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Abstract

In this paper, we introduce a novel unsupervised,
graph-based filter feature selection technique
which exploits the power of topologically
constrained network representations. We model
dependency structures among features using a
family of chordal graphs (i.e. the Triangulated
Maximally Filtered Graph), and we maximise
the likelihood of features’ relevance by studying
their relative position inside the network. Such an
approach presents three aspects that are partic-
ularly satisfactory compared to its alternatives:
(i) it is highly tunable and easily adaptable to the
nature of input data; (ii) it is fully explainable,
maintaining, at the same time, a remarkable level
of simplicity; (iii) it is computationally cheap.
We test our algorithm on 16 benchmark datasets
from different application domains showing
that it outperforms or matches the current
state-of-the-art under heterogeneous evaluation
conditions. The code and the data to reproduce
all the results presented in the current research
work are available at https://github.
com/FinancialComputingUCL/
Topological_Feature_Selection.

1. Introduction
In the era of big data, effective management of extensive
feature spaces represents a genuine hurdle for scientists and
practitioners. Only some features have significant relevance
in real-world data, while the redundancy of the remaining
ones actively inflates data-driven models’ complexity. The
search for always new and increasingly performing dimen-
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sionality reduction algorithms is hence justified by four
primary needs: (i) reduce data maintenance costs (Wu et al.,
2016; Eichelberger et al., 2017); (ii) reduce the impact of the
‘curse of dimensionality’ (Donoho et al., 2000; Poggio et al.,
2017) on data-driven models; (iii) increase data-driven mod-
els’ interpretability (Miao & Niu, 2016); (iv) reduce energy
costs for models’ training (Strubell et al., 2019; Patterson
et al., 2021).

Dimensionality reduction addresses all these challenges by
decreasing the complexity of the feature space while mini-
mizing the information loss (Miner et al., 2012). Such a field
can be further specified into two macro areas: (i) feature
extraction (Mingqiang et al., 2008) and (ii) feature selection
(Chandrashekar & Sahin, 2014). Feature extraction tech-
niques originate new features by transforming the original
ones into a space with a different dimensionality and then
choosing linear or non-linear combinations of them. On the
other hand, feature selection techniques directly choose a
subset of features from the original set while maintaining
their physical meaning. Usually, they represent a ‘block’ of
a more complex pipeline including also a classification (or
regression) step. The level of contamination among ‘blocks’
is more or less evident depending on the nature of the feature
selection algorithm. Indeed, feature selection techniques are
classified as (i) supervised (Huang, 2015); (ii) unsupervised
(Solorio-Fernández et al., 2020): and (iii) semi-supervised
(Sheikhpour et al., 2017). In the supervised case, features’
relevance is usually assessed via their correlation degree
with class labels or regression targets. These models take
advantage of the learning performance of the classification
(or regression) algorithm to refine the choice of the mean-
ingful subset of features while maintaining, at the same
time, ‘block’ independence from it. This loop interaction is
convenient only in scenarios where retrieving labels and exe-
cuting classification (or regression) tasks is computationally
efficient. On the contrary, unsupervised feature selection is
applied in scenarios where retrieving labels is costly. These
algorithms select relevant features based on specific data
properties (e.g. variance maximisation). Different classes
of unsupervised feature selection approaches exist: (i) fil-
ters; (ii) wrappers; (iii) embedded methods. In filter-based
methods, the feature selection stage is entirely independent
from the classification (or regression) algorithm; in wrapper-
based methods, the feature selection process takes advantage
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of classification (or regression) stage to improve its perfor-
mance; in embedded methods, the feature selection step is
embedded into the classification (or regression) algorithm
in a way that the two ‘blocks’ take advantage from each
other. Lastly, semi-supervised feature selection represents
a hybrid approach with the highest potential applicability
in real-world problems. Indeed, labels are often only par-
tially provided, and semi-supervised learning techniques
are specifically designed to learn from a reduced number of
labelled data, efficiently handling, at the same time, a large
number of unlabeled samples.

In its general formulation, given a starting set of features
F = {f1, . . . , fn}, where n≫ 1 is the cardinality, dimen-
sionality reduction is an NP-hard problem (Guyon et al.,
2008; Roffo et al., 2015) where the goal is selecting the
optimal subset of features with cardinality m≪ n, among
the
(
n
m

)
possible combinations. Due to the exponentially

increased time required to find the globally optimal solution,
existing feature selection algorithms employ heuristic rules
to find dataset-dependent sub-optimal solutions (Ge et al.,
2016). In this paper, we introduce ‘Topological Feature
Selection’ (TFS), a novel unsupervised, graph-based filter
algorithm for feature selection which (i) builds a topolog-
ically constrained network representation of raw features’
dependency structure and (ii) exploits their relative position
into the graph to reduce the input’s dimensionality while
maximising the likelihood of features’ relevance and min-
imising the information loss.

To prove the effectiveness of the proposed methodology,
we test it against what is currently considered the state-
of-the-art counterpart in unsupervised, graph-based filter
feature selection approaches, i.e. Infinite Feature Selection
(Inf-FSU ) (Roffo et al., 2020). The two feature selection al-
gorithms are tested on 16 benchmark datasets from different
application domains. The proposed training/test pipeline
and the statistical validation stage are designed to handle
datasets’ imbalance and evaluate results based on fair perfor-
mance metrics. The results are clear-cut. In most cases, TFS
outperforms or equalises its alternative, redefining or teeing
state-of-the-art performances. Our contribution to the exist-
ing literature is relevant since we propose an extraordinarily
flexible, computationally cheap and remarkably intuitive
(compared to its alternative) unsupervised, graph-based fil-
ter algorithm for feature selection, guaranteeing complete
control of the dimensionality reduction process by consider-
ing only the relative position of features inside well-known
graph structures.

The rest of the paper is organised as follows. In Section 2.1,
we describe the datasets used to prove the effectiveness of
the TFS algorithm. In Section 2.2, we review the theoret-
ical foundations of TFS. In Section 2.3, we describe in a
detailed manner the TFS methodology. In Section 2.5, we

describe the experimental protocols, while obtained results
are presented in Section 3. Finally, in Section 4, we discuss
the meaning of our results and future research lines in this
area.

2. Methods
2.1. Data

We prove TFS’ effectiveness by running a battery of tests on
16 benchmark datasets (all in a tabular format) belonging to
7 different application domains (i.e. text data, face images
data, hand written images data, biological data, digits data,
spoken letters data and artificial data) (see Appendix A for
further details). The data pre-processing pipeline consists
of 3 different steps: (i) data reading and format unification;
(ii) training/validation/test splitting; (iii) constant features
pruning. The first step allows to read data coming from
different sources and unify the format. The second step
organises each dataset into a training, validation and a test
set. In the third step, non-informative, constant covariates
are detected on the training set and permanently removed
from the training, validation and the test set. In Appendix
B, we report datasets’ specifics after the pre-processing
step. We remark that most of the considered datasets are
not affected by the constant features filtering step. Datasets
are roughly balanced and the raw labels’ distribution is
preserved through the execution of stratification (Zeng &
Martinez, 2000) during the training/validation/test splitting
stage.

2.2. Information Filtering Networks

Information Filtering Networks (IFNs) (Mantegna, 1999;
Aste et al., 2005; Tumminello et al., 2005; Barfuss et al.,
2016; Massara et al., 2017) are an effective tool to represent
and model dependency structures among variables charac-
terising complex systems. In the past two decades, they
have been extensively used in finance (Procacci & Aste,
2022; Briola et al., 2022; Wang & Aste, 2022a; Seabrook
et al., 2022; Wang & Aste, 2022b; Vidal-Tomás et al., 2023),
psychology (Christensen et al., 2018; Christensen, 2018),
medicine (Hutter et al., 2019; Danoff et al., 2021) and bi-
ology (Song et al., 2008; 2012). Sometimes IFNs are also
referred to as Correlation Networks (CNs). Such an asso-
ciation is, however, inaccurate. Indeed, the two method-
ologies slightly differ, with CNs being normally obtained
by imposing a threshold that retains only the largest corre-
lations among variables of the system, while IFNs being
constructed imposing additional topological constraints (e.g.
being a tree or a planar graph) and optimising specific global
properties (e.g. likelihood) (Aste, 2022). Both methodolo-
gies end in the determination of a sparse adjacency matrix,
A, representing relations among variables in the system with
the fundamental difference that the former approach gener-
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ates a disconnected graph, while the latter guarantees the
connectedness. Based on the nature of the relationships to
be modelled (i.e. linear, non-linear), one can choose differ-
ent metrics to build the adjacency matrix A. In most cases,
A is built on an arbitrary similarity matrix Ĉ, which often
corresponds to a correlation matrix. From a network sci-
ence perspective, Ĉ can be considered as a fully connected
graph where each variable of the system is represented as a
node, and each pair of variables is joined by a weighted and
undirected edge representing their similarity. Historically,
the main IFNs were the Minimum Spanning Tree (MST)
(Papadimitriou & Steiglitz, 1998; Mantegna, 1999) and the
Planar Maximally Filtered Graph (PMFG) (Tumminello
et al., 2005). MSTs are a class of networks connecting all
the vertices without forming cycles (i.e. closed paths of at
least three nodes) while retaining the network’s representa-
tion as simple as possible (i.e. representing only relevant
relations among variables characterising the system under
analysis) (Briola & Aste, 2022). Prim’s algorithm for MST
construction sorts all edges’ weights (i.e. similarities) in
descending order and adds the largest possible edge weight
among two nodes in an iterative way. The resulting network
has n− 1 edges and retains only the most significant con-
nections, assuring, at the same time, that connectedness’
property is fulfilled (Christensen et al., 2018). Despite be-
ing a powerful method to capture meaningful relationships
in network structures describing complex systems, MST
presents some aspects that can be unsatisfactory. Paradoxi-
cally, the main limit is represented by its tree structure (i.e.
it cannot contain cycles) which does not allow to represent
direct relationships among more than two variables show-
ing strong similarity. The introduction of the Planar Max-
imally Filtered Graph (PMFG) (Tumminello et al., 2005)
overcomes such a shortcoming. Similarly to MST, also the
PMFG algorithm sorts edge weights in descending order,
incrementally adding the largest ones while imposing pla-
narity (Christensen et al., 2018). A graph is planar if it can
be embedded in a sphere without edges crossing. Thanks
to this, the same powerful filtering properties of the MST
are maintained, and, at the same time, extra links, cycles
and cliques (i.e. complete subgraphs) are added in a con-
trolled manner. The resulting network has 3n − 6 edges
and is composed of three- and four-nodes cliques. A nested
hierarchy emerges from these cliques (Song et al., 2011):
dimensionality is reduced in a deterministic manner while
local information and the global hierarchical structure of
the original network are retained. The PMFG represents a
substantial step forward compared to the MST. However, it
still presents two limits: (i) it is computationally costly and
(ii) it is a non-chordal graph. A graph is said to be chordal
if all cycles made of four or more vertices have a chord,
reducing the cycle to a set of triangles. A chord is defined
as an edge that is not part of the cycle but connects two
vertices of the cycle itself. The advantage of chordal graphs

is that they fulfill the independence assumptions of Markov
(i.e., bidirectional or undirected relations) and Bayesian
(i.e., directional relations) networks (Koller & Friedman,
2009; Christensen et al., 2018). The Triangulated Maxi-
mally Filtered Graph (TMFG) (Massara et al., 2017) has
been explicitly designed to be a chordal graph while retain-
ing the strengths of PMFG. The building process of TMFG
(see Appendix C for further details) is based on a simple
topological move that preserves planarity: it adds one node
to the centre of three-nodes cliques by using a score function
that maximises the sum of the weights of the three edges
connecting the existing vertices. This addition transforms
three-nodes cliques (i.e. triangles) into four-nodes cliques
(i.e. tetrahedrons) characterised by a chord that forms two
triangles and generates a chordal network (Christensen et al.,
2018). Also in this case, the resulting network has 3n− 6
edges and is composed of three- and four-nodes cliques.
TMFG has two main advantages compared to PMFG: (i)
it can be used to generate sparse probabilistic models as a
form of topological regularization (Aste, 2022) and (ii) it is
computationally more efficient. On the other hand, the two
main limitations of chordal networks are that (i) they may
add unnecessary edges to satisfy the property of chordality
and (ii) their building cost can vary based on the chosen
optimization function.

2.3. Topological Feature Selection

Topological Feature Selection (TFS) algorithm is a graph-
based filter method to perform feature selection in an unsu-
pervised manner. Given a set of features F = {f1, . . . , fn},
where n ≫ 1 is the cardinality, we build the adjacency
matrix A of the corresponding TMFG based on one of the
following three metrics: (i) the Pearson’s estimator of the
correlation coefficient, (ii) the Spearman’s rank correlation
coefficient and (iii) the Energy coefficient (i.e. the weighted
combination of two pairwise measures described later in
this Section). Depending on the metric’s formulation, it is
possible to capture different kinds of interactions among
covariates (e.g. linear or non-linear interactions).

The Pearson’s estimator of the correlation coefficient for the
two covariates fi and fj , is defined as:

rfi,fj =

∑S
s=1(fi,s − µ̂fi)(fj,s − µ̂fj )

σ̂fi σ̂fj

(1)

where S is the sample size, fi,s and fj,s are two sample
points indexed with s, µ̂ is the sample mean and σ̂ is the
sample standard deviation. By definition, rfi,fj has values
between −1 (meaning that the two features are completely,
linearly anti-correlated), and +1 (meaning that the two fea-
tures are completely, linearly correlated). When rfi,fj = 0,
the two covariates are said to be uncorrelated. The Person’s
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estimator of the correlation coefficient heavily depends on
the distribution of the underlying data and may be influ-
enced by outliers. In addition to this, it only captures linear
dependency among variables, restricting its applicability to
real-world problems where non-linear interactions are often
relevant (Shirokikh et al., 2013).

The Spearman’s rank correlation coefficient is based on the
concept of ‘variables ranking’. Ranking a variable means
mapping its realizations to an integer number that describes
their positions in an ordered set. Considering a variable with
cardinality |s|, this means assigning 1 to the realization with
the highest value and |s| to the realization with the lowest
value.

The Spearman’s rank correlation coefficient for the two
covariates fi and fj , is defined as the Pearson’s correlation
between the ranks of the variables:

rsfi,fj =

∑S
s=1(Rfi,s − µ̂Rfi

)(Rfj,s − µ̂Rfj
)

σ̂Rfi
σ̂Rfj

(2)

where S is the sample size, Rfi,s and Rfj,s are the ranks
of the two sample points indexed with s, µ̂ is the sample
mean for Rfi and Rfj and σ̂ is the sample standard devia-
tion for Rfi and Rfj . If there are no repeated data samples,
a perfect Spearman’s rank correlation (i.e. rsfi,fj = 1 or
rsfi,fj = −1 occurs when each of the features is a perfect
monotone function of the other). Spearman’s rank corre-
lation technique is distribution-free and allows to capture
monotonic, but not necessarily linear, relationships among
variables (Shirokikh et al., 2013).

The Energy coefficient is a metric introduced by (Roffo
et al., 2015), and it is used as the primary benchmark for
comparison between our method and the current state-of-the-
art. It is a weighted combination of two different pairwise
measures defined as follows:

ϕfi,fj = αEfi,fj + (1− α)ρfi,fj (3)

where Efi,fj = max(σ̂fi , σ̂fj ), with σ̂ being the sample
standard deviation computed on features fi and fj normal-
ized to the range [0, 1], ρfi,fj = 1 − |rsfi,fj | and α is a
threshold value with a value ∈ [0, 1]. ϕfi,fj ∈ [0, 1] anal-
yses two features distributions (i.e. fi and fj) taking into
account both their maximal dispersion (i.e. standard devia-
tion) and their level of uncorrelation. Computing ϕfi,fj for
all the features in F in a pairwise manner, one can define a
matrix which is n× n symmetric and completely character-
ized by n(n− 1)/2 coefficients. For simplicity, we refer to
this matrix as Ĉ too.

Once one of the above mentioned metrics is chosen and
Ĉ is computed, TFS applies the standard TMFG algorithm

defined in Appendix C on the corresponding fully connected
graph, creating a sparse chordal network which is able (i)
to retain useful relationships among features, (ii) prune
the weakest ones, and (iii) express a significant level of
information flow among input variables.

The last step toward the selection of the most relevant fea-
tures, is represented by the choice of the right nodes inside
the TMFG. In this sense, multiple approaches of increas-
ing complexity can be formulated. In this paper, which is
a foundational one, we study the relative position of the
nodes in the network computing their degree centrality. De-
gree centrality is the simplest and least computationally
intensive measure of centrality. Typically, all the other cen-
trality measures are strictly related (Lee, 2006; Valente et al.,
2008). Given the sparse adjacency matrix A representing the
TMFG, degree centrality of a node v is denoted as deg(v)
and represents the number of neighbours (i.e. how many
edges a node has) of v as follows:

deg(v) =

n∑
w=1

Afv,fw (4)

where n is the cardinality of F and fv and fw are two
features ∈ F . Despite its simplicity, degree centrality can
be very illuminating and can be considered a crude measure
of whether a node is influential or not in the TMFG (i.e.
variables mostly contributing to the system’s information
flow). Once obtained deg(v) ∀v ∈ TMFG, we rank these
values in a descending order and we take the top k central
nodes, where k is the cardinality of the features’ subset we
want to consider.

2.4. Benchmark method: Infinite Feature Selection
(Inf-FSU )

To prove the effectiveness of the proposed methodology, we
test the TFS algorithm against the current state-of-the-art
counterpart in unsupervised, graph-based filter feature se-
lection techniques, i.e. Infinite Feature Selection (Inf-FSU )
(Roffo et al., 2020). 1 Inf-FSU represents features as nodes
of a graph and relationships among them as weighted edges.
Weights are computed as per in Equation 3. Each path of
a given length over the network is seen as a potential set
of relevant features. Therefore, varying paths and letting
them tend to an infinite number permits the investigation of
the importance of each possible subset of features. Based
on this, assigning a score to each feature and ranking them
in descendant order allows us to perform feature selection
effectively. It is worth noting that Inf-FSU has a computa-
tional complexity equal to ≈ O(n3). In contrast, TFS has a

1The Python implementation of Inf-FSU algorithm used in this
paper can be reached at https://github.com/fullyz/
Infinite-Feature-Selection.
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computational complexity equal to ≈ O(n2), with n being
the number of the features.

2.5. Experiments

Once defined the training, validation and test set for each
benchmark dataset, model hyper-parameters (see Table 1)
are optimised adopting a parallel grid search approach. For
Inf-FSU , the first hyper-parameter to be optimised is α,
which can take values between 0 and 1. To tune this parame-
ter, we use a range of equally spaced realisations between 0.1
and 1.0, all at a distance of 0.1. The second hyper-parameter
to be optimised is θ and represents a regularisation factor
which, in the original paper (Roffo et al., 2015), has a fixed
value equal to 0.9. Here, instead, we tune this parameter
in the same way as α. In the case of TFS, the first hyper-
parameter to be optimised is the metric used in the building
process of the initial fully connected graph. As reported in
Section 2.3, we test three different metrics: (i) the Pearson’s
estimator of the correlation coefficient, (ii) the Spearman’s
rank correlation coefficient and (iii) the Energy coefficient.
The second hyper-parameter to be tuned is a boolean value
which regulates the chance to use the coefficients mentioned
above in a squared form. It is worth mentioning that, if
the Energy metric is chosen, the corresponding Ĉ is never
squared since it already contains only positive values. The
last hyper-parameter to be optimised is α, and it should be
considered only when the Energy coefficient is chosen as
a metric. The meaning of this hyper-parameter is the same
as its homologous in the Inf-FSU model. All the models
are finally evaluated on feature subsets with cardinalities
∈ [10, 50, 100, 150, 200].

Table 1. Model dependent hyper-parameters search spaces. In the
case of the TFS algorithm, the † symbol indicates that, if the
Energy metric is chosen, the corresponding Ĉ is never squared (Ĉ
already contains only positive values). The ‡ symbol, on the other
hand, indicates that α parameter should be considered only when
the Energy coefficient is chosen as a metric.

Model Hyper-parameters

Inf-FSU
α: [0.1: 0.1: 1.0]
θ: [0.1: 0.1: 1.0]

TFS
metric: [Pearson, Spearman, Energy]

square†: [True, False]
α‡: [0.1: 0.1: 1.0]

For each hyper-parameter combination, a stratified k-fold
cross-validation with k = 3 is performed on the training set.
The value of k is chosen to take into account labels’ distribu-
tions reported in Appendix B. Results’ reproducibility and
a fair comparison between models are guaranteed by fixing
the random seed for each step of the training/validation/test
pipeline.

The meaningfulness of each subset of features chosen by
the two algorithms is evaluated based on the classification
performance achieved by three classification algorithms:
(i) Linear Support Vector Classifier (LinearSVM); (ii) k-
Nearest Neighbors Classifier (KNN); (iii) Decision Tree
Classifier (Decision Tree). LinearSVM is a sparse kernel-
based method designed to convert non-linearly separable
problems in the low-dimensional space, into linearly sep-
arable problems in the higher-dimensional space, thereby
achieving classification (Han et al., 2022). KNN is a lazy
learning algorithm, which classifies test instances evaluating
their distance from the nearest k training samples stored in
an n-dimensional space (where n is the number of dataset’s
covariates) (Han et al., 2022). Finally, Decision Tree is a
flowchart-like tree structure computed on training instances
which classifies test samples tracing a path from the root to a
leaf node holding the class prediction (Han et al., 2022). The
inherently different nature of the three classifiers prevents
from obtaining biased results for the two feature selection
approaches. More details about chosen classifiers and their
implementations are reported in Appendix D. Learning per-
formances are evaluated based on three different metrics: (i)
the Balanced Accuracy score (BA) (Mosley, 2013; Kelleher
et al., 2020); (ii) the F1 score (F1); (iii) the Matthews Cor-
relation Coefficient (MCC) (Baldi et al., 2000; Gorodkin,
2004; Jurman et al., 2012). We use the BA score for the
hyper-parameters optimization process and as the reference
metric to present results in Section 3. The BA score for the
multi-class case is defined as:

BA =
1

|Z|

(∑
z∈Z

TPz

TPz + FNz
+

TNz

TNz + FPz

)
. (5)

TP is the number of outcomes where the model correctly
classifies a sample as belonging to a positive class, when
in fact it does belong to that class. TN is the number of
outcomes where the model correctly classifies a sample as
belonging to a negative class, when in fact it does not belong
to that class. FP is the number of outcomes where the model
incorrectly classifies a sample as belonging to a positive
class, when in fact it does not belong to that class. FN is the
number of outcomes where the model incorrectly classifies
a sample as belonging to a negative class, when in fact it
belongs to a positive class. |Z| indicates the cardinality of
the set of different classes.

General formulations for the F1 score, and the MCC are
reported in Appendix F together with an extended version
of results described later in this Section.

For each model and for each subset’s cardinality, the hyper-
parameters configuration which maximises the BA score
while minimising the number of parameters is applied to test
datasets. In order to assess the robustness of our findings,
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we test if the results achieved by the two feature selection ap-
proaches are statistically different. To achieve this goal we
use an improved version of the classic 5× 2 cv paired t-test
(Dietterich, 1998). The test is constructed as follows. Given
two classifiers A and B and a dataset D, D is first randomly
split into two balanced subsets D1, D2 (one for training and
one for test). Both A and B are then estimated on D1 and
evaluated on D2 obtaining performance measures a1, b1.
The roles of the datasets are then switched by estimating A
and B on D2 and evaluating on D1 which results in further
performance measures a2, b2. The random division of D
is performed for a total of 5 times, obtaining the matched
performance evaluations {a1, b1}, {a2, b2} . . . , {a10, b10}.
The test statistic t is then computed as follows:

t =

√
10d̄

σ̂
, (6)

where dh = ah − bh for h = 1, . . . , 10, is the difference
between the matched performances metrics of the two clas-
sifiers, d̄ = 1

10

∑10
h=1 dh and σ̂2 = 1

10

∑10
h=1(dh − d̄)2. t

follows a t-distribution with 9 degrees of freedom and the
null hypothesis is that the two classifiers A and B are not
statistically different in their performances. Starting from
this basic formulation of the 5×2 cv paired t-test, we simply
increased the number of iterations, making it a 15 × 2 cv
paired t-test, in order to increase the statistical robustness of
the achieved results. Also in this case, results reproducibility
is guaranteed through a strict control of random seeds.

3. Results
For both Inf-FSU and TFS, for each one of the three con-
sidered classifiers and for each feature subset cardinal-
ity ∈ [10, 50, 100, 150, 200], results obtained running the
hyper-parameter optimisation pipeline (see Section 2.5) are
reported in Appendix E.

Table 2 reports out-of-sample Balanced Accuracy scores ob-
tained using subset’s cardinality-dependent optimal hyper-
parameter configurations for LinearSVM, KNN and De-
cision Tree classifier respectively. For each dataset, we
highlight in bold the best achieved result. If one classifier
performs equally across multiple subsets’ cardinalities, the
winning configuration is the one which minimises the sub-
set’s cardinality itself. If one classifier performs equally
under the two feature selection schema, the winning feature
selection approach is the one which minimises the computa-
tional complexity (i.e. TFS).

To compare Inf-FSU and TFS, we consider three different
measures: (i) the number of times a classifier achieves op-
timal results under each feature selection schema; (ii) the
cross-datasets average balanced accuracy score; (iii) the
cross-datasets average maximum drawdown ratio (i.e. the

difference between the highest and the lowest achieved re-
sult).

TFS combined with LinearSVM classifier produces higher
Balanced Accuracy scores in 14 out of 16 datasets (i.e.
87.5% of cases), while Inf-FSU combined with the same
classifier has a higher Balanced Accuracy scores only in 2
out of 16 datasets (i.e. 12.5% of cases). Considering only
the scenarios where TFS is the winning feature selection
schema, we notice that in 1 case, the optimal cardinality is
equal to 10, in 2 cases, the optimal cardinality is equal to 50
and 100, in three cases the optimal cardinality is equal to
150, and in 6 cases the optimal cardinality is equal to 200.
When the Inf-FSU is used as feature selection algorithm
and LinearSVM as classifier, the cross-datasets average Bal-
anced Accuracy score grows from a value equal to 0.49 at
cardinality 10 to a value of 0.75 at cardinality 200 with an
increase of 26%. When the TFS is used as feature selection
algorithm and LinearSVM as classifier, cross-datasets av-
erage Balanced Accuracy score grows from a value equal
to 0.52 at cardinality 10 to a value of 0.78 at cardinality
200 with an increase of 26%. Finally, we notice that when
the Inf-FSU is used as feature selection algorithm and Lin-
earSVM as classifier, the average maximum drawdown ratio
is equal to 31%. Using TFS as feature selection algorithm,
instead, the average maximum drawdown ratio is equal to
28%.

TFS combined with KNN classifier produces higher Bal-
anced Accuracy scores in 10 out of 16 datasets (i.e. 62.5%
of cases), while Inf-FSU combined with the same classifier
has higher Balanced Accuracy scores in 6 out of 16 datasets
(i.e. 37.5% of cases). Considering only the scenarios where
TFS is the winning feature selection schema, we notice that
in 1 case, the optimal cardinality is equal to 10, 150 and
200, in 5 cases, the optimal cardinality is equal to 50, in
two cases the optimal cardinality is equal to 100. When
the Inf-FSU is used as feature selection algorithm and KNN
as classifier, the cross-datasets average Balanced Accuracy
score grows from a value equal to 0.46 at cardinality 10 to
a value of 0.69 at cardinality 200 with an increase of 23%.
When TFS is used as feature selection algorithm and KNN
as classifier, the cross-datasets average Balanced Accuracy
score grows from a value equal to 0.55 at cardinality 10
to a value of 0.71 at cardinality 200 with an increase of
16%. Finally, we notice that when Inf-FSU is used as fea-
ture selection algorithm and KNN as classifier, the average
maximum drawdown ratio is equal to 23%. Using TFS as
feature selection algorithm, instead, the average maximum
drawdown ratio is equal to 21%.

TFS combined with Decision Tree classifier produces higher
Balanced Accuracy scores in 13 out of 16 datasets (i.e.
81.25% of cases), while Inf-FSU combined with the same
classifier produces higher Balanced Accuracy scores in 3
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Table 2. Subset size-dependent, out-of-sample balanced accuracy scores using a LinearSVM, KNN and Decision Tree classifiers. For
each dataset, we boldly highlight the combination between feature selection schema and classifier producing the best out-of-sample result.
For each subset size, we report, in the last row, the number of times a feature selection approach outperforms the other across datasets.

LinearSVM
10 50 100 150 200

Inf-FSU TFS Inf-FSU TFS Inf-FSU TFS Inf-FSU TFS Inf-FSU TFS
PCMAC 0.52 0.50 0.57 0.67 0.59 0.70 0.61 0.71 0.62 0.69

RELATHE 0.47 0.49 0.43 0.53 0.51 0.53 0.44 0.49 0.53 0.53
COIL20 0.52 0.63 0.77 0.90 0.84 0.92 0.90 0.94 0.94 0.96

ORL 0.40 0.44 0.63 0.88 0.72 0.89 0.86 0.93 0.84 0.94
warpAR10P 0.33 0.44 0.56 0.78 0.72 0.85 0.70 0.95 0.75 0.85
warpPIE10P 0.85 0.89 0.95 1.00 0.98 1.00 1.00 1.00 1.00 1.00

Yale 0.14 0.33 0.25 0.50 0.39 0.67 0.37 0.69 0.53 0.70
USPS 0.72 0.65 0.90 0.90 0.91 0.92 0.92 0.93 0.92 0.93
colon 0.70 0.69 0.69 0.66 0.92 0.82 0.85 0.74 0.85 0.88

GLIOMA 0.61 0.25 0.30 0.30 0.30 0.38 0.60 0.41 0.59 0.25
lung 0.39 0.47 0.67 0.89 0.81 0.95 0.71 0.87 0.90 0.81

lung small 0.49 0.57 0.76 0.79 0.82 0.68 0.79 0.75 0.82 0.93
lymphoma 0.22 0.50 0.58 0.96 0.78 0.87 0.90 0.82 0.81 0.98
GISETTE 0.50 0.49 0.48 0.47 0.51 0.52 0.47 0.50 0.49 0.50

Isolet 0.32 0.51 0.74 0.78 0.81 0.82 0.88 0.83 0.89 0.89
MADELON 0.59 0.59 0.58 0.56 0.55 0.57 0.54 0.57 0.57 0.57

# bests 5 11 3 13 2 14 5 11 2 14

KNN
10 50 100 150 200

Inf-FSU TFS Inf-FSU TFS Inf-FSU TFS Inf-FSU TFS Inf-FSU TFS
PCMAC 0.52 0.53 0.57 0.61 0.61 0.62 0.59 0.63 0.60 0.62

RELATHE 0.46 0.46 0.50 0.57 0.48 0.49 0.46 0.45 0.48 0.48
COIL20 0.70 0.82 0.86 0.93 0.93 0.93 0.96 0.94 0.97 0.93

ORL 0.38 0.52 0.52 0.77 0.62 0.70 0.73 0.71 0.72 0.77
warpAR10P 0.36 0.30 0.36 0.51 0.43 0.46 0.32 0.38 0.42 0.48
warpPIE10P 0.83 0.72 0.86 0.91 0.92 0.97 0.89 0.92 0.89 0.95

Yale 0.14 0.42 0.28 0.41 0.26 0.42 0.43 0.38 0.35 0.49
USPS 0.78 0.77 0.94 0.94 0.96 0.95 0.96 0.95 0.95 0.95
colon 0.77 0.82 0.89 0.77 0.89 0.85 1.00 0.70 0.85 0.77

GLIOMA 0.24 0.10 0.40 0.40 0.42 0.62 0.52 0.62 0.52 0.62
lung 0.33 0.51 0.65 0.79 0.71 0.65 0.72 0.68 0.78 0.79

lung small 0.57 0.61 0.80 0.87 0.82 0.90 0.93 0.90 0.90 0.76
lymphoma 0.44 0.50 0.60 0.74 0.69 0.69 0.76 0.75 0.69 0.74
GISETTE 0.49 0.51 0.52 0.54 0.50 0.51 0.50 0.53 0.50 0.49

Isolet 0.32 0.49 0.72 0.73 0.78 0.78 0.83 0.81 0.82 0.83
MADELON 0.61 0.78 0.58 0.74 0.64 0.66 0.62 0.64 0.57 0.63

# bests 4 12 1 15 3 13 10 6 4 12

Decision Tree
10 50 100 150 200

Inf-FSU TFS Inf-FSU TFS Inf-FSU TFS Inf-FSU TFS Inf-FSU TFS
PCMAC 0.53 0.50 0.56 0.69 0.58 0.71 0.57 0.68 0.60 0.73

RELATHE 0.49 0.50 0.51 0.51 0.49 0.42 0.48 0.51 0.48 0.51
COIL20 0.68 0.81 0.83 0.89 0.85 0.90 0.89 0.90 0.90 0.90

ORL 0.36 0.39 0.42 0.48 0.49 0.54 0.59 0.61 0.49 0.62
warpAR10P 0.37 0.33 0.46 0.59 0.55 0.59 0.41 0.64 0.68 0.80
warpPIE10P 0.74 0.74 0.80 0.73 0.77 0.85 0.76 0.87 0.76 0.81

Yale 0.17 0.31 0.26 0.34 0.39 0.42 0.50 0.43 0.43 0.52
USPS 0.73 0.72 0.84 0.85 0.85 0.86 0.86 0.86 0.88 0.87
colon 0.61 0.64 0.82 0.74 0.76 0.92 0.89 0.83 0.85 0.83

GLIOMA 0.34 0.61 0.36 0.31 0.35 0.44 0.38 0.31 0.31 0.44
lung 0.44 0.70 0.75 0.71 0.87 0.70 0.90 0.73 0.71 0.79

lung small 0.46 0.42 0.58 0.63 0.47 0.57 0.52 0.63 0.52 0.49
lymphoma 0.20 0.69 0.45 0.55 0.45 0.44 0.63 0.60 0.51 0.62
GISETTE 0.52 0.50 0.44 0.52 0.48 0.47 0.50 0.49 0.49 0.48

Isolet 0.27 0.43 0.69 0.67 0.73 0.71 0.74 0.73 0.78 0.73
MADELON 0.58 0.66 0.70 0.81 0.78 0.79 0.75 0.77 0.74 0.77

# bests 6 10 5 11 5 11 7 9 5 11

out of 16 datasets (i.e. 18.75% of cases). Considering only
the scenarios where TFS is the winning feature selection
schema, we notice that in 2 cases, the optimal cardinality
is equal to 10 and 100, in 4 cases, the optimal cardinal-
ity is equal to 50 and 200, in only one case the optimal
cardinality is equal to 150. When the Inf-FSU is used as
feature selection algorithm and Decision Tree as classifier,
the cross-datasets average Balanced Accuracy score grows
from a value equal to 0.47 at cardinality 10, to a value of
0.63 at cardinality 200 with an increase of 16%. When TFS
is used as feature selection algorithm and Decision Tree
as classifier, the cross-datasets average Balanced Accuracy
score grows from a value equals to 0.56 at cardinality 10, to
a value of 0.68 at cardinality 200 with an increase of 12%.
Finally, we notice that, when Inf-FSU is used as feature se-
lection algorithm and Decision Tree as classifier, the average
maximum drawdown ratio is equal to 22%. Using TFS as
feature selection algorithm, instead, the average maximum
drawdown ratio is equal to 20%.

Considering the cross-datasets average Balanced Accuracy
scores discussed earlier in this Section, we conclude that,
independently from the chosen classifier, TFS generally
allows to select more informative features, guaranteeing
higher learning performances. Both the cross-datasets aver-
age Balanced Accuracy score percentage increase and the
cross-datasets average maximum drawdown ratio are lower

when TFS is chosen as feature selection schema, further
certifying an higher stability and an ability to choose higher
quality features.

The power of TFS can be further investigated by comparing
results obtained by applying the three classification algo-
rithms on the raw datasets (i.e. the datasets containing all
the original features) against the best ones obtained by ap-
plying the same classifiers combined with the novel feature
classification technique presented in this paper. Results are
reported in Table 3. When LinearSVM is chosen as a clas-
sifier, feature selection turns out to be beneficial on 9 out
of 16 datasets (i.e. 56.25% of cases). In 7 cases, TFS is
the optimal feature classification approach; in the case of
the ‘colon’ dataset, even if Inf-FSU is the optimal feature
selection approach, results achieved using TFS are still bet-
ter than the ones obtained on the raw dataset; in the case
of ‘GLIOMA’ dataset, Inf-FSU is the optimal feature se-
lection approach and results achieved using TFS are lower
than the ones obtained on the raw dataset. When KNN is
chosen as a classifier, feature selection is beneficial on 9
out of 16 datasets (i.e. 56.25% of cases). In 4 cases, TFS
is the optimal feature classification approach; in the case
of ‘USPS’, ‘colon’, ‘lung small’ and ‘lymphoma’ dataset,
even if Inf-FSU is the optimal feature selection approach,
results achieved using TFS are still better than the ones ob-
tained on the raw dataset; in the case of ‘COIL20’ dataset,
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Table 3. Out-of-sample Balanced Accuracy scores obtained by Lin-
earSVM, KNN and Decision Tree classifier on the raw datasets
(i.e. the datasets containing all the original features). We boldly
highlight the entries where a TFS improves the classifier’s perfor-
mance. We do not highlight the entries where a classifier performs
better on the raw dataset (i.e. where feature selection algorithms
Inf-FSU and TFS are not effective). The ∗ symbol highlights the
scenarios where the optimal feature selection schema is Inf-FSU

but TFS, in combination with the classifier, still outperforms the
classifier on the raw dataset. The † symbol highlights the scenarios
where the optimal feature selection schema is Inf-FSU while TFS,
in combination with the classifier, cannot outperform the classifier
on the raw dataset.

LinearSVM KNN Decision Tree
PCMAC 0.83 0.71 0.90

RELATHE 0.84 0.77 0.85
COIL20 0.97 0.96† 0.87

ORL 0.97 0.82 0.68
warpAR10P 1.00 0.53 0.66
warpPIE10P 1.00 0.84 0.84

Yale 0.82 0.46 0.44
USPS 0.93 0.95∗ 0.87∗

colon 0.80∗ 0.73∗ 0.80
GLIOMA 0.56† 0.78 0.44

lung 0.93 0.76 0.66∗

lung small 0.79 0.76∗ 0.63
lymphoma 0.93 0.69∗ 0.61
GISETTE 0.98 0.96 0.92

Isolet 0.93 0.84 0.79
MADELON 0.58 0.51 0.74

Inf-FSU is the optimal feature selection approach and re-
sults achieved using TFS are lower than the ones obtained
on the raw dataset. Finally, when Decision Tree is chosen
as a classifier, feature selection is beneficial on 11 out of 16
datasets (i.e. 68.75% of cases). In 9 cases, TFS is the opti-
mal feature classification approach; in the case of ‘USPS’
and ‘colon’ dataset, even if Inf-FSU is the optimal feature
selection approach, results achieved using TFS are still bet-
ter than the ones obtained on the raw dataset.
Looking at the results reported above, we notice that the
application domains where TFS is more compelling are the
ones where the tabular format is the natural data format
(i.e. biological data and artificial data). This finding is not
unexpected. Application domains such as text, face images
and spoken letters data would require a more complex data
pre-processing pipeline (e.g. encoding) and specific deep
learning-based classification algorithms (e.g. convolutional
and recurrent neural networks). A deeper analysis of this
aspect is left for the upcoming TFS-centered research.

The statistical significance of results discussed earlier in this
Section is assessed in Appendix G. Looking at the entries
of Tables 2 where TFS defines a new state-of-the-art, we
state that (i) when LinearSVM is used as classifier, TFS
is statistically different from Inf-FSU in 8 out of 14 cases
(57%); (ii) when KNN is used as classifier, TFS is statisti-
cally different from Inf-FSU in 3 out of 10 cases (30%); (iii)
when Decision Tree is used as classifier, TFS is statistically

different from Inf-FSU in 4 out of 13 cases (31%). There is
only one dataset (i.e. ‘GISETTE’) where TFS is statistically
different from Inf-FSU independently from the classifier: in
all the other cases, results are dependent on the choice of
the classifier.

4. Conclusions
In this work, we combine the power of state-of-the-art IFNs,
and instruments from network science to develop a novel
unsupervised, graph-based filter method for feature selec-
tion. Features are represented as nodes in a TMFG, and
their relevance is assessed by studying their relative posi-
tion inside the network. Exploiting topological properties
of the network used to represent meaningful interactions
among features, we propose a physics-informed (i.e. we
use instruments from complexity science) feature selection
model that is highly flexible, computationally cheap, fully
explainable and remarkably intuitive. To prove the effec-
tiveness of the proposed methodology, we test it against
the current state-of-the-art counterpart (i.e. Inf-FSU ) on
16 benchmark datasets belonging to different applicative
domains. Employing a Linear Support Vector classifier, a k-
Nearest Neighbors classifier and a Decision Tree classifier,
we show how our algorithm achieves top performances on
most benchmark datasets, redefining the current state-of-the-
art on a significant number of them. The proposed method-
ology demonstrates effectiveness in conditions where the
amount of training data largely varies. Compared to its main
alternative, TFS has a lower computational complexity and
provides a much more intuitive overview of the feature se-
lection process. Thanks to the possibility of studying the
relative position of nodes in the network in many different
ways (i.e. choosing different centrality measures or defin-
ing new ones), TFS is highly versatile and fully adaptable
to input data. It is worth noting that the current work is a
foundational one. It presents three aspects that are unsat-
isfactory and we plan to cover in the future: (i) the need
to explicitly specify the cardinality of the subset of rele-
vant features is limiting and requires an a priori knowledge
of the applicative domain or, at least, an extended search
for the optimal realization of this hyper-parameter; (ii) the
usage of classic correlation measures in the TMFG’s build-
ing process prevents from the possibility to handle prob-
lems with mixed type of features (continuous-categorical,
categorical-categorical); (iii) TMFG is non-differentiable
and this prevents from a direct integration with advanced
Deep Learning-based architectures. More generally, this
study points to many future directions spanning from the
development of data-centred measures to assess features rel-
evance, to the possibility of replicating the potential of this
method and inferring it through automated learning tech-
niques. The first steps have been taken in the latter research
direction by introducing a new and potentially groundbreak-
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ing family of Neural Networks called Homological Neural
Networks (Wang et al., 2023).
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A. Benchmark Datasets
To prove TFS’ effectiveness, we extensively test it on 16 benchmark datasets (all in a tabular format) belonging to different
application domains. For each dataset, Table 4 reports, respectively, the name, the application domain, the reference paper
(or website), the downloading source, the number of features, the number of samples, the number of classes and the split
dynamics (see Appendix B for further details on this last point).

Table 4. Benchmark datasets used to compare feature selection algorithms considered in the current work. The order of appearance is
inherited from (ASU, 2020).

Name Category Reference Source # Features # Samples Classes Split Provided

PCMAC Text Data (Lang, 1995) (ASU, 2020) 3289 1943 binary false
RELATHE Text Data (Lang, 1995) (ASU, 2020) 4322 1427 binary false

COIL20 Face Images Data (Nene et al., 1996) (ASU, 2020) 1024 1440 multi-class false
ORL Face Images Data (Samaria & Harter, 1994) (ASU, 2020) 1024 400 multi-class false

warpAR10P Face Images Data (Li et al., 2018) (ASU, 2020) 2400 130 multi-class false
warpPIE10P Face Images Data (Sim et al., 2002) (ASU, 2020) 2420 210 multi-class false

Yale Face Images Data (Belhumeur et al., 1997) (ASU, 2020) 1024 165 multi-class false
USPS Hand Written Images Data (Hull, 1994) (Git, 2020) 256 9298 multi-class false
colon Biological Data (Alon et al., 1999) (Git, 2020) 2000 62 binary false

GLIOMA Biological Data (Li et al., 2018) (ASU, 2020) 4434 50 multi-class false
lung Biological Data (Git, 2020) (Git, 2020) 3312 203 multi-class false

lung small Biological Data (Git, 2020) (Git, 2020) 325 73 multi-class false
lymphoma Biological Data (Golub et al., 1999) (ASU, 2020) 4026 96 multi-class false
GISETTE Digits Data (Guyon et al., 2007) (Dua & Graff, 2017) 5000 7000 binary true

Isolet Spoken Letters Data (Li et al., 2018) (ASU, 2020) 617 1560 multi-class false
MADELON Artificial Data (Guyon et al., 2007) (Dua & Graff, 2017) 500 2600 binary true

We distinguish among 7 different application domains (i.e. text data, face images data, hand written images data, biological
data, digits data, spoken letters data and artificial data). Categories follow the taxonomy in (Li et al., 2018). The average
number of features is 2248. The dataset with the lowest number of features is ‘USPS’ (i.e. 256). The dataset with the
largest number of features is ‘GISETTE’ (i.e. 5000). The average number of samples is 1666. The dataset with the lowest
number of samples is ‘GLIOMA’ (i.e. 50), while the one with the largest number of samples is ‘USPS’ (i.e. 9298). 5 of the
considered datasets are binary, while 11 are multi-class.
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B. Data Pipeline
We design the data pre-processing pipeline as consisting of 3 different steps: (i) data reading and format unification; (ii)
training/validation/test splitting; (iii) constant features pruning. The first step allows us to read data and unify formats
coming from different sources. The second step consists of the training/validation/test splitting. Depending on the source,
training/test split could be provided or not. The two datasets ‘GISETTE’ and ‘MADELON’ come with a provided
training/validation/test split. In both cases, the data source (i.e. (Dua & Graff, 2017)) does not provide test labels. Because
of this, we use the validation set for testing. For all the other datasets, 70% of the raw dataset is used as a training and
validation set, while 30% is used as a test set. We use a stratified splitting procedure to ensure that each set contains, for
each target class, approximately the same percentage of samples as per in the raw dataset. In the third step, non-informative,
constant covariates are detected on the training set and permanently removed from the training, validation and test set.

Table 5 reports datasets’ specifics after the preprocessing step. Looking at it, we remark that most considered datasets are
not affected by the constant features filtering step. The only 4 datasets which are reduced in the number of covariates are
‘PCMAC’ (with a reduction of 0.07%), ‘RELATHE’ (with a reduction of 0.03%), ‘GLIOMA’ (with a reduction of 0.03%)
and ‘GISETTE’ (with a reduction of 0.9%). Table 5 also reports the training and test dataset’s labels’ distributions. Datasets
are generally balanced; the main exceptions are:

• ‘USPS’: classes 1 and 2 are over-represented compared to the other classes.

• ‘colon’: class 1 is under-represented compared to the other class.

• ‘GLIOMA’: class 2 is under-represented compared to other classes.

• ‘lung’: class 1 is over-represented compared to the other classes.

• ‘lung small’: classes 1, 2, 3 and 5 are under-represented compared to the other classes.

• ‘lymphoma’: class 1 is over-represented compared to the other classes.

Table 5. Datasets’ specifics after the preprocessing step. For each benchmark dataset, we report the number of features, the number of
samples and the labels’ distribution for training and test data. The labels’ distribution entry consists of a tuple for each class. The first
element of the tuple represents the class itself, while the second represents the number of samples with that label.

Dataset Training Test
# Features # Samples Labels’ Distribution # Features # Samples Labels’ Distribution

PCMAC 3287 1360 (1, 687), (2, 673) 3287 583 (1, 295), (2, 288)
RELATHE 4321 998 (1, 545), (2, 453) 4321 429 (1, 234), (2, 195)

COIL20 1024 1008

(1, 50), (2, 51), (3, 50), (4, 50),
(5, 50), (6, 50), (7, 51), (8, 50),

(9, 51), (10, 50), (11, 51), (12, 50),
(13, 50), (14, 51), (15, 50), (16, 50),
(17, 50), (18, 51), (19, 51), (20, 51)

1024 432

(1, 22), (2, 21), (3, 22), (4, 22),
(5, 22), (6, 22), (7, 21), (8, 22),

(9, 21), (10, 22), (11, 21), (12, 22),
(13, 22), (14, 21), (15, 22), (16, 22),
(17, 22), (18, 21), (19, 21), (20, 21)

ORL 1024 280

(1, 7), (2, 7), (3, 7), (4, 7), (5, 7),
(6, 7), (7, 7), (8, 7), (9, 7), (10, 7),

(11, 7), (12, 7), (13, 7), (14, 7), (15, 7),
(16, 7), (17, 7), (18, 7), (19, 7), (20, 7),
(21, 7), (22, 7), (23, 7), (24, 7), (25, 7),
(26, 7), (27, 7), (28, 7), (29, 7), (30, 7),
(31, 7), (32, 7), (33, 7), (34, 7), (35, 7),
(36, 7), (37, 7), (38, 7), (39, 7), (40, 7)

1024 120

(1, 3), (2, 3), (3, 3), (4, 3), (5, 3),
(6, 3), (7, 3), (8, 3), (9, 3), (10, 3),

(11, 3), (12, 3), (13, 3), (14, 3), (15, 3),
(16, 3), (17, 3), (18, 3), (19, 3), (20, 3),
(21, 3), (22, 3), (23, 3), (24, 3), (25, 3),
(26, 3), (27, 3), (28, 3), (29, 3), (30, 3),
(31, 3), (32, 3), (33, 3), (34, 3), (35, 3),
(36, 3), (37, 3), (38, 3), (39, 3), (40, 3)

warpAR10P 2400 91
(1, 9), (2, 9), (3, 10), (4, 9), (5, 9),
(6, 9), (7, 9), (8, 9), (9, 9), (10, 9) 2400 39

(1, 4), (2, 4), (3, 3), (4, 4), (5, 4),
(6, 4), (7, 4), (8, 4), (9, 4), (10, 4)

warpPIE10P 2420 147
(1, 14), (2, 15), (3, 15), (4, 14), (5, 15),
(6, 14), (7, 15), (8, 15), (9, 15), (10, 15) 2420 63

(1, 7), (2, 6), (3, 6), (4, 7), (5, 6),
(6, 7), (7, 6), (8, 6), (9, 6), (10, 6)

Yale 1024 115
(1, 7), (2, 8), (3, 8), (4, 7), (5, 8),

(6, 7), (7, 8), (8, 8), (9, 8), (10, 8),
(11, 8), (12, 7), (13, 7), (14, 8), (15, 8)

1024 50
(1, 4), (2, 3), (3, 3), (4, 4), (5, 3),
(6, 4), (7, 3), (8, 3), (9, 3), (10, 3),

(11, 3), (12, 4), (13, 4), (14, 3), (15, 3)

USPS 256 6508
(1, 1087), (2, 888), (3, 650), (4, 577), (5, 596),
(6, 501), (7, 584), (8, 554), (9, 496), (10, 575) 256 2790

(1, 466), (2, 381), (3, 279), (4, 247), (5, 256),
(6, 215), (7, 250), (8, 238), (9, 212), (10, 246)

colon 2000 43 (-1, 28), (1, 15) 2000 19 (-1, 12), (1, 7)
GLIOMA 4433 35 (1, 10), (2, 5), (3, 10), (4, 10) 4433 15 (1, 4), (2, 2), (3, 4), (4, 5)

lung 3312 142 (1, 97), (2, 12), (3, 15), (4, 14), (5, 4) 3312 61 (1, 42), (2, 5), (3, 6), (4, 6), (5, 2)

lung small 325 51
(1, 4), (2, 3), (3, 4), (4, 11),

(5, 5), (6, 9), (7, 15) 325 22
(1, 2), (2, 2), (3, 1), (4, 5),

(5, 2), (6, 4), (7, 6)

lymphoma 4026 67
(1, 32), (2, 7), (3, 6), (4, 8), (5, 4),

(6, 4), (7, 3), (8, 1), (9, 2) 4026 29
(1, 14), (2, 3), (3, 3), (4, 3), (5, 2),

(6, 2), (7, 1), (8, 1)
GISETTE 4955 6000 (-1.0, 3000), (1.0, 3000) 4955 1000 (-1.0, 500), (1.0, 500)

Isolet 617 1092

(1, 42), (2, 42), (3, 42), (4, 42), (5, 42),
(6, 42), (7, 42), (8, 42), (9, 42), (10, 42),

(11, 42), (12, 42), (13, 42), (14, 42), (15, 42),
(16, 42), (17, 42), (18, 42), (19, 42), (20, 42),

(21, 42), (22, 42), (23, 42), (24, 42), (25, 42), (26, 42)

617 468

(1, 18), (2, 18), (3, 18), (4, 18), (5, 18),
(6, 18), (7, 18), (8, 18), (9, 18), (10, 18),

(11, 18), (12, 18), (13, 18), (14, 18), (15, 18),
(16, 18), (17, 18), (18, 18), (19, 18), (20, 18),

(21, 18), (22, 18), (23, 18), (24, 18), (25, 18), (26, 18)
MADELON 500 2000 (-1.0, 1000), (1.0, 1000) 500 600 (-1.0, 300), (1.0, 300)
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C. Triangulated Maximally Filtered Graph
The building process of the Triangulated Maximally Filtered Graph (TMFG) (Massara et al., 2017) is based on a simple
topological move that preserves the property of planarity: it adds one node to the centre of three-nodes cliques by using
a score function that maximises the sum of the weights of the three edges connecting the existing vertices. This addition
transforms three-nodes cliques (i.e. triangles) into four-nodes cliques (i.e. tetrahedrons) characterised by a chord that is not
part of the clique but connects two nodes in the clique, forming two triangles and generating a chordal network (Christensen
et al., 2018). The resulting network has 3n− 6 edges and is composed of three- and four-nodes cliques. TMFG has two
relevant advantages: (i) it can be used to generate sparse probabilistic models as a form of topological regularization (Aste,
2022) and (ii) it is computationally efficient. On the other hand, the two main limitations of chordal networks are that (i)
they may add unnecessary edges to satisfy the property of chordality and (ii) their building cost can vary based on the chosen
optimization function.

Algorithm 1 TMFG built on the similarity matrix Ĉ to maximise the system’s information flow.

input Similarity matrix Ĉ ∈ Rn,n from a set of observations {x1,1, . . . , xs,1}, {x1,2, . . . , xs,2} . . . {x1,n, . . . , xs,n}.
output Sparse adjacency matrix A describing the TMFG.

function MaximumGain (Ĉ, V , t)
Initialize a vector of zeros g ∈ R1×n;
for j ∈ t do

for v /∈ V do
Ĉv,j = 0;

end for
g = g ⊕ Ĉv,j ;

end for
return max {g}.

end function

Initialize four empty sets: C (cliques), T (triangles), S (separators) and V (vertices);
Initialize an adjacency matrix A ∈ Rn,n with all zeros;
C1 ← tetrahedron, {v1, v2, v3, v4}, obtained choosing the 4 entries of Ĉ maximising the similarity among features;
T ← the four triangular faces in C1 : {v1, v2, v3}, {v1, v2, v4}, {v1, v3, v4}, {v2, v3, v4};
V ← Assign to V the remaining n− 4 vertices not in C1;
while V is not empty do

Find the combination of {va, vb, vc} ∈ T (i.e. t) and vd ∈ V which maximises MaximumGain(Ĉ, V , t);
/* {va, vb, vc, vd} is a new 4-clique C, {va, vb, vc} becomes a separator S, three new triangular faces, {va, vb, vd},
{va, vc, vd} and {vb, vc, vd} are created */.
Remove vd from V;
Remove {va, vb, vc} from T ;
Add {va, vb, vd}, {va, vc, vd} and {vb, vc, vd} to T ;

end while
For each pair of nodes i, j in C, set Ai,j = 1;
return A.
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D. Classification algorithms
As reported in Section 2.5, the meaningfulness of the features’ subsets chosen by Inf-FSU and TFS is evaluated based on
the performance achieved by three classification algorithms: (i) Linear Support Vector Classifier; (ii) k-Nearest Neighbors
Classifier; (iii) Decision Tree Classifier. For all of them, we use the implementation provided by the ‘scikit-learn’ Python
package (Pedregosa et al., 2011). The interested reader is referred to the following links for the implementations:

• Linear Support Vector Classifier: https://github.com/scikit-learn/scikit-learn/blob/
98cf537f5/sklearn/svm/_classes.py#L14

• k-Nearest Neighbors Classifier: https://github.com/scikit-learn/scikit-learn/blob/
98cf537f5/sklearn/neighbors/_classification.py#L24

• Decision Tree Classifier: https://github.com/scikit-learn/scikit-learn/blob/98cf537f5/
sklearn/tree/_classes.py#L595

For the current research work we do not significantly change the models’ default hyper-parameters. The first adjustment
is performed on the Linear Support Vector Classifier’s max_iter parameter, which is set to 50000. For Linear Support
Vector Classifier and Decision Tree Classifier, the random_seed parameter is set to 0.
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E. Optimal hyper-parameters configurations
For each benchmark dataset, subset’s cardinality and classification algorithm described in Section 2.5, Tables 6 and 7, report
optimal hyper-parameters configurations.

It is worth mentioning that after the feature selection step, input features are standardised by removing the mean and scaling
to unit variance. The standard score of a sample x is hence calculated as:

z =
x− µ̂

σ̂
(7)

where µ̂ and σ̂ are the mean and the standard deviation of the training samples. This step is performed using
the StandardScaler implementation provided by the ‘scikit-learn’ Python package (Pedregosa et al., 2011) at
the following link: https://github.com/scikit-learn/scikit-learn/blob/98cf537f5/sklearn/
preprocessing/_data.py#L644.

During the stratified k-fold cross-validation stage, classes samples are shuffled before splitting into batches. The
random_state parameter is set to 0.

Hyper-parameters search is performed using a modified, parallel grid search approach. Also in this case, the
basic implementation is provided by the ‘scikit-learn’ Python package (Pedregosa et al., 2011) at the follow-
ing link: https://github.com/scikit-learn/scikit-learn/blob/98cf537f5/sklearn/model_
selection/_search.py#L1031.

Table 6. Subset’ size-dependent in-sample optimal hyper-parameters configurations and corresponding balanced accuracy scores for
Inf-FSU .

10 50 100 150 200
α θ score α θ score α θ score α θ score α θ score

PCMAC
LinearSVM 0.90 0.80 0.55 0.80 0.10 0.57 0.50 0.10 0.60 0.40 0.10 0.61 0.90 0.10 0.64

KNN 0.20 0.10 0.52 0.40 0.90 0.58 0.40 0.10 0.59 0.50 0.10 0.61 0.50 0.50 0.61
Decision Tree 0.30 0.10 0.55 0.90 0.10 0.60 0.80 0.30 0.62 0.90 0.10 0.64 0.40 0.70 0.65

RELATHE
LinearSVM 0.40 0.10 0.59 0.30 0.10 0.69 0.40 0.10 0.75 0.70 0.10 0.75 0.30 0.10 0.75

KNN 0.80 0.10 0.59 0.30 0.30 0.67 0.50 0.80 0.72 0.40 0.10 0.72 0.40 0.10 0.73
Decision Tree 0.40 0.10 0.58 0.40 0.90 0.67 0.50 0.30 0.72 0.60 0.30 0.74 0.40 0.20 0.74

COIL20
LinearSVM 0.70 0.90 0.50 0.60 0.50 0.74 0.60 0.10 0.84 0.50 0.90 0.89 0.10 0.30 0.91

KNN 0.70 0.10 0.67 0.70 0.10 0.85 0.50 0.10 0.89 0.50 0.10 0.92 0.10 0.10 0.94
Decision Tree 0.70 0.10 0.66 0.70 0.30 0.82 0.40 0.80 0.83 0.20 0.80 0.85 0.10 0.30 0.86

ORL
LinearSVM 0.70 0.40 0.35 0.90 0.10 0.63 0.90 0.50 0.74 0.90 0.90 0.77 0.90 0.10 0.78

KNN 0.70 0.40 0.29 0.90 0.10 0.50 0.90 0.50 0.55 0.90 0.30 0.62 0.10 0.10 0.65
Decision Tree 0.70 0.10 0.30 0.90 0.30 0.40 0.90 0.80 0.43 0.40 0.20 0.43 0.70 0.20 0.45

warpAR10P
LinearSVM 0.70 0.10 0.39 0.10 0.40 0.61 0.40 0.50 0.71 0.60 0.60 0.78 0.20 0.30 0.82

KNN 0.70 0.10 0.36 0.90 0.30 0.37 0.60 0.90 0.38 0.10 0.90 0.38 0.10 0.80 0.37
Decision Tree 0.60 0.10 0.39 0.70 0.60 0.46 0.40 0.80 0.47 0.50 0.10 0.50 0.10 0.50 0.57

warpPIE10P
LinearSVM 0.10 0.30 0.78 0.70 0.10 0.97 0.80 0.10 0.99 0.80 0.10 0.99 0.10 0.10 0.99

KNN 0.10 0.10 0.64 0.10 0.10 0.81 0.10 0.10 0.81 0.70 0.30 0.82 0.40 0.10 0.85
Decision Tree 0.70 0.20 0.66 0.10 0.70 0.76 0.10 0.20 0.79 0.50 0.40 0.83 0.40 0.50 0.83

Yale
LinearSVM 0.30 0.10 0.20 0.10 0.70 0.33 0.10 0.10 0.49 0.80 0.30 0.55 0.90 0.10 0.68

KNN 0.70 0.10 0.25 0.50 0.10 0.34 0.10 0.10 0.36 0.30 0.10 0.42 0.40 0.20 0.49
Decision Tree 0.90 0.10 0.31 0.60 0.40 0.39 0.30 0.40 0.40 0.90 0.20 0.46 0.80 0.80 0.48

USPS
LinearSVM 0.90 0.10 0.71 0.90 0.10 0.89 0.90 0.10 0.91 0.70 0.40 0.92 0.10 0.10 0.92

KNN 0.90 0.10 0.76 0.90 0.10 0.93 0.90 0.10 0.96 0.80 0.10 0.96 0.10 0.10 0.95
Decision Tree 0.90 0.10 0.70 0.90 0.10 0.83 0.90 0.10 0.85 0.40 0.10 0.86 0.20 0.80 0.86

colon
LinearSVM 0.60 0.10 0.72 0.40 0.50 0.81 0.60 0.90 0.78 0.80 0.50 0.76 0.90 0.40 0.81

KNN 0.70 0.10 0.74 0.80 0.40 0.80 0.80 0.10 0.80 0.80 0.10 0.86 0.70 0.10 0.83
Decision Tree 0.60 0.10 0.72 0.80 0.90 0.81 0.80 0.40 0.83 0.30 0.70 0.79 0.20 0.90 0.83

GLIOMA
LinearSVM 0.90 0.10 0.55 0.10 0.20 0.62 0.60 0.10 0.63 0.60 0.20 0.70 0.70 0.10 0.67

KNN 0.90 0.10 0.50 0.90 0.10 0.68 0.90 0.10 0.70 0.90 0.60 0.69 0.90 0.10 0.69
Decision Tree 0.80 0.50 0.53 0.20 0.10 0.68 0.50 0.10 0.59 0.30 0.80 0.58 0.40 0.40 0.58

lung
LinearSVM 0.90 0.10 0.45 0.90 0.10 0.78 0.80 0.10 0.90 0.80 0.10 0.93 0.60 0.10 0.88

KNN 0.90 0.10 0.36 0.80 0.10 0.70 0.90 0.10 0.75 0.80 0.10 0.81 0.70 0.10 0.75
Decision Tree 0.90 0.10 0.32 0.80 0.10 0.56 0.60 0.30 0.69 0.60 0.80 0.71 0.90 0.10 0.76

lung small
LinearSVM 0.70 0.10 0.62 0.10 0.10 0.72 0.10 0.90 0.71 0.90 0.80 0.76 0.10 0.40 0.75

KNN 0.70 0.10 0.67 0.30 0.50 0.80 0.30 0.10 0.83 0.40 0.50 0.83 0.10 0.10 0.74
Decision Tree 0.10 0.80 0.55 0.10 0.40 0.60 0.30 0.90 0.61 0.30 0.30 0.64 0.20 0.10 0.69

lymphoma
LinearSVM 0.90 0.10 0.38 0.60 0.10 0.52 0.70 0.10 0.65 0.60 0.10 0.66 0.30 0.90 0.71

KNN 0.90 0.90 0.27 0.90 0.10 0.44 0.80 0.50 0.61 0.70 0.10 0.62 0.80 0.10 0.66
Decision Tree 0.20 0.60 0.33 0.80 0.70 0.51 0.70 0.70 0.50 0.60 0.20 0.55 0.60 0.50 0.60

GISETTE
LinearSVM 0.90 0.10 0.85 0.90 0.10 0.91 0.80 0.10 0.92 0.80 0.10 0.93 0.70 0.10 0.93

KNN 0.90 0.10 0.86 0.90 0.10 0.94 0.90 0.10 0.94 0.80 0.10 0.94 0.80 0.10 0.94
Decision Tree 0.90 0.10 0.80 0.80 0.50 0.88 0.80 0.50 0.89 0.90 0.60 0.90 0.80 0.10 0.90

Isolet
LinearSVM 0.60 0.10 0.31 0.80 0.10 0.72 0.90 0.10 0.79 0.90 0.30 0.86 0.90 0.10 0.86

KNN 0.60 0.10 0.27 0.90 0.10 0.70 0.90 0.50 0.77 0.90 0.10 0.80 0.80 0.30 0.81
Decision Tree 0.80 0.10 0.24 0.90 0.40 0.68 0.80 0.50 0.71 0.90 0.30 0.75 0.90 0.70 0.75

MADELON
LinearSVM 0.60 0.10 0.61 0.80 0.10 0.60 0.70 0.10 0.59 0.30 0.10 0.57 0.30 0.10 0.55

KNN 0.80 0.10 0.71 0.80 0.10 0.61 0.90 0.10 0.59 0.90 0.10 0.57 0.80 0.10 0.57
Decision Tree 0.80 0.10 0.70 0.80 0.10 0.70 0.80 0.80 0.75 0.70 0.70 0.75 0.60 0.60 0.74
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Table 7. Subset’ size-dependent in-sample optimal hyper-parameters configurations and corresponding balanced accuracy scores for TFS.

10 50 100 150 200
metric square α score metric square α score metric square α score metric square α score metric square α score

PCMAC
LinearSVM Spearman Square / 0.56 Pearson Normal / 0.62 Pearson Normal / 0.64 Pearson Square / 0.66 Energy Normal 0.30 0.69

KNN Pearson Normal / 0.52 Pearson Normal / 0.60 Pearson Normal / 0.59 Pearson Square / 0.62 Energy Normal 0.40 0.64
Decision Tree Spearman Square / 0.56 Pearson Normal / 0.63 Pearson Square / 0.64 Pearson Square / 0.66 Pearson Normal / 0.68

RELATHE
LinearSVM Spearman Square / 0.53 Energy Normal 0.70 0.62 Energy Normal 0.70 0.69 Energy Normal 0.90 0.70 Energy Normal 0.90 0.71

KNN Energy Normal 0.30 0.53 Pearson Normal / 0.61 Energy Normal 0.80 0.64 Energy Normal 0.30 0.66 Energy Normal 0.60 0.68
Decision Tree Energy Normal 0.30 0.53 Energy Normal 0.60 0.60 Spearman Normal / 0.64 Energy Normal 0.80 0.68 Spearman Square / 0.67

COIL20
LinearSVM Pearson Square / 0.71 Pearson Square / 0.91 Energy Normal 0.20 0.93 Pearson Square / 0.95 Pearson Normal / 0.95

KNN Pearson Square / 0.81 Pearson Square / 0.92 Spearman Normal / 0.92 Spearman Normal / 0.93 Pearson Normal / 0.92
Decision Tree Pearson Square / 0.81 Pearson Square / 0.89 Pearson Normal / 0.89 Pearson Square / 0.89 Pearson Normal / 0.89

ORL
LinearSVM Pearson Normal / 0.50 Spearman Normal / 0.84 Spearman Normal / 0.89 Spearman Normal / 0.88 Spearman Normal / 0.89

KNN Spearman Square / 0.43 Spearman Square / 0.57 Energy Normal 0.50 0.64 Energy Normal 0.20 0.66 Energy Normal 0.30 0.68
Decision Tree Pearson Normal / 0.40 Spearman Square / 0.45 Pearson Normal / 0.48 Pearson Normal / 0.51 Pearson Normal / 0.53

warpAR10P
LinearSVM Energy Normal 0.60 0.46 Energy Normal 0.40 0.74 Energy Normal 0.70 0.85 Pearson Square / 0.86 Energy Normal 0.60 0.89

KNN Energy Normal 0.70 0.38 Energy Normal 0.10 0.42 Energy Normal 0.10 0.45 Energy Normal 0.20 0.49 Energy Normal 0.10 0.47
Decision Tree Energy Normal 0.50 0.46 Energy Normal 0.10 0.70 Energy Normal 0.10 0.61 Energy Normal 0.10 0.64 Energy Normal 0.60 0.65

warpPIE10P
LinearSVM Energy Normal 0.20 0.78 Energy Normal 0.20 0.98 Energy Normal 0.10 0.99 Energy Normal 0.20 1.00 Energy Normal 0.10 1.00

KNN Energy Normal 0.20 0.71 Energy Normal 0.40 0.86 Energy Normal 0.10 0.86 Energy Normal 0.20 0.87 Energy Normal 0.10 0.87
Decision Tree Energy Normal 0.10 0.66 Energy Normal 0.30 0.75 Energy Normal 0.40 0.81 Energy Normal 0.70 0.84 Energy Normal 0.10 0.80

Yale
LinearSVM Spearman Normal / 0.49 Pearson Normal / 0.63 Pearson Normal / 0.69 Pearson Square / 0.73 Energy Normal 0.20 0.74

KNN Spearman Normal / 0.43 Pearson Square / 0.56 Spearman Normal / 0.56 Pearson Normal / 0.57 Spearman Square / 0.60
Decision Tree Pearson Square / 0.38 Pearson Square / 0.49 Pearson Normal / 0.48 Spearman Normal / 0.56 Pearson Normal / 0.52

USPS
LinearSVM Energy Normal 0.70 0.71 Energy Normal 0.20 0.90 Energy Normal 0.10 0.92 Pearson Normal / 0.92 Pearson Normal / 0.92

KNN Energy Normal 0.50 0.77 Energy Normal 0.90 0.94 Energy Normal 0.10 0.94 Energy Normal 0.30 0.95 Spearman Normal / 0.95
Decision Tree Spearman Square / 0.71 Energy Normal 0.90 0.84 Energy Normal 0.70 0.85 Pearson Normal / 0.85 Energy Normal 0.30 0.86

colon
LinearSVM Energy Normal 0.30 0.73 Energy Normal 0.80 0.71 Energy Normal 0.90 0.74 Energy Normal 0.90 0.79 Energy Normal 0.60 0.77

KNN Energy Normal 0.90 0.83 Energy Normal 0.30 0.76 Energy Normal 0.30 0.80 Energy Normal 0.90 0.76 Energy Normal 0.90 0.82
Decision Tree Pearson Normal / 0.67 Energy Normal 0.90 0.70 Energy Normal 0.60 0.76 Energy Normal 0.50 0.71 Energy Normal 0.50 0.76

GLIOMA
LinearSVM Pearson Square / 0.65 Pearson Normal / 0.69 Energy Normal 0.20 0.71 Energy Normal 0.50 0.76 Pearson Square / 0.72

KNN Pearson Normal / 0.58 Energy Normal 0.80 0.72 Pearson Normal / 0.68 Pearson Normal / 0.77 Pearson Normal / 0.71
Decision Tree Pearson Square / 0.60 Energy Normal 0.70 0.72 Energy Normal 0.40 0.75 Energy Normal 0.40 0.69 Energy Normal 0.70 0.62

lung
LinearSVM Spearman Square / 0.74 Pearson Normal / 0.96 Pearson Normal / 0.97 Spearman Normal / 0.97 Energy Normal 0.90 0.94

KNN Spearman Square / 0.61 Pearson Square / 0.79 Energy Normal 0.40 0.76 Energy Normal 0.60 0.79 Spearman Square / 0.80
Decision Tree Pearson Square / 0.75 Spearman Normal / 0.87 Pearson Normal / 0.87 Pearson Normal / 0.79 Pearson Normal / 0.90

lung small
LinearSVM Energy Normal 0.80 0.54 Energy Normal 0.80 0.72 Pearson Square / 0.76 Pearson Normal / 0.75 Spearman Square / 0.79

KNN Energy Normal 0.60 0.59 Energy Normal 0.60 0.77 Energy Normal 0.10 0.79 Energy Normal 0.40 0.76 Energy Normal 0.20 0.71
Decision Tree Spearman Normal / 0.48 Energy Normal 0.80 0.57 Pearson Normal / 0.58 Energy Normal 0.80 0.56 Energy Normal 0.10 0.68

lymphoma
LinearSVM Pearson Square / 0.47 Energy Normal 0.70 0.58 Energy Normal 0.60 0.66 Energy Normal 0.20 0.75 Energy Normal 0.50 0.79

KNN Pearson Square / 0.41 Spearman Square / 0.54 Energy Normal 0.70 0.61 Energy Normal 0.70 0.67 Energy Normal 0.70 0.63
Decision Tree Pearson Square / 0.44 Energy Normal 0.20 0.57 Energy Normal 0.30 0.50 Pearson Normal / 0.57 Energy Normal 0.20 0.56

GISETTE
LinearSVM Energy Normal 0.20 0.66 Energy Normal 0.40 0.81 Energy Normal 0.40 0.87 Energy Normal 0.40 0.90 Energy Normal 0.40 0.91

KNN Energy Normal 0.20 0.59 Energy Normal 0.90 0.77 Energy Normal 0.40 0.80 Energy Normal 0.40 0.84 Energy Normal 0.40 0.84
Decision Tree Energy Normal 0.20 0.61 Energy Normal 0.90 0.79 Energy Normal 0.40 0.85 Energy Normal 0.40 0.89 Energy Normal 0.40 0.89

Isolet
LinearSVM Spearman Square / 0.51 Pearson Normal / 0.74 Pearson Normal / 0.81 Pearson Square / 0.88 Pearson Normal / 0.89

KNN Pearson Square / 0.51 Pearson Normal / 0.69 Spearman Normal / 0.74 Spearman Normal / 0.79 Spearman Normal / 0.81
Decision Tree Pearson Normal / 0.46 Pearson Normal / 0.65 Pearson Normal / 0.70 Pearson Normal / 0.73 Pearson Square / 0.75

MADELON
LinearSVM Pearson Square / 0.61 Energy Normal 0.30 0.60 Pearson Square / 0.58 Spearman Square / 0.57 Energy Normal 0.30 0.57

KNN Spearman Normal / 0.75 Pearson Square / 0.72 Spearman Square / 0.66 Spearman Square / 0.62 Pearson Normal / 0.59
Decision Tree Pearson Normal / 0.72 Spearman Normal / 0.79 Spearman Normal / 0.76 Spearman Normal / 0.77 Spearman Normal / 0.75
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F. Additional out-of-sample evaluations
To prevent from obtaining metric-dependent out-of-sample results, in addition to the Balanced Accuracy score (see Equation
5), we consider two additional metrics: (i) the F1 score (ii) and the Matthews Correlation Coefficient (Matthews, 1975).

The general formulation for the F1 score is

F1 = 2×
1
|Z|
∑

z∈Z(
TPz

TPz+FPz
)× 1

|Z|
∑

z∈Z(
TPz

TPz+FNz
)

1
|Z|
∑

z∈Z(
TPz

TPz+FPz
) + 1

|Z|
∑

z∈Z(
TPz

TPz+FNz
)
. (8)

TP is the number of outcomes where the model correctly classifies a sample as belonging to a positive class (or detects an
event of interest), when in fact it does belong to that class (or the event is present). FP is the number of outcomes where the
model incorrectly classifies a sample as belonging to a positive class (or detects an event of interest), when in fact it does not
belong to that class (or the event is not present). FN is the number of outcomes where the model incorrectly classifies a
sample as belonging to a negative class (or fails to detect an event of interest), when in fact it belongs to a positive class (or
the event of interest is present). |Z| indicates the cardinality of the set of different classes.

The general formulation for the MCC is

MCC =
(C × S)− (T · P )√

S2 − (P · P )×
√
S2 − (T · T )

(9)

where T is a vector containing the number of times each class z ∈ Z truly occurs, P is a vector containing the number
of times each class z ∈ Z is predicted, C is the total number of samples correctly predicted and S is the total number of
samples. Given Equations 8 and 9, it is easy for the interested reader to reconstruct the formulation for the binary case.

For each performance metric, we use the implementation provided by the ‘scikit-learn’ Python package (Pedregosa et al.,
2011) at the following links:

• Balanced Accuracy score: https://github.com/scikit-learn/scikit-learn/blob/98cf537f5/
sklearn/metrics/_classification.py#L2111

• F1 score: https://github.com/scikit-learn/scikit-learn/blob/98cf537f5/sklearn/
metrics/_classification.py#L1011

• Matthews Correlation Coefficient: https://github.com/scikit-learn/scikit-learn/blob/
98cf537f5/sklearn/metrics/_classification.py#L848
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Table 8. Subset size-dependent, out-of-sample results using a LinearSVM classifier. We use three evaluation metrics: balanced accuracy
score, F1 score and Matthews Correlation Coefficient. For each dataset, we boldly highlight the combination between feature selection
schema and classifier producing the best out-of-sample result.

Linear SVM
10 50 100 150 200

Inf-FSU TFS Inf-FSU TFS Inf-FSU TFS Inf-FSU TFS Inf-FSU TFS

PCMAC
Balanced Accuracy 0.52 0.50 0.57 0.67 0.59 0.70 0.61 0.71 0.62 0.69

F1 Score 0.52 0.35 0.57 0.67 0.59 0.70 0.61 0.71 0.62 0.69
MCC 0.05 -0.02 0.13 0.34 0.19 0.41 0.23 0.44 0.25 0.39

RELATHE
Balanced Accuracy 0.47 0.49 0.43 0.53 0.51 0.53 0.44 0.49 0.53 0.53

F1 Score 0.33 0.37 0.40 0.48 0.50 0.51 0.43 0.48 0.50 0.53
MCC -0.14 -0.06 -0.15 0.06 0.01 0.07 -0.12 -0.01 0.07 0.07

COIL20
Balanced Accuracy 0.52 0.63 0.77 0.90 0.84 0.92 0.90 0.94 0.94 0.96

F1 Score 0.44 0.58 0.76 0.90 0.83 0.92 0.89 0.94 0.94 0.95
MCC 0.50 0.62 0.76 0.90 0.83 0.92 0.89 0.94 0.94 0.95

ORL
Balanced Accuracy 0.40 0.44 0.63 0.88 0.72 0.89 0.86 0.93 0.84 0.94

F1 Score 0.33 0.39 0.61 0.86 0.71 0.88 0.85 0.93 0.84 0.93
MCC 0.39 0.43 0.63 0.87 0.71 0.89 0.86 0.93 0.84 0.94

warpAR10P
Balanced Accuracy 0.33 0.44 0.56 0.78 0.72 0.85 0.70 0.95 0.75 0.85

F1 Score 0.29 0.43 0.56 0.76 0.71 0.85 0.69 0.94 0.74 0.84
MCC 0.27 0.38 0.52 0.75 0.69 0.83 0.67 0.95 0.72 0.84

warpPIE10P
Balanced Accuracy 0.85 0.89 0.95 1.00 0.98 1.00 1.00 1.00 1.00 1.00

F1 Score 0.85 0.89 0.95 1.00 0.98 1.00 1.00 1.00 1.00 1.00
MCC 0.85 0.88 0.95 1.00 0.98 1.00 1.00 1.00 1.00 1.00

Yale
Balanced Accuracy 0.14 0.33 0.25 0.50 0.39 0.67 0.37 0.69 0.53 0.70

F1 Score 0.12 0.31 0.25 0.50 0.38 0.67 0.36 0.70 0.53 0.66
MCC 0.08 0.27 0.21 0.47 0.36 0.66 0.34 0.68 0.51 0.68

USPS
Balanced Accuracy 0.72 0.65 0.90 0.90 0.91 0.92 0.92 0.93 0.92 0.93

F1 Score 0.71 0.64 0.90 0.91 0.91 0.92 0.92 0.93 0.92 0.93
MCC 0.72 0.65 0.90 0.90 0.91 0.92 0.92 0.93 0.92 0.93

colon
Balanced Accuracy 0.70 0.69 0.69 0.66 0.92 0.82 0.85 0.74 0.85 0.88

F1 Score 0.71 0.68 0.68 0.66 0.89 0.82 0.83 0.76 0.83 0.84
MCC 0.42 0.37 0.37 0.32 0.81 0.65 0.67 0.53 0.67 0.72

GLIOMA
Balanced Accuracy 0.61 0.25 0.30 0.30 0.30 0.38 0.60 0.41 0.59 0.25

F1 Score 0.57 0.12 0.24 0.28 0.26 0.28 0.59 0.35 0.58 0.13
MCC 0.50 0.00 0.03 0.06 0.10 0.22 0.47 0.26 0.46 -0.03

lung
Balanced Accuracy 0.39 0.47 0.67 0.89 0.81 0.95 0.71 0.87 0.90 0.81

F1 Score 0.42 0.50 0.67 0.88 0.79 0.91 0.68 0.86 0.87 0.83
MCC 0.31 0.61 0.70 0.80 0.77 0.85 0.77 0.77 0.79 0.80

lung small
Balanced Accuracy 0.49 0.57 0.76 0.79 0.82 0.68 0.79 0.75 0.82 0.93

F1 Score 0.52 0.55 0.73 0.71 0.78 0.65 0.74 0.69 0.78 0.93
MCC 0.51 0.67 0.72 0.78 0.84 0.73 0.79 0.74 0.84 0.90

lymphoma
Balanced Accuracy 0.22 0.50 0.58 0.96 0.78 0.87 0.90 0.82 0.81 0.98

F1 Score 0.22 0.47 0.52 0.91 0.77 0.83 0.92 0.78 0.77 0.96
MCC 0.33 0.66 0.44 0.84 0.81 0.91 0.91 0.82 0.78 0.91

GISETTE
Balanced Accuracy 0.50 0.49 0.48 0.47 0.51 0.52 0.47 0.50 0.49 0.50

F1 Score 0.38 0.49 0.46 0.44 0.46 0.52 0.43 0.45 0.45 0.46
MCC -0.01 -0.01 -0.05 -0.07 0.02 0.05 -0.08 0.00 -0.02 0.00

Isolet
Balanced Accuracy 0.32 0.51 0.74 0.78 0.81 0.82 0.88 0.83 0.89 0.89

F1 Score 0.26 0.48 0.73 0.78 0.81 0.82 0.88 0.83 0.89 0.89
MCC 0.30 0.49 0.73 0.77 0.80 0.81 0.88 0.82 0.88 0.89

MADELON
Balanced Accuracy 0.59 0.59 0.58 0.56 0.55 0.57 0.54 0.57 0.57 0.57

F1 Score 0.59 0.59 0.58 0.55 0.55 0.57 0.54 0.57 0.57 0.57
MCC 0.18 0.18 0.16 0.11 0.10 0.14 0.09 0.15 0.14 0.14
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Table 9. Subset size-dependent, out-of-sample results using a KNN classifier. We use three evaluation metrics: the Balanced Accuracy
score, the F1 score and the Matthews Correlation Coefficient. For each dataset, we boldly highlight the combination between feature
selection schema and classifier producing the best out-of-sample result.

KNN
10 50 100 150 200

Inf-FSU TFS Inf-FSU TFS Inf-FSU TFS Inf-FSU TFS Inf-FSU TFS

PCMAC
Balanced Accuracy 0.52 0.53 0.57 0.61 0.61 0.62 0.61 0.62 0.61 0.62

F1 Score 0.52 0.41 0.57 0.61 0.61 0.61 0.59 0.63 0.60 0.62
MCC 0.05 0.15 0.15 0.22 0.23 0.25 0.18 0.26 0.21 0.24

RELATHE
Balanced Accuracy 0.46 0.46 0.50 0.57 0.48 0.49 0.48 0.49 0.48 0.49

F1 Score 0.37 0.37 0.47 0.54 0.46 0.46 0.45 0.45 0.48 0.46
MCC -0.10 -0.10 0.00 0.17 -0.04 -0.03 -0.09 -0.10 -0.03 -0.05

COIL20
Balanced Accuracy 0.70 0.82 0.86 0.93 0.93 0.93 0.93 0.93 0.93 0.93

F1 Score 0.67 0.81 0.85 0.93 0.92 0.93 0.96 0.94 0.97 0.93
MCC 0.69 0.81 0.85 0.93 0.92 0.93 0.95 0.94 0.97 0.93

ORL
Balanced Accuracy 0.38 0.52 0.52 0.77 0.62 0.70 0.62 0.70 0.62 0.70

F1 Score 0.38 0.49 0.49 0.75 0.61 0.68 0.73 0.69 0.69 0.76
MCC 0.37 0.52 0.52 0.76 0.62 0.69 0.73 0.70 0.72 0.77

warpAR10P
Balanced Accuracy 0.36 0.30 0.36 0.51 0.43 0.46 0.43 0.46 0.43 0.46

F1 Score 0.32 0.26 0.32 0.50 0.41 0.48 0.27 0.37 0.37 0.47
MCC 0.29 0.24 0.30 0.47 0.38 0.41 0.25 0.32 0.37 0.44

warpPIE10P
Balanced Accuracy 0.83 0.72 0.86 0.91 0.92 0.97 0.92 0.97 0.92 0.97

F1 Score 0.83 0.69 0.86 0.91 0.92 0.97 0.89 0.92 0.89 0.95
MCC 0.81 0.69 0.84 0.90 0.91 0.97 0.88 0.91 0.88 0.95

Yale
Balanced Accuracy 0.14 0.42 0.28 0.41 0.26 0.42 0.26 0.42 0.26 0.42

F1 Score 0.12 0.40 0.27 0.40 0.23 0.43 0.44 0.38 0.32 0.49
MCC 0.08 0.39 0.23 0.36 0.23 0.39 0.41 0.34 0.33 0.48

USPS
Balanced Accuracy 0.78 0.77 0.94 0.94 0.96 0.95 0.96 0.95 0.96 0.95

F1 Score 0.78 0.77 0.94 0.94 0.96 0.95 0.96 0.95 0.95 0.95
MCC 0.78 0.78 0.94 0.94 0.96 0.95 0.96 0.95 0.95 0.95

colon
Balanced Accuracy 0.77 0.82 0.89 0.77 0.89 0.85 0.89 0.85 0.89 0.85

F1 Score 0.77 0.82 0.89 0.77 0.89 0.83 1.00 0.71 0.83 0.77
MCC 0.55 0.65 0.77 0.55 0.77 0.67 1.00 0.42 0.67 0.55

GLIOMA
Balanced Accuracy 0.24 0.10 0.40 0.40 0.42 0.62 0.42 0.62 0.42 0.62

F1 Score 0.19 0.06 0.39 0.40 0.40 0.49 0.52 0.49 0.50 0.49
MCC -0.04 -0.31 0.26 0.27 0.30 0.48 0.46 0.48 0.46 0.48

lung
Balanced Accuracy 0.33 0.51 0.65 0.79 0.71 0.65 0.71 0.65 0.71 0.65

F1 Score 0.35 0.52 0.65 0.84 0.70 0.67 0.71 0.69 0.81 0.84
MCC 0.24 0.56 0.70 0.83 0.77 0.72 0.80 0.76 0.77 0.83

lung small
Balanced Accuracy 0.57 0.61 0.80 0.87 0.82 0.90 0.82 0.90 0.82 0.90

F1 Score 0.55 0.57 0.77 0.87 0.80 0.85 0.89 0.85 0.85 0.72
MCC 0.51 0.64 0.78 0.84 0.84 0.84 0.90 0.84 0.84 0.73

lymphoma
Balanced Accuracy 0.44 0.50 0.60 0.74 0.69 0.69 0.69 0.69 0.69 0.69

F1 Score 0.45 0.49 0.61 0.70 0.67 0.65 0.75 0.72 0.65 0.70
MCC 0.49 0.66 0.76 0.86 0.86 0.86 0.81 0.91 0.86 0.86

GISETTE
Balanced Accuracy 0.49 0.51 0.52 0.54 0.50 0.51 0.50 0.51 0.50 0.51

F1 Score 0.38 0.50 0.49 0.52 0.40 0.43 0.34 0.48 0.34 0.47
MCC -0.03 0.02 0.04 0.09 -0.01 0.03 -0.03 0.08 -0.03 -0.01

Isolet
Balanced Accuracy 0.32 0.49 0.72 0.73 0.78 0.78 0.78 0.78 0.78 0.78

F1 Score 0.31 0.48 0.72 0.73 0.78 0.77 0.83 0.81 0.82 0.83
MCC 0.29 0.47 0.71 0.72 0.78 0.77 0.82 0.81 0.81 0.83

MADELON
Balanced Accuracy 0.61 0.78 0.58 0.74 0.64 0.66 0.64 0.66 0.64 0.66

F1 Score 0.61 0.78 0.58 0.74 0.64 0.66 0.62 0.64 0.57 0.62
MCC 0.23 0.56 0.16 0.48 0.29 0.32 0.24 0.29 0.14 0.26
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Table 10. Subset size-dependent, out-of-sample results using a Decision Tree classifier. We use three evaluation metrics: the Balanced
Accuracy score, the F1 score and the Matthews Correlation Coefficient. For each dataset, we boldly highlight the combination between
feature selection schema and classifier producing the best out-of-sample result.

Decision Tree
10 50 100 150 200

Inf-FSU TFS Inf-FSU TFS Inf-FSU TFS Inf-FSU TFS Inf-FSU TFS

PCMAC
Balanced Accuracy 0.53 0.50 0.56 0.69 0.58 0.71 0.58 0.71 0.58 0.71

F1 Score 0.53 0.35 0.56 0.69 0.58 0.71 0.57 0.68 0.60 0.73
MCC 0.06 -0.01 0.13 0.38 0.17 0.42 0.14 0.36 0.21 0.46

RELATHE
Balanced Accuracy 0.49 0.50 0.51 0.51 0.49 0.42 0.49 0.42 0.49 0.42

F1 Score 0.35 0.34 0.41 0.47 0.46 0.41 0.45 0.48 0.48 0.44
MCC -0.02 -0.02 0.03 0.02 -0.01 -0.18 -0.04 0.02 -0.04 0.03

COIL20
Balanced Accuracy 0.68 0.81 0.83 0.89 0.85 0.90 0.85 0.90 0.85 0.90

F1 Score 0.67 0.81 0.83 0.89 0.85 0.90 0.89 0.90 0.90 0.90
MCC 0.67 0.80 0.82 0.89 0.84 0.90 0.89 0.90 0.90 0.90

ORL
Balanced Accuracy 0.36 0.39 0.42 0.48 0.49 0.54 0.49 0.54 0.49 0.54

F1 Score 0.33 0.37 0.40 0.46 0.49 0.52 0.57 0.58 0.49 0.60
MCC 0.34 0.38 0.41 0.47 0.48 0.53 0.58 0.60 0.48 0.61

warpAR10P
Balanced Accuracy 0.37 0.33 0.46 0.59 0.55 0.59 0.55 0.59 0.55 0.59

F1 Score 0.35 0.33 0.44 0.60 0.52 0.61 0.41 0.64 0.67 0.81
MCC 0.29 0.27 0.41 0.55 0.49 0.55 0.35 0.61 0.63 0.78

warpPIE10P
Balanced Accuracy 0.74 0.74 0.80 0.73 0.77 0.85 0.77 0.85 0.77 0.85

F1 Score 0.74 0.75 0.78 0.73 0.78 0.85 0.75 0.87 0.76 0.79
MCC 0.72 0.72 0.78 0.71 0.76 0.84 0.74 0.86 0.74 0.79

Yale
Balanced Accuracy 0.17 0.31 0.26 0.34 0.39 0.42 0.39 0.42 0.39 0.42

F1 Score 0.15 0.31 0.25 0.34 0.39 0.41 0.47 0.43 0.45 0.53
MCC 0.12 0.26 0.21 0.30 0.36 0.38 0.49 0.38 0.40 0.49

USPS
Balanced Accuracy 0.73 0.72 0.84 0.85 0.85 0.86 0.85 0.86 0.85 0.86

F1 Score 0.73 0.72 0.84 0.85 0.85 0.86 0.86 0.86 0.88 0.87
MCC 0.73 0.72 0.84 0.85 0.85 0.86 0.86 0.86 0.88 0.87

colon
Balanced Accuracy 0.61 0.64 0.82 0.74 0.76 0.92 0.76 0.92 0.76 0.92

F1 Score 0.58 0.64 0.82 0.76 0.73 0.89 0.89 0.79 0.83 0.79
MCC 0.21 0.45 0.65 0.53 0.51 0.81 0.77 0.65 0.67 0.65

GLIOMA
Balanced Accuracy 0.34 0.61 0.36 0.31 0.35 0.44 0.35 0.44 0.35 0.44

F1 Score 0.37 0.54 0.25 0.18 0.34 0.39 0.22 0.22 0.19 0.33
MCC 0.19 0.41 0.06 0.10 0.19 0.21 0.19 0.14 0.08 0.33

lung
Balanced Accuracy 0.44 0.70 0.75 0.71 0.87 0.70 0.87 0.70 0.87 0.70

F1 Score 0.44 0.70 0.67 0.75 0.83 0.66 0.88 0.73 0.75 0.75
MCC 0.39 0.64 0.64 0.69 0.78 0.69 0.79 0.71 0.67 0.70

lung small
Balanced Accuracy 0.46 0.42 0.58 0.63 0.47 0.57 0.47 0.57 0.47 0.57

F1 Score 0.42 0.37 0.47 0.58 0.42 0.48 0.40 0.63 0.52 0.37
MCC 0.45 0.50 0.58 0.57 0.40 0.47 0.47 0.55 0.44 0.41

lymphoma
Balanced Accuracy 0.20 0.69 0.45 0.55 0.45 0.44 0.45 0.44 0.45 0.44

F1 Score 0.17 0.67 0.37 0.45 0.38 0.39 0.59 0.49 0.46 0.49
MCC 0.18 0.64 0.50 0.57 0.44 0.50 0.62 0.59 0.57 0.60

GISETTE
Balanced Accuracy 0.52 0.50 0.44 0.52 0.48 0.47 0.48 0.47 0.48 0.47

F1 Score 0.45 0.50 0.41 0.49 0.48 0.46 0.46 0.48 0.49 0.44
MCC 0.05 0.00 -0.14 0.05 -0.04 -0.07 -0.01 -0.01 -0.01 -0.04

Isolet
Balanced Accuracy 0.27 0.43 0.69 0.67 0.73 0.71 0.73 0.71 0.73 0.71

F1 Score 0.28 0.43 0.68 0.67 0.73 0.70 0.74 0.72 0.78 0.72
MCC 0.24 0.41 0.67 0.66 0.72 0.69 0.73 0.72 0.77 0.72

MADELON
Balanced Accuracy 0.58 0.66 0.70 0.81 0.78 0.79 0.78 0.79 0.78 0.79

F1 Score 0.58 0.66 0.70 0.81 0.78 0.79 0.75 0.77 0.73 0.77
MCC 0.16 0.31 0.40 0.62 0.55 0.57 0.50 0.54 0.47 0.53
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G. Statistical Validation
The statistical significance of results discussed in Section 3 is assessed in Table 11. Here we report the p-values obtained
performing a 15× 2cv t-test as described in Section 2.5. Specifically, p-values > 0.1 are reported in their numerical form,
p-values ≤ 0.1 and > 0.05 are marked as ∗, p-values ≤ 0.05 and > 0.01 are marked as ∗∗, p-values ≤ 0.01 and > 0.001
are marked as ∗∗∗ and p-values ≤ 0.001 are marked as ∗∗∗∗.

Table 11. Comparison between Inf-FSU ’ and TFS’ p-values obtained performing a 15× 2 cv paired t-test. p-values > 0.1 are reported in
their numerical form, p-values ≤ 0.1 and > 0.05 are marked as ∗, p-values ≤ 0.05 and > 0.01 are marked as ∗∗, p-values ≤ 0.01 and
> 0.001 are marked as ∗∗∗ and p-values ≤ 0.001 are marked as ∗∗∗∗. (∨) and (∧) symbols indicate that, when the two feature selection
schemes combined with the same classifier, produce statistically robust different results, TFS performs, respectively, better or worse than
Inf-FSU according to results reported in Table 2.

LinearSVM KNN DT
10 50 100 150 200 10 50 100 150 200 10 50 100 150 200

PCMAC *(∧) 0.50 0.79 0.80 0.49 0.19 0.37 0.90 0.81 0.94 *(∧) 0.69 0.93 0.75 0.73
RELATHE 0.87 **(∨) ****(∨) ***(∨) **(∨) 0.61 0.17 ****(∨) *(∧) 0.14 0.90 ***(∨) 0.58 *(∨) 0.47

COIL20 ***(∨) ****(∨) ****(∨) ***(∨) **(∨) **(∨) **(∨) **(∨) 0.39 0.40 *(∨) **(∨) ***(∨) ***(∨) **(∨)

ORL 0.14 ***(∨) 0.22 **(∨) ***(∨) **(∨) ***(∨) 0.72 0.44 0.51 0.88 0.49 0.67 **(∨) 0.93
warpAR10P 0.23 ***(∨) 0.38 0.23 0.20 **(∧) **(∨) **(∨) 0.48 0.69 0.77 ***(∨) 0.32 0.16 0.39
warpPIE10P 0.98 0.52 0.67 0.39 1.00 0.50 0.93 0.17 1.00 0.51 0.41 1.00 0.65 0.39 0.68

Yale ***(∨) **(∨) 0.17 0.19 0.64 0.81 **(∨) 0.28 0.78 0.10 0.60 **(∨) 0.90 0.45 0.23
USPS 0.89 0.38 0.29 ***(∨) *(∨) 0.69 0.19 ***(∧) *(∧) 0.26 *(∧) 0.74 0.71 0.62 0.95
colon 0.15 0.42 0.19 0.37 0.53 0.92 0.48 0.63 1.00 0.18 0.89 0.35 0.15 0.59 0.50

GLIOMA 0.54 0.63 0.45 *(∧) 0.74 0.68 0.73 0.25 0.65 0.91 **(∨) 0.52 *(∨) *(∧) *(∨)

lung ***(∨) 0.12 ***(∨) **(∨) 0.19 ***(∨) 0.46 0.61 0.84 0.58 ***(∨) 0.11 0.28 0.47 0.86
lung small 0.72 0.83 **(∧) 0.54 0.32 0.38 0.77 0.32 0.82 0.72 0.73 0.99 0.53 *(∨) 0.63
lymphoma 0.56 0.26 0.37 0.74 0.92 1.00 0.69 0.41 0.25 0.86 0.35 0.58 0.32 0.45 0.85
GISETTE ****(∧) ***(∧) ***(∨) ***(∨) **(∨) ****(∨) ****(∨) ****(∨) ****(∨) ****(∧) ****(∧) ***(∨) ***(∧) **(∧) *(∨)

Isolet ****(∨) ***(∨) 0.15 0.15 **(∨) ****(∨) 1.00 0.28 0.38 0.88 **(∨) 0.81 0.61 *(∧) 0.39
MADELON *(∨) 0.75 0.93 0.19 0.15 0.91 0.69 0.22 0.65 0.49 0.32 0.65 0.57 0.69 0.59
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