
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2025

SIMPLE, ACCURATE, AND EFFICIENT AXIS-ALIGNED
DECISION TREE LEARNING

Anonymous authors
Paper under double-blind review

ABSTRACT

Decision Trees (DTs) are widely used in various domains for their simplicity and
interpretability. However, traditional DTs often suffer from low accuracy and
reduced robustness because they rely on fixed splits and a greedy approach to
decision-making. While recent approaches combining decision trees with opti-
mization seek to balance accuracy, computational efficiency, and interpretabil-
ity, they still fall short in certain aspects. In this paper, we introduce a novel
Probabilistic univariate Decision Tree (ProuDT), a non-greedy, axis-aligned tree
that aims to address these challenges and achieve significant improvements. By
assigning a single deterministic feature to each decision node, ProuDT ensures
univariate splits while preserving the differentiability of soft decision trees for
gradient-based optimization. This tree enhances interpretability through trans-
parent feature utilization in decision-making. Additionally, ProuDT simplifies the
optimization process and reduces computational cost by avoiding complex param-
eters. Extensive experiments on tabular datasets demonstrate ProuDT’s superior
performance and scalability, particularly in binary and multi-class classification
tasks.

1 INTRODUCTION

Decision trees are among the most widely used and easily understood methods in supervised learn-
ing. The classic decision trees include CART (Breiman et al., 1984) and C4.5 (Quinlan, 2014),
which continues to be the most widely recognized trees and are the basis of various advancements.
The simplicity and interpretability of decision trees make them a favored choice for many appli-
cations. Current approaches to learning decision trees are categorised into greedy and non-greedy
methods. Through greedy optimization (Mingers, 1989; Raileanu & Stoffel, 2004), trees are grown
following one specific criterion (e.g., Gini impurity) at decision nodes. The process happens recur-
sively with further nodes being split without reconsidering previous splits during tree induction. The
greedy nature usually leads to sub-optimal solutions (Cormen et al., 2022). To address sub-optimal
problems, non-greedy methods have been extensively explored from various perspectives. Global
tree search approaches, such as lookahead methods (Norton, 1989; Kiossou et al., 2024), evolution-
ary algorithms (Barros et al., 2011), or mathematical programming techniques like mixed-integer
programming (Günlük et al., 2021; Bertsimas & Dunn, 2017; Bertsimas et al., 2022), are all opti-
mization techniques. However, a key limitation of these global search approaches is their lack of
scalability. Exploring the entire tree space dramatically increases computational cost, making such
methods feasible only for small trees and datasets.

Due to the scalability limitations of global search methods and the aim for high classification accu-
racy, alternative optimization techniques have been explored. Among these alternatives, gradient-
based optimization has gained increasing popularity. Compared to greedy trees with hard split, these
trees demonstrate better learning capability especially with probabilistic splits, i.e., soft splits, and
have good prediction performance (Frosst & Hinton, 2017; Wan et al., 2020). However, there are
interpretability, accuracy, and computational cost limitations among existing efforts. Probabilistic
trees often use multivariate splits, which reduces interpretability by making the roles of features
at decision nodes unclear. To address the reduced interpretability caused by multivariate splits,
researchers have attempted to maintain univariate splits in soft trees using gradient-based optimiza-
tions for hard splits (Marton et al., 2024). However, these efforts negatively impact classification
accuracy and limit scalability. Moreover, the computational and memory costs of dense feature rep-

1



054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2025

resentations are high due to the many learnable parameters involved in gradient-based optimization.
For users seeking a simple and transparent model for classification tasks, the complexity can be
a significant drawback. This may explain why traditional decision trees remain popular, as their
simplicity is appealing despite their potential limitations.

Existing approaches to optimizing decision trees for high accuracy often increase model complexity,
which in turn affects interpretability. Specifically, most gradient-based methods struggle to ensure
sparse features at decision nodes, making it difficult to maintain transparency in the decision-making
process. Three commonly explored methods aim to address this challenge. The first approach
involves growing an oblique tree to improve accuracy and then applying post-hoc feature removal
strategies during prediction. However, this creates a discrepancy between the features used during
training and testing, which ultimately degrades the model’s performance. The second approach
seeks to learn the position of individual features during tree growth. This is done using a dense
matrix to store all features across all decision nodes, aiming to identify the most suitable splitting
feature through parameter learning. While this method improves flexibility, it significantly increases
memory and computational costs, limiting scalability for higher dimensions and deeper trees. The
third approach employs traditional greedy search algorithms, such as computing information gain.
While this method easily identifies a deterministic feature for splitting at each decision node, its
performance is often compromised by the inherent limitations of the greedy strategy.

To address these challenges in gradient-based tree construction, we propose the Probabilistic uni-
variate Decision Tree (ProuDT) to jointly improve: (1) accuracy, (2) convergence and inference
speed by reducing computational cost through fewer parameters, and (3) interpretability by offering
insights into feature utilization and decision-making process. Specifically, our contributions are:

1. We introduce an effective and efficient probabilistic tree learning strategy with fewer learn-
able parameters involved during the tree induction. Rather than explicitly focusing on
learning the single feature for node splitting, our approach naturally achieves transparent
and effective single-feature splits. To the best of our knowledge, this is the first method to
directly utilize univariate splitting for probabilistic tree induction.

2. We propose a simple yet powerful axis-aligned decision tree that achieves high accuracy
and scalability, outperforming leading univariate trees. Moreover, by using the default set-
tings for a robust tree learning, users can bypass the complexity of hyperparameter tuning,
making the tree easy to deploy.

3. We offer insights into feature’s utilization that contribute to the decision-making process.

2 RELATED WORKS

Greedy trees: Several well-established decision trees have been developed for decades, e.g.,
QUEST (Loh & Shih, 1997), CART (Breiman et al., 1984), C4.5 (Quinlan, 2014), CHAID (Kass,
1980). The most prominent among them is the CART and C4.5, which construct trees by recursively
splitting the data based on feature values that minimize impurity or maximize information gain. Due
to the greedy hard splitting nature, these trees suffer from sub-optimal problems that affect accuracy.

Non-greedy trees: To handle the sub-optimal issue, non-greedy works have been proposed from
different aspects. MurTree (Demirović et al., 2022) applies dynamic programming and search al-
gorithms to generate optimal decision trees to handle categorical features. Nunes et al. (2020) pro-
poses the Monte Carlo Tree Search (MCTS) algorithm to facilitate lookahead tree navigation and
overcome the sub-optimal problem. Mixed-integer programming is also commonly explored (Bert-
simas et al., 2022; Zantedeschi et al., 2021). However, these methods introduce scalibility and
computation concerns. Tree alternating optimization (TAO) iteratively optimize node parameters
and enable the construction of sparse oblique decision trees (Carreira-Perpinán & Tavallali, 2018).
Through gradient-based optimization, DGT (Karthikeyan et al., 2021) achieves an oblique tree with
hard splits. In contrast, we aim to optimize a univariate tree, as it can be more interpretable than
multivariate trees.

Probabilistic Trees: Probabilistic trees soften the path routing with probabilistic splits, where an
instance can be routed along multiple branches with certain probabilities, typically using functions
like sigmoid to model the smooth transition (Irsoy et al., 2012; Norouzi et al., 2015; Lee & Jaakkola,
2019). The prediction is determined either by an aggregation of all leaves, for example through a

2



108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2025

weighted sum (Hehn et al., 2020; Suarez & Lutsko, 1999; Irsoy et al., 2012), or by the leaf with the
highest path probability (Frosst & Hinton, 2017). With the growing interest in explainability in neu-
ral networks, the combination of neural networks and decision trees has become increasingly popular
(Frosst & Hinton, 2017; Yang et al., 2018; Wan et al., 2020; Rodrı́guez et al., 2024). However, these
probabilistic trees often incorporate a linear combination of input features when determining their
splits. These multivariate trees preclude users from understanding the feature utilization. Although
researchers try to make the tree as interpretable as possible (Xu et al., 2022; Silva et al., 2020), it is
still a challenge to clarify the individual feature’s contribution. (Silva et al., 2020) trained a proba-
bilistic tree with multivariate splits and then, during prediction, transformed the tree into a univariate
tree by selecting the single feature with the highest weight from the multiple features at each node.
However, this process led to an inconsistency between the feature splits used in training and testing,
causing accuracy loss during prediction.

Univariate decision trees: The majority of gradient-based approaches focus on trees with mul-
tivariate or more complex splits. This stands in contrast to learning trees with univariate tests.
Therefore, constructing a univariate tree at the training stage is a potential solution to overcome the
weakness of multivariate trees. DNDT (Yang et al., 2018) leverages soft binning to make splits and
yields soft and axis-aligned tree. However, as the author mentioned, DNDT cannot scale well to
datasets with large number of features, i.e., more than 12, due to the limitation of Kronecker prod-
uct. Zantedeschi et al. (2021) utilizes the Argmin Differentiation to optimize tree parameters. This
method struggles with scalability to larger feature spaces. Recently, Marton et al. (2024) propose
GradTree, a method that enables hard splitting via gradient optimization. In backward propagation,
to overcome the non-differentiable process, by leveraging straight-through operator, they bypass the
non-differentiable function of hard split derived from forward propagation. However, mismatched
forward and backward propagations introduce gaps between training and testing stage, leading to po-
tential accuracy loss. In univariate tree induction, a key consideration is selecting the single feature
for splitting at each node. GradTree uses all input features at each node, following the probabilistic
tree’s method, but introduces the dense matrix to store all feature’s weights (indices) and thresh-
olds across all nodes for single-feature selection. This makes the method computationally expensive
and memory-intensive, particularly for high-dimensional datasets or deeper trees. The trade-off be-
tween optimization flexibility and scalability limits the model’s applicability to large-scale tasks. In
contrast, our proposed univariate tree induction strategy simplifies the optimization process while
maintaining efficiency and interpretability and can yield superior prediction result than the leading
univariate trees.

3 METHODOLOGY

We introduce ProuDT in this section. Unlike classical decision trees, ProuDT employs a proba-
bilistic routing strategy to yield more robust and accurate result. Univariate splitting and feature
selection is introduced in section 3.1. We describe the tree learning in section 3.2.

3.1 UNIVARIATE SPLITTING

In the probablistic decision tree induction, the sigmoid function is applied to turn hard splits into
weighted ones (soft splits). The output σ(f(x)(or (1 − σ(f(x)) represents the probability p of a
sample x going left (or right). A commonly adopted strategy involves using a linear combination
of input features for splitting during training, followed by seeking sparse features for prediction.
At each decision node, the probability is then computed using a sigmoid function, with weights
applied to all input features. The probabilistic trees mentioned above (section 2) treat both weights
and thresholds as learnable parameters per node. As show in Eq.1, for a given input feature vector
x, the bias bi and corresponding weight vector wi are learned at the splitting node i. GradTree
(Marton et al., 2024) improves this strategy by introducing a dense matrix to store each threshold for
each feature at each node, instead of using a general bias, with the goal of aligning specific features
with their thresholds. However, this method increases memory and computational costs, while also
introducing non-differentiable functions.

pi(x) :=
1

1 + e−(x·wi)−bi))
(1)

3



162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2025

Figure 1: ProuDT construction. We show the feature assignment in ProuDT architechture for an
input sample vector x consisting of four features. After ranking features from an original order
x1, x2, x3, x4 to a ranked order x3, x2, x1, x4, we position the features to decision nodes in a cyclic
fashion. The branches’ probabilities from decision node i are determined by the individual feature
and the only learnable bias bi of that node.

Unlike the approach proposed in GradTree, we take a different path by directly assigning a deter-
ministic feature to each splitting node. This approach allows us to explore the learning potential of
individual features at each node (Eq.2). We use mutual information to rank features before construct-
ing the tree. During training, individual features, ranked from most to least important, are assigned
to each node in a cyclic order, starting from the root node and continuing through the internal nodes
up to the penultimate depth (see Figure 1).

Additionally, we design the splitting criteria by treating only the threshold as a learnable parameter.
Our goal is not only to reduce memory usage by using fewer parameters, but also to maintain the
interpretability of traditional decision trees. Consequently, our probabilistic tree, ProuDT, retains
deterministic feature splits similar to those in traditional decision trees, while offering the potential
for improved learning and predictive performance due to its “soft” properties.

pi(x) :=
1

1 + e−(xji−bi)
(2)

Where,

• j denotes the index of the employed feature.
• xji denotes the individual feature utilized for splitting at node i.

3.2 TREE LEARNING

To simplify the process, ProuDT focuses on fully constructed binary trees for classification prob-
lems. During the initialization stage, the threshold value at each decision node is treated as a learn-
able parameter and is initialized at the beginning. Additionally, each leaf node contains a vector of
class distribution scores, which are also initialized as learnable parameters. Individual features are
allocated to each decision node as described in section 3.1.

During the training stage, in the forward splitting, each decision node computes a probability for the
left branch using the output of a sigmoid function, while the right branch receives the complement of
this probability. For the entire tree, each path’s probability is the product of the branch probabilities
along that path, denoted as Pl. The path probability is then multiplied by class distribution score λl

at the corresponding leaf l to obtain the final value. Finally, with the aggregation of all weighted leaf
nodes (Eq.3), the prediction is made. ϕ denotes the weighted sum of class scores across each leaf
node l, and Qk is the predicted probability for class k after applying the softmax function (Eq.4).

4



216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2025

ϕ =

2d−1∑
l=0

λlPl(x) (3)

Qk =
exp(ϕk)∑
k′ exp(ϕk′)

(4)

In the backward propagation, the learning parameters are updated using their gradients computed
from the loss function (Eq. 5).

For a single training sample with input vector x, the focal loss function is:

Lfocal(x) = −
C∑

k=1

Tk(1−Qk)
γ log(Qk) (5)

Where:

• Lfocal(x) is the focal loss for input x,

• C is the number of classes,

• Tk is the true label indicator for class k (1 if class k is the true class, 0 otherwise).

• γ ≥ 0 is the focusing parameter,

3.3 INTERPRETABILITY OF FEATURE UTILIZATION

The interpretability of our tree stems from the clear ranking and structured positioning of features
during the learning process. By highlighting the factors that contribute most to decision-making,
our tree provides valuable insights into the key features driving predictions. Its strong predictive
performance reinforces the confidence in feature importance derived from mutual information. This
structured approach provides a transparent explanation of feature significance and decision path-
ways, offering clarity and assurance in understanding which features play the most critical roles in
the decision-making process.

4 EXPERIMENTS

In this section, we compare our tree with open-source GradTree1, the state-of-the-art non-greedy
univariate tree, and CART, the standard univariate tree. We conduct experiments on both numerical
and categorical datasets, comparing performance across datasets with varying sample sizes, feature
dimensions, and class distributions. We find our ProuDT outperforms the other leading models.
Besides, ProuDT is faster than GradTree in terms of the tree induction and inference time. Ad-
ditionally, we conduct ablation studies to check the feature selection strategy and verify the loss
design. We provide the source code2 for reproducibility.

4.1 EXPERIMENTAL SETUP

Preliminary Study: For any gradient-based tree, the tree depth should be specified in advance
(Frosst & Hinton, 2017; Blanquero et al., 2021; Verwer & Zhang, 2019), as the tree model requires
initialization in the beginning. Hence, the depth of a tree is a crucial hyperparameter. Fixing the tree
depth, rather than performing an automatic depth search, is more practical for tree training. Since
optimizing a fixed structure is already computationally expensive, iterating over multiple structures
is not prioritized (Costa & Pedreira, 2023).

To gain insights into optimal default depth setting for any given datasets in ProuDT, we conducted
a preliminary study on 12 UCI datasets of varying sample size, dimensionalities and class numbers.

1https://github.com/s-marton/GradTree
2https://github.com/Alicesn/ProuDT

5



270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2025

We evaluated the prediction performance across tree depth ranging from 2 to 14 (see details in Table
4 and results in Figure 3 in Appendix). From the result of the preliminary study, we found that
our tree (1) does not overfit even as the tree grows deeper and (2) achieves optimal performance at
shallow depths (below 9) for most datasets, while deeper depths (above 9) are better suited for large,
high-dimensional datasets. Most datasets in the preliminary study reach optimal accuracy between
depths 2 and 5. Beyond this point, the accuracy curve remains flat as the depth increases, with no
signs of overfitting.

Datasets and Preprocessing in Experiment: The formal experiments are conducted on another set
of 12 multiple UCI datasets, specifically, two small multi-class datasets from Yang et al. (2018), four
large high-dimensional multi-class datasets from Karthikeyan et al. (2021) and Marton et al. (2024),
and six large binary datasets from Marton et al. (2024). Both categorical and numerical datasets are
included. All datasets in these experiments are classification problems. For all datasets, we follow
the data preprocessing from Popov et al. (2019) and apply the quantile transform3 to convert each
data feature into a normal distribution. We applied a 80%/20% train-test split. Additionally, 20% of
the training data was set aside as validation data to control early stopping at optimal epoch.

Hyperparameters and Default Setting in Experiment: We view our model as a user-friendly
method suitable for non-expert users. Specifically, we refrain from adjusting hyperparameters,
opting to use the default settings. Our focus is on implementation simplicity, providing a high-
performance method that is easy to use.

Based on the insights gained from the preliminary study, we selected a depth of 8 as the default
for low-dimensional datasets and a depth of 11 for high-dimensional datasets (feature size > 100)
in our formal experiment. Although these default depths are slightly deeper than observed in the
preliminary study, our goal is to achieve more robust performance across diverse, unknown datasets.
We test our tree using the 12 standard datasets, as described before. For GradTree, we implement
its suggested default depth 10. For CART, we employ the standard sklearn implementation. To
ensure a fair comparison with the most recent state-of-the-art univariate GradTree, we conducted all
experiments using a NVIDIA A100-PCIE-40GB GPU. It is worth noting that ProuDT is not only
efficient but also easy to deploy on both CPU and GPU systems, as it does not involve complex
computations. This makes our approach computationally lightweight and scalable across different
hardware setups.

4.2 RESULT

We compare accuracy (also see Table 5 in Appendix for additional F1-score with similar compar-
isons), as well as training and testing time for evaluating different trees. In terms of accuracy (Table
1), our method outperforms the most recent state-of-the-art non-greedy tree model and the standard
CART on binary datasets (i.e., Nc = 2). ProuDT also achieves competitive accuracy compared to
CART and outperforms GradTree on multi-class datasets, particularly in high-dimensional scenar-
ios.

Regarding training time (see details in Table 6 in Appendix), the greedy CART undoubtedly re-
mains the fastest, with training times typically under 1 second. Optimization-based solutions tend
to require longer training times. For most binary datasets, ProuDT completes training in less than
20 seconds, whereas GradTree takes significantly longer, with its training time being heavily depen-
dent on the sample size. For example, on the BANK MARKET dataset, which has the largest sample
size, GradTree requires 240 seconds, while ProuDT completes in just 13 seconds. As the number of
classes increases, ProuDT takes more time to converge. Notably, for the SEMEION dataset, which
has 256 features, our tree utilized the default depth of 11. Although this deeper depth resulted in a
longer training time (596 seconds), it achieved an accuracy improvement of 15% over CART and
30% over GradTree. In terms of test time, ProuDT averages 0.02 seconds across all datasets, com-
pared to 0.34 seconds for GradTree. Non-greedy CART remains the fastest, with an average test
time of just 0.0005 seconds.

It is noteworthy that we set the default depth 8 in the experiment although less than depth 5 is
suggested from the insights of the preliminary study. ProuDT would be faster with a reduced depth
and can reach similarly competitive accuracy.

3sklearn.preprocessing.QuantileTransformer

6



324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2025

Table 1: Accuracy comparison of ProuDT, GradTree, and CART on various classification datasets.
We provide the datasets’ structure, i.e., sample size (Ns), feature size (Nf ), and class size (Nc). The
results are shown as average±std over 10 runs. The bold font indicates the best result.

Dataset Ns, Nf , Nc ProuDT (%) GradTree (%) CART (%)
ADULT 32561, 14, 2 84.50±0.45 81.31±2.03 80.90±0.47
BANK MARKET 45211, 14, 2 88.76±0.14 86.29±1.38 82.30±0.42
CREDIT CARD 30000, 23, 2 81.57±0.59 76.04±2.05 72.52±0.50
RICE 3810, 7, 2 92.35±0.66 92.13±1.10 88.48±0.79
SPAMBASE 4601, 57, 2 93.17±0.92 88.37±1.83 90.83±1.10
MUSHROOM 8124, 22, 2 99.74±0.18 97.33±7.16 99.90±0.14
IRIS 150, 4, 3 95.33±3.44 91.33±5.71 94.67±2.67
SPLICE 3190, 60, 3 90.13±1.34 83.32±5.23 89.14±1.79
SEGMENT 2310, 19, 7 95.45±0.88 88.64±3.58 96.45±0.53
LETTER 20000, 16, 26 87.62±0.68 48.92±3.09 88.03±0.29
PENDIGITS 10992, 16, 10 97.63±0.35 86.34±1.57 96.10±0.46
SEMEION 1593, 256, 10 87.11±1.58 48.93±3.60 74.59±2.00

4.3 ABLATION STUDY

4.3.1 FEATURE POSITIONING

In our tree design, we assign individual features to each decision node in a cyclic order after pre-
ranking them. To evaluate the effectiveness of this feature positioning strategy, we compare the
performance of mutual-information ranked feature order against the original feature order from the
given datasets.

We conducted this experiment to evaluate test accuracy across different depths using the 12 UCI
datasets from the preliminary study, analyzing the impact of depth variation on performance. Figure
2 shows that after rearranging ranked features to the nodes, with the most important feature being at
the root node and the subsequently important features being positioned at deeper levels in sequence,
performance across some datasets improves significantly at the very shallow depth such as depth
2 when compared to using a non-ranked initial feature sequence. However, as the depth increases,
the performance gap between ranked and non-ranked feature positioning strategies narrows, demon-
strating that our tree learning in a cyclic order is robust in achieving high accuracy regardless of
different feature sequence at the decision nodes.

From this result, we gain insights that assigning features to decision nodes after feature ranking
can contribute to tree’s convergence. It is plausible as the importance at different decision node is
different. The closer a decision node is to the top, the more decision paths it covers, and the greater
its impact on the overall decision-making. Thus, we finalize our learning strategy by positioning
pre-ranked features, obtained from any simple feature ranking technique, to contribute to the tree’s
performance at shallow depths.

4.3.2 LOSS DESIGN

We evaluate the effectiveness of focal loss in our tree model by comparing it with cross-entropy loss
on those 12 datasets from the formal experiment, using the default depth setting. The results demon-
strate the advantages of focal loss in terms of faster convergence and predictive capability. As shown
in Table 2, focal loss accelerates convergence across all datasets when compared to cross-entropy
loss. Meanwhile, as seen in Table 3, the accuracy for both loss functions remains comparable. The
average accuracy achieved with focal loss is 90.93%, which is on par with the accuracy (91.08%)
from cross-entropy loss.

4.4 DISCUSSION

ProuDT is user-friendly and ideal for non-experts to deploy with ease. Here are several takeways of
our tree.

7



378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2025

Figure 2: Feature ranking power comparison. The x-axis represents tree depth, and the y-axis
represents classification accuracy (the higher, the better). Standard CART is included as a baseline
for comparison. The performance of ProuDT is evaluated using both mutual-information ranked
feature order and non-ranked original feature order across different datasets.

• Based on our extensive observations from the preliminary study (Figure 3 in Appendix),
no overfitting is observed. Accuracy tends to plateau after reaching an optimal point at a
lower depth, making it both simple and robust to employ a default depth setting.

• The results from the formal experiment demonstrate that ProuDT delivers superior accu-
racy performance and proves to be scalable across datasets of varying sizes.

• Our learning strategy is robust, enabling the use of different feature sequences at decision
nodes. On one hand, feature ranking with simple techniques, such as mutual information or
random forest, can accelerate convergence and achieves strong performance at lower tree
depths. On the other hand, feature sequence is not necessary if users are not concerned with

8



432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2025

Table 2: Training time comparison between focal loss (FL) and cross-entropy loss (CE) for ProuDT
on various classification datasets. The average training time is reported over 10 trials.

Dataset Ns Nf Nc FL (s) CE (s)

ADULT 32561 14 2 15.68 41.44
BANK MARKET 45211 14 2 12.52 38.30
CREDIT CARD 30000 23 2 12.57 28.30
RICE 3810 7 2 11.23 23.13
SPAMBASE 4601 57 2 24.80 50.74
MUSHROOM 8124 22 2 22.16 53.71
IRIS 150 4 3 23.96 43.62
SPLICE 3190 60 3 39.89 70.12
SEGMENT 2310 19 7 91.56 165.04
LETTER 20000 16 26 399.09 441.38
PENDIGITS 10992 16 10 118.42 232.14
SEMEION 1593 256 10 596.45 919.18

Table 3: Accuracy comparison of focal loss (FL) and cross-entropy loss (CE) on various classifica-
tion datasets.

Dataset Ns Nf Nc FL (%) CE (%)

ADULT 32561 14 2 84.50 ± 0.45 84.81 ± 0.42
BANK MARKET 45211 14 2 88.76 ± 0.14 88.99 ± 0.17
CREDIT CARD 30000 23 2 81.57 ± 0.59 81.82 ± 0.44
RICE 3810 7 2 92.35 ± 0.66 92.43 ± 0.66
SPAMBASE 4601 57 2 93.17 ± 0.92 92.92 ± 0.65
MUSHROOM 8124 22 2 99.74 ± 0.18 99.76 ± 0.19
IRIS 150 4 3 95.33 ± 3.44 96.00 ± 2.91
SPLICE 3190 60 3 90.13 ± 1.34 89.75 ± 1.57
SEGMENT 2310 19 7 95.45 ± 0.88 95.65 ± 0.77
LETTER 20000 16 26 87.62 ± 0.68 87.53 ± 0.46
PENDIGITS 10992 16 10 97.63 ± 0.35 98.01 ± 0.37
SEMEION 1593 256 10 87.11 ± 1.58 87.08 ± 1.52

Average 90.93 91.08

the tree induction time. As tree depth increases, feature ranking becomes progressively less
critical and eventually unnecessary.

5 CONCLUSION

We propose ProuDT, a simple yet powerful learning strategy to construct superior axis-aligned de-
cision trees. In this work, we demonstrate that directly assigning individual features to the deci-
sion nodes in a cyclic order enhances both accuracy and efficiency in tree induction and inference.
This method provides valuable insights into how individual feature utilization contributes to both
interpretability and improved model accuracy. Moreover, experimental results from 12 datasets,
complemented by a preliminary study on another set of 12 datasets, confirm the robustness and ef-
fectiveness of our default settings, further highlighting the ease of deployment and practical utility of
ProuDT. Our exploration paves the way for developing more powerful axis-aligned trees following
KISS principle.

9



486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2025

REFERENCES

Rodrigo Coelho Barros, Márcio Porto Basgalupp, Andre CPLF De Carvalho, and Alex A Freitas.
A survey of evolutionary algorithms for decision-tree induction. IEEE Transactions on Systems,
Man, and Cybernetics, Part C (Applications and Reviews), 42(3):291–312, 2011.

Dimitris Bertsimas and Jack Dunn. Optimal classification trees. Machine Learning, 106:1039–1082,
2017.

Dimitris Bertsimas, Jack Dunn, Emma Gibson, and Agni Orfanoudaki. Optimal survival trees.
Machine learning, 111(8):2951–3023, 2022.

Rocio Blanquero, Emilio Carrizosa, Cristina Molero-Rio, and Dolores Romero Morales. Sparse
optimal classification trees. European Journal of Operational Research, 2021.

Leo Breiman, Jerome Friedman, Richard Olshen, and Charles Stone. Classification and Regression
Trees. Wadsworth and Brooks, 1984.

Miguel A Carreira-Perpinán and Pooya Tavallali. Alternating optimization of decision trees, with
application to learning sparse oblique trees. Advances in neural information processing systems,
31, 2018.

Thomas H Cormen, Charles E Leiserson, Ronald L Rivest, and Clifford Stein. Introduction to
algorithms. MIT press, 2022.

Vinı́cius G Costa and Carlos E Pedreira. Recent advances in decision trees: An updated survey.
Artificial Intelligence Review, 56(5):4765–4800, 2023.

Emir Demirović, Anna Lukina, Emmanuel Hebrard, Jeffrey Chan, James Bailey, Christopher
Leckie, Kotagiri Ramamohanarao, and Peter J Stuckey. Murtree: Optimal decision trees via
dynamic programming and search. Journal of Machine Learning Research, 23(26):1–47, 2022.

Nicholas Frosst and Geoffrey Hinton. Distilling a neural network into a soft decision tree. arXiv
preprint arXiv:1711.09784, 2017.

Oktay Günlük, Jayant Kalagnanam, Minhan Li, Matt Menickelly, and Katya Scheinberg. Optimal
decision trees for categorical data via integer programming. Journal of global optimization, 81:
233–260, 2021.

Thomas M Hehn, Julian FP Kooij, and Fred A Hamprecht. End-to-end learning of decision trees
and forests. International Journal of Computer Vision, 128(4):997–1011, 2020.

Ozan Irsoy, Olcay Taner Yıldız, and Ethem Alpaydın. Soft decision trees. In Proceedings of the
21st international conference on pattern recognition (ICPR2012), pp. 1819–1822. IEEE, 2012.

Ajaykrishna Karthikeyan, Naman Jain, Nagarajan Natarajan, and Prateek Jain. Learning ac-
curate decision trees with bandit feedback via quantized gradient descent. arXiv preprint
arXiv:2102.07567, 2021.

Gordon V Kass. An exploratory technique for investigating large quantities of categorical data.
Journal of the Royal Statistical Society: Series C (Applied Statistics), 29(2):119–127, 1980.

Harold Kiossou, Pierre Schaus, Siegfried Nijssen, and Gaël Aglin. Efficient lookahead decision
trees. In International Symposium on Intelligent Data Analysis, pp. 133–144. Springer, 2024.

Guang-He Lee and Tommi S Jaakkola. Oblique decision trees from derivatives of relu networks.
arXiv preprint arXiv:1909.13488, 2019.

Wei-Yin Loh and Yu-Shan Shih. Split selection methods for classification trees. Statistica sinica,
pp. 815–840, 1997.

Sascha Marton, Stefan Lüdtke, Christian Bartelt, and Heiner Stuckenschmidt. Gradtree: Learning
axis-aligned decision trees with gradient descent. In Proceedings of the AAAI Conference on
Artificial Intelligence, volume 38, pp. 14323–14331, 2024.

10



540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2025

John Mingers. An empirical comparison of pruning methods for decision tree induction. Machine
learning, 4:227–243, 1989.

Mohammad Norouzi, Michael Collins, Mark Johnson, David J Fleet, and Pushmeet Kohli. Effi-
cient non-greedy optimization of decision trees. In Advances in Neural Information Processing
Systems. NeurIPS, 2015.

Steven W Norton. Generating better decision trees. In IJCAI, volume 89, pp. 800–805, 1989.

Cecı́lia Nunes, Mathieu De Craene, Hélène Langet, Oscar Camara, and Anders Jonsson. Learning
decision trees through monte carlo tree search: An empirical evaluation. Wiley Interdisciplinary
Reviews: Data Mining and Knowledge Discovery, 10(3):e1348, 2020.

Sergei Popov, Stanislav Morozov, and Artem Babenko. Neural oblivious decision ensembles for
deep learning on tabular data. arXiv preprint arXiv:1909.06312, 2019.

J Ross Quinlan. C4. 5: programs for machine learning. Elsevier, 2014.

Laura Elena Raileanu and Kilian Stoffel. Theoretical comparison between the gini index and infor-
mation gain criteria. Annals of Mathematics and Artificial Intelligence, 41:77–93, 2004.

David M Rodrı́guez, Manuel P Cuéllar, and Diego P Morales. On the fusion of soft-decision-trees
and concept-based models. Applied Soft Computing, 160:111632, 2024.

Andrew Silva, Matthew Gombolay, Taylor Killian, Ivan Jimenez, and Sung-Hyun Son. Optimiza-
tion methods for interpretable differentiable decision trees applied to reinforcement learning. In
International conference on artificial intelligence and statistics, pp. 1855–1865. PMLR, 2020.

Alfonso Suarez and Joseph F. Lutsko. Dynamic integration of decisions in neural network models.
Neural Networks, 1999.

Sicco Verwer and Yingqian Zhang. Learning optimal classification trees using a binary linear pro-
gram formulation. In Proceedings of the AAAI conference on artificial intelligence, volume 33,
pp. 1625–1632, 2019.

Alvin Wan, Lisa Dunlap, Daniel Ho, Jihan Yin, Scott Lee, Henry Jin, Suzanne Petryk, Sarah Adel
Bargal, and Joseph E Gonzalez. Nbdt: Neural-backed decision trees. arXiv preprint
arXiv:2004.00221, 2020.

Zhuoer Xu, Guanghui Zhu, Chunfeng Yuan, and Yihua Huang. One-stage tree: end-to-end tree
builder and pruner. Machine Learning, 111(5):1959–1985, 2022.

Yongxin Yang, Irene Garcia Morillo, and Timothy M Hospedales. Deep neural decision trees. arXiv
preprint arXiv:1806.06988, 2018.

Valentina Zantedeschi, Matt Kusner, and Vlad Niculae. Learning binary decision trees by argmin
differentiation. In International Conference on Machine Learning, pp. 12298–12309. PMLR,
2021.

11



594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2025

A APPENDIX

Table 4 shows the details of datasets for the preliminary study.

Table 4: Details of the 12 UCI datasets used in preliminary study
Dataset Ns Nf Nc

Breast Cancer Wisconsin 569 30 2
Wine 178 13 3
Yeast 1484 8 10
Statlog 58000 7 2
MAGIC Gamma Telescope 19020 10 2
Ecoli 336 8 8
Blood Transfusion 748 4 2
Fertility 100 9 2
ISOLET 7797 617 26
User Knowledge Modeling 403 5 5
Wholesale Customers 440 7 3
Phishing Websites 11055 30 2

We show the comparison of F1-score besides accuracy in Table 5.

Table 5: Comparison of F1-score for different trees across various datasets.
Dataset Ns, Nf , Nc ProuDT GradTree CART
ADULT 32,561, 14, 2 0.774 ± 0.007 0.742 ± 0.046 0.740 ± 0.007
BANK MARKET 45,211, 14, 2 0.555 ± 0.024 0.629 ± 0.020 0.596 ± 0.008
CREDIT CARD 30,000, 23, 2 0.662 ± 0.015 0.671 ± 0.016 0.612 ± 0.007
SPAMBASE 4,601, 57, 2 0.928 ± 0.010 0.878 ± 0.019 0.904 ± 0.012
RICE 3,810, 7, 2 0.922 ± 0.007 0.920 ± 0.011 0.882 ± 0.008
MUSHROOM 8,124, 22, 2 0.997 ± 0.002 0.972 ± 0.077 0.999 ± 0.014
IRIS 150, 4, 3 0.953 ± 0.034 0.913 ± 0.057 0.946 ± 0.027
SPLICE 3,190, 60, 3 0.891 ± 0.015 0.809 ± 0.063 0.878 ± 0.021
SEGMENT 2,310, 19, 7 0.955 ± 0.009 0.884 ± 0.039 0.965 ± 0.005
LETTER 20,000, 16, 26 0.876 ± 0.007 0.479 ± 0.034 0.880 ± 0.003
PENDIGITS 10,992, 16, 10 0.976 ± 0.003 0.863 ± 0.016 0.961 ± 0.005
SEMEION 1,593, 256, 10 0.871 ± 0.016 0.482 ± 0.043 0.744 ± 0.019

Figure 3 presents the observations from a preliminary experiment conducted on 12 training datasets.
The goal of this experiment was to gain insights into the default depth selection for our tree. The de-
tails of these 12 UCI datasets are included in the plot. We evaluated the model’s prediction accuracy
across various depths and found that it consistently achieves optimal accuracy at shallow depths for
most datasets, with no signs of overfitting. For the extremely high-dimensional ISOLET dataset,
we observed that a greater depth yields higher accuracy. Based on these findings, we recommend
using a depth below 9 (such as depth 8) for most datasets. However, for high-dimensional datasets,
a depth of 11 is advised.

12



648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2025

Figure 3: Preliminary study with ProuDT to assess the impact of tree depth on performance, with
standard CART as a baseline. The x-axis represents tree depth, and the y-axis represents classifica-
tion accuracy (the higher, the better). Both training and test accuracy are reported. ProuDT achieves
optimal accuracy at shallow depths across most datasets, with the exception of the high-dimensional
dataset (617 features), which requires a deeper depth. ProuDT outperforms CART at most depths.

13



702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2025

Table 6: Training time (seconds) comparison of ProuDT, GradTree, and CART on experimental
classification datasets. We provide the datasets’ structure, i.e., sample size (Ns), feature size (Nf ),
and class size (Nc). The results are measured in seconds (s) across the models.

Dataset Ns, Nf , Nc ProuDT (s) GradTree (s) CART (s)

ADULT 32,561, 14, 2 15.68 160.51 0.06
BANK MARKET 45,211, 14, 2 12.52 239.83 0.04
CREDIT CARD 30,000, 23, 2 12.57 144.73 0.55
RICE 3,810, 7, 2 11.23 40.99 0.02
SPAMBASE 4601, 57, 2 24.80 44.23 0.06
MUSHROOM 8,124, 22, 2 22.16 68.54 0.01
IRIS 150, 4, 3 23.96 29.74 <0.01
SPLICE 3,190, 60, 3 39.89 30.97 0.02
SEGMENT 2,310, 19, 7 91.56 43.63 <0.01
LETTER 20,000, 16, 26 399.09 124.97 0.06
PENDIGITS 10,992, 16, 10 118.42 89.29 0.05
SEMEION 1,593, 256, 10 596.45 35.83 0.02

14


	Introduction
	Related Works
	Methodology
	Univariate splitting
	Tree learning
	Interpretability of feature utilization

	Experiments
	Experimental setup
	Result
	Ablation study
	Feature positioning
	Loss design

	Discussion

	Conclusion
	Appendix

