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ABSTRACT

Decision Trees (DTs) are widely used in various domains for their simplicity and
interpretability. However, traditional DTs often suffer from low accuracy and
reduced robustness because they rely on fixed splits and a greedy approach to
decision-making. While recent approaches combining decision trees with opti-
mization seek to balance accuracy, computational efficiency, and interpretabil-
ity, they still fall short in certain aspects. In this paper, we introduce a novel
Probabilistic univariate Decision Tree (ProuDT), a non-greedy, axis-aligned tree
that aims to address these challenges and achieve significant improvements. By
assigning a single deterministic feature to each decision node, ProuDT ensures
univariate splits while preserving the differentiability of soft decision trees for
gradient-based optimization. This tree enhances interpretability through trans-
parent feature utilization in decision-making. Additionally, ProuDT simplifies the
optimization process and reduces computational cost by avoiding complex param-
eters. Extensive experiments on tabular datasets demonstrate ProuDT’s superior
performance and scalability, particularly in binary and multi-class classification
tasks.

1 INTRODUCTION

Decision trees are among the most widely used and easily understood methods in supervised learn-
ing. The classic decision trees include CART (Breiman et al., 1984) and C4.5 (Quinlan, 2014),
which continues to be the most widely recognized trees and are the basis of various advancements.
The simplicity and interpretability of decision trees make them a favored choice for many appli-
cations. Current approaches to learning decision trees are categorised into greedy and non-greedy
methods. Through greedy optimization (Mingers, 1989; Raileanu & Stoffel, 2004), trees are grown
following one specific criterion (e.g., Gini impurity) at decision nodes. The process happens recur-
sively with further nodes being split without reconsidering previous splits during tree induction. The
greedy nature usually leads to sub-optimal solutions (Cormen et al., 2022). To address sub-optimal
problems, non-greedy methods have been extensively explored from various perspectives. Global
tree search approaches, such as lookahead methods (Norton, 1989; Kiossou et al., 2024), evolution-
ary algorithms (Barros et al., 2011), or mathematical programming techniques like mixed-integer
programming (Günlük et al., 2021; Bertsimas & Dunn, 2017; Bertsimas et al., 2022), are all opti-
mization techniques. However, a key limitation of these global search approaches is their lack of
scalability. Exploring the entire tree space dramatically increases computational cost, making such
methods feasible only for small trees and datasets.

Due to the scalability limitations of global search methods and the aim for high classification accu-
racy, alternative optimization techniques have been explored. Among these alternatives, gradient-
based optimization has gained increasing popularity. Compared to greedy trees with hard split, these
trees demonstrate better learning capability especially with probabilistic splits, i.e., soft splits, and
have good prediction performance (Frosst & Hinton, 2017; Wan et al., 2020). However, there are
interpretability, accuracy, and computational cost limitations among existing efforts. Probabilistic
trees often use multivariate splits, which reduces interpretability by making the roles of features
at decision nodes unclear. To address the reduced interpretability caused by multivariate splits,
researchers have attempted to maintain univariate splits in soft trees using gradient-based optimiza-
tions for hard splits (Marton et al., 2024). However, these efforts negatively impact classification
accuracy and limit scalability. Moreover, the computational and memory costs of dense feature rep-
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resentations are high due to the many learnable parameters involved in gradient-based optimization.
For users seeking a simple and transparent model for classification tasks, the complexity can be
a significant drawback. This may explain why traditional decision trees remain popular, as their
simplicity is appealing despite their potential limitations.

Existing approaches to optimizing decision trees for high accuracy often increase model complexity,
which in turn affects interpretability. Specifically, most gradient-based methods struggle to ensure
sparse features at decision nodes, making it difficult to maintain transparency in the decision-making
process. Three commonly explored methods aim to address this challenge. The first approach
involves growing an oblique tree to improve accuracy and then applying post-hoc feature removal
strategies during prediction. However, this creates a discrepancy between the features used during
training and testing, which ultimately degrades the model’s performance. The second approach
seeks to learn the position of individual features during tree growth. This is done using a dense
matrix to store all features across all decision nodes, aiming to identify the most suitable splitting
feature through parameter learning. While this method improves flexibility, it significantly increases
memory and computational costs, limiting scalability for higher dimensions and deeper trees. The
third approach employs traditional greedy search algorithms, such as computing information gain.
While this method easily identifies a deterministic feature for splitting at each decision node, its
performance is often compromised by the inherent limitations of the greedy strategy.

To address these challenges in gradient-based tree construction, we propose the Probabilistic uni-
variate Decision Tree (ProuDT) to jointly improve: (1) accuracy, (2) convergence and inference
speed by reducing computational cost through fewer parameters, and (3) interpretability by offering
insights into feature utilization and decision-making process. Specifically, our contributions are:

1. We introduce an effective and efficient probabilistic tree learning strategy with fewer learn-
able parameters involved during the tree induction. Rather than explicitly focusing on
learning the single feature for node splitting, our approach naturally achieves transparent
and effective single-feature splits. To the best of our knowledge, this is the first method to
directly utilize univariate splitting for probabilistic tree induction.

2. We propose a simple yet powerful axis-aligned decision tree that achieves high accuracy
and scalability, outperforming leading univariate trees. Moreover, by using the default set-
tings for a robust tree learning, users can bypass the complexity of hyperparameter tuning,
making the tree easy to deploy.

3. We offer insights into feature’s utilization that contribute to the decision-making process.

2 RELATED WORKS

Greedy trees: Several well-established decision trees have been developed for decades, e.g.,
QUEST (Loh & Shih, 1997), CART (Breiman et al., 1984), C4.5 (Quinlan, 2014), CHAID (Kass,
1980). The most prominent among them is the CART and C4.5, which construct trees by recursively
splitting the data based on feature values that minimize impurity or maximize information gain. Due
to the greedy hard splitting nature, these trees suffer from sub-optimal problems that affect accuracy.

Non-greedy trees: To handle the sub-optimal issue, non-greedy works have been proposed from
different aspects. MurTree (Demirović et al., 2022) applies dynamic programming and search al-
gorithms to generate optimal decision trees to handle categorical features. Nunes et al. (2020) pro-
poses the Monte Carlo Tree Search (MCTS) algorithm to facilitate lookahead tree navigation and
overcome the sub-optimal problem. Mixed-integer programming is also commonly explored (Bert-
simas et al., 2022; Zantedeschi et al., 2021). However, these methods introduce scalibility and
computation concerns. Tree alternating optimization (TAO) iteratively optimize node parameters
and enable the construction of sparse oblique decision trees (Carreira-Perpinán & Tavallali, 2018).
Through gradient-based optimization, DGT (Karthikeyan et al., 2021) achieves an oblique tree with
hard splits. In contrast, we aim to optimize a univariate tree, as it can be more interpretable than
multivariate trees.

Probabilistic Trees: Probabilistic trees soften the path routing with probabilistic splits, where an
instance can be routed along multiple branches with certain probabilities, typically using functions
like sigmoid to model the smooth transition (Irsoy et al., 2012; Norouzi et al., 2015; Lee & Jaakkola,
2019). The prediction is determined either by an aggregation of all leaves, for example through a
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weighted sum (Hehn et al., 2020; Suarez & Lutsko, 1999; Irsoy et al., 2012), or by the leaf with the
highest path probability (Frosst & Hinton, 2017). With the growing interest in explainability in neu-
ral networks, the combination of neural networks and decision trees has become increasingly popular
(Frosst & Hinton, 2017; Yang et al., 2018; Wan et al., 2020; Rodrı́guez et al., 2024). However, these
probabilistic trees often incorporate a linear combination of input features when determining their
splits. These multivariate trees preclude users from understanding the feature utilization. Although
researchers try to make the tree as interpretable as possible (Xu et al., 2022; Silva et al., 2020), it is
still a challenge to clarify the individual feature’s contribution. (Silva et al., 2020) trained a proba-
bilistic tree with multivariate splits and then, during prediction, transformed the tree into a univariate
tree by selecting the single feature with the highest weight from the multiple features at each node.
However, this process led to an inconsistency between the feature splits used in training and testing,
causing accuracy loss during prediction.

Univariate decision trees: The majority of gradient-based approaches focus on trees with mul-
tivariate or more complex splits. This stands in contrast to learning trees with univariate tests.
Therefore, constructing a univariate tree at the training stage is a potential solution to overcome the
weakness of multivariate trees. DNDT (Yang et al., 2018) leverages soft binning to make splits and
yields soft and axis-aligned tree. However, as the author mentioned, DNDT cannot scale well to
datasets with large number of features, i.e., more than 12, due to the limitation of Kronecker prod-
uct. Zantedeschi et al. (2021) utilizes the Argmin Differentiation to optimize tree parameters. This
method struggles with scalability to larger feature spaces. Recently, Marton et al. (2024) propose
GradTree, a method that enables hard splitting via gradient optimization. In backward propagation,
to overcome the non-differentiable process, by leveraging straight-through operator, they bypass the
non-differentiable function of hard split derived from forward propagation. However, mismatched
forward and backward propagations introduce gaps between training and testing stage, leading to po-
tential accuracy loss. In univariate tree induction, a key consideration is selecting the single feature
for splitting at each node. GradTree uses all input features at each node, following the probabilistic
tree’s method, but introduces the dense matrix to store all feature’s weights (indices) and thresh-
olds across all nodes for single-feature selection. This makes the method computationally expensive
and memory-intensive, particularly for high-dimensional datasets or deeper trees. The trade-off be-
tween optimization flexibility and scalability limits the model’s applicability to large-scale tasks. In
contrast, our proposed univariate tree induction strategy simplifies the optimization process while
maintaining efficiency and interpretability and can yield superior prediction result than the leading
univariate trees.

3 METHODOLOGY

We introduce ProuDT in this section. Unlike classical decision trees, ProuDT employs a proba-
bilistic routing strategy to yield more robust and accurate result. Univariate splitting and feature
selection is introduced in section 3.1. We describe the tree learning in section 3.2.

3.1 UNIVARIATE SPLITTING

In the probablistic decision tree induction, the sigmoid function is applied to turn hard splits into
weighted ones (soft splits). The output σ(f(x)(or (1 − σ(f(x)) represents the probability p of a
sample x going left (or right). A commonly adopted strategy involves using a linear combination
of input features for splitting during training, followed by seeking sparse features for prediction.
At each decision node, the probability is then computed using a sigmoid function, with weights
applied to all input features. The probabilistic trees mentioned above (section 2) treat both weights
and thresholds as learnable parameters per node. As show in Eq.1, for a given input feature vector
x, the bias bi and corresponding weight vector wi are learned at the splitting node i. GradTree
(Marton et al., 2024) improves this strategy by introducing a dense matrix to store each threshold for
each feature at each node, instead of using a general bias, with the goal of aligning specific features
with their thresholds. However, this method increases memory and computational costs, while also
introducing non-differentiable functions.

pi(x) :=
1

1 + e−(x·wi)−bi))
(1)

3
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Figure 1: ProuDT construction. We show the feature assignment in ProuDT architechture for an
input sample vector x consisting of four features. After ranking features from an original order
x1, x2, x3, x4 to a ranked order x3, x2, x1, x4, we position the features to decision nodes in a cyclic
fashion. The branches’ probabilities from decision node i are determined by the individual feature
and the only learnable bias bi of that node.

Unlike the approach proposed in GradTree, we take a different path by directly assigning a deter-
ministic feature to each splitting node. This approach allows us to explore the learning potential of
individual features at each node (Eq.2). We use mutual information to rank features before construct-
ing the tree. During training, individual features, ranked from most to least important, are assigned
to each node in a cyclic order, starting from the root node and continuing through the internal nodes
up to the penultimate depth (see Figure 1).

Additionally, we design the splitting criteria by treating only the threshold as a learnable parameter.
Our goal is not only to reduce memory usage by using fewer parameters, but also to maintain the
interpretability of traditional decision trees. Consequently, our probabilistic tree, ProuDT, retains
deterministic feature splits similar to those in traditional decision trees, while offering the potential
for improved learning and predictive performance due to its “soft” properties.

pi(x) :=
1

1 + e−(xji−bi)
(2)

Where,

• j denotes the index of the employed feature.
• xji denotes the individual feature utilized for splitting at node i.

3.2 TREE LEARNING

To simplify the process, ProuDT focuses on fully constructed binary trees for classification prob-
lems. During the initialization stage, the threshold value at each decision node is treated as a learn-
able parameter and is initialized at the beginning. Additionally, each leaf node contains a vector of
class distribution scores, which are also initialized as learnable parameters. Individual features are
allocated to each decision node as described in section 3.1.

During the training stage, in the forward splitting, each decision node computes a probability for the
left branch using the output of a sigmoid function, while the right branch receives the complement of
this probability. For the entire tree, each path’s probability is the product of the branch probabilities
along that path, denoted as Pl. The path probability is then multiplied by class distribution score λl

at the corresponding leaf l to obtain the final value. Finally, with the aggregation of all weighted leaf
nodes (Eq.3), the prediction is made. ϕ denotes the weighted sum of class scores across each leaf
node l, and Qk is the predicted probability for class k after applying the softmax function (Eq.4).

4
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ϕ =

2d−1∑
l=0

λlPl(x) (3)

Qk =
exp(ϕk)∑
k′ exp(ϕk′)

(4)

In the backward propagation, the learning parameters are updated using their gradients computed
from the loss function (Eq. 5).

For a single training sample with input vector x, the focal loss function is:

Lfocal(x) = −
C∑

k=1

Tk(1−Qk)
γ log(Qk) (5)

Where:

• Lfocal(x) is the focal loss for input x,

• C is the number of classes,

• Tk is the true label indicator for class k (1 if class k is the true class, 0 otherwise).

• γ ≥ 0 is the focusing parameter,

3.3 INTERPRETABILITY OF FEATURE UTILIZATION

The interpretability of our tree stems from the clear ranking and structured positioning of features
during the learning process. By highlighting the factors that contribute most to decision-making,
our tree provides valuable insights into the key features driving predictions. Its strong predictive
performance reinforces the confidence in feature importance derived from mutual information. This
structured approach provides a transparent explanation of feature significance and decision path-
ways, offering clarity and assurance in understanding which features play the most critical roles in
the decision-making process.

4 EXPERIMENTS

In this section, we compare our tree with open-source GradTree1, the state-of-the-art non-greedy
univariate tree, and CART, the standard univariate tree. We conduct experiments on both numerical
and categorical datasets, comparing performance across datasets with varying sample sizes, feature
dimensions, and class distributions. We find our ProuDT outperforms the other leading models.
Besides, ProuDT is faster than GradTree in terms of the tree induction and inference time. Ad-
ditionally, we conduct ablation studies to check the feature selection strategy and verify the loss
design. We provide the source code2 for reproducibility.

4.1 EXPERIMENTAL SETUP

Preliminary Study: For any gradient-based tree, the tree depth should be specified in advance
(Frosst & Hinton, 2017; Blanquero et al., 2021; Verwer & Zhang, 2019), as the tree model requires
initialization in the beginning. Hence, the depth of a tree is a crucial hyperparameter. Fixing the tree
depth, rather than performing an automatic depth search, is more practical for tree training. Since
optimizing a fixed structure is already computationally expensive, iterating over multiple structures
is not prioritized (Costa & Pedreira, 2023).

To gain insights into optimal default depth setting for any given datasets in ProuDT, we conducted
a preliminary study on 12 UCI datasets of varying sample size, dimensionalities and class numbers.

1https://github.com/s-marton/GradTree
2https://github.com/Alicesn/ProuDT
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We evaluated the prediction performance across tree depth ranging from 2 to 14 (see details in Table
4 and results in Figure 3 in Appendix). From the result of the preliminary study, we found that
our tree (1) does not overfit even as the tree grows deeper and (2) achieves optimal performance at
shallow depths (below 9) for most datasets, while deeper depths (above 9) are better suited for large,
high-dimensional datasets. Most datasets in the preliminary study reach optimal accuracy between
depths 2 and 5. Beyond this point, the accuracy curve remains flat as the depth increases, with no
signs of overfitting.

Datasets and Preprocessing in Experiment: The formal experiments are conducted on another set
of 12 multiple UCI datasets, specifically, two small multi-class datasets from Yang et al. (2018), four
large high-dimensional multi-class datasets from Karthikeyan et al. (2021) and Marton et al. (2024),
and six large binary datasets from Marton et al. (2024). Both categorical and numerical datasets are
included. All datasets in these experiments are classification problems. For all datasets, we follow
the data preprocessing from Popov et al. (2019) and apply the quantile transform3 to convert each
data feature into a normal distribution. We applied a 80%/20% train-test split. Additionally, 20% of
the training data was set aside as validation data to control early stopping at optimal epoch.

Hyperparameters and Default Setting in Experiment: We view our model as a user-friendly
method suitable for non-expert users. Specifically, we refrain from adjusting hyperparameters,
opting to use the default settings. Our focus is on implementation simplicity, providing a high-
performance method that is easy to use.

Based on the insights gained from the preliminary study, we selected a depth of 8 as the default
for low-dimensional datasets and a depth of 11 for high-dimensional datasets (feature size > 100)
in our formal experiment. Although these default depths are slightly deeper than observed in the
preliminary study, our goal is to achieve more robust performance across diverse, unknown datasets.
We test our tree using the 12 standard datasets, as described before. For GradTree, we implement
its suggested default depth 10. For CART, we employ the standard sklearn implementation. To
ensure a fair comparison with the most recent state-of-the-art univariate GradTree, we conducted all
experiments using a NVIDIA A100-PCIE-40GB GPU. It is worth noting that ProuDT is not only
efficient but also easy to deploy on both CPU and GPU systems, as it does not involve complex
computations. This makes our approach computationally lightweight and scalable across different
hardware setups.

4.2 RESULT

We compare accuracy (also see Table 5 in Appendix for additional F1-score with similar compar-
isons), as well as training and testing time for evaluating different trees. In terms of accuracy (Table
1), our method outperforms the most recent state-of-the-art non-greedy tree model and the standard
CART on binary datasets (i.e., Nc = 2). ProuDT also achieves competitive accuracy compared to
CART and outperforms GradTree on multi-class datasets, particularly in high-dimensional scenar-
ios.

Regarding training time (see details in Table 6 in Appendix), the greedy CART undoubtedly re-
mains the fastest, with training times typically under 1 second. Optimization-based solutions tend
to require longer training times. For most binary datasets, ProuDT completes training in less than
20 seconds, whereas GradTree takes significantly longer, with its training time being heavily depen-
dent on the sample size. For example, on the BANK MARKET dataset, which has the largest sample
size, GradTree requires 240 seconds, while ProuDT completes in just 13 seconds. As the number of
classes increases, ProuDT takes more time to converge. Notably, for the SEMEION dataset, which
has 256 features, our tree utilized the default depth of 11. Although this deeper depth resulted in a
longer training time (596 seconds), it achieved an accuracy improvement of 15% over CART and
30% over GradTree. In terms of test time, ProuDT averages 0.02 seconds across all datasets, com-
pared to 0.34 seconds for GradTree. Non-greedy CART remains the fastest, with an average test
time of just 0.0005 seconds.

It is noteworthy that we set the default depth 8 in the experiment although less than depth 5 is
suggested from the insights of the preliminary study. ProuDT would be faster with a reduced depth
and can reach similarly competitive accuracy.

3sklearn.preprocessing.QuantileTransformer
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Table 1: Accuracy comparison of ProuDT, GradTree, and CART on various classification datasets.
We provide the datasets’ structure, i.e., sample size (Ns), feature size (Nf ), and class size (Nc). The
results are shown as average±std over 10 runs. The bold font indicates the best result.

Dataset Ns, Nf , Nc ProuDT (%) GradTree (%) CART (%)
ADULT 32561, 14, 2 84.50±0.45 81.31±2.03 80.90±0.47
BANK MARKET 45211, 14, 2 88.76±0.14 86.29±1.38 82.30±0.42
CREDIT CARD 30000, 23, 2 81.57±0.59 76.04±2.05 72.52±0.50
RICE 3810, 7, 2 92.35±0.66 92.13±1.10 88.48±0.79
SPAMBASE 4601, 57, 2 93.17±0.92 88.37±1.83 90.83±1.10
MUSHROOM 8124, 22, 2 99.74±0.18 97.33±7.16 99.90±0.14
IRIS 150, 4, 3 95.33±3.44 91.33±5.71 94.67±2.67
SPLICE 3190, 60, 3 90.13±1.34 83.32±5.23 89.14±1.79
SEGMENT 2310, 19, 7 95.45±0.88 88.64±3.58 96.45±0.53
LETTER 20000, 16, 26 87.62±0.68 48.92±3.09 88.03±0.29
PENDIGITS 10992, 16, 10 97.63±0.35 86.34±1.57 96.10±0.46
SEMEION 1593, 256, 10 87.11±1.58 48.93±3.60 74.59±2.00

4.3 ABLATION STUDY

4.3.1 FEATURE POSITIONING

In our tree design, we assign individual features to each decision node in a cyclic order after pre-
ranking them. To evaluate the effectiveness of this feature positioning strategy, we compare the
performance of mutual-information ranked feature order against the original feature order from the
given datasets.

We conducted this experiment to evaluate test accuracy across different depths using the 12 UCI
datasets from the preliminary study, analyzing the impact of depth variation on performance. Figure
2 shows that after rearranging ranked features to the nodes, with the most important feature being at
the root node and the subsequently important features being positioned at deeper levels in sequence,
performance across some datasets improves significantly at the very shallow depth such as depth
2 when compared to using a non-ranked initial feature sequence. However, as the depth increases,
the performance gap between ranked and non-ranked feature positioning strategies narrows, demon-
strating that our tree learning in a cyclic order is robust in achieving high accuracy regardless of
different feature sequence at the decision nodes.

From this result, we gain insights that assigning features to decision nodes after feature ranking
can contribute to tree’s convergence. It is plausible as the importance at different decision node is
different. The closer a decision node is to the top, the more decision paths it covers, and the greater
its impact on the overall decision-making. Thus, we finalize our learning strategy by positioning
pre-ranked features, obtained from any simple feature ranking technique, to contribute to the tree’s
performance at shallow depths.

4.3.2 LOSS DESIGN

We evaluate the effectiveness of focal loss in our tree model by comparing it with cross-entropy loss
on those 12 datasets from the formal experiment, using the default depth setting. The results demon-
strate the advantages of focal loss in terms of faster convergence and predictive capability. As shown
in Table 2, focal loss accelerates convergence across all datasets when compared to cross-entropy
loss. Meanwhile, as seen in Table 3, the accuracy for both loss functions remains comparable. The
average accuracy achieved with focal loss is 90.93%, which is on par with the accuracy (91.08%)
from cross-entropy loss.

4.4 DISCUSSION

ProuDT is user-friendly and ideal for non-experts to deploy with ease. Here are several takeways of
our tree.

7
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Figure 2: Feature ranking power comparison. The x-axis represents tree depth, and the y-axis
represents classification accuracy (the higher, the better). Standard CART is included as a baseline
for comparison. The performance of ProuDT is evaluated using both mutual-information ranked
feature order and non-ranked original feature order across different datasets.

• Based on our extensive observations from the preliminary study (Figure 3 in Appendix),
no overfitting is observed. Accuracy tends to plateau after reaching an optimal point at a
lower depth, making it both simple and robust to employ a default depth setting.

• The results from the formal experiment demonstrate that ProuDT delivers superior accu-
racy performance and proves to be scalable across datasets of varying sizes.

• Our learning strategy is robust, enabling the use of different feature sequences at decision
nodes. On one hand, feature ranking with simple techniques, such as mutual information or
random forest, can accelerate convergence and achieves strong performance at lower tree
depths. On the other hand, feature sequence is not necessary if users are not concerned with

8
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Table 2: Training time comparison between focal loss (FL) and cross-entropy loss (CE) for ProuDT
on various classification datasets. The average training time is reported over 10 trials.

Dataset Ns Nf Nc FL (s) CE (s)

ADULT 32561 14 2 15.68 41.44
BANK MARKET 45211 14 2 12.52 38.30
CREDIT CARD 30000 23 2 12.57 28.30
RICE 3810 7 2 11.23 23.13
SPAMBASE 4601 57 2 24.80 50.74
MUSHROOM 8124 22 2 22.16 53.71
IRIS 150 4 3 23.96 43.62
SPLICE 3190 60 3 39.89 70.12
SEGMENT 2310 19 7 91.56 165.04
LETTER 20000 16 26 399.09 441.38
PENDIGITS 10992 16 10 118.42 232.14
SEMEION 1593 256 10 596.45 919.18

Table 3: Accuracy comparison of focal loss (FL) and cross-entropy loss (CE) on various classifica-
tion datasets.

Dataset Ns Nf Nc FL (%) CE (%)

ADULT 32561 14 2 84.50 ± 0.45 84.81 ± 0.42
BANK MARKET 45211 14 2 88.76 ± 0.14 88.99 ± 0.17
CREDIT CARD 30000 23 2 81.57 ± 0.59 81.82 ± 0.44
RICE 3810 7 2 92.35 ± 0.66 92.43 ± 0.66
SPAMBASE 4601 57 2 93.17 ± 0.92 92.92 ± 0.65
MUSHROOM 8124 22 2 99.74 ± 0.18 99.76 ± 0.19
IRIS 150 4 3 95.33 ± 3.44 96.00 ± 2.91
SPLICE 3190 60 3 90.13 ± 1.34 89.75 ± 1.57
SEGMENT 2310 19 7 95.45 ± 0.88 95.65 ± 0.77
LETTER 20000 16 26 87.62 ± 0.68 87.53 ± 0.46
PENDIGITS 10992 16 10 97.63 ± 0.35 98.01 ± 0.37
SEMEION 1593 256 10 87.11 ± 1.58 87.08 ± 1.52

Average 90.93 91.08

the tree induction time. As tree depth increases, feature ranking becomes progressively less
critical and eventually unnecessary.

5 CONCLUSION

We propose ProuDT, a simple yet powerful learning strategy to construct superior axis-aligned de-
cision trees. In this work, we demonstrate that directly assigning individual features to the deci-
sion nodes in a cyclic order enhances both accuracy and efficiency in tree induction and inference.
This method provides valuable insights into how individual feature utilization contributes to both
interpretability and improved model accuracy. Moreover, experimental results from 12 datasets,
complemented by a preliminary study on another set of 12 datasets, confirm the robustness and ef-
fectiveness of our default settings, further highlighting the ease of deployment and practical utility of
ProuDT. Our exploration paves the way for developing more powerful axis-aligned trees following
KISS principle.
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A APPENDIX

Table 4 shows the details of datasets for the preliminary study.

Table 4: Details of the 12 UCI datasets used in preliminary study
Dataset Ns Nf Nc

Breast Cancer Wisconsin 569 30 2
Wine 178 13 3
Yeast 1484 8 10
Statlog 58000 7 2
MAGIC Gamma Telescope 19020 10 2
Ecoli 336 8 8
Blood Transfusion 748 4 2
Fertility 100 9 2
ISOLET 7797 617 26
User Knowledge Modeling 403 5 5
Wholesale Customers 440 7 3
Phishing Websites 11055 30 2

We show the comparison of F1-score besides accuracy in Table 5.

Table 5: Comparison of F1-score for different trees across various datasets.
Dataset Ns, Nf , Nc ProuDT GradTree CART
ADULT 32,561, 14, 2 0.774 ± 0.007 0.742 ± 0.046 0.740 ± 0.007
BANK MARKET 45,211, 14, 2 0.555 ± 0.024 0.629 ± 0.020 0.596 ± 0.008
CREDIT CARD 30,000, 23, 2 0.662 ± 0.015 0.671 ± 0.016 0.612 ± 0.007
SPAMBASE 4,601, 57, 2 0.928 ± 0.010 0.878 ± 0.019 0.904 ± 0.012
RICE 3,810, 7, 2 0.922 ± 0.007 0.920 ± 0.011 0.882 ± 0.008
MUSHROOM 8,124, 22, 2 0.997 ± 0.002 0.972 ± 0.077 0.999 ± 0.014
IRIS 150, 4, 3 0.953 ± 0.034 0.913 ± 0.057 0.946 ± 0.027
SPLICE 3,190, 60, 3 0.891 ± 0.015 0.809 ± 0.063 0.878 ± 0.021
SEGMENT 2,310, 19, 7 0.955 ± 0.009 0.884 ± 0.039 0.965 ± 0.005
LETTER 20,000, 16, 26 0.876 ± 0.007 0.479 ± 0.034 0.880 ± 0.003
PENDIGITS 10,992, 16, 10 0.976 ± 0.003 0.863 ± 0.016 0.961 ± 0.005
SEMEION 1,593, 256, 10 0.871 ± 0.016 0.482 ± 0.043 0.744 ± 0.019

Figure 3 presents the observations from a preliminary experiment conducted on 12 training datasets.
The goal of this experiment was to gain insights into the default depth selection for our tree. The de-
tails of these 12 UCI datasets are included in the plot. We evaluated the model’s prediction accuracy
across various depths and found that it consistently achieves optimal accuracy at shallow depths for
most datasets, with no signs of overfitting. For the extremely high-dimensional ISOLET dataset,
we observed that a greater depth yields higher accuracy. Based on these findings, we recommend
using a depth below 9 (such as depth 8) for most datasets. However, for high-dimensional datasets,
a depth of 11 is advised.
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Figure 3: Preliminary study with ProuDT to assess the impact of tree depth on performance, with
standard CART as a baseline. The x-axis represents tree depth, and the y-axis represents classifica-
tion accuracy (the higher, the better). Both training and test accuracy are reported. ProuDT achieves
optimal accuracy at shallow depths across most datasets, with the exception of the high-dimensional
dataset (617 features), which requires a deeper depth. ProuDT outperforms CART at most depths.
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Table 6: Training time (seconds) comparison of ProuDT, GradTree, and CART on experimental
classification datasets. We provide the datasets’ structure, i.e., sample size (Ns), feature size (Nf ),
and class size (Nc). The results are measured in seconds (s) across the models.

Dataset Ns, Nf , Nc ProuDT (s) GradTree (s) CART (s)

ADULT 32,561, 14, 2 15.68 160.51 0.06
BANK MARKET 45,211, 14, 2 12.52 239.83 0.04
CREDIT CARD 30,000, 23, 2 12.57 144.73 0.55
RICE 3,810, 7, 2 11.23 40.99 0.02
SPAMBASE 4601, 57, 2 24.80 44.23 0.06
MUSHROOM 8,124, 22, 2 22.16 68.54 0.01
IRIS 150, 4, 3 23.96 29.74 <0.01
SPLICE 3,190, 60, 3 39.89 30.97 0.02
SEGMENT 2,310, 19, 7 91.56 43.63 <0.01
LETTER 20,000, 16, 26 399.09 124.97 0.06
PENDIGITS 10,992, 16, 10 118.42 89.29 0.05
SEMEION 1,593, 256, 10 596.45 35.83 0.02
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