
Evaluating Language Models as Synthetic Data Generators

Anonymous ACL submission

Abstract

Given the increasing use of synthetic data in001
language model (LM) post-training, an LM’s002
ability to generate high-quality data has be-003
come nearly as crucial as its ability to solve004
problems directly. While prior works have005
focused on developing effective data genera-006
tion methods, they lack systematic comparison007
of different LMs as data generators in a uni-008
fied setting. To address this gap, we propose009
AGORABENCH, a benchmark that provides010
standardized settings and metrics to evaluate011
LMs’ data generation abilities. Through syn-012
thesizing 1.26 million training instances using013
6 LMs and training 99 student models, we un-014
cover key insights about LMs’ data generation015
capabilities. First, we observe that LMs exhibit016
distinct strengths. For instance, GPT-4o excels017
at generating new problems, while Claude-3.5-018
Sonnet performs better at enhancing existing019
ones. Furthermore, our analysis reveals that020
an LM’s data generation ability doesn’t neces-021
sarily correlate with its problem-solving abil-022
ity. Instead, multiple intrinsic features of data023
quality—including response quality, perplexity,024
and instruction difficulty—collectively serve025
as better indicators. Finally, we demonstrate026
that strategic choices in output format and cost-027
conscious model selection significantly impact028
data generation effectiveness. Our code, check-029
points, and data are all publicly available at this030
anonymous github link.031

1 Introduction032

Post-training language models (LMs) on synthetic033

data is a promising approach for improving their034

ability to solve a wide range of tasks (Wang et al.,035

2023; Honovich et al., 2023; Taori et al., 2023;036

Liu et al., 2024b). While acquiring data through037

manual annotation continues to play an important038

role, synthetic data generation offers a scalable039

complement to human labeling (Viswanathan et al.,040

2023; Kim et al., 2023b). Hence, numerous works041

have proposed novel methods to effectively gener-042

ate high-quality synthetic data (Xu et al., 2024a; 043

Gunasekar et al., 2023; Yue et al., 2023, 2024). 044

As multiple proprietary LMs with comparable 045

performance emerge and open-source LMs steadily 046

catch up (Hurst et al., 2024; Anthropic, 2024; 047

MetaAI, 2024; Team, 2024), measuring each LM’s 048

data generation capabilities has become as crucial 049

as developing new data generation methods. More- 050

over, companies providing proprietary LMs have 051

begun promoting the use of their latest models for 052

generating synthetic data (Nvidia, 2024). Care- 053

fully comparing data generation ability across LMs 054

helps validate these claims and allows practitioners 055

to wisely choose models for data synthesis. 056

To systematically compare LMs’ capabilities as 057

data generators, a unified experimental setting is 058

needed, where only the data generator varies, while 059

other components remain fixed. However, as shown 060

in Figure 1, prior works have focused more on 061

demonstrating the effectiveness of their data gen- 062

eration method, leading to various experimental 063

settings that make such comparison challenging. 064

For instance, Self-Instruct (Wang et al., 2023), Al- 065

paca (Taori et al., 2023), WizardLM (Xu et al., 066

2024a) and Orca (Mukherjee et al., 2023) varied 067

in their choice of LMs for data generation, quan- 068

tity of synthetic training data, base models used 069

for training, and benchmarks for evaluating the 070

model trained on the synthetic dataset. These het- 071

erogeneous settings make it difficult to isolate and 072

measure LMs’ data generation capabilities, high- 073

lighting the need for controlled settings. 074

To this end, we propose AGORABENCH, a 075

benchmark for evaluating LMs’ data generation 076

capabilities across nine settings, combining three 077

domains (math, instruction-following, code) with 078

three data generation methods (instance generation, 079

response generation, quality enhancement). Within 080

each setting, all variables except the data gener- 081

ator are controlled: the same meta-prompt and 082

seed dataset are used, with each LM generating 083
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Figure 1: Illustration of the motivation of AGORABENCH: Prior works focused on developing new methods to
generate synthetic data. In contrast, our work focuses on systematically comparing different LMs as data generators
based on existing data generation methods. Further explanation of data generation methods are covered in Section 2.

an identical number of training instances. Llama-084

3.1-8B is trained on each synthetic dataset and eval-085

uated on a fixed set of benchmarks spanning differ-086

ent capabilities: mathematics, coding, and general087

instruction-following. To evaluate the quality of088

synthetic data, we define a metric called Perfor-089

mance Gap Recovered (PGR), which measures090

the relative improvement of the model trained on091

the data (denoted as ‘student model’) over its base092

model. Based on this setting, we assess six LMs093

as data generators: GPT-4o, GPT-4o-mini, Claude-094

3.5-Sonnet, and Llama-3.1-Instruct (8, 70, 405B).1095

Our analysis reveals distinct strengths among096

different LMs in various kinds of data generation097

methods. For example, GPT-4o demonstrates su-098

perior performance in generating new instances (+099

46.75%), outperforming both Claude-3.5-Sonnet (+100

24.14%) and Llama-3.1-405B-Instruct (+ 10.10%).101

On the other hand, Claude-3.5-Sonnet excels at102

refining existing instances (+ 17.89%), surpass-103

ing both GPT-4o (+ 6.69%) and GPT-4o-mini104

(+ 5.49%). These findings demonstrate how105

AGORABENCH can guide practitioners in selecting106

appropriate LMs for their specific needs.107

Unexpectedly, we also find that LMs with108

1Xu et al. (2024c), a contemporaneous work with ours,
also measured various LMs’ data generation capabilities. In
contrast to our work, they only examine the “response gen-
eration” setting, whereas we measure three data generation
settings and also do a number of additional analyses on the
relationship between the intrinsic quality of data and PGR.

weaker problem-solving ability sometimes outper- 109

form stronger ones in data generation—for exam- 110

ple, Claude-3.5-Sonnet (+ 23.43%) is less effective 111

than Llama-3.1-8B-Instruct (+ 55.69%) at generat- 112

ing new instances in the code domain. Based on 113

these findings, we investigate whether an LM’s 114

data generation ability can be predicted by its 115

problem-solving ability alone. Our analysis reveals 116

no strong correlation between the two capabilities. 117

Instead, multiple intrinsic features of data qual- 118

ity—including instruction difficulty, response qual- 119

ity, and response perplexity—collectively influence 120

the student model’s improvement. Furthermore, we 121

demonstrate that the top-5 principal components 122

extracted from intrinsic measurements can explain 123

93.4% of the variance in the PGR values. 124

2 Preliminaries: Measuring Data 125

Generation Capabilities of LMs 126

Notations. Given seed data Dseed and a prompt 127

describing the kind of data generation to perform 128

(referred to as a ‘meta-prompt’) M , a data genera- 129

tor G generates 130

DG = G(Dseed,M), (1) 131

where Dseed and DG can both be expressed as 132

{(Ii, Ri) | i = 1, . . . , n} with I denoting an in- 133

struction, R denoting a corresponding response, 134

and n denoting the size of the data. 135
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Figure 2: AGORABENCH tests three data generation methods: generating new instruction and response pairs
(left), generating responses (middle), and enhancing the quality of the instruction and/or the response (right).

Data Generation Methods. As shown in Fig-136

ure 2, among the various methods for generating137

data, most can be grouped into three categories: in-138

stance generation, response generation, and quality139

enhancement. These methods work as follows:140

• Instance Generation: Given a small seed dataset141

Dseed = {(Ii, Ri) | i = 1, . . . ,m}, a few in-142

stances are randomly sampled from Dseed and143

used as in-context demonstrations, resulting in144

the generation of new instances (Honovich et al.,145

2023; Wang et al., 2023). This process is per-146

formed iteratively until DG = {(Ii, Ri) | i =147

1, . . . , n} is constructed where m << n. Note148

that the generated instances could also optionally149

be used as demonstrations as well.150

• Response Generation: A large set of instruc-151

tions DI = {(Ii) | i = 1, . . . , n} is given, and152

G iterates through each instruction Ii to generate153

a corresponding response Ri (Xu et al., 2024b).154

• Quality Enhancement: A large set of instruc-155

tions and responses D′ = {(I ′i, R′
i) | i =156

1, . . . , n} is given. G iterates through each in-157

stance to refine I ′i and/or R′
i, such as by explic-158

itly prompting G to “make either/both I ′i, R
′
i of159

higher quality” (e.g., making the instruction more160

difficult or of higher educational value) (Xu et al.,161

2024a; Yue et al., 2024).162

Metric. An LM’s data generation ability can be163

measured by evaluating the performance improve-164

ment of a student model trained on the teacher-165

generated data. Specifically, we propose a metric,166

Performance Gap Recovered (PGR), that mea-167

sures the improvement on a benchmark B relative168

to a reference model,169

PGR(G,B) =
scoreB(SDG

)− scoreB(SØ)

scoreB(Sref )− scoreB(SØ)
×100

(2)170

Llama-3.1-8B
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Figure 3: Illustration of Performance Gap Recovered
metric: The performance gap recovered metric captures
the relative improvement of SDG

with respect to Sref

where SDG
and Sref is both trained from SØ.

where SØ denotes a pre-trained LM, SDG
denotes 171

SØ trained on DG, Sref denotes a reference model 172

that shares the same pre-trained model SØ as a 173

base model, and scoreB(·) denotes the score on 174

benchmark B. In our experiments, we use Llama- 175

3.1-8B as SØ and Llama-3.1-8B-Instruct as Sref .2 176

Intuitively, as illustrated in Figure 3, by using 177

Llama-3.1-8B as SØ and Llama-3.1-8B-Instruct as 178

Sref , the PGR value represents how much perfor- 179

mance was recovered compared to the post-training 180

process for Llama-3.1-8B-Instruct, which was re- 181

portedly extensive, training on 10M+ examples of 182

human-curated data (MetaAI, 2024). For example, 183

a PGR value of 50% indicates that SDG
has recov- 184

ered 50% of the improvement achieved by Sref 185

relative to SØ. A value above 100% indicates SDG
186

outperforms Sref , while a negative value indicates 187

that training on DG degraded performance on B 188

compared to few-shot prompting SØ. 189

Training Student Models. When training the 190

student model (SØ), we employ supervised fine- 191

tuning (SFT), computing the loss only on response 192

2Note that when measuring scoreB(SØ), SØ can not solve
tasks with zero-shot prompting, so we evaluate their perfor-
mance with few-shot prompting. In contrast, SDG and Sref

are evaluated with zero-shot prompting.
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Domain Data Generation Method Seed Data Seed Data Size Benchmark

Math
Instance Generation GSM8K, MATH (train set) 14,856 GSM8K, MATH (test set)
Response Generation Magpie-Reasoning (math) 10,000 GSM8K, MATH (test set)
Quality Enhancement WebInstruct (math) 10,000 GSM8K, MATH (test set)

Code
Instance Generation MBPP (train set), xP3x 874 MBPP, HumanEval (test set)
Response Generation Magpie-Reasoning (code) 10,000 MBPP, HumanEval (test set)
Quality Enhancement CoNaLa 10,000 MBPP, HumanEval (test set)

Inst. Follow
Instance Generation LIMA 503 AlpacaEval 2.0, Arena-Hard
Response Generation Magpie-Pro 10,000 AlpacaEval 2.0, Arena-Hard
Quality Enhancement WebInstruct (code) 10,000 AlpacaEval 2.0, Arena-Hard

Table 1: AGORABENCH Settings: For each of the nine settings, an LM being evaluated generates 10K instances
with the same meta-prompt and seed data. Note that the seed dataset is also used for training in instance generation.

tokens. We directly use the generated data DG193

without filtering and do not consider other post-194

training methods, as our goal is to evaluate the195

raw data generation capabilities of an LM (G)196

in the most straightforward setting, not to maxi-197

mize SDG
’s benchmark performance. The hyper-198

parameters for training are detailed in Appendix E.199

3 Experimental Setting of AGORABENCH200

Among various choices, AgoraBench focuses on201

three core capabilities that are considered crucial202

for LMs: instruction following, mathematical rea-203

soning, and coding (Chang et al., 2024; Guo et al.,204

2023; Hurst et al., 2024; Anthropic, 2024). The205

overall experimental setting of AGORABENCH in-206

cluding the domains, seed datasets, and bench-207

marks for each setting is listed in Table 1.208

Domains. AGORABENCH encompasses three do-209

mains: math, code, and instruction following. Eval-210

uating three data generation methods across each211

domain results in nine distinct settings, each with212

a dedicated seed dataset (Dseed) and benchmark213

(B). For each setting, the LM employed as the data214

generator produces 10K training instances.215

Then, the student model is trained using data216

from a single domain to isolate the effect of gen-217

erated data quality, as cross-domain training could218

introduce confounding factors through positive or219

negative transfer (e.g., training on code data im-220

prove math (Dong et al., 2023; Zhang et al., 2024)).221

Seed Datasets. For each setting, we select seed222

datasets (Dseed) based on different assumptions:223

• For instance generation, since we expand a224

small amount of high-quality data into a larger225

volume, our approach is premised on using high-226

quality, human-crafted data as seed data. Hence,227

we use the train subsets of GSM8K (Cobbe 228

et al., 2021) and MATH (Hendrycks et al., 229

2021) for math, MBPP (Austin et al., 2021) and 230

xP3x (Muennighoff et al., 2023b) for code, and 231

LIMA (Zhou et al., 2024) for instruction follow- 232

ing. We exclude instances that exceed 4,096 to- 233

kens based on the Llama-3 tokenizer, resulting 234

in 14,856, 874, and 503 seed instances for each 235

of the math, code, and instruction following do- 236

mains, respectively. 237

• For response generation, we simulate how dif- 238

ferent data generators can attach responses to a 239

fixed set of instructions to ultimately create bet- 240

ter quality data. While we could take arbitrary 241

data and discard their responses for experiments, 242

we utilize the Magpie dataset because Xu et al. 243

(2024b)’s setting closely matches our setting - 244

they first extract instructions by prompting LMs 245

with empty chat templates and then generate re- 246

sponses using two different types of LMs (Llama- 247

3-70B-Instruct and Qwen-2-72B-Instruct). In 248

our experiments, we sample 10K instances from 249

the Magpie dataset (Xu et al., 2024b) for the 250

instruction following domain and also 10K in- 251

stances from the Magpie-Reasoning dataset for 252

both math and code domains. 253

• For quality enhancement, we test scenarios 254

where complete instances of instructions and re- 255

sponses already exist, but their quality needs im- 256

provement before being used for post-training - 257

either because the instructions are too simple or 258

the responses are not sufficiently detailed. We 259

sample 10K instances from WebInstruct (Q-A 260

pairs from the web requiring refinement; see Yue 261

et al. (2024)) for instruction following and math 262

domains. Note that WebInstruct does not contain 263
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Data Generator Instance Generation Response Generation Quality Enhancement

Math Code Inst. Avg Math Code Inst. Avg Math Code Inst. Avg

GPT-4o 20.6 73.6 46.1 46.8 46.7 28.5 30.3 35.2 21.9 -8.8 7.1 6.7
GPT-4o-mini 16.1 41.9 18.0 25.3 48.1 18.9 13.7 26.9 17.8 -11.2 9.9 5.5
Claude-3.5-Sonnet 8.9 23.4 40.1 24.1 29.0 44.5 12.7 28.8 15.7 16.1 21.8 17.9
Llama-3.1-405B 10.4 12.6 7.4 10.1 31.7 35.4 4.9 24.0 -11.8 7.5 3.6 -0.2
Llama-3.1-70B 9.6 58.7 6.5 24.9 23.0 37.1 4.5 21.5 -21.8 6.9 2.7 -4.1
Llama-3.1-8B 6.5 55.7 6.2 22.8 27.6 25.8 5.0 19.4 -1.7 15.4 3.0 5.6

Table 2: AGORABENCH RESULTS: How much performance could you recover by generating 10K instances
with your LLM, compared to Meta’s post-training process for training Llama-3.1-8B-Instruct from Llama-
3.1-8B? The best comparable performances (%) are bolded, and the second-best performances (%) are underlined.
Note that the Llama models are instruction-tuned versions and that ‘Inst.’ denotes instruction-following.

domain labels, hence we prompt GPT-4o-mini-264

2024-07-18 to prepare a separate Dseed (further265

details are in Appendix C). For the code domain,266

we use CoNaLa, which contains simple instruc-267

tions paired with 1-3 line code snippets from268

StackOverflow (Yin et al., 2018).269

Benchmarks. We evaluate a student model270

(SDG
)’s performance using two representative271

benchmarks for each domain. For math, we use272

the test subsets of GSM8K (Cobbe et al., 2021)273

and MATH (Hendrycks et al., 2021). For code, we274

use the test set of MBPP (Austin et al., 2021) and275

HumanEval (Chen et al., 2021). For instruction276

following, we evaluate on AlpacaEval-2.0 (Dubois277

et al., 2024) and Arena-Hard (Li et al., 2024).278

4 Experimental Results of AGORABENCH279

We compare 6 LMs as data generators (G), namely280

GPT-4o-2024-08-06 (Hurst et al., 2024), GPT-4o-281

mini-2024-07-18, Claude-3.5-Sonnet-2024-06-282

20 (Anthropic, 2024), Llama-3.1-405B-Instruct,283

Llama-3.1-70B-Instruct, and Llama-3.1-8B-284

Instruct (Dubey et al., 2024). Also, we use285

Llama-3.1-8B as the student model (SØ). The286

AGORABENCH results are listed in Table 2.287

GPT-4o is the overall most performant data gen-288

erator: Out of the nine experimental settings,289

GPT-4o achieves the highest PGR scores in five290

settings. Its performance is particularly notable291

in instance generation, where it outperforms other292

LMs as a data generator across all three domains293

(math at 20.6%, code at 73.6%, instruction follow-294

ing at 46.1%, and total average at 46.8%), while295

also achieving the highest average PGR score in296

response generation (35.2%).297

Data Generator
API Cost Prob. Data

Solv. Gen.

Input Output Avg Agora
Bench

GPT-4o $2.50 $10.00 80.9 29.5%
GPT-4o-mini $0.15 $0.60 75.4 19.2%
Claude-3.5-Sonnet $3.00 $15.00 80.5 23.6%
Llama-3.1-405B $1.79 $1.79 75.0 11.3%
Llama-3.1-70B $0.35 $0.40 69.6 14.1%
Llama-3.1-8B $0.055 $0.055 50.2 15.9%

Table 3: Comparison of API costs, problem-solving
ability, and data generation ability: Our findings re-
veal that neither the strength nor the cost of an LM
guarantees its effectiveness as a data generator. Note
that the Llama models are instruction-tuned versions,
the specific results of the LMs on each benchmark (av-
eraged as ‘Problem Solving average’) is in Appendix D,
and the AgoraBench results are averaged from Table 2.

Claude-3.5-Sonnet proves particularly effective 298

for quality enhancement: Claude-3.5-Sonnet 299

particularly demonstrates strong performance in 300

quality enhancement, achieving the highest PGR 301

scores in two out of three domains (code at 21.8%, 302

instruction following at 17.9%, and total average at 303

17.9%). Additionally, it obtains the best PGR score 304

at response generation in the code domain (44.5%), 305

bringing its total number of top performances to 306

three out of nine settings. 307

Weaker LMs can outperform Stronger LMs: 308

We observe cases where LMs with weaker problem- 309

solving abilities achieve higher Performance Gap 310

Recovered (PGR) scores than their stronger coun- 311

terparts. In the code domain of instance genera- 312

tion, both Claude-3.5-Sonnet (23.4%) and Llama- 313

3.1-405B-Instruct (12.6%) are outperformed by 314

Llama-3.1-70B-Instruct (58.7%) and Llama-3.1- 315
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Figure 4: Problem-solving and data generation capabilities do not strongly correlate: Linear regression
between problem-solving ability and data generation ability scores at multiple granularity levels yields either low
R2 values (R2 < 0.1) or non-significant relationships (p > 0.05), which indicates that it is hard to predict data
generation capabilities only using problem-solving capabilities.

8B-Instruct (55.7%). Similarly, in the code do-316

main’s quality enhancement setting, GPT-4o (-317

8.8%) and GPT-4o-mini (-11.2%) show poorer per-318

formance compared to other LMs.319

Interestingly, as shown in Table 3, the LMs320

that performed worse for these cases actually321

score higher on code benchmarks (MBPP and Hu-322

manEval), indicating that they possess stronger323

problem-solving capabilities. This contradiction324

suggests that a stronger LM does not necessarily325

generate better training data. We discuss this phe-326

nomenon further in Section 5.327

GPT-4o, GPT-4o-mini, and Llama-3.1-8B-328

Instruct are effective data generators that bal-329

ance both cost and performance: Cost is an-330

other crucial factor alongside performance when331

generating large amounts of synthetic data. Ta-332

ble 3 shows the API costs3 benchmark scores (i.e.,333

problem-solving ability) and average performance334

on AGORABENCH (i.e., data generation ability)335

are listed in Table 3. and average performance on336

AGORABENCH for all six LMs. Llama-3.1-8B-337

Instruct outperforms both Llama-3.1-70B-Instruct338

and Llama-3.1-405B-Instruct while being 6 to 32.5339

times less expensive. Similarly, GPT-4o achieves340

better performance than Claude-3.5-Sonnet at 1.2341

to 1.5 times lower cost. These findings suggest342

that using more expensive LMs does not necessar-343

ily guarantee better data generation, highlighting344

the importance of careful model selection based on345

specific tasks or domains of interest.346

3Pricing is based on https://openrouter.ai/.

5 What makes an effective data 347

generator? 348

In the previous section, we observed an unexpected 349

finding: LMs with weaker problem-solving ability 350

sometimes outperform stronger LMs when gen- 351

erating the same amount of synthetic data under 352

identical conditions. For a better understanding, we 353

examine whether there exists a strong correlation 354

between problem-solving ability and data gener- 355

ation ability (Section 5.1). Then we investigate 356

whether we can predict the degree of improvement 357

in the performance of the student model by analyz- 358

ing the data generated by each LM (Section 5.2). 359

5.1 Is the best solver necessarily the best 360

generator? 361

To examine the relationship between data gener- 362

ation and problem-solving capabilities, we per- 363

formed linear regression analyses comparing two 364

metrics: average performance on multiple bench- 365

marks (GSM8K, MATH, MBPP, HumanEval, 366

AlpacaEval-2.0, Arena-Hard) and scores from 367

AGORABENCH. We conduct this analysis at two 368

levels of granularity. The first analysis (coarse- 369

grained) uses the overall average AGORABENCH 370

score across all domains and data generation set- 371

tings. The second analysis (fine-grained) examines 372

individual scores from different domains and data 373

generation settings in AGORABENCH separately. 374

The results shown in Figure 4 reveal no strong 375

linear correlation between problem-solving capa- 376

bilities (benchmark scores) and data generation 377
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Figure 5: Through a PCA analysis on multiple intrinsic evaluation metrics, we find that there exists interpretable
low-dimension principal components that explain the variance of data generation capabilities up to 93.4%.

capabilities (AGORABENCH PGR scores) at either378

granularity level. This finding suggests that an379

LM’s performance on traditional benchmarks may380

not predict its effectiveness as a data generator.381

5.2 Can we predict the student model’s382

improvement by looking into the data?383

Given that problem-solving ability does not directly384

predict data generation ability, we explore what385

other characteristics might define effective data386

generators. We hypothesize that good data capable387

of substantially improving student models share388

extractable features that can be identified by ana-389

lyzing their intrinsic properties. This understanding390

is crucial as it informs us of what properties the391

data from a good data generator might possess. In-392

spired by Liu et al. (2023b), we conduct an intrinsic393

evaluation by analyzing various properties of the394

generated data DG.395

Intrinsic Evaluation Metrics We evaluate (1)396

the complexity of the instruction Ii (2) the quality397

of response Ri, (3) the perplexity of Ri using the398

student model SØ, (4) the diversity of both instruc-399

tions and responses separately:400

• Response Quality : We measure the quality of401

Ri given Ii. First, we use LLM-as-a-Judge402

where we prompt an LM to return a discrete score403

between 1 and 5 that represents the quality of Ri.404

We employ two LM judges: (1) Prometheus-2-405

8x7B (Kim et al., 2024), an open-source LM spe-406

cialized on assessing LM output and (2) GPT-4o,407

a proprietary LM widely used as a judge. We use408

different score rubrics for each domain, listed in409

Appendix H. Next, we use Reward Models that 410

predicts a scalar value score that represents the 411

quality of Ri. We use Skywork-Reward-Llama- 412

3.1-8B (Liu et al., 2024a), one of the top perform- 413

ing reward models on Reward Bench (Lambert 414

et al., 2024). 415

• Instruction Complexity (LLM-as-a-Judge 416

Score): We measure the difficulty of Ii by 417

prompting an LM to return a discrete score be- 418

tween 1 and 5 that represents the complexity of Ii. 419

Similarly to evaluating response quality, we use 420

Prometheus-2-8x7B and GPT-4o as a judge. The 421

score rubric differs compared to that for evaluat- 422

ing response quality and we use a different score 423

rubrics for each domain, listed in Appendix H. 424

• Perplexity of Response: We measure the per- 425

plexity of Ri conditioned on Ii using the base 426

model SØ (Llama-3.1-8B). 427

• Instance Diversity: We separately measure 428

the average cosine similarity of instructions 429

within DI = {(Ii) | i = 1, . . . , n} and 430

responses within DR = {(Ri) | i = 431

1, . . . , n}. This represents the extent to which 432

each instruction or response is widely dis- 433

tributed (i.e., diverse) (Ni et al., 2024). We use 434

dunzhang/stella_en_400M_v5, a model 435

that is both high-performing on the MTEB bench- 436

mark (Muennighoff et al., 2023a) and efficient. 437

Due to page limits, the full results of the intrinsic 438

evaluation are further detailed in Appendix F. 439
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Figure 6: Principal Components from Intrinsic Met-
rics Show Stronger Correlation with Data Genera-
tion ability: Linear regression using the weighted top-5
principal components yields a higher explained variance
(R2 = 0.325) and statistical significance (p < 0.001)
compared to using problem-solving ability scores alone
(R2 < 0.1 or p > 0.05; see Figure 4).

Intrinsic Metric Loading Strength Contribution

Prometheus Score (R.Q.) 0.256 12.18%
Response Perplexity 0.252 12.00%
GPT-4o Score (R.Q.) 0.246 11.71%
Problem-solving Ability 0.240 11.42%
Skywork-RM Score (R.Q.) 0.239 11.38%
Prometheus Score (I.D.) 0.230 10.95%
Diversity (I.D.) 0.226 10.76%
GPT-4o Score (I.D.) 0.223 10.61%
Diversity (R.Q.) 0.189 9.00%

Table 4: Mean Contributions of Intrinsic Metrics to
Principal Components: Each loading strength rep-
resents the average magnitude of a feature’s loadings
across all principal components and the contribution
are normalized values to represent the relative percent-
age of each feature’s loading strength in the overall com-
ponent structure. ‘I.D.’ refers to instruction difficulty
metrics and ‘R.Q.’ refers to response quality metrics.

Experiments Inspired by the experiments from440

Ruan et al. (2024), we conduct a Principal Compo-441

nent Analysis (PCA) to investigate whether intrin-442

sic evaluation metrics can explain the variability443

in AGORABENCH results. We opt for PCA rather444

than multivariate linear regression due to the inter-445

dependence among our intrinsic evaluation metrics.446

The results, shown in Figure 5, reveal that the top447

five principal components explain approximately448

93.4% of the variance in AGORABENCH results449

(39.2%, 30.4%, 11.9%, 7.0%, and 4.9% respec-450

tively). Moreover, we find that analysis of the451

component weights reveals interpretable patterns.452

The first principal component (PC-1) is strongly453

influenced by instruction difficulty and diversity-454

related metrics. The second component (PC-2) is 455

affected by response quality and instruction diffi- 456

culty, while the third component (PC-3) combines 457

diversity-related metrics, response quality, and the 458

LM’s problem-solving ability. 459

Additionally, as shown in Table 4, when we ana- 460

lyze the average loading strengths of each intrinsic 461

evaluation metric (average magnitude of a feature’s 462

loadings across all principal components, indicat- 463

ing how strongly each metric influences the overall 464

variance in the data), we observe that the contribu- 465

tions range from 0.189 to 0.256, indicating that all 466

the intrinsic evaluation metrics contribute similarly 467

to the PGR results. Also, we find that response 468

quality-related metrics shows slightly stronger con- 469

tributions than diversity-related metrics or instruc- 470

tion difficulty-related metrics to the PGR results. 471

Lastly, we predict data generation capabilities by 472

performing linear regression on the top-5 principal 473

components, weighting each component by its cor- 474

responding regression coefficient, as shown in Fig- 475

ure 6. Compared to using problem-solving scores 476

alone (Figure 4), this approach yields a statistically 477

significant relationship (p < 0.001) with improved 478

explanatory power (R2 = 0.325). However, the 479

moderate R2 value suggests that additional intrin- 480

sic metrics beyond our current set might be needed 481

to better predict data generation capabilities. 482

6 Conclusion 483

In this paper, we introduce AGORABENCH, a 484

benchmark that systematically evaluates LMs’ data 485

generation capabilities through standardized set- 486

tings and metrics. Looking ahead, we envision 487

AGORABENCH enabling two key advances in the 488

field. First, since our findings suggest that problem- 489

solving ability is not the primary determinant of 490

data generation quality, researchers can use our 491

benchmark to identify the core capabilities that 492

make an effective data generator and potentially 493

develop specialized LMs specialized in data gener- 494

ation. Second, AGORABENCH can serve as a practi- 495

cal evaluation framework for practitioners to assess 496

and improve their data generation pipelines - they 497

can use their custom data generation methods, seed 498

datasets, or meta-prompts and compare against our 499

baseline settings. Through these complementary 500

research and applied directions, AGORABENCH 501

aims to accelerate both our theoretical understand- 502

ing of language models as data generators and their 503

practical deployment in real-world applications. 504
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Limitations & Potential Risks505

Due to compute constraints and expensive API506

costs, the experimental setting of AGORABENCH507

does not cover the scenarios where (1) different508

base models beyond Llama-3.1-8B are used and509

(2) whether our findings will hold when generating510

more than 10K instances.511

Regarding the first limitation, while Llama-3.1-512

8B is widely adopted as a base model in the commu-513

nity, making our findings particularly relevant for514

researchers working with similar architectures, in-515

vestigating the generalizability of our results across516

different base models remains an important direc-517

tion for future research. Of particular interest is518

the variation in response perplexity—one of our519

intrinsic evaluation metric—across different model520

architectures, as this metric’s behavior is inherently521

dependent on the base model.522

For the second limitation, we conducted prelimi-523

nary scaling experiments with more cost-effective524

language models (GPT-4-mini, Llama-3.1-70B-525

Instruct, and Llama-3.1-8B-Instruct) generating up526

to 50K instances, as detailed in Appendix B. Fu-527

ture work could explore whether the relative effec-528

tiveness rankings among different data generators529

remain consistent at larger scales, and investigate530

potential scaling laws in relation to our proposed531

Performance Gap Recovered metric. Such analysis532

could provide valuable insights into the optimal533

volume of synthetic data required for specific ap-534

plications and model architectures.535

Synthetic data holds significant potential in align-536

ing LMs towards human preferences and control-537

ling their behavior. While our study primarily fo-538

cuses on improvements in mathematical reasoning,539

coding capabilities, and instruction following abili-540

ties, the broader implications for model alignment541

and control warrant careful consideration. Future542

work could explore these aspects more explicitly,543

particularly investigating how synthetic data gen-544

eration techniques might influence model behavior545

beyond task performance, including potential bi-546

ases, safety considerations, and the robustness of547

aligned behaviors across different contexts and ap-548

plications. Lastly, we note that the synthetic data549

generated in our paper is dependent on the terms550

of use from LM providers: OpenAI, Anthropic,551

and Meta and that we used Claude-3.5-Sonnet to552

improve the fluency and grammar of our paper.553
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A Related Work802

Conventionally, training LMs on human-crafted803

data was considered the de facto standard for804

improving an LM’s performance on downstream805

tasks (Mishra et al., 2022; Wei et al., 2021; Wang806

et al., 2022; Longpre et al., 2023). Yet, based on the807

in-context learning abilities of LMs (Brown et al.,808

2020), a series of works demonstrated that LMs809

could generate novel instances that could be used810

as post-training data (Wang et al., 2023; Honovich811

et al., 2022; Kim et al., 2023a).812

Since then, different works have proposed var-813

ious data generation methods and prompts to ac-814

quire high-quality data, using stronger LMs as data815

generators. For instance, Taori et al. (2023) used816

the same data generation method as Wang et al.817

(2023), but employed InstructGPT instead of GPT-818

3-Davinci and trained Llama-1 instead of T5. Xu819

et al. (2024a) used ChatGPT as their data gener-820

ator and proposed a method called Evol-Instruct821

that prompts the data generator to make an existing822

problem more complex than the original. Mukher-823

jee et al. (2023) used GPT-4 to generate data and824

improved the original response by adding a chain-825

of-thought explanation of how the answer was de-826

rived. Xu et al. (2024b) proposed Magpie, a data827

generation method that first prompts an LM with828

an empty chat template to extract instructions, then829

iteratively prompts it to generate corresponding830

responses.831

While developing new data generation methods832

is important, choosing which LM to use as a data833

generator is an equally crucial problem for both834

researchers and practitioners. To the best of our835

knowledge, Xu et al. (2024c), a contemporary work836

with our work, was the first attempt to measure837

various LMs’ data generation capabilities using ex-838

isting data generation methods. Yet, their settings839

were confined to our ‘response generation’ method,840

whereas we also tested instance generation and841

quality enhancement methods.842

B Further Analysis Experiments843

In this section, we further examine, two critical844

questions regarding data generation: (1) Should we845

prioritize quantity using cheaper LMs, or quality846

using more expensive ones? (Section B.1) And (2)847

What is the impact of meta-prompt design, particu-848

larly when comparing structured JSON format gen-849

eration against traditional free-form approaches?850

(Section B.2).851

B.1 Quantity or quality? 852

In Section 4, we demonstrated that in some cases, 853

cheaper LMs can be more effective data generators 854

than their expensive counterparts when producing a 855

fixed number of instances, though expensive mod- 856

els generally perform better. This raises a practical 857

question: Is it more effective to generate a larger 858

quantity of instances using cheaper models rather 859

than fewer instances with more expensive ones? 860

We scale up our experiment to generate up to 861

50K instances using GPT-4o-mini, Llama-3.1-70B- 862

Instruct, and Llama-3.1-8B-Instruct across three 863

domains in the instance generation scenario. As 864

shown in Figure 7, generating 50K instances with 865

GPT-4o-mini resulted in better performance than 866

generating 10K instances with GPT-4o at instruc- 867

tion following and math domains and Llama-3.1- 868

8B-Instruct showed similar patterns in code do- 869

main. Given that these LMs are at least five times 870

more cost-effective than GPT-4o, our findings sug- 871

gest that generating larger volumes of synthetic 872

data with more affordable LMs may be more ad- 873

vantageous than generating smaller datasets with 874

expensive ones. Furthermore, this suggests that 875

instruction diversity or response diversity could af- 876

fect the PGR results when comparing two settings 877

with different number of training instances. 878

B.2 Effect of Meta-prompts 879

Recently, Tam et al. (2024) has shown that LMs’ 880

problem-solving abilities decrease when generat- 881

ing responses in structured formats (e.g., JSON). 882

Given practitioners’ preference for structured out- 883

puts when using LMs (Shorten et al., 2024; Liang 884

et al., 2024) it’s important to investigate whether 885

this format affects data generation performance. 886

Additionally, we examine the impact of meta- 887

prompt design on generation quality. 888

To investigate these questions, we create four 889

additional meta-prompts for comparison. For each 890

setting (instance generation and quality enhance- 891

ment), we had two co-authors create meta-prompts: 892

one developed an unoptimized version (spending 893

less than 10 minutes)4, while the other created a 894

JSON-format version. 895

Table 5 presents our findings. Compared to 896

the other meta-prompts, the AGORABENCH meta- 897

prompt achieves the highest scores in five out of six 898

4This contrasts with the main experiments’ meta-prompts,
which were developed over 2+ hours through iterative trial-
and-error during the initial experimental phase.
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Figure 7: With a fixed budget, generating large amounts of data with weaker LMs could sometimes be more
effective and cheaper than generating a few instances with stronger LMs: Since GPT-4o-mini is 17 times
cheaper than GPT-4o, generating 50K instances is 3.4 times cheaper than generating 10K instances with GPT-4o.
Yet, generating 50K instances with GPT-4o-mini achieves higher PGR in instruction following and math domains
compared to generating 10K instances with GPT-4o.

Data Generator AGORABENCH Meta-prompt Unoptimized Meta-prompt JSON-format Meta-prompt

Math Code Inst. Avg Math Code Inst. Avg Math Code Inst. Avg

Instance Generation

GPT-4o-mini 16.1 41.9 18.0 25.3 12.4 36.8 17.6 22.3 13.8 20.5 19.5 17.9
Llama-3.1-70B 9.6 58.7 6.5 24.9 7.0 46.8 5.8 19.9 8.7 33.5 6.1 16.1
Llama-3.1-8B 6.5 55.7 6.2 22.8 0.7 43.6 4.5 16.3 6.7 31.4 4.4 14.2

Quality Enhancement

GPT-4o-mini 17.8 -11.2 9.9 5.5 13.0 -6.3 9.4 5.4 15.4 -13.0 9.2 3.8
Llama-3.1-70B -21.8 6.9 2.7 -4.1 -20.5 -5.5 2.3 -7.9 -18.3 6.5 2.4 -3.1
Llama-3.1-8B -1.7 15.4 3.0 5.6 -6.6 3.7 3.5 0.2 -2.7 12.0 3.9 4.4

Table 5: Performance Gap Recovered (%) results with different meta-prompts on instance generation and
quality enhancement. Llama models are instruction-tuned versions and that ‘Inst.’ denotes instruction-following.

settings, demonstrating the robustness of the setting899

in AGORABENCH. Comparing the AGORABENCH900

meta-prompts with unoptimized versions reveals901

a 3.97% performance gap on average, highlight-902

ing the importance of meta-prompt optimization.903

Furthermore, AGORABENCH meta-prompts using904

free-form generation achieve 4.45% higher perfor-905

mance compared to JSON-format prompts. This906

aligns with recent findings that structured format907

requirements may compromise LM output qual-908

ity (Tam et al., 2024).909

C Response Generation Seed Dataset910

Construction911

In AGORABENCH, we prepare seed datasets for912

each domain (instruction-following, math, code)913

separately in order to prevent positive or negative914

transfer that occurs during training, which could915

make it difficult to ground the PGR results to the916

quality of the synthetic data and LMs’ data genera- 917

tion capabilities. 918

We use the WebInstruct data (Yue et al., 2024) 919

for math and instruction-following domains in qual- 920

ity enhancement settings. However, the WebIn- 921

struct data does not provide labels of whether the 922

given instance is a math problem or not. Hence, we 923

prompted GPT-4o-mini-2024-07-18 to classify it 924

using the following prompt: 925
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Inference Hyper-parameter

Temperature 0.2 (math) & 0.0 (other domains)
Top_p 0.95

Max New Tokens 1024
Repetition Penalty 1.03

Training Hyper-parameter

Base Model meta-llama/Llama-3.1-8B
Torch dtype bfloat16

Epoch 5
Max Seq Length 4096
Learning Rate 1e-5

Train Batch Size 4
Gradient Accumulation 8

GPU H100 (80GB) x 4
Random Seed 42

Training Method Supervised Fine-tuning

Table 6: Hyper-parameters used for inference.

Domain classification for seed data con-
struction

Classify whether the following ”Instance“
consisted of an ”Instruction“ and ”Re-
sponse“ is either related to:
1. Math-related task such as requiring an
answer to a problem, proving a theorem or
explaining about a mathematical concept.
2. Other tasks

Provide your answer in only either ”1“
or ”2“, without any greeting message or
comment.

# Instance:
Instruction: <input>
Response: <output>

# Decision:
926

D Problem Solving Abilities of LMs927

evaluated as Data Generators928

The evaluation results of GPT-4o-2024-08-06, GPT-929

4o-mini-2024-07-18, Claude-3.5-Sonnet-2024-06-930

20, Llama-3.1-405B-Instruct, Llama-3.1-70B-931

Instruct, and Llama-3.1-8B-Instruct are listed in932

Table 7. We use the settings listed in Appendix E.933

E Details for Training and Evaluating934

Student Models935

The hyper-parameters used for training student936

models and hyper-parameters used for evaluating937

both student models and LMs employed as the data938

generator are listed in Table 6. 939

For evaluation on MBPP and HumanEval, we 940

use the Evalplus library (Liu et al., 2023a). For eval- 941

uation on AlpacaEval and ArenaHard, we use the 942

official library, respectively (Dubois et al., 2024; Li 943

et al., 2024). For GSM8K and MATH, we use the 944

datasets provided in huggingface and use our man- 945

ual script. All the evaluation scripts are publicly 946

available at our repository. 947

F Intrinsic Evaluation of AGORABENCH 948

The intrinsic evaluation results are listed in Table 8. 949

G AGORABENCH Meta-prompts 950

Due to space limits, we present the meta-prompts 951

in our repository and the following link. 952

H Prompt for Intrinsic Evaluation 953

In the following pages, we list the prompt used for 954

assessing response quality and instruction difficulty 955

with GPT-4o and Prometheus-2-8x7B as well as the 956

score rubrics for used for each domain (instruction- 957

following, math, code). 958

Evaluation Prompt for Response Quality
and Instruction Difficulty

###Task Description:
An instruction (might include an Input in-
side it), a response to evaluate, and a score
rubric representing a evaluation criteria are
given.
1. Write a detailed feedback that assess the
quality of the response strictly based on the
given score rubric, not evaluating in general.
2. After writing a feedback, write a score
that is an integer between 1 and 5. You
should refer to the score rubric.
3. The output format should look as follows:
"Feedback: (write a feedback for criteria)
[RESULT] (an integer number between 1
and 5)"
4. Please do not generate any other opening,
closing, and explanations.
###The instruction to evaluate:
{instruction}
###Response to evaluate:
{response}
###Score Rubric: {score_rubric}
###Feedback:

959
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Math Response Quality Score Rubirc

Does the solution demonstrate mathemati-
cal correctness, reasoning, clarity, and pre-
cision?
Score 1 Description: The solution is incor-
rect or mathematically flawed, with major
errors in reasoning, calculations, or logic,
making the answer unusable.
Score 2 Description: The solution contains
relevant or partially correct information, but
has significant errors in calculations or rea-
soning that substantially affect the result.
Score 3 Description: The solution is mostly
correct but may contain minor mistakes or
gaps in reasoning. The overall structure and
approach are sound, but some calculations
or logic may need refinement.
Score 4 Description: The solution is correct,
well-reasoned, and clear, though there may
be slight room for improvement or minor
refinements to become a perfect solution to
the problem.
Score 5 Description: The solution is excel-
lent, fully correct, and demonstrates a high
level of mathematical precision, clarity, and
creativity, with well-articulated reasoning
and no errors.

960

Instruction-following Response Quality
Score Rubric

Does the response consider a wide range of
factors such as the helpfulness, relevance,
accuracy, depth, creativity, and level of
detail?

Score 1 Description: The response is not
helpful at all or seems helpful on the surface
but is actually incorrect such as including in-
correct information, naive miscalculations,
or unexecutable code.
Score 2 Description: The response contains
some relevant or helpful information, but
also has major flaws interms of factuality,
accuracy, and relevance.
Score 3 Description: The response is mostly
correct but minor flaws regarding factuality,
accuracy, and relevance still exists, while it
is overall an okay response.
Score 4 Description: The response is accu-
rate, relevant, and helpful, although there
are some slight improvements that could
be made when an expert evaluates the re-
sponse.
Score 5 Description: The response is ex-
cellent. It is completely factual, accurate,
relevant, and helpful, demonstrating a high
degree of depth and creativity.

961
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Code Response Quality Score Rubric

How effective, efficient, and logically
sound is the code solution, focusing on per-
formance, executability, and correctness?

Score 1 Description: The code contains fun-
damental logic or syntax errors, making it
incorrect or unexecutable. It fails to com-
plete the intended task or produces entirely
incorrect outputs.
Score 2 Description: The code is partially
functional but contains major logic errors
or inefficiencies that significantly impact
performance or correctness. It may run but
produces incorrect or incomplete results.
Score 3 Description: The code is mostly
correct and executable, though there may
be minor logic issues, inefficiencies, or sub-
optimal use of data structures or algorithms.
The solution functions as intended, but im-
provements could make it more efficient or
robust.
Score 4 Description: The code is fully cor-
rect, functional, and reasonably efficient. It
completes the task as intended, balancing
performance with logical soundness. Mi-
nor optimizations could still enhance perfor-
mance.
Score 5 Description: The code is fully cor-
rect, optimally efficient, and logically ro-
bust, providing the best possible perfor-
mance for the task. It executes flawlessly
without errors or any significant room for
improvement.

962

Instruction-following Instruction Diffi-
culty Score Rubric

How complex and challenging is the given
instruction to answer perfectly?

Score 1 Description: The instruction re-
quires only factual knowledge, without any
need for reasoning or critical thinking. A
straightforward, single-step response suf-
fices.
Score 2 Description: The instruction re-
quires some reasoning, such as explaining
a concept involving multiple simple ideas,
solving a straightforward problem, or pro-
viding a response that involves a few logical
steps, though still simple in nature.
Score 3 Description: The instruction re-
quires a substantial amount of reasoning and
the integration of multiple related concepts.
Answering it accurately involves a multi-
step process and may require intermediate-
level knowledge or analytical thinking.
Score 4 Description: The instruction re-
quires advanced reasoning, demanding deep
understanding of complex concepts or sub-
stantial problem-solving. Answering it re-
quires carefully navigating multiple interre-
lated ideas or steps, often involving special-
ized knowledge or sophisticated analytical
skills.
Score 5 Description: The instruction is ex-
ceptionally challenging and requires high-
level reasoning or novel problem-solving. It
involves extensive conceptual understand-
ing, abstraction, and potentially innovative
thinking, with substantial effort required to
arrive at an accurate and complete answer.

963
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Math Instruction Difficulty Score Rubric

How complex and challenging is the math
problem to solve?

Score 1 Description: The problem requires
only simple operations or direct application
of a single, basic concept. Minimal rea-
soning is needed, and the solution follows
immediately from applying a known rule or
formula.
Score 2 Description: The problem requires
basic reasoning and involves applying a fa-
miliar formula or concept with slight varia-
tion. It may involve a straightforward multi-
step process, but each step is clear and relies
on commonly used methods.
Score 3 Description: The problem requires
moderate reasoning, combining multiple
concepts that interact in a meaningful way.
Solving it involves several steps and may
require logical sequencing or some abstrac-
tion, but the approach is approachable with
a solid foundational understanding.
Score 4 Description: The problem demands
advanced reasoning, involving multiple in-
terdependent concepts that require careful
coordination. Solution steps are less ob-
vious, requiring critical thinking and pos-
sibly choosing between multiple solution
paths. Solving the problem involves more
abstract reasoning or creative application of
concepts.
Score 5 Description: The problem is ex-
tremely complex and demands sophisticated
reasoning and problem-solving skills. It
may involve novel combinations of con-
cepts, intricate logical chains, or innovative
approaches to solve. This level typically
requires significant abstraction, exploration
of unconventional methods, and flexibility
in adapting mathematical tools.

964

Code Instruction Difficulty Score Rubric

How complex and challenging is the coding
problem to solve?

Score 1 Description: The problem involves
implementing simple functionality or a di-
rect operation. It requires minimal logic,
with a straightforward approach and no com-
plex decision-making.
Score 2 Description: The problem requires
basic control flow, such as using loops or
conditional statements. The logic is clear
and sequential, with minimal interaction be-
tween different parts of the code.
Score 3 Description: The problem involves
intermediate logic, combining multiple pro-
gramming constructs and requiring a coher-
ent structure. Solving it requires handling
a sequence of steps with basic data manip-
ulation, but follows a familiar, manageable
approach.
Score 4 Description: The problem demands
advanced reasoning and use of complex
data structures or algorithms. It involves
non-trivial interactions, such as managing
multiple components and optimizing for ef-
ficiency. The solution requires significant
algorithmic thinking and structured prob-
lem decomposition.
Score 5 Description: The problem is ex-
tremely complex, requiring sophisticated al-
gorithm design, efficient data handling, and
advanced techniques. It demands innovative
approaches, with intricate component in-
teractions and constraints that need careful
optimization. Solving it typically requires
deep problem-solving skills and adaptabil-
ity across programming paradigms.

965
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Data Generator
Problem-solving ability

GSM8K MATH MBPP Human Alpaca Arena AverageEval Eval 2.0 Hard

GPT-4o 96.1 76.6 86.2 91.5 57.5 77.9 80.9
GPT-4o-mini 93.2 70.2 85.7 88.4 50.7 64.2 75.4
Claude-3.5-Sonnet 96.4 71.1 89.2 92.0 52.4 82.0 80.5
Llama-3.1-405B 96.8 73.8 84.5 89.0 39.3 66.8 75.0
Llama-3.1-70B 95.1 68.0 84.2 80.5 38.1 51.6 69.6
Llama-3.1-8B 78.9 34.6 68.5 69.5 24.2 25.5 50.2

Table 7: Problem-solving abilities of LMs measured by benchmark scores.

Data Generator Instance Generation Response Generation Quality Enhancement

Math Code Inst. Follow Avg Math Code Inst. Follow Avg Math Code Inst. Follow Avg

Instruction Difficulty (LLM-as-a-Judge; GPT-4o Score)

GPT-4o (2024-08-06) 2.92 3.48 3.06 3.16 2.27 2.21 1.41 1.97 2.44 1.51 1.79 1.91
GPT-4o-mini (2024-07-18) 2.38 3.42 2.89 2.90 2.27 2.21 1.41 1.97 2.47 1.38 1.81 1.89
Claude-3.5-Sonnet (2024-06-20) 3.24 4.03 3.54 3.60 2.27 2.21 1.41 1.97 2.47 1.52 1.83 1.94
Llama-3.1-405B-Instruct 2.74 3.50 2.87 3.04 2.27 2.21 1.41 1.97 2.45 1.47 1.85 1.92
Llama-3.1-70B-Instruct 2.87 3.45 2.96 3.09 2.27 2.21 1.41 1.97 2.48 1.49 1.87 1.95
Llama-3.1-8B-Instruct 3.00 3.52 3.08 3.20 2.27 2.21 1.41 1.97 2.43 1.49 1.83 1.92

Instruction Difficulty (LLM-as-a-Judge; Prometheus-2-8x7B Score)

GPT-4o (2024-08-06) 3.73 3.57 3.95 3.75 3.00 2.76 2.24 2.67 3.37 2.14 2.50 2.67
GPT-4o-mini (2024-07-18) 3.44 3.38 3.94 3.59 3.00 2.76 2.24 2.67 3.36 1.98 2.53 2.63
Claude-3.5-Sonnet (2024-06-20) 4.11 4.51 4.45 4.36 3.00 2.76 2.24 2.67 3.38 2.24 2.61 2.74
Llama-3.1-405B-Instruct 3.63 3.27 3.84 3.58 3.00 2.76 2.24 2.67 3.35 2.11 2.64 2.70
Llama-3.1-70B-Instruct 3.72 3.43 3.94 3.69 3.00 2.76 2.24 2.67 3.32 2.21 2.76 2.76
Llama-3.1-8B-Instruct 3.86 3.48 3.99 3.78 3.00 2.76 2.24 2.67 3.30 2.09 2.67 2.68

Instruction Difficulty (Perplexity)

GPT-4o (2024-08-06) 2.13 1.28 3.44 2.28 2.26 4.23 3.41 3.30 2.03 3.60 3.83 3.15
GPT-4o-mini (2024-07-18) 2.05 1.31 3.32 2.23 2.28 2.12 3.20 2.53 2.08 5.50 3.97 3.85
Claude-3.5-Sonnet (2024-06-20) 2.04 1.34 3.18 2.19 2.16 3.48 3.63 3.09 1.99 2.46 3.04 2.50
Llama-3.1-405B-Instruct 1.96 1.29 2.19 1.81 1.90 1.91 2.42 2.08 2.10 3.10 3.90 3.03
Llama-3.1-70B-Instruct 1.78 1.27 2.19 1.74 1.86 1.72 2.52 2.03 2.12 2.84 3.98 2.98
Llama-3.1-8B-Instruct 1.83 1.33 2.08 1.74 1.98 1.81 2.48 2.09 2.06 3.17 3.98 3.07

Response Quality (LLM-as-a-Judge; GPT-4o Score)

GPT-4o (2024-08-06) 3.72 3.95 4.42 4.03 3.99 3.79 4.44 4.07 3.62 3.66 3.99 3.76
GPT-4o-mini (2024-07-18) 3.96 3.96 4.35 4.09 3.85 3.76 4.41 4.01 3.57 3.22 3.96 3.58
Claude-3.5-Sonnet (2024-06-20) 3.39 4.03 4.34 3.92 3.80 3.75 4.24 3.93 3.64 3.77 4.29 3.90
Llama-3.1-405B-Instruct 3.20 3.74 4.13 3.69 3.51 3.76 4.29 3.85 3.36 3.37 3.80 3.51
Llama-3.1-70B-Instruct 2.97 3.59 4.12 3.56 3.31 3.65 4.22 3.72 3.23 3.22 3.80 3.42
Llama-3.1-8B-Instruct 1.99 2.51 3.82 2.77 2.90 3.26 4.17 3.44 3.05 2.76 3.52 3.11

Response Quality (LLM-as-a-Judge; Prometheus-2-8x7B Score)

GPT-4o (2024-08-06) 3.93 3.49 4.07 3.83 4.02 3.28 3.97 3.76 3.98 3.28 3.69 3.65
GPT-4o-mini (2024-07-18) 4.05 3.46 4.04 3.85 3.96 3.39 3.93 3.76 3.92 3.04 3.73 3.57
Claude-3.5-Sonnet (2024-06-20) 3.95 3.37 4.04 3.78 3.94 3.29 3.83 3.69 4.00 3.48 4.03 3.84
Llama-3.1-405B-Instruct 3.76 3.24 3.92 3.64 3.81 3.42 3.91 3.71 3.78 3.23 3.66 3.56
Llama-3.1-70B-Instruct 3.68 3.36 3.91 3.65 3.73 3.37 3.86 3.65 3.73 3.20 3.62 3.52
Llama-3.1-8B-Instruct 3.22 3.06 3.81 3.36 3.62 3.24 3.88 3.58 3.68 3.08 3.49 3.42

Response Quality (Reward Model; Skywork-RM-8B Score)

GPT-4o (2024-08-06) 13.90 23.20 27.79 21.63 8.82 -0.10 8.60 5.77 4.86 -7.48 -4.73 -2.45
GPT-4o-mini (2024-07-18) 5.74 -1.18 7.80 4.12 13.71 23.74 20.71 19.39 3.42 -12.93 -5.16 -4.89
Claude-3.5-Sonnet (2024-06-20) 10.67 20.22 18.20 16.36 5.56 1.67 0.17 2.46 6.29 -5.31 10.76 3.92
Llama-3.1-405B-Instruct -0.50 19.54 13.63 10.89 -1.23 2.68 10.65 4.03 -1.89 -10.43 -7.35 -6.56
Llama-3.1-70B-Instruct -2.17 20.42 11.22 9.83 -3.26 2.17 5.85 1.59 -3.04 -11.54 -8.60 -7.72
Llama-3.1-8B-Instruct -7.71 7.16 3.45 0.97 -3.89 -1.53 8.72 1.10 -3.68 -12.61 -10.15 -8.81

Instruction Diversity (c-dist)

GPT-4o (2024-08-06) 0.4170 0.4640 0.3047 0.3952 0.3737 0.3958 0.3386 0.3694 0.4263 0.4870 0.2943 0.4025
GPT-4o-mini (2024-07-18) 0.4091 0.5127 0.3013 0.4077 0.3737 0.3958 0.3386 0.3694 0.4270 0.4670 0.2956 0.3965
Claude-3.5-Sonnet (2024-06-20) 0.4124 0.4872 0.2940 0.3979 0.3737 0.3958 0.3386 0.3694 0.4307 0.4903 0.2921 0.4044
Llama-3.1-405B-Instruct 0.3996 0.5411 0.2789 0.4065 0.3737 0.3958 0.3386 0.3694 0.4344 0.4796 0.3033 0.4058
Llama-3.1-70B-Instruct 0.4003 0.5015 0.2682 0.3900 0.3737 0.3958 0.3386 0.3694 0.4232 0.4756 0.3018 0.4022
Llama-3.1-8B-Instruct 0.4201 0.4785 0.2956 0.3981 0.3737 0.3958 0.3386 0.3694 0.4302 0.4619 0.2984 0.3968

Response Diversity (c-dist)

GPT-4o (2024-08-06) 0.4564 0.5347 0.2918 0.4276 0.4126 0.4719 0.2714 0.3853 0.4455 0.5065 0.2271 0.3930
GPT-4o-mini (2024-07-18) 0.4558 0.5719 0.2814 0.4364 0.4095 0.4726 0.2811 0.3877 0.4577 0.5184 0.2257 0.4006
Claude-3.5-Sonnet (2024-06-20) 0.4719 0.5648 0.3220 0.4529 0.4156 0.4647 0.2788 0.3864 0.4610 0.5141 0.2325 0.4025
Llama-3.1-405B-Instruct 0.4490 0.6122 0.2523 0.4378 0.4037 0.4737 0.2551 0.3775 0.4633 0.5155 0.2239 0.4009
Llama-3.1-70B-Instruct 0.4520 0.5771 0.2596 0.4296 0.4012 0.4784 0.2530 0.3775 0.4571 0.5134 0.2233 0.3979
Llama-3.1-8B-Instruct 0.4768 0.5651 0.2660 0.4360 0.4077 0.4778 0.2530 0.3795 0.4738 0.5143 0.2254 0.4045

Table 8: Intrinsic evaluation results of AGORABENCH.

18


