
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2026

RAD: RETRIEVAL HIGH-QUALITY DEMONSTRATIONS
TO ENHANCE DECISION-MAKING

Anonymous authors
Paper under double-blind review

ABSTRACT

Offline reinforcement learning (RL) learns policies from fixed datasets, thereby
avoiding costly or unsafe environment interactions. However, its reliance on finite
static datasets inherently restricts the ability to generalize beyond the training distri-
bution. Prior solutions based on synthetic data augmentation often fail to generalize
to unseen scenarios in the (augmented) dataset. To address these challenges, we pro-
pose Retrieval High-quAlity Demonstrations (RAD) for decision-making, which
innovatively introduces a retrieval mechanism into offline RL. Specifically, RAD
retrieves high-return and reachable states from the offline dataset as target states,
and leverages a generative model to generate sub-trajectories conditioned on these
targets for planning. Since the targets are high-return states, once the agent reaches
such a target, it can continue to obtain high returns by following the associated high-
return actions, thereby improving policy generalization. Extensive experiments
confirm that RAD achieves competitive or superior performance compared to base-
lines across diverse benchmarks, validating its effectiveness. Our code is available
at https://anonymous.4open.science/r/RAD_0925_1-690E.

1 INTRODUCTION

Offline reinforcement learning (RL) aims to learn effective decision policies purely from static
datasets, without further interaction with the environment Levine et al. (2020); Prudencio et al.
(2023); Park et al. (2024). This setting is essential for domains where active exploration is costly or
unsafe, such as robotics Kalashnikov et al. (2021), healthcare Fatemi et al. (2022), and autonomous
driving Shi et al. (2021). Despite promising advances, offline RL faces a fundamental limitation:
the finite scale of static datasets inherently restricts the learned policy’s ability to generalize beyond
the training distribution. As illustrated in Figure 1(a), it is challenging to learn a policy that enables
the agent to reach the target state G from the initial state S using an offline dataset containing only
two trajectories. This is because the two trajectories are too far apart, making it difficult for existing
offline RL algorithms to generalize to the transition from S to G.

To overcome this, recent works typically generate transitions to augment the original dataset, alleviat-
ing the negative impact of finite static datasets in offline setting Lu et al. (2023); Li et al. (2024). As
shown in Figure 1(b), a new sub-trajectory is generated by the augmentation-based methods, which
enable the learning of the policy to support the agent to start from state S and reach state G. However,
these augmentations are typically generated in a static offline manner, which lack flexibility. Once
generated, the augmented dataset remains fixed and cannot adapt to dynamic situations, as shown in
Figure 1(c): if the agent later encounters a new state (e.g., a different start state out of the distribution
of augmentation and original dataset), there may be no existing demonstration or augmented path
that provides meaningful guidance. Consequently, the policy may fail to generalize again, especially
under distributional shifts or changing task demands. This highlights the brittleness and limited
flexibility of static augmentation methods in offline RL.

A promising approach to achieve effective generalization in offline RL is to adopt an adaptive
mechanism: one that adaptively stitches to high-reward trajectories within a certain range to escape
out-of-distribution situations or low-reward scenarios. As it is illustrated in Figure 1(d), Starting from
a new state S, the agent first plans towards a state located along a high-return trajectory. Once the
agent reaches this state, it can then easily navigate to the target state G by leveraging the experience
from the high-return trajectory. Inspired by that, we propose Retrieval High-quality Demonstrations

1

https://anonymous.4open.science/r/RAD_0925_1-690E

054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2026

 S
Text

G

start state S trajectory in dataset new trajectory

Text augmented trajectory generated trajectory

retrieved state

retrieval rangegoal state G

 S

G

Text

 S

G

 S

G

Figure 1: (a) Far-apart trajectories in the offline dataset make it difficult for the policy to learn how
to reach G from S. (b) By connecting segments, augmentation-based methods expand the dataset
and facilitate learning a policy that can reach the G from S. (c) When the initial state S falls into an
out-of-distribution (OOD) region again, the old augmented data cannot support the agent in learning
a policy from S to G. (d) RAD dynamically retrieves high-value and reachable states as intermediate
targets to guide the agent from S to G.

(RAD) in this paper, which is built upon a retrieval mechanism and a generative model. It uses the
retrieval mechanism to select states from high-return trajectories in the surrounding region as target
states for planning. The agent then leverages the generative model to generate subsequent trajectories
toward the target state to achieve higher rewards through interaction with the environment. In such
a manner, RAD can efficiently facilitate the transition from OOD states or low-reward regions to
potentially high-reward states without relying on complex data augmentation processes. We conduct
extensive experiments on D4RL dataset, and the experiment results demonstrate the effectiveness of
the RAD.

Our main contributions are: (i) We propose RAD, which retrieves states from high-return trajectories
as the target for planning; (ii) RAD can efficiently facilitate the transition from OOD states or
low-reward regions to potentially high-reward states without relying on complex data augmentation
processes; (iii) The extensive experiments on the widely-used D4RL datasets demonstrate the
superiority of RAD.

2 RELATED WORK

Offline reinforcement learning (RL) aims to learn decision policies from static datasets without
additional environment interaction Levine et al. (2020); Prudencio et al. (2023). The most straightfor-
ward solution is behavior cloning (BC), which treats offline RL as a supervised learning problem by
directly imitating the behavior policy in the dataset. Another line of work reformulates policy learning
as a sequence modeling problem Chen et al. (2021); Janner et al. (2021). For example, Decision
Transformer (DT) Chen et al. (2021) conditions on the return-to-go and models entire trajectories
with a Transformer, enabling long-horizon planning. More recently, diffusion-based methods Ajay
et al. (2022); Janner et al. (2022); Dong et al. (2024) such as Diffuser Janner et al. (2022) apply
generative diffusion models to synthesize trajectories, showing strong performance across various
offline RL benchmarks. Despite these advances, most of these methods struggle to generalize beyond
the distribution of the offline dataset. Conservatism-based approaches Kumar et al. (2020); Yu et al.
(2020); Kidambi et al. (2020), such as CQL Kumar et al. (2020) and MOPO Yu et al. (2020), attempt
to mitigate extrapolation errors by constraining the learned policy within the support of the dataset,
either by penalizing out-of-distribution actions or introducing uncertainty-aware rollouts. However,
these methods fundamentally keep the policy restricted to the offline dataset distribution and cannot
fully exploit potentially better behaviors outside it. Data augmentation approaches Lu et al. (2023);
Li et al. (2024), such as Synthetic Experience Replay (SER) Lu et al. (2023) and DiffStitch Li et al.
(2024), enrich the dataset by generating or stitching trajectories, partially alleviating OOD issues.
Yet, once trained on the augmented dataset, the policy often fails to adapt to new states beyond the
synthesized distribution.

To address the issue, we propose a method called Retrieval High-quAlity Demonstrations (RAD),
which retrieves high-return states from the surrounding region and plans toward them to better handle
decision-making under OOD conditions, thereby guiding the policy to achieve higher rewards.

2

108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2026

3 PRELIMINARY

3.1 DIFFUSION MODEL

Diffusion Models Sohl-Dickstein et al. (2015); Song et al. (2020); Ho et al. (2020) are the generative
models that generate data by progressively removing Gaussian noise. Diffusion models are typically
have two processes: forward process that gradually corrupts the data with noise, and a reverse process
that learns to reconstruct the original data distribution by removing noise. In the forward process,
given a clean sample x ∼ q(x), diffusion models treat x as the initial sample x0, and inject Gaussian
noise step by step with q(xt | xt−1) = N (xt |

√
1− βt xt−1, βtI), where I is the identity matrix,

and βt controls the noise level at step t. As the forwarding process progresses, the sample becomes
increasingly corrupted by noise. After K steps, sample x is transformed into pure Gaussian noise xK .
The reverse process starts from a pure Gaussian noise, it aims to recover x by gradually removing
the noise step by step with pθ(xt−1 | xt) = N (xt−1 | µθ(xt, t), Σθ(xt, t)), where the mean
can be re-expressed with µθ(xt, t) =

√
αt(1−ᾱt)
1−ᾱt−1

xt +
√
ᾱt−1βt

1−ᾱt
ϕθ(xt, t), with αt = 1 − βt and

ᾱt =
∏t
s=1 αs, ϕθ is model to reconstruct x. Fixing Σθ(xt, t) = βtI Ho et al. (2020), the learning

objective is formulated by minimizing the mean squared error between the true signal and the model
prediction:

L = Ex, t∼[1,T]

[
∥x0 − ψθ(xt, t) ∥2

]
. (1)

3.2 PROBLEM DEFINITION

RL is typically formulated as a Markov Decision Process (MDP). Formally, a MDP is given by
M = {S,A, P, r, γ}, where S is the state space, A is the action space, P is the transition function,
r is the reward function, and γ ∈ (0, 1) is the discount factor. At each timestep t, the agent observes
the environment state st, takes an action at according to a policy πθ parameterized by θ, then
receives an instantaneous reward rt from environment, and transits to state st+1 via P (st+1 | st,at).
The interaction history is represented as a trajectory τ = {(st,at, rt) | t ≥ 0}. We define the
cumulative discounted reward from step t as vt =

∑
i≥t γ

i−tri, and refer to it as the return of state
st. Additionally, the return of a complete trajectory τ is defined as R(τ) =

∑
t≥0 γ

trt.

We focus on the offline RL setting, where the agent cannot interact with the environment and
must learn from a fixed dataset D = {τi}Ni=1 consisting of N trajectories collected by some
unknown behavior policy. Each trajectory τi is a sequence of state-action-reward tuples: τi =
{(s0,a0, r0), (s1,a1, r1), . . . , (sT−1,aT−1, rT−1)}, where T denotes the length of each trajec-
tory. Our goal is to learn a policy πθ that maximizes the expected return without interacting with the
environment:

πθ = argmax
θ

Eτ∼πθ
[R(τ)]. (2)

4 METHOD

We propose a method called Retrieval High-quAlity Demonstrations (RAD) for offline RL, which
integrates a retrieval augmented mechanism with sub-trajectory generation to improve policy gen-
eralization under the scenarios beyond the dataset coverage. As it is illustrated in Figure 2, RAD
is composed of a target selection (TS) module, a step estimation (SE) module, and a planning (PL)
module. Given the current state st, TS first retrieves reachable and high-return states as targets as
sgt . SE then estimates the step ît transit from the current state st to the target state sgt . PL finally
randomly initializes a noisy sub-trajectory, and offsets st and sgt to the first position and ît position,
generating the subsequent trajectory and making a decision. Since the targets are high-return states,
once the agent reaches such a target state, it can obtain a high return by following the high-return
action associated with the target state, thereby addressing the generalization of policy in low-return
or OOD regions. In the following, we will discuss the TS and SE first, and subsequently the PL.

4.1 TARGET SELECTION(TS) MODULE

The target selection (TS) module aims to dynamically retrieve and select a high-return and reachable
target state sgt from the offline dataset for the subsequent planning. To conduct that, we first construct

3

162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2026

Figure 2: Overall framework of RAD.

a database that contains all states from expert trajectories (please refer to the Appendix D for more
details). Each entry in the database is composed of: (1) state si: the feature vector representing the
environment state at timestep i; (2) trajectory ID: the identifier that indicates which trajectory the
state si belongs; (3) Timestep i: the index of state si within its trajectory; (4) Discounted return vi :
the cumulative discounted return starting from state si.

Based on the current state st and the database, we take the following steps to obtain the target state:

Selecting the similar states: Given the current state st, we first use it as a query vector to retrieve
states from the database based on their similarity to st. We employ two metrics to measure state
similarity. For locomotion and manipulation tasks, the similarity between the current state st and
database states is computed using the cosine similarity. For navigation tasks, the similarity is measured
by the Euclidean distance in the two-dimensional spatial plane. We then select the top-k states with
similarity greater than δ and include them in the set Cs.

Extracting the high-return states: For each state si ∈ Cs, we consider the subsequent trajectory
within the next H − 1 steps to ensure a sufficient number of candidate states, and compute the
cumulative discounted return starting from each state. Specifically, for any state sj with i ≤ j ≤ H−1
in the subsequent trajectory of si, its cumulative discounted return is denoted as vj . We then extract
those states whose return lies within a tolerance threshold η of the highest return v∗ :

|vj − v∗| ≤ η, (3)

where v∗ denotes the maximum return among the candidate states in the batch. The states satisfying
this condition are collected into the set Cg .

Drawing out the trajectory-continuable state: To improve planning robustness and provide a
richer context for the trajectory generation module, we prioritize candidates associated with longer
remaining trajectories in the original demonstrations. Concretely, let ℓj denote the length of the
remaining trajectory starting from sj , sj ∈ Cg , we select the target state with:

sgt = arg max
sj∈Cg

ℓj . (4)

The selected target state sgt is then used to guide downstream planning.

4.2 STEP ESTIMATION(SE) MODEL

While the retrieved target state sgt specifies the direction the agent should move toward for high return,
but does not indicate the temporal distance, i.e., the number of steps needed to reach the target state
from the current state, making it difficult for the agent to plan effectively. From the perspective of
Markov Decision Processes and conditional generative modeling, capturing temporal alignment is
crucial Ajay et al. (2022): without modeling the expected arrival step, the generated sub-trajectories
are prone to overshooting, stalling, or degenerating, leading to incoherent or infeasible behaviors.
Therefore, we design the SE module to predict the step span between the current state st and the
target state sgt . However, directly predicting the step span is a discrete regression problem, which
is difficult than classification Xiong & Yao (2022). To alleviate this difficulty, we reformulate the

4

216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2026

regression problem as a classification task. Specifically, we concatenate the current state st with the
target state sgt , and feed the concatenation to a multilayer perceptron fe:

et = Sigmoid(fe([st, s
g
t])), (5)

where [., .] denotes the concatenation operation, and et is a H − 1-dimensional vector, the i-th
dimension represents the probability of st requires i steps to reach sgt . Then, we obtain the estimated
step span with :

î = argmax et. (6)

4.3 PLANNING(PL) MODULE

With the current state st, target state sgt and the estimated step count î, the PL module aims to apply
a diffusion model to generate the subsequent trajectory for planning. Specifically, we randomly
initialized a noisy sub-trajectory τtemp with length of H(H ≥ î):

τtemp = {ψ̂Kt , ψ̂Kt+1, . . . , ψ̂
K
t+H}, (7)

where each element ψ̂Kt in τtemp represents either a noisy state-action pair (ψ̂Kt = {ŝKt , âKt)}) or a
noisy state (ψ̂Kt = ŝKt) only, and K denotes the diffusion steps. Then, we obtain τ̂Kt from τtemp by
substituting the state in ψ̂Kt with the current state st, and the state in ψ̂K

î
with the target state sgt .

Starting from τ̂Kt , we conduct the reverse denoising process of the diffusion model Janner et al.
(2022) to obtain a clean sub-trajectory. Each denoising step is parameterized as:

pθ(τ̂
k−1
t |τ̂ kt) = N (µθ(τ̂

k
t , k) + ρ∇Jϕ(τ̂ kt), βkI) , (8)

µθ(τ̂
k
t , k) =

√
αk(1− ᾱk−1)

1− ᾱk−1
τ̂ it +

√
ᾱk−1βk

1− ᾱk
τ̂ k,0t . (9)

Here τ̂ k,0t = ϕθ(τ̂
k
t , k) represents the τ 0

t constructed from τ̂ kt at diffusion step k, ϕθ(·, ·) is a
network for trajectory generation, k ∼ [1,K] is the diffusion step, ρ is a scaling factor controlling
the guidance strength, Jϕ(·) predicts the trajectory return to provide guidance for generation. I
denotes the identity matrix, and βi is the noise schedule coefficient that determines the proportion of
noise injected at denoising step i. After K denoising steps, we obtain the generated sub-trajectory
τ̂0t = {ψ̂0

t , ψ̂
0
t+1, . . . , ψ̂

0
t+H}.

If the element in τtemp is composed of a noisy state-action pair, τ̂0t is the sequence of clean state-
action pairs, we directly take the action in ψ̂0

t+1 to interact with the environment. If the element in
τtemp is composed of noisy states only, τ̂0t is the sequence of clean states, and we then take out the
state in ψ̂0

t+1, and feed it with the current state st to a inverse dynamic model to obtain the action to
interact with the environment:

at = fa(st, ŝt+1), (10)

where ŝt+1 denotes the generated states for step t+ 1, fa is the inverse dynamic model.

Considering existing diffusion-based offline RL methods have already demonstrated strong quality
in generating subsequent trajectories, and we focus on improving offline RL through a retrieval-
augmented mechanism rather than trajectory generation itself, we select Diffuser Janner et al. (2022)
and DiffuserLite Dong et al. (2024), two diffusion-based but totally different methods1, to conduct
the generation in implementation Eq. (8). Correspondingly, we have two variants: (1) D-RAD, which
integrates our retrieval-augmented mechanism with the trajectory generation of Diffuser, producing
trajectories of states and actions for decision making; (2) DL-RAD, which integrates our retrieval-
augmented mechanism with the trajectory generation of DiffuserLite, producing trajectories of states
only, after which actions are predicted using an inverse dynamics model for decision making.

1Our retrieval-augmented mechanism is, in theory, compatible with any trajectory–generation–based offline
RL algorithm

5

270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2026

4.4 MODEL LEARNING

Our method is trained with three losses: (1) the generation loss, which constrains the generation
of planning toward the high-return states; (2) the generation guidance loss, which constrains the
guidance function; (3) the step estimation loss, which guarantees the accuracy of step estimation.

Generation loss. To train the generation of planning toward high-return states, we employ a pseudo
target strategy. Concretely, we first sample a demonstration trajectory from the offline dataset:

τ0t = {ψKt , ψKt+1, . . . , ψ
K
t+H−1}, (11)

where ψKt denotes the vector representation of the state (the state-action pair if the planning module
is used to generate the state-action pair) of step t. Then, we randomly select an offset i ∼ U(1, H−1)
and set the vectors in ψKt+i as the pseudo target and applying forward diffusion to the sub-trajectory,
the denoising network ϕθ is trained by minimizing the noise prediction error:

Ld = Eτt∈D,t>0,k∼[1,K]

[
∥τt − ϕθ(τ̂

k
t , k)∥2

]
, (12)

Generation guidance loss. The generation guidance Jϕ(·) is optimized by minimizing the mean
squared error between the predicted trajectory return signal and the ground-truth return signal over
the offline dataset D:

Lg = Eτ∼D
[
(Jϕ(τ)− C(τ))2

]
. (13)

For D-RAD, C(τ) corresponds to the cumulative discounted return of the trajectory R(τ). For
DL-RAD, C(τ) =

∑H−2
t=0 γtrt + γH−1V (sH−1), where V (st) = maxEπ

[∑∞
τ=t γ

τ−trτ
]

denotes
the optimal value function and can be estimated by a neural network through various offline RL
methods. Here, H is the temporal horizon.

Step estimation loss. The step estimation loss is formulated as the cross-entropy loss between the
predicted step distribution et and the ground-truth step count i:

Le = −E(st,s
g
t)

[
log et[i]

]
, (14)

where i is the ground truth offset of steps from st to sgt , and et[i] denotes the predicted probability
for class i.

Ld, Lg and Le are optimized independently. The details of the training and testing process are
presented in Appendix C.

5 EXPERIMENT DESIGN AND RESULTS ANALYSIS

We explored the performance of RAD on a variety of offline RL tasks, including locomotion tasks
(HalfCheetah, Hopper, Walker2d), navigation tasks (AntMaze, Maze2d), and manipulation tasks
(Kitchen), and aimed to answer the following research questions (RQs): (1) How does RAD perform
compared with baseline methods across different environments? (2) Can RAD generalize to new states
not covered in the training dataset? (3) How does the key component contribute to the performance
of RAD? (4) Are the target states generated by RAD feasible and achievable in practice, and do they
provide effective guidance for reaching the final goal?

5.1 EXPERIMENT SETTINGS

Environments and Datasets. We evaluate the algorithm on various offline RL environments,
including locomotion in Gym-MuJoCo Brockman et al. (2016), long-horizon navigation in Antmaze
Fu et al. (2020), real-world manipulation in FrankaKitchen Gupta et al. (2019), and 2D navigation
tasks in Maze2D Fu et al. (2020). We train models using publicly available datasets (see appendix B
for further details).

Baselines. To evaluate our RAD, we compare it against a diverse representative offline RL algorithms.
These include imitation learning methods such as Behavior Cloning (BC); model-free offline rein-
forcement learning approaches, including Conservative Q-Learning (CQL) Kumar et al. (2020) and

6

324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2026

Table 1: The Performance across benchmark environments2. The results correspond to the mean over
3 random seeds with standard errors. Scores within 5% of the maximum per task (≥ 0.95× MAX)
are highlighted in bold. We abbreviate Diffuser as Diff and DiffuserLite as Lite for brevity.

Dataset Env BC CQL IQL MOPO MOReL DT SER DStitch DS DD Diff Lite D-RAD DL-RAD

Medium-Expert
HalfCheetah 55.2 91.6 86.7 63.3 53.3 86.8 88.9 94.4 95.7 90.6 88.9 88.5 84.9 ± 0.5 90.1 ±0.1
Hopper 52.5 105.4 91.5 23.7 108.7 107.6 110.4 110.9 107.0 111.8 103.3 111.6 112.3 ± 0.3 110.0 ± 0.3
Walker2d 107.5 108.8 109.6 44.6 95.6 108.1 111.7 111.6 108.0 108.8 106.9 107.1 108.1 ±0.1 110.2 ±0.2

Medium
HalfCheetah 42.6 44.0 47.4 42.3 42.1 42.6 49.3 49.4 47.8 49.1 42.8 48.9 44.2 ±0.2 48.8 ±0.6
Hopper 52.9 58.5 66.3 28.0 95.4 67.6 66.6 71.0 76.6 79.3 74.3 100.9 82.5 ±2.3 101.0 ±1.1
Walker2d 75.3 72.5 78.3 17.8 77.8 74.0 85.9 83.2 83.6 82.5 79.6 88.8 82.8 ±0.7 89.4 ±0.2

Medium-Replay
HalfCheetah 36.6 45.5 44.2 53.1 40.2 36.6 46.6 44.7 41.0 39.3 37.7 41.6 41.2 ±0.1 44.4 ±0.1
Hopper 18.1 95.0 94.7 67.5 93.6 82.7 102.4 102.1 89.5 100.0 93.6 96.6 98.0 ±0.6 100.4 ±0.4
Walker2d 26.0 77.2 73.9 39.0 49.8 66.6 85.7 86.6 80.7 75.0 70.6 90.2 77.6 ±1.2 93.5 ±1.2

Average 51.9 77.6 77.0 42.1 72.9 74.7 83.1 83.8 81.1 81.8 77.5 86.0 81.3 87.5

Play
Antmaze-Medium 0.0 65.8 65.8 0.0 0.0 0.0 41.0 65.8 0.0 8.0 6.7 78.0 40.0 ± 5.2 86.7± 3.6
Antmaze-Large 0.0 20.8 42.0 0.0 0.0 0.0 72.9 42.0 0.0 0.0 17.3 72.0 13.3 ± 3.6 80.0± 4.2

Diverse
Antmaze-Medium 0.0 67.3 73.8 0.0 0.0 0.0 40.9 73.8 0.0 4.0 2.0 92.4 6.7 ± 2.6 93.3± 2.6
Antmaze-Large 0.0 20.5 30.3 0.0 0.0 0.0 37.5 30.3 0.0 0.0 27.3 68.0 26.7 ± 4.7 73.3± 4.7

Average 0.0 43.6 53.0 0.0 0.0 0.0 48.1 53.0 0.0 3.0 13.3 77.6 21.7 83.3

Kitchen
Mixed 51.5 52.4 51.0 17.3 0.0 25.8 56.1 51.0 1.6 65.0 52.5 73.6 63.3 ± 1.1 72.7± 1.4
Partial 38.0 50.0 46.3 6.7 35.5 31.4 37.4 63.3 1.6 57.0 55.7 74.4 65.0 ± 1.3 71.5± 1.7

Average 44.8 51.2 48.7 12.0 17.8 28.6 46.8 57.2 1.6 61.0 54.1 74.0 64.2 72.1

Maze2d
Large 5.0 12.5 59.0 -0.5 14.1 35.7 61.7 59.0 171.6 111.8 123.0 39.1 149.2 ± 7.5 44.3 ± 9.2
Medium 30.3 5.0 32.8 19.1 68.5 31.7 34.1 50.2 111.7 103.7 121.5 32.2 128.2± 6.6 78.3 ± 10.4
U-Maze 3.8 5.7 37.4 -15.4 76.4 18.1 40.5 77.0 111.3 113.8 113.9 31.2 127.4± 1.2 78.2± 14.8

Average 13.0 7.7 43.1 1.1 53.0 28.5 45.4 62.1 131.5 109.8 119.5 34.2 134.9 66.9

Implicit Q-Learning (IQL) Kostrikov et al. (2021); model-based methods such as Model-based Offline
Policy Optimization (MOPO) Yu et al. (2020) and Model-based Offline Reinforcement Learning
(MOReL) Kidambi et al. (2020); return-conditioned methods such as Decision Transformer (DT)
Chen et al. (2021); data-augmented methods Synthetic experience replay (SER) Lu et al. (2023) and
DiffserStitch Li et al. (2024); and diffusion-based planning methods including Diffuser Janner et al.
(2022), Decision stacks Zhao & Grover (2023), Decision Diffuser (DD) Ajay et al. (2022), and the
recently proposed DiffuserLite Dong et al. (2024).

Implementation Details. For D-RAD, we follow the same planning horizon as Diffuser, while
DL-RAD uses the horizon defined in DiffuserLite. The step estimation model fe is implemented as a
4-layer MLP. More details about hyperparameter please refer Appendix D. Training was conducted
on 4 NVIDIA A40 GPUs, an Intel Gold 5220 CPU, and 504GB memory, optimized with the
Adam optimizer Kingma & Ba (2014). The baselines are implemented following their official
implementations for a fair comparison.

5.2 PERFORMANCE

To evaluate the effectiveness of the proposed RAD framework, we compare D-RAD and DL-RAD
with representative baselines across different categories on D4RL. Results in Table 1 show that
RAD achieves the best or near-best performance on 16 out of 18 datasets (RQ1). More specifically,
(1) in the MuJoCo environments, on sub-optimal datasets (Medium and Medium-Replay), DL-
RAD exhibits more pronounced improvements compared to existing methods. Specifically, on the
Walker-Medium-Replay dataset, RAD outperforms the highest-scoring baseline, DiffuserLite, by
approximately 3. This improvement can be attributed to RAD’s retrieval of high-return and reachable
states from the offline dataset as target states. In sub-optimal datasets with heterogeneous data quality,
many low-return or sub-optimal trajectories exist, which may mislead conventional methods. By
retrieving high-quality state segments, RAD effectively skips low-value regions, allowing the policy
to learn more high-return behaviors during training, thereby improving performance. In contrast,
on the Medium-Expert datasets, most trajectories are already near-optimal, and even without the
retrieval mechanism, policies can learn high-return behaviors, resulting in limited marginal gains from
retrieval augmentation; (2) in the AntMaze environments, RAD consistently outperforms all baseline
methods across different datasets. For example, on Antmaze-Medium-Play, DL-RAD achieves a
score of 86.7, surpassing the best-performing baseline, DiffuserLite (78.0), by approximately 8.7. On

2Results for SER and DStitch are obtained by applying the methods with IQL as the offline RL algorithm.

7

378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2026

Table 2: Performance under distribution shifts. Models are trained on Medium-Replay datasets and
evaluated with initial states replaced by states from the corresponding Random datasets. The best
results are in bold.

Dataset CQL DT MOPO DiffStitch DiffuserLite DL-RAD

HalfCheetah 37.9 26.3 62.3 26.4 37.6 39.2
Hopper 63.6 35.7 39.5 37.6 60.4 90.2
Walker2d 50.6 46.0 78.6 13.7 73.9 85.8

- -PTS - -TS - -TSR - -SE 一 D-RAD

90

80

70

60

50

40

30

8
u
m
m
J
o
J
J
3
d

＿

＿

HalfCheetah

0

0

0

0

0

0

0

2

0

8

6

4

2

:C

＿

＿

＿

Hopper

0

0

0

0

0

0

8

6

4

2

(a) Medium-Expert

Walker2d

45

＿

�

－

I

。4

35

30

工

Half Cheetah

o

o

o

o

o

o

0

8

6

4

2

::c

Hopper

(b) Medium

80

60

40

20

－

－

Walker2d

0

5

0

5

0

4

3

3

2

2

＿

＿

＿

H

HalfCheetah

00

80

60

40

20

Hopper

0

0

0

0

0

8

6

4

2

三

干

Walker2d

(c) Medium-Replay

Figure 3: Results of ablation experiments on different variants.

Antmaze-Large-Play, DL-RAD reaches 80.0, which is more than 7 higher than other methods. This
indicates that RAD can effectively perform long-horizon planning under sparse reward conditions. By
selecting high-return target states from expert trajectories and generating feasible action sequences,
RAD guides the agent along a reasonable path toward the final goal; (3) in Maze2d, both D-RAD and
DL-RAD surpass Diffuser and DiffuserLite, demonstrating that the retrieval-guided mechanism helps
generate higher-quality long-horizon action sequences.

5.3 GENERALIZATION

Offline reinforcement learning faces the critical challenge of whether the learned policy can gen-
eralize to situations not present in the training dataset. To evaluate this, we conduct experiments
in the Medium-Replay. Specifically, we first initialize the states by randomly sampling from the
corresponding Random dataset. Subsequently, we leverage policies pre-trained on the Medium-
Replay dataset to interact with the environment. As shown in Table 2, DL-RAD demonstrates clear
improvements over DiffuserLite and other baselines in Hopper and Walker2d, while underperforming
MOPO in HalfCheetah. We hypothesize that this performance gap arises because the HalfCheetah
Medium-Replay dataset exhibits both higher average cumulative returns and richer trajectory diver-
sity compared to Hopper and Walker2d Shan et al., allowing MOPO to fully exploit them through
dynamics modeling and thereby achieve superior performance. In this case, DL-RAD’s retrieval-
augmented mechanism provides limited additional benefits compared with dynamics modeling of
MOPO. However, in Hopper and Walker2d, DL-RAD achieves substantially higher returns than all
other baselines. This suggests that the retrieval-augmented target states enable the agent to better
exploit trajectories in the offline dataset for decision making, thereby allowing the learned policy to
generalize to new states not covered in the training dataset (RQ2).

5.4 ABLATION STUDY

To evaluate the contribution of each component in the RAD, we conduct ablation studies. Specifically,
we have three variants:

• -TS removes the TS module.

• -TSR removes the TS module and randomly samples targe states from the dataset.

• -SE removes the SE module and replaces the predicted transition horizon with a randomly
selected number of steps.

• -PTS replaces the random offset i ∼ U(1,H − 1) in the pseudo target strategy (4.4) with a fixed
step i, so that the pseudo target is always selected at the same horizon within the trajectory.

8

432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2026

t = 0 t = 100 t = 200

S

G

S

G

S

G

Figure 4: Visualization of policy predictions and real environment roll-outs in the AntMaze envi-
ronment. Black dots denote the start states of the corresponding steps, blue dots indicate the target
states (S for the map’s starting position and G for the final goal), red dots represent the intermediate
states, and the orange line represents the actual trajectory of agent-environment interaction over time,
starting from the current moment.

Specifically, we observe the following : (1) Compared -TSR, -TS and D-RAD, -TSR performs
worst, -TS is better, and D-RAD achieves the best performance in most cases. This trend confirms
that both the TS and SE modules contribute positively (RQ3), as removing them (-TS) reduces
performance, and further replacing TS with random targets (-TSR) degrades it even more. (2) The
contrast between -TSR and D-RAD highlights that retrieving appropriate target states is crucial.
While randomly injected targets introduce noise and mislead the policy, retrieved targets provide
informative guidance that effectively directs the agent toward high-return regions. (3) -PTS performs
worse than D-RAD. This validates the pseudo target strategy: a fixed horizon limits adaptability,
whereas sampling random offsets across horizons enriches training and improves robustness.

The additional ablation study results for DL-RAD are provided in Appendix E.2.

5.5 VISULIZATION

To further investigate the target states generated by RAD, we conducted a visualization experi-
ment. Specifically, we selected the AntMaze-medium-replay environment and visualized part of the
target states generated by the DL-RAD agent, along with the actual trajectories obtained through
environment interactions.
The results are shown in Fig. 4. From the figure, we can observe the following (RQ4): (1) The
target states generated by the policy are located at reasonable positions and do not lead the agent
to collide with or pass through walls, indicating that the target states are reasonable. (2) Guided by
these target states, the agent can successfully reach the final goal G, demonstrating that enhancing the
decision-making with the guidance of target states is effective. (3) The actual trajectories obtained
from environment interactions align well with the generated target states, suggesting that the targets
are not only theoretically reasonable but also practically achievable, thereby validating the reachability
of our method.

6 CONCLUSION AND DISCUSSION

We presented RAD, a retrieval-augmented method for offline RL. RAD improves generalization by
dynamically retrieving high-return states as target states and leveraging diffusion-based trajectory
generation for planning. By conditioning on these target states, the agent is guided toward reachable
high-return regions, gradually escaping low-return and poorly covered areas, and thereby generalizing
to previously unseen states. Experiments on D4RL tasks show that RAD matches or outperforms
prior methods across diverse settings. This demonstrates the potential of our retrieval-augmented
mechanism in overcoming data coverage limitations in offline RL. However, RAD still relies on the
coverage of the offline dataset. When long-horizon target states are absent, the generated trajectories
may become suboptimal, thereby affecting planning performance.

Our current experiments are primarily conducted on standard D4RL tasks, with visualizations and
analyses limited to a few environments. Future work could extend RAD to more complex and diverse
scenarios. In addition, we plan to investigate more efficient retrieval strategies to further improve the
applicability and effectiveness of RAD.

9

486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2026

7 ETHICS STATEMENT

This research was conducted in accordance with established ethical standards for scientific work.
Topics considered include, but are not limited to, the involvement of human subjects, dataset usage
and release practices, potentially harmful insights, research methodologies and applications, con-
flicts of interest and sponsorship, discrimination/bias/fairness concerns, privacy and security issues,
legal compliance, and research integrity (e.g., IRB approvals, documentation, and research ethics).
Specifically, our study does not involve human subjects or personally identifiable information, and
therefore no Institutional Review Board (IRB) approval was required. All datasets used are publicly
available and released under appropriate licenses. Potential risks, including fairness, bias, privacy,
and unintended harmful use of the findings, were carefully assessed, and steps were taken to minimize
such risks. We affirm that our work complies with research integrity guidelines, including accurate
reporting, transparency, and reproducibility.

8 REPRODUCIBILITY STATEMENT

We have taken multiple steps to ensure the reproducibility of our results. The main text provides
detailed descriptions of the model architecture and training procedure, while the appendix includes
additional explanations of implementation details and hyper-parameters. All datasets used in our
experiments are publicly available. Furthermore, we release the source code in an anonymous
repository, enabling researchers to faithfully reproduce our experiments.

REFERENCES

Anurag Ajay, Yilun Du, Abhi Gupta, Joshua Tenenbaum, Tommi Jaakkola, and Pulkit Agrawal. Is con-
ditional generative modeling all you need for decision-making? arXiv preprint arXiv:2211.15657,
2022.

Greg Brockman, Vicki Cheung, Ludwig Pettersson, Jonas Schneider, John Schulman, Jie Tang, and
Wojciech Zaremba. Openai gym. arXiv preprint arXiv:1606.01540, 2016.

Lili Chen, Kevin Lu, Aravind Rajeswaran, Kimin Lee, Aditya Grover, Misha Laskin, Pieter Abbeel,
Aravind Srinivas, and Igor Mordatch. Decision transformer: Reinforcement learning via sequence
modeling. Advances in neural information processing systems, 34:15084–15097, 2021.

Zibin Dong, Jianye Hao, Yifu Yuan, Fei Ni, Yitian Wang, Pengyi Li, and Yan Zheng. Diffuserlite:
Towards real-time diffusion planning. Advances in Neural Information Processing Systems, 37:
122556–122583, 2024.

Mehdi Fatemi, Mary Wu, Jeremy Petch, Walter Nelson, Stuart J Connolly, Alexander Benz, Anthony
Carnicelli, and Marzyeh Ghassemi. Semi-markov offline reinforcement learning for healthcare. In
Conference on Health, Inference, and Learning, pp. 119–137. PMLR, 2022.

Justin Fu, Aviral Kumar, Ofir Nachum, George Tucker, and Sergey Levine. D4rl: Datasets for deep
data-driven reinforcement learning. arXiv preprint arXiv:2004.07219, 2020.

Abhishek Gupta, Vikash Kumar, Corey Lynch, Sergey Levine, and Karol Hausman. Relay policy
learning: Solving long-horizon tasks via imitation and reinforcement learning. arXiv preprint
arXiv:1910.11956, 2019.

Jonathan Ho, Ajay Jain, and Pieter Abbeel. Denoising diffusion probabilistic models. Advances in
neural information processing systems, 33:6840–6851, 2020.

Michael Janner, Qiyang Li, and Sergey Levine. Offline reinforcement learning as one big sequence
modeling problem. Advances in neural information processing systems, 34:1273–1286, 2021.

Michael Janner, Yilun Du, Joshua B Tenenbaum, and Sergey Levine. Planning with diffusion for
flexible behavior synthesis. arXiv preprint arXiv:2205.09991, 2022.

Dmitry Kalashnikov, Jacob Varley, Yevgen Chebotar, Benjamin Swanson, Rico Jonschkowski,
Chelsea Finn, Sergey Levine, and Karol Hausman. Mt-opt: Continuous multi-task robotic rein-
forcement learning at scale. arXiv preprint arXiv:2104.08212, 2021.

10

540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2026

Rahul Kidambi, Aravind Rajeswaran, Praneeth Netrapalli, and Thorsten Joachims. Morel: Model-
based offline reinforcement learning. Advances in neural information processing systems, 33:
21810–21823, 2020.

Diederik P Kingma and Jimmy Ba. Adam: A method for stochastic optimization. arXiv preprint
arXiv:1412.6980, 2014.

Ilya Kostrikov, Ashvin Nair, and Sergey Levine. Offline reinforcement learning with implicit
q-learning. arXiv preprint arXiv:2110.06169, 2021.

Aviral Kumar, Aurick Zhou, George Tucker, and Sergey Levine. Conservative q-learning for offline
reinforcement learning. Advances in neural information processing systems, 33:1179–1191, 2020.

Sergey Levine, Aviral Kumar, George Tucker, and Justin Fu. Offline reinforcement learning: Tutorial,
review, and perspectives on open problems. arXiv preprint arXiv:2005.01643, 2020.

Guanghe Li, Yixiang Shan, Zhengbang Zhu, Ting Long, and Weinan Zhang. Diffstitch: Boosting
offline reinforcement learning with diffusion-based trajectory stitching. In International Conference
on Machine Learning, pp. 28597–28609. PMLR, 2024.

Cong Lu, Philip Ball, Yee Whye Teh, and Jack Parker-Holder. Synthetic experience replay. Advances
in Neural Information Processing Systems, 36:46323–46344, 2023.

Seohong Park, Kevin Frans, Sergey Levine, and Aviral Kumar. Is value learning really the main
bottleneck in offline rl? Advances in Neural Information Processing Systems, 37:79029–79056,
2024.

Rafael Figueiredo Prudencio, Marcos ROA Maximo, and Esther Luna Colombini. A survey on offline
reinforcement learning: Taxonomy, review, and open problems. IEEE Transactions on Neural
Networks and Learning Systems, 2023.

Yixiang Shan, Zhengbang Zhu, Ting Long, Liang Qifan, Yi Chang, Weinan Zhang, and Liang
Yin. Contradiff: Planning towards high return states via contrastive learning. In The Thirteenth
International Conference on Learning Representations.

Tianyu Shi, Dong Chen, Kaian Chen, and Zhaojian Li. Offline reinforcement learning for autonomous
driving with safety and exploration enhancement. arXiv preprint arXiv:2110.07067, 2021.

Jascha Sohl-Dickstein, Eric Weiss, Niru Maheswaranathan, and Surya Ganguli. Deep unsupervised
learning using nonequilibrium thermodynamics. In International conference on machine learning,
pp. 2256–2265. pmlr, 2015.

Jiaming Song, Chenlin Meng, and Stefano Ermon. Denoising diffusion implicit models. arXiv
preprint arXiv:2010.02502, 2020.

Haipeng Xiong and Angela Yao. Discrete-constrained regression for local counting models. In
European Conference on Computer Vision, pp. 621–636. Springer, 2022.

Tianhe Yu, Garrett Thomas, Lantao Yu, Stefano Ermon, James Y Zou, Sergey Levine, Chelsea Finn,
and Tengyu Ma. Mopo: Model-based offline policy optimization. Advances in Neural Information
Processing Systems, 33:14129–14142, 2020.

Siyan Zhao and Aditya Grover. Decision stacks: Flexible reinforcement learning via modular
generative models. Advances in Neural Information Processing Systems, 36:80306–80323, 2023.

11

594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2026

A LARGE LANGUAGE MODELS USAGE

Large Language Models (LLMs) were used solely for language polishing and minor stylistic im-
provements. They did not contribute to the conceptual development, methodology, experiments, or
analysis of this work. The authors take full responsibility for all content.

B DETAILS OF EXPERIMENTAL SETUP

Gym-MuJoCo Brockman et al. (2016) on D4RL consists of three popular offline RL locomotion tasks
(Hopper, HalfCheetah, Walker2d). These tasks require controlling three MuJoCo robots to achieve
maximum movement speed while minimizing energy consumption under stable conditions. D4RL
provides three different quality levels of offline datasets: “medium” containing demonstrations of
medium-level performance, “medium-replay” containing all recordings in the replay buffer observed
during training until the policy reaches medium performance, and “medium-expert” which combines
medium and expert level performance equally. We further analyze the returns distribution of these
datasets, showing the differences in trajectory quality among the Medium, Med-Replay, and Med-
Expert datasets for HalfCheetah, Hopper, and Walker2d (Figure 5).

FrankaKitchen Gupta et al. (2019) requires controlling a realistic 9-DoF Franka robot in a kitchen
environment to complete several common household tasks. In offline RL testing, algorithms are often
evaluated on “partial” and “mixed” datasets. The former contains demonstrations that partially solve
all tasks and some that do not, while the latter contains no trajectories that completely solve the tasks.
Therefore, these datasets place higher demands on the policy’s “stitching” ability. During testing, the
robot’s task pool includes four sub-tasks, and the evaluation score is based on the percentage of tasks
completed.

AntMaze Fu et al. (2020) requires controlling the 8-DoF “Ant” quadruped robot in MuJoCo to
complete maze navigation tasks. In the offline dataset, the robot only receives a reward upon reaching
the endpoint, and the dataset contains many trajectory segments that do not lead to the endpoint,
making it a difficult decision task with sparse rewards and a long horizon. The success rate of
reaching the endpoint is used as the evaluation score, and common model-free offline RL algorithms
often struggle to achieve good performance.

Maze2D Fu et al. (2020) is a navigation task in which a 2D agent needs to traverse from a randomly
designated start location to a fixed goal location where a reward of 1 is given. No reward shaping
is provided at any other location. The objective of this task is to evaluate the ability of offline RL
algorithms to combine previously collected sub-trajectories in order to find the shortest path to the
evaluation goal. Three maze layouts are available: “umaze”, “medium”, and “large”. The expert
data for this task is generated by selecting random goal locations and using a planner to generate
sequences of waypoints that are followed by using a PD controller to perform dynamic tracking.

C ALGORITHMS.

Algorithm 1 Training

Require: Offline dataset D, batch size B, diffusion model ϕθ, step estimation model fe, batch size
B, diffusion steps K

1: for each training iteration do
2: Sample a batch of trajectories {τt}Bt=1 from D
3: for each trajectory τt in batch do
4: Randomly select an offset i ∼ U(1,H − 1)
5: Set st+i as pseudo target
6: Apply forward diffusion on sub-trajectory τt to obtain noisy τ̂kt
7: Compute generation loss: Ld by Eq. 12.
8: Compute guidance loss: Lg by Eq. 13.
9: Compute step estimation loss: Le by Eq. 14.

10: end for
11: Update ϕθ and fe using gradients from Ld,Lg,Le
12: end for

12

648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2026

Figure 5: Returns distribution of Med-Expert, Medium and Med-Replay datasets of Halfcheetah,
Hopper, Walker2d.

Algorithm 2 Planning and decision-making

Require: Current state st, diffusion model ϕθ, step estimation model fψ, database D, similarity
threshold δ, Top-k selection k

1: Retrieve candidate states {s′i} from D s.t. sim(st, s
′
i) ≥ δ

2: if candidates found then
3: Select top-k states by similarity
4: Re-rank candidates and choose best sgt by Eq. 4
5: Estimate step ît by Eq. 6
6: end if
7: Initialize noisy sub-trajectory τtemp ∼ N (0, I) of length H ≥ ît
8: Substitute st and sgt into τtemp at positions 0 and ît
9: for k = K down to 1 do

10: Reverse denoise τtemp using ϕθ and guidance Jϕ
11: end for
12: Obtain clean trajectory τ̂0t
13: if trajectory contains state-action pairs then
14: Execute action ât+1 in environment
15: else
16: Use inverse dynamics: at = fa(st, ŝt+1) and execute
17: end if

D IMPLEMENTATION DETAILS

• We represent the noise model in D-RAD with a temporal U-Net Janner et al. (2022), consisting
of a U-Net structure with 6 repeated residual blocks. Each block consisted of two temporal
convolutions, each followed by group norm , and a final Mish nonlinearity. Timestep and
condition embeddings, both 128-dimensional vectors, are produced by separate 2-layered MLP
(with 256 hidden units and Mish nonlinearity) and are concatenated together before getting
added to the activations of the first temporal convolution within each block .

13

702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2026

Table 3: Planning horizons and levels used in D-RAD and DL-RAD across different environments.

Method Environment Planning Horizon H Temporal Jumps / Levels

D-RAD MuJoCo (locomotion) 32 -
D-RAD Kitchen 32 -
D-RAD AntMaze 64 -
D-RAD Maze2D U-Maze 128 -
D-RAD Maze2D Medium 265 -
D-RAD Maze2D Large 384 -

DL-RAD Kitchen 49 16, 4, 1
DL-RAD MuJoCo (locomotion) 129 32, 8, 1
DL-RAD AntMaze 129 32, 8, 1

• For all locomotion tasks, we regard trajectories of length 1000 as expert demonstrations. For
AntMaze, expert targets are selected from trajectories whose first hitting step of the goal lies
between 150 and 600. For Kitchen, trajectories that successfully complete three designated tasks
are considered expert. For Maze2D, expert trajectories are selected according to the number of
steps required to reach the goal for the first time: 400-600 steps for Maze2D-medium, 400-800
steps for Maze2D-large, and 200-300 steps for Maze2D-umaze.

• The planning horizons and temporal jumps used in D-RAD and DL-RAD across different
environments are summarized in Table 3.

• We consider the top-6 most similar candidates when selecting the target state in D-RAD, and the
top-500 most similar candidates when selecting the target state in DL-RAD.

E ADDITIONAL EXPERIMENT RESULTS

E.1 EFFICIENCY

A potential concern with RAD is the inference-time cost from the retrieval component in the TS
module, which performs vector-based similarity search and may introduce additional memory and
computational overhead.

To characterize the worst-case memory footprint, we measured the cost of storing high-dimensional
indices representing the entire state space. This full-state index requires approximately 1.4 GB of
CPU memory on our in-house server (502 GB RAM), which remains negligible at system scale. For
the same full-state index, a single retrieval including network latency takes about 0.4 seconds, and
this cost can be further reduced through local caching.

However, RAD does not query the entire state space during evaluation. All retrieval operations in our
actual experiments are performed within a pre-constructed expert database, which is substantially
smaller. Consequently, the true time overhead differs from the 0.4-second worst-case measurement
above.

To provide an accurate measurement of the actual overhead in RAD, we have measured the total time
taken by RAD to generate a single action, including the time for the policy to compute the action
from a given state and the time required to execute the action in the environment and transition to the
next state. The results are summarized in Table 4.

Table 4: Per-step inference time for different methods.

Environment Method Inference Time (s) Performance
AntMaze DiffuserLite 0.06 77.6
AntMaze DL-RAD 0.26 83.3
Locomotion DiffuserLite 0.05 86.0
Locomotion DL-RAD 0.11 87.5

14

756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2026

Compared to DiffuserLite, DL-RAD introduces an additional overhead (approximately +0.20s in
AntMaze and +0.06s in Locomotion), mainly due to the retrieval component in the TS module.
The observed latency is acceptable for real-time execution in these tasks, given the performance
improvement DL-RAD achieves. Moreover, we can further improve the efficiency of retrieval by
filtering out suboptimal high-return states.

E.2 ADDITIONAL ABLATION STUDY

Table 5: Ablation study comparing DL-RAD with and without target states across different environ-
ments.

Environment No Target States DL-RAD

HalfCheetah-MR 41.9 44.4
Hopper-MR 24.1 100.4

Walker2d-MR 72.4 93.5

First, to evaluate the contribution of the retrieval module in DL-RAD, we conduct an ablation study
in which target states are no longer provided. This setting tests the model’s performance when it
cannot rely on retrieved target states for guidance. Table 5 summarizes the results across several
environments. The version without the retrieval module shows a clear drop in performance compared
with the full RAD model.

E.3 PARAMETER STUDY

Table 6: Effect of minimum similarity threshold δ for D-RAD.

δ HalfCheetah-M Hopper-M Walker2d-M

0.0 43.6 54.2 64.3
0.5 43.7 77.5 53.2
0.8 44.0 74.8 58.4
0.9 44.2 82.5 82.8

Table 7: Effect of minimum similarity threshold δ for DL-RAD.

δ AntMaze-L-P Kitchen-M Maze2d-M Hopper-MR

0.6 60.7 0.0 52.0 100.4
0.7 50.0 2.5 59.0 100.3
0.8 80.0 60 78.3 100.2
0.9 70.0 72.7 60.1 96.5

To investigate the effect of the minimum similarity threshold δ in the target selection module, we
conduct experiments varying δ while keeping other settings fixed. The results are summarized in
Table 6 and Table 7.

E.4 ADDITIONAL DISTRIBUTION SHIFTS EXPERIMENTS

To more systematically evaluate whether the learned policies can generalize to states not present
in the training dataset, we conducted additional OOD tests on both Maze2D and AntMaze. For
Maze2D, we randomly sampled initial states from maze2d-open-v0 and executed policies trained
on maze2d-umaze-v1 or maze2d-medium-v1. For AntMaze, we randomly sampled initial states
from antmaze-medium-diverse-v2 and evaluated policies trained on antmaze-medium-play-v2 or
antmaze-large-play-v2. The results are reported in Table 8.

Across all datasets, DL-RAD consistently outperforms the baselines, often by a substantial margin.
This demonstrates the effectiveness of our method.

15

810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2026

Table 8: Performance under distribution shifts.

Environment DiffStitch DiffuserLite DL-RAD

Antmaze-medium-play 36.7 6.7 43.3
Antmaze-large-play 33.3 0.0 36.7
Maze2D Medium 14.7 28.3 38.0
Maze2D U-maze 10.8 28.5 44.7

E.5 SENSITIVITY TO IMPERFECT RANKING IN THE RETRIEVAL MODULE

To examine whether RAD depends heavily on perfect ranking within the retrieval module, we
conducted an additional stress test on AntMaze by deliberately degrading the ranking quality. In the
final step of the TS module, instead of always selecting the top-1 state, we constructed candidate
sets of size 1, 3, 5, and 7, corresponding to increasingly noisy retrieval. For each candidate set, we
randomly sampled one state as the retrieved target, thereby simulating scenarios in which the retrieval
mechanism returns suboptimal or partially misranked states. The results are summarized in Table 9.

Table 9: Sensitivity to Retrieval Ranking Quality.

Environment Top-1 Top-3 Top-5 Top-7

Antmaze-medium-play 86.7 85.3 85.3 72.0
Antmaze-large-play 80.0 73.3 70.0 66.7
Antmaze-medium-diverse 93.3 86.7 84.3 83.3
Antmaze-large-diverse 73.3 62.0 58.7 62.0

As the candidate set grows larger, the noise in the retrieval ranking increases, and the performance
shows a gradual downward trend. This behavior is expected: when the retrieved target state is
not necessarily the optimal one, the guidance provided to the planner becomes weaker, leading to
reduced success rates. More importantly, however, this degradation is gradual rather than catastrophic.
Comparing these results against the baselines in Table 1, we observe that even the worst Top-7
performance remains competitive in most environments. For example, in AntMaze-Medium-Diverse,
the Top-7 setting still achieves 83.3, ranking among the top three methods.

Therefore, although imperfect ranking introduces some negative effects on the performance, RAD
can still benefit from the retrieved target even when it is suboptimal, as long as the retrieved state lies
within a reasonably high-value region.

F PROOF OF ENTROPY REDUCTION WITH TARGET CONDITIONING

To analyze the effect of conditioning on additional target information in trajectory forecasting, we
denote the subsequent trajectory generated for planning as a random variable τ , the current state as
st, and the retrieved target state as sg . The predictive uncertainty associated with the trajectory given
only st is quantified by the conditional entropy H(τ | st); larger values indicate greater uncertainty
and lower predictive confidence.

When the target state sg is included as an additional conditioning variable, the uncertainty becomes
H(τ | st, sg). By applying the chain rule of conditional entropy to the joint variable pair (τ, sg), we
obtain two equivalent expressions:

H(τ, sg | st) = H(τ | st) +H(sg | τ, st) = H(sg | st) +H(τ | st, sg).
Equating the two decompositions and reorganizing terms gives:

H(τ | st)−H(τ | st, sg) = H(sg | st)−H(sg | τ, st).
The right-hand side corresponds to the conditional mutual information I(τ ; sg | st), leading to:

H(τ | st)−H(τ | st, sg) = I(τ ; sg | st).
Since conditional mutual information is non-negative, i.e.,

I(τ ; sg | st) ≥ 0,

16

864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

Under review as a conference paper at ICLR 2026

we obtain the inequality:
H(τ | st) ≥ H(τ | st, sg).

This result demonstrates that conditioning on the retrieved target state preserves or decreases the
entropy of the trajectory distribution. Therefore, whenever I(τ ; sg | st) > 0 , the introduction of
sg provides additional relevant information that reduces uncertainty and leads to more accurate and
reliable trajectory prediction (i.e.the generation of the subsequent trajectory for planning).

G COMPARISON WITH TRAJECTORY STITCHING METHODS

For completeness, we provide a detailed discussion on how RAD relates to trajectory-stitching
approaches, particularly DiffStitch. RAD is indeed conceptually related to DiffStitch, as both
methods are built based on generative models and conduct stitching. However, RAD is different
DiffStitch due to:

• DiffStitch is a data augmentation method. It generates a fixed, enlarged data by stitching
trajectory segments in the original offline dataset to enhance the offline dataset.

• RAD is an offline RL algorithm. It dynamically retrieves reachable and high-return states as the
target states, and uses a diffusion model to plan toward the target states. This enables adaptive
high-return-aware planning and decision making.

• Theoretically, the augmented data produced by DiffStitch can be further used to train RAD.
This means the two approaches are compatible and can be organically combined to yield more
efficient decision-making, rather than being mutually exclusive.

A structured comparison is provided below:

Table 10: Comparison between DiffStitch and RAD.

Aspect DiffStitch RAD
Type Diffusion-based data augmentation

for offline RL
Diffusion-based offline RL method

Stitching Yes, stitching trajectory segments
for data generation

Yes, stitching the current state to
the target state for planning

Trajectory Planning N/A Yes
Handling OOD States Limited(fixed dataset) Flexible via dynamic retrieval
Adaptivity Static Dynamic, per-step planning
Target high-return subtrajectory high-return states

17

	Introduction
	Related Work
	Preliminary
	Diffusion Model
	Problem Definition

	Method
	target selection(TS) module
	Step Estimation(SE) Model
	Planning(PL) module
	Model Learning

	Experiment Design and Results Analysis
	Experiment Settings
	Performance
	Generalization
	Ablation study
	Visulization

	Conclusion and Discussion
	 Ethics Statement
	Reproducibility Statement
	Large Language Models Usage
	Details of Experimental Setup
	Algorithms.
	Implementation Details
	Additional Experiment Results
	Efficiency
	Additional Ablation Study
	Parameter Study
	Additional distribution shifts Experiments
	Sensitivity to Imperfect Ranking in the Retrieval Module

	Proof of Entropy Reduction With Target Conditioning
	Comparison With Trajectory Stitching Methods

