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Abstract

We consider the problem of privacy protection in Reinforcement Learning (RL) algorithms
that operate over population processes, a practical but understudied setting that includes, for
example, the control of epidemics in large populations of dynamically interacting individuals.
In this setting, the RL algorithm interacts with the population over T time steps by
receiving population-level statistics as state and performing actions which can affect the
entire population at each time step. An individual’s data can be collected across multiple
interactions and their privacy must be protected at all times. We clarify the Bayesian
semantics of Differential Privacy (DP) in the presence of correlated data in population
processes through a Pufferfish Privacy analysis. We then give a meta algorithm that can
take any RL algorithm as input and make it differentially private. This is achieved by taking
an approach that uses DP mechanisms to privatize the state and reward signal at each time
step before the RL algorithm receives them as input. Our main theoretical result shows that
the value-function approximation error when applying standard RL algorithms directly to
the privatized states shrinks quickly as the population size and privacy budget increase. This
highlights that reasonable privacy-utility trade-offs are possible for differentially private RL
algorithms in population processes. Our theoretical findings are validated by experiments
performed on a simulated epidemic control problem over large population sizes.

1 Introduction

The increasing adoption of Reinforcement Learning (RL) algorithms in many practical applications such
as digital marketing, finance, and public health (Mao et al., 2020; Wang & Yu, 2021; Charpentier et al.,
2020) have led to new, challenging privacy considerations for the research community. This is a particularly
important issue in domains like healthcare where highly sensitive personal information is routinely collected
and the use of such data in training RL algorithms must be handled carefully, in light of successful privacy
attacks on RL algorithms (Pan et al., 2019). Privacy Preserving Reinforcement Learning is an active research
area looking to address these concerns, mostly via the now widely accepted concept of Differential Privacy
(DP) (Dwork et al., 2006), which confers formal ‘plausible deniability’ guarantees for users whose data are
used in training RL algorithms, thus offering them privacy protection.

In this paper, we consider the setting where an RL agent interacts with a population of individuals and
investigate how each individual’s differential privacy can be protected. We assume interactions between
individuals are not visible to the RL agent but the agent receives population-level statistics at every time
step and can perform actions that affect the entire population. This class of environments, which we call
population processes, models settings such as the control of epidemic spread by government interventions
(Kompella et al., 2020). As an individual’s data is collected across multiple interactions, our goal is to ensure
that an individual’s data contributions over all interactions are differentially private. To the best of our
knowledge, existing approaches to privacy-preserving reinforcement learning, which we survey next in § 1.1,
do not cater to this natural and important problem setting and are unable to exploit the structure of the
problem.
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1.1 Related Work

The earliest works to consider differential privacy in a reinforcement learning context were focused on the
bandit or contextual bandit settings (Guha Thakurta & Smith, 2013; Mishra & Thakurta, 2015; Tossou
& Dimitrakakis, 2016; 2017; Shariff & Sheffet, 2018; Sajed & Sheffet, 2019; Zheng et al., 2020; Dubey &
Pentland, 2020; Ren et al., 2020; Chowdhury & Zhou, 2022b; Azize & Basu, 2022). A key negative result
is in Shariff & Sheffet (2018), who show that sublinear regret is not possible under differential privacy in
contextual bandits, a result which also holds in the reinforcement learning setting.

Differentially private reinforcement learning beyond the bandit setting has been primarily considered in a
personalization context. In Balle et al. (2016), the authors study policy evaluation under the setting where
the RL algorithm receives a set of trajectories, and a neighbouring dataset is one in which a single trajectory
differs. In a regret minimization context, there is a body of work on designing RL algorithms to satisfy
either joint differential privacy (Vietri et al., 2020; Luyo et al., 2021; Chowdhury & Zhou, 2022a; Ngo et al.,
2022; Zhou, 2022; Qiao & Wang, 2023) or local differential privacy (Garcelon et al., 2020; Luyo et al., 2021;
Chowdhury & Zhou, 2022a; Liao et al., 2023). In all of these works, the RL algorithm is framed as interacting
with users in trajectories or episodes, with each trajectory representing multiple interactions with a single user.
A neighbouring dataset is then defined with respect to a neighbouring trajectory. Such DP-RL approaches
cannot be easily adapted for privacy protection in population processes, where (i) each interaction is with
an entire population (rather than a single individual); (ii) a specific individual is typically not sampled in
consecutive time steps so there is not a corresponding notion of a trajectory; and (iii) an individual’s data
could actually be present across all time steps, a low-probability event that we nevertheless have to handle.

In Wang & Hegde (2019), the authors analyse the performance of deep Q-learning (Mnih et al., 2015) under
differential privacy guarantees specified with respect to neighbouring reward functions. This notion of privacy
makes natural sense when the reward function is viewed as an individual’s private preferences but is also
inapplicable to our setting as it does not consider the privacy of the state.

In relation to our application domain and experimental results, the control of epidemics is a topical subject
given the prevalence of COVID-19 in recent years and many different practical approaches have been developed
(Arango & Pelov, 2020; Charpentier et al., 2020; Colas et al., 2020; Berestizshevsky et al., 2021; Kompella
et al., 2020; Chen et al., 2022). Whilst the preservation of individual privacy has been considered in the
context of public release of population-level epidemic statistics (Dyda et al., 2021; Li et al., 2023), we are not
aware of other work that achieves individual privacy preservation in the modelling and control of epidemics
using reinforcement learning.

1.2 Contributions

The main questions we address in this paper are the following:

1. For an RL algorithm interacting with a population of individuals, what is the right notion of individual
privacy we should care about, and can that individual privacy be protected using differential privacy?

2. Assuming the answer to the first question is positive, are good privacy-utility trade-offs possible for
differentially private RL algorithms in population processes?

We answer the first question in two parts. We first show through a concrete example (see Example 4) that
highly correlated data is possible in population processes and that some sensitive information that one may
naturally wish to protect, like a person’s infection status during an epidemic, cannot always be protected.
We then give, using the general Pufferfish Privacy framework (Kifer & Machanavajjhala, 2014), a precise
semantic definition of the secrets around individual participation in samples that can actually be protected
and show its equivalence to k-fold adaptive composition of DP mechanisms (see Lemma 1). Building on that,
we then describe a family of DP-RL algorithms for population processes and show how differential privacy
and correlated data are somewhat orthogonal issues in our set up.

On the second question, we note our DP-RL solution is a meta algorithm that takes any RL algorithm
(whether online/offline or value-based/policy-based) as a black box and make it differentially private. Whilst
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such a modular solution is desirable for its simplicity and generality, the trade-off is a more difficult control
problem because the underlying environment becomes partially observable to the RL agent. Standard methods
for dealing with partial observability typically require expensive state-estimation techniques or sampling based
approximations (Monahan, 1982; Shani et al., 2013; Kurniawati, 2022). Instead of using these methods, we
analyze the performance of standard RL algorithms as the sampled population size N and privacy budget ϵ
increases. Under some assumptions, we obtain the following bound on the approximation error under privacy
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where Q∗ is the optimal value function for a given (arbitrary) population process M , Q̃∗ is the optimal value
function for the privatized form of M , and K is the dimension of the state space. (The precise statement
is Theorem 3 in § 4.2.) Note that the RHS of (1) goes to 0 as N and ϵ increases, and that such a result
is not possible in the personalization setting (Shariff & Sheffet, 2018). Whilst this result does not imply a
finite-time sample complexity guarantee, we validate empirically on an epidemic control problem simulated
over large graphs that our DP-RL algorithm behaves well as the population size and privacy budget increases,
as suggested by (1). Our results demonstrate that reasonable privacy-utility trade-offs are certainly possible
for differentially private RL algorithms in population processes.

2 Preliminaries

2.1 Reinforcement Learning and Markov Decision Processes

We consider a time-homogeneous Markov Decision Process (MDP) M = (S,A, P, r, γ) with state space S,
action space A, transition function P : S ×A → D(S), reward function r : S ×A → [0, rmax], discount factor
γ ∈ [0, 1). The notation D(S) defines the set of distributions over S. The rewards are assumed to be bounded
between 0 and rmax ∈ R. A stationary policy is a function π : S → D(A) specifying a distribution over actions
based on a given state, i.e. at ∼ π(· | st). A stationary deterministic policy assigns probability 1 to a single
action in a given state. With a slight abuse of notation, we will define a stationary deterministic policy to have
the signature π : S → A. Let Π denote the set of all stationary policies. The action-value function (Q-value)
of a policy π is the expected cumulative discounted reward Qπ(s, a) = r(s, a) + EP,π [

∑∞
t=1 γtr(st, at)], where

the expectation is taken with respect to the transition function P and policy π at each time step. The value
function is defined as V π(s) = Ea∼π(· | s)[Qπ(s, a)]. The Q-value satisfies the Bellman equation given by
Qπ(s, a) = r(s, a) + γEP [V π(s′)].

When considering the optimal policy, define V ∗(s) = supπ∈Π V π(s) and Q∗(s, a) = supπ∈Π Qπ(s, a). The
optimal action-value function satisfies the bellman optimality equation given by Q∗(s, a) = r(s, a) +
γEP [maxa′ Q∗(s′, a′)]. There exists an optimal stationary deterministic policy π∗ ∈ Π such that V ∗(s) =
V π∗(s). The greedy policy π∗(s) = arg maxa Q∗(s, a) is in fact an optimal policy.

We primarily consider the case when S is finite. In this case, it is helpful to view our functions as vectors and
matrices. We use P to refer to a matrix of size (|S| × |A|)× |S| where P s′

sa is equal to P (s′ | s, a) and Psa is a
length |S| vector denoting P (· | s, a). Similarly, we can view V π as a vector of length |S| and Qπ and r as
vectors of length |S| × |A|. The Bellman equation can now be expressed as

Qπ = r + γPV π.

2.2 Stochastic Population Processes

A stochastic population process models a stochastic system evolving over a collection of individuals and
allows for heterogeneous interactions between them. Consider a population of N∗ individuals indexed by
the set [N∗] = {1, . . . , N∗}. Individual i’s status at time t is given by the random variable Xt,i ∈ [K], which
takes one of K values, and Xt = (Xt,1, . . . , Xt,N∗) denotes the random vector of all individuals’ status. A
graph at time t is denoted by Gt = (V, Et) where the nodes V represent the individuals and Et represent
the interactions between individuals at time t. We assume that the total number of individuals is fixed
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but the edges evolve over time. To denote sequences, let Y1:t = (Y1, . . . , Yt) and Y<t = (Y1, . . . , Yt−1). The
graph at time t evolves according to a distribution Gt ∼ P (· |G<t). An individual’s status depends only
upon the previous graph and the previous status of its neighbours, thus satisfying the Markov property,
and can be expressed as P (Xt |G<t, X<t) = P (Xt |Gt−1, Xt−1). We will assume that individuals’ initial
status are drawn independently from a distribution P (X0 |G<0, X<0) = P (X0) and are not dependent on
any interaction graph.

2.3 Differential Privacy

Differential privacy is now a commonly accepted definition of privacy with good guarantees even under
adversarial settings (Dwork et al., 2006). The differential privacy definition allows different notions of privacy
by defining the concept of a neighbouring dataset appropriately. The following definition is a common choice
(Dimitrakakis et al., 2017):
Definition 1 (Differential Privacy). A randomized mechanism M : Xn → U is (ϵ, δ)-differentially private if
for any D ∈ Xn and for any measurable subset Ω ⊆ U

P (M(D) ∈ Ω) ≤ eϵP (M(D′) ∈ Ω) + δ,

for all D′ in the Hamming-1 neighbourhood of D. That is, D′ may differ in at most one entry from D: there
exists at most one i ∈ [n] such that Di ̸= D′

i.

A standard approach to privatising a query over an input dataset is to design a mechanism M that samples
noise from a carefully scaled distribution and add it to the true output of the query. To scale the noise level
appropriately, the sensitivity of a query is an important parameter.
Definition 2 (ℓ1 sensitivity). Let f be a function f : X → U . Let d : X ×X → {0, 1} be a function indicating
whether two inputs are neighbours. The sensitivity of f is defined as ∆f = supx,x′∈X :d(x,x′)=1 ∥f(x)− f(x′)∥1.

Differential privacy has several well known properties, such as composing adaptively and being preserved
under post-processing, that we will make use of.

2.4 Pufferfish Privacy.

Pufferfish privacy was introduced in Kifer & Machanavajjhala (2014) and proposes a generalization of
differential privacy from a Bayesian perspective. In the Pufferfish framework, privacy requirements are
instantiated through three components: (i) S, the set of secrets representing functions of the data that we
wish to protect; (ii) Q ⊆ S× S, a set of secret pairs that need to be indistinguishable to an adversary; and
(iii) Θ, a class of distributions that can plausibly generate the data. Typically Θ is viewed as the beliefs that
an adversary holds over how the data was generated. Pufferfish privacy is defined as follows:
Definition 3 (Pufferfish Privacy). Let (S,Q, Θ) denote the set of secrets, secret pairs, and data generating
distributions and let D be a random variable representing the dataset. A privacy mechanism M is said to
be (ϵ, δ)-Pufferfish private with respect to (S,Q, Θ) if for all θ ∈ Θ, D ∼ θ, for all (si, sj) ∈ Q, and for all
w ∈ Range(M), we have

e−ϵ ≤ P (M(D) = ω | si, θ)− δ

P (M(D) = ω | sj , θ) ≤ eϵ, (2)

where si, sj are such that P (si | θ) ̸= 0, P (sj | θ) ̸= 0.

For δ = 0, applying Bayes Theorem to Equation 2 shows that Pufferfish privacy can be interpreted as
bounding the odds ratio of si to sj ; an attacker’s belief in si being true over sj can only increase by a factor
of eϵ after seeing the mechanism’s output. The main advantages of Pufferfish privacy are that it provides a
formal way to explicitly codify what privacy means and what impact the data generating process has. This
has been used to clarify, among other things, the semantics of differential privacy protection in the presence
of possibly correlated data in Kifer & Machanavajjhala (2014), a topic that motivated multiple attacks and
possible solutions (Kifer & Machanavajjhala, 2011; Liu et al., 2016; Srivatsa & Hicks, 2012; Zhao et al., 2017;
Yang et al., 2015; Almadhoun et al., 2020). We will similarly use the Pufferfish framework to make the
semantics of our privacy guarantees in population processes, which can have correlated data, explicit.
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3 Problem Setting

3.1 Model

We now describe how the problem of controlling population processes is modelled as an MDP and also the
underlying data-generation process.

The environment E is modelled as a stochastic population process evolving over N∗ individuals. The RL agent
is denoted by A . We assume there is a trusted data curator D that collects the data from the environment.
At each time step, N individuals are randomly sampled (not necessarily uniformly) and their potentially
sensitive data is collected by the data curator. We consider the case where the interactions between individuals
are unknown, i.e. D has no access to the graph sequence G1:T . This models many problem domains such as
the control of epidemics where the underlying interactions between people in a population are not visible and
decisions can only be made based upon population statistics. We consider the case of histogram queries. The
agent A picks actions at each time step depending upon the received state and also computes its reward
rt = r(st, at−1) as a function of the current state and previous action. In summary, the environment, agent,
and data curator interact in the following manner, given an initial graph G0 and status X0 generated from
some distribution.

For time t = 1, . . . , T :

1. E generates the status for all individuals Xt ∼ P (· |Gt−1, Xt−1), with Xt = (Xt,1, . . . , Xt,N∗).

2. D samples a subset Lt ⊆ [N∗] of size N and produces the dataset Dt = (Xt,i)i∈Lt
.

3. D answers histogram query st = q(Dt) = 1
N

∑
i∈Lt

(I(Xt,i = α))α∈[K] and computes reward
rt = r(st, at−1).

4. A receives state st and reward rt and forms the transition sample (st−1, at−1, st, rt) to learn from.

5. A picks the next action at ∼ πt(· | st).

6. The graph Gt ∼ P (· |Gt−1, at) is sampled depending on the last graph and action selected.

The state space S thus consists of any vector z ∈ [0, 1]K that satisfies
∑

i∈[K] zi = 1 and zi = ci/N for some
ci ∈ {0, 1, . . . , N}. The action space A is application-dependent. In general, we consider the setting where a
selected action at ∈ A modifies the edges in the graph. For example an action could correspond to cutting all
edges for a subset of nodes, emulating the effect of ‘quarantining’ individuals in an epidemic control context.
Thus the graph at time t depends upon the action chosen and is distributed according to P (Gt |Gt−1, at).
These underlying transitions on individuals’ states and the graph structure will induce a transition function
P : S ×A → D(S) over the state space that implicitly captures the impact of the agent’s actions.

An individual’s data is exposed via the state histogram query st = q(Dt). The state query has sensitivity
∆q = 2/N as using individual j’s data instead of individual i’s data can change the counts in at most two
bins of the histogram. Additionally an individual could be sampled multiple times by D over T interactions
so we need to ensure that their combined data over T steps are treated in a differentially private way.
Example 1 (Epidemic Control). Throughout this paper we consider the Epidemic Control problem as a
concrete instantiation of our problem setting. One particular example is the Susceptible-Exposed-Infected-
Recovered-Susceptible (SEIRS) process on contact networks (Pastor-Satorras et al., 2015; Nowzari et al.,
2016; Newman, 2018). An SEIRS process on contact networks is parametrized by a graph G = (V, E),
representing interactions, and four transition rates β, σ, γ, ρ > 0. At any point in time, each individual is in
one of four states: Susceptible (S), Exposed (E), Infected (I), or Recovered (R). If individual i is Susceptible
at time t and has interacted with dt,i individuals who are Infected, then individual i becomes Exposed with
probability 1− (1− β)dt,i . Once Exposed, an individual becomes Infected after Geometric(σ) amount of time.
Similarly, an Infected individual becomes Recovered with Geometric(γ) time and a Recovered individual
becomes Susceptible again with Geometric(ρ) time. At each time t, the state is a histogram representing the
proportion of individuals that are of each status. Instead of allowing all interactions, the agent’s actions allow
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for a subset of nodes to be quarantined for one time step. This has the effect of modifying the graph’s edges
such that quarantined individuals have no edges for a single time step. A typical reward function provides a
cost proportional to the number of individuals quarantined and the number of infected individuals.

S E I R
β σ γ

ρ

Figure 1: Visualisation of the parameters that govern the transitions between states for individuals in the
SEIRS process over contact networks.

Example 2 (Countering Misinformation). The spread of misinformation in online social media is one of
the key threats to society. There is good literature on different (mis)information percolation and diffusion
models (Del Vicario et al., 2016; Van Der Linden, 2022) that take factors like homogeneity and polarisation
into account, as well as containment strategies like running counter-information campaigns to debunk or
‘prebunk’ misinformation, possibly through targeting of influencers in social networks (Budak et al., 2011;
Nguyen et al., 2012; Acemoglu et al., 2023; Ariely, 2023). Designing reinforcement learning algorithms that
can detect and control spread of misinformation in a differentially private manner is another example of our
general problem setting.
Example 3 (Malware Detection and Control). Malware propagation models on large-scale networks (Yu
et al., 2014) and smartphones (Peng et al., 2013) have long been a subject of interest in cyber security, with
more recent work focussing on malware propagation in internet-of-things (Li et al., 2020; Yu et al., 2022;
Muthukrishnan et al., 2021). Designing reinforcement learning algorithms to detect and control the spread
of malware, especially unknown malwares whose signatures can only be discerned from collecting data on
potentially sensitive device-usage behaviour, is also an example of our general problem setting.

3.2 Formalizing Privacy in the Presence of Correlated Data

In this section we clarify the precise privacy protections we will provide under differential privacy in our
problem setting. Protecting privacy in population processes presents some unique issues that are not typically
encountered in the standard application of differential privacy. In particular, correlations between different
individuals’ data can easily arise due to the fact that individuals interact with each other at each time step
and also over multiple time steps. Whilst differential privacy’s guarantees are a mathematical statement
that hold regardless of the process that generated the data, the semantics of these guarantees are often
misinterpreted when it is applied. This leads to misalignment between what one hopes to keep private and
what is actually kept private. We illustrate this with an example.
Example 4. Consider a highly contagious but long recovery flu spreading in a tight-knit community of
N∗ individuals who live in the same location. The dataset is Dt = (Xt,i)i∈Lt

where Lt ⊆ [N∗] denotes a
subset of individuals sampled for their flu status Xt,i ∈ {0, 1}. As the individuals live in the same location,
their interaction graph is a fully connected graph. The goal is to release the number of infected individuals
qt =

∑
i∈Lt

Xt,i at time t whilst still preventing an adversary from detecting whether a particular individual,
say Alice, has the flu at that point in time. If the underlying data generating process is ignored, the statistic qt

has sensitivity 1 and q̃t = qt +Lap(1/ϵ), where Lap(1/ϵ) is the noise generated from the Laplace mechanism, is
an ϵ-differentially private statistic. However, given the flu’s characteristics and the fully connected interaction
graph, we can say with high probability either all individuals or no individuals are infected at any time t.
Thus, an adversary could guess from the value of q̃t which of these two scenarios is the case, thereby also
recovering Alice’s flu status with high probability.

It would be natural to hope that an individual’s flu status could be protected under differential privacy but
Example 4 illustrates that this may not be possible if the data is correlated and the adversary has additional
information about the problem. Solutions like Group Differential Privacy (Dwork & Roth, 2014), which adds
noise proportional to the largest connected component in a graph, and Dependent Differential Privacy (Liu
et al., 2016), which adds noise proportional to the amount of correlation in the data, exist but the amount
of additional noise that is required typically destroys utility. So what can differential privacy protect in
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population processes in general and in special scenarios like Example 4? The answer, as we shall see, is that
differential privacy confers plausible deniability on an individual’s participation or presence in a dataset
sampled from the underlying population, but not the individual’s actual status, which can sometimes be
inferred. Example 4 highlights the need for privacy researchers to be explicit about the data generating
process, the adversary’s assumptions, and what information one wishes to protect. This can be done using
Pufferfish privacy and this is how we will make explicit the guarantees provided by differential privacy in our
problem setting.

Given the data-generation model described in § 3.1, let D1:T be the sequence of sampled datasets, where
Dt = (Xt,i)i∈Lt

denote the dataset produced at time t. Given a subset S of [T ], we first define the boolean
variable σ(i,S) that indicates whether an individual i’s data is present in Dt for each t ∈ S and not anywhere
else:

σ(i,S) :=
( ∧

t∈S

i ∈ Lt

)
∧
( ∧

t∈[T ]\S

i /∈ Lt

)
.

We then define the secret pairs Q as follows, which state, in extensional form, that for each individual i, it is
indistinguishable whether the person’s status exists in a subset of the sampled datasets.

S :=
⋃

i∈[N∗]

⋃
S⊆[T ]:|S|≥1

{σ(i,S)}

Q :=
⋃

i∈[N∗]

⋃
S⊆[T ]:|S|≥1

⋃
R⊆S:|R|≥1

{(σ(i,S), σ(i,S\R)}

The additional element to specify in the Pufferfish framework is the data generating processes Θ, representing
the possible ways an attacker believes the data could have been generated. We define each θ ∈ Θ to be a
parameterization of the form θ := {E , µt,1, . . . , µt,N∗}t=1...T , where E represents the underlying stochastic
population process and is a distribution over the graph and status sequences, and µt,i is the probability that
i ∈ Lt. We assume the attacker also has a distribution over the agent’s policy that is integrated out in E .
Thus, we have

P (D1:T | θ) =
∑
G1:T

∑
X1:T

E (G1:T , X1:T )
T∏

t=1
P (Dt |Xt, θ), (3)

where
P (Dt |Xt, θ) =

∏
i∈Lt

µt,i

∏
j ̸=Lt

(1− µt,j). (4)

We do not place any restriction on E , which models the attacker’s prior belief over the likely sequence of
interactions between individuals in the population and the attacker’s knowledge about the dynamics model of
the underlying population process.

The following result states the equivalence between (ϵ, δ)-Pufferfish privacy with parameters (S,Q, Θ) and
(ϵ, δ)-differential privacy under T -fold adaptive composition (Dwork et al., 2010; Dwork & Roth, 2014). The
full proof is given in Appendix A.
Lemma 1. A family of mechanisms F satisfies (ϵ, δ)-differential privacy under T -fold adaptive composition
iff every sequence of mechanisms M = (M1, . . . ,MT ), with Mi ∈ F , satisfies (ϵ, δ)-Pufferfish privacy with
parameters (S,Q, Θ).

4 Differentially Private Reinforcement Learning

Our solution for differentially private reinforcement learning is presented in Algorithm 1. It is a meta algorithm
that takes as input an MDP environment M , a reinforcement learning algorithm RL, a privacy mechanismM,
and parameters (ϵ, δ) and T that specify the level of privacy that should hold over T interactions between the
agent and the environment. The RL algorithm can be any method that takes a transition sample (s, a, r′, s′)
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Algorithm 1 Differentially Private Reinforcement Learning
1: Input: Environment M = (S,A, r, P, γ), RL algorithm RL : S ×A×R×S ×Π→ Π, Privacy Mechanism
M : S × R→ S, initial state s0 ∈ S.

2: Parameters Privacy parameter ϵ′, number of interactions T .
3: Randomly initialize policy π0.
4: s̃0 =Mϵ′(s0).
5: for t = 0, 1, 2, . . . , T − 1 do
6: ãt ∼ πt(· | s̃t).
7: Receive st+1 ∼ P (· | st, ãt).
8: s̃t+1 =Mϵ′(st+1).
9: r̃t = r(s̃t+1, ãt).

10: πt+1 ← RL((s̃t, ãt, r̃t, s̃t+1), πt).
11: end for

and a policy πold and outputs a new policy πnew = RL((s, a, r′, s′), πold). (Appendix C describes a concrete
instantiation of Algorithm 1 using DQN as the RL algorithm.)

Our approach is to privatise the inputs before the RL algorithm receives them. We begin by first showing
that Algorithm 1 satisfies the privacy guarantees specified in § 3.2. We then characterize the resulting control
problem under our privacy approach before providing a utility bound.

4.1 Privacy Analysis

Algorithm 1 is constructed using differential privacy tools to satisfy (ϵ, δ)-differential privacy under T -fold
adaptive composition. Since an individual’s data is used at each time t to output a state st, we need to
privatise st and ensure that all functions that take st as input are also differentially private. Algorithm 1
does this by privatising every state using an ϵ′-differentially private mechanism (lines 4 and 8). For instance,
the Laplace mechanism with scale parameter 2/Nϵ′ (since ∆q = 2/N) would satisfy ϵ′-differential privacy. As
the state space is discrete and bounded, we also need to project the output from the Laplace mechanism back
to the closest element in the state space. (See Algorithm 2 for more details.) The projection operation is
guaranteed to be differentially private by Lemma 2.
Lemma 2 (Post-processing (Dwork & Roth, 2014)). Let M : Xn → Z be an (ϵ, δ)-differentially private
mechanism and f : Z → Y an arbitrary function. Then the composition f ◦M is (ϵ, δ)-differentially private.

In Algorithm 1, the action ãt is selected using the current policy πt with the privatized state s̃t as input at
every time step (line 6). Once the next state st+1 is sampled, it is immediately privatized to s̃t+1 (lines 7 and
8). The agent then receives reward r̃t = r(s̃t+1, ãt). Since the action ãt and received reward r̃t are functions
of the privatized state, they are also guaranteed private by Lemma 2. Thus, the entire transition sample
received by the RL algorithm is ϵ′-differentially private.

Lemma 3 now states the cumulative privacy guarantee over T interactions.
Lemma 3 (T -fold adaptive composition (Dwork et al., 2010; Dwork & Roth, 2014)). For all ϵ′, δ′, δ ≥ 0, the
class of (ϵ′, δ′)-differentially private mechanisms satisfies (ϵ, T δ′ + δ)-differential privacy under T -fold adaptive
composition for:

ϵ =
√

2T log(1/δ)ϵ′ + Tϵ′(eϵ′
− 1). (5)

Combining Lemma 1, Lemma 2 and Lemma 3 then yields the following result.
Theorem 1. Algorithm 1 satisfies (ϵ, δ)-differential privacy under T-fold adaptive composition, and equiva-
lently (ϵ, δ)-Pufferfish privacy with parameters (S,Q, Θ) as defined in § 3.2.

Truthfulness in Data Collection A related question to privacy protection is an individual’s willingness
to honestly disclose her data to the data curator. For example, in the context of epidemic control, each
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individual i may have a utility function ui : S→ [0, 1] mapping states to a positive real number, with states
that represent high infection rates assigned lower values because they are, perhaps, more likely to attract
a mandated lock-down of the community. Would an individual who is sampled for data collection gain an
advantage by misreporting her true infection status?
Definition 4. Given a (randomized) mechanismM : S→ S, truthful reporting is an ϵ-approximate dominant
strategy for individual i with utility ui and status xi if, for every dataset D and every yi ̸= xi,

Eo∼M(q(D∪{xi})) ui(o) ≥ Eo∼M(q(D∪{yi})) ui(o)− ϵ.

If truth reporting is an ϵ-dominant strategy for every individual in the population, we sayM is ϵ-approximately
dominant strategy truthful.

In McSherry & Talwar (2007), the authors show that any (ϵ, 0)-differentially private mechanism is ϵ-
approximately dominant strategy truthful, which we can see by noting that

Eo∼M(q(D∪{xi})) ui(o) =
∑

o

ui(o)P (M(q(D ∪ {xi})) = 0) ≥
∑

o

ui(o)e−ϵP (M(q(D ∪ {yi})) = 0)

= e−ϵ Eo∼M(q(D∪{yi})) ui(o) ≥ Eo∼M(q(D∪{yi})) ui(o)− ϵ.

The first inequality follows from Definition 1. The second inequality follows by noting that for ϵ < 1, e−ϵ ≥ 1−ϵ.
Note that the argument does not work for (ϵ, δ)-differentially private mechanisms where δ > 0. Algorithm 1
uses only an (ϵ, 0) differentially private mechanism in lines 4 and 8.

4.2 Utility Analysis

We now analyze the utility of our DPRL approach and present a theoretical result that bounds the approxi-
mation error of the optimal value function under privacy from the true optimal value function. The analysis
we provide is asymptotic in nature and serves as an important step in establishing that good solutions are
possible in our problem setting.

Whilst our approach to privacy in Algorithm 1 makes it easy to guarantee the differential privacy of any
downstream RL algorithm, the learning and control problems are made more difficult as the true underlying
process is now unobservable to the agent. Figure 2 visualizes the graphical model under our approach and
highlights that the state, privatized states and actions evolve according to a partially-observable markov
decision process (POMDP).

Unobservable : s0 s1 · · · sT

Observable : ã0 ã1 · · · ãT −1

s̃0 s̃1 · · · s̃T

Figure 2: A graphical model of the underlying state and action sequence under our differentially private
reinforcement learning approach. The true states are unobservable.

One subtle difference between a POMDP and our privatized system however is that the observed reward is
not a direct function of the underlying state as that would constitute a privacy leak. The typical methods for
solving POMDP problems resort to computationally expensive state-estimation techniques or sampling based
approximations (Monahan, 1982; Shani et al., 2013; Kurniawati, 2022). Instead, we analyse the approximation
error when standard MDP RL algorithms are applied directly on the observed privatized states without
resorting to state-estimation. The analysis is done under several assumptions.

9
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Assumption 1 (Ergodicity). The underlying MDP environment is ergodic (Puterman, 2014). An ergodic
MDP ensures that a stationary distribution over states is well defined under any stationary policy.

Assumption 1 is a necessary tool when analyzing the asymptotic performance of RL algorithms and it is
commonly used to ensure that every state-action pair is visited infinitely often (see e.g. Singh et al. (1994)).
Assumption 2 (Lipschitz dynamics). For all s, s′ ∈ S, a ∈ A, there exists L > 0 such that

∥P (· | s, a)− P (· | s′, a)∥1 ≤ L ∥s− s′∥1 .

Since the privatized environment evolves as a POMDP, the distribution for the privatized state s̃t will in
general depend on the entire history of observed states, actions and rewards. However, when an MDP RL
algorithm is directly applied on top of privatized states, the transitions between privatized states are assumed
to be Markovian. The induced transition model will however depend on the asymptotic state distribution
under a behaviour policy generating interactions. For our analysis, we consider an off-policy setting where a
stationary behaviour policy π generates a sequence of privatized states, actions, and rewards. The induced
Markovian transition model P̃ π : S × A → D(S) describes the asymptotic transition probabilities and is
given by

P̃ π(s̃t+1 | s̃t, ãt) =
∑
st∈S

νπ(st | s̃t, ãt)
∑

st+1∈S
P (st+1 | st, ãt)PM(s̃t+1 | st+1). (6)

Here PM(s̃ | s) = P(M(s) = s̃) denotes the distribution of the state privatization mechanism and P (st+1 | st, at)
denotes the transition matrix of the underlying MDP. The transition model P̃ π depends upon the behaviour
policy π through the distribution νπ(st | s̃t, ãt), which is the asymptotic probability of the underlying state
being st under π when s̃t is observed and ãt is performed. Using Bayes theorem, it can be expressed as

νπ(s | s̃, ã) = PM(s̃ | s)νπ(s | ã)∑
s′∈S PM(s̃ | s′)νπ(s′ | ã)

= PM(s̃ | s)νπ(s | ã)
ν̃π(s̃ | ã) , (7)

where νπ(s | ã) denotes the asymptotic probability of the underlying state being s when ã is performed, and
ν̃π(s̃|ã) =

∑
s′∈S PM(s̃ | s′)νπ(s′ | ã). To avoid degenerate cases, we will assume that the behaviour policy is

stochastic and assigns non-zero probability to every action in all states.
Assumption 3. The behaviour policy π is a stochastic policy where ∀s ∈ S,∀a ∈ A, π(a | s) > 0.

Under Assumptions 1 and 3, the distributions νπ(s | ã) and (7) are well defined.

Under our privatisation scheme, the induced MDP on top of privatized states is given by M̃ = (S,A, P̃ π, r, γ).
Note that the reward function does not change as the received rewards are functions of the privatized
states. For any policy π̄ ∈ Π, the Q-value Q̃π̄ in M̃ satisfies the Bellman equation Q̃π̄ = r + γP̃ πṼ π̄ where
Ṽ π̄(s) = Ea∼π̄(· | s)[Q̃π̄(s, a)].

Our analysis is performed using the projected laplace mechanism detailed in Algorithm 2. The projected
laplace mechanism first applies additive noise to the input state as per the standard laplace mechanism. We
require that the privacy mechanism we use has the state space as its output domain. Adding laplace noise no
longer guarantees that the output will be in the state space, and so we take the orthogonal projection back
onto the state space. This operation is guaranteed to be differentially private by Lemma 2.

The projected laplace mechanism satisfies the following tail bound. The proof is provided in Appendix B.
Theorem 2. Let Xt = (Xt,i)i∈Lt

denote a dataset and let s = q(Xt) and s̃ =M(s), whereM is the Projected
Laplace mechanism. Then for all ϵ > 0 and α > 0,

P
(
∥s− s̃∥∞ ≥ α + 1√

2N

)
≤ K exp

(
− Nαϵ

2
√

K

)
.

10
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Algorithm 2 Projected Laplace Mechanism
1: Input: state s ∈ S
2: Parameters: Privacy parameter ϵ, sensitivity parameter ∆q.

3: s′ = s + η, where η ∈ RK and for i ∈ [K], ηi ∼ Lap
(

∆q

ϵ

)
.

4: s̃ = arg mins̄∈S ∥s′ − s̄∥2.
5: Return s̃.

Other privacy mechanisms were also considered but each have their own shortcomings. The exponential
mechanism is a natural choice as it can be configured to output elements of the state space directly but the
exponential mechanism is impractical to sample from. The output domains of additive noise mechanisms
are typically unbounded and need to be modified for our problem setting. Whilst other approaches exist
to bound the output to a particular domain, such as truncating the output (Holohan et al., 2020), we find
working with the orthogonal projection simplifies the analysis. Another reason for working with the projected
laplace mechanism is the fact that it can satisfy ‘pure’ differential privacy (i.e. δ = 0). This is in contrast to
mechanisms like the discrete or continuous gaussian mechanism (Dwork & Roth, 2014; Canonne et al., 2020)
which only satisfy approximate differential privacy (i.e. δ > 0). Since we use adaptive composition, satisfying
approximate differential privacy at each time step would lead to the privacy budget increasing linearly with
T which is undesirable.

Our main utility result is the following bound on the approximation error between the optimal Q value in the
underlying MDP M and the privatized MDP M̃ .
Theorem 3. Let M be the MDP environment and M̃ denote the privatised MDP under an ϵ-differentially
private projected laplace mechanism. Let Q∗ be the optimal value function in M and Q̃∗ be the optimal value
function in M̃ . Then,

∥∥Q∗ − Q̃∗∥∥
∞ ≤ O

(
√

K exp
(
− ϵ

2
√

2K

)
+ K exp

(
−
√

Nϵ
)

+ K
3
2

√
N

)
.

Proof. (Sketch) The full proof is given in Appendix B but we provide a sketch of the main ideas here.

The Simulation Lemma (Kearns & Singh, 2002) can be used to reduce the problem of bounding the Q-value
error to the L1 error ∥Psa− P̃ π

sa∥1 between the transition models. Expanding the definition of P̃ π
sa then allows

us to split into two terms:

∥Psa − P̃ π
sa∥1 ≤

∑
s1∈S

νπ(s1 | s, a)

∥∥Psa − P̄sa

∥∥
1︸ ︷︷ ︸

(one)

+
∥∥P̄sa − P̄s1a

∥∥
1︸ ︷︷ ︸

(two)

 ,

where P̄ (s′ | s1, a) =
∑

s2∈S P (s2 | s1, a)PM(s′ | s2). The first term can be viewed as the error due to privatising
the output state from the transition model and the second term can be viewed as the error due to privatising
the input state to the transition model.

The first term is bound by first applying the Bretagnolle-Huber inequality. The KL divergence between Psa

and P̄sa can be bound by noting that P̄sa is a convolution between the privacy mechanism and the true
transition model. The sum in the convolution can be reduced to a single element, leading to the bound:

∥Psa − P̄ π
sa∥1 ≤ 2

√
1−min

s′
PM(s′|s′),

where PM(s′|s′) denotes the probability of the projected laplace mechanism outputting s′ when the underlying
state is s′. We can show PM(s′|s′) ≥ 1−K exp

(
− ϵ

2
√

2K

)
, thus yielding a bound on term (one).

The second term is first bound by C̃
∑

s1∈S PM(s1 | s)
∥∥P̄sa − P̄s1a

∥∥
1, where C̃ is a constant. For α > 0, let

Bα(s) := {s′ ∈ S : ∥s− s′∥∞ < α+1/
√

2N} be the ℓ∞ ball centred on state s. The sum over s1 is then split into
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Bα(s) and its complement Bc
α(s). The lipschitz property of our transition model and the concentration property

of the projected laplace mechanism then allow us to bound the sum over Bα(s) and Bc
α(s) respectively. Term

(two) is then bound as
∑

s1∈S νπ(s1 | s, a)
∥∥P̄sa − P̄s1a

∥∥
1 by O

(
2K exp

(
− Nαϵ

2
√

K

)
+ LKα + LK√

2N

)
. Choosing

α = 2
√

K√
N

and combining terms then gives the final result.

Theorem 3 highlights how the approximation error scales as the population sample size N and privacy
parameter ϵ increase. For a given K, the approximation error decreases exponentially quickly as ϵ increases
and at a rate of N− 1

2 as N increases. Thus, increasing the sampled population size is an important factor in
attaining good quality solutions for RL in population processes. Importantly, there are components in the
upper bound that depend on only one of N or ϵ. This implies that both quantities must be increased to drive
the error completely to zero. The bound also highlights that performance will degrade when the number of
statuses of interest, K, increases. This is likely a function of the fact that the state space is discrete and
scales exponentially with the dimension; its possible that formulating the problem with a query whose range
is continuous and as a continuous reinforcement learning problem could avoid this issue. Nevertheless, our
theoretical result shows the scaling behaviour of the approximation error and we corroborate this behaviour
in our experiments.

5 Experiments

We present empirical results that corroborate our theoretical findings on the SEIRS Epidemic Control problem
detailed in § 3. Our experiments on the Epidemic Control problem are representative of the class of population
process environments as alternate problems will primarily differ in their transition dynamics. We encapsulate
this by running experiments that vary the graph structure, population size, and transition parameters.

Table 1: Transition parameters for each experiment.

Experiment β σ γ ρ
1 0.3 0.5 0.143 0.015
2 0.5 0.1 0.15 0.01
3 0.2 0.3 0.1 0.01

We conduct three experiments. Each experiment corresponds to a different set of transition parameters for
the SEIRS epidemic model (see Example 1) and the transition parameters used in each experiment are listed
in Table 1. A graphical representation of the transition parameters and how they govern state transitions is
shown in Figure 1. Every run of each experiment is conducted over T = 2e5 steps and the sample size taken
to be 90% of the population size.

In each experiment the Epidemic Control problem is simulated over four large social networks from the
Stanford Large Graph Network Dataset (Leskovec & Krevl, 2014). Table 2 lists the details of the datasets
used, including the number of nodes and edges in each graph. These social networks represent reasonable
models of social interactions in a population. The state space for each of these models is O(NK), and that is
computationally challenging for RL algorithms.

Table 2: Summary of network datasets used in experiments.

Dataset Name Nodes Edges
Slashdot (Leskovec et al., 2009) 82K 82,168 948,464

Twitch (Rozemberczki & Sarkar, 2021) 168k 168,114 6,797,557
Gowalla (Cho et al., 2011) 196K 196,591 950,327

Youtube (Yang & Leskovec, 2012) 1.1M 1,134,890 2,987,624

12
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On each graph, the agent has access to 5 actions {Quarantine(i) : i ∈ {0, 0.25, 0.5, 0.75, 1.0}}, where
Quarantine(i) quarantines the top ith percent of nodes ranked by degree centrality by modifying the interaction
matrix in the way described in § 3. The reward function is given by r(st, at) = −(αI(st) + (1 − α)C(at))
and is taken as a convex combination between two functions I(st) and C(at). The function I(st) returns the
proportion of Exposed and Infected individuals at time t and C(at) returns the proportion of individuals
quarantined by action at. We set α = 0.8 in all experiments.

For each graph, we run simulations that vary the population size and the target cumulative privacy budget ϵ
to see how the RL algorithm’s performance changes as these key variables change. For given target cumulative
privacy parameters (ϵ, δ), we set the per-step privacy budget as

ϵ′ = f(ϵ, δ) = ϵ

2
√

2T log(1/δ)
, (8)

and δ′ = 0. Under Lemma 3, setting the per-step privacy budget in this manner only satisfies the target value
of ϵ for a certain range of values for δ. As the value of δ decreases, the gap between the privacy achieved and
the target privacy widens. In practice, ϵ values under 10 are of interest and we find that this can be achieved
when T = 2e5 if δ ≤ 10−2. For more details see Figure 5, Appendix C.

The RL algorithm we use is the DQN algorithm (Mnih et al., 2015) initialized with an experience replay buffer
(Lin, 1992). We refer to its differentially private version as DP-DQN. DP-DQN can only store privatized
transitions in its replay buffer. The DQN algorithm and the environment interact in an online fashion
and exploration is performed using epsilon-greedy. The projected laplace mechanism was used as the state
privatisation mechanism. A full description of the DP-DQN algorithm, a concrete algorithm for computing
the projected laplace mechanism, and hyperparameters used is provided in Appendix C.

5.1 Results

Figure 3: Private reward received by DP-DQN in Experiment 1 (top row), Experiment 2 (middle row), and
Experiment 3 (bottom row).

Figures 3 and 4 plot the private reward and true reward performance of DP-DQN across all experiments.
In each plot, we compare the performance of DP-DQN under differential privacy as ϵ is varied against the
default performance of DP-DQN under no privacy. Each curve displays the mean and standard deviation
over five random seeds. The privacy parameter δ was kept fixed across all runs at δ = 10−5. In all plots, the
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blue curve indicates the default performance of DP-DQN without differential privacy. Note that the blue
curve does not change between the corresponding true reward and private reward plots.

The plots in Figure 3 show the performance of DP-DQN increases as ϵ increases. Notably, the performance
clusters close to the default performance under low privacy (i.e. ϵ ≥ 5), and is indistinguishable from the
default performance in the 1.1M graph. Additionally as the population size increases, the overall performance
also improves. This falls in line with intuition as the noise added under a given privacy parameter has
absolute scale and as the population size increases, the relative error due to privacy is much smaller. On the
1.1M graph we additionally plot the performance of DP-DQN under ϵ = 0.1. Thus, the empirical results
demonstrate in a finite sample setting the relationship between performance and the population size and
privacy parameters highlighted by Theorem 3.

Figure 4: True reward received by DP-DQN in Experiment 1 (top row), Experiment 2 (middle row), and
Experiment 3 (bottom row).

Whilst the results in Figure 3 are useful for corroborating our theoretical experiments, it is also important to
investigate how the policy learnt under our privacy setup performs. Figure 4 plots the true reward received by
DP-DQN across different graphs as ϵ varies. Overall, DP-DQN’s performance increases as ϵ increases across
all networks. Additionally, performance under privacy is clustered much closer to the default performance
across all ϵ values in the 82k and 196k graphs than in the private reward case. The plots for the 1.1M
graph show that performance under high privacy is indistinguishable from default performance. The gap in
performance between the high privacy setting (i.e. ϵ ∈ {0.1, 0.5}) and the low privacy setting on the 1.1M
graph suggest that in some cases there may be a threshold value for ϵ that needs to be crossed to obtain
almost optimal performance. Thus, we find that the policy learnt under our privacy setup can perform well
and improves, drastically in some cases, as the privacy budget increases.

6 Limitations and Future Work

One limitation of our theoretical results is that they are asymptotic in nature. This analysis provides
guarantees on the error between the solution under privacy and the true solution without privacy, but does
not provide any guidance on whether such a solution can be learned. Nevertheless, our empirical results
provide some confidence the solutions found by learning algorithms will scale the way our results predict.
Also, understanding the asymptotic properties of a problem setting is an important first step. Constructing
and proving sublinear-regret algorithms in our problem setting is important future work. Additionally, whilst
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we have shown experimentally that the policy learnt under privacy can perform well, it would be useful to
bound this performance theoretically and is the subject of further investigation.

Whilst our approach to achieving differential privacy is desirable as it is agnostic to the RL algorithm itself,
it leaves open the possibility that the same privacy guarantees could be achieved by directly modifying an RL
algorithm. Such an approach may be able to better deal with higher dimensional state spaces, which can
adversely impact the approximation error, and is one of the limitations of our approach. Our analysis is also
performed under some regularity assumptions; removing these assumptions would provide more generally
applicable theoretical guarantees and is an interesting topic for future research.

Impact Statement

As reinforcement learning algorithms see wider adoption and begin interacting with humans and their data,
issues around protecting privacy become more pertinent. Our work can be seen as providing a promising
start and solid theoretical foundation to providing privacy protections in an important problem class where
reinforcement learning may be applied in the future.
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Appendix

A Proof of Lemma 1

Lemma 1. A family of mechanisms F satisfies (ϵ, δ)-differential privacy under T -fold adaptive composition
iff every sequence of mechanisms M = (M1, . . . ,MT ), with Mi ∈ F , satisfies (ϵ, δ)-Pufferfish privacy with
parameters (S,Q, Θ) as defined in Section 3.2.

Proof. We first show T -fold adaptive composition implies (ϵ, δ)-Pufferfish privacy.

Suppose M = (M1, . . . ,MT ) satisfies (ϵ, δ) differential privacy under T -fold adaptive composition. Let D1:T
be a random variable denoting the sequence of databases. Given an arbitrary θ, secret σi,S , we have for each
non-empty R ⊆ S,

P (M(D1:T ) = y1:T |σ(i,S), θ)

=
∑
G1:T

∑
X1:T

∑
D1:T | σ(i,S)

P (G1:T , X1:T | θ)P (D1:T = D1:T |G1:T , X1:T , σ(i,S), θ)P (M(D1:T ) = y1:T )

≤ δ + eϵ
∑
G1:T

∑
X1:T

∑
D1:T | σ(i,S)

P (G1:T , X1:T | θ)P (D1:T = D1:T |G1:T , X1:T , σ(i,S), θ)P (M(D′
1:T ) = y1:T ), (9)

where D′
1:T is obtained from D1:T by removing individual i’s data from Dt, t ∈ R. The inequality (9) follows

from the property of T-fold adaptive composition:

max
ω:P (M(D1:T )=ω)≥δ

ln P (M(D1:T ) = ω)− δ

P (M(D′
1:T ) = ω) ≤ ϵ. (10)

Given a D1:T satisfying σ(i,S), we have

P (D1:T = D1:T |G1:T , X1:T , σ(i,S), θ) =
[∏

t∈S

P (Dt = Dt |Xt, i ∈ Lt, θ)
][ ∏

t∈T \S

P (Dt = Dt |Xt, i /∈ Lt, θ)
]
.

Given D′
1:T is obtained from D1:T as described above, it satisfies σ(i,S\R) and we have

P (D1:T = D′
1:T |G1:T , X1:T , σ(i,S\R), θ) =[∏

t∈R

P (Dt = D′
t |Xt, i ̸= Lt, θ)

][ ∏
t∈S\R

P (Dt = Dt |Xt, i ∈ Lt, θ)
][ ∏

t∈T \S

P (Dt = Dt |Xt, i /∈ Lt, θ)
]
.

For each t ∈ R, we have

P (Dt = Dt |Xt, i ∈ Lt, θ) = P (Dt = D′
t |Xt, i /∈ Lt, θ) (11)

since, by Equation (4), both the LHS and RHS of (11) are equal to∏
j∈Lt\{i}

µt,j

∏
j∈[N∗]\Lt}

(1− µt,j).

We have thus established that

P (D1:T = D1:T |G1:T , X1:T , σ(i,S), θ) = P (D1:T = D′
1:T |G1:T , X1:T , σ(i,S\R), θ). (12)

Substituting Equation (12) into (9), and noting that the innermost summation
∑

D1:T | σ(i,S)
in (9) can be

rewritten in the equivalent form
∑

D′
1:T | σ(i,S\R)

, allows us to claim

P (M(D1:T ) = y1:T |σ(i,S), θ) ≤ δ + eϵP (M(D1:T ) = y1:T |σ(i,S\R), θ).
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Given θ ∈ Θ, i ∈ [N∗], S ⊆ [T ] and R ⊆ S are all arbitrary, we have shownM satisfies (ϵ, δ)-Pufferfish privacy
with parameters (S,Q, Θ).

We next show (ϵ, δ)-Pufferfish privacy implies T -fold adaptive composition.

Suppose M = (M1, . . . ,MT ) satisfies (ϵ, δ) Pufferfish privacy with parameters (S,Q, Θ). We show for any
pair of neighbouring databases there is a θ ∈ Θ that preserves differential privacy.

Let D1:T be an arbitrary sequence of datasets. For each individual i in D1:T , let D′
1:T be obtained from D1:T

by removing individual i’s data from one or more of the datasets. Thus, there exists S and R ⊆ S such that
D1:T satisfies σ(i,S) and D′

1:T satisfies σ(i,S\R).

We choose θ = {(E , µt,1, . . . , µt,N∗}t=1..T to be the following. E can be any stochastic population process.
For each t ∈ S, define µt,i = 1/2, and µt,j = 1 for each j ∈ Lt \ S and µt,k = 0 for each k /∈ Lt. And for each
t /∈ S, define µt,j = 1 for each j ∈ Lt and µt,k = 0 for each k /∈ Lt. Given M satisfies (ϵ, δ) Pufferfish privacy,
we have for any y1:T :

P (M(D1:T ) = y1:T |σ(i,S), θ) ≤ eϵP (M(D1:T ) = y1:T |σ(i,S\R), θ) + δ (13)
⇔P (M(D1:T ) = y1:T |σ(i,S), θ) ≤ eϵP (M(D′

1:T ) = y1:T |σ(i,S\R), θ) + δ (14)
⇔P (M(D1:T ) = y1:T | θ) ≤ eϵP (M(D′

1:T ) = y1:T | θ) + δ (15)

Step (14) follows because of all the dataset sequences that can be generated using θ, only D1:T satisfies σ(i,S)
and only D′

1:T satisfies σ(i,S\R). Step (15) follows because P (σ(i,S) | θ) = P (σ(i,S\R) | θ) = (1/2)|S|.

Choosing θ ∈ Θ in this manner for all neighbouring database sequences and repeating the calculations proves
the final result.

In the proof of Lemma 1, we have only considered neighbouring datasets where an individual’s data is dropped.
The case when a neighbouring dataset D′ is obtained from a dataset D by replacing an individual i’s data
with another individual j’s data, where j is not in D, can be formulated using the following secrets and secret
pairs:

σ(i,S) :=
( ∧

t∈S

i ∈ Lt

)
∧
( ∧

t∈[T ]\S

i /∈ Lt

)

σ(i,S(W )) :=
( ∧

t∈S\W|1

i ∈ Lt

)
∧
( ∧

t∈[T ]\(S\W|1)

i /∈ Lt

)
∧
( ∧

(t,j)∈W

j ∈ Lt

)
S′ :=

⋃
i∈[N∗]

⋃
S⊆[T ]:|S|≥1

{σ(i,S)}

Q′ :=
⋃

i∈[N∗]

⋃
S⊆[T ]:|S|≥1

⋃
W ={(t,j) : t∈R,j∈[N∗]\S}

R⊆S∧|R|≥1

{(σ(i,S), σ(i,S(W ))}

In the above, given W = {(t, x)}, we define W|1 = {t : ∃x.(t, x) ∈ W}. Using very similar arguments, one
can show that (ϵ, δ) differential privacy under T-fold adaptive composition is equivalent to (ϵ, δ) Pufferfish
privacy with parameters (S′,Q′, Θ).

For each of the secret pairs (s1, s2) ∈ Q′, the Pufferfish privacy guarantees that

e−ϵ ≤ P (s1 |M(D1:T ) = ω, θ)
P (s2 |M(D1:T ) = ω, θ)

/
P (s1 | θ)
P (s2 | θ) ≤ eϵ. (16)

By inspecting the proof of Lemma 1, it is clear that secret pairs that represent an individual having two
different status at a given time cannot be accommodated, and this is consistent with Example 4.
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B Utility Analysis Proofs

B.1 Laplace and Projected Laplace Mechanism Properties

The mechanism we consider using is the projected laplace mechanism. Denote by ML the laplace mechanism
which outputs s′ =ML(s) = s + (Y1, . . . , YK), Yi ∼ Lap(∆q/ϵ). The projected laplace mechanism outputs
s̃ =M(s) by first applying the laplace mechanism s′ =ML(s) and then takes the ℓ2 projection back onto
the state space, i.e. s̃ = arg mins̃∈S ∥s̃− s′∥2.

A concentration bound for the Laplace mechanism is given as follows.
Theorem 4 (Dwork & Roth (2014)). Let Xt = (Xt,i)i∈Lt

denote a dataset, s = q(Xt) and s′ =ML(s). For
ϵ > 0 and δ ∈ (0, 1],

P
[
∥s− s′∥∞ ≥ ln

(
K

δ

)
·
(

∆q

ϵ

)]
≤ δ.

The following is a simple corollary of Theorem 4.
Corollary 1. Let Xt = (Xt,i)i∈Lt denote a dataset and let s = q(Xt) and s′ =ML(s). Then for ϵ > 0 and
α > 0,

P (∥s− s′∥∞ ≥ α) ≤ K exp
(
−Nαϵ

2

)
.

We now prove Theorem 2, a concentration bound for the projected laplace mechanism.
Theorem 2. Let Xt = (Xt,i)i∈Lt denote a dataset and let s = q(Xt) and s̃ = M(s), where M is the
Projected Laplace mechanism. Then for all ϵ > 0 and α > 0,

P
(
∥s− s̃∥∞ ≥ α + 1√

2N

)
≤ K exp

(
− Nαϵ

2
√

K

)
.

Proof. First, define P∆K
(s) = arg mins′∈∆K

∥s′ − s∥2 and PS(s) = arg mins′∈S ∥s′ − s∥2 as the ℓ2 projections
onto the K − 1 probability simplex ∆K and the state space S, noting that S ⊂ ∆K . Letting s′ =ML(s), we
can express s̃ as s̃ =M(s) = PS(s′).

Rather than finding an upper bound on P(∥s− s̃∥∞ ≥ α), we instead find a lower bound on P(∥s− s̃∥∞ < α).
Note that the ℓ∞ ball of radius α (actually a hypercube) has greater volume than the ℓ2 ball of radius α.
Thus,

P (∥s− s̃∥∞ < α) ≥ P (∥s− s̃∥2 < α) . (17)

Now define the following sets:

A :=
{

s′ ∈ RK : ∥s− PS(s′)∥2 < α + 1√
2N

}
B :=

{
s′ ∈ RK : ∥s− P∆K

(s′)∥2 < α
}

Note that PS(s′) must be a point that minimizes the ℓ2 distance to P∆K
(s′), as P∆K

(s′) is the minimum
distance to the simplex ∆K and minimizing the distance to S thus involves minimizing the distance along
∆K from P∆K

(s′). Also for two neighbouring points s1, s2 ∈ S (i.e. s1 ̸= s2 and closest in ℓ2 distance), we
must have two dimensions i ̸= j where s1,i = s2,i − 1

N and s1,j = s2,i + 1
N and s1,k = s2,k for k ̸= i, j. Thus

the minimum distance between two neighbouring points is ∥s1 − s2∥2 =
√

2
N and PS(s′) can be at most 1√

2N

away from P∆K
(s′). Then for s′ ∈ B, we have:

∥s− PS(s′)∥2 ≤ ∥s− P∆K
(s′)∥2 + ∥P∆K

(s′)− PS(s′)∥2

≤ α + 1√
2N

.
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Thus s′ ∈ B =⇒ s′ ∈ A, implying B ⊆ A and giving us P(A) ≥ P(B) or equivalently:

P
(
∥s− PS(s′)∥2 < α + 1√

2N

)
≥ P (∥s− P∆K

(s′)∥2 < α) . (18)

Let θ ∈ [0, π
2 ] denote the angle between s− s′ and the plane ∆K . Since P∆K

(s′) is the orthogonal projection,
we have ∥s− s′∥2 = ∥s− P∆K

(s′)∥2 cos−1(θ). Then we have:

P (∥s− P∆K
(s′)∥2 < α) = P

(
∥s− s′∥2 < α cos−1(θ)

)
(a)
≥ P

(
∥s− s′∥∞ <

α cos−1(θ)√
K

)
= 1− P

(
∥s− s′∥∞ ≥

α cos−1(θ)√
K

)
(b)
≥ 1−K exp

(
−Nαϵ cos−1(θ)

2
√

K

)
, (19)

where (a) follows as {s′ ∈ RK : ∥s− s′∥∞ ≤ α/
√

K} ⊆ {s′ ∈ RK : ∥s− s′∥2 ≤ α} – the former is a hypercube
with side length 2α/

√
K sitting completely inside the ℓ2 ball of radius α – and (b) follows by Corollary 1.

Combining (17), (18) and (19) then gives us:

P
(
∥s− s̃∥∞ < α + 1√

2N

)
≥ 1−K exp

(
− Nαϵ

2
√

K

)
,

where we drop cos−1(θ) as cos−1(θ) ∈ [1,∞] for θ ∈ [0, π
2 ]. Thus, we have:

P
(
∥s− s̃∥∞ ≥ α + 1√

2N

)
= 1− P

(
∥s− s̃∥∞ < α + 1√

2N

)
≤ K exp

(
− Nαϵ

2
√

K

)
.

B.2 Additional Lemmas

The Simulation Lemma (Kearns & Singh, 2002; Agarwal et al., 2022) lets us bound the value function error
in terms of the error in the transition functions.
Lemma 4 (Simulation Lemma). Let M = (S,A, r, P, γ) and M̃ = (S,A, r, P̃ , γ) be two MDPs that differ
only in the transition model. Given a policy π, let Qπ be the value function under π in M and Q̃π be the
value function under π in M̃ . Then for all π∥∥Qπ − Q̃π

∥∥
∞ ≤

γ

1− γ

∥∥(P − P̃ )V π
∥∥

∞ .

Lemma 5 (Lipschitz preservation under convolution). Suppose f is an L-Lipschitz function and ϕ is a
function such that

∫
ϕ(x)dx = 1 and ϕ(x) ≥ 0 for all x. Then g = f ∗ ϕ is also an L-Lipschitz function.

Proof.

∥g(z)− g(z′)∥ ≤
∥∥∥∥∫ (f(z + x)− f(z′ + x))ϕ(x)dx

∥∥∥∥
≤
∫
∥f(z + x)− f(z′ + x)∥ϕ(x)dx

≤ L ∥z − z′∥
∫

ϕ(x)dx

= L ∥z − z′∥ .
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B.3 Proof of Theorem 3

Theorem 3. Let M be the MDP environment and M̃ denote the privatised MDP under an ϵ-differentially
private projected laplace mechanism. Let Q∗ be the optimal value function in M and Q̃∗ be the optimal
value function in M̃ . Then,

∥∥Q∗ − Q̃∗∥∥
∞ ≤ O

(
√

K exp
(
− ϵ

2
√

2K

)
+ K exp

(
−
√

Nϵ
)

+ K
3
2

√
N

)
.

Proof. We have

∣∣Q∗(s, a)− Q̃∗(s, a)
∣∣ =

∣∣∣∣sup
π

Qπ(s, a)− sup
π

Q̃π(s, a)
∣∣∣∣

≤ sup
π

∣∣Qπ(s, a)− Q̃π(s, a)
∣∣

≤ sup
π

∥∥Qπ − Q̃π
∥∥

∞ . (20)

Then (20) can be bound with Lemma 4. For any policy π̄ and any behaviour policy π satisfying Assumption 3,

∥∥Qπ̄ − Q̃π̄
∥∥

∞ ≤
γ

1− γ

∥∥(P − P̃ π)V π̄
∥∥

∞

≤ γ

1− γ
max

s,a

∥∥Psa − P̃ π
sa

∥∥
1

∥∥V π̄
∥∥

∞

≤ γrmax

(1− γ)2 max
s,a

∥∥Psa − P̃ π
sa

∥∥
1 . (21)

In the above, P̃ π is as defined in (6) and denotes the transition model in M̃ under behaviour policy π. Writing
P̄ (s′ | s1, a) =

∑
s2∈S

P (s2 | s1, a)PM(s′ | s2), we have, for any s, a,

∥∥Psa − P̃ π
sa

∥∥
1 =

∥∥∥∥∥Psa −
∑

s1∈S
νπ(s1 | s, a)P̄s1a

∥∥∥∥∥
1

=

∥∥∥∥∥∑
s1∈S

νπ(s1 | s, a)Psa −
∑

s1∈S
νπ(s1 | s, a)P̄s1a

∥∥∥∥∥
1

≤
∑

s1∈S
νπ(s1 | s, a)

∥∥Psa − P̄s1a

∥∥
1

≤
∑

s1∈S
νπ(s1 | s, a)

∥∥Psa − P̄sa

∥∥
1︸ ︷︷ ︸

(one)

+
∥∥P̄sa − P̄s1a

∥∥
1︸ ︷︷ ︸

(two)

 ,

where the last two steps follows from the triangle inequality and splitting
∥∥Psa − P̄s1a

∥∥
1. The first term can

be viewed as the error due to output privatisation and the second term can be viewed as the error due to
input privatisation. We will look to bound the two terms separately.

Term (one)
By the Bretagnolle-Huber inequality Bretagnolle & Huber (1979); Canonne (2023), term (one) can be bound
as:

∥∥Psa − P̄sa

∥∥
1 ≤ 2

√
1− exp(−DKL(Psa || P̄sa).
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The KL divergence term can be lower bound as follows:

−DKL(Psa || P̄sa) =
∑
s′∈S

P s′

sa log P̄ s′

sa

P s′
sa

=
∑
s′∈S

P s′

sa log
∑

s2∈S PM(s′ | s2)P s2
sa

P s′
sa

≥
∑
s′∈S

P s′

sa log PM(s′ | s′)P s′

sa

P s′
sa

(22)

=
∑
s′∈S

P s′

sa log PM(s′ | s′)

≥ min
s′∈S

log PM(s′ | s′).

Here (22) follows as we shrink the sum to just when s2 = s′.

Note that PM(s′ | s′) is smallest when s′ is an interior point as it has the smallest subspace of RK that
projects back onto itself. So let s′ ∈ S \ ∂S denote an interior point going forward. Thus term (one) can be
bound as: ∥∥Psa − P̄sa

∥∥
1 ≤ 2

√
1− PM(s′ | s′). (23)

We now look to lower bound PM(s′ | s′). Letting R(s′) denote the subspace that projects onto s′, PM(s′ | s′)
can be expressed as

PM(s′ | s′) = PML
(s ∈ R(s′) | s′)

=
∫

s∈R(s′)

(
Nϵ

4

)K

exp
(
−Nϵ

2 ∥s− s′∥1

)
ds.

Let δ = 1√
2N

and B2
δ(s′) := {s ∈ RK : ∥s− s′∥2 ≤ δ} denote the ℓ2 ball of radius δ. Clearly, all points inside

B2
δ(s′) are closest to s′ compared to any other point in the state space. Also, we have that B2

δ(s′) ⊆ R(s′).
Integrating, we get:

PML
(s ∈ R(s′) | s′) =

∫
s∈R(s′)

(
Nϵ

4

)K

exp
(
−Nϵ

2 ∥s− s′∥1

)
ds

≥
∫

s∈B2
δ

(s′)

K∏
i=1

(
Nϵ

4

)
exp

(
−Nϵ

2 |si − s′
i|
)

ds

Let δK = δ/
√

K. We now integrate over CδK
(x′) :=×K

i=1[s′
i − δK , s′

i + δK ] to get a lower bound as
CδK

(x′) ⊆ B2
δ(x′). The integral is then:

PML
(s ∈ R(s′) | s′) ≥

∫
s∈B2

δ
(s′)

K∏
i=1

(
Nϵ

4

)
exp

(
−Nϵ

2 |si − s′
i|
)

ds

≥
∫

s∈CδK
(s′)

K∏
i=1

(
Nϵ

4

)
exp

(
−Nϵ

2 |si − s′
i|
)

ds

=
K∏

i=1

∫ s′
i+δK

s′
i
−δK

Nϵ

4 exp
(
−Nϵ

2 |si − s′
i|
)

dsi

=
K∏

i=1

∫ δK

−δK

Nϵ

4 exp
(
−Nϵ

2 |si|
)

dsi
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=
K∏

i=1
(1− exp(−αδK)) (24)

=
(

1− exp
(
− ϵ

2
√

2K

))K

≥ 1−K exp
(
− ϵ

2
√

2K

)
, (25)

where step (24) follows by noting that for, all α > 0

α

2

∫ δK

−δK

exp (−α |x|) dx = α

(∫ δK

0
exp (−αx) dx

)
= α

[
1− exp(−αδK)

α

]
= 1− exp(−αδK)

and setting α = Nϵ/2, and step (25) follows by noting that for all p ∈ [0, 1], (1− p)k ≥ 1− kp.

Substituting into equation (23) gives the following bound on term (one):

∑
s1∈S

νπ(s1 | s, a)
∥∥Psa − P̄sa

∥∥
1 ≤ 2

√
1− PM(s′ | s′)

= 2

√
1−

(
1−K exp

(
− ϵ

2
√

2K

))
= 2
√

K exp
(
− ϵ

2
√

2K

)
. (26)

Term (two)
Using equation 7, we have:

∑
s1∈S

νπ(s1 | s, a)
∥∥P̄sa − P̄s1a

∥∥
1 =

∑
s1∈S

PM(s | s1)νπ(s1 | a)
ν̃π(s | a)

∥∥P̄sa − P̄s1a

∥∥
1

≤ H
∑

s1∈S
PM(s | s1)

∥∥P̄sa − P̄s1a

∥∥
1

≤ H
∑

s1∈S

PM(s | s1)
PM(s1 | s)PM(s1 | s)

∥∥P̄sa − P̄s1a

∥∥
1

≤ HCmax
∑

s1∈S
PM(s1 | s)

∥∥P̄sa − P̄s1a

∥∥
1 ,

where H = maxs,s1
νπ(s1 | a)
ν̃π(s | a) , and Cmax = maxs,s1

PM(s | s1)
PM(s1 | s) .

We now look to bound
∑

s1∈S PM(s1 | s)
∥∥P̄sa − P̄s1a

∥∥
1. For α > 0, define the ℓ∞ ball of radius β = α + 1√

2N
around a state s and its complement as:

Bα(s) := {s′ ∈ S : ∥s− s′∥∞ < β}
Bc

α(s) := {s′ ∈ S : ∥s− s′∥∞ ≥ β}.
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Splitting
∑

s1∈S PM(s1 | s)
∥∥P̄sa − P̄s1a

∥∥
1 over Bβ(s) and Bc

β(s) gives us the following bound:∑
s1∈S

PM(s1 | s)
∥∥P̄sa − P̄s1a

∥∥
1

=
∑

s1∈Bβ(s)

PM(s1 | s)
∥∥P̄sa − P̄s1a

∥∥
1 +

∑
s1∈Bc

β
(s)

PM(s1 | s)
∥∥P̄sa − P̄s1a

∥∥
1

≤ LKβ + 2K exp
(
− Nαϵ

2
√

K

)
(27)

= 2K exp
(
− Nαϵ

2
√

K

)
+ LKα + LK√

2N
. (28)

The first term in inequality (27) follows by noting that P̄ is L-Lipschitz by Lemma 5 and Assumption 2, and
that, for all x ∈ RK , ∥x∥1 ≤ K ∥x∥∞. The second term in inequality (27) follows by noting that the L1 norm
between distributions is bound by 2 and applying Proposition 2. Picking α = 2

√
K√
N

gives us

∑
s1∈S

PM(s1 | s)
∥∥P̄sa − P̄s1a

∥∥
1 ≤ O

(
K exp

(
−
√

Nϵ
)

+ K3/2
√

N

)
.

Thus the final bound on term (two) is:

∑
s1∈S

νπ(s1 | s, a)
∥∥P̄sa − P̄s1a

∥∥
1 ≤ O

(
K exp

(
−
√

Nϵ
)

+ K3/2
√

N

)
. (29)

Combining (26) and (29) and picking the higher growth rate terms gives the final result.

C Implementation Details

Figure 5: Target privacy vs privacy achieved under equations (5) and (8) as δ is varied. T = 2e5.

Figure 5 plots the curves for Equation 8 as a function of ϵ for different δ and T = 2e5 and shows that
decreasing the value of δ increases the gap between the privacy achieved and the target privacy. Target ϵ
values under 10 can be achieved for δ = 10−2.

Our experimental results use a concrete instantiation of Algorithm 1 with DQN Mnih et al. (2015) and
epsilon-greedy for exploration. We display the full algorithm details in Algorithm 4.

The state privatisation mechanism used is the projected laplace mechanism. We provide a particular
instantiation of Algorithm 2 in Algorithm 3. Algorithm 3 works by first performing a projection onto the
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simplex using the sorting method from Shalev-Shwartz et al. (2006) before finding the nearest point in the
state space. The sorting method has complexity O(K log K) and finding the nearest point in the state space
can be done in O(K).

Algorithm 4 has a few minor differences to Algorithm 1. Firstly, the algorithm takes the target cumulative
privacy parameters as input instead of the per-step privacy parameters. The per-step privacy budget is
calculated in line 5. Lines 10-21 of can be considered the RL algorithm in Algorithm 1 expanded. The
replay buffer and target network are written such that they are not a part of the RL algorithm itself. This is
done to make clear that the buffer and target network maintain state across all iterations. Finally, DQN
returns a value function instead of a policy. This is a minor change however as the policy used is simply the
epsilon-greedy policy with respect to the returned value function.

The parameters used in each experiment are listed in Table 3. The neural network used in all experiments
was a 6 layer, fully connected MLP. The learning rate (α) is not listed as we use the default settings of the
RMSProp optimizer in PyTorch to optimize the neural network.

All experiments were performed on a shared server with a 32-Core Intel(R) Xeon(R) Gold 5218 CPU, 192
gigabytes of RAM. A single NVIDIA GeForce RTX 3090 GPU was also used.

Table 3: DP-DQN parameters used for every experiment.

γ T B D ϵstart κ
0.999 2e5 128 800 0.9999 10−5

Algorithm 3 ℓ2-projected laplace mechanism
1: Input: state s ∈ S ⊆ RK .
2: Parameters: Privacy parameter ϵ, population size N .

3: s′ = s + η, where η ∈ RK and for i ∈ [K], ηi ∼ Lap
( 2

Nϵ

)
.

4: Sort s′ = (s′
1, . . . , s′

K) in descending order: s′
(1) ≤ . . . ≤ s′

(n).

5: Define π(m) = 1
m

(∑m
r=1 s′

(r) − 1
)

6: Compute ρ = max
{

m ∈ [K] : s′
(m) − π(m) > 0

}
7: Compute s̄ where s̄i = max(0, s′

i − π(ρ))
8: Compute e ∈ RK where ei = xi − s̄i and xi = arg minx∈S1 |x− s̄i| for S1 =

{
0, 1

N , . . . , N−1
N , 1

}
.

9: Find J ⊂ [K] with |J | = K − 1 that minimizes
√∑

i∈J e2
i . Let j = [K] \ J and set ej = −

∑
i∈J ei.

10: return s̄ + e.
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Algorithm 4 Differentially Private DQN (DP-DQN)
1: Input: Environment M = (S,A, r, P, γ), initial state s0 ∈ S, privacy mechanism M : S × R→ S.
2: Parameters: cumulative privacy parameters (ϵ, δ), time horizon T , batch size B, target update step D,

population size N , learning rate α, initial exploration rate ϵstart < 1, decay rate κ < 1.
3: Initialize: network parameters θ randomly, target network parameters θ̄ = θ, ϵexplore = ϵstart.
4: Buffer← {}.
5: ϵ′ = ϵ

2
√

2T log(1/δ)
.

6: s̃0 =Mϵ′(s0).
7: for t = 0, 1, 2, . . . , T do
8: p ∼ Uniform([0, 1]).
9: if p > ϵexplore then ãt = arg maxa Qθ(s̃t, a) else ãt ∼ Uniform(A).

10: Receive st+1 ∼ P (· | st, ãt).
11: s̃t+1 =Mϵ′(st+1).
12: r̃t = r(s̃t, at),
13: Append (s̃t, ãt, r̃t, s̃t+1) to Buffer.
14: if t > B then
15: for i = 1, . . . , B do
16: (s, a, r, s′) ∼ Uniform(Buffer).
17: yi ← r + γ maxa Qθ̄(s′, a).
18: ℓi ← 1

2 (Qθ(s, a)− yi)2.
19: end for
20: Run one step SGD θ ← θ + α 1

B∇θ

∑B
j=1 ℓj .

21: end if
22: if t mod D = 0 then
23: Update target network parameters θ̄ ← θ.
24: end if
25: ϵexplore ← 0.03 + (ϵstart − 0.03) · e−κt.
26: end for
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