacher	SSD
Retain Accuracy	99.9947 ± 0.0019	95.6966 ± 0.8870	95.9652 ± 1.4784	95.6319 ± 1.2804	99.9947 ± 0.0019
Test Accuracy	82.8125 ± 0.0000	73.3311 ± 1.1328	78.1406 ± 1.2595	78.6924 ± 0.9585	82.8125 ± 0.0000
Forget Accuracy	99.9883 ± 0.0165	38.1286 ± 2.3546	84.2821 ± 1.9507	90.9142 ± 1.6170	99.9883 ± 0.0165
ZRF Score	75.2012 ± 0.3465	94.4499 ± 0.4395	73.7953 ± 1.2641	97.5783 ± 0.2209	75.2043 ± 0.3492
MIA (Forget vs Retain)	52.8300 ± 1.3756	68.5450 ± 7.5131	58.1250 ± 4.6867	55.5100 ± 3.2535	52.5500 ± 1.2530
MIA (Forget vs Test)	62.0400 ± 0.5739	63.3900 ± 1.2677	50.6100 ± 1.0011	52.6500 ± 0.5497	61.8750 ± 0.4152
MIA (Test vs Retain)	60.6925 ± 0.3283	57.9825 ± 5.9698	59.0950 ± 3.6548	53.6175 ± 2.8164	60.6925 ± 0.3283
MIA (Train vs Test)	62.6500 ± 0.0000	59.5725 ± 0.7982	58.0825 ± 0.8123	54.5425 ± 0.5683	62.6500 ± 0.0000
MIAU	0.1007 ± 0.0000	15.8030 ± 15.3861	56.2321 ± 15.9836	41.1594 ± 11.0159	0.1316 ± 0.0363

Table 11: Gradual unlearning on CIFAR-10 overfitted ResNet-18

Metric	Retrain 25%	Retrain 50%	Retrain 75%	Retrain
	00 0000 . 0 0044	00 0001 . 0 0007	00.0050 . 0.0022	00.0056 . 0.0022
Retain Accuracy	99.9933 ± 0.0044	99.9931 ± 0.0037	99.9959 ± 0.0033	99.9956 ± 0.0033
Test Accuracy	82.6396 ± 0.4758	82.4072 ± 0.1979	82.2500 ± 0.3999	82.0928 ± 0.2645
Forget Accuracy	83.5998 ± 0.6553	83.3224 ± 0.6759	82.6646 ± 0.6620	82.6560 ± 0.9148
ZRF Score	77.2613 ± 0.7057	77.5656 ± 0.4064	77.8443 ± 0.4585	78.0136 ± 0.5318
MIA (Forget vs Retain)	59.2200 ± 1.8890	60.5200 ± 1.2372	61.7200 ± 1.4476	61.4100 ± 1.2142
MIA (Forget vs Test)	49.8400 ± 1.8638	50.0900 ± 1.5624	49.4067 ± 1.6530	50.2250 ± 0.8193
MIA (Test vs Retain)	61.6125 ± 0.6727	61.8800 ± 0.5330	62.1150 ± 0.5953	62.0000 ± 0.6001
MIA (Train vs Test)	62.8850 ± 0.5599	63.0250 ± 0.5394	63.5125 ± 0.5562	62.7875 ± 0.3520
MIAU	69.2569 ± 14.8576	83.0650 ± 15.9770	81.5254 ± 20.3745	99.8993 ± 0.0000

Figure 15: Average MIAU scores across 10 random seeds for underfitted and overfitted models at three retraining levels: 25%, 50%, and 75%.

Figure 16: Comparison of MIA Score Distributions Before and After Unlearning for an overfitted model. The figure illustrates the distributions of Membership Inference Attack (MIA) scores for three comparisons—Forget vs Retain, Forget vs Test, and Test vs Retain—across the baseline and retrain phases across all experiments.

Figure 17: Comparison of MIA Score Distributions Before and After Unlearning for an underfitted model. The figure illustrates the distributions of Membership Inference Attack (MIA) scores for three comparisons—Forget vs Retain, Forget vs Test, and Test vs Retain—across the baseline and retrain phases across all experiments.

Figure 18: One-sided p-values from paired t-tests comparing MIAU scores between successive retraining levels across overfitted and underfitted models. Each cell reflects the statistical significance of whether the MIAU score from a higher retraining level is significantly greater than that of a lower one.

A.6 REMAINING RESULTS OF EXPERIMENTS

Table 12: Experiments on CIFAR-10 AllCNN

Metric	Baseline	Amnesiac	Finetune	Teacher	SSD
Data's Assessed	01.0457 + 0.1007	00.5220 + 0.2146	00.0454 + 0.6274	04 1012 + 0 4772	01.7052 + 0.1026
Retain Accuracy	91.8457 ± 0.1097	90.5320 ± 0.2146	90.8454 ± 0.6374	84.1013 ± 0.4772	91.7852 ± 0.1036
Test Accuracy	89.5410 ± 0.0000	87.9102 ± 0.4012	88.2480 ± 0.5962	80.9824 ± 0.8379	89.5410 ± 0.0000
Forget Accuracy	91.8913 ± 0.4222	88.3699 ± 0.6600	88.6864 ± 0.7774	83.4465 ± 0.8203	91.9906 ± 0.2655
ZRF Score	84.2151 ± 0.2102	94.0819 ± 0.2160	83.3740 ± 0.5682	95.8960 ± 0.0819	84.2038 ± 0.2136
MIA (Forget vs Retain)	52.7100 ± 1.0775	52.3600 ± 3.7283	51.8750 ± 1.9332	53.7250 ± 1.9362	52.2300 ± 1.3290
MIA (Forget vs Test)	54.0900 ± 0.6927	58.1200 ± 0.9449	53.9700 ± 0.7262	58.5950 ± 0.8224	53.7800 ± 0.6808
MIA (Test vs Retain)	50.1400 ± 0.3710	53.8825 ± 1.6900	51.3000 ± 0.9587	55.2550 ± 1.3330	50.3025 ± 0.6309
MIA (Train vs Test)	51.8250 ± 0.0000	52.3575 ± 0.3939	51.7200 ± 0.6360	51.8200 ± 0.2986	51.8250 ± 0.0000
MIAU	0.1007 ± 0.0000	0.0263 ± 0.0796	12.9191 ± 14.5091	6.3614 ± 13.4248	19.4015 ± 17.2965

Table 13: Gradual unlearning on CIFAR-10 AllCNN

Metric	Retrain 25%	Retrain 50%	Retrain 75%	Retrain
	00.0006 : 0.1156	00.0740 . 0.4400	00.5516 . 0.1500	00.4400 . 0.4500
Retain Accuracy	90.0336 ± 0.1156	89.8742 ± 0.1189	89.5516 ± 0.1528	89.4102 ± 0.1702
Test Accuracy	87.9609 ± 0.1674	87.8555 ± 0.2879	87.5352 ± 0.2244	87.3057 ± 0.2646
Forget Accuracy	86.7752 ± 0.9785	87.0890 ± 0.7315	86.2750 ± 0.5589	86.0535 ± 0.4969
ZRF Score	85.5322 ± 0.2350	85.6090 ± 0.1626	85.8212 ± 0.1960	85.8925 ± 0.2329
MIA (Forget vs Retain)	51.2400 ± 2.6446	51.1200 ± 1.7390	50.6800 ± 1.7367	52.4300 ± 1.4074
MIA (Forget vs Test)	55.8200 ± 2.0099	55.8500 ± 1.1404	55.4733 ± 0.8500	54.8500 ± 0.8981
MIA (Test vs Retain)	50.3650 ± 0.5922	50.5100 ± 0.6868	50.1425 ± 0.6928	50.1000 ± 0.7773
MIA (Train vs Test)	51.6600 ± 0.2227	51.7225 ± 0.3754	51.4575 ± 0.3313	51.5100 ± 0.3526
MIAU	17.0318 ± 22.4070	13.5918 ± 18.9049	22.6496 ± 26.5159	99.8993 ± 0.0000

Table 14: Experiments on CIFAR-10 ResNet-18

Metric	Baseline	Amnesiac	Finetune	Teacher	SSD
Retain Accuracy	94.0087 ± 0.0768	91.4887 ± 0.3566	92.8625 ± 0.5377	92.5587 ± 0.1342	94.0446 ± 0.0929
Test Accuracy	91.5527 ± 0.0000	88.4434 ± 0.4419	89.9502 ± 0.5889	90.2285 ± 0.2665	91.5527 ± 0.0000
Forget Accuracy	94.0623 ± 0.1825	87.2577 ± 0.6693	90.4980 ± 0.8640	92.3504 ± 0.4102	94.0206 ± 0.3898
ZRF Score	82.4359 ± 0.3346	94.0667 ± 0.2474	82.3060 ± 0.4059	97.1861 ± 0.0486	82.4482 ± 0.3347
MIA (Et D-t-i)	50.2400 ± 1.1279	55.8800 ± 4.3371	53.2550 ± 2.0196	51.9550 ± 1.0229	50.4250 ± 1.4111
MIA (Forget vs Retain) MIA (Forget vs Test)	50.2400 ± 1.1279 52.8450 ± 0.8217	52.5750 ± 1.6625	53.2530 ± 2.0196 53.6600 ± 0.6847	51.9530 ± 1.0229 56.6500 ± 1.4604	50.4230 ± 1.4111 52.9300 ± 0.7196
MIA (Test vs Retain)	50.7300 ± 0.4362	54.2925 ± 3.9817	51.3375 ± 1.2198	53.7850 ± 1.8577	50.6225 ± 0.5369
MIA (Train vs Test)	52.6000 ± 0.0000	51.9925 ± 0.6261	52.6500 ± 0.3898	52.4550 ± 0.3427	52.6000 ± 0.0000
MIAU	0.1007 ± 0.0000	16.1329 ± 22.0528	32.2735 ± 29.7709	28.7886 ± 26.4404	12.7230 ± 15.8288

Table 15: Gradual unlearning on CIFAR-10 ResNet-18

Metric	Retrain 25%	Retrain 50%	Retrain 75%	Retrain
Retain Accuracy	91.2964 ± 0.1039	91.1475 ± 0.1444	90.9580 ± 0.1696	90.7916 ± 0.2118
Test Accuracy	89.4629 ± 0.1487	89.3711 ± 0.2428	88.9658 ± 0.2037	88.9658 ± 0.3181
Forget Accuracy	88.2205 ± 0.9465	87.8096 ± 0.4846	87.5664 ± 0.8027	87.3842 ± 0.6781
ZRF Score	83.0775 ± 0.4006	83.1148 ± 0.3020	83.2157 ± 0.3758	83.2750 ± 0.3216
MIA (Forget vs Retain)	51.6600 ± 1.9845	51.8800 ± 1.5354	51.2667 ± 1.1226	52.7550 ± 1.2144
MIA (Forget vs Test)	55.7600 ± 1.9637	54.8900 ± 0.8346	53.8200 ± 0.8351	54.7000 ± 0.8100
MIA (Test vs Retain)	50.5350 ± 0.5424	50.3325 ± 0.6872	50.7650 ± 0.5525	50.6150 ± 0.5378
MIA (Train vs Test)	51.7550 ± 0.4923	52.0025 ± 0.2454	52.0975 ± 0.2454	51.8200 ± 0.4721
MIAU	34.0980 ± 23.6502	25.3478 ± 19.7844	38.4197 ± 29.3322	96.5727 ± 10.5197

Table 16: Gradual unlearning on CIFAR-20 AllCNN

Metric	Retrain 25%	Retrain 50%	Retrain 75%	Retrain
Retain Accuracy	92.0805 ± 0.1550	92.2980 ± 0.1561	92.1314 ± 0.1429	92.0245 ± 0.1341
Test Accuracy	78.7148 ± 0.3787	78.6826 ± 0.2449	78.4502 ± 0.3649	78.0762 ± 0.3496
Forget Accuracy	77.0443 ± 1.3364	77.4494 ± 0.6303	77.1019 ± 0.5649	76.6826 ± 0.3978
ZRF Score	91.3840 ± 0.1782	91.3772 ± 0.0858	91.4091 ± 0.1279	91.4487 ± 0.0747
MIA (Forget vs Retain)	61.5962 ± 1.9613	53.4100 ± 1.3527	54.5066 ± 0.8483	54.7950 ± 1.2613
MIA (Forget vs Test)	53.9423 ± 1.5942	55.0400 ± 1.2295	54.0789 ± 0.7133	54.0200 ± 1.2406
MIA (Test vs Retain)	48.9350 ± 1.1443	49.5050 ± 1.3093	48.8900 ± 0.8253	49.1700 ± 1.1587
MIA (Train vs Test)	55.7850 ± 0.4802	56.4025 ± 0.2866	56.1475 ± 0.5581	55.6425 ± 0.3426
MIAU	35.7928 ± 23.8858	55.7076 ± 21.4602	75.6322 ± 19.0234	99.8993 ± 0.0000

Table 17: Experiments on CIFAR-20 ResNet-18

Metric	Baseline	Amnesiac	Finetune	Teacher	SSD
Retain Accuracy	95.2842 ± 0.0576	90.9696 ± 0.2383	92.5590 ± 0.6130	92.8336 ± 0.2617	95.2639 ± 0.0616
Test Accuracy	82.5977 ± 0.0000	76.6641 ± 0.3089	79.6943 ± 0.4911	80.4717 ± 0.3815	82.5977 ± 0.0000
Forget Accuracy	95.4085 ± 0.3380	78.9318 ± 0.3757	87.2881 ± 0.6136	91.3241 ± 0.5481	95.4053 ± 0.1522
ZRF Score	89.7542 ± 0.1137	95.5178 ± 0.1194	89.7126 ± 0.2155	98.0809 ± 0.0372	89.7701 ± 0.1413
MIA (Forget vs Retain)	49.4800 ± 0.6929	61.6450 ± 1.8385	52.9250 ± 1.2785	52.6700 ± 1.6371	49.5700 ± 0.7330
MIA (Forget vs Test)	53.8600 ± 0.7051	56.1200 ± 1.3931	50.2850 ± 1.1252	51.7850 ± 0.9548	53.7900 ± 0.7363
MIA (Test vs Retain)	54.7050 ± 0.5498	56.8850 ± 1.6878	54.2100 ± 1.0040	51.5200 ± 2.0472	54.7650 ± 0.7174
MIA (Train vs Test)	57.9000 ± 0.0000	56.6600 ± 0.7993	56.7075 ± 0.6874	55.2550 ± 0.5350	57.8950 ± 0.0158
MIAU	0.1007 ± 0.0000	42.7267 ± 10.9204	20.1822 ± 17.8346	20.3821 ± 17.9722	4.6739 ± 10.5222

Table 18: Gradual unlearning on CIFAR-20 ResNet-18

Metric	Retrain 25%	Retrain 50%	Retrain 75%	Retrain
Retain Accuracy	97.4987 ± 0.0893	97.5129 ± 0.0888	97.4814 ± 0.0790	97.3762 ± 0.1157
Test Accuracy	81.1885 ± 0.3370	81.1709 ± 0.2119	80.6758 ± 0.3016	80.5703 ± 0.2549
Forget Accuracy	79.5104 ± 1.2710	79.5967 ± 0.5677	79.0108 ± 0.6063	78.7410 ± 0.5979
ZRF Score	90.2851 ± 0.1700	90.2397 ± 0.1493	90.2327 ± 0.1394	90.2736 ± 0.1258
MIA (Forget vs Retain)	62.7885 ± 1.8540	57.7300 ± 1.4453	58.5066 ± 1.1395	58.6900 ± 0.6867
MIA (Forget vs Test)	51.6346 ± 0.9077	53.0700 ± 0.8706	52.1776 ± 1.0492	52.3750 ± 1.1596
MIA (Test vs Retain)	56.8000 ± 0.6823	56.9975 ± 0.7163	57.1725 ± 0.5905	57.3350 ± 0.5027
MIA (Train vs Test)	60.0975 ± 0.5310	60.3700 ± 0.4489	60.0525 ± 0.4753	59.5050 ± 0.5350
MIAU	59.7610 ± 26.6740	70.5840 ± 12.5015	69.8122 ± 17.7220	99.8993 ± 0.0000

Table 19: Experiments on CIFAR-10 ViT

Metric	Baseline	Amnesiac	Finetune	Teacher	SSD
5	00.5005 . 0.0405	05.0405 : 0.5644	00.0406 . 0.0046	060100 : 0.1016	00.5100 . 0.0555
Retain Accuracy	98.7295 ± 0.0495	97.2495 ± 0.5614	98.8426 ± 0.3046	96.8133 ± 0.4246	98.7422 ± 0.0555
Test Accuracy	97.5684 ± 0.0000	95.7383 ± 0.3363	96.8184 ± 0.3160	96.1855 ± 0.3998	97.5723 ± 0.0179
Forget Accuracy	98.6807 ± 0.1439	91.7684 ± 0.7549	97.9156 ± 0.2678	95.7228 ± 0.5843	98.6376 ± 0.1340
ZRF Score	77.0079 ± 0.2782	94.6329 ± 0.2930	77.1782 ± 0.4557	96.8255 ± 0.3163	77.0329 ± 0.2635
MIA (Forget vs Retain)	50.0950 ± 0.7096	64.1800 ± 8.7837	51.8700 ± 1.2024	59.5600 ± 8.6347	49.9550 ± 0.8623
MIA (Forget vs Test)	49.5500 ± 0.5286	59.8750 ± 1.1275	49.5900 ± 0.8592	55.3350 ± 0.7885	49.1600 ± 0.6240
MIA (Test vs Retain)	49.7450 ± 0.2643	54.9600 ± 4.6806	51.8800 ± 0.9703	55.9925 ± 2.2616	49.8150 ± 0.3067
MIA (Train vs Test)	51.5000 ± 0.0000	51.4450 ± 0.7123	51.5275 ± 0.2982	51.6025 ± 0.7459	51.5025 ± 0.0606
MIAU	0.1007 ± 0.0000	3.7765 ± 10.4050	40.4777 ± 28.6503	12.8132 ± 15.7215	7.5180 ± 17.0937

Table 20: Experiments on MNIST ResNet-18

Metric	Baseline	Amnesiac	Finetune	Teacher	SSD
Retain Accuracy	99.5454 ± 0.0134	99.2985 ± 0.0867	99.7520 ± 0.0636	98.9609 ± 0.1205	99.5426 ± 0.0139
Test Accuracy	99.6484 ± 0.0000	99.3818 ± 0.0905	99.5312 ± 0.0385	99.2305 ± 0.0808	99.6484 ± 0.0000
Forget Accuracy	99.4852 ± 0.0952	98.8300 ± 0.1569	99.3034 ± 0.1016	98.8869 ± 0.1876	99.5140 ± 0.0787
ZRF Score	74.0607 ± 0.3455	94.4436 ± 0.3431	73.1390 ± 0.4803	97.2122 ± 0.1159	74.0628 ± 0.3678
					-
MIA (Forget vs Retain)	53.8458 ± 0.4357	60.4708 ± 7.5796	52.8583 ± 1.6990	59.1333 ± 5.8952	53.8333 ± 0.5368
MIA (Forget vs Test)	51.0583 ± 1.5168	55.0167 ± 1.2387	50.4792 ± 1.6006	53.5250 ± 1.2663	51.5792 ± 1.1327
MIA (Test vs Retain)	51.3625 ± 0.3367	55.6150 ± 4.7899	51.9750 ± 1.2923	54.8375 ± 5.5330	51.3775 ± 0.2639
MIA (Train vs Test)	49.5000 ± 0.0000	49.8275 ± 0.7439	50.0525 ± 0.2425	50.2850 ± 0.4264	49.5000 ± 0.0000
MIAU	0.1007 ± 0.0000	5.4088 ± 11.3423	10.0907 ± 15.7429	4.5890 ± 10.2705	18.4736 ± 11.5964

Table 21: Gradual unlearning on MNIST ResNet-18

Metric	Retrain 25%	Retrain 50%	Retrain 75%	Retrain
Retain Accuracy	99.5755 ± 0.0262	99.5980 ± 0.0222	99.5696 ± 0.0326	99.5856 ± 0.0199
Test Accuracy	99.6152 ± 0.0167	99.6230 ± 0.0496	99.5938 ± 0.0463	99.6221 ± 0.0360
Forget Accuracy	99.2215 ± 0.2340	99.1044 ± 0.1805	99.2226 ± 0.1275	99.2399 ± 0.1455
ZRF Score	73.3765 ± 0.4144	73.5285 ± 0.4257	73.6286 ± 0.5342	73.8260 ± 0.4286
MIA (Forget vs Retain)	53.4167 ± 1.7074	53.2250 ± 1.0252	52.1611 ± 0.6534	53.9333 ± 0.8318
MIA (Forget vs Test)	48.8333 ± 1.8257	50.8833 ± 0.5934	50.1056 ± 0.4825	52.0250 ± 0.3964
MIA (Test vs Retain)	51.6825 ± 0.4548	51.7400 ± 0.3784	51.9475 ± 0.2727	51.4500 ± 1.3956
MIA (Train vs Test)	49.6775 ± 0.2247	49.7275 ± 0.2314	49.6575 ± 0.1915	49.7075 ± 0.1799
MIAU	8.2382 ± 13.2938	23.3108 ± 21.8800	10.5996 ± 12.9944	99.8993 ± 0.0000

Table 22: Experiments on MNIST AllCNN

Metric	Baseline	Amnesiac	Finetune	Teacher	SSD
5	00.4077 . 0.0477	00.4000 - 0.0700	00.0005 . 0.1050	00.0007 . 0.0062	00.4104 . 0.0470
Retain Accuracy	99.4275 ± 0.0155	99.1839 ± 0.0782	99.3935 ± 0.1259	98.9995 ± 0.0863	99.4184 ± 0.0178
Test Accuracy	99.5312 ± 0.0000	99.3682 ± 0.0658	99.4189 ± 0.0792	99.2197 ± 0.0378	99.5312 ± 0.0000
Forget Accuracy	99.3776 ± 0.1103	98.8863 ± 0.1772	99.0297 ± 0.1797	98.9465 ± 0.1671	99.3438 ± 0.0835
ZRF Score	80.3363 ± 0.1385	94.7224 ± 0.2697	80.2219 ± 0.3555	96.9156 ± 0.1277	80.3471 ± 0.1326
MIA (Forget vs Retain)	54.3917 ± 0.4927	56.4500 ± 6.0605	55.6417 ± 5.0342	57.1333 ± 5.0901	54.4833 ± 0.8030
MIA (Forget vs Test)	51.9417 ± 1.5687	54.2500 ± 0.8382	52.1375 ± 0.4803	55.5542 ± 0.7126	52.3417 ± 0.3752
MIA (Test vs Retain)	52.6525 ± 0.3334	54.7600 ± 6.1997	53.2125 ± 3.0703	53.7450 ± 3.7670	52.6225 ± 0.2928
MIA (Train vs Test)	49.5250 ± 0.0000	50.1975 ± 0.4841	49.8625 ± 0.6183	49.8150 ± 0.5269	49.5250 ± 0.0000
MIAU	0.1007 ± 0.0000	7.8449 ± 13.1213	13.3123 ± 21.4386	6.8981 ± 20.8485	17.1314 ± 21.6850

Table 23: Gradual unlearning on MNIST AllCNN

Metric	Retrain 25%	Retrain 50%	Retrain 75%	Retrain
Retain Accuracy	99.4433 ± 0.0224	99.4407 ± 0.0199	99.4258 ± 0.0246	99.4264 ± 0.0151
Test Accuracy	99.5234 ± 0.0359	99.5312 ± 0.0305	99.5283 ± 0.0230	99.5156 ± 0.0377
Forget Accuracy	99.2454 ± 0.2434	99.1207 ± 0.1601	99.1803 ± 0.1209	99.1397 ± 0.1498
ZRF Score	80.0135 ± 0.2128	80.2209 ± 0.2102	80.3184 ± 0.1957	80.3267 ± 0.1638
MIA (Forget vs Retain)	52.2500 ± 2.2295	52.7167 ± 1.1360	52.0333 ± 1.1568	53.5083 ± 0.7060
MIA (Forget vs Test)	51.1333 ± 2.4073	51.1417 ± 1.2373	50.2556 ± 0.6025	52.3375 ± 0.4947
MIA (Test vs Retain)	50.1225 ± 1.3757	51.1750 ± 0.9858	50.6325 ± 1.5158	50.2925 ± 1.6335
MIA (Train vs Test)	49.6225 ± 0.1913	49.6450 ± 0.2260	49.8000 ± 0.3173	49.9000 ± 0.3418
MIAU	16.2060 ± 19.0858	42.2225 ± 20.9768	22.4999 ± 21.3182	96.5727 ± 10.5197

Table 24: Experiments on MUCAC ResNet-18

Metric	Baseline	Amnesiac	Finetune	Teacher	SSD
Retain Accuracy	95.3532 ± 0.1437	91.9066 ± 2.5253	91.8050 ± 3.3542	87.4326 ± 2.9091	88.9334 ± 13.7919
Test Accuracy	95.8767 ± 0.0000	92.6241 ± 2.5054	92.2194 ± 2.6400	88.8514 ± 2.2473	90.1394 ± 13.2272
Forget Accuracy	95.3198 ± 0.7931	90.5474 ± 3.0677	91.1104 ± 3.6423	87.4781 ± 3.0574	88.9276 ± 13.9543
ZRF Score	72.6464 ± 1.5450	94.5932 ± 0.6404	76.5433 ± 5.2505	95.0513 ± 0.4298	76.9392 ± 6.3037
MIA (Forget vs Retain)	49.7393 ± 2.7892	50.1422 ± 2.8087	50.5687 ± 2.0634	50.8294 ± 1.1569	49.6445 ± 3.1640
MIA (Forget vs Test)	52.3697 ± 1.9668	53.4360 ± 3.1719	52.9147 ± 1.5359	51.5403 ± 2.9135	51.3744 ± 3.4172
MIA (Test vs Retain)	51.0896 ± 0.8636	52.0339 ± 2.3948	52.4334 ± 2.4510	53.0993 ± 1.6355	51.1622 ± 1.0741
MIA (Train vs Test)	53.0266 ± 0.0000	51.8523 ± 1.7339	53.1114 ± 1.2864	49.5521 ± 1.8352	52.2397 ± 1.9788
MIAU	0.1007 ± 0.0000	16.4583 ± 27.9277	24.9041 ± 32.1321	34.0881 ± 30.0245	19.1701 ± 18.4436

Table 25: Gradual unlearning on CIFAR10 ResNet-18 saliency

Metric	Retrain 25%	Retrain 50%	Retrain 75%	Retrain
Retain Accuracy	94.0417 ± 0.0432	94.0216 ± 0.0835	94.0349 ± 0.0973	94.0522 ± 0.0842
Test Accuracy	91.5527 ± 0.0000	91.5527 ± 0.0000	91.5527 ± 0.0000	91.5527 ± 0.0000
Forget Accuracy	93.9779 ± 0.7714	94.2178 ± 0.3940	94.1296 ± 0.4330	94.1055 ± 0.4248
ZRF Score	82.3755 ± 0.3442	82.4136 ± 0.2904	82.4678 ± 0.3234	82.4324 ± 0.3346
MIA (Forget vs Retain)	72.5400 ± 1.4112	74.4500 ± 1.0742	74.2733 ± 0.7466	72.3050 ± 0.7672
MIA (Forget vs Test)	49.2200 ± 2.0558	49.9300 ± 1.1851	49.4467 ± 1.0390	49.7500 ± 0.6472
MIA (Test vs Retain)	66.1550 ± 0.6250	66.3100 ± 0.7190	66.2200 ± 0.7055	66.4275 ± 0.7870
MIA (Train vs Test)	51.0850 ± 0.1107	51.0725 ± 0.1017	51.1100 ± 0.1113	50.9700 ± 0.3295
MIAU	0.1049 ± 0.0949	11.7345 ± 15.5101	8.3344 ± 14.0206	40.0201 ± 21.0394

Table 26: Gradual unlearning on CIFAR20 AllCNN subclass

Metric	Retrain 25%	Retrain 50%	Retrain 75%	Retrain
Retain Accuracy	90.1986 ± 0.2034	90.2356 ± 0.1720	90.0492 ± 0.1297	90.0846 ± 0.1343
Test Accuracy	80.0192 ± 0.3384	80.0889 ± 0.1351	80.0922 ± 0.3936	79.9164 ± 0.2603
Forget Accuracy	86.5591 ± 3.7248	84.7336 ± 2.9078	83.9468 ± 1.2540	84.2852 ± 3.3768
ZRF Score	89.8222 ± 1.2087	89.6119 ± 0.2653	89.7607 ± 0.2431	89.5792 ± 0.5224
MIA (Forget vs Retain)	65.3333 ± 10.0664	60.6667 ± 1.1547	57.8947 ± 1.3158	68.6667 ± 4.5092
MIA (Forget vs Test)	46.6667 ± 15.1438	52.0000 ± 8.7178	45.6140 ± 6.7521	53.0000 ± 2.0000
MIA (Test vs Retain)	49.8917 ± 0.5198	50.4750 ± 0.7233	50.7583 ± 0.9118	50.0917 ± 0.3166
MIA (Train vs Test)	54.7750 ± 0.5847	55.2000 ± 0.3500	54.7833 ± 0.4216	55.0417 ± 0.1283
MIAU	21.8945 ± 18.9314	11.6050 ± 19.6292	21.7195 ± 18.7950	77.7218 ± 19.2063

Table 27: Gradual unlearning on CIFAR20 AllCNN full class

Metric	Retrain 25%	Retrain 50%	Retrain 75%	Retrain
Retain Accuracy	90.1588	90.1953	95.2136 ± 6.7602	90.7568
Test Accuracy	79.8965	80.1951	75.8360 ± 4.6587	77.1298
Forget Accuracy	70.6888	64.0074	42.8687 ± 0.0911	0.0000
ZRF Score	91.9675	92.8224	93.5030 ± 0.9251	94.6184
MIA (Forget vs Retain)	51.2000	48.4000	73.0000 ± 21.5903	58.7000
MIA (Forget vs Test)	59.6000	59.4000	62.4667 ± 6.8825	68.6000
MIA (Test vs Retain)	51.8250	50.3750	62.7625 ± 19.4631	49.5750
MIA (Train vs Test)	55.2000	56.1500	65.7375 ± 15.8569	54.5250
MIAU	11.0710	33.2184	81.9300	99.8993