
Implicit differentiation for hyperparameter tuning
the weighted Graphical Lasso

Can POULIQUEN Paulo GONÇALVES Mathurin MASSIAS Titouan VAYER

Univ Lyon, Ens Lyon, UCBL, CNRS, Inria, LIP, F-69342, LYON Cedex 07, France.

Résumé – Nous dérivons les résultats mathématiques nécessaires à l’implémentation d’une procédure de calibration d’hyperpara-
mètres pour le Graphical Lasso via un problème d’optimisation bi-niveau résolu par méthode du premier-ordre. En particulier, nous
dérivons la Jacobienne de la solution du Graphical Lasso par rapport à ses hyperparamètres de régularisation.

Abstract – We provide a framework and algorithm for tuning the hyperparameters of the Graphical Lasso via a bilevel optimization
problem solved with a first-order method. In particular, we derive the Jacobian of the Graphical Lasso solution with respect to its
regularization hyperparameters.

1 Introduction
The Graphical Lasso estimator (GLASSO) [1] is a com-

monly employed and established method for estimating sparse
precision matrices. It models conditional dependencies be-
tween variables by finding a precision matrix that maximizes
the ℓ1-penalized log-likelihood of the data under a Gaussian
assumption. More precisely, the GLASSO is defined as 1

Θ̂(λ) = argmin
Θ≻0

− logdet(Θ) + ⟨S,Θ⟩+ λ∥Θ∥1︸ ︷︷ ︸
=Φ(Θ,λ)

, (1)

where S = 1
n

∑n
i=1 xix

⊤
i ∈ Rp×p is the empirical covariance

matrix of the data (x1, · · · ,xn). There exist many first- and
second-order algorithms to solve this problem [11, 12, 15].
These approaches all require choosing the right regularization
hyperparameter λ that controls the sparsity of Θ̂(λ). This
is a challenging task that typically involves identifying the
value of λ for which the estimate Θ̂(λ) minimizes a certain
performance criterion C. This problem can be framed as the
bilevel optimization problem

λopt = argmin
λ

{L(λ) ≜ C(Θ̂(λ))}

s.t. Θ̂(λ) = argmin
Θ≻0

Φ(Θ, λ) ,
(2)

where the minimizations over λ and Θ are called respectively
the outer and inner problems. The standard approach to tune
the hyperparameter λ is grid-search: for a predefined list of
values for λ, the solutions of (1) are computed and the one
minimizing C is chosen, which corresponds to solving (2) with
a zero-order method.

In this paper, we propose instead a first-order method for
(2), relying on the computation of the so-called hypergradient
and the Jacobian of the GLASSO objective with respect to λ.
Despite the non-smoothness of the inner problem, we derive a
closed-form formula for the Jacobian.

Our main contributions are the derivations of the equations
of implicit differentiation for the GLASSO: first in the single

1. in variants, the diagonal entries of Θ are not penalized. This is handled
by the framework of Section 3

parameter regularization case for ease of exposure in Sec-
tion 2, and then for matrix regularization in Section 3. Our
work paves the way for a scalable approach to hyperparameter
tuning for the GLASSO and its variants, and could naturally
apply to more complex extensions of the GLASSO such as
[3]. We provide open-source code for the reproducibility of
our experiments which are treated in Section 4.

Related work Although not strictly considering the
GLASSO problem, some other alternatives to grid-search have
been considered in the literature, including random search
[5] or Bayesian optimization [17]. While we compute the
hypergradient by implicit differentiation [4], automatic dif-
ferentiation in forward and backward modes have also been
proposed [10].

Notation The set of integers from 1 to k is [k]. For a set
S ⊂ [p] and a matrix A ∈ Rp×p, A:,S (resp. AS,:) is the
restriction of A to columns (resp. rows) in S . The Kronecker
and Hadamard products between two matrices are denoted by
⊗ and ⊙ respectively. The column-wise vectorization opera-
tion, transforming matrices into vectors, is denoted by vec(·)
and vec−1(·) denotes the inverse operation. For a differen-
tiable function F of two variables, J1F and J2F denote the
Jacobians of F with respect to its first and second variable
respectively. A fourth-order tensor A applied to a matrix B
corresponds to a contraction according to the last two indices:
(A : B)ij =

∑
k,l AijklBkl. The relative interior of a set S is

denoted by relint(S).

2 The scalar case
If the solution of the inner problem Θ̂(λ) is differentiable

with respect to λ, the gradient of the outer objective function
L, called hypergradient, can be computed by the chain rule:

dL
dλ

(λ) =

p∑

i,j=1

∂C
∂Θij

(Θ̂(λ))
∂Θ̂ij

∂λ
(λ) . (3)

This work was partially funded by the AllegroAssai ANR-19-CHIA-0009
project.

1

ar
X

iv
:2

30
7.

02
13

0v
1

 [
cs

.L
G

]
 5

 J
ul

 2
02

3

mailto:can.pouliquen@ens-lyon.fr
mailto:paulo.goncalves@inria.fr
mailto:mathurin.massias@inria.fr
mailto:titouan.vayer@inria.fr

The hypergradient can then be used to solve the bilevel
problem with a first-order approach such as gradient descent:
λk+1 = λk −ρdL

dλ (λk). The main challenge in the hypergradi-

ent evaluation is the computation of ∂Θ̂ij

∂λ (λ), that we summa-

rize in a p× p matrix 2 Ĵ = (
∂Θ̂ij

∂λ (λ))ij . When the inner ob-
jective Φ is smooth, Ĵ can be computed by differentiating the
optimality condition of the inner problem, ∇ΘΦ(Θ, λ) = 0,
with respect to λ, as in [4].

Unfortunately, in our case the inner problem is not smooth.
We however show in the following how to compute Ĵ by dif-
ferentiating a fixed point equation instead of differentiating
the optimality condition as performed in [6] for the Lasso.
The main difficulty in our case stems from our optimization
variable being a matrix instead of a vector, which induces the
manipulation of tensors in the computation of Ĵ. Let

F : Rp×p × R+ → Rp×p

(Z, λ) 7→ proxγλ∥·∥1
(Z)

, (4)

which is equal to the soft-thresholding operator

F (Z, λ) = sign(Z)⊙ (|Z| − λγ)+ , (5)

where all functions apply entry-wise to Z. When Θ̂(λ) solves
the inner problem (1), it fulfills a fixed-point equation related
to proximal gradient descent. Valid for any γ > 0 [8, Prop.
3.1.iii], this equation is as follows:

Θ̂(λ) = F (Θ̂(λ)− γ(S− Θ̂(λ)−1), λ) . (6)

To compute Ĵ, the objective is now to differentiate (6) with
respect to λ. By defining Ẑ ≜ Θ̂(λ) − γ(S − Θ̂(λ)−1) we
will show that F is differentiable at (Ẑ, λ). Since F per-
forms entry-wise soft-thresholding, each of its coordinates
is weakly differentiable [9, Prop. 1, Eq. 32] and the only
non-differentiable points are when |Ẑij | = λγ. To ensure that
none of the entries of Ẑ take the value ±λγ, we will use the
first-order optimality condition for the inner problem (1).

Proposition 1. Let Θ̂(λ) be a solution of (1). Then, using
Fermat’s rule and the expression of the subdifferential of the
ℓ1-norm [2, Thm. 3.63, Ex. 3.41],

[Θ̂(λ)−1]ij − Sij ∈
{
{λ sign Θ̂(λ)ij}, if Θ̂(λ)ij ̸= 0 ,

[−λ, λ] otherwise.
(7)

We also require the following assumption which is classical
(see e.g. [14, Thm 3.1] and references therein).

Assumption 2 (Non degeneracy). We assume that the inner
problem is non-degenerated, meaning that it satisfies a slightly
stronger condition than (7):

Θ̂(λ)−1 − S ∈ relintλ∂∥ · ∥1 . (8)

This implies that in (7), the interval [−λ, λ] in the second case
becomes (−λ, λ).

Using Proposition 1 under Assumption 2, we conclude
that |Ẑij | never takes the value λγ so that (6) is differen-
tiable. Indeed when Θ̂(λ)ij = 0, |[Θ̂(λ)−1]ij − Sij | < λ

2. Ĵ is the image by vec−1 of the Jacobian of λ 7→ vec(Θ̂(λ))

which implies |Ẑij | < λγ. Conversely, when Θ̂(λ)ij ̸= 0,
Ẑij = Θ̂(λ)ij + γλ sign(Θ̂(λ)ij) which implies |Ẑij | > λγ.
Consequently, we can differentiate Equation (6) w.r.t. λ, yield-
ing

Ĵ = J1F (Ẑ, λ)
(
Ĵ− γΘ̂(λ)−1ĴΘ̂(λ)−1

)
+ J2F (Ẑ, λ) .

(9)
The goal is now to solve (9) in Ĵ. We define D ≜ J1F (Ẑ, λ)

the Jacobian of F with respect to its first variable at (Ẑ, λ)
which is represented by a fourth-order tensor in Rp×p×p×p:

Dijkl =

[
∂F

∂Zkl
(Ẑ, λ)

]

ij

. (10)

We also note E ≜ J2F (Ẑ, λ) viewed as a p× p matrix.

Jacobian with respect to Z Because the soft-thresholding
operator acts independently on entries, one has Dijkl = 0
when (i, j) ̸= (k, l). From Equation (5), the remaining entries
are given by

Dijij =

{
0 , if |Ẑij | < λγ ,

1 , otherwise.
(11)

Jacobian with respect to λ Similarly to D, E is given by

Eij =

[
∂F

∂λ
(Ẑ, λ)

]

ij

=

{
0 , if |Ẑij | < λγ ,

−γ sign(Ẑij) , otherwise.
(12)

We can now find the expression of Ĵ as described in the next
proposition.

Proposition 3. Let S ⊂ [p2] be the set of indices i such that
vec(|Ẑ|)i > λγ. The Jacobian Ĵ is given by

vec
(
Ĵ
)
S
=

[(
Θ̂(λ)−1 ⊗ Θ̂(λ)−1

)
S,S

]−1

vec (E)S /γ ,

vec
(
Ĵ
)
Sc

= 0 .

Proof. From (11), one has that D applied to X ∈ Rp×p is
simply a masking operator D : X = M ⊙X, where Mij =

1{|Ẑij | < λγ}. Thus (9) reads

Ĵ = M⊙
(
Ĵ− γΘ̂(λ)−1ĴΘ̂(λ)−1

)
+E . (13)

Now by the expression of E (12), E has the same support as
M, so E = M⊙E, so Ĵ = M⊙ Ĵ, and (13) simplifies to

M⊙ (Θ̂(λ)−1ĴΘ̂(λ)−1) = E/γ . (14)

Using the mixed Kronecker matrix-vector product property
vec(ACB⊤) = (A⊗B) vec(C), by vectorizing (14), we get

vec(M)⊙ (Θ̂(λ)−1 ⊗ Θ̂(λ)−1) vec(Ĵ) = vec(E)/γ . (15)

Writing K = Θ̂(λ)−1 ⊗ Θ̂(λ)−1, we have K vec Ĵ =

K:,S(vec Ĵ)S because vec(Ĵ) is 0 outside of S. Then, (15)
can be restricted to entries in S, yielding KS,S(vec Ĵ)S =
(vecE)S , which concludes the proof.

2

3 Matrix of hyperparameters
In the vein of [18], we now consider the weighted GLASSO

where the penalty is controlled by a matrix of hyperparameters
Λ ∈ Rp×p. In the weighted GLASSO, λ∥Θ∥1 is replaced by

∥Λ⊙Θ∥1 =
∑

k,l

Λkl|Θkl| , (16)

with Λ = (Λkl)k,l∈[p]. Due to its exponential cost in the
number of hyperparameters, grid search can no longer be
envisioned. In this setting, a notable difference with the scalar
hyperparameter case is the dimensionality of the terms. Indeed,
the hypergradient ∇L(Λ) is now represented by a p×p matrix,
while D, E and Ĵ will be represented by fourth-order tensors
in Rp×p×p×p. For simplicity, we compute each element of the
matrix ∇L(Λ) individually as

[∇L(Λ)]kl =

p∑

i,j=1

∂C
∂Θij

(Θ̂(Λ))
∂Θ̂ij

∂Λkl
(Λkl) ∈ R . (17)

In the matrix case, the function F becomes F (Z,Λ) =
sign(Z) ⊙ (|Z| − γΛ)+. By differentiating the fixed point
equation of proximal gradient descent,

Θ̂(Λ) = F (Θ̂(Λ)− γ(S− Θ̂(Λ)−1)︸ ︷︷ ︸
Ẑ

,Λ) , (18)

with respect to Λkl, we obtain a Jacobian that can be expressed
by a p× p matrix [Ĵ(Λkl)]ij =

∂Θ̂ij

∂Λkl
(Λ). It satisfies

Ĵ(Λkl) = D :
(
Ĵ(Λkl) − γΘ̂(Λ)−1Ĵ(Λkl)Θ̂(Λ)−1

)
+E(Λkl) .

Similarly to the scalar case Dijkl = 1(i,j)=(k,l)1|Ẑij |>γΛkl

and [E(Λkl)]ij = − sign(Ẑkl)1(i,j)=(k,l)1|Ẑij |>γΛkl
. The fol-

lowing proposition thus gives the formula for Ĵ(Λkl).

Proposition 4. Let S ⊂ [p2] be the set of indices i such that
vec(|Ẑ|)i > γ vec(Λ)i. The Jacobian Ĵ(Λkl) is given by

vec
(
Ĵ(Λkl)

)
S
=

[(
Θ̂(Λ)−1 ⊗ Θ̂(Λ)−1

)
S,S

]−1

vec
(
E(Λkl)

)
S /γ,

vec
(
Ĵ(Λkl)

)
Sc

= 0 .

The Jacobian of Θ̂(Λ) with respect to Λ can be represented

by the Rp×p×p×p tensor Ĵ where Ĵijkl =
(
[Ĵ(Λkl)]ij

)
i,j,k,l

We notice that the inverse of the Kronecker product, the
bottleneck in the computation of Ĵ, only has to be com-
puted once for all (Λkl)k,l∈[p]. By its expression, E(Λkl) is
a matrix with a single ±1 element at index (i, j) = (k, l).
Therefore Ĵ(Λkl) is obtained by extracting the only column

of
[(

Θ̂(Λ)−1 ⊗ Θ̂(Λ)−1
)
S,S

]−1

indexed by that non-zero

element.

4 Experiments
In this section, we present our proposed methodology for

tuning the hyperparameter(s) of the GLASSO, and we aim to

address the following three questions through our experiments:
1) How does our approach compare to grid-search? 2) What
level of improvement can be achieved by extending to matrix
regularization? 3) What are the limitations of our method in
its current state?

To answer these questions, we generated synthetic
data using the make_sparse_spd_matrix function of
scikit-learn, which created a random 100× 100 sparse
and positive definite matrix Θtrue by imposing sparsity on
its Cholesky factor. We then sample 2000 points following a
Normal distribution xi ∼ N

(
0,Θ−1

true

)
, i ∈ [n] i.i.d.

The criterion and its gradient Selecting the appropriate
criterion C to minimize is not an easy task without strong
prior knowledge of the true matrix Θtrue to be estimated.
In our numerical validation, we use the unpenalized nega-
tive likelihood on left-out data. More precisely, we split
the data into a training and testing set with a 50 − 50 ra-
tio (xi)i∈[n] = (xi)i∈Itrain ∪ (xi)i∈Itest and we consider the
hold-out criterion C(Θ) = − logdet(Θ) + ⟨Stest,Θ⟩ where
Stest = 1

|Itest|
∑

i∈Itest
xix

⊤
i is the empirical covariance of

the test samples (respectively Strain for the train set). This cor-
responds to the negative log-likelihood of the test data under
the Gaussian assumption ∀i ∈ Itest, xi ∼ N (0,Θ−1) i.i.d
[11]. The intuition behind the use of this criterion is that Θ̂(λ)
should solve the GLASSO problem on the training set while
remaining plausible on the test set. Other possible choices in-
clude reconstruction errors such as C(Θ) = ∥ΘStest − Id ∥F ,
but a comparison of the effect of the criterion on the solution
is beyond the scope of this paper. In our case, the criterion’s
gradient ∇C(Θ) is then equal to −Θ−1 + Stest [7, §A.4.1].

Computing the Jacobian Based on the previous results we
have all the elements at hand to compute the hypergradient for
scalar and matrix hyperparameters. In the first case it reads
dL
dλ (λ) = ⟨Ĵ,∇C(Θ̂(λ))⟩ with Ĵ as in Proposition 3, while in
the latter case it can be computed with the double contraction
∇L(Λ) = Ĵ : ∇C(Θ̂(Λ)) with Ĵ as in Proposition 4. In
the code, we use the parametrization λ = exp(α) and Λkl =
exp(αkl) respectively for the scalar and matrix regularization,
and optimize over α in order to impose the positivity constraint
on λ, as in [6]. We rely on the GLASSO solver [13] for
computing Θ̂(·). For solving (2), we use simple gradient
descent with fixed step-size ρ = 0.1.

Comparison with grid-search As a sanity check, we first
compare our method with a single hyperparameter (scalar
case) to grid search. The initial regularization parameter λinit

is chosen such that the estimated precision matrix Θ̂(λinit) is
a diagonal matrix: λinit = log(∥Strain∥∞). Figure 1 demon-
strates that both methods find the same optimal λ, which we
refer to as λopt

id , and that a first-order method that is suitably
tuned can swiftly converge to this optimum. We also compute
in the same Figure the relative error (RE) ∥Θtrue−Θ̂(λ)∥

∥Θtrue∥ be-
tween the estimation and the true matrix (in blue). We notice
that Θ̂(λopt

id) results in a slightly worse RE than the optimal
one. This highlights the importance of the choice of C, which
may not necessarily reflect the ability to precisely reconstruct
the true precision matrix Θtrue. Nonetheless, it is important to
note that the RE represents an oracle error since, in practical
scenarios, we do not have access to Θtrue. This raises the

3

10−310−210−1100

λ = eα

105

110

115

120

125

130

135

140
C(

Θ̂
(λ

))
Grid search

Implicit differentiation

Oracle error

0.16

0.24

0.32

0.40

0.48

0.56

0.64

0.72

‖Θ
tr

u
e
−

Θ̂
(λ

)‖
‖Θ

tr
u

e
‖

Figure 1 – Value of the criterion C w.r.t. λ for grid-search and
our method, along with the oracle RE.

0 10 20 30 40 50
Descent iterations

101.4

101.6

101.8

102.0

C(
Θ̂

(Λ
))

Matrix regularization

Λkl = λopt
id 1{k 6=l}

Figure 2 – Outer objective value for the bilevel problem along
iterations of hypergradient descent.

essential question of criterion selection, which we defer to
future research.

Matrix regularization Our approach demonstrates its value
in the context of matrix regularization, where grid search is in-
capable of identifying the optimal solution within a reasonable
amount of time. As depicted in Figure 2, leveraging matrix
regularization with appropriately tuned parameters enhances
the value of the bilevel optimization problem. Furthermore, as
demonstrated in Figure 3, our method successfully modifies
each entry Λkl of the regularization matrix, resulting in an
estimated matrix Θ̂(Λopt) that aligns visually with the oracle
Θtrue. The edge brought by this improvement remains to be
further investigated with respect to the computational cost of
the method. While tuning the step-size, we observed that the
non-convexity in this case appears to be more severe. We
speculate that utilizing more sophisticated first-order descent
algorithms from the non-convex optimization literature could
be more robust than plain gradient descent.

Conclusion
In this work, we have proposed a first-order hyperparame-

ter optimization scheme based on implicit differentiation for
automatically tuning the GLASSO estimator. We exploited
the sparse structure of the estimated precision matrix for an

Λkl = exp (αkl) Θtrue Θ̂(Λopt)

0.00

0.01

0.10

0.20

0.50

−0.4

0.0

1.6

Figure 3 – Visualization of the matrices Λopt, Θtrue and
Θ̂(Λopt).

efficient computation of the Jacobian of the function mapping
the hyperparameter to the solution of the GLASSO. We then
proposed an extension of the single regularization parameter
case to element-wise (matrix) regularization. As future direc-
tions of research, we plan on studying the influence of the
criterion C on the sparsity of the recovered matrix, as well as
clever stepsize tuning strategies for the hypergradient descent.
In the broader sense, we will also benchmark our method
against data-based approaches to hyperparameter optimization
such as deep unrolling [16]. Finally, we provide high-quality
code available freely on GitHub 3 for the reproducibility of our
experiments.

References
[1] O. Banerjee, L. El Ghaoui, and A. d’Aspremont. Model selection

through sparse maximum likelihood estimation for multivariate Gaussian
or binary data. JMLR, 2008.

[2] Amir Beck. First-order methods in optimization. SIAM, 2017.
[3] A. Benfenati, E. Chouzenoux, and J-C. Pesquet. Proximal approaches

for matrix optimization problems: Application to robust precision matrix
estimation. Signal Processing, 2020.

[4] Y. Bengio. Gradient-based optimization of hyperparameters. Neural
computation, 2000.

[5] J. Bergstra and Y. Bengio. Random search for hyper-parameter opti-
mization. JMLR, 2012.

[6] Q. Bertrand, Q. Klopfenstein, M. Massias, M. Blondel, S. Vaiter,
A. Gramfort, and J. Salmon. Implicit differentiation for fast hyper-
parameter selection in non-smooth convex learning. JMLR, 2022.

[7] S. Boyd and L. Vandenberghe. Convex optimization. 2004.
[8] P. Combettes and V. Wajs. Signal recovery by proximal forward-

backward splitting. Multiscale modeling & simulation, 2005.
[9] C.-A. Deledalle, S. Vaiter, J. Fadili, and G. Peyré. Stein Unbiased GrA-

dient estimator of the Risk (SUGAR) for multiple parameter selection.
SIAM Journal on Imaging Sciences, 2014.

[10] L. Franceschi, M. Donini, P. Frasconi, and M. Pontil. Forward and
reverse gradient-based hyperparameter optimization. ICML, 2017.

[11] J. Friedman, T. Hastie, and R. Tibshirani. Sparse inverse covariance
estimation with the graphical lasso. Biostatistics, 2008.

[12] C.-J. Hsieh, M. Sustik, I. Dhillon, P. Ravikumar, et al. QUIC: quadratic
approximation for sparse inverse covariance estimation. JMLR, 2014.

[13] J. Laska and M. Narayan. skggm 0.2.7: A scikit-learn compatible
package for Gaussian and related Graphical Models, 2017.

[14] J. Liang, J. Fadili, and G. Peyré. Local linear convergence of forward–
backward under partial smoothness. In NeuRIPS, 2014.

[15] F. Oztoprak, J. Nocedal, S. Rennie, and P. A. Olsen. Newton-like
methods for sparse inverse covariance estimation. NeurIPS, 2012.

[16] H. Shrivastava, X. Chen, B. Chen, G. Lan, S. Aluru, H. Liu, and L. Song.
GLAD: Learning sparse graph recovery. ICLR, 2020.

[17] J. Snoek, H. Larochelle, and R. P. Adams. Practical bayesian optimiza-
tion of machine learning algorithms. NeurIPS, 2012.

[18] W. N. van Wieringen. The generalized ridge estimator of the inverse
covariance matrix. Journal of Computational and Graphical Statistics,
2019.

3. https://github.com/Perceptronium/glasso-ho

4

https://github.com/Perceptronium/glasso-ho

	Introduction
	The scalar case
	Matrix of hyperparameters
	Experiments

