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ABSTRACT

Offline reinforcement learning (RL) learns policies from fixed datasets, thereby
avoiding costly or unsafe environment interactions. However, its reliance on finite
static datasets inherently restricts the ability to generalize beyond the training distri-
bution. Prior solutions based on synthetic data augmentation often fail to generalize
to unseen scenarios in the (augmented) dataset. To address these challenges, we pro-
pose Retrieval High-quAlity Demonstrations (RAD) for decision-making, which
innovatively introduces a retrieval mechanism into offline RL. Specifically, RAD
retrieves high-return and reachable states from the offline dataset as target states,
and leverages a generative model to generate sub-trajectories conditioned on these
targets for planning. Since the targets are high-return states, once the agent reaches
such a target, it can continue to obtain high returns by following the associated high-
return actions, thereby improving policy generalization. Extensive experiments
confirm that RAD achieves competitive or superior performance compared to base-
lines across diverse benchmarks, validating its effectiveness. Our code is available
at https://anonymous.4open.science/r/RAD_0925_1-690E.

1 INTRODUCTION

Offline reinforcement learning (RL) aims to learn effective decision policies purely from static
datasets, without further interaction with the environment Levine et al. (2020); Prudencio et al.
(2023); Park et al. (2024). This setting is essential for domains where active exploration is costly or
unsafe, such as robotics Kalashnikov et al. (2021), healthcare Fatemi et al. (2022), and autonomous
driving Shi et al. (2021). Despite promising advances, offline RL faces a fundamental limitation:
the finite scale of static datasets inherently restricts the learned policy’s ability to generalize beyond
the training distribution. As illustrated in Figure 1(a), it is challenging to learn a policy that enables
the agent to reach the target state G from the initial state S using an offline dataset containing only
two trajectories. This is because the two trajectories are too far apart, making it difficult for existing
offline RL algorithms to generalize to the transition from S to G.

To overcome this, recent works typically generate transitions to augment the original dataset, alleviat-
ing the negative impact of finite static datasets in offline setting Lu et al. (2023); Li et al. (2024). As
shown in Figure 1(b), a new sub-trajectory is generated by the augmentation-based methods, which
enable the learning of the policy to support the agent to start from state S and reach state G. However,
these augmentations are typically generated in a static offline manner, which lack flexibility. Once
generated, the augmented dataset remains fixed and cannot adapt to dynamic situations, as shown in
Figure 1(c): if the agent later encounters a new state (e.g., a different start state out of the distribution
of augmentation and original dataset), there may be no existing demonstration or augmented path
that provides meaningful guidance. Consequently, the policy may fail to generalize again, especially
under distributional shifts or changing task demands. This highlights the brittleness and limited
flexibility of static augmentation methods in offline RL.

A promising approach to achieve effective generalization in offline RL is to adopt an adaptive
mechanism: one that adaptively stitches to high-reward trajectories within a certain range to escape
out-of-distribution situations or low-reward scenarios. As it is illustrated in Figure 1(d), Starting from
a new state S, the agent first plans towards a state located along a high-return trajectory. Once the
agent reaches this state, it can then easily navigate to the target state G by leveraging the experience
from the high-return trajectory. Inspired by that, we propose Retrieval High-quality Demonstrations
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Figure 1: (a) Far-apart trajectories in the offline dataset make it difficult for the policy to learn how
to reach G from S. (b) By connecting segments, augmentation-based methods expand the dataset
and facilitate learning a policy that can reach the G from S. (c) When the initial state S falls into an
out-of-distribution (OOD) region again, the old augmented data cannot support the agent in learning
a policy from S to G. (d) RAD dynamically retrieves high-value and reachable states as intermediate
targets to guide the agent from S to G.

(RAD) in this paper, which is built upon a retrieval mechanism and a generative model. It uses the
retrieval mechanism to select states from high-return trajectories in the surrounding region as target
states for planning. The agent then leverages the generative model to generate subsequent trajectories
toward the target state to achieve higher rewards through interaction with the environment. In such
a manner, RAD can efficiently facilitate the transition from OOD states or low-reward regions to
potentially high-reward states without relying on complex data augmentation processes. We conduct
extensive experiments on D4RL dataset, and the experiment results demonstrate the effectiveness of
the RAD.

Our main contributions are: (i) We propose RAD, which retrieves states from high-return trajectories
as the target for planning; (ii) RAD can efficiently facilitate the transition from OOD states or
low-reward regions to potentially high-reward states without relying on complex data augmentation
processes; (iii) The extensive experiments on the widely-used D4RL datasets demonstrate the
superiority of RAD.

2 RELATED WORK

Offline reinforcement learning (RL) aims to learn decision policies from static datasets without
additional environment interaction Levine et al. (2020); Prudencio et al. (2023). The most straightfor-
ward solution is behavior cloning (BC), which treats offline RL as a supervised learning problem by
directly imitating the behavior policy in the dataset. Another line of work reformulates policy learning
as a sequence modeling problem Chen et al. (2021); Janner et al. (2021). For example, Decision
Transformer (DT) Chen et al. (2021) conditions on the return-to-go and models entire trajectories
with a Transformer, enabling long-horizon planning. More recently, diffusion-based methods Ajay
et al. (2022); Janner et al. (2022); Dong et al. (2024) such as Diffuser Janner et al. (2022) apply
generative diffusion models to synthesize trajectories, showing strong performance across various
offline RL benchmarks. Despite these advances, most of these methods struggle to generalize beyond
the distribution of the offline dataset. Conservatism-based approaches Kumar et al. (2020); Yu et al.
(2020); Kidambi et al. (2020), such as CQL Kumar et al. (2020) and MOPO Yu et al. (2020), attempt
to mitigate extrapolation errors by constraining the learned policy within the support of the dataset,
either by penalizing out-of-distribution actions or introducing uncertainty-aware rollouts. However,
these methods fundamentally keep the policy restricted to the offline dataset distribution and cannot
fully exploit potentially better behaviors outside it. Data augmentation approaches Lu et al. (2023);
Li et al. (2024), such as Synthetic Experience Replay (SER) Lu et al. (2023) and DiffStitch Li et al.
(2024), enrich the dataset by generating or stitching trajectories, partially alleviating OOD issues.
Yet, once trained on the augmented dataset, the policy often fails to adapt to new states beyond the
synthesized distribution.

To address the issue, we propose a method called Retrieval High-quAlity Demonstrations (RAD),
which retrieves high-return states from the surrounding region and plans toward them to better handle
decision-making under OOD conditions, thereby guiding the policy to achieve higher rewards.
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3 PRELIMINARY

3.1 DIFFUSION MODEL

Diffusion Models Sohl-Dickstein et al. (2015); Song et al. (2020); Ho et al. (2020) are the generative
models that generate data by progressively removing Gaussian noise. Diffusion models are typically
have two processes: forward process that gradually corrupts the data with noise, and a reverse process
that learns to reconstruct the original data distribution by removing noise. In the forward process,
given a clean sample x ∼ q(x), diffusion models treat x as the initial sample x0, and inject Gaussian
noise step by step with q(xt | xt−1) = N (xt |

√
1− βt xt−1, βtI), where I is the identity matrix,

and βt controls the noise level at step t. As the forwarding process progresses, the sample becomes
increasingly corrupted by noise. After K steps, sample x is transformed into pure Gaussian noise xK .
The reverse process starts from a pure Gaussian noise, it aims to recover x by gradually removing
the noise step by step with pθ(xt−1 | xt) = N (xt−1 | µθ(xt, t), Σθ(xt, t)), where the mean
can be re-expressed with µθ(xt, t) =

√
αt(1−ᾱt)
1−ᾱt−1

xt +
√
ᾱt−1βt

1−ᾱt
ϕθ(xt, t), with αt = 1 − βt and

ᾱt =
∏t
s=1 αs, ϕθ is model to reconstruct x. Fixing Σθ(xt, t) = βtI Ho et al. (2020), the learning

objective is formulated by minimizing the mean squared error between the true signal and the model
prediction:

L = Ex, t∼[1,T ]

[
∥x0 − ψθ(xt, t) ∥2

]
. (1)

3.2 PROBLEM DEFINITION

RL is typically formulated as a Markov Decision Process (MDP). Formally, a MDP is given by
M = {S,A, P, r, γ}, where S is the state space, A is the action space, P is the transition function,
r is the reward function, and γ ∈ (0, 1) is the discount factor. At each timestep t, the agent observes
the environment state st, takes an action at according to a policy πθ parameterized by θ, then
receives an instantaneous reward rt from environment, and transits to state st+1 via P (st+1 | st,at).
The interaction history is represented as a trajectory τ = {(st,at, rt) | t ≥ 0}. We define the
cumulative discounted reward from step t as vt =

∑
i≥t γ

i−tri, and refer to it as the return of state
st. Additionally, the return of a complete trajectory τ is defined as R(τ) =

∑
t≥0 γ

trt.

We focus on the offline RL setting, where the agent cannot interact with the environment and
must learn from a fixed dataset D = {τi}Ni=1 consisting of N trajectories collected by some
unknown behavior policy. Each trajectory τi is a sequence of state-action-reward tuples: τi =
{(s0,a0, r0), (s1,a1, r1), . . . , (sT−1,aT−1, rT−1)}, where T denotes the length of each trajec-
tory. Our goal is to learn a policy πθ that maximizes the expected return without interacting with the
environment:

πθ = argmax
θ

Eτ∼πθ
[R(τ)]. (2)

4 METHOD

We propose a method called Retrieval High-quAlity Demonstrations (RAD) for offline RL, which
integrates a retrieval augmented mechanism with sub-trajectory generation to improve policy gen-
eralization under the scenarios beyond the dataset coverage. As it is illustrated in Figure 2, RAD
is composed of a target selection (TS) module, a step estimation (SE) module, and a planning (PL)
module. Given the current state st, TS first retrieves reachable and high-return states as targets as
sgt . SE then estimates the step ît transit from the current state st to the target state sgt . PL finally
randomly initializes a noisy sub-trajectory, and offsets st and sgt to the first position and ît position,
generating the subsequent trajectory and making a decision. Since the targets are high-return states,
once the agent reaches such a target state, it can obtain a high return by following the high-return
action associated with the target state, thereby addressing the generalization of policy in low-return
or OOD regions. In the following, we will discuss the TS and SE first, and subsequently the PL.

4.1 TARGET SELECTION(TS) MODULE

The target selection (TS) module aims to dynamically retrieve and select a high-return and reachable
target state sgt from the offline dataset for the subsequent planning. To conduct that, we first construct
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Figure 2: Overall framework of RAD.

a database that contains all states from expert trajectories (please refer to the Appendix D for more
details). Each entry in the database is composed of: (1) state si: the feature vector representing the
environment state at timestep i; (2) trajectory ID: the identifier that indicates which trajectory the
state si belongs; (3) Timestep i: the index of state si within its trajectory; (4) Discounted return vi :
the cumulative discounted return starting from state si.

Based on the current state st and the database, we take the following steps to obtain the target state:

Selecting the similar states: Given the current state st, we first use it as a query vector to retrieve
states from the database based on their similarity to st. We employ two metrics to measure state
similarity. For locomotion and manipulation tasks, the similarity between the current state st and
database states is computed using the cosine similarity. For navigation tasks, the similarity is measured
by the Euclidean distance in the two-dimensional spatial plane. We then select the top-k states with
similarity greater than δ and include them in the set Cs.

Extracting the high-return states: For each state si ∈ Cs, we consider the subsequent trajectory
within the next H − 1 steps to ensure a sufficient number of candidate states, and compute the
cumulative discounted return starting from each state. Specifically, for any state sj with i ≤ j ≤ H−1
in the subsequent trajectory of si, its cumulative discounted return is denoted as vj . We then extract
those states whose return lies within a tolerance threshold η of the highest return v∗ :

|vj − v∗| ≤ η, (3)

where v∗ denotes the maximum return among the candidate states in the batch. The states satisfying
this condition are collected into the set Cg .

Drawing out the trajectory-continuable state: To improve planning robustness and provide a
richer context for the trajectory generation module, we prioritize candidates associated with longer
remaining trajectories in the original demonstrations. Concretely, let ℓj denote the length of the
remaining trajectory starting from sj , sj ∈ Cg , we select the target state with:

sgt = arg max
sj∈Cg

ℓj . (4)

The selected target state sgt is then used to guide downstream planning.

4.2 STEP ESTIMATION(SE) MODEL

While the retrieved target state sgt specifies the direction the agent should move toward for high return,
but does not indicate the temporal distance, i.e., the number of steps needed to reach the target state
from the current state, making it difficult for the agent to plan effectively. From the perspective of
Markov Decision Processes and conditional generative modeling, capturing temporal alignment is
crucial Ajay et al. (2022): without modeling the expected arrival step, the generated sub-trajectories
are prone to overshooting, stalling, or degenerating, leading to incoherent or infeasible behaviors.
Therefore, we design the SE module to predict the step span between the current state st and the
target state sgt . However, directly predicting the step span is a discrete regression problem, which
is difficult than classification Xiong & Yao (2022). To alleviate this difficulty, we reformulate the
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regression problem as a classification task. Specifically, we concatenate the current state st with the
target state sgt , and feed the concatenation to a multilayer perceptron fe:

et = Sigmoid(fe([st, s
g
t ])), (5)

where [., .] denotes the concatenation operation, and et is a H − 1-dimensional vector, the i-th
dimension represents the probability of st requires i steps to reach sgt . Then, we obtain the estimated
step span with :

î = argmax et. (6)

4.3 PLANNING(PL) MODULE

With the current state st, target state sgt and the estimated step count î, the PL module aims to apply
a diffusion model to generate the subsequent trajectory for planning. Specifically, we randomly
initialized a noisy sub-trajectory τtemp with length of H(H ≥ î):

τtemp = {ψ̂Kt , ψ̂Kt+1, . . . , ψ̂
K
t+H}, (7)

where each element ψ̂Kt in τtemp represents either a noisy state-action pair (ψ̂Kt = {ŝKt , âKt )}) or a
noisy state (ψ̂Kt = ŝKt ) only, and K denotes the diffusion steps. Then, we obtain τ̂Kt from τtemp by
substituting the state in ψ̂Kt with the current state st, and the state in ψ̂K

î
with the target state sgt .

Starting from τ̂Kt , we conduct the reverse denoising process of the diffusion model Janner et al.
(2022) to obtain a clean sub-trajectory. Each denoising step is parameterized as:

pθ(τ̂
k−1
t |τ̂ kt ) = N (µθ(τ̂

k
t , k) + ρ∇Jϕ(τ̂ kt ), βkI) , (8)

µθ(τ̂
k
t , k) =

√
αk(1− ᾱk−1)

1− ᾱk−1
τ̂ it +

√
ᾱk−1βk

1− ᾱk
τ̂ k,0t . (9)

Here τ̂ k,0t = ϕθ(τ̂
k
t , k) represents the τ 0

t constructed from τ̂ kt at diffusion step k, ϕθ(·, ·) is a
network for trajectory generation, k ∼ [1,K] is the diffusion step, ρ is a scaling factor controlling
the guidance strength, Jϕ(·) predicts the trajectory return to provide guidance for generation. I
denotes the identity matrix, and βi is the noise schedule coefficient that determines the proportion of
noise injected at denoising step i. After K denoising steps, we obtain the generated sub-trajectory
τ̂0t = {ψ̂0

t , ψ̂
0
t+1, . . . , ψ̂

0
t+H}.

If the element in τtemp is composed of a noisy state-action pair, τ̂0t is the sequence of clean state-
action pairs, we directly take the action in ψ̂0

t+1 to interact with the environment. If the element in
τtemp is composed of noisy states only, τ̂0t is the sequence of clean states, and we then take out the
state in ψ̂0

t+1, and feed it with the current state st to a inverse dynamic model to obtain the action to
interact with the environment:

at = fa(st, ŝt+1), (10)

where ŝt+1 denotes the generated states for step t+ 1, fa is the inverse dynamic model.

Considering existing diffusion-based offline RL methods have already demonstrated strong quality
in generating subsequent trajectories, and we focus on improving offline RL through a retrieval-
augmented mechanism rather than trajectory generation itself, we select Diffuser Janner et al. (2022)
and DiffuserLite Dong et al. (2024), two diffusion-based but totally different methods1, to conduct
the generation in implementation Eq. (8). Correspondingly, we have two variants: (1) D-RAD, which
integrates our retrieval-augmented mechanism with the trajectory generation of Diffuser, producing
trajectories of states and actions for decision making; (2) DL-RAD, which integrates our retrieval-
augmented mechanism with the trajectory generation of DiffuserLite, producing trajectories of states
only, after which actions are predicted using an inverse dynamics model for decision making.

1Our retrieval-augmented mechanism is, in theory, compatible with any trajectory–generation–based offline
RL algorithm
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4.4 MODEL LEARNING

Our method is trained with three losses: (1) the generation loss, which constrains the generation
of planning toward the high-return states; (2) the generation guidance loss, which constrains the
guidance function; (3) the step estimation loss, which guarantees the accuracy of step estimation.

Generation loss. To train the generation of planning toward high-return states, we employ a pseudo
target strategy. Concretely, we first sample a demonstration trajectory from the offline dataset:

τ0t = {ψKt , ψKt+1, . . . , ψ
K
t+H−1}, (11)

where ψKt denotes the vector representation of the state (the state-action pair if the planning module
is used to generate the state-action pair) of step t. Then, we randomly select an offset i ∼ U(1, H−1)
and set the vectors in ψKt+i as the pseudo target and applying forward diffusion to the sub-trajectory,
the denoising network ϕθ is trained by minimizing the noise prediction error:

Ld = Eτt∈D,t>0,k∼[1,K]

[
∥τt − ϕθ(τ̂

k
t , k)∥2

]
, (12)

Generation guidance loss. The generation guidance Jϕ(·) is optimized by minimizing the mean
squared error between the predicted trajectory return signal and the ground-truth return signal over
the offline dataset D:

Lg = Eτ∼D
[
(Jϕ(τ)− C(τ))2

]
. (13)

For D-RAD, C(τ) corresponds to the cumulative discounted return of the trajectory R(τ). For
DL-RAD, C(τ) =

∑H−2
t=0 γtrt + γH−1V (sH−1), where V (st) = maxEπ

[∑∞
τ=t γ

τ−trτ
]

denotes
the optimal value function and can be estimated by a neural network through various offline RL
methods. Here, H is the temporal horizon.

Step estimation loss. The step estimation loss is formulated as the cross-entropy loss between the
predicted step distribution et and the ground-truth step count i:

Le = −E(st,s
g
t )

[
log et[i]

]
, (14)

where i is the ground truth offset of steps from st to sgt , and et[i] denotes the predicted probability
for class i.

Ld, Lg and Le are optimized independently. The details of the training and testing process are
presented in Appendix C.

5 EXPERIMENT DESIGN AND RESULTS ANALYSIS

We explored the performance of RAD on a variety of offline RL tasks, including locomotion tasks
(HalfCheetah, Hopper, Walker2d), navigation tasks (AntMaze, Maze2d), and manipulation tasks
(Kitchen), and aimed to answer the following research questions (RQs): (1) How does RAD perform
compared with baseline methods across different environments? (2) Can RAD generalize to new states
not covered in the training dataset? (3) How does the key component contribute to the performance
of RAD? (4) Are the target states generated by RAD feasible and achievable in practice, and do they
provide effective guidance for reaching the final goal?

5.1 EXPERIMENT SETTINGS

Environments and Datasets. We evaluate the algorithm on various offline RL environments,
including locomotion in Gym-MuJoCo Brockman et al. (2016), long-horizon navigation in Antmaze
Fu et al. (2020), real-world manipulation in FrankaKitchen Gupta et al. (2019), and 2D navigation
tasks in Maze2D Fu et al. (2020). We train models using publicly available datasets (see appendix B
for further details).

Baselines. To evaluate our RAD, we compare it against a diverse representative offline RL algorithms.
These include imitation learning methods such as Behavior Cloning (BC); model-free offline rein-
forcement learning approaches, including Conservative Q-Learning (CQL) Kumar et al. (2020) and

6
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Table 1: The Performance across benchmark environments2. The results correspond to the mean over
3 random seeds with standard errors. Scores within 5% of the maximum per task (≥ 0.95× MAX)
are highlighted in bold. We abbreviate Diffuser as Diff and DiffuserLite as Lite for brevity.

Dataset Env BC CQL IQL MOPO MOReL DT SER DStitch DS DD Diff Lite D-RAD DL-RAD

Medium-Expert
HalfCheetah 55.2 91.6 86.7 63.3 53.3 86.8 88.9 94.4 95.7 90.6 88.9 88.5 84.9 ± 0.5 90.1 ±0.1
Hopper 52.5 105.4 91.5 23.7 108.7 107.6 110.4 110.9 107.0 111.8 103.3 111.6 112.3 ± 0.3 110.0 ± 0.3
Walker2d 107.5 108.8 109.6 44.6 95.6 108.1 111.7 111.6 108.0 108.8 106.9 107.1 108.1 ±0.1 110.2 ±0.2

Medium
HalfCheetah 42.6 44.0 47.4 42.3 42.1 42.6 49.3 49.4 47.8 49.1 42.8 48.9 44.2 ±0.2 48.8 ±0.6
Hopper 52.9 58.5 66.3 28.0 95.4 67.6 66.6 71.0 76.6 79.3 74.3 100.9 82.5 ±2.3 101.0 ±1.1
Walker2d 75.3 72.5 78.3 17.8 77.8 74.0 85.9 83.2 83.6 82.5 79.6 88.8 82.8 ±0.7 89.4 ±0.2

Medium-Replay
HalfCheetah 36.6 45.5 44.2 53.1 40.2 36.6 46.6 44.7 41.0 39.3 37.7 41.6 41.2 ±0.1 44.4 ±0.1
Hopper 18.1 95.0 94.7 67.5 93.6 82.7 102.4 102.1 89.5 100.0 93.6 96.6 98.0 ±0.6 100.4 ±0.4
Walker2d 26.0 77.2 73.9 39.0 49.8 66.6 85.7 86.6 80.7 75.0 70.6 90.2 77.6 ±1.2 93.5 ±1.2

Average 51.9 77.6 77.0 42.1 72.9 74.7 83.1 83.8 81.1 81.8 77.5 86.0 81.3 87.5

Play
Antmaze-Medium 0.0 65.8 65.8 0.0 0.0 0.0 41.0 65.8 0.0 8.0 6.7 78.0 40.0 ± 5.2 86.7± 3.6
Antmaze-Large 0.0 20.8 42.0 0.0 0.0 0.0 72.9 42.0 0.0 0.0 17.3 72.0 13.3 ± 3.6 80.0± 4.2

Diverse
Antmaze-Medium 0.0 67.3 73.8 0.0 0.0 0.0 40.9 73.8 0.0 4.0 2.0 92.4 6.7 ± 2.6 93.3± 2.6
Antmaze-Large 0.0 20.5 30.3 0.0 0.0 0.0 37.5 30.3 0.0 0.0 27.3 68.0 26.7 ± 4.7 73.3± 4.7

Average 0.0 43.6 53.0 0.0 0.0 0.0 48.1 53.0 0.0 3.0 13.3 77.6 21.7 83.3

Kitchen
Mixed 51.5 52.4 51.0 17.3 0.0 25.8 56.1 51.0 1.6 65.0 52.5 73.6 63.3 ± 1.1 72.7± 1.4
Partial 38.0 50.0 46.3 6.7 35.5 31.4 37.4 63.3 1.6 57.0 55.7 74.4 65.0 ± 1.3 71.5± 1.7

Average 44.8 51.2 48.7 12.0 17.8 28.6 46.8 57.2 1.6 61.0 54.1 74.0 64.2 72.1

Maze2d
Large 5.0 12.5 59.0 -0.5 14.1 35.7 61.7 59.0 171.6 111.8 123.0 39.1 149.2 ± 7.5 44.3 ± 9.2
Medium 30.3 5.0 32.8 19.1 68.5 31.7 34.1 50.2 111.7 103.7 121.5 32.2 128.2± 6.6 78.3 ± 10.4
U-Maze 3.8 5.7 37.4 -15.4 76.4 18.1 40.5 77.0 111.3 113.8 113.9 31.2 127.4± 1.2 78.2± 14.8

Average 13.0 7.7 43.1 1.1 53.0 28.5 45.4 62.1 131.5 109.8 119.5 34.2 134.9 66.9

Implicit Q-Learning (IQL) Kostrikov et al. (2021); model-based methods such as Model-based Offline
Policy Optimization (MOPO) Yu et al. (2020) and Model-based Offline Reinforcement Learning
(MOReL) Kidambi et al. (2020); return-conditioned methods such as Decision Transformer (DT)
Chen et al. (2021); data-augmented methods Synthetic experience replay (SER) Lu et al. (2023) and
DiffserStitch Li et al. (2024); and diffusion-based planning methods including Diffuser Janner et al.
(2022), Decision stacks Zhao & Grover (2023), Decision Diffuser (DD) Ajay et al. (2022), and the
recently proposed DiffuserLite Dong et al. (2024).

Implementation Details. For D-RAD, we follow the same planning horizon as Diffuser, while
DL-RAD uses the horizon defined in DiffuserLite. The step estimation model fe is implemented as a
4-layer MLP. More details about hyperparameter please refer Appendix D. Training was conducted
on 4 NVIDIA A40 GPUs, an Intel Gold 5220 CPU, and 504GB memory, optimized with the
Adam optimizer Kingma & Ba (2014). The baselines are implemented following their official
implementations for a fair comparison.

5.2 PERFORMANCE

To evaluate the effectiveness of the proposed RAD framework, we compare D-RAD and DL-RAD
with representative baselines across different categories on D4RL. Results in Table 1 show that
RAD achieves the best or near-best performance on 16 out of 18 datasets (RQ1). More specifically,
(1) in the MuJoCo environments, on sub-optimal datasets (Medium and Medium-Replay), DL-
RAD exhibits more pronounced improvements compared to existing methods. Specifically, on the
Walker-Medium-Replay dataset, RAD outperforms the highest-scoring baseline, DiffuserLite, by
approximately 3. This improvement can be attributed to RAD’s retrieval of high-return and reachable
states from the offline dataset as target states. In sub-optimal datasets with heterogeneous data quality,
many low-return or sub-optimal trajectories exist, which may mislead conventional methods. By
retrieving high-quality state segments, RAD effectively skips low-value regions, allowing the policy
to learn more high-return behaviors during training, thereby improving performance. In contrast,
on the Medium-Expert datasets, most trajectories are already near-optimal, and even without the
retrieval mechanism, policies can learn high-return behaviors, resulting in limited marginal gains from
retrieval augmentation; (2) in the AntMaze environments, RAD consistently outperforms all baseline
methods across different datasets. For example, on Antmaze-Medium-Play, DL-RAD achieves a
score of 86.7, surpassing the best-performing baseline, DiffuserLite (78.0), by approximately 8.7. On

2Results for SER and DStitch are obtained by applying the methods with IQL as the offline RL algorithm.
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Table 2: Performance under distribution shifts. Models are trained on Medium-Replay datasets and
evaluated with initial states replaced by states from the corresponding Random datasets. The best
results are in bold.

Dataset CQL DT MOPO DiffStitch DiffuserLite DL-RAD

HalfCheetah 37.9 26.3 62.3 26.4 37.6 39.2
Hopper 63.6 35.7 39.5 37.6 60.4 90.2
Walker2d 50.6 46.0 78.6 13.7 73.9 85.8
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Figure 3: Results of ablation experiments on different variants.

Antmaze-Large-Play, DL-RAD reaches 80.0, which is more than 7 higher than other methods. This
indicates that RAD can effectively perform long-horizon planning under sparse reward conditions. By
selecting high-return target states from expert trajectories and generating feasible action sequences,
RAD guides the agent along a reasonable path toward the final goal; (3) in Maze2d, both D-RAD and
DL-RAD surpass Diffuser and DiffuserLite, demonstrating that the retrieval-guided mechanism helps
generate higher-quality long-horizon action sequences.

5.3 GENERALIZATION

Offline reinforcement learning faces the critical challenge of whether the learned policy can gen-
eralize to situations not present in the training dataset. To evaluate this, we conduct experiments
in the Medium-Replay. Specifically, we first initialize the states by randomly sampling from the
corresponding Random dataset. Subsequently, we leverage policies pre-trained on the Medium-
Replay dataset to interact with the environment. As shown in Table 2, DL-RAD demonstrates clear
improvements over DiffuserLite and other baselines in Hopper and Walker2d, while underperforming
MOPO in HalfCheetah. We hypothesize that this performance gap arises because the HalfCheetah
Medium-Replay dataset exhibits both higher average cumulative returns and richer trajectory diver-
sity compared to Hopper and Walker2d Shan et al., allowing MOPO to fully exploit them through
dynamics modeling and thereby achieve superior performance. In this case, DL-RAD’s retrieval-
augmented mechanism provides limited additional benefits compared with dynamics modeling of
MOPO. However, in Hopper and Walker2d, DL-RAD achieves substantially higher returns than all
other baselines. This suggests that the retrieval-augmented target states enable the agent to better
exploit trajectories in the offline dataset for decision making, thereby allowing the learned policy to
generalize to new states not covered in the training dataset (RQ2).

5.4 ABLATION STUDY

To evaluate the contribution of each component in the RAD, we conduct ablation studies. Specifically,
we have three variants:

• -TS removes the TS module.

• -TSR removes the TS module and randomly samples targe states from the dataset.

• -SE removes the SE module and replaces the predicted transition horizon with a randomly
selected number of steps.

• -PTS replaces the random offset i ∼ U(1,H − 1) in the pseudo target strategy (4.4) with a fixed
step i, so that the pseudo target is always selected at the same horizon within the trajectory.

8
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Figure 4: Visualization of policy predictions and real environment roll-outs in the AntMaze envi-
ronment. Black dots denote the start states of the corresponding steps, blue dots indicate the target
states (S for the map’s starting position and G for the final goal), red dots represent the intermediate
states, and the orange line represents the actual trajectory of agent-environment interaction over time,
starting from the current moment.

Specifically, we observe the following : (1) Compared -TSR, -TS and D-RAD, -TSR performs
worst, -TS is better, and D-RAD achieves the best performance in most cases. This trend confirms
that both the TS and SE modules contribute positively (RQ3), as removing them (-TS) reduces
performance, and further replacing TS with random targets (-TSR) degrades it even more. (2) The
contrast between -TSR and D-RAD highlights that retrieving appropriate target states is crucial.
While randomly injected targets introduce noise and mislead the policy, retrieved targets provide
informative guidance that effectively directs the agent toward high-return regions. (3) -PTS performs
worse than D-RAD. This validates the pseudo target strategy: a fixed horizon limits adaptability,
whereas sampling random offsets across horizons enriches training and improves robustness.

The additional ablation study results for DL-RAD are provided in Appendix E.2.

5.5 VISULIZATION

To further investigate the target states generated by RAD, we conducted a visualization experi-
ment. Specifically, we selected the AntMaze-medium-replay environment and visualized part of the
target states generated by the DL-RAD agent, along with the actual trajectories obtained through
environment interactions.
The results are shown in Fig. 4. From the figure, we can observe the following (RQ4): (1) The
target states generated by the policy are located at reasonable positions and do not lead the agent
to collide with or pass through walls, indicating that the target states are reasonable. (2) Guided by
these target states, the agent can successfully reach the final goal G, demonstrating that enhancing the
decision-making with the guidance of target states is effective. (3) The actual trajectories obtained
from environment interactions align well with the generated target states, suggesting that the targets
are not only theoretically reasonable but also practically achievable, thereby validating the reachability
of our method.

6 CONCLUSION AND DISCUSSION

We presented RAD, a retrieval-augmented method for offline RL. RAD improves generalization by
dynamically retrieving high-return states as target states and leveraging diffusion-based trajectory
generation for planning. By conditioning on these target states, the agent is guided toward reachable
high-return regions, gradually escaping low-return and poorly covered areas, and thereby generalizing
to previously unseen states. Experiments on D4RL tasks show that RAD matches or outperforms
prior methods across diverse settings. This demonstrates the potential of our retrieval-augmented
mechanism in overcoming data coverage limitations in offline RL. However, RAD still relies on the
coverage of the offline dataset. When long-horizon target states are absent, the generated trajectories
may become suboptimal, thereby affecting planning performance.

Our current experiments are primarily conducted on standard D4RL tasks, with visualizations and
analyses limited to a few environments. Future work could extend RAD to more complex and diverse
scenarios. In addition, we plan to investigate more efficient retrieval strategies to further improve the
applicability and effectiveness of RAD.

9



486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2026

7 ETHICS STATEMENT

This research was conducted in accordance with established ethical standards for scientific work.
Topics considered include, but are not limited to, the involvement of human subjects, dataset usage
and release practices, potentially harmful insights, research methodologies and applications, con-
flicts of interest and sponsorship, discrimination/bias/fairness concerns, privacy and security issues,
legal compliance, and research integrity (e.g., IRB approvals, documentation, and research ethics).
Specifically, our study does not involve human subjects or personally identifiable information, and
therefore no Institutional Review Board (IRB) approval was required. All datasets used are publicly
available and released under appropriate licenses. Potential risks, including fairness, bias, privacy,
and unintended harmful use of the findings, were carefully assessed, and steps were taken to minimize
such risks. We affirm that our work complies with research integrity guidelines, including accurate
reporting, transparency, and reproducibility.

8 REPRODUCIBILITY STATEMENT

We have taken multiple steps to ensure the reproducibility of our results. The main text provides
detailed descriptions of the model architecture and training procedure, while the appendix includes
additional explanations of implementation details and hyper-parameters. All datasets used in our
experiments are publicly available. Furthermore, we release the source code in an anonymous
repository, enabling researchers to faithfully reproduce our experiments.
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A LARGE LANGUAGE MODELS USAGE

Large Language Models (LLMs) were used solely for language polishing and minor stylistic im-
provements. They did not contribute to the conceptual development, methodology, experiments, or
analysis of this work. The authors take full responsibility for all content.

B DETAILS OF EXPERIMENTAL SETUP

Gym-MuJoCo Brockman et al. (2016) on D4RL consists of three popular offline RL locomotion tasks
(Hopper, HalfCheetah, Walker2d). These tasks require controlling three MuJoCo robots to achieve
maximum movement speed while minimizing energy consumption under stable conditions. D4RL
provides three different quality levels of offline datasets: “medium” containing demonstrations of
medium-level performance, “medium-replay” containing all recordings in the replay buffer observed
during training until the policy reaches medium performance, and “medium-expert” which combines
medium and expert level performance equally. We further analyze the returns distribution of these
datasets, showing the differences in trajectory quality among the Medium, Med-Replay, and Med-
Expert datasets for HalfCheetah, Hopper, and Walker2d (Figure 5).

FrankaKitchen Gupta et al. (2019) requires controlling a realistic 9-DoF Franka robot in a kitchen
environment to complete several common household tasks. In offline RL testing, algorithms are often
evaluated on “partial” and “mixed” datasets. The former contains demonstrations that partially solve
all tasks and some that do not, while the latter contains no trajectories that completely solve the tasks.
Therefore, these datasets place higher demands on the policy’s “stitching” ability. During testing, the
robot’s task pool includes four sub-tasks, and the evaluation score is based on the percentage of tasks
completed.

AntMaze Fu et al. (2020) requires controlling the 8-DoF “Ant” quadruped robot in MuJoCo to
complete maze navigation tasks. In the offline dataset, the robot only receives a reward upon reaching
the endpoint, and the dataset contains many trajectory segments that do not lead to the endpoint,
making it a difficult decision task with sparse rewards and a long horizon. The success rate of
reaching the endpoint is used as the evaluation score, and common model-free offline RL algorithms
often struggle to achieve good performance.

Maze2D Fu et al. (2020) is a navigation task in which a 2D agent needs to traverse from a randomly
designated start location to a fixed goal location where a reward of 1 is given. No reward shaping
is provided at any other location. The objective of this task is to evaluate the ability of offline RL
algorithms to combine previously collected sub-trajectories in order to find the shortest path to the
evaluation goal. Three maze layouts are available: “umaze”, “medium”, and “large”. The expert
data for this task is generated by selecting random goal locations and using a planner to generate
sequences of waypoints that are followed by using a PD controller to perform dynamic tracking.

C ALGORITHMS.

Algorithm 1 Training

Require: Offline dataset D, batch size B, diffusion model ϕθ, step estimation model fe, batch size
B, diffusion steps K

1: for each training iteration do
2: Sample a batch of trajectories {τt}Bt=1 from D
3: for each trajectory τt in batch do
4: Randomly select an offset i ∼ U(1,H − 1)
5: Set st+i as pseudo target
6: Apply forward diffusion on sub-trajectory τt to obtain noisy τ̂kt
7: Compute generation loss: Ld by Eq. 12.
8: Compute guidance loss: Lg by Eq. 13.
9: Compute step estimation loss: Le by Eq. 14.

10: end for
11: Update ϕθ and fe using gradients from Ld,Lg,Le
12: end for

12
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Figure 5: Returns distribution of Med-Expert, Medium and Med-Replay datasets of Halfcheetah,
Hopper, Walker2d.

Algorithm 2 Planning and decision-making

Require: Current state st, diffusion model ϕθ, step estimation model fψ, database D, similarity
threshold δ, Top-k selection k

1: Retrieve candidate states {s′i} from D s.t. sim(st, s
′
i) ≥ δ

2: if candidates found then
3: Select top-k states by similarity
4: Re-rank candidates and choose best sgt by Eq. 4
5: Estimate step ît by Eq. 6
6: end if
7: Initialize noisy sub-trajectory τtemp ∼ N (0, I) of length H ≥ ît
8: Substitute st and sgt into τtemp at positions 0 and ît
9: for k = K down to 1 do

10: Reverse denoise τtemp using ϕθ and guidance Jϕ
11: end for
12: Obtain clean trajectory τ̂0t
13: if trajectory contains state-action pairs then
14: Execute action ât+1 in environment
15: else
16: Use inverse dynamics: at = fa(st, ŝt+1) and execute
17: end if

D IMPLEMENTATION DETAILS

• We represent the noise model in D-RAD with a temporal U-Net Janner et al. (2022), consisting
of a U-Net structure with 6 repeated residual blocks. Each block consisted of two temporal
convolutions, each followed by group norm , and a final Mish nonlinearity. Timestep and
condition embeddings, both 128-dimensional vectors, are produced by separate 2-layered MLP
(with 256 hidden units and Mish nonlinearity) and are concatenated together before getting
added to the activations of the first temporal convolution within each block .
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Table 3: Planning horizons and levels used in D-RAD and DL-RAD across different environments.

Method Environment Planning Horizon H Temporal Jumps / Levels

D-RAD MuJoCo (locomotion) 32 -
D-RAD Kitchen 32 -
D-RAD AntMaze 64 -
D-RAD Maze2D U-Maze 128 -
D-RAD Maze2D Medium 265 -
D-RAD Maze2D Large 384 -

DL-RAD Kitchen 49 16, 4, 1
DL-RAD MuJoCo (locomotion) 129 32, 8, 1
DL-RAD AntMaze 129 32, 8, 1

• For all locomotion tasks, we regard trajectories of length 1000 as expert demonstrations. For
AntMaze, expert targets are selected from trajectories whose first hitting step of the goal lies
between 150 and 600. For Kitchen, trajectories that successfully complete three designated tasks
are considered expert. For Maze2D, expert trajectories are selected according to the number of
steps required to reach the goal for the first time: 400-600 steps for Maze2D-medium, 400-800
steps for Maze2D-large, and 200-300 steps for Maze2D-umaze.

• The planning horizons and temporal jumps used in D-RAD and DL-RAD across different
environments are summarized in Table 3.

• We consider the top-6 most similar candidates when selecting the target state in D-RAD, and the
top-500 most similar candidates when selecting the target state in DL-RAD.

E ADDITIONAL EXPERIMENT RESULTS

E.1 EFFICIENCY

A potential concern with RAD is the inference-time cost from the retrieval component in the TS
module, which performs vector-based similarity search and may introduce additional memory and
computational overhead.

To characterize the worst-case memory footprint, we measured the cost of storing high-dimensional
indices representing the entire state space. This full-state index requires approximately 1.4 GB of
CPU memory on our in-house server (502 GB RAM), which remains negligible at system scale. For
the same full-state index, a single retrieval including network latency takes about 0.4 seconds, and
this cost can be further reduced through local caching.

However, RAD does not query the entire state space during evaluation. All retrieval operations in our
actual experiments are performed within a pre-constructed expert database, which is substantially
smaller. Consequently, the true time overhead differs from the 0.4-second worst-case measurement
above.

To provide an accurate measurement of the actual overhead in RAD, we have measured the total time
taken by RAD to generate a single action, including the time for the policy to compute the action
from a given state and the time required to execute the action in the environment and transition to the
next state. The results are summarized in Table 4.

Table 4: Per-step inference time for different methods.

Environment Method Inference Time (s) Performance
AntMaze DiffuserLite 0.06 77.6
AntMaze DL-RAD 0.26 83.3
Locomotion DiffuserLite 0.05 86.0
Locomotion DL-RAD 0.11 87.5
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Compared to DiffuserLite, DL-RAD introduces an additional overhead (approximately +0.20s in
AntMaze and +0.06s in Locomotion), mainly due to the retrieval component in the TS module.
The observed latency is acceptable for real-time execution in these tasks, given the performance
improvement DL-RAD achieves. Moreover, we can further improve the efficiency of retrieval by
filtering out suboptimal high-return states.

E.2 ADDITIONAL ABLATION STUDY

Table 5: Ablation study comparing DL-RAD with and without target states across different environ-
ments.

Environment No Target States DL-RAD

HalfCheetah-MR 41.9 44.4
Hopper-MR 24.1 100.4

Walker2d-MR 72.4 93.5

First, to evaluate the contribution of the retrieval module in DL-RAD, we conduct an ablation study
in which target states are no longer provided. This setting tests the model’s performance when it
cannot rely on retrieved target states for guidance. Table 5 summarizes the results across several
environments. The version without the retrieval module shows a clear drop in performance compared
with the full RAD model.

E.3 PARAMETER STUDY

Table 6: Effect of minimum similarity threshold δ for D-RAD.

δ HalfCheetah-M Hopper-M Walker2d-M

0.0 43.6 54.2 64.3
0.5 43.7 77.5 53.2
0.8 44.0 74.8 58.4
0.9 44.2 82.5 82.8

Table 7: Effect of minimum similarity threshold δ for DL-RAD.

δ AntMaze-L-P Kitchen-M Maze2d-M Hopper-MR

0.6 60.7 0.0 52.0 100.4
0.7 50.0 2.5 59.0 100.3
0.8 80.0 60 78.3 100.2
0.9 70.0 72.7 60.1 96.5

To investigate the effect of the minimum similarity threshold δ in the target selection module, we
conduct experiments varying δ while keeping other settings fixed. The results are summarized in
Table 6 and Table 7.

E.4 ADDITIONAL DISTRIBUTION SHIFTS EXPERIMENTS

To more systematically evaluate whether the learned policies can generalize to states not present
in the training dataset, we conducted additional OOD tests on both Maze2D and AntMaze. For
Maze2D, we randomly sampled initial states from maze2d-open-v0 and executed policies trained
on maze2d-umaze-v1 or maze2d-medium-v1. For AntMaze, we randomly sampled initial states
from antmaze-medium-diverse-v2 and evaluated policies trained on antmaze-medium-play-v2 or
antmaze-large-play-v2. The results are reported in Table 8.

Across all datasets, DL-RAD consistently outperforms the baselines, often by a substantial margin.
This demonstrates the effectiveness of our method.
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Table 8: Performance under distribution shifts.

Environment DiffStitch DiffuserLite DL-RAD

Antmaze-medium-play 36.7 6.7 43.3
Antmaze-large-play 33.3 0.0 36.7
Maze2D Medium 14.7 28.3 38.0
Maze2D U-maze 10.8 28.5 44.7

E.5 SENSITIVITY TO IMPERFECT RANKING IN THE RETRIEVAL MODULE

To examine whether RAD depends heavily on perfect ranking within the retrieval module, we
conducted an additional stress test on AntMaze by deliberately degrading the ranking quality. In the
final step of the TS module, instead of always selecting the top-1 state, we constructed candidate
sets of size 1, 3, 5, and 7, corresponding to increasingly noisy retrieval. For each candidate set, we
randomly sampled one state as the retrieved target, thereby simulating scenarios in which the retrieval
mechanism returns suboptimal or partially misranked states. The results are summarized in Table 9.

Table 9: Sensitivity to Retrieval Ranking Quality.

Environment Top-1 Top-3 Top-5 Top-7

Antmaze-medium-play 86.7 85.3 85.3 72.0
Antmaze-large-play 80.0 73.3 70.0 66.7
Antmaze-medium-diverse 93.3 86.7 84.3 83.3
Antmaze-large-diverse 73.3 62.0 58.7 62.0

As the candidate set grows larger, the noise in the retrieval ranking increases, and the performance
shows a gradual downward trend. This behavior is expected: when the retrieved target state is
not necessarily the optimal one, the guidance provided to the planner becomes weaker, leading to
reduced success rates. More importantly, however, this degradation is gradual rather than catastrophic.
Comparing these results against the baselines in Table 1, we observe that even the worst Top-7
performance remains competitive in most environments. For example, in AntMaze-Medium-Diverse,
the Top-7 setting still achieves 83.3, ranking among the top three methods.

Therefore, although imperfect ranking introduces some negative effects on the performance, RAD
can still benefit from the retrieved target even when it is suboptimal, as long as the retrieved state lies
within a reasonably high-value region.

F PROOF OF ENTROPY REDUCTION WITH TARGET CONDITIONING

To analyze the effect of conditioning on additional target information in trajectory forecasting, we
denote the subsequent trajectory generated for planning as a random variable τ , the current state as
st, and the retrieved target state as sg . The predictive uncertainty associated with the trajectory given
only st is quantified by the conditional entropy H(τ | st); larger values indicate greater uncertainty
and lower predictive confidence.

When the target state sg is included as an additional conditioning variable, the uncertainty becomes
H(τ | st, sg). By applying the chain rule of conditional entropy to the joint variable pair (τ, sg), we
obtain two equivalent expressions:

H(τ, sg | st) = H(τ | st) +H(sg | τ, st) = H(sg | st) +H(τ | st, sg).
Equating the two decompositions and reorganizing terms gives:

H(τ | st)−H(τ | st, sg) = H(sg | st)−H(sg | τ, st).
The right-hand side corresponds to the conditional mutual information I(τ ; sg | st), leading to:

H(τ | st)−H(τ | st, sg) = I(τ ; sg | st).
Since conditional mutual information is non-negative, i.e.,

I(τ ; sg | st) ≥ 0,
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we obtain the inequality:
H(τ | st) ≥ H(τ | st, sg).

This result demonstrates that conditioning on the retrieved target state preserves or decreases the
entropy of the trajectory distribution. Therefore, whenever I(τ ; sg | st) > 0 , the introduction of
sg provides additional relevant information that reduces uncertainty and leads to more accurate and
reliable trajectory prediction (i.e.the generation of the subsequent trajectory for planning).

G COMPARISON WITH TRAJECTORY STITCHING METHODS

For completeness, we provide a detailed discussion on how RAD relates to trajectory-stitching
approaches, particularly DiffStitch. RAD is indeed conceptually related to DiffStitch, as both
methods are built based on generative models and conduct stitching. However, RAD is different
DiffStitch due to:

• DiffStitch is a data augmentation method. It generates a fixed, enlarged data by stitching
trajectory segments in the original offline dataset to enhance the offline dataset.

• RAD is an offline RL algorithm. It dynamically retrieves reachable and high-return states as the
target states, and uses a diffusion model to plan toward the target states. This enables adaptive
high-return-aware planning and decision making.

• Theoretically, the augmented data produced by DiffStitch can be further used to train RAD.
This means the two approaches are compatible and can be organically combined to yield more
efficient decision-making, rather than being mutually exclusive.

A structured comparison is provided below:

Table 10: Comparison between DiffStitch and RAD.

Aspect DiffStitch RAD
Type Diffusion-based data augmentation

for offline RL
Diffusion-based offline RL method

Stitching Yes, stitching trajectory segments
for data generation

Yes, stitching the current state to
the target state for planning

Trajectory Planning N/A Yes
Handling OOD States Limited(fixed dataset) Flexible via dynamic retrieval
Adaptivity Static Dynamic, per-step planning
Target high-return subtrajectory high-return states
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