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ABSTRACT
Category information plays a crucial role in enhancing the quality

and personalization of recommender systems. Nevertheless, the

availability of item category information is not consistently present,

particularly in the context of ID-based recommendations. In this

work, we propose a novel approach to automatically learn and

generate entity (i.e., user or item) category trees for ID-based rec-

ommendation. Specifically, we devise a differentiable vector quanti-

zation framework for automatic category tree generation, namely

CAGE, which enables the simultaneous learning and refinement

of categorical code representations and entity embeddings in an

end-to-end manner, starting from the randomly initialized states.

With its high adaptability, CAGE can be easily integrated into both

sequential and non-sequential recommender systems. We validate

the effectiveness of CAGE on various recommendation tasks includ-

ing list completion, collaborative filtering, and click-through rate

prediction, across different recommendation models. We release

the code and data
1
for others to reproduce the reported results.
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1 INTRODUCTION
Recommender systems [15, 42, 48] aim to ease the burden of decision-

making by automatically suggesting personalized item recommen-

dations tailored to a user’s preferences and historical behavior. They

cater to diverse objectives such as list completion, collaborative

filtering, and click-through rate prediction. The varied objectives

underscore the importance of devising methodologies that can

1
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Figure 1: Illustration of our approach in learning category
trees for ID-based recommendation. In contrast to traditional
methods that solely offer item or user IDs to the recom-
mender system, our approach involves implicit learning of
user/item category trees. The category information, encoded
as vectors, is subsequently integrated with the user/item ID
and provided as input to the recommender system.

adapt to different recommendation scenarios and deliver improved

recommendations.

When crafting recommendation models and algorithms, the in-

tegration of categorical information is of paramount importance.

Categorical attributes, such as product types [6] and user loca-

tions [29, 34], find widespread use due to their ability to capture cru-

cial attributes and establish meaningful connections for users and

items. Furthermore, these category features serve to mitigate the

cold-start problem, providing an additional layer of information for

less active (sparsely interacting) entities (i.e., users or items) [2, 11].

This supplementary information is progressively refined by inter-

actions from active users or items during training, thereby aiding

less active entities in obtaining more robust representations.

However, category features are not always available, since many

recommendation datasets only have ID information. To address the

absence of category attributes in ID-based recommendation con-

texts, we propose a novel automatic category tree generation frame-

work, namely CAGE. As illustrated in Figure 1, CAGE serves as the

precursor to the recommender system, dynamically constructing an

item/user category tree, which incorporates hierarchical categorical

knowledge (e.g., “Good” and “Gaming”) relevant to the current en-

tity (e.g., “I-123”). The categorical information, encoded as vectors,

is provided to the recommender system as auxiliary information

alongside the user/item ID. The implementation of CAGE is based

on differentiable and cascaded vector quantization (VQ).

1
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Figure 2: Comparison between (a) the traditional three-stage
vector quantization pipeline for content-based recommen-
dation and (b) our proposed end-to-end differential vector
quantization framework for ID-based recommendation.

Previous vector quantization methods for recommendation [37,

52] often rely onmeaningful and fixed entity (e.g., user or item) em-

beddings, derived from side information like content-aware item

embeddings using pretrained models. They commonly adopt a

three-stage design, as displayed in Figure 2, where representation

learning, vector quantization, and recommendation training are

carried out separately. However, the lack of side information in

ID-based recommendation hinders the generation of meaningful

entity embeddings during the initial training phase, making this

approach impractical. We tackle this challenge by employing dif-

ferentiable VQ [46]. It enables dynamic adjustments of both entity

embeddings and categorical code vectors from the quantization

codebooks through recommendation tasks and quantization con-

straints, starting from their initial random states and resulting in a

robust and stable form.

Moreover, it is crucial to select the appropriate level of detail for

categories. Employing finely detailed categories could potentially

result in data sparsity issues within the recommendation system,

while adopting broader, coarse-grained categories may obscure sig-

nificant differentiations among entities. In light of this challenge,

we propose cascaded VQ to construct a category tree with vary-

ing levels of granularity. Unlike the single-layer category system

commonly used in datasets, our cascaded approach creates a hier-

archical taxonomy of categories, offering a more comprehensive

representation of entities.

To summarize, we introduce CAGE, an automatic category tree

generation framework for ID-based recommendation, which offers

several notable advantages and capabilities as outlined below.

• End-to-end framework.Differing from the commonmulti-

stage application of VQ in recommender systems [37, 52],

we are the first to explore differentiable VQ as an end-to-

end solution for category generation in a scenario without

side information, i.e., ID-based recommendation. Such end-

to-end training allows for refining and optimizing the cate-

gorization for both items and users to align with specific

recommendation objectives.

• Easy adoption and high adaptability. CAGE is a plug-

gable module that can be conveniently integrated into both

sequential and non-sequential recommendation models for

accommodating different recommendation scenarios, in-

cluding list completion, collaborative filtering, and click-

through rate prediction.

• Effectiveness. We conduct a comprehensive evaluation

of CAGE on multiple recommendation tasks, including list

completion, collaborative filtering, and click-through rate

prediction. The evaluation involves seven datasets and a

comparison with 14 baseline methods. The results demon-

strate the effectiveness of CAGE, showcasing significant

improvements across most scenarios. For example, CAGE

demonstrates a relative improvement of up to 21.41% over

state-of-the-art baselines in list completion tasks and up to

37.08% in collaborative filtering tasks.

2 RELATEDWORK
2.1 Vector Quantization
Vector quantization (VQ) techniques [12] map a large set of input

vectors into a small set of vectors (i.e., a codebook), which have

been widely studied in computer vision [1, 38, 51] and speech cod-

ing [5, 22] domains. To date, only a few studies explore the potential

of vector quantization in recommendation systems. One line of re-

search aims to improve recommendation efficiency [24, 28, 45]. The

other line of research focuses on improving recommendation qual-

ity [35, 37], as shown by the growing interest from researchers

in recent years. The studies on enhancing recommendation qual-

ity can be categorized into two paradigms: the commonly used

multi-stage approach [19, 37, 52] and an end-to-end training [35]

strategy.

To our knowledge, AQCL [35] is the only work using end-to-end

training for quality improvement in ID-based recommendation,

which leverages VQ to assist contrastive learning in the CTR pre-

diction scenario. Differ from AQCL, our proposed CAGE, is the first

to introduce VQ for learning categorical knowledge in ID-based

recommendation.

2.2 Recommender Systems
Recommender systems have been extensively studied in various

application scenarios including (1) list completion, which aims to

continue the user-curated list by sequence generation, (2) collabora-

tive filtering (CF) that makes recommendation based on user-item

interactions, and (3) click-through rate (CTR) prediction, which is a

crucial task in the ranking phase of the recommendation pipeline.

List completion. Pioneer works based on Markov chain [8,

32, 33] or neural networks [7, 10, 44, 47] are mostly proposed for

automatic playlist continuation. In recent years, sequential recom-

menders [17, 18, 42, 43] have been proposed to generation items

autoregressive for list completion task, while FANS [30] uses non-

autoregressive generation to improve both quality and efficiency.

Collaborative filtering. Collaborative filtering (CF) is widely

adopted in the matching phase of the recommendation pipeline.

Traditional CF methods [4, 25, 27, 40] employ neighborhood-based

approaches and use similarity metrics to identify users or items

with similar preferences, which face scalability and sparsity issues

in large-scale systems. To overcome these limitations, matrix factor-

ization [26] techniques have been widely adopted to capture under-

lying preferences and characteristics for personalized recommen-

dation. More recently, deep learning-based methods [15, 16, 39, 53]

have emerged to learn complex user-item interactions and capture

nonlinear relationships.

2
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Click-through rate prediction. In recent years, deep learning-

based CTR prediction models [9, 13, 20, 31, 48] have gained pop-

ularity. These models have demonstrated improved performance

by leveraging the expressive power of neural networks to capture

intricate patterns in user-item interactions.

3 PROPOSED FRAMEWORK: CAGE
Figure 3 illustrates our automatic category tree generation (CAGE)

framework, which is designed to enhance id-based representations

of both items and users. It involves a series of cascaded vector quan-

tizers for extracting category-aware information at multiple levels

of granularity. More precisely, the vector quantizers are intercon-

nected in a successive manner, with the output of one quantizer

be the input to the next. The quantized multi-level code vectors

are then fused and fed to the recommender system to facilitate

downstream recommendation tasks. CAGE and the recommender

system are trained together in an end-to-end manner.

3.1 Tree Construction
Before training, both the embedding vectors and code vectors in

codebooks are randomly initialized. There are no connections be-

tween each entity and the nodes in the bottom-level codebook (the

leftmost layer in Figure 3), as well as between adjacent codebooks.

3.1.1 Searching with VectorQuantization. Specifically, we establish
links between adjacent layers using the vector quantization tech-

nique. Vector quantization [50] targets at grouping similar vectors

into clusters by representing them with a small set of prototype

vectors. We use a vector quantizer to locate the code vector within

a codebook that closely matches the input embedding. The code

vector is anticipated to capture and represent the categorical infor-

mation associated with the input embedding. The vector quantizer

includes a 𝑘-entry codebook C ∈ R𝑘×𝑑 , where 𝑘 is the number of

the code vectors and 𝑑 is the dimension of each code vector.

Given an input embedding e ∈ R𝑑 , nearest neighbour search is

performed to find the most similar code to z within C:

𝑗 = arg min

𝑖∈{1,2,...,𝑘 }
∥e − c𝑖 ∥2

2
, (1)

where c𝑖 (1 ≤ 𝑖 ≤ 𝑘) is any code vector in the codebook C, and 𝑗

is the index of the matched code vector c𝑗 . Note that the current
matching pair (e, c𝑗 ) is a temporary result that evolves as the
training process continually adjusts entity embeddings and code

vectors.

3.1.2 Cascaded Linking Flow. CAGE employs a series of cascaded

vector quantizers to capture categorical information at multiple lev-

els of granularity. Figure 3 shows an example with three quantizers.

Let𝐻 be the number of quantizers (or levels of granularity). Each

quantizer 𝑄 (𝑖 )
has a 𝑣𝑖 -entry codebook C(𝑖 )

, where 𝑖 = 1, 2, . . . , 𝐻 .

The quantizers are interconnected in a cascaded fashion, generating

fine-to-coarse code vectors, i.e., 𝑣𝑖 > 𝑣 𝑗 for 𝑖 < 𝑗 . Each quantizer

𝑄 (𝑖 )
takes the output of the previous quantizer (i.e., 𝑄 (𝑖−1)

) as

input, creating a quantization flow defined as follows.

c(𝑖 ) = 𝑄 (𝑖 )
(
c(𝑖−1)

)
, (2)

c(0) = e, (3)

where c(𝑖 ) is the output of quantizer 𝑄 (𝑖 )
.

3.2 Code Fusion Layer
After obtainingmulti-level codes (or categories) c(𝑖 )

q
(𝑖 = 1, 2, · · · , 𝐻 ),

we employ an average pooling operation to combine them into a

single vector:

c̄ =
1

𝐻

𝐻∑︁
𝑖

c(𝑖 ) . (4)

In addition, we use a weighted residual connection to add the origi-

nal vector e to obtain the final category-aware representation z:

z = e + 𝛼 c̄, (5)

where 𝛼 is a hyperparameter that balances the two terms. We use

“𝑓 ” to denote the aforementioned operations, i.e., z = 𝑓 (e).

3.3 Tree Back Propagation
Since the nearest neighbour search algorithm is not differentiable,

we utilize the straight-through estimator (STE) [3] to approximate

the gradient of each quantizer. Specifically, the gradient of the

quantizer is approximated by the gradient of the identity function,

which is defined as:

𝜕c(𝑖 )

𝜕c(𝑖−1) ≈ 𝜕c(𝑖−1)

𝜕c(𝑖−1) = I, (6)

where I is the identity matrix. Therefore, the quantization loss (en-

couraging the quantizer to select the closest vector in the codebook)

can be defined as:

𝐿quant =

𝐻∑︁
𝑖

(
∥𝑠𝑔[c(𝑖−1) ] − c(𝑖 ) ∥2

2

)
, (7)

where 𝑠𝑔 is the stop gradient operation. Furthermore, we introduce

a commitment loss that encourages the input embedding c(𝑖−1)
to

approach the currently matched code vector c(𝑖 ) , which reduces the
frequency of link changes, resulting in a smoother training process:

𝐿commit =

𝐻∑︁
𝑖

(
∥c(𝑖−1) − 𝑠𝑔[c(𝑖 ) ] ∥2

2

)
. (8)

Finally, the overall tree generation loss can be defined by:

𝐿cage = 𝐿quant + 𝛽𝐿commit, (9)

where 𝛽 is a hyper-parameter that controls the trade-off between

the two losses.

3.4 End-to-end Training
As mentioned in Section 3.1, the cascaded code vectors and entity

embeddings are both initialized randomly prior to training. Ini-

tially, entity embeddings lack meaningful information, leading to

insignificant quantization outcomes. As training progresses, the

CAGE module and the recommender model are jointly optimized

through an external recommendation task (i.e., recommendation

loss), gradually imbuing entity embeddings with semantic con-

text. Furthermore, internal tree generation loss, 𝐿cage, is introduced

to enhance the clustering effectiveness of the codebook. The en-

riched category information (code representation) subsequently

contributes to improved recommendation performance for entity

3
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Figure 3: Overview of our proposed category tree generation framework (CAGE).

embeddings in subsequent training batches. This cyclic iteration

results in a double-helix refinement process, where the codebook

and entity embeddings continuously enhance their representation

learning throughout the training process.

4 APPLICATIONS
CAGE can be effortlessly and seamlessly integrated into a variety

of recommendation models to enhance recommendation perfor-

mance, making it highly adaptable and suitable for a wide range

of recommendation scenarios. In the following, we demonstrate

how CAGE can be applied to non-sequential (e.g., collaborative

filtering and CTR prediction) and sequential recommenders (e.g.,

list completion).

4.1 CAGE for Non-sequential Recommenders:
Incorporating both Item and User CAGE

4.1.1 Scenario 1: Collaborative Filtering. Given a set of users U
and a set of itemsV , the collaborative filtering agent [15, 16, 39, 53]

aims to estimate the user-item interaction matrix R, where each
weight 𝑟𝑢𝑖 represents the preference or rating of user 𝑢 for item

𝑖 . The matrix R is typically sparse, as not all users rate or interact

with all items. Therefore, the task is to fill in these missing weights

by existing ratings.

4.1.2 Scenario 2: Click-Through Rate Prediction. In contrast to col-

laborative filtering, which is typically employed in the matching

phase of the recommender pipeline, CTR prediction is a ranking-

based task that aims to predict the probability of a user clicking on

a particular item. The input to the CTR model is a user-item pair,

and the output is a probability score indicating the likelihood of

the user clicking on the item. Existing deep CTR prediction mod-

els [13, 20, 36, 48] are typically designed to learn feature interactions

from the raw input features such as user ID, item ID, and other

statistical features if exists.

4.1.3 Integration. In the non-sequential scenario, both user and

item representations are obtained as embedding matrices and play

integral roles in the training process. Therefore, we can incorporate

two CAGE modules (i.e., Item CAGE 𝑓 (𝑖 ) and User CAGE 𝑓 (𝑢 ) ) on

dual sides to extract hierarchical category knowledge, denoted as:

z(𝑢 ) = 𝑓 (𝑢 )
(
e(𝑢 )

)
, z(𝑖 ) = 𝑓 (𝑖 )

(
e(𝑖 )

)
. (10)

Finally, the loss function can be calculated by:

𝐿rec = Φ
(
z(𝑢 ) , z(𝑢 ) , 𝑙

)
, (11)

𝐿 = 𝐿rec + 𝜔𝑞

(
𝐿
(𝑢 )
cage

+ 𝐿
(𝑖 )
cage

)
, (12)

where Φ is the non-sequential recommender, 𝑙 is the label, and 𝜔𝑞

is a hyperparameter balancing the internal tree generation loss and

external recommendation loss.

4.2 CAGE for Sequential Recommenders:
Incorporating Item CAGE with an
Additional Category Tree Classification Loss

4.2.1 Scenario: List Completion. Given a set of item vocabulary

V(𝑣0 = |V|) and a user curated list x = [𝑥1, 𝑥2, · · · , 𝑥 |x | ] (𝑥𝑖 ∈ V),

the list completion agent [17, 23, 30, 43] is required to predict an

item sequence y = [𝑦1, 𝑦2, · · · , 𝑦 |y | ] (𝑦𝑖 ∈ V) that is a subsequent

of x, which can be formulated as maximizing the probability

𝑝
(
y′ = y|x

)
, (13)

where y′ represents any possible list of length |y|.
Different from non-sequential recommenders which generate a

scalar score, the output of the list completer is a prediction item

vector z̄. More precisely, the item completer undergoes training

using the item prediction task
2
. Therefore, a classification mod-

ule is designed to infer the probability distribution over the item

vocabulary by the softmax function for each prediction item vector:

𝑔0
: R𝑑 → R𝑣

0

. (14)

4.2.2 Integration. In the sequential scenario, since the user repre-

sentation is derived by fusing the historical item list, we only need

to insert a single CAGE module for item categorization. Addition-

ally, the category tree generated by our CAGE naturally serves as a

valuable aid for the item prediction task.

Assuming that the ground truth label for the item vector to be

predicted, z̄, is the 𝑦 (0) -th item, and its current embedding is z. We

can start by using Item CAGE to obtain pseudo-labels (i.e., code
2
This task can take the form of predicting the next item for autoregressive methods [17,

43] or a masked item prediction task [30] for non-autoregressive methods.

4
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List Completion CTR CF

Datasets Zhihu Spotify Goodreads MIND MovieLens Toys Kindle

#Users 18,704 72,152 15,426 94,057 943 19,413 68,224

#Items 36,005 104,695 47,877 65,238 1,682 11,925 61,935

#Interactions 927,781 6,809,820 1,589,480 1,756,555 52,480 623,023 2,664,795

Items per list 49.59 94.38 103.04 - - - -

List Range 10 ∼ 200 20 ∼ 300 20 ∼ 300 - - - -

Samples - - - 9,993,270 69,881 1,246,064 5,329,590

Density 0.138% 0.089% 0.215% 0.163% 4.406% 0.538% 0.136%

Table 1: Dataset statistics. The density is defined as the ratio
of the number of interactions to the number of all possible
interactions.

indices in themulti-level codebooks, denoted as𝑦 (𝑖 ) , 𝑖 = 1, 2, . . . , 𝐻 )

for the current embedding z. Subsequently, we design an auxiliary

tree classification task that encourages the current prediction

vector z̄ to predict the category it corresponds to in each layer of

the category tree which multiple node classification module:

𝑔𝑖 : R𝑑 → R𝑣
𝑖

, 𝑖 = 1, 2, . . . , 𝐻 . (15)

Such auxiliary task further strengthens the connection between

items and categories, leading to more precise predictions. Then,

we proceed with the multi-level classification training and the loss

function can be defined as:

𝐿item = 𝑔0 (z)𝑦 (0) , (16)

𝐿tree =
1

𝐻

𝐻∑︁
𝑖

𝑔𝑖 (z)𝑦 (𝑖 ) . (17)

Finally, the overall recommendation loss function is:

𝐿rec = 𝐿item + 𝜔c𝐿tree, (18)

𝐿 = 𝐿rec + 𝜔𝑞𝐿cage, (19)

where 𝜔c is a hyperparameter that controls the importance of the

tree classification loss, and please refer to Equation 12 for 𝜔q.

5 EXPERIMENT
5.1 Experimental Setup
5.1.1 Datasets. We conducted offline experiments on three recom-

mendation tasks, namely list completion, collaborative filtering (CF),

and click-through rate (CTR) prediction. For the list completion task,

we use three real-world datasets: Zhihu, Spotify, and Goodreads,

which were crawled and compiled by [17]. For the collaborative

filtering task, we utilize two public datasets: Amazon Toys and

Amazon Kindle Store, namely Toys and Kindle, respectively. Re-

garding the CTR prediction task, we employ two public datasets:

MIND [49] (small version) and MovieLens [14] (100K version). The

dataset statistics can be found in Table 1.

5.1.2 Preprocessing. For the list completion task, we adopt the

data preprocessing steps proposed by [30]. We iteratively perform

the following two operations until the data no longer changes: 1)

remove items with a frequency less than 10 from all lists; 2) truncate

or filter the item list according to the maximum and minimum

lengths specific to each dataset. Furthermore, we uniformly divide

a qualifying list into two segments, namely the input and target

lists. The lists are then partitioned into training, validation, and

testing sets using an 8:1:1 ratio.

For the CF and CTR prediction datasets, we only use the user-

item interaction data without any additional information. To be

specific, for the MIND dataset, user historical behaviors are trans-

formed into a list of user-item pairs, which are subsequently in-

cluded in the training set. More details about the dataset preprocess-

ing will be provided in the public code repository upon accepted.

5.1.3 Baselines and Variants of Our Method. List completion.We

take the state-of-the-art sequential recommendation methods and

the item list completion models as baselines, including Caser [43],

GRU4Rec [18], SASRec [23], BERT4Rec [42], CAR [17] and FANS [30].

We integrate CAGE into BERT4Rec and FANS to obtain CAGEBERT4Rec

and CAGEFANS models, respectively.

It is worth noting that FANS [30] pre-extracts categorical item

features based on the curated item lists among training, validation,

and testing sets. These categorical knowledge is also added into

baseline models for a fair comparison in the FANS paper. Since we

learn the cascaded categorical features in an end-to-end manner,

we do not use the pre-extracted categorical entity features in our

experiments for both our method variants and baselines.

Collaborative filtering.We compare ourmethodwith represen-

tative CF models as baselines, including BPRMF [39], NeuMF [16],

CFKG [53] and LGCN [15]We integrate our proposed CAGEmodule

into these baselines and denote them as CAGEBPRMF, CAGENeuMF,

CAGECFKG, and CAGELGCN, respectively.

Click-through rate prediction. We compare our method with

the widely used and state-of-the-art deep CTR models, including

DeepFM [13], DCN [48], FiBiNET [20], and FinalMLP [31]. We inte-

grate our proposed CAGE module into these baselines and denote

the integrated models as CAGEDeepFM, CAGEDCN, CAGEFinalMLP
,

and CAGEFiBiNET, respectively.

5.1.4 Evaluation Protocols. We follow the common practice [41]

to evaluate the effectiveness of recommendation models with the

widely usedmetrics, i.e., NormalizedDiscounted Cumulative Gain [21]

(NDCG@k) and Hit Ratio (HR@k). In this work, we set 𝑘 = {5, 10}.

5.1.5 Implementation Details. During training, we adopt the Adam
optimizer as the gradient descent algorithm. For all models, the

embedding dimension is set to 64. For the list completion task, we
set the batch size to 256 and the learning rate to 0.01 following [30].

We use 3 Transformer layers for all Transformer-based models and

3 hidden layers for the GRU4Rec model. For the Caser model, we

follow the original implementation and settings, and set the max

sequence length to 5. We set the number of attention heads to 8

for all Transformer-based methods on the three datasets of list

completion. For the collaborative filtering task, we set the batch
size to 1024 and the learning rate to 0.001. For the LGCN model,

we set the number of GCN layers to 3. For the CTR prediction
task, we set the batch size to 5000, the learning rate to 0.001, the

number of DNN layers to 3, the size of each hidden layer to 1000,

and the dropout rate to 0.1 for all models. For the DCN model, we

set the number of cross layers to 3. For the FiBiNET model, we set

the number of feature interaction blocks to 3.

We carefully tune the hyper-parameters of all models on the

validation set and report the best results achieved on the test set.
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Models Caser
(2018)

GRU4Rec
(2016)

SASRec
(2018)

CAR
(2020b)

BERT4Rec
(2019)

CAGEBERT4Rec
(ours)

FANS*
(2023)

FANSTSC∗
(2023)

CAGEFANS
(ours)

Imp.
Zh

ih
u

N@5 0.0065 0.0058 0.0046 0.0050 0.0136 0.0220 0.0256 0.0232 0.0301 17.58%

N@10 0.0105 0.0085 0.0074 0.0087 0.0198 0.0305 0.0389 0.0337 0.0428 10.03%

HR@5 0.0926 0.0819 0.0728 0.0770 0.1664 0.2333 0.2857 0.2670 0.3034 6.20%

HR@10 0.1812 0.1597 0.1423 0.1664 0.2933 0.3987 0.4819 0.4604 0.4859 0.83%

Sp
ot
if
y N@5 0.0187 0.0041 0.0037 0.0040 0.0136 0.0202 0.0313 0.0315 0.0352 11.75%

N@10 0.0262 0.0057 0.0054 0.0057 0.0229 0.0298 0.0461 0.0438 0.0519 12.58%

HR@5 0.2786 0.0805 0.0825 0.0793 0.2350 0.3242 0.4071 0.3992 0.4385 7.71%

HR@10 0.3983 0.1236 0.1257 0.1227 0.3212 0.4559 0.5927 0.5552 0.6282 5.99%

G
oo

dr
ea
ds N@5 0.0039 0.0053 0.0049 0.0040 0.0108 0.0130 0.0334 0.0293 0.0399 19.46%

N@10 0.0053 0.0068 0.0064 0.0058 0.0160 0.0180 0.0467 0.0418 0.0567 21.41%

HR@5 0.0694 0.0856 0.0830 0.0726 0.1634 0.1829 0.3819 0.3268 0.4275 11.94%

HR@10 0.1109 0.1252 0.1187 0.1109 0.2678 0.2678 0.5149 0.4514 0.5473 6.29%

Table 2: Effectiveness of CAGE in list completion. We bold the best results. Asterisk symbol * indicates that the method uses
pre-extracted categorical features which are learnt from the overall dataset including the test set.

Models BPRMF
(2012)

CAGEBPRMF

(ours)

Imp. NeuMF
(2017)

CAGENeuMF

(ours)

Imp. CFKG
(2018)

CAGECFKG
(ours)

Imp. LGCN
(2020a)

CAGELGCN
(ours)

Imp.

To
ys

N@5 0.2284 0.2352 2.98% 0.1728 0.1798 4.05% 0.1571 0.1823 16.04% 0.2301 0.2345 1.91%

N@10 0.2595 0.2702 4.12% 0.2038 0.2119 3.97% 0.1894 0.2173 14.73% 0.2658 0.2698 1.50%

HR@5 0.3131 0.3292 5.14% 0.2431 0.2545 4.69% 0.2267 0.2585 14.03% 0.3173 0.3262 2.80%

HR@10 0.4095 0.4377 6.89% 0.3392 0.3543 4.45% 0.3272 0.3671 12.19% 0.4282 0.4360 1.82%

K
in
dl
es

N@5 0.4376 0.4851 10.85% 0.4341 0.4431 2.07% 0.2837 0.3889 37.08% 0.5105 0.5123 0.35%

N@10 0.4826 0.5207 7.89% 0.4708 0.4789 1.72% 0.3235 0.4298 32.86% 0.5438 0.5476 0.70%

HR@5 0.5903 0.6205 5.12% 0.5646 0.5711 1.15% 0.3891 0.5263 35.26% 0.6466 0.6573 1.65%

HR@10 0.7287 0.7299 0.16% 0.6778 0.6816 0.56% 0.5125 0.6529 27.40% 0.7492 0.7660 2.24%

Table 3: Effectiveness of CAGE in collaborative filtering. We bold the best results.

The results are averaged over 5 runs. Due to space constraints, we

will furnish the details in future publications. All the methods were

trained using NVIDIA GeForce RTX 3090 with 24GB memory.

5.2 Main Results
List Completion. Table 2 presents a comparison of the state-of-the-

art sequential recommenders with our proposed CAGE variants

on the list completion task. Based on the results, we can make

the following observations. Firstly, for both autoregressive and

non-autoregressive models, our proposed CAGE module can sig-

nificantly improve the performance of the baseline models. For

example, CAGEBERT4Rec can achieve an average improvement of

38% and 31% in terms of NDCG@5 and HR@5 among all datasets,

compared with BERT4Rec. Secondly, since the FANS models lever-

age item category information in their design, they outperform

other autoregressive baselines. However, our CAGE-integrated

variant CAGEFANS can still achieve better performance than FANS,

which implies that the end-to-end training models utilizing differen-

tiable vector quantization can effectively learn improved clustering

features compared to the word2vec+kmeans [30] approach that

relies on pre-extracted features. Thirdly, in the Spotify dataset,

the performance of the CNN-based Caser model is better than

Transformer-based BERT4Rec model, which is aligned with the ob-

servation in [30]. One possible reason is that the local knowledge of

the Spotify dataset is more important than the global information.

Backbone User CAGE Item CAGE Dual CAGE

DeepFM FinalMLP

60

65

70

75

N
@
5

(a) CTR

BPRMF LGCN

30

31

32

33
N
@
1
0

(b) CF

Figure 4: Influence of the use of user and item CAGE in the
non-sequential recommenders.

Collaborative Filtering. Table 3 displays the results of the

popular CF models, along with our proposed CAGE variants on

the collaborative filtering task. From the results, we can make the

following observation. Our proposed CAGE consistently enhances

the performance on the two datasets, resulting in significant im-

provements compared to the baseline models.

Click-Through Rate Prediction. Table 4 shows the results of
the widely-used CTR prediction models and our proposed CAGE

variants on the CTR prediction task. Based on the results, we can

make the following observations. Among all CTR predictionmodels,

our CAGE variants outperform the baseline models.
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Models DCN
(2017)

CAGEDCN
(ours)

Imp. DeepFM
(2018)

CAGEDeepFM
(ours)

Imp. FiBiNET
(2019)

CAGEFiBiNET
(ours)

Imp. FinalMLP
(2023)

CAGE
FinalMLP

(ours)

Imp.
M
IN

D

N@5 0.2031 0.2173 6.99% 0.2170 0.2428 11.89% 0.2181 0.2319 6.33% 0.2176 0.2265 4.09%

N@10 0.2623 0.2770 5.60% 0.2749 0.2992 8.83% 0.2760 0.2881 4.38% 0.2757 0.2823 2.39%

HR@5 0.3958 0.4101 3.61% 0.4065 0.4353 7.08% 0.4081 0.4336 6.25% 0.4061 0.4202 3.47%

HR@10 0.5889 0.6012 2.09% 0.5948 0.6156 3.49% 0.5949 0.6129 3.03% 0.5935 0.6007 1.21%

M
ov

ie
Le

ns N@1 0.6781 0.7047 3.92% 0.6640 0.7035 5.95% 0.7016 0.7328 4.45% 0.7000 0.7440 6.29%

N@5 0.7029 0.7204 2.49% 0.7014 0.7152 1.97% 0.7314 0.7445 1.79% 0.7337 0.7431 1.28%

N@10 0.7465 0.7569 1.39% 0.7433 0.7524 1.22% 0.7679 0.7862 2.38% 0.7696 0.7818 1.59%

HR@5 0.9969 0.9984 0.15% 0.9969 0.9984 0.15% 0.9953 0.9969 0.16% 0.9937 0.9987 0.50%

Table 4: Effectiveness of CAGE in click-through rate prediction. We bold the best results.

Datasets Zhihu Goodreads

Models CAGEBERT4Rec CAGEFANS CAGEBERT4Rec CAGEFANS

𝑣1 𝑣2 𝑣3 N@5 N@10 HR@5 HR@10 N@5 N@10 HR@5 HR@10 N@5 N@10 HR@5 HR@10 N@5 N@10 HR@5 HR@10

10 - - 0.0197 0.0295 0.2151 0.3752 0.0280 0.0412 0.3002 0.4839 0.0113 0.0165 0.1654 0.2510 0.0396 0.0561 0.4267 0.5473
20 - - 0.0208 0.0307 0.2327 0.3953 0.0273 0.0403 0.2895 0.4745 0.0105 0.0151 0.1654 0.2588 0.0388 0.0554 0.4120 0.5363

50 - - 0.0199 0.0277 0.2204 0.3852 0.0299 0.0411 0.2975 0.4758 0.0119 0.0169 0.1673 0.2549 0.0375 0.0540 0.4066 0.5288

100 - - 0.0142 0.0214 0.1691 0.3081 0.0288 0.0414 0.3044 0.4866 0.0104 0.0153 0.1511 0.2412 0.0366 0.0510 0.4034 0.5201

500 - - 0.0057 0.0094 0.0910 0.1752 0.0249 0.0397 0.2702 0.4685 0.0110 0.0158 0.1654 0.2601 0.0367 0.0516 0.3865 0.5071

100 10 - 0.0192 0.0271 0.2129 0.3705 0.0270 0.0384 0.2884 0.4651 0.0096 0.0148 0.1654 0.2588 0.0387 0.0555 0.4021 0.5383

200 10 - 0.0235 0.0311 0.2429 0.3832 0.0271 0.0389 0.2970 0.4705 0.0130 0.0180 0.1829 0.2678 0.0368 0.0531 0.3872 0.5350

500 10 - 0.0223 0.0307 0.2376 0.3966 0.0301 0.0428 0.3034 0.4859 0.0108 0.0163 0.1673 0.2724 0.0379 0.0540 0.4092 0.5363

1000 10 - 0.0219 0.0308 0.2322 0.4040 0.0251 0.0364 0.2627 0.4436 0.0084 0.0119 0.1386 0.2121 0.0344 0.0491 0.3761 0.5032

200 20 - 0.0165 0.0244 0.1851 0.3275 0.0282 0.0412 0.3066 0.4899 0.0116 0.0159 0.1699 0.2536 0.0379 0.0542 0.3988 0.5318

400 20 - 0.0182 0.0276 0.2113 0.3799 0.0279 0.0412 0.2884 0.4919 0.0088 0.0133 0.1388 0.2348 0.0368 0.0538 0.3956 0.5337

8000 20 - 0.0197 0.0291 0.2349 0.4047 0.0268 0.0395 0.2900 0.4826 0.0089 0.0125 0.1420 0.2185 0.0373 0.0539 0.4092 0.5383

500 50 - 0.0114 0.0164 0.1482 0.2631 0.0294 0.0419 0.3028 0.4893 0.0112 0.0166 0.1783 0.2769 0.0399 0.0567 0.4275 0.5473
2500 50 - 0.0095 0.0148 0.1348 0.2517 0.0264 0.0388 0.2868 0.4631 0.0103 0.0148 0.1556 0.2510 0.0359 0.0516 0.3761 0.5065

4000 200 10 0.0199 0.0294 0.2301 0.3906 0.0266 0.0388 0.2895 0.4765 0.0090 0.0134 0.1446 0.2425 0.0393 0.0553 0.4040 0.5435
8000 400 20 0.0200 0.0285 0.2204 0.3691 0.0245 0.0365 0.2755 0.4651 0.0088 0.0136 0.1381 0.2425 0.0383 0.0544 0.4008 0.5350

Table 5: Impact of the number of CAGE layers (H) and the number of entries of each layer (𝑣𝑖 ). The best results are indicated in
bold, while the second-best results are underlined. A hyphen (-) indicates the absence of a layer. For example, “100(𝑣1) 10(𝑣2)
-(𝑉 3)” means that CAGE only has two layers, and the first and second layers correspond to the 100-entry and 10-entry codebooks,
respectively. We fix 𝛼, 𝛽, 𝜔c, 𝜔q to be 1.0 in this experiment.

5.3 Ablation Study

Structure of the Category Tree. We study the effects of the

number of layers and the number of entries (i.e., codebook size) in

CAGE. We vary the number of layers from 1 to 3 and the number

of entries within a range from 10 to 8,000. We fix other hyper-para-

meters and report the results of CAGEBERT4Rec and CAGEFANS. As

illustrated in Table 5, we conduct experiments on the Zhihu and

Goodreads datasets. From the results, we can make the following

observations. Firstly, the best results of two-layer CAGE variants

are better than those of one-layer CAGE variants on both datasets,

indicating that CAGE can effectively capture the hierarchical cat-

egory information to further improve the entity representations.

Secondly, different variants prefer different numbers of entries. For

example, on the Zhihu dataset, CAGEBERT4Rec prefers a small num-

ber of entries in the first layer (i.e., 200), while CAGEFANS prefers

a large number of entries in the same layer (i.e., 500). Thirdly,
different datasets prefer different numbers of entries. For example,

for the CAGEBERT4Rec variant, the best number of entries is 20 on

the Zhihu dataset and 50 on the Goodreads dataset. Fourthly, as
the number of entries increases, the performance of CAGE variants

first increases and then decreases. One possible reason is that a

small number of entries may exhibit boundary effects, and as the

entry size increases, the boundaries of the clusters gradually be-

come blurred. However, when the number of entries is too large,

the number of entities in each entry is too small, which may lead

to insufficient learning of categorical feature. Moreover, the layer

and entry numbers need to be carefully adjusted, otherwise it may

lead to negative effects.

Effectiveness of Item/User CAGE. We also test the effective-

ness of the dual CAGE (i.e., using both user and item CAGE) in both

CF and CTR prediction scenario. As shown in Figure 4, the results

prove that both user and item CAGE could boost the performance

of baselines.

5.4 Impact of Hyper-parameters
We explore the impacts of the residual connection weight 𝛼 , the

quantization commitment cost 𝛽 , the quantization loss weight

𝜔q, and the codebook classification loss weight 𝜔c. The experi-

ments are conducted on two list completion datasets, i.e., Zhihu

and Goodreads. Based on the results from Section 5.3, we take the

best CAGE configuration of the CAGEFANS model, i.e., (500, 10) for
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Figure 5: Impact of the residual connection weight 𝛼 , the quantization commitment cost 𝛽, the codebook classification loss
weight 𝜔c, and the quantization loss weight 𝜔q. We use the model with 𝛼 = 0 as the reference baseline for (a), and measure the
relative improvement of each metric compared to the baseline for various values of 𝛼 , defined as (𝑚𝛼 −𝑚0)/𝑚0 ∗ 100%, where𝑚
is one of the metrics in {N@5, N@10, HR@5, HR@10}. Therefore, the relative improvement of 𝛼 = 0 is constant at 0%. Similarly,
we use the model with 𝛽 = 0 as the reference baseline for (b), 𝜔q = 0 for (c), and 𝜔q = 0 for (d).

the Zhihu dataset and (500, 50) for the Goodreads dataset. Based on

the results from Figure 5, we can make the following observations.

Firstly, the performance of baselines (i.e., when hyper-parameters

are set to 0) is inferior to the most of the cases, indicating the effec-

tiveness of these hyper-parameters. Secondly, different datasets
achieve the best performance at different hyper-parameter settings.

For example, the Zhihu dataset reaches the best performance at

𝛼 = 0.6, while for the Goodreads dataset, 𝛼 = 1.0. Thirdly, unlike
the computer vision domain where the quantization commitment

cost 𝛽 is usually set to 0.25 [46], in the recommendation domain, a

higher 𝛽 (i.e., 1.0 for the Zhihu dataset or 0.50 for the Goodreads

dataset) gets a higher performance. Fourthly, due to the equivalent
performance shown by the hyperparameters when set to 1 in the

Figure 5(a)(b)(c)(d) (e.g., the performance of 𝛼 = 1 in Figure 5(a)

is equivalent to that of 𝛽 = 1 in Figure 5(b)), we can assess the

performance when the hyperparameters are set to 0 by examining

the range on the vertical axis (e.g., comparing the performance of

𝛼 = 0 in Figure 5(a) with that of 𝛽 = 0 in Figure 5(b)). A wider

range signifies a larger disparity between the performance at 0

and 1 for the hyperparameters. This indicates that when this par-

ticular hyper-parameter is set to 0, the resulting effect is poorer,

highlighting its greater significance. Therefore, we can observe

that the ranking of importance for these four hyperparameters is:

𝜔q > 𝛽 > 𝛼 ≈ 𝜔c. Similarly, according to Figure 5(e)(f)(g)(h) for the

Goodreads dataset, the importance ranking is: 𝜔q ≈ 𝛽 > 𝛼 > 𝜔c.

5.5 Visualization
Here, we demonstrate the clustering quality of our CAGE. We take

the MIND dataset which has ground truth category labels in the

experiments. We set the levels of vector quantizer to 1 (i.e., 𝐻 = 1)
and the codebook size to 20 (i.e., 𝑣1 = 20).

Before training (we use the DeepFM model as the backbone), we

randomly select one real category. After each training epoch, we
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Figure 6: Visualization of the learned categorization.

calculate the relative proportion of news articles that each codebook

entry contains for the current category. This operation will yield

an array of 20 numbers, and their sum equals one. After training,

we aggregate the arrays collected at the end of each epoch into a

two-dimensional array and create a HeatMap as shown in Figure 6.

We can observe that news articles for the current category are

dispersed among different clusters. As training progresses, these

news articles quickly converge into two clusters and stabilize in

the subsequent phases, which demonstrates the effectiveness of the

categorization of our CAGE.

6 CONCLUSION
We have proposed CAGE, a novel framework for leaning item/user

category trees for ID-based recommendation, by employing differ-

entiable vector quantization techniques. The flexibility of CAGE

allows for its seamless integration into a variety of existing recom-

mender systems. Through comprehensive experiments conducted

across diverse recommendation scenarios, we have demonstrated

the effectiveness of CAGE in enhancing the performance of var-

ious recommendation models. Additionally, our visualization ex-

periments have further validated the robustness of the learned

categorical knowledge.
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