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Abstract

Many deep learning applications benefit from
using large models with billions of parameters.
Training these models is notoriously expensive
due to the need for specialized HPC clusters. In
this work, we consider alternative setups for train-
ing large models: using cheap “preemptible” in-
stances or pooling existing resources from multi-
ple regions. We analyze the performance of exist-
ing model-parallel algorithms in these conditions
and find configurations where training larger
models becomes less communication-intensive.
Based on these findings, we propose SWARM
parallelism', a model-parallel training algorithm
designed for poorly connected, heterogeneous
and unreliable devices. SWARM creates tem-
porary randomized pipelines between nodes that
are rebalanced in case of failure. We empiri-
cally validate our findings and compare SWARM
parallelism with existing large-scale training ap-
proaches. Finally, we combine our insights with
compression strategies to train a large Trans-
former language model with 1B shared param-
eters (=13B before sharing) on preemptible T4
GPUs with less than 200Mb/s network.

1. Introduction

For the past several years, the deep learning community has
been growing more reliant on large pretrained neural net-
works. The most evident example of this trend is natural lan-
guage processing, where the parameter count of models has
grown from hundreds of millions (Vaswani et al., 2017; Rad-
ford et al., 2018; Devlin et al., 2019) to billions (Narayanan
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et al., 2021; Raffel et al., 2020; Wang & Komatsuzaki, 2021;
Sun et al., 2021) to hundreds of billions (Brown et al., 2020;
Fedus et al., 2021; Chowdhery et al., 2022; Rae et al., 2021)
with consistent gains in quality (Kaplan et al., 2020). Like-
wise, many models in computer vision are reaching the
billion-parameter scale (Ramesh et al., 2021; Zhai et al.,
2021; Dai et al., 2021; Dhariwal & Nichol, 2021).

At this scale, the models no longer fit into a single accelera-
tor and require specialized training algorithms that partition
the parameters across devices (Krizhevsky et al., 2012; Dean
et al., 2012). While these model-parallel algorithms use dif-
ferent partitioning strategies, they all share the need to per-
form intensive device-to-device communication (Narayanan
et al., 2019; 2021). Also, if a single device fails, it will
cause the entire training process to break down. As a re-
sult, model-parallel algorithms are typically deployed in
dedicated high-performance computing (HPC) clusters or
supercomputers (Shoeybi et al., 2019; Rajbhandari et al.,
2020; Narayanan et al., 2021).

This kind of infrastructure is notoriously expensive to build
and operate, which makes it available only to a few well-
resourced organizations (Larrea et al., 2019; Strohmaier
et al., 2021; Langston, 2020). Most researchers cannot
afford the experiments necessary for a proper evaluation
of their ideas. This ultimately limits the scientific progress
for many important research areas, such as solving NLP
problems in “non-mainstream” languages.

Several recent works propose more cost-efficient distributed
training strategies that leverage fleets of temporary “pre-
emptible” instances that can be dynamically allocated in
regions with low demand for hardware and electricity, mak-
ing them 2-10 times cheaper than their dedicated counter-
parts (Harlap et al., 2017). Another solution is to train in
“collaborations” by pooling together preexisting resources
or using the help of volunteers (Diskin et al., 2021; Atre
et al., 2021; Ryabinin & Gusev, 2020; Yuan et al., 2022).

However, training in either of those setups requires special-
ized algorithms that can adapt to the changing number of
workers, utilize heterogeneous devices and recover from
hardware and network failures. While there are several prac-
tical algorithms for unreliable hardware (Kijsipongse et al.,
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2018; Lin et al., 2020; Ryabinin et al., 2021), they can only
train relatively small models that fit into the memory of the
smallest device. This limits the practical impact of cost-
efficient strategies, because today’s large-scale experiments
often involve models with billions of parameters.

In this work, we aim to find a practical way of training large
neural networks using unreliable heterogeneous devices
with slow interconnect. We begin by studying the impact
of model size on the balance between communication and
computation costs of pipeline-parallel training. Specifically,
increasing the size leads computation costs to grow faster
than the network footprint, thus making household-grade
connection speeds more practical than one might think.
This idea inspires the creation of SWARM parallelism, a
pipeline-parallel approach designed to handle peer failures
by prioritizing stable peers with lower latency. In addition,
this approach periodically rebalances the pipeline stages,
which allows handling devices with different hardware and
network speeds.

In summary, we make the following contributions:

* We analyze the existing model-parallel training tech-
niques and formulate the “Square-Cube Law” of dis-
tributed training: a counterintuitive observation that,
for some methods, training larger models can actually
decrease the network overhead.

* We develop SWARM parallelism, a decentralized
model-parallel algorithm’that leverages randomized
fault-tolerant pipelines and dynamically rebalances
nodes between pipeline stages. To the best of our
knowledge, this is the first decentralized algorithm
capable of billion-scale training on heterogeneous un-
reliable devices with slow interconnect.

e Combining insights from the square-cube law,
SWARM parallelism, and 8-bit compression, we show
that it is possible to train a billion-scale Transformer
language model on preemptible servers with low-power
GPUs and the network bandwidth of less than 200Mb/s
while achieving high training throughput.

2. Background & Related Work
2.1. Model-Parallel Training

Over the past decade, the deep learning community has
developed several algorithms for training large neural net-
works. Most of them work by dividing the model between
multiple workers, which is known as model parallelism.
The exact way in which these algorithms divide the model
determines their training performance and the maximum
model size they can support.

>The code for our experiments can be found at
github.com/yandex-research/swarm.

Traditional model parallelism. Historically, the first gen-
eral strategy for training large models was to assign each
device to compute a subset of each layer (e.g., a subset
of neurons), then communicate the results between each
other (Krizhevsky et al., 2012; Ben-Nun & Hoefler, 2019;
Tang et al., 2020). Since each device stores a fraction of
layer parameters, this technique can train models with ex-
tremely wide layers that would not fit into a single GPU.
However, applying traditional model parallelism to deep
neural networks comes at a significant performance penalty,
as it requires all-to-all communication after each layer.
As a result, while intra-layer parallelism is still widely
used (Shazeer et al., 2018; Rajbhandari et al., 2020), it
is usually applied within one physical server in combina-
tion with other strategies (Krizhevsky, 2014; Chilimbi et al.,
2014; Jia et al., 2019; Narayanan et al., 2021).

Pipeline parallelism circumvents the need for expensive
all-to-all communication by assigning each device with one
or several layers (Huang et al., 2019). During the forward
pass, each stage applies its subset of layers to the inputs
supplied by the previous stage, then sends the outputs of
the last layer to the next stage. For the backward pass,
this process is reversed, with each pipeline stage passing the
gradients to the device that supplied it with input activations.

To better utilize the available devices, the pipeline must
process multiple microbatches per step, allowing each stage
to run in parallel on a different batch of inputs. In prac-
tice, the number of microbatches is limited by the device
memory: this results in reduced device utilization when
processing the first and the last microbatches, known as
the “bubble” overhead (Huang et al., 2019). To combat this
issue, subsequent studies propose using activation check-
pointing, interleaved scheduling, and even asynchronous
training (Narayanan et al., 2019; 2021; Huang et al., 2019;
Shoeybi et al., 2019; Yang et al., 2019).

Aside from model parallelism, there two more strategies
for training large models: data parallelism with dynamic
parameter loading (Rajbhandari et al., 2020) and model-
specific algorithms such as Mixture-of-Experts (Shazeer
et al., 2017). We discuss these algorithms in Appendix B
and compare the performance of offloading with SWARM
in Section 4.2 and Appendix E.

2.2. Distributed Training Outside HPC

The techniques described in Section 2.1 are designed for
clusters of identical devices with rapid and reliable commu-
nication, making them a natural fit for the HPC setup. As we
discussed earlier, such infrastructure is not always available,
and a more cost-efficient alternative is to use “preemptible”
instances (Li et al., 2019; Zhang et al., 2020; Harlap et al.,
2017) or volunteer computing (Kijsipongse et al., 2018;
Ryabinin & Gusev, 2020; Atre et al., 2021; Diskin et al.,
2021). However, these environments are more difficult for
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distributed training: each machine can disconnect abruptly
due to a failure or preemption. Besides, since there is a
limited number of available instances per region, training at
scale often requires operating across multiple locations or
using different instance types.

To handle unstable peers and heterogeneous devices, the
research community has proposed elastic and asynchronous
training methods, correspondingly. Moreover, training large
models over heterogeneous devices can be optimized with
global scheduling (Yuan et al., 2022). We describe these
methods in more detail in Appendix B; importantly, neither
of them are unable to satisfy all the constraints of our setup.

By contrast, the largest models have billions of parameters,
which exceeds the memory limits of most low-end comput-
ers. However, model-parallel algorithms are not redundant,
which makes them more vulnerable to hardware and net-
work failures. There exist two methods that allow training
large models with unreliable devices (Ryabinin & Gusev,
2020; Thorpe et al., 2022): however, the first one supports
only specific architectures and requires at least 1Gb/s band-
width, whereas the second one has no publicly available
implementations, relies on redundant computations for fault
tolerance and considers only the homogeneous setup.

2.3. Communication Efficiency and Compression

In this section, we discuss techniques that address training
with limited network bandwidth or high latency, such as
gradient compression or overlapping computation with com-
munication phases. These techniques are often necessary
for distributed training without high-speed connectivity, be-
cause otherwise the performance of the system becomes
severely bottlenecked by communication.

Efficient gradient communication. Data-parallel train-
ing requires synchronization of gradients after each back-
ward pass, which can be costly if the model has many pa-
rameters or the network bandwidth is limited. There exist
several methods that approach this problem: for example,
Deep Gradient Compression (Lin et al., 2018) sparsifies the
gradients and corrects the momentum after synchronization,
while PowerSGD (Vogels et al., 2019) factorizes the gradi-
ents and uses error feedback to reduce the approximation
error. Recently, Wang et al. (2022) proposed to compress
the changes of model activations, achieving high-speed com-
munication for finetuning models of up to 1.5B parameters.
Alternatively, Dettmers (2016) uses 8-bit quantization to
compress gradients before communication. We evaluate
it along with compression-aware architectures, leaving the
exploration of more advanced approaches to future work.

Besides gradient compression, another effective technique
is to use layer sharing (Lan et al., 2020), which reduces the
number of aggregated gradients by a factor of how many
times each layer is reused.

Overlapping communication and computation. Model,
pipeline, and data parallelism all have synchronization
points and require transfer of gradients or activations. One
way to reduce the transfer cost is to overlap communica-
tion with computation, hiding the synchronization latency.
This overlap can be achieved by combining parallelism
techniques (Krizhevsky, 2014; Rajbhandari et al., 2020),
by synchronizing gradients layer-by-layer in lockstep with
backpropagation (Paszke et al., 2019), or by using pure
pipeline parallelism (Huang et al., 2019; Narayanan et al.,
2019). However, pure pipeline parallelism requires many
stages to effectively hide the latency. To overcome this prob-
lem, we study inter-layer compression techniques that work
well even with relatively few pipeline stages.

3. Communication-Efficient Model Parallelism

In this section, we outline our approach for training large
models with heterogeneous unreliable poorly-connected de-
vices. To that end, the section is organized as follows:

» Section 3.1 analyzes how existing model-parallel al-
gorithms scale with model size and shows conditions
where training increasingly larger models leads to less
intense network usage;

* Section 3.2 describes SWARM parallelism — a decen-
tralized algorithm for training large models under the
conditions outlined in Section 2.2.

3.1. The Square-Cube Law of Distributed Training

To better understand the general scaling properties of model
parallelism, we need to abstract away from the application-
specific parameters, such as model architecture, batch size,
and system design. To that end, we first consider a simplified
model of pipeline parallelism. Our “pipeline” consists of
k stages, each represented by nxn matrices. Intuitively,
the first matrix represents the input data and all subsequent
matrices are linear “layers” applied to that data. This model
abstracts away from application-specific details, allowing us
to capture general relationships that hold for many models.

During “training”, stages iteratively perform matrix multi-
plication and then send the output to the subsequent pipeline
stage over a throughput-limited network. These two opera-
tions have different scaling properties. The compute time
for naive matrix multiplication scales as O(n?). While this
can be reduced further in theory (Coppersmith & Winograd,
1990; Alman & Williams, 2021), it is only used for very
large matrices (Zhang & Gao, 2015; Fatahalian et al., 2004;
Huang et al., 2020). Therefore, deep learning on GPUs
typically relies on O(n?) algorithms.

In turn, the communication phase requires at most O(n?)
time to transfer a batch of nxn activations or gradients.
Therefore, as we increase the model size, the computation
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Figure 1: (Left) An intuitive explanation of the square-cube law, (Right) Rela-
tive device utilization for Transformer layers using Tesla V100 and S00Mb/s base
network bandwidth. See Section 4.1 and Appendix F for a detailed setup.

time grows faster than communication time, regardless of
which matrix multiplication algorithm we use. We refer
to this idea as the square-cube law after the eponymous
principle in physics (Galileo, 1638; Allen, 2013).

This principle applies to many real-world neural network ar-
chitectures, albeit with some confounding variables. In con-
volutional neural networks (Fukushima, 1980), the compu-
tation time scales as O(BHW (C?) and the communication
is O(BHW (), where B, H, W and C stand for batch size,
height, width and the number of channels. Recurrent neural
networks (Rumelhart et al., 1986; Hochreiter & Schmid-
huber, 1995) need O(BLH?) compute in terms of batch
size, sequence length, and hidden size, respectively, and
O(BLH) or O(BH) communication, depending on the ar-
chitecture. With the same notation, Transformers (Vaswani
et al., 2017) require O(BL?H) compute for attention lay-
ers, O(BLH?) compute for feedforward layers, but only
O(BLH) communication.

Based on these observations, we conclude that pipeline par-
allelism naturally grows more communication-efficient with
model size. More precisely, increasing the hidden dimen-
sion will reduce the communication load per device per unit
of time, making it possible to train the model efficiently
with lower network bandwidth and higher latency®. While
the exact practical ramifications depend on the use case,
Section 4.1 demonstrates that some of the larger models
trained with pipeline parallelism can already train at peak
efficiency with only hundreds of Mb/s bandwidth.

In theory, the square-cube principle also applies to intra-
layer parallelism, but using this technique at 500 Mb/s
would become practical only for layer sizes of more than
216 units. Data-parallel training with sharding or offload-
ing (Ren et al., 2021) does not scale as well, as its communi-
cation time scales with the size of model parameters instead
of activations. However, it may be possible to achieve simi-
lar scaling with gradient compression algorithms.

3Latency slows the communication down by a constant factor
that also grows less important with model size.

0,

xxlarge gpt-3 ours
768 units 4096 units 12288 units 4096 units
1 layer 1 layer 1 layer 12 layers

3.2. SWARM Parallelism

Traditional pipeline parallelism can be communication-
efficient, but this alone is not enough for our setups. Since
training devices can have different compute and network
capabilities, a pipeline formed out of such devices would
be bottlenecked by the single “weakest link”, i.e., the par-
ticipant with the smallest training throughput. As a result,
the more powerful nodes along the pipeline would be un-
derutilized due to either lack of inputs or slow subsequent
stages. On top of that, if any node fails or leaves training
prematurely, it will stall the entire training procedure.

To overcome these two challenges, we replace the rigid
pipeline structure with temporary “pipelines” that are built
stochastically on the fly during each iteration. Each par-
ticipant can send their outputs to any peer that serves the
next pipeline stage. Thus, if one peer is faster than others,
it can process inputs from multiple predecessors and dis-
tribute its outputs across several weaker peers to maximize
utilization. Also, if any participant disconnects, its predeces-
sors can reroute their requests to its neighbors. New peers
can download up-to-date parameters and optimizer statistics
from remaining workers at the chosen stage. This allows
the training to proceed as long as there is at least one active
participant per stage: we elaborate on the fault tolerance of
SWARM parallelism in Appendix A.

The resulting system consists of several consecutive swarms,
as depicted in Figure 2. Peers within one swarm serve the
same pipeline stage (i.e., the same subset of layers with the
same parameters). We assume that the model consists of
similar “blocks” and thus partition it into evenly sized stages,
leaving the study of better strategies (Huang et al., 2019;
Narayanan et al., 2019) as future work. During the forward
pass, peers receive inputs from predecessors (determined on
each iteration) and send activations to peers in the next stage.
For the backward pass, peers receive gradients for outputs,
compute gradients for layer inputs and accumulate gradients
for parameters. Once enough gradients are accumulated,
peers form groups, run All-Reduce to average gradients
within their pipeline stages and perform the optimizer step.
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Figure 2: An overview of SWARM parallelism, illustrating both normal operation, device failures and adaptive rebalancing.
One of the workers at stage 2 leaves; another peer from stage 3 takes its place by downloading the latest stage 2 parameters

and statistics from peers.

SWARM parallelism can also use Delayed Parameter Up-
dates (DPU) (Ren et al., 2021) to further improve hardware
utilization by performing the optimizer step in parallel with
processing the next batch. While it is technically asyn-
chronous, DPU was shown to achieve similar per-iteration
convergence as fully synchronous training, both theoreti-
cally (Stich & Karimireddy, 2020; Arjevani et al., 2020) and
empirically (Ren et al., 2021; Diskin et al., 2021).

Each peer has queues for incoming and outgoing requests
to maintain high GPU utilization under latency and to com-
pensate for varying network speeds. Similarly to other
pipeline implementations (Huang et al., 2019; Narayanan
et al., 2021), SWARM parallelism uses activation check-
pointing (Griewank & Walther, 2000; Chen et al., 2016) to
reduce the memory footprint.

Stochastic wiring. To better utilize heterogeneous devices
and recover from faults, we dynamically “wire” each in-
put through each stage and pick devices in proportion to
their training throughput. To achieve this, SWARM peers
run “trainer” processes that route training data through the
“stages” of SWARM, balancing the load between peers.

For each pipeline stage, trainers discover which peers
currently serve this stage via a Distributed Hash Table
(DHT, Maymounkov & Mazieres, 2002). Trainers then
assign a microbatch to one of those peers based on their
performance. If that peer fails, it is temporarily banned
and the microbatch is sent to another peer within the same
stage. Note that trainers themselves do not use GPUs and
have no trainable parameters, which makes it possible to
run multiple trainers per peer.

Each trainer assigns data independently using the Inter-
leaved Weighted Round-Robin (Katevenis et al., 1991;
Tabatabaee et al., 2020) scheduler. Our specific implementa-
tion of IWRR wuses a priority queue: each peer is associated
with the total processing time over all previous requests. A
training minibatch is then routed to the node that has the

smallest total processing time. Thus, for instance, if device
A takes half as long to process a sample as device B, the
routing algorithm will choose A twice as often as B. Fi-
nally, if a peer does not respond or fails to process the batch,
trainer will “ban” this peer until it reannounces itself in the
DHT, which is done every few minutes. For a more detailed
description of stochastic wiring, please refer to Appendix C.

Curiously, different trainers can have different throughput es-
timates for the same device because of the network topology.
For instance, if training nodes are split between two cloud
regions, a given peer’s trainer will have a higher throughput
estimate for peers in the same data center. In other words,
trainers automatically adjust to the network topology by
routing more traffic to peers that are “nearby”.

Adaptive swarm rebalancing. While stochastic wiring
allows for automatic rebalancing within a stage, addi-
tional cross-stage rebalancing may be required to maximize
throughput, especially when devices are very unreliable.
As we described in Section 2.2, our workers can join and
leave training at any time. If any single pipeline stage loses
too many peers, the remaining ones will face an increased
processing load, which will inevitably form a bottleneck.

SWARM parallelism addresses this problem by allowing
peers to dynamically switch between “pipeline stages” to
maximize the training throughput. Every T seconds, peers
measure the utilization rate of each pipeline stage as the
queue size. Peers from the most underutilized pipeline
stage will then switch to the most overutilized one (see
Figure 2 for an overview and Appendix D for a formal
description and complexity analysis), download the latest
training state from their new neighbors and continue training.
Similarly, if a new peer joins midway through training, it is
assigned to the optimal pipeline stage by following the same
protocol. As a side effect, if one pipeline stage requires
more compute than others, SWARM will allocate more
peers to that stage. In Section 4.4, we evaluate our approach
to dynamic rebalancing in realistic conditions.
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4. Experiments
4.1. Communication Efficiency at Scale

Before we can meaningfully evaluate SWARM parallelism,
we must verify our theoretical observations on communi-
cation efficiency. Here we run several controlled experi-
ments that measure the GPU utilization and network usage
for different model sizes, using the Transformer architec-
ture (Vaswani et al., 2017) that has been widely adopted
in various fields (Lin et al., 2022). To decouple the perfor-
mance impact from other factors, we run these experiments
on homogeneous V100 GPU nodes that serve one pipeline
stage over the network with varying latency and bandwidth.
We use a batch size of 1 and sequences of 512 tokens; the
complete configuration is deferred to Appendix F.

First, we measure how the model size affects the compu-
tation to communication ratio at 500 Mb/s network band-
width in both directions. We consider 4 model configura-
tions: the base configuration from the BERT paper (De-
vlin et al., 2019), “xxlarge" (“large” with d,;,oqe;=4096),
which is used in several recent works (Lan et al., 2020; Sun
etal., 2021; He et al., 2021), and a GPT-3-scale model with
Amoder=12288 (Brown et al., 2020). We also evaluate a
modified Transformer architecture (“Ours”) as defined in
Section 4.3 with d,,04.;=4096, 3 layers per pipeline stage
and 8-bit quantized activations. As we demonstrate in Ap-
pendix I, this compression strategy can significantly reduce
network usage with little effect on convergence. In the first
three configurations, the model consists of 12 Transformer
layers placed on 12 servers with a single GPU; in the last
one, there are 4 servers, each hosting 3 layers. Appendix F
contains FLOP and parameter counts of each configuration.

As depicted in Figure 1 (right) and Figure 3, larger models
achieve better GPU utilization rate in the same network
conditions, since their communication load grows slower
than computation. More importantly, even at 500 Mb/s, the
resulting GPU idle time can be pushed into the 10-20%
range, either naturally for GPT-3-sized models or through

832ms

6000ms -
Il GPU Computation
Waiting for network

2000ms - - -
1204ms
66ms/298ms
Oms

base xxlarge gpt-3 ours
768 units
1 layer

4000ms -

12288 units
1 layer

4096 units
12 layers

4096 units
1 layer

Figure 3: Pipeline computation and idle time per batch at
500 Mb/s bandwidth.

Table 1: Relative device utilization at 500 Mb/s bandwidth
and varying network latency.

Relative GPU utilization

Latency (100% - idle time)
(RTT)

base xxlarge GPT-3 Ours
None 18.0% 32.1% 82.1% 89.5%
10ms 11.8% 28.9% 79.3% 87.2%
50ms 4.88% 20.1% 70.3%  79.5%
100ms 2.78% 14.9% 60.2%  71.5%
200ms 1.53% 10.1% 48.5% 59.2%

activation compression for smaller models. In addition,
large models maintain most of their training efficiency at
the 100ms latency (Table 1), which is roughly equivalent to
training on different continents (Verizon, 2021).

4.2. Detailed Performance Comparison

Here we investigate how SWARM parallelism compares to
existing systems for training large models: GPipe (Huang
et al., 2019) and ZeRO-Offload (Ren et al., 2021). The pur-
pose of this section is to compare the training throughput in
“ideal” conditions (with homogeneous reliable devices and
balanced layers), as deviating from these conditions makes it
infeasible to train with baseline systems. Still, even in such
conditions the performance of different systems can vary
across model architectures, and hence we want to identify
the cases in which using SWARM is preferable to other ap-
proaches. We benchmark individual SWARM components
in preemptible setups in Section 4.4 and Appendix H.

We evaluate training performance for sequences of 4 Trans-
former layers of identical size distributed over 16 work-
ers. Similarly to Section 4.1, we use three layer configura-
tions: “xxlarge” (dode;=4096, dpen=16384, 32 heads),
“GPT-3” (dimodet=12288, dppn=49152, 96 heads), and
“Ours” (dymoder=4096, dppn=16384, 32 heads, 16 shared
layers per block, last stage holds only the vocabulary pro-
jection layer). The microbatch size is 4 for “xxlarge” and 1
for “GPT-3” and “Ours”, and the sequence length is 512.

To provide a more detailed view of the training performance,
we measure two separate performance statistics: the training
throughput and the All-Reduce time. The training through-
put measures the rate at which the system can process train-
ing sequences, i.e., run forward and backward passes. More
specifically, we measure the time required to process 6250
sequences of 512 tokens, which corresponds to the largest
batch size used in Brown et al. (2020). In turn, the All-
Reduce time is the time each system spends to aggregate
accumulated gradients across devices. Intuitively, training
with small batch sizes is more sensitive to the All-Reduce
time (since the algorithm needs to run All-Reduce more
frequently) and vice versa.
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Table 2: Training performance for different model sizes.

Throughput, min/batch ~ All-Reduce time, min

System
No latency Latency No latency Latency
“GPT-3” (4 layers)
SWARM 168.3 186.7 7.4 7.6
GPipe 164.5 2184
IF1B 1633 2161 6.7 78
Offload 272.7 272.7 25.5 27.3
“xxlarge” (4 layers)
SWARM 44.2 48.2 0.8 0.9
GPipe 40.1 108.8
1F1B 40.8 105.5 0.7 I
Offload 33.8 33.8 2.8 4.2
Full “Ours” model (48 shared layers + embeddings)
SWARM 4322 4529 0.8 1.0
GPipe 420.0 602.1 0.7 11
1F1B 408.5 569.2 : ’
Offload 372.0 372.0 32 4.8

Hardware setup: Each worker uses a V100-PCle GPU with
16 CPU threads (E5 v5-2660v4) and 128 GB RAM. The
only exception is for ZeRO-Offload with “GPT-3" layers,
where we had to double the RAM size because the system
required 190 gigabytes at peak. Similarly to Section 4.1,
each worker can communicate at a 500 Mb/s bandwidth for
both upload and download for a total of 1 Gb/s. In terms of
network latency, we consider two setups: with no latency,
where workers communicate normally within the same rack,
and with latency, where we introduce additional 100+ 50ms
latency directly in the kernel*.

GPipe configuration: We use a popular PyTorch-based
implementation of GPipe®. The model is partitioned into 4
stages repeated over 4 model-parallel groups. To fit into the
GPU memory for the “GPT-3” configuration, we offload the
optimizer into RAM using ZeRO-Offload. Before averaging,
we use PyTorch’s built-in All-Reduce to aggregate gradients.
We evaluate both the standard GPipe schedule and the 1F1B
schedule (Narayanan et al., 2019).

ZeRO-Offload configuration: Each worker runs the entire
model individually, then exchanges gradients with peers.
For “xxlarge”, we use the official implementation from (Ren
etal.,2021). However, for “GPT-3”, we found that optimizer
offloading still does not allow us to fit 4 layers into the GPU.
For this reason, we also offload the model parameters using
the of fload_param option.

In turn, when training smaller models, ZeRO-Offload outper-
forms both SWARM and GPipe. This result aligns with our

*More specifically, tc gdisc add dev <...> root
netem delay 100ms 50ms

SThe source code is available at https://github.com/
kakaobrain/torchgpipe

earlier observations in Figure 1, where the same model spent
most of the time waiting for the communication between
pipeline stages.

We also observe that ZeRO-Offload takes longer to aggre-
gate gradients, likely because each peer must aggregate
the entire model, whereas in SWARM and GPipe, peers
aggregate a single pipeline stage. The variation between
All-Reduce time in GPipe and SWARM is due to implemen-
tation differences. Overall, SWARM is competitive to HPC
baselines even in an idealized homogeneous environment.

4.3. Large-Scale Distributed Training

To verify the efficiency of SWARM parallelism in a practi-
cal scenario, we conduct a series of large-scale distributed
experiments using preemptible (unreliable) cloud T4 and
A100 GPUs over a public cloud network.

We train a Transformer language model with the architecture
similar to prior work (Brown et al., 2020; Wang & Komat-
suzaki, 2021; Black et al., 2021) and 1.01 billion parameters
in total. Our model consists of 3 stages, each containing a
single Transformer decoder block with d, 41 = 4096 and
16 layers per pipeline stage. All workers within a stage serve
the same group of layers, and all layers within each group
use the same set of parameters, similarly to ALBERT (Lan
et al., 2020). On top of this, the first stage also contains
the embedding layer, and the last stage includes the lan-
guage modeling head. Because of layer sharing, this model
is equivalent to a 13B model from Brown et al. (2020) in
terms of compute costs.

We use 8-bit compression (Dettmers et al., 2022) for activa-
tions and gradients to reduce the communication intensity.
Additional training setup details are covered in Appendix G.
SWARM nodes run rebalancing every 7' = 300 seconds,
and trainers measure peer performance using a moving aver-
age with o = 0.1. However, as we show in Section 4.4, the
throughput of SWARM is not very sensitive to the choice of
these hyperparameters.
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Figure 4: Training convergence comparison.
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Table 3: Pipeline throughput, layer sharing.

Throughput, Optimal
Hardware samples/s bandwidth, Mb/s
setup
Actual Best-case Upload Download
T4 17.6 19.2 317.8 397.9
A100 16.9 25.5 436.1 545.1
T4 & A100 273 — — —

Table 4: Pipeline throughput, default Transformer.

Hardware Throughput,
samples/s
setup
Actual  Best-case
T4 8.8 19.3
A100 8.0 25.1
T4 & A100 13.4 —

First, to verify that model parallelism with asynchronous
updates does not have significant convergence issues, we
train the model on the Pile (Gao et al., 2020) dataset with
400 preemptible T4 instances, each hosting one accelerator.
As a baseline, we use regular data-parallel training with
offloading on 128 A100 GPUs. We run both experiments
for approximately 4 weeks and compare the learning curves.

Figure 4 shows the results of this experiment: it can be seen
that the training dynamics of two approaches are indeed
similar, which demonstrates the viability of SWARM paral-
lelism for heterogeneous and poorly-connected devices.

In the next experiment, we aim to measure the pipeline
throughput in different hardware conditions and to com-
pare it with an estimate of best-case pipeline performance.
We consider several setups: first, we use the same 400 pre-
emptible T4 nodes; in another setup, we use 7 instances
with 8 A100 GPU each; finally, we combine these fleets to
create a heterogeneous setup. We examine the performance
of the pipeline both with weight sharing and with standard,
more common, Transformer blocks.

We measure the number of randomly generated samples
processed by the pipeline both in our infrastructure and the
ideal case that ignores all network-related operations (i.e.,
has infinite bandwidth and zero latency). The ideal case is
emulated by executing a single pipeline stage 3 times locally
on a single server and multiplying the single-node estimates
by the number of nodes.

As demonstrated in the left two columns of Table 3 and
Table 4, asynchronous training of compute-intensive models
with 8-bit compressed activations regardless of the architec-
ture specifics allows us to achieve high performance without
a dedicated networking solution. Furthermore, the load bal-
ancing algorithm of SWARM allows us to dynamically and
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Figure 5: Throughput of rebalancing methods over time.

efficiently utilize different hardware without being bottle-
necked by slower devices.

Next, we use the same load testing scenario to estimate
the bandwidth required to fully utilize each device type in
the above infrastructure. For this, we measure the aver-
age incoming and outgoing bandwidth on the nodes that
serve the intermediate stage of the pipeline. We summarize
our findings in the right two columns of Table 3: it turns
out that with layer sharing and 8-bit compression, medium-
performance GPUs (such as T4) can be saturated even with
moderate network speeds. Based on our main experiment,
the optimal total bandwidth is roughly 100Mb/s higher than
the values reported in Table 3 due to gradient averaging,
loading state from peers, maintaining the DHT and stream-
ing the training data. Although training over the Internet
with more efficient hardware might indeed underutilize the
accelerator, this issue can be offset by advanced compres-
sion strategies such as compression-aware architectures or
layer sharing, as shown in Table 3.

4.4. Adaptive Rebalancing Evaluation

In this experiment, we evaluate the efficiency of adaptive
peer rebalancing between stages proposed in Section 3.2.
We use statistics of the number of active T4 nodes from the
32-hour segment of the experiment described in Section 4.3.
We use this data to simulate training dynamics by viewing
it as sequence of events, each consisting of a timestamp and
a change in the number of peers (which can be positive or
negative). When a worker is removed from the pipeline,
we randomly choose the stage it was removed from: that
is, removing N peers corresponds to N samples from the
uniform distribution over four pipeline stages. We run 10
simulations with different random seeds and average the
resulting trajectories. We compare our strategy with two
different values of T' to the baseline that has no rebalancing.

The results of this evaluation are available in Figure 5; for
reference, we also provide the performance of a theoreti-
cally optimal rebalancing strategy that maintains the highest



SWARM Parallelism: Training Large Models Can Be Surprisingly Communication-Efficient

3

—_
[=2)

W

Samples/second

—— 4 stages

—_
=~

8 stages
—— 16 stages

w

—— 32 stages

Samples/second
=

10 12 14 16 18 20 22 24 26 28 30 32
Time, hours

(a) Adaptive rebalancing of SWARM parallelism.

0 2 4 6 8

—— 4 stages
124 8 stages
—— 16 stages
—— 32 stages
0 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32
Time, hours
(b) No rebalancing.

Figure 6: Scaling of pipeline-parallel strategies with respect to the number of stages.

possible throughput at every moment. It can be seen that
even with the rebalancing period T' = 300, our approach
significantly improves the overall throughput of the pipeline.
When the number of peers is relatively stable, the rebal-
anced pipeline also approaches the optimal one in terms of
throughput, which shows the efficiency of rebalancing even
when moving only one node at a time.

In addition, we observed that for some brief periods, the per-
formance of the unbalanced pipeline exceeded the through-
put of the balanced one due to random choice of disconnect-
ing peers (dropping more from the “overrepresented” stages
affects the imbalanced pipeline less). However, this held
true only for &~ 4.5% of the experiment and was quickly
mitigated by adaptive rebalancing.

As expected, decreasing 7" from 300 to 60 seconds improves
both the overall throughput and the speed of convergence
to optimal pipeline performance. However, the effect is not
as drastic compared to the increase in DHT data transfer
volume. This is also demonstrated by Table 5, which shows
the relative throughput of the three configurations compared
to the optimal one. Furthermore, the table displays that
while initially there is little difference between rebalanc-
ing choices, it becomes more pronounced later on as the
imbalanced version “drifts further” from the optimal state.

Finally, we analyze the scaling properties of rebalancing
with respect to the number of stages. To do this, we con-
duct experiments in the same setup as above (T" = 300)

Table 5: Relative throughput comparison of pipeline rebal-
ancing methods.

% of optimal

Rebalancing -
Overall  First 1 hour Last 1 hour
None 82.7 99.0 454
T = 300 95.8 99.4 88.9
T =60 97.6 99.8 91.7

while changing the number of pipeline stages from 4 to
{4, 8, 16, 32}. To ensure the consistency of throughput
across all experiments, we increase the starting number of
peers accordingly while keeping the preemption rate con-
stant. As a baseline, we also evaluate the throughput of the
pipeline that has no rebalancing.

Figure 6 shows the outcome of this experiment. As dis-
played in the plots, both strategies drop in performance with
the increase in the stage count: while all stages should drop
in performance equally in expectation, in practice, the vari-
ances are too large while the number of peers is relatively
too small for the asymptotic properties to take place. This
effect results in more outliers (large drops in the number of
peers) in the preemption distribution for more stages. Still,
rebalancing allows to partially mitigate the issue: while we
observe a more consistent downward trend for the baseline
strategy, the rebalanced pipeline regains its performance
over time and achieves a higher overall throughput.

5. Conclusion

In this work, we evaluate the feasibility of high-throughput
training of billion-scale neural networks on unreliable peers
with low network bandwidth. We find that training in this
setup can be possible with very large models and pipeline
parallelism. To this end, we propose SWARM parallelism
to overcome the challenges of pipeline parallelism for pre-
emptible devices with heterogeneous network bandwidths
and computational throughputs. We show that our method
is highly effective at rebalancing peers and maximizing the
aggregate training throughput even in presence of unsta-
ble nodes. We also show that training large models with
SWARM parallelism and compression-aware architectures
enables high utilization of cheap preemptible instances with
slow interconnect. As such, our work makes training of
large models accessible to researchers that do not have ac-
cess to dedicated compute infrastructure.
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Supplementary Material

This part of the paper is organized as follows:

* Appendix A overviews several common questions
about the details of our study and addresses the limita-
tions of SWARM parallelism;

» In Appendix B, we list further related works on topics
relevant to the problem setting we study;

 In Appendix C and Appendix D, we give a more formal
description and outline the details of stochastic wiring
and adaptive rebalancing, accordingly;

* In Appendix E, we outline the relation between training
with SWARM and using methods for offloading.

» Appendix F and Appendix G contain additional de-
tails of our experimental setup, whereas Appendix H
reports further experiments on specific aspects and
components of SWARM parallelism;

» Lastly, we investigate compression-aware architectures
in Appendix I and evaluate their impact in a practical
setting in Appendix J.

A. Answers to Common Questions

Why not just use data parallelism with offloading? Reg-
ular data parallelism requires all-reduce steps where peers
exchange gradients, which can be prohibitively expensive
for large models. For example, a 1 billion parameter model
with 16-bit gradients requires 2 GB of data to be synchro-
nized between all n devices. We need at least n messages to
perform this synchronization. If we have 100 devices with
bidirectional communication, each client would need to
send 2 GB of data to finish the synchronization. Thus, with
slow interconnects, such synchronizations are not practical.

Why not just use fully sharded data parallelism with elas-
ticity? Sharded data parallelism requires all-to-all com-
munication of parameter buffers at each layer. Each of these
communications can be done in parallel and has a size of
parameter count divided by n; in total, n messages are re-
quired. Thus, for 1B parameters in 16-bit precision, a total
of 2 GB need to be synchronized for both the forward and
backward pass. For low-bandwidth devices with 100 Mb/s
speed, this would entail an overhead of 5.5 minutes per
forward/backward pass, which is difficult to overlap with
computation. This is exacerbated further, because all-to-all
communication latency is determined by the slowest peer.
Thus, sharded data parallelism can be particularly inefficient
for setups where peers have different network bandwidths.
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Should I use SWARM in a supercomputer? By default,
SWARM is worse than traditional parallelism due to its
extra complexity (see experiments in Section 4.2). However,
SWARM can be useful in case of supercomputers that have
heterogeneous devices.

ZeRO-Offload allows one to train 13B parameters on a
single V100, so why do I need SWARM? Using ZeRO-
Offload can slow down training due to the slow data transfer
between external memory and the accelerator. Training with
SWARM can accelerate training while also allowing to train
larger models; see Appendix E for a detailed comparison.

Is it worth using preemptible instances and SWARM
from an economic standpoint? Due to a significantly
smaller cost per hour, one can leverage a larger amount of
computation when using spot instances compared to on-
demand cloud VMs or dedicated HPC setups. See Ap-
pendix J and Table 9 for a comparison of both hourly and
total costs for an example large-scale pretraining task.

When should I avoid using SWARM? SWARM is effi-
cient at training compute-intensive models with more than
1B parameters. For smaller models, a sharded data-parallel
approach can be more optimal. For homogeneous HPC envi-
ronments, standard sharded data-parallel or pipeline-parallel
training will be more efficient than SWARM, because the
rebalancing is not required. For HPC environments that are
so extensive that the failure of a node is likely, the practical-
ity of SWARM depends on how many nodes are expected to
fail. Elastic sharded data parallelism is better than SWARM
if the number of expected failures is relatively low.

Can I use SWARM without layer sharing or quantiza-
tion? Yes, SWARM can still be effective in these scenar-
i0s. Our bandwidth experiments in the main part of the
work give an estimate of its network overhead. By using no
quantization, which means using regular 16-bit activations,
the network overhead increases approximately by a factor
of two. Without layer sharing, the overhead within each
pipeline stage to synchronize the gradients is increased by
the number of layers not being shared. As such, a rough esti-
mate of the efficiency of SWARM in these scenarios can be
estimated by taking our model size and network bandwidth
requirements data and multiplying it by the relevant factor.

Do the compression-aware architecture modifications
apply only to Transformers? Bottleneck and maxout
compression are general compression techniques that can
be applied to any layer in any architecture. However, their
effectiveness may vary depending on where in the model
they are applied and what kind of model these are applied
to (for example, CNNs vs. RNNs vs. Transformers).
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How many pipeline stages can SWARM have? While its
design allows for any number of stages, using long pipelines
can result in a reduced training throughput. Similarly to reg-
ular pipeline parallelism, SWARM suffers from the pipeline
“bubble” problem (Huang et al., 2019): at the beginning
of the initial batch processing, peers near the end of the
pipeline will be waiting for inputs. Likewise, early layers
will be idle after processing the final microbatch. In theory,
this can be mitigated with asynchronous updates (Narayanan
et al., 2019; Yang et al., 2019), but we did not investigate
them in this work due to potential convergence issues.

How much failure can SWARM handle? As long as
there is at least one operational peer at every pipeline stage
and at least one trainer, SWARM can work without any
issues. The key factors defining the training run state at a
given SGD step are the model parameters, the optimizer
statistics, the data loader state, and the step number (re-
quired for proper scheduling). The up-to-date parameters
and optimizer statistics, as well as the step number, are nat-
urally located on all active nodes of a given stage, since
they are required for training. Thus, when a peer joins the
network, it can download the checkpoint corresponding to
the current training state from other peers.

As we mention in Section 3.2, peer failures do not affect
forward and backward passes as long as there is at least one
peer at the required stage: because of rewiring, it is possible
to resend activations or gradients to another worker that has
identical model weights by construction. Similarly, the data
loader state can be recomputed from the last known SGD
step. However, we do not track the order of examples sam-
pled within the same batch; because of the i.i.d. assumption
in the large-scale training setup, the distribution of gradients
is expected to be the same. Hence, if the peer leaves from
the pipeline stage, other workers can compute gradients and
replace those accumulated by the disconnected peer, so that
the number of examples for an SGD step stays the same.

Some configurations in Section 4.1 measure less than
20% GPU idle time, while many HPC systems only
achieve ~ 80% GPU utilization. Does this mean that
SWARM is 30% faster? No, because these are differ-
ent measurement types. Narayanan et al. (2021) measures
GPU utilization as a fraction of theoretical peak FLOP/s of
their GPUs. In contrast, we only measure what fraction of
time the GPU is running the model, regardless of efficiency.
Since any realistic deep learning workload cannot achieve
100% peak FLOP/s, 20% GPU idle time for SWARM means
that it can reach ~ 0.8x the training throughput compared to
training with an infinitely fast network. As a rule of thumb,
one can say that SWARM will run at a 20% slower speed
than systems described by Narayanan et al. (2021) using the
infrastructure that is several times cheaper.
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B. Additional Related Work

Dynamic parameter loading. Several recent studies pro-
pose alternative execution algorithms that allow training
large models with data parallelism. Since neural net-
works typically use a small fraction of weights at any
given moment, the remaining “inactive” parameters can be
sharded (Rajbhandari et al., 2020) or offloaded to external
memory (Pudipeddi et al., 2020; Ren et al., 2021; Rajbhan-
dari et al., 2021). In sharded data parallelism (Rajbhandari
et al., 2020), inactive tensors are distributed across all n de-
vices such that each device stores %th of all parameters. For
active layers, the shards are gathered such that each device
holds the entire tensor just-in-time for computation. After
the computation, the parameters’ memory is freed so that
only the sharded memory remains (%th per device). This
makes it very memory efficient to store model and optimizer
states for inactive layers if many devices are available. Sim-
ilarly to tensor parallelism, these algorithms can support
arbitrary models without the need for layer partitioning and
can, in principle, run a large model on a single GPU, which
is useful for finetuning and inference.

Architecture-specific methods. Finally, some distributed
training algorithms take advantage of specific layers, such
as locally connected layers (Dean et al., 2012; Coates et al.,
2013), Mixture-of-Experts (Jacobs et al., 1991; Shazeer
et al., 2017; Lepikhin et al., 2021), Switch layers (Fedus
et al., 2021) or Product Key Memory (Lample et al., 2019).
These layers contain many near-independent parts that can
be assigned to different devices. They can easily scale to
an extremely large number of parameters with a relatively
small increase in compute (Shazeer et al., 2017). However,
they are also less parameter-efficient (Fedus et al., 2021)
and may not apply to all architectures.

Optimal scheduling for distributed training. When the
configuration of each peer is known, it is possible to sig-
nificantly optimize the pipeline scheduling by going be-
yond the greedy approach with global optimization tech-
niques (Zheng et al., 2022; Tarnawski et al., 2021), even
with heterogeneous hardware (Yuan et al., 2022). How-
ever, we consider a setup in which this is not possible: pre-
emptible and volunteer peers can join at any point of the
experiment, and dynamically rescheduling and orchestrating
them in a centralized manner is technically difficult because
of the communication and reliability constraints.

Elastic training. To train with a dynamic number of work-
ers, deep learning practitioners have developed elastic train-
ing algorithms (TorchElastic; ElasticHorovod). If a worker
leaves or fails during training, these algorithms rebalance
the load between the remaining nodes and continue the train-
ing procedure (Harlap et al., 2017; Ryabinin et al., 2021). If
new workers join during training, they get the latest model
parameters from their peers and train alongside them.
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Asynchronous training. Another important problem is
distributed training on devices with uneven performance.
One way to solve this problem is to use asynchronous train-
ing, where nodes compute gradients at their own pace and
aggregate them using a parameter server (Recht et al., 2011;
Kijsipongse et al., 2018) or a decentralized network (Lian
et al., 2017). This idea allows full utilization of each device,
but may reduce the convergence rate due to “stale” gradi-
ents (Recht et al., 2011; Aji & Heafield, 2019). Several
studies (Li et al., 2020; Ryabinin et al., 2021; Ren et al.,
2021; Diskin et al., 2021) propose hybrid techniques that
remove some synchronization points while maintaining the
per-iteration convergence.

C. Stochastic Wiring Details

Our approach uses stochastic wiring, a specialized routing
algorithm designed around heterogeneous unreliable devices
and high network latency. The core idea of stochastic wiring
is to route each training microbatch through random devices
from each pipeline stage, such that the workload of each
device is proportional to its performance. The performance
of the peer is measured as an exponentially weighted average
of its response time, and all peers serving a specific stage
are stored in a priority queue. We formally describe the
components of stochastic wiring in Algorithm 1.

From a system design perspective, each worker runs a sepa-
rate trainer process that forms microbatches and routes them
through pipeline stages (forward and backward pass). As
we describe earlier in Section 3.2, trainers run Interleaved
Weighted Round Robin (Katevenis et al., 1991; Tabatabaee
et al., 2020) IWRR) scheduling to dynamically assign mi-
crobatches to peers based on each peer’s training throughput
(“‘samples per second”) in a balanced way.

An important observation is that stochastic wiring allows
SWARM to mitigate network latency. Unlike existing
pipeline algorithms (Huang et al., 2019), SWARM workers
do not get blocked if their neighbors take too long to pro-
cess a minibatch. Instead, each SWARM device maintains
a queue of microbatches assigned by trainers. In case of a
latency spike, workers keep processing previously queued
microbatches, maintaining high device utilization.

D. Description and Complexity of Adaptive
Rebalancing

Algorithm 2 contains the formal definition of the adaptive re-
balancing procedure. As described previously, each worker
of SWARM that hosts model layers continuously updates
the information about its load in parallel with processing
the incoming requests. Each T seconds, the peers measure
the total load for all stages of the pipeline, and the peer with
the lowest queue size from the stage with the minimum load
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Algorithm 1 Pseudocode of stochastic wiring

input the number of pipeline stages N, the set of active
servers .S, smoothing parameter v, initial priority e

1: v Initialization

2: ema = dict()

3: queues = list()

4: forie1l,...,Ndo

5:  queues.append(PriorityQueue())

6: end for

7: def add_server(server):

8: ema[server] = ¢

9: for i € get_blocks_served_by(server):
10: queues[i].update(server, priority=¢)
11: def ban_server(server) :
12: for i € get_blocks_served_by(server):
13: queues[i].update(server, priority=00)
14: def choose_server(i):
15: server, priority = queues|i].top()
16: new_priority = priority + ema[server]
17: for j € get_blocks_served_by(server) :
18: queues(j].update(server, priority=new_priority)
19: return server
20: > Forward pass with stochastic wiring
21: def forward(inputs):
22 layer_index =0
23: while layer_index < N:
24: server = choose_server(layer_index)
25: t = get_current_time()
26: try:
27: inputs = server.forward(inputs)
28: layer_index = layer_index + 1
29: At = get_current_time() - t
30: ema[server] = v - At + (1 — v)- ema[server]
31: catch (ServerFault, Timeout):
32: ban_server(server)
33: return inputs

moves to the stage with the maximum load. In principle,
the algorithm could be extended to support moving multiple
peers simultaneously; however, as we have shown in Sec-
tion 4.4, even in the current form the algorithm bridges most
of the gap between the optimally balanced pipeline and the
system without any rebalancing.

The complexity of Algorithm 2 can be estimated as follows:
for M as the highest number of peers over all stages, we
have O(M ) operations in Lines 9-11 and Lines 22-24, and
all other operations take constant time for a single stage.
These operations are nested in the loop over all stages, which
means that the total complexity of the algorithm is O(M S).
For practical numbers of both peers (e.g., < 10,000) and
stages (fewer than 100), this incurs a negligible overhead on
performance, as all communication and computation is done
in parallel with the actual forward and backward passes.
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Also, notice that only one migrating peer needs to stop
processing requests and download the weights and optimizer
statistics of the pipeline stage it starts serving: this means
that the overall network load of this procedure is relatively
small, as all DHT requests handle scalar data and do not
exceed the number of active peers for each worker.

In practice, the algorithm handles slight deviations in local
time and network/DHT latencies by allowing the peers to
wait for straggling nodes in Line 9 for a predefined time-
out. If a node does not join the rebalancing procedure by
reporting its load in time or joins the network too late, it is
omitted from the current iteration.

Algorithm 2 Adaptive rebalancing for SWARM parallelism

input peer index ¢, current peer stage s, total number of
stages S, rebalancing period T’
1: while active do
2 Sleep for T seconds
3:  Measure g; as the local request queue size
4:  Write (i, ¢;) as the key-subkey pair to DHT[ 5]
5 Initialize minimum and maximum load stages:

Smin = Smaz = —1,
6:  lmin := 00, lmae := —00
7. forsinl,...,Sdo
8: Initialize the load buffer L = 0
9: for (j,¢;) in DHT[s] do
10: L:=1L+gq
11: end for
12: if L > L,,,. then
13: Smaz = Sy Lmaz == L
14: end if
15: if L < L., then
16: Smin = 8, Lmin := L
17: end if
18:  end for
19:  if scyr = Smin then
20: // Migrate to the maximum load stage
21: Initialize the minimum load peer %,,;, :=
=1, Gmin 1= 00
22: for (4, ;) in DHT[s] do
23: if 95 < Qmin then
24: Umin = Jy Qmin = q;
25: end if
26: end for
27: if i,,;, = i then
28: // This peer should migrate
29: Scur ‘= Smazx
30: Download up-to-date parameters from peers in
Smazx
31: end if
32:  endif

33: end while

E. Relation between SWARM and
ZeRO-Offload

In this section, we argue that depending on the use of DPU,
SWARM-parallel training is equivalent to either fully syn-
chronous training or the semi-synchronous training pro-
posed in ZeRO-Offload (Ren et al., 2021). That is, SWARM
produces exactly the same stepwise updates as conventional
distributed training algorithms and will therefore achieve a
solution in the same number of steps.

This observation is similar to how many advanced dis-
tributed training techniques (Huang et al., 2019; Rajbhan-
dari et al., 2020) are computationally equivalent to regu-
lar synchronous training on a single device. For instance,
despite using advanced distributed computation strategies,
GPipe (Huang et al., 2019) computes exactly the same math-
ematical expression to obtain gradients and applies those
gradients in the same order as any other synchronous train-
ing algorithm. On the other hand, PipeDream (Narayanan
et al., 2019) changes the order in which the updates are ap-
plied, introducing the so-called stale gradients (Recht et al.,
2011). This allows PipeDream to improve device utilization
but has been shown to reduce the final model quality in
some setups (Wang et al., 2020).

Despite using randomized routing and asynchronous com-
munication between pipeline stages, SWARM still performs
optimizer steps synchronously after peers collectively reach
the required global batch size (which is a hyperparameter).
While different peers may accumulate a different number of
samples, they will all use the same gradient after averaging.
Any peer that fails or does not meet this condition is con-
sidered a straggler and must reload its state from neighbors
before it can resume training. This procedure ensures that
all surviving peers use non-stale aggregated gradients over
the specified batch size when performing the optimizer step.

The only deviation from fully synchronous training is that
SWARM uses the same approach for CPU offloading as
ZeRO-Offload, and by extension, delayed parameter up-
dates (DPU). While DPU was shown not to affect conver-
gence (Ren et al., 2021; Stich & Karimireddy, 2020; Ar-
jevani et al., 2020), one can disable this functionality and
make SWARM fully equivalent to standard training.

Naturally, these guarantees come at the cost of reduced
hardware utilization, as a small portion of devices will need
to wait after every step. However, as we show in Section 4.3,
SWARM can still train with competitive training throughput
due to the fact that large models are trained with increased
batch sizes (Brown et al., 2020).
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F. Additional Details for Section 4.1

We benchmark four versions of the Transformer layer:

e “base”: dpodel = 768, dppny = 3072, 12 heads;
e “xxlarge”: dpmoder = 4096, dppny = 16384, 32 heads;

e “GPT-3” (Brown et al., 2020): doder = 12288,
drrny = 49152, 96 heads.

* “Ours”: dpodet = 4096, dppn = 16384, 32 heads, 3
layers per pipeline stage.

In Table 6, we report FLOP and parameter counts of each
version based on the expressions from (Kaplan et al., 2020).
For simplicity, we set up each experiment with 12 Trans-
former layers using 12 servers (4 for “Ours”) with a sin-
gle V100-PCIE GPU each. The servers communicate at
500Mbps under 3—6ms latency.

Due to a modest communication bandwidth, smaller models
spend most of the time waiting for the network. However,
that same bandwidth allows for > 80% GPU utilization
when dealing with GPT-3-sized layers. If we colocate 3
“GPT-3” layers per pipeline stage, the GPU utilization can
further improved to > 90%.

The time reported in Section 4.1 is the time required to
run forward and backward pass for all layers with a batch
of 1x512 tokens, not including the Adam updates. All
results are averaged over 1000 consecutive batches; the
standard deviations are below 0.1%. All four GPUs are
in the same data center but on different servers. Each
layer is a TransformerEncoderLayer from PyTorch
1.7.0 (Paszke et al., 2019) wrapped with activation check-
pointing. We use hivemind==0.8.15 (Ryabinin & Gu-
sev, 2020) with a single synchronous trainer based on the
BERT training code from the Transformers library (Wolf
et al., 2020). However, these results are not specific to hive-
mind and are likely reproducible in FairScale (Baines et al.,
2021) or PyTorch RPC. The only important detail is that the
training code should run as much communication as possi-
ble in the background while the GPUs are busy processing
batches. It is important to reuse the same connection for
multiple RPC calls so that the TCP buffer does not have
to warm up during each call. Also, our implementation
performs quantization asynchronously with communication
and other computations.

Table 6: Parameter and FLOP counts of each architecture.

Architecture  Parameters FLOP count
“base” 7.08M 2.2 x 1010
“xxlarge” 201M 6.2 x 101!
“GPT-3” 1.81B 5.5 x 1012
“Ours” 201M 1.8 x 1012
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G. Additional Details for Section 4.3

We use the standard Transformer architecture with two mod-
ifications: Rotary Positional Embeddings (Su et al., 2021)
and GeGLU activations (Shazeer, 2020). Similarly to other
models trained on Pile (Gao et al., 2020; Wang & Komat-
suzaki, 2021), we use the tokenizer of GPT-2 (Radford et al.,
2019). Following (Li et al., 2021), we linearly increase
training sequence length during the initial phase. More
specifically, we begin training with sequences of up to 256
tokens and increase them to the maximum length of 2048
over the first 12, 000 optimizer steps. We train the model
with LAMB (You et al., 2020), following the configuration
from the original paper for a batch size of 16384. On top
of that, we set n = 1072 and B2 = 0.95 to account for the
increased model size.

H. Additional Scaling Evaluation

In this experiment, we investigate the influence of the num-
ber of nodes training with SWARM parallelism on the
throughput of the pipeline. Specifically, we measure the
performance of training the same model as in Section 4.3
in several configurations that differ in the size of the data-
parallel group at each pipeline stage, with the number of
single-GPU instances ranging from 8§ to 128 (the highest
quantity of preemptible nodes that we could reliably main-
tain for a long time). To isolate the effect of worker hetero-
geneity, here we use only the T4 accelerators and measure
the average performance over 30 minutes of training.

Figure 7 shows the results of our evaluation. It can be seen
that the training performance exhibits an approximately
linear scaling pattern, which can be explained by the high
efficiency of both the stochastic wiring strategy and the
auxiliary training components such as the DHT and the
All-Reduce protocol used for gradient averaging.

[\ w BN

Throughput, samples/s

64 128

Number of nodes

32

Figure 7: Scaling of SWARM parallelism throughput with
the number of nodes.
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I. Compression-Aware Architectures

Since pipeline parallelism has several distinct points of com-
munication, the network overhead can be reduced consid-
erably by reducing the size of data at these communication
points. To exploit this, we develop compression-aware ar-
chitectures that apply extreme compression at these points.
We study two distinct communication bottleneck layers: (1)
compression through a linear bottleneck layer, and (2) com-
pression through a bottleneck induced by the maxout activa-
tion function (Goodfellow et al., 2013). We also study how
compressing the activations and gradients at the communi-
cation points to 8 bits affects the predictive performance.

I.1. Description

Fully connected layers (baseline): Fully connected lay-
ers in models such as Transformers consist of a multilayer
perceptron with a single hidden layer and a nonlinear ac-
tivation function. Without biases and with a residual con-
nection (He et al., 2016) from the inputs to the outputs, this
can be described as MLP(x, w1, w3) = o(xw1)ws + X,
where x € RV*$X™ w, € R™*! w, € RT"™ ™ and o(+)
is a nonlinear activation function such as ReLU (Krizhevsky
etal., 2012); b, s, m, and h are the batch, sequence, model,
and hidden dimensions of the neural network. To compress
the output of the MLP layer, we want to apply a compres-
sion layer between two consecutive stages. For example,
if we have 24 layers and 4 stages, we need 3 compression
layers at layers 6, 12, and 18.

Quantized activations: A natural way to reduce the com-
munication intensity is to send activations and gradients with
respect to activations in reduced precision. However, simply
casting tensors to a lower precision may slow down conver-
gence and cause instabilities. Instead, we use dynamic 8-bit
quantization with blockwise scaling from (Dettmers et al.,
2022). This technique reduces communication by ~2x and
~4x for half and full precision, respectively.

On the other hand, quantizing and dequantizing activations
can add compute overhead on every microbatch processed.
Our implementation circumvents that overhead by perform-
ing quantization asynchronously on the CPU. However, this
is not required, as blockwise (de)quantization takes less than
1% of total computation time: see Appendix J for details.

Bottleneck layers: We experiment with simple bottleneck
layers that work by compressing the output features of the
MLP by linear projection:

Bottleneck(x, w1, Wa, We, Wq) =

= LayerNorm(LayerNorm(MLP(x, w1, W2))W.)Wq,

where w, € R"™*¢ wy; € R*™ are compression and
decompression parameters with compression dimension
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¢ < m. We find it critical to use layer normalization (Ba
et al., 2016) to ensure training without divergence. The
parameter matrix w,, resides in one stage and its outputs are
transferred to the next stage that holds the parameters w,
which requires m/c times less communication compared
to the original model. Note that adding a bottleneck only
adds two linear layers for the forward pass and decreases the
size of MLP activations; thus, its computational overhead is
negligible (less than 1% for typical sizes, see Appendix J).

Maxout compression: Compared to bottleneck compres-
sion, maxout compression works by using the maxout acti-
vation function (Goodfellow et al., 2013) for compression
rather than a linear projection. The maxout function of fac-
tor k takes inputs with a hidden dimension of d and reduces
this dimension by a factor of k£ by computing the maximum
value for each non-overlapping window of k features. We
use maxout compression as follows:

Maxout(x, w1, Wo, Wq) =

LayerNorm(maxouty (LayerNorm(MLP(x, w1, W2)))) W4,

where the output is reduced by a factor of k through the max-
out function in the previous stage, and then sent to the next
stage which holds the decompression matrix w,€R"/F*™,

I.2. Evaluating the Speed-Quality Tradeoff

While compression techniques reduce the communication
overhead, they might also degrade the perplexity reached in
a certain time and the final perplexity after a specific number
of steps. To study these tradeoffs, we train a Transformer
language model with adaptive inputs (Baevski & Auli, 2019)
on the WikiText-103 dataset and measure how compression-
aware architecture variants affect convergence.

Our setup follows that of (Baevski & Auli, 2019) with one
difference: we use a sequence length of 2048 instead of
3072 to fit this model into our smaller GPUs. To measure
the time to solution, we look at the number of iterations
it takes to converge to the training perplexity of 22. We
evaluate the baseline model and three compression-aware
modifications from Section I.1: bottleneck, maxout, and
block-wise dynamic 8-bit quantization, each with 2 pipeline
stages and each a compression factor of 2x.

The results can be seen in Table 7. We can see that 8-bit
compression does not degrade the time to 22 perplexity and
maintains close to the final perplexity of the baseline. The
compression-aware bottleneck and maxout architectures
perform equal to each other, but degrade final perplexity
slightly and increase time to a perplexity of 22 by 26-28%.

Using these results, one can determine which method is
optimal for their hardware setup. For instance, training with
maxout with 2 pipeline stages needs 28% more steps, but
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Table 7: Performance of compression methods for a Transformer language model with adaptive inputs on WikiText-103.
The asterisk denotes that the difference is not statistically significant.

Ppl after ~ Stepsto  Data Extra compute
Method
286K steps  ppl 22  transfer  Apsolute Relative
No compression 21.02 1x 1x 0 None
8-bit compression 21.13 0.97x* 0.5x 1.2ms None (overlapped)
Bottleneck 21.76 1.26x 0.5x 1.96ms <1%
Maxout 21.83 1.28x 0.5x 2.04ms < 1%

accelerates the communication phase by 2x. If communi-
cation is the limiting factor, using maxout or bottleneck
compression layers will offer improved time to perplexity
despite the performance degradation. However, the same
two techniques would result in slower training in a setup
where network bandwidth is unlimited.

In turn, 8-bit quantization reduces communication cost with-
out slowing down per-iteration convergence, making it a
“safe bet” for situations where the per-iteration convergence
must be preserved. In our large-scale experiments (Sec-
tion 4.3), we opt to using quantization since it was enough to
fully saturate the GPUs. If network bandwidth is still a lim-
iting factor, one can combine quantization with bottleneck
or maxout compression to further reduce communication.

L.3. Additional Experiments

The additional experiments in this section have two pur-
poses: (1) to evaluate how compression methods vary with
the number of stages and (2) to evaluate an additional setting
that is closer to modern pretraining setups such as GPT-2/3.

While (1) has further implications for scaling, (2) is helpful
to account for confounding factors that might have been
overlooked in the main experiments on WikiText-103. The
WikiText-103 baseline uses non-BPE vocabulary, a long
sequence length, and uses adaptive inputs (Baevski & Auli,
2019), all of which are not frequently used in modern pre-
trained Transformers since GPT-2 (Radford et al., 2019).

Experimental setup: As a baseline, we train a Trans-
former language model (Vaswani et al., 2017) on the Open-
WebText corpus (Gokaslan & Cohen, 2019). We use the
following hyperparameters: sequence size 512, 16 layers
with model dimension 1024, and hidden dimension 4096 for
a total of 253M parameters. We use byte pair encoding (Sen-
nrich et al., 2016; Radford et al., 2019) with a vocabulary
size of 50264 symbols. We do not use dropout or other
regularization, since our models underfit. We run these
experiments in Fairseq (Ott et al., 2019).

We test bottleneck and maxout compression for a compres-
sion factor of 50% and 75% compared to the original size
over two and four stages. We look at how using these
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compression-aware architectures affects the performance
compared to the compression that they achieve.

Results: The results of our compression-aware architec-
tures are shown in Table 8. We can see that while the
bottleneck architecture is competitive with maxout for a
compression factor of 2x with two stages, maxout has better
perplexities if more stages or a higher compression ratio
is used. The out-of-distribution perplexities vary consis-
tently with the in-distribution perplexity, which suggests
compression-aware architectures do not degrade the out-
of-distribution performance more than the in-distribution
performance. As such, the maxout compression is an ef-
fective technique to reduce the bandwidth requirements of
pipeline parallel training further.

While the 8-bit blockwise quantization can only compress
the activations by a factor of two (16-bit — 8-bit), it does
not affect the quality as much when compared to the base-
line. As such, the 8-bit quantization appears to be a reliable
default choice to reduce the communication overhead for
pipeline parallelism.

When considered together with the square-cube law for
distributed training and SWARM parallelism, compression-
aware architectures allow for better scaling of large neural
networks trained over preemptible low-bandwidth peers.
Thus, compression-aware architectures improve the acces-
sibility and affordability of training large models outside
HPC environments.

J. Time To Solution

In this section, we evaluate the compression-aware tech-
niques proposed in Appendix I.1 from a practitioner’s point
of view. A natural way to compare these techniques is in
terms of “the time to solution”, i.e., the wall-clock time it
takes to achieve the desired validation objective. In practice,
this time depends on three main factors: the compression
strategy, the distributed training algorithm, and the compu-
tational infrastructure.

In order to disentangle these factors, we first address the re-
lationship between the training algorithm and the infrastruc-
ture. As we discuss in Section 3.2 (and later in Appendix E),
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Table 8: Results of language models trained on the OpenWebText Corpus (OWT). The baseline model has 253M parameters
and is trained for 8 GPU-days. We apply bottleneck and maxout compression to our baseline in 2 and 4 stages with a
compression factor between 2—4x. PTB=Penn Treebank, 1BW=Billion word corpus.

Validation perplexity
Model Stages Compression OWT LAMBADA WikiText-2 WikiText-103 PTB  1BW
Baseline - - 19.7 86.4 56.2 354 133.0 80.9
8-bit Quantization 2 2x 19.6 89.1 56.0 35.0 1327 79.8
Bottleneck 2 2x 19.5 87.7 56.5 352 129.8 792
Maxout 2 2x 19.6 854 56.6 352 126.8 78.8
8-bit Quantization 4 2x 19.7 87.9 56.3 35.2 1339 79.8
Bottleneck 4 2x 21.7 100.0 66.4 40.0 149.6 895
Maxout 4 2x 214 89.9 63.9 39.5 142.1  86.2
Bottleneck 2 4x 21.6 99.8 64.8 39.6 1456  88.3
Maxout 2 4x 20.5 89.6 60.0 37.1 141.7 835
Bottleneck 4 4x 28.9 141.6 100.2 58.1 2355 1183
Maxout 4 4x 21.3 93.5 63.6 39.2 147.7 89.1
Table 9: Training time and costs. AN — DDP, 8xV100 0 DDP, 8xV100
S SWARM, 8xV100 \ SWARM, 8xV100
.g 8 ‘ 8 \ - SWARM, 32xT4
. COSt, $ 3 \ —===- Target loss value
Setup Time, hours ———— £ 6\ 6
Hourly  Total 2 4
< . .
8 x V100, reliable 175.4 7.834 1374 2 S| 2 k“*m»--..
8 x V100, preemptible ~ 192.6 5383 1037 A
32 x T4, preemptible 140.8 3.536  497.8 Figure 8: Convergence curves of ALBERT with SWARM

SWARM parallelism has the same per-iteration behavior as
other synchronous methods. Theoretically, the choice of an
optimal training system should come down to whichever
algorithm has the highest training throughput.

To verify this argument in practice, we compare the per-
iteration and per-hour performance of SWARM against
fully synchronous training. For this experiment, we train
the ALBERT model (Lan et al., 2020) on the WikiText-
103 dataset (Merity et al., 2017). We use the ALBERT-
Large architecture with 4 layer groups that correspond to
4 SWARM stages without the architecture modifications
from Appendix I. We follow the exact hyperparameters from
the original paper: for example, we use the LAMB opti-
mizer (You et al., 2020) with the batch size of 4096 and
the sequence length of 512. We train this model in three
setups: traditional distributed training with 8 V100 workers,
SWARM with 8 preemptible V100 GPUs, and SWARM
with 32 preemptible T4 workers.

To quantify the time to solution, we measure the wall time
required to achieve the ALBERT objective equal to 1.5. Ad-
ditionally, we report the per-hour cost of each experimental

and standard data-parallel training.

setup and the total cost of achieving a loss of 1.5 using
public cloud provider pricing estimates in Table 9.

Figure 8 demonstrates that SWARM matches the per-
iteration learning curves of traditional distributed training
(PyTorch DistributedDataParallel) up to the variation com-
parable to caused by changing the random seed. However,
SWARM parallelism can achieve the loss of 1.5 more cost-
efficiently and faster by using preemptible instances. In
turn, when forced to use homogeneous and reliable GPUs s,
SWARM would have slightly inferior performance com-
pared to conventional algorithms, which was first demon-
strated in Section 4.2.
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