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Abstract

Ultra-high dynamic range (UHDR) scenes exhibit significant exposure disparities
between bright and dark regions. Such conditions are commonly encountered
in nighttime scenes with light sources. Even with standard exposure settings,
a bimodal intensity distribution with boundary peaks often emerges, making it
difficult to preserve both highlight and shadow details simultaneously. RGB-based
bracketing methods can capture details at both ends using short-long exposure pairs,
but are susceptible to misalignment and ghosting artifacts. We found that a short-
exposure image already retains sufficient highlight detail. The main challenge of
UHDR reconstruction lies in denoising and recovering information in dark regions.
In comparison to the RGB images, RAW images, thanks to their higher bit depth
and more predictable noise characteristics, offer greater potential for addressing
this challenge. This raises a key question: can we learn to see everything in UHDR
scenes using only a single short-exposure RAW image? In this study, we rely solely
on a single short-exposure frame, which inherently avoids ghosting and motion
blur, making it particularly robust in dynamic scenes. To achieve that, we introduce
UltraLED, a two-stage framework that performs exposure correction via a ratio
map to balance dynamic range, followed by a brightness-aware RAW denoiser
to enhance detail recovery in dark regions. To support this setting, we design a
9-stop bracketing pipeline to synthesize realistic UHDR images and contribute a
corresponding dataset based on diverse scenes, using only the shortest exposure as
input for reconstruction. Extensive experiments show that UltraLED significantly
outperforms existing single-frame approaches. Our code and dataset are made
publicly available at https://srameo.github.io/projects/ultraled.

1 Introduction

UHDR scenes are common in daily life, such as night streets illuminated by headlights and streetlights,
or indoor environments with bright window light and dim interiors. The extreme contrast in these
scenes exceeds the capacity of conventional cameras in a single exposure, often resulting in bimodal
intensity distributions, where highlight and shadow regions form separate peaks with little midtone.
This phenomenon makes it difficult for cameras to retain details across the full brightness range, often
causing loss of visual information and reduced image fidelity.

Recent methods often use bracketing [[17, 114,156l (7] 136]] to capture a sequence of exposures ranging
from short to long. Nevertheless, this kind of approach inherently suffers from inter-frame motion,
resulting in misalignment and ghosting artifacts that degrade reconstruction quality. Some generative
approaches [30] hallucinate missing highlights from single long-exposure input (i.e., Fig.[T(a)), yet
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Figure 1: Visualization results of different methods for UHDR scene reconstruction.

struggle to recover realistic details in saturated regions as shown in Fig. [[(b). In addition, some
methods [[15 2] adopt short-exposure inputs (i.e., Fig. [T{d)) to avoid highlight clipping. Nevertheless,
due to the limited dynamic range of 8-bit RGB images, shadow regions may be represented with as
few as 4 bits, causing severe quantization artifacts and noise, as shown in Fig.[](e).

The observations in Fig. [T]lead to two critical conclusions: /) long-exposure-based methods fun-
damentally fail to recover highlight regions in the absence of short-exposure references, and 2)
short-exposure-based methods are primarily limited by bit depth constraints and noise in dark re-
gions. Fortunately, RAW images can offer substantial advantages for such tasks due to their higher
bit depth and simpler noise distributions. As shown in the red box of Fig.[I|c), the globe on the right,
which is in darkness, has been restored to a result similar to that of a long exposure. The results show
that RAW images can preserve more complete and realistic details even under extremely low-light
conditions. Therefore, for short-exposure RAW images, we only need to perform exposure correction,
as they already contain both the unclipped highlights and the recovered details from low-light regions.
Nevertheless, two core challenges still remain:

» Extreme exposure differences compounded with severe noise in low-light regions result
in a highly ill-posed reconstruction problem. Jointly optimizing exposure correction and
denoising degrades both learning efficiency and reconstruction accuracy.

* In the RAW domain, complex noise models [48]] demonstrate superior effectiveness under
extremely low-light conditions, whereas simpler models such as the PG noise model perform
better in brighter regions [28]]. This discrepancy stems from the fact that the noise distribution
tends to follow different known distributions as the image brightness changes. Therefore, it
is challenging to simultaneously reconstruct the bright and dark areas of UHDR scenes.

To address these challenges, we decouple the UHDR reconstruction process into two distinct stages.
First, leveraging the high bit-depth property of RAW images, we train a network to generate a ratio
map that dynamically corrects local exposure across the image. Second, recognizing that noise
characteristics vary with brightness, we introduce a brightness-aware noise model. To guide the
denoising network, we encode brightness information using a ratio map, enabling joint reconstruction
of both bright and dark regions.

In addition, there is no publicly available dataset suitable for training and evaluating UHDR recon-
struction methods. To bridge this gap, we develop a novel pipeline that leverages the characteristics
of RAW images to synthesize a 9-stop exposure stack, from which we separately obtain noise-free
ratio maps and the corresponding fused results. Based on this pipeline, we construct a high-quality



dataset tailored for UHDR reconstruction. Notably, all scenes are captured under static conditions,
enabling multi-exposure acquisition without alignment issues or ghosting artifacts.

Our main contributions are summarized as follows:

* We propose a novel method for reconstructing UHDR scenes using only a single-frame
RAW image, in which a two-stage pipeline is proposed to decouple exposure correction
from denoising, fully leveraging the properties and advantages of RAW data.

* We propose a brightness-aware noise model and a ratio map encoding scheme that synergis-
tically guide the network in recovering fine details across varying exposure levels.

* We design a new data pipeline for multi-exposure fusion and contribute a corresponding
dataset for benchmarking UHDR reconstruction performance.

2 Related Work

RAW Denoising. Since the pioneering work of SIDD [[1]], the potential of RAW data for low-light
imaging has been extensively explored. Recent studies simulate low-light conditions by degrading
normal-light images. SID [[10] introduces a real-world RAW dataset to train denoising networks.
Subsequent approaches have sought to model noise more precisely via either physically calibrated
parameter estimation [48| |54]] or network-based learning [9} 40, [28]], achieving improved denoising
performance. However, existing RAW denoising methods [[10, [28} 48| 26] cannot adaptively regulate
local exposure, rendering them inadequate for UHDR scenarios. In contrast, UltraLED enables pixel-
wise brightness adjustment, simultaneously achieving effective denoising and exposure correction.

Single-image HDR and Low-light Image Enhancement. Both single-image HDR reconstruc-
tion and low-light image enhancement seek to produce well-exposed images with rich detail [33]].
Traditional single-image HDR techniques [5, 13, 4] rely on internal cues to predict scene luminance
and extend dynamic range by estimating light source intensity. However, both approaches are funda-
mentally constrained by the absence of scene information, which is inherently difficult to recover
[20,137,135]). Single-image HDR methods typically operate on normally exposed inputs [20, 37, 135]],
requiring generative capabilities to reconstruct the lost details caused by overexposure [56} 52, [24].
This task becomes particularly challenging in cases of severe highlight clipping. Traditional retinex-
based low-light enhancement methods [45, |31} 46| 22, 8] decompose an image into reflectance and
illumination components, treating the task as illumination estimation. Most low-light enhancement
methods [23) 25} [32] [34) [2'7] operate in the RGB domain, where the limited bit depth, sometimes
reduced to only 4 bits in dark regions, significantly limits the fidelity of reconstruction. We address
this issue by operating in the RAW domain, where images retain higher bit depth (typically 14 bits).
Although certain regions are quantized to 4 bits in RGB, they may preserve up to 10 bits in RAW,
allowing for more accurate and faithful recovery. Meanwhile, the high-bit information in the RAW
domain preserves a more predictable and simpler distribution of the original noise [[10} 48], making
it easier to denoise. By denoising directly in the RAW domain, UltraLED surpasses RGB-based
approaches [10} 48], achieving superior detail recovery under short exposures.

Multi-exposure Fusion HDR. Traditional approaches typically reconstruct HDR images by merging
a sequence of bracketed low dynamic range (LDR) images [38,[17]], where the alignment of multiple
exposures remains the most challenging step. Several CNN-based methods [29} 150} [49] have achieved
improved alignment performance. Peng et al. [41]] and FlowNet [19]] explore optical flow estimation
techniques for more accurate alignment. Given the limited receptive field of CNNs, transformer-
based approaches [51}136] have demonstrated superior performance. More recently, diffusion-based
methods [56] [14]] have also shown promising results; however, they require substantial computational
resources and often produce unrealistic details due to the generative nature of the models. Multi-
exposure fusion HDR captures true scene content across exposure extremes but often suffers from
alignment errors and ghosting, especially in dynamic or low-light scenes. Single-image methods
using long exposure struggle to recover highlight details, while those based on short-exposure RGB
inputs face severe quantization and noise in dark regions due to limited bit depth. We address these
issues by reconstructing UHDR scenes from a single short-exposure RAW image, achieving better
fidelity with lower cost and complexity.



Noise
Additionj4s)

Brightness
Amplification

Brightened Region

EV-0 EV-1

Exposure
Fusiongs)

Pseudo Multi-Exposure Images Ratio Map Estimator

Figure 2: Overview of our framework, which is divided into two parts: 1) Training Data Synthesis
Pipeline: clean and normally exposed image [ is used as input. The lighted image I}, is generated by
artificially amplifying the brightness in specific regions of I. The noise model is then applied to I, to
synthesize the corresponding noisy and overexposed image I 1. Meanwhile, Iy, is linearly scaled
down by different factors and clipped to produce pseudo multi-exposure images from EV-0to EV-N.
These images are fused using exposure fusion [38] to obtain Iz, and a clean exposure-corrected map
(ratio map S) is derived by dividing I, by I}, r; and 2) UHDR Reconstruction Pipeline: this pipeline
consists of two stages, implemented using two UNet [10]. First, the Ratio Map Estimator takes the
noisy and overexposed RAW image Iy, as input and outputs the ratio map .S. Then, S is used to cor-
rect the exposure of Iy, producing a noisy but well-exposed image Iy, which is then passed into the
RAW Denoiser for denoising guidance. Finally, the RAW Denoiser outputs a clean and well-exposed
RAW image I . Note that, in terms of inference, only the UHDR Reconstruction Pipeline is used.

3 Methodology

In this section, we introduce our training data synthesis pipeline and UHDR reconstruction pipeline.
An overview of our framework is shown in Fig.[2]

3.1 Training Data Synthesis Pipeline

Capturing perfectly aligned, noise-free multi-exposure images under unconstrained, real-world
conditions remains highly challenging. Thus, it is non-trivial and often impractical to construct
large-scale paired datasets directly from in-the-wild scenes. In this study, we leverage a large-scale
repository of well-exposed RAW images to overcome this limitation and synthesize paired data for
the whole processing pipeline. RAW images without highlight clipping exhibit a linear relationship
between light intensity and signal values, along with predictable noise distributions. This allows us
to directly obtain underexposed inputs and multi-exposure sequences, enabling the generation of
well-exposed references. Since these well-exposed RAW images are free from highlight clipping,
we also simulate artificial overexposure for completeness. Accordingly, our training data synthesis
pipeline comprises: 1) brightness amplification, 2) exposure fusion, and 3) noise modeling.

Brightness Amplification. To amplify the local image brightness, we artificially synthesize the
overexposure, following the procedure of previous work [[16} 42} 43] to generate saturated highlight
regions. To further simulate the stochastic distribution of highlights in UHDR scenes, we inject
additional random highlight patches. Brightened regions are randomly selected, intensified by a
stochastic gain factor, smoothed with a bilateral filter, and finally feathered at the boundaries with a
Gaussian kernel to simulate light diffusion. Given images that preserve highlight details, we construct
pseudo multi-exposure images by progressively reducing global illumination, implemented as linear
scaling for RAW data, followed by value clipping. Specifically, for the normalized image, we use the



following formula to synthesize E'V -i:
1
EV-i = clip(?f, 0,1), (1)

where 7 denotes the downscaling factor of the image’s exposure value, I, denotes the artificially
over-exposed RAW input, clip(z, 0, 1) represents clipping the value of x to the range between 0 and
1, simulating overexposure truncation. The resulting exposures, spanning EV -0 to EV-N (where
EV denotes exposure value, with each step doubling or halving incident light), are subsequently used
in the HDR fusion stage.

Exposure Fusion. Because the pseudo multi-exposure images are synthesized by modulating
the brightness of a single highlight-preserved RAW frame, inter-frame misalignment is inherently
eliminated. We employ Exposure Fusion [38] to combine the images into a well-exposed composite.
Since Exposure Fusion operates in the RGB domain, each RAW frame is first rendered to the RGB
domain using predefined ISP parameters, after which the fused result is converted back to the RAW
domain via the unprocessing pipeline [6]]. This procedure yields a noise-free, well-exposed reference
image I that has been lighted and fused, as well as a clean ratio map S, defined as
I

S=—. 2
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Noise Model. We divide the noise in UHDR scenes into three parts, including signal-dependent
noise, signal-independent noise [48}, 154, [21]], and brightness-aware noise. Our modeling of signal-
dependent noise and signal-independent noise is the same as the existing method [48]] in the RAW
domain. Brightness-aware noise is introduced due to the significant brightness variations across
different regions of UHDR scenes and the subsequent exposure correction process. Our final noisy
input I, representing the UHDR RAW image after exposure correction, is defined as:

I, =SA(I),
Inp = It + Nge + Nin, 3
In = INL + Na,
where I, Inp, Nge, and N;, denote the well-exposed and noise-free RAW image, the UHDR
image, the signal-dependent noise, and the signal-independent noise, respectively. Ny, refers to the

brightness-aware noise. SA denotes the processes of synthesizing artificial overexposure regions.
The detailed formulation for synthesizing the final noisy image is given by:

In=SA"" ((73 (??) K+ Nm) -R) : o

~ 1 . . . .
where SA  denotes the processes of correcting the exposure using the ratio map estimator network,
thereby modeling the IV, component of noise. K is the random system gain for signal-dependent
noise (shot noise), and R is a random attenuation ratio for brightness.

For most RAW image denoising methods, in order to ensure numerical stability, the noisy image
should be scaled to the original range. Up to this point, we have obtained all the reference images
used for training, including the UHDR RAW image after exposure correction /y as input, the ratio

map S for exposure correction, and the noise-free and well-exposed ground truth image I .

3.2 UHDR Reconstruction Pipeline

Decoupling Exposure Correction and Denoising. We decouple the reconstruction of UHDR
scenes into two parts: learning the exposure correction pattern of the image and the simple noise
distribution, respectively. Specifically, the pipeline consists of three steps: 1) Using a simple UNet
that has the same architecture as that used in SID [10]] to predict the ratio map .S; 2) The predicted
ratio map S is then applied to our UHDR input [, to construct a well-exposed noisy input Iy ; 3)
Finally, another same UNet is utilized to denoise I .

Ratio Map Encoding. The ratio map serves as a noise-free representation of image brightness. Our
objective is to introduce an implicit feature capturing the relationship between brightness and noise.



Regions with similar brightness levels tend to have similar ideal ratio values and correspondingly
similar noise intensity levels. Since low-dimensional ratio values are insufficient to represent the
complex noise distribution across varying brightness conditions, we expand the dimensionality
of the ratio map using Gaussian encoding. This is because Gaussian distributions can model the
gradual change in noise intensity as ratio values become closer. Additionally, we introduce a weight
corresponding to the ratio before encoding, which modulates the effective signal strength. For each
ratio r, the encoding E'C). is as follows:

exp (— (TQ_;‘QQ)

EC, = ————~, 5
Va2m-o-r ©)

where o is an externally defined hyperparameter, and y is a vector representation obtained by

uniformly sampling the ratio parameter space at a predefined dimensionality. The ratio parameter

space should encompass all possible values that the ratio can take. The corresponding r of each pixel

of the ratio map §i is calculated as follows:
R
r==, 6)
Si

The integrated encoding scheme is injected into the denoising network through a multi-layer per-
ceptron and zero-initialized convolutional residual block, which enables ratio-adaptive denoising
guidance to better restore the details and textures under different ratios. This formulation ensures the
denoiser dynamically adjusts its operation based on amplification factors while maintaining noise
suppression consistency across varying ratio conditions. More derivation and experiments can be
found in the supplementary material.

Loss Functions. For our two-stage network, we employ different loss functions for different stages.
In the exposure correction stage, due to the large range of values of our ratio map, we use a weighted
L1 loss [39] to ensure numerical stability instead of a standard L.1 loss:

S; — 5,
Eweight@d Z | S te |7 (7)

where € is the numerical stability coefficient. The loss function for the denoising stage is a standard

Llloss: £1 = + SN |Inr — Icr|.

4 Experiments

4.1 Proposed UHDR Dataset

To systematically assess the reconstruction performance of various methods on UHDR scenes, we
construct a UHDR image dataset comprising RAW images and their corresponding RGB counterparts.
The thumbnail of our UHDR dataset is shown as Fig.[3]

Figure 3: A thumbnail of our UHDR dataset (convert to RGB images for visualization), where the
images in the top row are UHDR inputs and the images in the bottom row are ground truth. Our
UHDR dataset comprises 24 UHDR scenes, the majority of which are captured under three lighting
conditions (ratio x50, x 100, and x200). For each combination of lighting condition and ISO setting,
we captured three RAW images of the same scene to ensure statistical reliability. In total, the dataset
includes 585 paired RAW images for evaluation.



To eliminate interference from ambient illumination, paired data are captured in a controlled indoor
environment using a remotely operated Sony A7M4 camera. The experimental setup includes
multiple types of light sources and diverse object arrangements, allowing directly illuminated objects
to coexist with those in shadow, thereby simulating real-world UHDR scenes. All surfaces within the
shooting area, including tables and walls, are covered with anti-reflective fabric to minimize secondary
reflections, ensuring that scene luminance is governed almost exclusively by direct illumination.
For each scene, several sets of noisy images are recorded at different ISO settings according to
ratio gradients of 50, 100, and 200. Unlike conventional low-light denoising datasets [10, 48], here
the “ratio” denotes the amplification factor required to achieve ideal exposure in the darkest region.
High-quality reference images are obtained by capturing nine exposure values (E'V s) at the lowest
ISO with the corresponding longest exposure time, and synthesizing noise-free and well-exposed
ground truth via Exposure Fusion [38]].

Notably, in contrast to typical HDR scenes, the illuminance of dark regions in UHDR dataset can be
as low as 0.001-0.2 lux, whereas bright regions reach 0.3—100 lux. Consequently, in some scenes,
maintaining proper exposure for the highlights forces the RGB pixel values (8 bit) in shadow areas to
collapse to the range 0—4. Under such extreme conditions, RGB images are incapable of recovering
shadow details, and UltraLED therefore outperforms RGB-based methods by a substantial margin.

4.2 Implementation Details

Training Data and Network Architecture. We train our network using the synthesized data based
on the ground truth of the RawHDR dataset [S7]], selected for its high bit depth, good exposure,
and noise-free characteristics. Our ratio map estimator employs a simple U-Net architecture [44]]
to capture the characteristics of the brightness distribution. This module takes a noisy RAW image
as input and outputs a noise-free ratio map. The hyperparameter o used to construct the ratio map
encoding is set to 30 in our experiments. For the denoising network, various architectures can be
adopted. However, since the strength of our approach lies primarily in the overall pipeline and
data processing strategy, we use the same simple U-Net framework [44]] for a fair comparison with
other methods. Note that employing more complex networks with higher computational capacity
and parameters could further enhance performance. The related experiments are discussed in the
supplementary material.

Optimization Strategy and Evaluation Metrics. We first train the ratio map estimator network and
then freeze its parameters before training the denoising network. For the denoising network, we adopt
a widely used training strategy for RAW domain denoising, as described in ELD [48, [28]]. The ratio
map estimator requires relatively fewer training iterations, only 30,000 iterations using the Adam
optimizer, with a learning rate of 5 x 1075, To comprehensively evaluate quantitative performance,
we employ PSNR, SSIM, and LPIPS as evaluation metrics.

4.3 Comparison Experiments

We conduct both quantitative and qualitative evaluations on the UHDR dataset. Additionally, we
observed that some low-light datasets, such as the SID dataset [10], often unintentionally capture
UHDR scenes during outdoor night photography. Previous methods [48]] have struggled to accurately
restore such scenes. To assess the generalization capability of our approach, we also perform
qualitative evaluations on such scenes from the SID dataset.

To facilitate a comparison that better reflects actual visual perception, we convert all outputs to the
RGB domain following the same ISP process. To ensure fair evaluations, we align the exposure levels
of different methods’ results using the approach proposed by RAWNeRF [39], thereby eliminating
brightness variation as a confounding factor in image quality assessment. We then conduct compre-
hensive comparisons between UltraLED and different approaches including low-light enhancement,
single-image HDR, as well as RAW domain denoising and fusion methods. It is worth noting that we
standardize the exposure of all RAW inputs using the commonly adopted method for RAW domain
denoising [10} 48], which calculates exposure ratios based on the ISO and shutter speed of the images.
The inputs of different methods are as follow. 1) Short-exposure RAW input: UltraLED, RAW
domain-based denoising followed by fusion methods including PG, ELD [48]], and LED [28]. 2)
Short-exposure RGB input: Low-light image enhancement methods including RetinexMamba [2]],



EnlightenGAN [25]], ZeroDCE [23]], and Kind [55]. 3) Long-exposure RGB input: Single-image
HDR methods including HDRUNet [[12], HDRTVNet [13]], and HDRTVNet++ [11]].

Quantitative Results. As shown in Tab. [I] Tab.[2] and Tab. 3] UltraLED demonstrates superior
performance in handling UHDR scenes. In Tab. |1} single-image HDR methods [[12} [13} [11] use
long-exposure RGB images as input. The extended exposure time leads to severe overexposure and
clipping, and due to the lack of prior information, these HDR methods are unable to recover realistic
details in heavily overexposed regions. This results in significant structural discrepancies between the
outputs and the ground truth, reflected in low SSIM scores. However, since the inputs are noise-free,
the PSNR remains relatively high. In Tab.[2] RAW domain denoising methods [48] 28] first process
inputs with varying amplification ratios and then fuse the outputs using the same fusion method
[38]] adopted in our data synthesis pipeline. While this strategy yields high SSIM because of the
structural similarity with the ground truth, it fails to account for the noise variation across different
exposures, resulting in noise mixing and performance degradation. Additionally, the need for multiple
denoising and fusion steps significantly increases their computational costs compared to ours. In
Tab. |3} compared to low-light image enhancement methods [25} 23} 155) 2] operating in the RGB
domain, UltraLED leverages the higher bit depth of RAW images, providing more comprehensive
information. Furthermore, our decoupling strategy and brightness-aware noise modeling enable more
effective denoising and detail restoration. We also conducted a user study to compare UltraLED with
other methods [48, 23| 2] across different scenes and sensors. The results of this study are provided
in the supplementary materials.

. : ; Table 2: Comparison with RAW domain
Table 1: Comparison with HDR methods. HDR
methods [[12,[13][11] take a long-exposure im- methods. LED [23], PG, and ELD [45] am-

age as input. Although such input is noiseless, it plify the input image by different ratios for

suffers from highlight clipping in bright regions. denoising, and then fuse the .results using the
The best result is marked in red. same method [38]] as producing ground truth.

The best result is marked in red.

Methods HDRTVNet HDRTVNet++ HDRUNet UltraLED (Ours) Methods LED PG ELD UltraLED (Ours)
PSNR 25318 25.344 25.341 27.591 PSNR 25.879 25.142 25.942 27.591
SSIM 0.830 0.828 0.801 0.898 q
LPIPS 0.095 0.095 0.104 0.075 SIS’IIP% 8322 8?3? 832? 837)2

Table 3: Comparison with low-light image enhancement methods. The best result is marked in red.

x50 x 100 %200
Methods PSNR SSIM LPIPS PSNR SSIM LPIPS PSNR SSIM LPIPS

EnlightenGAN  21.154 0.558 0.548 19.833 0.512 0.605 18.878 0.464 0.653
Zero-DCE 21.920 0.534 0.617 20443 0463 0.673 19.277 0400 0.757
Kind 20.191 0.458 0.748 18907 0.356 0.832 17.538 0.282 0.888
RetinexMamba 22770 0.705 0.193 21.587 0.641 0.229 20.600 0.586 0.271
UltraLED (Ours) 27591 0.898  0.075 27.327 0.887 0.095 27.091 0.860 0.121

Qualitative Comparison. As shown in Fig. ] UltraLED outperforms existing approaches in UHDR
scenes by achieving superior denoising and detail restoration in low-light areas, along with better
color fidelity in bright regions. Fig. [5|further demonstrates that UltraLED can simultaneously correct
exposure and denoise, effectively recovering textures even in severely overexposed regions (after
amplification via ratio) where conventional RAW domain denoising methods [48] fail. These results
validate the generalizability of our approach across different camera models and outdoor scenes.
More visualization results can be found in the supplementary material.

4.4 Ablation Studies

In this section, we provide ablation studies to demonstrate the effectiveness of our pipeline and
different modules. The visualization results of ablated models are presented in the supplementary
material.

RAW Domain Decoupling Strategy. To evaluate the effectiveness of our decoupling strategy
for exposure correction and denoising, we compare UltraLED with the one-stage method that
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Figure 4: Visualization results of different methods on the UHDR dataset. The methods labeled blue
take a long-exposure noiseless image as input, the methods labeled red take a short-exposure RAW
image as input, and the methods take a short-exposure image RGB as input. UltraLED
achieves good visual effects in both bright and dark regions. Note that there may be slight differences
in our tone because our training data underwent a reversed ISP process. However, this difference is
generally negligible and aligns with real-world conditions.

also operates in the RAW domain under identical settings. Additionally, to highlight the inherent
advantages of the RAW domain in restoring UHDR scenes, we conduct experiments using the same
settings in the RGB domain. The results are presented in Tab. 4]

Brightness-Aware Noise and Ratio Map Encoding. To assess the contributions of the proposed
brightness-aware noise modeling and ratio map encoding, we conduct ablation studies on these two
modules. The results, as shown in Tab. [5] demonstrate that both components significantly enhance
denoising performance and detail recovery in UHDR scenes.

Table 4: Ablation on the image domain and the Table 5: Ablation on N, and Ratio Map
application of the decoupling strategy. Encoding.
Ratio x50 x100 200 Ratio x50 x100 200
Domian Decoupling PSNR/SSIM PSNR/SSIM PSNR/SSIM Ny, Encoding PSNR/SSIM PSNR/SSIM PSNR/SSIM
RGB X 22.844/0.693 21.732/0.622 20.531/0.569 X X 26.012/0.862 25.814/0.838 24.513/0.761
RGB v 22.937/0.688 21.560/0.613 20.376/0.554 X v 26301/0.878 26.005/0.849 24.678/0.766
RAW X 25.137/0.878 24.896/0.866 24.632/0.847 v X 27.062/0.882 26.893/0.871 26.734/0.851
RAW v 27.598/0.898 27.327/0.887 27.091/0.860 vV 27.598/0.898 27.327/0.887 27.091/0.860

Input(x1) Input(x10) Input(x100) ELD UltraLED (Ours)

Figure 5: Visual comparison on the SID [10] dataset. It is well-known that RGB-based methods
[55 231 125) 2]] have limited ability to recover details in extremely low-light regions. Therefore, we
only compare UltraLED with ELD [48] that is a representative RAW-based approach. UltraLED not
only performs effective denoising in the dark areas of the scene but also well preserves the details in
bright regions, such as the textures of trees, windows, and wall surfaces under light.



4.5 Limitations

Although UltraLED significantly outperforms RGB domain approaches in UHDR scenes, it shares a
common limitation with RAW denoising methods [48 |54} 21]: the strong dependence of the noise
model on camera-specific parameters. We tested the performance of different cameras using their
respective noise parameters on our UHDR dataset captured with the SonyA7M4 to demonstrate this
more intuitively. The results shown in Tab. [f] indicate the impact of inaccurate noise parameters
increases with increasing noise intensity. Consequently, for different camera types, the model needs
to be retrained using noise parameters specifically calibrated for the type.

Table 6: Results of the cross-camera experiments.

x50 x100 %200
Camera Type PSNR/SSIM  PSNR/SSIM  PSNR/SSIM
NikonD850 26.425/0.863  25.943/0.825 24.784/0.735
SonyA7S2 26.333/0.868  26.035/0.854  25.587/0.796
SonyA7M4 (matching) 27.598/0.898  27.327/0.887 27.091/0.860

4.6 Controllable Local Exposure Correction

Since SID [[10], most RAW domain denoising methods have achieved varying brightness levels by
adjusting the amplification ratios of the input. In contrast, UltraLED applies the ratio primarily to the
darkest regions of the image. For areas that are already bright, it adaptively adjusts local exposure,
resulting in a more natural appearance. Qualitative results demonstrating this capability are shown in
Fig.[] Notably, with global brightness adjustment alone, as illustrated in the “Input” column, images
tend to become overexposed, losing important highlight details. In contrast, our approach effectively
preserves fine details and textures while progressively enhancing shadow regions as the amplification
ratio increases. This indicates that UltraLED has controllable local exposure correction capability,
providing users with a more diverse user experience.

Input(x1)

Input(x50)

UltraLED(x50) UltraLED(x100) UltraLED(x200)

Figure 6: Visualization results on different amplification ratios of the initial RAW image in our model.
Note that these images are all the same input multiplied only by different ratios. We only show
the visualization results for the original input without amplification and the (x50) for the input.

5 Conclusion

For UHDR scenes, previous methods typically rely on multi-exposure fusion for image restoration.
Single-frame approaches often struggle, either failing to recover details in extremely dark regions or
being unable to reconstruct severely overexposed areas. We propose a novel solution that operates
in the RAW domain by decoupling exposure correction and denoising. This enables the model to
fully leverage the higher bit depth and simpler noise distribution of RAW images. Additionally, we
introduce brightness-aware noise modeling and ratio map encoding to guide the recovery of image
color and detail. With only a single-frame RAW image, we can see everything in the UHDR scene.

10



6 Acknowledgement

This work was supported in part by the National Natural Science Foundation of China (62306153,
62225604), the Natural Science Foundation of Tianjin, China (25ZXRGGX00290, 24JCJQJC00020,
25JCQNIJCO01390), the Young Elite Scientists Sponsorship Program by CAST (YESS20240686), the
Fundamental Research Funds for the Central Universities (Nankai University, 070-63243143), and
Shenzhen Science and Technology Program (JCYJ20240813114237048). The computational devices
is partly supported by the Supercomputing Center of Nankai University (NKSC).

References

[1] Abdelrahman Abdelhamed, Stephen Lin, and Michael S Brown. A high-quality denoising
dataset for smartphone cameras. In IEEE Conference on Computer Vision and Pattern Recogni-
tion, pages 1692-1700, 2018.

[2] Jiesong Bai, Yuhao Yin, Qiyuan He, Yuanxian Li, and Xiaofeng Zhang. Retinexmamba:
Retinex-based mamba for low-light image enhancement. arXiv preprint arXiv:2405.03349,
2024.

[3] Francesco Banterle, Kurt Debattista, Alessandro Artusi, Sumanta Pattanaik, Karol Myszkowski,
Patrick Ledda, and Alan Chalmers. High dynamic range imaging and low dynamic range
expansion for generating hdr content. In Computer graphics forum, volume 28, pages 2343—
2367. Wiley Online Library, 2009.

[4] Francesco Banterle, Patrick Ledda, Kurt Debattista, and Alan Chalmers. Inverse tone mapping.
In Proceedings of the 4th international conference on Computer graphics and interactive
techniques in Australasia and Southeast Asia, pages 349-356, 2006.

[5] Francesco Banterle, Patrick Ledda, Kurt Debattista, Alan Chalmers, and Marina Bloj. A
framework for inverse tone mapping. The Visual Computer, 23:467—478, 2007.

[6] Tim Brooks, Ben Mildenhall, Tianfan Xue, Jiawen Chen, Dillon Sharlet, and Jonathan T Barron.
Unprocessing images for learned raw denoising. In IEEE Conference on Computer Vision and
Pattern Recognition, pages 11036-11045, 2019.

[7] Antoni Buades, Onofre Martorell, and M Sanchez-Beeckman. Joint denoising and hdr for raw
video sequences. arXiv preprint arXiv:2201.07066, 2022.

[8] Bolun Cai, Xianming Xu, Kailing Guo, Kui Jia, Bin Hu, and Dacheng Tao. A joint intrinsic-
extrinsic prior model for retinex. In IEEE International Conference on Computer Vision, pages
40004009, 2017.

[9] Yue Cao, Ming Liu, Shuai Liu, Xiaotao Wang, Lei Lei, and Wangmeng Zuo. Physics-guided
iso-dependent sensor noise modeling for extreme low-light photography. In IEEE Conference
on Computer Vision and Pattern Recognition, pages 5744-5753, 2023.

[10] Chen Chen, Qifeng Chen, Jia Xu, and Vladlen Koltun. Learning to see in the dark. In IEEE
Conference on Computer Vision and Pattern Recognition, pages 3291-3300, 2018.

[11] Xiangyu Chen, Zheyuan Li, Zhengwen Zhang, Jimmy S Ren, Yihao Liu, Jingwen He, Yu Qiao,
Jiantao Zhou, and Chao Dong. Towards efficient sdrtv-to-hdrtv by learning from image
formation. arXiv preprint arXiv:2309.04084, 2023.

[12] Xiangyu Chen, Yihao Liu, Zhengwen Zhang, Yu Qiao, and Chao Dong. Hdrunet: Single image
hdr reconstruction with denoising and dequantization. In /EEE Conference on Computer Vision
and Pattern Recognition, pages 354-363, 2021.

[13] Xiangyu Chen, Zhengwen Zhang, Jimmy S Ren, Lynhoo Tian, Yu Qiao, and Chao Dong. A

new journey from sdrtv to hdrtv. In IEEE International Conference on Computer Vision, pages
4500-4509, 2021.

11



[14] Zixuan Chen, Yujin Wang, Xin Cai, Zhiyuan You, Zheming Lu, Fan Zhang, Shi Guo, and
Tianfan Xue. Ultrafusion: Ultra high dynamic imaging using exposure fusion. arXiv preprint
arXiv:2501.11515, 2025.

[15] Yiheng Chi, Xingguang Zhang, and Stanley H Chan. Hdr imaging with spatially varying
signal-to-noise ratios. In IEEE Conference on Computer Vision and Pattern Recognition, pages
5724-5734, 2023.

[16] Yuekun Dai, Chongyi Li, Shangchen Zhou, Ruicheng Feng, and Chen Change Loy. Flare7k: A
phenomenological nighttime flare removal dataset. pages 3926-3937, 2022.

[17] Paul E Debevec and Jitendra Malik. Recovering high dynamic range radiance maps from
photographs. In Seminal Graphics Papers: Pushing the Boundaries, Volume 2, pages 643-652.
2023.

[18] Foivos I Diakogiannis, Francois Waldner, Peter Caccetta, and Chen Wu. Resunet-a: A deep
learning framework for semantic segmentation of remotely sensed data. ISPRS Journal of
Photogrammetry and Remote Sensing, 162:94—114, 2020.

[19] Alexey Dosovitskiy, Philipp Fischer, Eddy Ilg, Philip Hausser, Caner Hazirbas, Vladimir Golkov,
Patrick Van Der Smagt, Daniel Cremers, and Thomas Brox. Flownet: Learning optical flow
with convolutional networks. In IEEE International Conference on Computer Vision, pages
2758-2766, 2015.

[20] Gabriel Eilertsen, Joel Kronander, Gyorgy Denes, Rafat K Mantiuk, and Jonas Unger. Hdr
image reconstruction from a single exposure using deep cnns. ACM Transactions on Graphics,
36(6):1-15, 2017.

[21] Hansen Feng, Lizhi Wang, Yuzhi Wang, and Hua Huang. Learnability enhancement for low-
light raw denoising: Where paired real data meets noise modeling. In ACM International
Conference on Multimedia, pages 1436—1444, 2022.

[22] Xueyang Fu, Delu Zeng, Yue Huang, Xiao-Ping Zhang, and Xinghao Ding. A weighted
variational model for simultaneous reflectance and illumination estimation. In IEEE Conference
on Computer Vision and Pattern Recognition, pages 2782-2790, 2016.

[23] Chunle Guo, Chongyi Li, Jichang Guo, Chen Change Loy, Junhui Hou, Sam Kwong, and
Runmin Cong. Zero-reference deep curve estimation for low-light image enhancement. In
IEEE Conference on Computer Vision and Pattern Recognition, pages 1780-1789, 2020.

[24] Tao Hu, Qingsen Yan, Yuankai Qi, and Yanning Zhang. Generating content for hdr deghosting
from frequency view. In IEEE Conference on Computer Vision and Pattern Recognition, pages
25732-25741, 2024.

[25] Yifan Jiang, Xinyu Gong, Ding Liu, Yu Cheng, Chen Fang, Xiaohui Shen, Jianchao Yang, Pan
Zhou, and Zhangyang Wang. Enlightengan: Deep light enhancement without paired supervision.
IEEE Transactions on Image Processing, 30:2340-2349, 2021.

[26] Xin Jin, Ling-Hao Han, Zhen Li, Chun-Le Guo, Zhi Chai, and Chongyi Li. Dnf: Decouple and
feedback network for seeing in the dark. In IEEE Conference on Computer Vision and Pattern
Recognition, pages 18135-18144, 2023.

[27] Xin Jin, Simon Niklaus, Zhoutong Zhang, Zhihao Xia, Chunle Guo, Yuting Yang, Jiawen
Chen, and Chongyi Li. Classic video denoising in a machine learning world: Robust, fast,

and controllable. In IEEE Conference on Computer Vision and Pattern Recognition, pages
2084-2093, 2025.

[28] Xin Jin, Jia-Wen Xiao, Ling-Hao Han, Chunle Guo, Ruixun Zhang, Xialei Liu, and Chongyi Li.
Lighting every darkness in two pairs: A calibration-free pipeline for raw denoising. In /EEE
International Conference on Computer Vision, pages 13275-13284, 2023.

[29] Nima Khademi Kalantari, Ravi Ramamoorthi, et al. Deep high dynamic range imaging of
dynamic scenes. ACM Transactions on Graphics, 36(4):144-1, 2017.

12



[30]
[31]
[32]

[33]

[34]

[35]

[36]

[37]

[38]

[39]

[40]

[41]

[42]

[43]

[44]

[45]

[46]

Black Forest Labs. Flux. https://github.com/black-forest-labs/flux, 2024.
Edwin H Land. The retinex theory of color vision. Scientific american, 237(6):108-129, 1977.

Chongyi Li, Chun-Le Guo, Man Zhou, Zhexin Liang, Shangchen Zhou, Ruicheng Feng, and
Chen Change Loy. Embedding fourier for ultra-high-definition low-light image enhancement.
arXiv preprint arXiv:2302.11831, 2023.

Chongyi Li, Chunle Guo, Linghao Han, Jun Jiang, Ming-Ming Cheng, Jinwei Gu, and
Chen Change Loy. Low-light image and video enhancement using deep learning: A sur-
vey. IEEE Transactions on Pattern Analysis and Machine Intelligence, 44(12):9396-9416,
2021.

Chongyi Li, Chunle Guo, and Chen Change Loy. Learning to enhance low-light image via
zero-reference deep curve estimation. IEEE Transactions on Pattern Analysis and Machine
Intelligence, 44(8):4225-4238, 2021.

Yu-Lun Liu, Wei-Sheng Lai, Yu-Sheng Chen, Yi-Lung Kao, Ming-Hsuan Yang, Yung-Yu
Chuang, and Jia-Bin Huang. Single-image hdr reconstruction by learning to reverse the camera

pipeline. In IEEE Conference on Computer Vision and Pattern Recognition, pages 1651-1660,
2020.

Zhen Liu, Yinglong Wang, Bing Zeng, and Shuaicheng Liu. Ghost-free high dynamic range
imaging with context-aware transformer. In European Conference on Computer Vision, pages
344-360, 2022.

Demetris Marnerides, Thomas Bashford-Rogers, Jonathan Hatchett, and Kurt Debattista. Ex-
pandnet: A deep convolutional neural network for high dynamic range expansion from low
dynamic range content. In Computer Graphics Forum, volume 37, pages 37-49. Wiley Online
Library, 2018.

Tom Mertens, Jan Kautz, and Frank Van Reeth. Exposure fusion. In Pacific Conference on
Computer Graphics and Applications, pages 382-390. IEEE, 2007.

Ben Mildenhall, Peter Hedman, Ricardo Martin-Brualla, Pratul P Srinivasan, and Jonathan T
Barron. Nerf in the dark: High dynamic range view synthesis from noisy raw images. In /[EEE
Conference on Computer Vision and Pattern Recognition, pages 16190-16199, 2022.

Kristina Monakhova, Stephan R Richter, Laura Waller, and Vladlen Koltun. Dancing under
the stars: video denoising in starlight. In IEEE Conference on Computer Vision and Pattern
Recognition, pages 16241-16251, 2022.

Feiyue Peng, Maojun Zhang, Shiming Lai, Hanlin Tan, and Shen Yan. Deep hdr reconstruction
of dynamic scenes. In International Conference on Image, Vision and Computing, pages
347-351, 2018.

Lishen Qu, Zhihao Liu, Jinshan Pan, Shihao Zhou, Jinglei Shi, Duosheng Chen, and Jufeng
Yang. Flarex: A physics-informed dataset for lens flare removal via 2d synthesis and 3d
rendering. arXiv preprint arXiv:2510.09995, 2025.

Lishen Qu, Zhihao Liu, Shihao Zhou, Yaqi Luo, Jie Liang, Hui Zeng, Lei Zhang, and Jufeng
Yang. Burstdeflicker: A benchmark dataset for flicker removal in dynamic scenes. arXiv
preprint arXiv:2510.09996, 2025.

Olaf Ronneberger, Philipp Fischer, and Thomas Brox. U-net: Convolutional networks for
biomedical image segmentation. In Medical Image Computing and Computer Assisted Interven-
tion Society, pages 234-241, 2015.

Ruixing Wang, Qing Zhang, Chi-Wing Fu, Xiaoyong Shen, Wei-Shi Zheng, and Jiaya Jia.
Underexposed photo enhancement using deep illumination estimation. In IEEE Conference on
Computer Vision and Pattern Recognition, pages 6849-6857, 2019.

Shuhang Wang, Jin Zheng, Hai-Miao Hu, and Bo Li. Naturalness preserved enhancement
algorithm for non-uniform illumination images. IEEE Transactions on Image Processing,
22(9):3538-3548, 2013.

13


https://github.com/black-forest-labs/flux

[47] Xintao Wang, Liangbin Xie, Ke Yu, Kelvin C.K. Chan, Chen Change Loy, and Chao
Dong. BasicSR: Open source image and video restoration toolbox. https://github.com/
XPixelGroup/BasicSR, 2022.

[48] Kaixuan Wei, Ying Fu, Yinqiang Zheng, and Jiaolong Yang. Physics-based noise modeling
for extreme low-light photography. IEEE Transactions on Pattern Analysis and Machine
Intelligence, 44(11):8520-8537, 2021.

[49] Hao Wen, Hongbo Kang, Jian Ma, Jing Huang, Yuanwang Yang, Haozhe Lin, Yu-Kun Lai, and
Kun Li. Dycrowd: Towards dynamic crowd reconstruction from a large-scene video. IEEE
Transactions on Pattern Analysis and Machine Intelligence, pages 1-14, 2025.

[50] Shangzhe Wu, Jiarui Xu, Yu-Wing Tai, and Chi-Keung Tang. Deep high dynamic range imaging
with large foreground motions. In European Conference on Computer Vision, pages 117-132,
2018.

[51] Qingsen Yan, Dong Gong, Qinfeng Shi, Anton van den Hengel, Chunhua Shen, Ian Reid, and
Yanning Zhang. Attention-guided network for ghost-free high dynamic range imaging. In /EEE
Conference on Computer Vision and Pattern Recognition, pages 1751-1760, 2019.

[52] Qingsen Yan, Tao Hu, Yuan Sun, Hao Tang, Yu Zhu, Wei Dong, Luc Van Gool, and Yan-
ning Zhang. Toward high-quality hdr deghosting with conditional diffusion models. IEEE
Transactions on Circuits and Systems for Video Technology, 34(5):4011-4026, 2023.

[53] Syed Waqgas Zamir, Aditya Arora, Salman Khan, Munawar Hayat, Fahad Shahbaz Khan, and
Ming-Hsuan Yang. Restormer: Efficient transformer for high-resolution image restoration. In
IEEE Conference on Computer Vision and Pattern Recognition, pages 5728-5739, 2022.

[54] Yi Zhang, Hongwei Qin, Xiaogang Wang, and Hongsheng Li. Rethinking noise synthesis and
modeling in raw denoising. In IEEE International Conference on Computer Vision, pages
45934601, 2021.

[55] Yonghua Zhang, Jiawan Zhang, and Xiaojie Guo. Kindling the darkness: A practical low-light
image enhancer. In ACM International Conference on Multimedia, pages 1632-1640, 2019.

[56] Ruoxi Zhu, Shusong Xu, Peiye Liu, Sicheng Li, Yanheng Lu, Dimin Niu, Zihao Liu, Zihao
Meng, Zhiyong Li, Xinhua Chen, et al. Zero-shot structure-preserving diffusion model for high

dynamic range tone mapping. In IEEE Conference on Computer Vision and Pattern Recognition,
pages 26130-26139, 2024.

[57] Yunhao Zou, Chenggang Yan, and Ying Fu. Rawhdr: High dynamic range image reconstruction
from a single raw image. In IEEE International Conference on Computer Vision, pages 12334—
12344, 2023.

14


https://github.com/XPixelGroup/BasicSR
https://github.com/XPixelGroup/BasicSR

NeurlIPS Paper Checklist

1. Claims

Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?

Answer: [Yes]
Justification: We have described our motivation and contributions both in abstract and Sec!I]
Guidelines:

e The answer NA means that the abstract and introduction do not include the claims
made in the paper.

* The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

* The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

* It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?
Answer: [Yes]
Justification: We discuss the limitations of the work in Sec.
Guidelines:

* The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

* The authors are encouraged to create a separate "Limitations" section in their paper.

The paper should point out any strong assumptions and how robust the results are to
violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

* The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

* The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

* The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

* While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory assumptions and proofs

Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?

Answer: [NA]
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Justification: We do not include theoretical results.

Guidelines:

The answer NA means that the paper does not include theoretical results.

All the theorems, formulas, and proofs in the paper should be numbered and cross-
referenced.

All assumptions should be clearly stated or referenced in the statement of any theorems.
The proofs can either appear in the main paper or the supplemental material, but if
they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

Theorems and Lemmas that the proof relies upon should be properly referenced.

4. Experimental result reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?

Answer: [Yes]

Justification: All the implementation details can be found in Sec/}

Guidelines:

The answer NA means that the paper does not include experiments.
If the paper includes experiments, a No answer to this question will not be perceived
well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.
If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.
Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

While NeurIPS does not require releasing code, the conference does require all submis-

sions to provide some reasonable avenue for reproducibility, which may depend on the

nature of the contribution. For example

(a) If the contribution is primarily a new algorithm, the paper should make it clear how
to reproduce that algorithm.

(b) If the contribution is primarily a new model architecture, the paper should describe
the architecture clearly and fully.

(c) If the contribution is a new model (e.g., a large language model), then there should
either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code

Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?
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Answer:

Justification: No reproducible code is provided in the submission. However, all the codes,
both to reproduce the results and the interactive viewer, will be released.

Guidelines:

* The answer NA means that paper does not include experiments requiring code.

* Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

* While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

* The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

* The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

* The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

* At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

* Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLSs to data and code is permitted.
6. Experimental setting/details

Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?

Answer: [Yes]
Justification: All the implementation details can be found in Sec/4}
Guidelines:

* The answer NA means that the paper does not include experiments.

* The experimental setting should be presented in the core of the paper to a level of detail
that is necessary to appreciate the results and make sense of them.

¢ The full details can be provided either with the code, in appendix, or as supplemental
material.
7. Experiment statistical significance

Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?

Answer: [NA]
Justification: Our paper does not include these experiments.
Guidelines:

* The answer NA means that the paper does not include experiments.

* The authors should answer "Yes" if the results are accompanied by error bars, confi-
dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

* The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

* The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

* The assumptions made should be given (e.g., Normally distributed errors).
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8.

10.

¢ It should be clear whether the error bar is the standard deviation or the standard error
of the mean.

It is OK to report 1-sigma error bars, but one should state it. The authors should
preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

» For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

* If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

Experiments compute resources

Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?

Answer: [Yes]

Justification: Due to the use of light networks to achieve our results, we require very few
computer resources, which we will explain in the supplementary material.

Guidelines:

* The answer NA means that the paper does not include experiments.

* The paper should indicate the type of compute workers CPU or GPU, internal cluster,
or cloud provider, including relevant memory and storage.

* The paper should provide the amount of compute required for each of the individual
experimental runs as well as estimate the total compute.

* The paper should disclose whether the full research project required more compute
than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

. Code of ethics

Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?

Answer: [Yes]
Justification: Our experiments and research are not with human subjects.
Guidelines:

¢ The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.

* If the authors answer No, they should explain the special circumstances that require a
deviation from the Code of Ethics.

* The authors should make sure to preserve anonymity (e.g., if there is a special consid-
eration due to laws or regulations in their jurisdiction).
Broader impacts

Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?

Answer: [Yes]
Justification: We discuss these in our supplementary material.
Guidelines:

* The answer NA means that there is no societal impact of the work performed.

* If the authors answer NA or No, they should explain why their work has no societal
impact or why the paper does not address societal impact.

» Examples of negative societal impacts include potential malicious or unintended uses
(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.
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12.

» The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

* The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

* If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

Safeguards

Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?

Answer: [NA]
Justification: Methods and models for reconstruction task is hardly been misused.
Guidelines:

» The answer NA means that the paper poses no such risks.

* Released models that have a high risk for misuse or dual-use should be released with
necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

 Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

* We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

Licenses for existing assets

Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?

Answer: [Yes]
Justification: Licenses for existing assets are listed in supplementary material.
Guidelines:

* The answer NA means that the paper does not use existing assets.

* The authors should cite the original paper that produced the code package or dataset.

 The authors should state which version of the asset is used and, if possible, include a
URL.

* The name of the license (e.g., CC-BY 4.0) should be included for each asset.

 For scraped data from a particular source (e.g., website), the copyright and terms of
service of that source should be provided.

 If assets are released, the license, copyright information, and terms of use in the
package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

* For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.
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* If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

New assets

Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?

Answer:

Justification: No new assets is submitted along with the submission. However, all the codes,
both to reproduce the results and the interactive viewer, will be released.

Guidelines:

* The answer NA means that the paper does not release new assets.

* Researchers should communicate the details of the dataset/code/model as part of their
submissions via structured templates. This includes details about training, license,
limitations, etc.

* The paper should discuss whether and how consent was obtained from people whose
asset is used.

* At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

Crowdsourcing and research with human subjects

Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?

Answer: [NA]
Justification: We do not involve crowdsourcing nor research with human subjects.
Guidelines:

* The answer NA means that the paper does not involve crowdsourcing nor research with

human subjects.

* Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

* According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

Institutional review board (IRB) approvals or equivalent for research with human
subjects

Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?

Answer: [NA]
Justification: We do not involve crowdsourcing nor research with human subjects.
Guidelines:

* The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

* Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

* We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

* For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.

20



16. Declaration of LLLM usage

Question: Does the paper describe the usage of LLMs if it is an important, original, or
non-standard component of the core methods in this research? Note that if the LLM is used
only for writing, editing, or formatting purposes and does not impact the core methodology,
scientific rigorousness, or originality of the research, declaration is not required.

Answer:
Justification: Our paper does not have content about LLMS.
Guidelines:

* The answer NA means that the core method development in this research does not
involve LLMs as any important, original, or non-standard components.

* Please refer to our LLM policy (https://neurips.cc/Conferences/2025/LLM)
for what should or should not be described.
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Supplementary Material

This supplementary material provides additional insights and results supporting our main paper. We
first elaborate on our concept of “see everything” and validate its effectiveness in UHDR scenes
(Tab. [7} Fig.[8). We then assess the impact of different denoising networks (Tab. [8) and present
detailed visual ablations highlighting the benefits of our RAW domain decoupling strategy (Fig. [T0}
Fig.[[T) and noise modeling (Fig.[I3] Fig.[TI4). Furthermore, we evaluate various ratio map encoding
techniques and demonstrate the superiority of our proposed encoding on both the UHDR and ELD
datasets [48]] (Tab.[9] Tab.[I0). Finally, we provide experimental settings, broader societal impact
discussions, and license information.

Figure 7: The interface of our demo.

To further demonstrate the effectiveness of UltraLED, we created a demo included in the supple-
mentary materials. The interface is shown in Fig. [/} We recorded short videos in UHDR scenes and
processed them frame by frame to showcase their performance. These videos simulate real-world
scenes where a handheld camera captures scenes with both camera and object motion. Despite the
movement, UltralLED can still recover all regions using a short-exposure snapshot, demonstrating its
practicality and convenience compared to multi-frame fusion approaches.

A More Detailed Explanation of ““See Everything”

We define “see everything” as the ability to capture all regions’ content in UHDR scenes, including
the objects in extremely bright or dark regions, as well as both moving and static elements. A
comparison between UltraLED and previous approaches is shown in Tab.[/| Compared with previous
methods, UltraLED can “see” all regions in UHDR images.

Extremely Bright and Extremely Dark Regions. Previous single-frame methods struggle with this,
particularly those methods [23} 25} 12} 52} |24]] based on the RGB domain, which are limited by bit
depth and cannot simultaneously preserve rich details in both highlight and shadow areas. RAW-based
methods [[10} 48] 28] 21}, 154]], while not restricted by bit depth, often fail to simultaneously recover
details across varying brightness levels and perform accurate exposure correction.

Moving and Static Regions. In comparison with the multi-frame HDR fusion techniques [14}[36}[51]
17], UltraLED has a clear advantage in handling motion, especially for moving objects in dark regions.
As shown in Fig. 8] in a scene where both the camera and the scene are in motion, even state-of-the-art
diffusion-based method [[14] fails to recover details in all regions, particularly for moving objects
in dark regions. Leveraging the higher potential of RAW images under low-light conditions, our
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Table 7: Applicable Regions for Different Methods in UHDR Scenes.

Extremely Bright  Extremely Dark

Domain Methods Moving Static Moving Static
Short-exposure-based Methods [155] 23] [25] 2]] v v X X
RGB Long-exposure-based Methods [[12} 52 24, 156]] X X X v
Multi-exposure-based Methods [[14} 36, 51} [17]] X v X v
Denoising Methods [[10} 48], 28], 211 [54]] X X v ve
RAW UltraLED (Ours) v v v v

Short-exposure input

UltraFusion [[14]] UltraLED (Ours)

Figure 8: Visual comparison between UltraLED and UltraFusion [[14] in a UHDR scene with motion.
Note that UltraLED uses a short-exposure single-frame RAW image as input, while UltraFusion takes
a short-exposure RGB image and a long-exposure RGB image as inputs. UltraFusion struggles to
recover details in dark moving regions and performs poorly in some highlight areas due to alignment
difficulties. In contrast, UltraLED, being single-frame and thus alignment-free, successfully restores
details in dark regions while avoiding motion artifacts.

approach can recover fine details using only a short exposure. This not only helps capture moving
objects without motion blur but also avoids alignment issues, thanks to our single-frame design.
These characteristics are especially crucial for dynamic scenes—whether due to camera shake or
scene motion—as well as for video applications.

B User Study

We conducted a user study to evaluate UltraLED. Specifically, we selected 25 scenes from the UHDR
dataset. Since the UHDR dataset mainly consists of indoor scenes, we also captured 11 outdoor
UHDR scenes. In addition, we included 15 UHDR scenes from the SID [[10] dataset to assess
UltraLED’s performance on different sensors. A total of 122 participants were invited to take part in
the study. For each scene, users were asked to compare the results of our method with those of other
baseline methods [48] [2, 23]]. The results are shown as Fig.[9] which shows that users consistently
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preferred our method over others, indicating that UltraLED produces more visually pleasing images
in UHDR scenes. This aligns well with our quantitative evaluation.

Competitors

P utratep

0.8
0.6
0.4
0.2

0

Indoor Scenes

Voting Rate

Outdoor Scenes

Figure 9: User study on different datasets.

C Impact of Different Denoising Networks

We also evaluated the impact of different denoising networks on our results. The results are shown
as Tab. [8] These experiments demonstrate that using more advanced network architectures [18]
[53]] enables the denoising network to better learn the noise model, thereby further enhancing the
performance of UltraLED. For a fair comparison, we used U-Net [10] as the denoising network when
comparing with other methods.

Table 8: Quantitative comparisons of using different denoising networks as the denoising backbone
on the UHDR dataset.

x50 x 100 %200
Network PSNR/SSIM  PSNR/SSIM  PSNR/SSIM
U-Net [10] 27.598/0.898 27.327/0.887 27.091/0.860
ResUnet [18] 27.741/0.904 27.533/0.896 27.288/0.882
Restormer [33] 27.982/0.911 27.732/0.903 27.437/0.891

D Visualization Results of Ablation Studies

In this section, we present the visualization results corresponding to the ablation studies in Sec. 4.4

RAW Domain Decoupling Strategy. The corresponding visualization results are illustrated in
Fig.[I0] and Fig.[IT] Due to the limited bit depth and the complex noise distribution in the RGB
domain, RGB-based methods exhibit significantly inferior performance compared to RAW-based
methods. This discrepancy is particularly obvious in the recovery of darker regions under extremely
high dynamic range scenes. RAW-based methods can reconstruct more realistic details in low-
light areas, whereas RGB-based methods suffer from severe color distortion and, in extremely dark
regions, often fail to recover meaningful details. In contrast, within the RAW domain, the strategy of
decoupling exposure correction and denoising proves markedly beneficial for the restoration of both
detail and color in dark regions.

Brightness-Aware Noise and Ratio Map Encoding. The visual results of the ablation study on
Brightness-aware Noise and Ratio Map Encoding are shown in Fig.[T2] It is evident that both modules
contribute positively to noise reduction and detail restoration.
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RAW (Ours) RAW w/o Decoupling Input

RGB RGB w/o Decoupling Ground Truth

Figure 10: Visualization of the ablation experiment results for the RAW domain decoupling strategy.
RAW/RGB indicates that the experiment is conducted in the RAW domain/RGB domain, and “w/o
Decoupling” means that the decoupling strategy is not used. Pay attention to the details within
the red box (Zoomed in and Brightened for Best View). It can be seen that in the RAW domain,
the decoupling strategy significantly improves the recovery of details and denoising. The textures
of portraits and building blocks are clearer, while in the RGB domain, almost no details can be
recovered.

Brightness-Aware Noise is particularly crucial in scenarios with severe noise. Without incorporating
this module, the output at x200 magnification exhibits significant color distortion, as demonstrated

in Fig. [I3|and Fig. [14]

E Ratio Map Encoding

To demonstrate the superiority of our encoding strategy over other methods, we conducted quantitative
evaluations using alternative encoding approaches under the same experimental settings, as shown in
Tab.[9] The results indicate that our encoding consistently outperforms others across different ratio
values. This is because our encoding method is based on a Gaussian distribution, which better captures
the continuity of the ratio as well as the correlations between different ratio values. Additionally, the
weight represents the overall noise intensity, reinforcing the relationship between the ratio and the
noise distribution.
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RAW (Ours)

RAW w/o Decouphng

RGB Ground Truth

Figure 11: Visualization of the ablation experiment results for the RAW domain decoupling strategy.
RAW/RGB indicates that the experiment is conducted in the RAW domain/RGB domain, and “w/o
Decoupling” means that the decoupling strategy is not used. Pay attention to the details within the
red box (Zoomed in and Brightened for Best View). It can be seen that in the RAW domain, the
decoupling strategy significantly improves the recovery of colors and denoising. The colors of the
doll are more realistic with less noise, while in the RGB domain, almost no details can be recovered.

RGB w/o Decoupling

Table 9: Quantitative evaluation results of different encoding methods on the UHDR dataset. “None”
means no encoding is used. “Onehot” means one-hot encoding is used. and “Position” means
position encoding is used. It can be observed that our encoding method provides the most significant
performance improvement.

. %50 x 100 %200
Encoding PSNR/SSIM  PSNR/SSIM  PSNR/SSIM
None 27.062/0.882  26.893/0.871 26.734/0.851
Onehot 27.463/0.893 27.201/0.877 26.982/0.856
Position 26.893/0.879 27.160/0.872  26.781/0.853
UltraLED (Ours)  27.598/0.898  27.327/0.887 27.091/0.860

Additionally, to further showcase the effectiveness and generalization capability of our encoding
strategy in guiding denoising under varymg brightness levels, we directly tested its impact on
denoising performance at different ratios in the RAW domain using the ELD dataset [48]]. Since
we focused solely on denoising performance and the dynamic range of scenes in the ELD dataset
[48] is relatively narrow, each image only requires a single ratio value. It is worth noting that, after
normalization, the pixel values of low-light images in the RAW domain are typically smaller than
those in the RGB domain—often falling within a range like [0, 0.5]—which tends to result in lower
mean squared error and higher PSNR. The quantitative results are shown as Tab. To further
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Ground Truth

Figure 12: Visualization results of the ablation experiment of Ratio Map Encoding and Ny,. “w/o
Encoding” indicates the case without using Ratio Map Encoding, and “w/oN,,” represents the
situation without using N, noise. By observing the changes in the letters, it can be seen that both
modules play a positive role in the recovery of details.

Ours w/o Ny, Ours w/o Encoding & w/o Ny,

Ours w/o Ny, Ours w/o Encoding & w/o Ny, Ground Truth

Figure 13: Visualization results of the ablation experiment for Ratio Map Encoding and N, under
strong noise(x200). “w/o Encoding” indicates the case without using Ratio Map Encoding, and “w/o
Ny~ represents the situation without using Ny, noise. Pay attention to the differences between the
methods with and without using /N, noise. The result of the method without using NV, noise turns
obviously purple under strong noise, which seriously affects the visual effect of the image.

demonstrate the generalization capability of our encoding strategy different camera sensors, we
evaluate it on two different ELD subsets SonyA7S2 and NikonD850, with ELD noise model. The
results are shown as Tab. [Tl

F Experimental Environments

In our implementations, we used a single NVIDIA GeForce RTX 3090 GPU (24 GB), paired with
a 20-core CPU and 64 GB of RAM for training and testing. The Torch version is 1.13.1, and the
CUDA version is 12.2. Thanks to the use of only two U-Net architectures, inference on a 7040 <4688
RAW image takes approximately 0.85 seconds.
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Ours w/o Encoding w/0 Ny,

- _
Ours w/o Ny, Ground Truth

Figure 14: Visualization results of the ablation experiment for Ratio Map Encoding and N, under
strong noise(x200). “w/o Encoding” indicates the case without using Ratio Map Encoding, and “w/o
Ny~ represents the situation without using NV, noise. Pay attention to the differences between the
methods with and without using N, noise. The result of the method without using N, noise turns
obviously purple under strong noise, which seriously affects the visual effect of the image.

Table 10: Quantitative evaluation results of different denoising methods on the ELD [48]] dataset.
It can be observed that our encoding significantly improves the performance on PG, ELD [48]] and
SFRN [54], especially under brighter conditions.

x1 x10 x100 %200

Method PSNR/SSIM  PSNR/SSIM  PSNR/SSIM  PSNR/SSIM
PG 54.974/0.998 51.228/0.992  42.029/0.885  38.059/0.802
PG+Encoding  56.032/0.999 51.593/0,993 42.132/0.887  38.413/0.808
ELD 53.092/0.997  50.940/0.994  45.529/0.973  43.010/0.947
ELD+Encoding  54.141/0.998 51.375/0.995 45.646/0.975 43.079/0.951
SFRN 53.478/0.997 51.231/0.992 45.631/0.977 43.013/0.947
SFRN+Encoding 54.662/0.998 51.805/0.993 45.841/0.980 43.021/0.947

G Broader Impacts

Potential Positive Impacts.

UltraLED enhances image quality, enabling users to capture high-

quality night scenes without relying on professional equipment. This improvement may also benefit
surveillance cameras by providing better performance in low-light conditions, potentially contributing
to public safety. Furthermore, it could drive advancements in related industries such as smartphone
cameras and security systems, and even support fields like astrophotography and scientific research.

Potential Negative Impacts. While enhanced nighttime surveillance can offer security benefits,
it also raises potential privacy concerns. If not properly regulated, the technology might be used in

Table 11: Quantitative evaluation results of different sensors on the ELD [48]] dataset.

x1 x10 x100 x200
Method PSNR/SSIM  PSNR/SSIM  PSNR/SSIM  PSNR/SSIM
SonyA7S2 53.092/0.997  50.940/0.994 45.529/0.973  43.010/0.947
SonyA7S2+Encoding  54.141/0.998  51.375/0.995 45.646/0.975 43.079/0.951
NikonD850 50.673/0.993  48.763/0.990  43.991/0.966 41.821/0.940

NikonD850+Encoding  52.012/0.995

49.237/0.991

44.178/0.969

41.905/0.941
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UltraLED HDRTVNet++ [[11]

ELD [48]] - RetinexMamba [2]]

Figure 15: More visualization results on the UHDR dataset.

UltraLED HDRTVNet++ [[11]

ELD [48]] RetinexMamba [2]]

Figure 16: More visualization results on the UHDR dataset.

ways that could unintentionally affect individual privacy, such as in certain forms of unauthorized

monitoring or photography.
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H Licenses for Existing Assets

UltraLED is implemented in the style of BasicSR [47]], which is an open source image and video
restoration toolbox for super-resolution, denoising, deblurring, etc. We encourage further research
based on this codebase. The training data we use is sourced from RawHDR [57]. To synthesize
signal-dependent and signal-independent noise in the RAW domain, we adopt the noise model from
ELD [48].

I More Visualization Results

More visual comparison results are presented in Fig. [T5|and Fig.[I6] To demonstrate the generality of
UltraLED, we also captured and processed images in daytime UHDR scenes. The visual results are

shown in Fig.

TR
i AR
}

Input Output

Figure 17: Visual Results of Processed Daytime Scenes.
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