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ABSTRACT

We study computationally and statistically efficient Reinforcement Learning algo-
rithms for the linear Bellman Complete setting, a setting that uses linear function
approximation to capture value functions and unifies existing models like linear
Markov Decision Processes (MDP) and Linear Quadratic Regulators (LQR).
While it is known from the prior works that this setting is statistically tractable,
it remained open whether a computationally efficient algorithm exists. Our work
provides a computationally efficient algorithm for the linear Bellman complete
setting that works for MDPs with large action spaces, random initial states, and
random rewards but relies on the underlying dynamics to be deterministic. Our
approach is based on randomization: we inject random noise into least square
regression problems to perform optimistic value iteration. Our key technical con-
tribution is to carefully design the noise to only act in the null space of the training
data to ensure optimism while circumventing a subtle error amplification issue.

1 INTRODUCTION

Various application domains of Reinforcement Learning (RL)—including game playing, robotics,
self-driving cars, and foundation models—feature environments with large state and action spaces.
In such settings, the learner aims to find a well performing policy by repeated interactions with the
environment to acquire knowledge. Due to the high dimensionality of the problem, function approx-
imation techniques are used to generalize the knowledge acquired across the state and action space.
Under the broad category of function approximation, model-free RL stands out as a particularly pop-
ular approach due to its simplicity of implementation and relatively low sample efficiency in practice.
In model-free RL, the learner uses function approximation (e.g., an expressive function class like
deep neural networks) to model the state-action value function of various policies in the underly-
ing MDP. In fact, the combination of model-free RL with various empirical exploration heuristics
has led to notable empirical advances, including breakthroughs in game playing (Silver et al., 2016;
Berner et al., 2019), robot manipulation (Andrychowicz et al., 2020), and self-driving (Chen et al.,
2019).

Theoretical advancements have paralleled the practical successes in RL, with tremendous progress in
recent years in building rigorous statistical foundations to understand what structures in the environ-
ment and the function class suffice for sample-efficient RL. These advancements are supported by
optimal exploration strategies that align with the corresponding structural assumptions, and by now
we have a rich set of tools and techniques for sample efficient RL in MDPs with large state/action
spaces (Russo & Van Roy, 2013; Jiang et al., 2017; Sun et al., 2019; Wang et al., 2020; Du et al.,
2021; Jin et al., 2021; Foster et al., 2021; Xie et al., 2022). However, despite a rigorous statistical
foundation, a significant challenge remains: many of these theoretically rigorous approaches for
rich function approximation are not computationally feasible, and thus have limited practical ap-
plicability. For example, many algorithms require solving complex optimization problems that are
computationally intractable in practice (Zanette et al., 2020b); others require deterministic dynam-
ics and initial state (Du et al., 2020); and some methods depend on maintaining large and complex
version spaces (Jin et al., 2021; Du et al., 2021) which is intractable in terms of both memory and
computation.
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One of the most striking examples of this statistical computation gap is observed in the Linear Bell-
man Completeness setting, which is perhaps one of the simplest learning settings. Linear Bellman
completeness serves as a bridge between RL and control theory literature as it provides a unified
framework to capture both Linear MDPs (Jin et al., 2020; Agarwal et al., 2019; Zanette et al.,
2020b) and additionally, the Linear Quadratic Regulator (LQR), two popular models in RL and
control respectively. In particular, the linear Bellman completeness setting captures MDPs where
the state-action value function of the optimal policy is a linear function of some pre-specified feature
representations (of states and actions), and the Bellman backups of linear state-action value func-
tions are linear (w.r.t. some feature representation). Naturally, for this setting, the learner utilizes the
class F consisting of all linear functions over the given feature representation as the value function
class for model-free RL. In addition to considering a linear class, we also assume that the class F
exhibits low inherent Bellman error—–a structural assumption that quantifies the error in approxi-
mating the Bellman backup of functions within F . The first assumption, i.e., linearity of optimal
state-action value function, is perhaps the simplest modeling assumption one can make in RL with
function approximation. Furthermore, emerging evidence suggests that linearity is practically use-
ful, as with adequate feature representation, linear functions can represent value functions in various
domains. The second assumption, i.e. low inherent Bellman error of the class, while being a bit
mysterious, is a natural condition for statistical tractability for classic algorithms such as Fitted Q-
iteration (FQI) and temporal difference (TD) learning with linear function approximation (Munos,
2005; Zanette et al., 2020b). It is also well-known that linearity alone does not suffice for efficient
RL (Wang et al., 2021; Weisz et al., 2021).

While the prior works have shown that RL with linear bellman completeness is statistically tractable,
and one can learn with sample complexity that scales polynomially with both d and H (where d
is the dimensionality of the feature representation and H is the horizon of the RL problem), the
proposed algorithms that obtain such sample complexity in the online RL setting are not compu-
tationally efficient. Given the simplicity of the problem, it was conjectured that a computationally
efficient algorithm should exist. However, no such algorithms were proposed. Unfortunately, the
classical approaches of combining supervised learning techniques with RL in the online setting, e.g.,
value function iteration, which are computationally efficient by design, fail to extend to be statis-
tically tractable due to exponential blowups from error compounding, especially without making
norm-boundedness assumptions. On the other hand, the techniques of adding quadratic exploration
bonuses, e.g., the one proposed in LinUCB (Li et al., 2010) and used in LSVI for linear MDP, also
fail here as Bellman backups of quadratic functions are not necessarily within the linear class F . In
fact, the search for a computationally efficient algorithm with large action spaces is open even when
the transition dynamics are deterministic.

In this work, we provide the first computationally efficient algorithm for the linear Bellman com-
plete setting with deterministic dynamics, that enjoys regret bound of Õ(d5/2H5/2 + d2H3/2T 1/2)
for feature dimension d, horizon H , and number of rounds T . Importantly, our algorithm works
with large action spaces, stochastic reward functions, and stochastic initial states. The key ideas
of our algorithm are twofold: using randomization to encourage exploration and leveraging a span
argument to bound the regret. While adding random noise to the learned parameters has been quite
successful in linear function approximation, unfortunately, for our specific setting, since we need
to add sufficiently large noise to cancel out the estimation error, blind randomization can cause the
corresponding parameters to grow exponentially with the horizon. We avoid paying for this blow-up
by only adding noise to the null space of the data. In particular, when the dynamics are determinis-
tic, by adding exploration noise only in the null space, we can learn the value function exactly for
any trajectories that lie within the span of the data seen so far. Additionally, a simple span argument
bounds the number of times the trajectories fall outside the span of the historical data. Together,
these techniques leads to our polynomial sample complexity bound. The resulting algorithm relies
on linear regression oracles under convex constraints, which we show can be approximately solved
via a random-walk-based algorithm (Bertsimas & Vempala, 2004).

2 RELATED WORKS

Computational Efficient RL under Linear Bellman Completeness. Numerous works have fo-
cused on computationally efficient RL within the scope of linear Bellman completeness (LBC). The
simplest setting is tabular MDPs where computationally efficient and near-optimal algorithms have
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been well-known (Azar et al., 2017; Zhang et al., 2020; Jin et al., 2018). Tabular MDPs are gener-
alized by linear MDPs (Jin et al., 2020), where computationally efficient algorithms are also known
(Jin et al., 2020; Agarwal et al., 2023; He et al., 2023). However, in the setting of linear Bellman
completeness, which captures linear MDPs, computationally efficient algorithm remains open. Ex-
isting works have relied on various assumptions to achieve computational efficiency, such as few
actions (Golowich & Moitra, 2024) and assuming MDPs are “explorable” (Zanette et al., 2020c).
We provided a comprehensive overview of the literature in Section 3.2.

Exploration via Randomization. Random noise has been a powerful alternative to the bonus-based
exploration in the RL literature. A typical approach is Randomized Least-Squares Value Iteration
(RLSVI) (Osband et al., 2016), which injects Gaussian noise into the least-squares estimate and
achieves near-optimal worst-case regret for linear MDPs (Agrawal et al., 2021; Zanette et al., 2020a).
Similar technique has also been applied to preference-based RL under linear MDPs, resulting in the
first computationally efficient algorithm with near-optimal regret guarantees (Wu & Sun, 2023).
However, these approaches inject random noise on at least the same scale as the estimation error,
which results in an exponential norm blow-up of the learned parameters. To mitigate this issue, they
truncate the value function at each step. However, this truncation trick is feasible only in low-rank
MDPs but becomes challenging under Bellman completeness, as the Bellman backup of truncated
value estimates may no longer be linear. Consequently, existing RLSVI algorithms cannot address
linear Bellman complete problems. To tackle these challenges, we need new techniques capable of
managing exponentially large parameter values.

Beyond Linear Bellman Completeness. Many structural conditions capture linear Bellman com-
pleteness, such as Bilinear class (Du et al., 2021), Bellman eluder dimension (Jin et al., 2021),
Bellman rank (Jiang et al., 2017), witness rank (Sun et al., 2019), and decision-estimation coeffi-
cient (Foster et al., 2021). While statistically efficient algorithms exist for these settings, no compu-
tationally efficient algorithms are known.

3 PRELIMINARIES

A finite-horizon Markov Decision Process (MDP) is given by a tupleM= (S,A,H,T, r, µ) where
S is the state space, A is the action space, H ∈ N is the horizon, T ∶ S × A →∆(S) is the transition
function, r ∶ S × A → [0,1] is the reward function and µ ∈ ∆(S) is the initial state distribution.
Given a policy π ∶ S ↦ ∆(A), we denote Qπ

h(s, a) = Eπ [∑H
i=h ri ∣ sh = s, ah = a] as the layered

state-action value function of policy π and V π
h (s) = Qπ

h(s, π(s)) as the state value function. The
optimal value function is denoted by V ⋆h (s) =maxπ V

π
h (s), and the optimal policy by π⋆.

We focus on the setting of linear function approximation and consider the following linear Bellman
completeness, which ensures that the Bellman backup of a linear function remains linear.
Definition 1 (Linear Bellman Completeness). An MDP is said to be linear Bellman complete with
respect to a feature mapping ϕ if there exists a mapping T ∶ Rd → Rd so that, for all θ ∈ Rd and all
(s, a) ∈ S ×A, it holds that

⟨T θ, ϕ(s, a)⟩ = E
s′∼T(s,a)

max
a′
⟨θ, ϕ(s′, a′)⟩.

Moreover, we require that, for all h ∈ [H] and (s, a) ∈ S × A, the random reward is bounded in
[0,1] with mean rh(s, a) = ⟨ω⋆h, ϕ(s, a)⟩ for some unknown ω⋆h ∈ Rd.

We assume ∥ϕ(s, a)∥2 ≤ 1 for all s ∈ S and a ∈ A. Notably, we do not impose any upper bound
on ∥ω⋆h∥2 or any ℓ2-norm non-expansiveness of the Bellman backup, distinguishing us from existing
works—in Section 3.1, we discuss why many existing definitions of linear Bellman completeness
fail to capture even tabular MDPs or linear MDPs due to unrealistic ℓ2-norm boundedness assump-
tions. We further assume the feature space spans Rd, i.e., span({ϕ(s, a) ∶ s ∈ S, a ∈ A}) = Rd;
otherwise, we can project the feature space onto its span or use pseudo-inverse in the analysis when
needed. We can verify that the linear Bellman completeness captures both linear MDPs and Linear
Quadratic Regulators (LQR). The proof is in Appendix E.

Next, we assume the state transition is deterministic.
Assumption 1 (Deterministic transitions). For all s ∈ S and a ∈ A, there is a unique state s′ ∈ S to
which the system transitions to after taking action a on state s.
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We emphasize that, although the transition is deterministic, the initial state distribution is stochastic
(while we assume that st,1 is independently sampled from an initial distribution µ, our results extend
to the scenarios when {st,1}t≤T are adversarially chosen). Additionally, the reward signals are
stochastic. Hence, learning is still challenging in this case. The goal is to achieve low regret over T
rounds. The regret is defined as

RegT ∶= E [
T

∑
t=1
(V ⋆(st,1) − V πt(st,1))] .

The expectation here is taken over the randomness of algorithm and reward signals. While it is
defined as an average for simplicity, a concentration inequality can yield the high-probability regret.
In this paper, we use asymptotic notations Θ̃(⋅) and Õ(⋅) to hides logarithmic and constant factors.

3.1 OTHER LINEAR BELLMAN COMPLETENESS DEFINITIONS IN THE LITERATURE

Various other definitions of Linear Bellman Completeness have been considered in the literature.
In the following, we demonstrate that most these prior definitions have some limitation due to an
additional ℓ2-norm assumptions. Below, we present two commonly imposed assumptions in existing
works, and later, we provide examples illustrating their limitations.

(1) Assuming Bounded ℓ2-norm of Parameters. Golowich & Moitra (2024); Zanette et al.
(2020b;c) assume that any value function under consideration has its parameters bounded in ℓ2-
norm, i.e., applying the Bellman backup, the resulting state-action value function always lies in
{Q ∶ Q(s, a) = ⟨ϕ(s, a), θ⟩, ∥θ∥2 ≤ R} where R is a pre-fixed polynomial in the dimension of the
feature space. We will show that this assumption is somewhat limited since ∥θ∥2 is unnecessarily
bounded under linear Bellman completeness.

(2) Assuming Non-expansiveness of Bellman Backup in ℓ2-norm. Song et al. (2022) assume that,
after applying the Bellman backup, the ℓ2-norm of the value function parameters will not increase.
In particular, for any θ, they assume the existence of parameter θ′ such that ∥θ′∥2 ≤ ∥θ∥2 and
⟨ϕ(s, a), θ′⟩ = Es′∼T(s,a)maxa′⟨ϕ(s′, a′), θ⟩ for all s, a. This assumption is even stronger than the
previous one and does not hold even in tabular MDPs, as we will show in the second example below.

The following example demonstrates that the two assumptions do not generally hold under linear
Bellman completeness by showing that the ℓ2-norm amplification can actually be arbitrarily large.
Example 1 (Arbitrarily Large ℓ2-norm on Parameters). Consider an MDP with three states,
s1, s2, s3, and a single action a1. Here s1 is in the first layer and s2 and s3 are in the sec-
ond layer. For some ε and p, we define ϕ(s1, a1) = (

√
ε,
√
p − ε), µ(s2) = (p/

√
ε,0), and

µ(s3) = (0, (1 − p)/
√
p − ε). We further define r(s2, ⋅) = ε and r(s3, ⋅) = 1. We can verify that

P (s2∣s1, a1) = p and P (s3∣s1, a1) = 1 − p. Hence Q(s1, a1) = pε + 1 − p. Let’s say Q-function is
parameterized by θ. Then, since ∥ϕ(s1, a1)∥ = p, it must hold that ∥θ∥ ≥ (pε+1−p)/p = ε+p−1 −1.
While p can be arbitrarily small, the norm of θ can be arbitrarily large.

We may hope to “normalize” the features in this example so that the ℓ2-norm of the parameters is
bounded. However, it is unclear how to do so since changing either ε or p will change the MDP
itself. Essentially, this example breaks one of the assumptions in the original linear MDP (Jin et al.,
2020) which requires the integral ∫ gµ to be bounded for any function g ∈ [0,1]. Thus, while being
a linear MDP, the original LSVI-UCB algorithm (Jin et al., 2020) indeed will not work for this
example. However, we note that our algorithm can still work.

Nevertheless, as the above example leverages a careful design of the feature representation, we might
hope that non-expansiveness could hold under stronger representation assumptions (e.g., when state
space is tabular). Unfortunately, the following example shows that Bellman backup can be expansive
even in tabular MDPs.
Example 2 (Expansiveness of Bellman Backup in ℓ2-norm). Consider a tabular MDP with H = 2,
S states {s1, . . . , sS} in the first layer, a single state s in the second layer, and a single action a.
On taking action a in any state in the first-layer, the agent deterministically transitions to s, and
on taking action a in s deterministically yields a reward of 1. Since linear Bellman completeness
captures tabular MDPs with one-hot encoded features where ϕ(si, a) = ei ∈ RS+1 for i ≤ S and
ϕ(s, a) = (0, . . . ,0,1)⊺. Note that the state-action value function at the second layer can be param-
eterized by θ2 = (0, . . . ,0,1)⊺. However, applying the Bellman backup, sine the return-to-go for any
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first-layer state si is 1 (because s always yields a reward of 1), the backed-up value function must
be parameterized by θ1 = (1,1, . . . ,1)⊺. Here, we find that ∥θ1∥2/∥θ2∥2 =

√
S, thus showing that

Bellman backup cannot guarantee non-expansiveness of the ℓ2-norm.

In contrast, our definition does not assume any ℓ2-norm bound or ℓ2-norm non-expansiveness of the
parameters. Unfortunately, without these assumptions, the ground truth parameter of the optimal
value function can exponentially blow up with the horizon, thus invalidating prior methods that
require bounded parameter. Our key contribution is to provide an algorithm that is computationally
efficient even if the underlying parameter norm blows up.

3.2 OTHER PRIOR WORKS ON LINEAR BELLMAN COMPLETENESS

In this section, we review prior efforts on efficient RL under linear Bellman completeness and dis-
cuss various assumptions and possible limitations underlying these approaches.

Algorithms under Generative Access. A generative model takes as input a state-action pair (s, a)
and returns a sample s′ ∼ T(⋅ ∣ s, a) and the reward signal. With such a generative model, Linear
Least-Squares Value Iteration (LSVI) can achieve statistical and computational efficiency (Agarwal
et al., 2019). However, generative access is a rather strong assumption, and in contrast, our work
aims to operate under the much weaker online access model.

Algorithms under Explorability Assumption. Zanette et al. (2020c) propose a reward-free al-
gorithm under the assumption that every direction in the parameter space is reachable. While the
algorithm is computationally efficient, this assumption seems strong. When translating it into tab-
ular MDPs, it assumes that any state can be reached with a probability bounded below by some
positive constant. This does not hold if there are unreachable states or if the probability of reaching
them is exponentially small. Additionally, they assume ℓ2-norm boundedness of parameters, which
is limited as discussed in the previous section.

Computationally Intractable Algorithms. Zanette et al. (2020b) present a computationally in-
tractable algorithm that requires solving an intractable optimization problem. Furthermore, their
approach relies on the ℓ2-norm bound assumption on the parameters as well. In comparison, we
only rely on access to a squared loss minimization oracle.

Few action MDPs. Golowich & Moitra (2024) propose a computationally efficient algorithm under
linear Bellman completeness, inspired by the bonus-based exploration approach in LSVI-UCB (Jin
et al., 2020) for Linear MDPs. While their algorithm extends to stochastic MDPs, both the sample
complexity and running time have exponential dependence on the size of the action space. Addi-
tionally, they also assume ℓ2-norm boundedness of the parameters. In comparison, our algorithm
extends to possibly infinite action spaces but relies on the transition dynamics to be deterministic
(though, the initial state could be stochastic).

Deterministic Rewards or Deterministic Initial State. Some prior works provide computationally
and statistically efficient algorithms under stronger assumptions that can also be extended for the lin-
ear Bellman completeness settings (under similarly stronger assumptions). Du et al. (2020) provide
an algorithm based on a span argument that is efficient for MDPs that have linear state-action value
function for the optimal policy (a.k.a. the Linear Q⋆ setting), deterministic transition dynamics,
deterministic initial state s1, and stochastic rewards. Unfortunately, their approach crucially relies
on the initial state s1 being deterministic and cannot extend to more general settings with stochastic
initial states, as we consider in our paper. Another line of work due to Wen & Van Roy (2017)
considers the Q⋆-realizable setting with deterministic dynamics, deterministic rewards, stochastic
initial states, and bounded eluder dimension, and can be extended to the linear bellman completeness
setting when both rewards and dynamics are deterministic. However, their algorithm fails to con-
verge when rewards are stochastic and is thus not applicable to the problem setting that we consider
in this paper.

Efficient Algorithm in the hybrid RL setting. Song et al. (2022) develop efficient algorithms for
the hybrid RL setting, where the learner has access to both online interaction and an offline dataset.
However, they do not have an fully online algorithms and their approach assumes non-expansiveness
of the ℓ2-norm of the Bellman backup.
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Finally, we emphasize again that none of the prior works address the problem under both stochastic
initial states and rewards and large action spaces. This is the gap we aim to fill with this work.

4 ALGORITHM

In this section, we present our algorithm for online RL under linear Bellman completeness. See
Algorithm 1 for pseudocode. The input to the algorithm consists of three components. First, the
noise variances, {σh}Hh=1 and σR, control the scale of the random noise. Second, a D-optimal design
(defined below) for the feature space.
Definition 2 (D-optimal design). The D-optimal design for the set of features Φ = {ϕ(s, a) ∶ s ∈
S, a ∈ A} is a distribution ρ over Φ that maximizes log det(∑ϕ∈Φ ρ(ϕ)ϕϕ⊺).

There always exist D-optimal designs with at most O(d2) support points (Lemma 23). Many ef-
ficient algorithms can be applied to find approximate D-optimal designs such as the Frank-Wolfe.
Lastly, the algorithm requires a constrained squared loss minimization oracle Osq. Note that we are
not requiring any strong oracle, and we introduce an instantiation of Osq in Section 6. For now, we
assume the oracle is exact, and later we will consider approximate oracles (Section 5.2).

Algorithm 1 Null Space Randomization for Linear Bellman Completeness

Require: • Noise variances {σh}Hh=1 and σR.
• A D-optimal design for Φ = {ϕ(s, a) ∶ s ∈ S, a ∈ A} given by {(ϕi, ρi)}mi=1.
• Squared loss minimization oracle Osq.

1: Define Σ1,h ∶= ∑m
i=1 ρiϕiϕ

⊺
i for all h ∈ [H].

2: for t = 1, . . . , T do
3: Let θt,H+1 ← 0, Qt,H+1 ← 0, V t,H+1 ← 0.
4: for h =H, . . . ,1 do
5: Let Pt,h be the orthogonal projection matrix onto span({ϕ(si,h, ai,h) ∶ i = 1, . . . , t − 1})
6: For i ∈ [m], define ϕ∥t,h,i = Pt,hϕi and ϕ⊥t,h,i = (I − Pt,h)ϕi

7: Let Λt,h ← ∑m
i=1 ρi(ϕ

∥
t,h,i(ϕ

∥
t,h,i)⊺ + ϕ⊥t,h,i(ϕ⊥t,h,i)⊺)

8: // Fit value function and reward using squared loss regression //
9: Compute θ̂t,h and ω̂t,h using the squared loss minimization oracle Osq as:

θ̂t,h ← argmin
θ∈O(Wh)

t−1
∑
i=1
(⟨θ, ϕ(si,h, ai,h)⟩ − V t,h+1(si,h+1))

2

(1)

ω̂t,h ← argmin
ω∈O(1)

t−1
∑
i=1
(⟨ω,ϕ(si,h, ai,h)⟩ − ri,h)

2

(2)

10: // Perturb the estimated parameters by adding Gaussian noise //
11: Update the parameters by sampling:

θt,h ∼ θ̂t,h +N(0, σ2
h(I − Pt,h)Λ−1t,h(I − Pt,h))

ωt,h ∼ ω̂t,h +N(0, σ2
RΣ
−1
t,h)

12: Define Qt,h(s, a) ← ⟨ωt,h + θt,h, ϕ(s, a)⟩ and V t,h(s) ←maxaQt,h(s, a) for all (s, a)
13: end for
14: Define the policy πt such that πt,h(s) = argmaxaQt,h(s, a)
15: Generate trajectory (st,1, at,1, rt,1, . . . , st,H , at,H , rt,H) ∼ πt

16: Define Σt+1,h ∶= Σt,h + ϕ(st,h, at,h)ϕ⊺(st,h, at,h) for all h ∈ [H]
17: end for

The algorithm begins by initializing the covariance matrix Σ1,h for all h ∈ [H] using the optimal
design, which differs from most standard LSVI-type algorithms where it is initialized to the identity
matrix. We believe that the identity matrix is unsuitable here since we do not assume any ℓ2-norm
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bound on the parameters. Additionally, recalling that we assume the feature space spans Rd, it
ensures Σt,h is invertible for all t and h. Otherwise, pseudo-inverses can be used instead.

At each round t ∈ [T ], the algorithm operates in a backward manner starting from the last horizon
H . For each h ∈ [H], it first constructs the orthogonal projection matrix Pt,h onto the span of the
historical data. It then decomposes the D-optimal design points into the span and null space compo-
nents using the projection and constructs Λt,h. By separating the span and null space components,
it facilitates clearer concentration bounds for the subsequent Gaussian noise.

The algorithm then performs constrained squared loss regression to estimate the value function and
reward function. Here we define O(W ) ∶= {θ ∈ Rd ∶ ∣⟨θ, ϕ(s, a)⟩∣ ≤ W for all s ∈ S, a ∈ A} for
any W > 0. This convex constrained set is defined by the ℓ∞-functional-norm bound instead of
the ℓ2-norm because we do not assume any bound on the ℓ2-norm of the learned parameters. Here
we define Wh = Θ̃((d

√
mH)H−h(d3/2 + d

√
mH)) (detailed definition deferred to Appendix C).

We note that although Wh appears exponential, which may seem suspicious, this does not affect
our sample efficiency due to the span argument that we introduce in the analysis. We note that
prior RLSVI algorithms used truncation on value functions to explicitly avoid such an exponential
blow-up. However, truncation does not work for linear Bellman completeness setting since the
Bellman backup on a truncated value function is not necessarily a linear function anymore.

Next, the algorithm perturbs the estimated parameters by adding Gaussian noise. The noise for the
value function act only in the null space of the data covariance matrix. This ensures optimism while
keeping the estimate accurate in the span space. It is a key modification from the standard RLSVI
algorithm. The perturbation for the reward function is standard.

Finally, the algorithm constructs the value function for the current horizon and define policy as the
greedy policy with respect to this value function. The trajectory is generated by the greedy policy,
and the covariance matrix is then updated.

5 ANALYSIS

In this section, we provide the theoretical guarantees of Algorithm 1. A proof sketch can be found
in Appendix B and detailed proofs are in Appendix C. We first consider the case where the squared
loss minimization oracle is exact. We then extend the analysis to the approximate oracle and the low
inherent linear Bellman error setting in subsequent sections.

5.1 PRELUDE: LEARNING WITH EXACT SQUARE LOSS MINIMIZATION ORACLE

We first consider the most ideal setting where the squared loss minimization oracle is exact.

Assumption 2 (Exact Squared Loss Minimization Oracle). Line 9 of Algorithm 1 is solved exactly.

Then, we have the following regret bound. A proof sketch is provided in Appendix B for the readers
convenience.

Theorem 1 (Regret Bound with Exact Oracle). Under Assumptions 1 and 2, executing Algorithm 1
with parameters σR = Θ̃(

√
dH log(HT )) and σh = Θ̃((d

√
mH)H−h+1(

√
d +
√
mH)), we have

RegT = Õ(d5/2H5/2 + d2H3/2√T ).

This result has several notable features. First, it does not depend on the number of actions. The only
requirement for the action space is the ability to compute the argmax. Second, the

√
T -dependence

on T is optimal, as it is necessary even in the bandit setting. Additionally, we emphasize that the
dependence on

√
T arises solely from reward learning due to the application of elliptical potential

lemma. In fact, if the reward function is known, our regret bound can be as small as Õ(dH2),
depending on T up to logarithmic factors. We elaborate on this observation in Appendix B. As a
standard practice, Theorem 1 can be converted into a sample complexity bound.

Corollary 1 (Sample Complexity Bound). Let ε ≤ 1. Under the same setting as Theorem 1, let-
ting T ≥ Ω(d4H3/ε2), we get that the policy π̂ chosen uniformly from the set π1, . . . , πT enjoys
performance guarantee E[V ⋆ − V π̂] ≤ ε.
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5.2 LEARNING WITH APPROXIMATE SQUARE LOSS MINIMIZATION ORACLE

Assumption 3 (Approximate Squared Loss Minimization Oracle). We assume access to an ap-
proximate squared loss minimization oracle Osq

apx that takes as input a problem of the form:
argminθ∈O(W ) g(θ) ∶= ∑(ϕ(s,a),u)∈D(⟨θ, ϕ(s, a)⟩ − u)2 where O(W ) = {θ ∈ Rd ∣ ∣⟨θ, ϕ(s, a)⟩∣ ≤
W} for some W ∈ R is a convex set, andD is a dataset of tuples {(ϕ(s, a), u)}. The oracle returns a
point θ̂ that satisfies g(θ̂)−minθ∈O(W ) g(θ) ≤ ε21 and θ̂ ∈ O(W + ε2) where ε1, ε2 ≤ 1 are precision
parameters of the oracle.

With approximate oracle, the regret bound depends on an additional quantity defined below.

Assumption 4. There exists a constant γ > 1 such that, for any r ≤ d, and for any ϕ1, ϕ2, . . . , ϕr ∈ Φ,
the eigenvalues of the matrix Σ ∶= ∑r

i=1 ϕiϕ
⊺
i are either zero or at least 1/γ2.

As a concrete example, it holds with γ = 1 when the MDP is tabular. This assumption implies
that the eigenvalues of Σ† are at most γ2. Consequently, for any vector ϕ ∈ Φ, we have ∥ϕ∥Σ† ≤
∥ϕ∥2γ ≤ γ. This lower bound on the norm of any vector is exactly what we need for the analysis
of an approximate oracle, while Assumption 4 simply serves as a sufficient condition for it. The
following theorem provides the regret bound with the approximate oracle in terms of parameters
ε1, ε2 and γ.

Theorem 2 (Regret Bound with Approximate Oracle). Under Assumptions 1, 3 and 4, executing
Algorithm 1 with σR = Θ̃(

√
dH) and σh = Θ̃((d

√
mH)H−h+1(ε1γ

√
H +
√
d +
√
mH), we have

RegT = Õ(d5/2H5/2 + d2H3/2√T + ε1γ(dH2 + d3/2H
√
T )).

Compared to Theorem 1, the regret bound has an additional term that depends on the approximation
error ε1γ. Typically, ε1 can be exponentially small with respect to the relevant parameters, as we
later discuss in Section 6. Hence, we allow γ to be exponentially large. Moreover, we note that ε2
does not appear in the regret bound since it only affects the constraint violation of the regression,
whose effect to the statistical guarantees is of lower order. In addition, we emphasize that the regret
bound does not depend on the number of actions, and the dependence on T remains optimal, similar
to the previous theorem.

5.3 LEARNING WITH LOW INHERENT LINEAR BELLMAN ERROR

Now we consider the setting where the MDP has low inherent linear Bellman error.

Definition 3 (Inherent Linear Bellman Error). Given εB ≤ 1, an MDP M is said to have εB-
inherent linear Bellman error with respect to a feature mapping ϕ if there exists a mapping
T ∶ Rd → Rd so that, for all θ ∈ Rd and all (s, a) ∈ S × A, it holds that ∣⟨T θ, ϕ(s, a)⟩ −
Es′∼T(s,a)maxa′⟨θ, ϕ(s′, a′)⟩∣ ≤ εB. Moreover, we require that, for all h ∈ [H] and (s, a) ∈ S × A,
the random reward is bounded in [0,1] with ∣rh(s, a) − ⟨ω⋆h, ϕ(s, a)⟩∣ ≤ εB for some unknown
ω⋆h ∈ Rd.

With low inherent Bellman error, Assumption 4 is still necessary. The following theorem provides
the regret bound in this case. We assume the exact oracle for simplicity.

Theorem 3 (Regret Bound with Low Inherent Bellman Error). Assume the MDP has εB-inherent
Bellman error. Under Assumptions 1, 2 and 4, when executing Algorithm 1 with parameters σR =
Θ̃(
√
dH + εBHT ) and σh = Θ̃((d

√
mH)H−h+1(εBγ

√
HT +

√
εBT +

√
d +
√
mH)), we have

RegT = Õ(d5/2H5/2 + d2H3/2√T +√εB(d2H5/2√T + d3/2H3/2T) + εBγ(dH2
√
T + d3/2HT )).

Compared to Theorem 1, the regret bound includes two additional terms that depend on the inherent
linear Bellman error εB. For both terms, the dependence on T is linear. We believe this is unavoid-
able, as it also appears in previous work (Zanette et al., 2020b). In addition, it is worth noting that the
regret bound does not depend on the number of actions, and the dependence on T remains optimal,
similar to all previous theorems.
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6 OPENING THE BLACK-BOX: IMPLEMENTING SQUARED LOSS
MINIMIZATION ORACLES IN ALGORITHM 1

The following computationally efficient implementations rely on the observation that a square loss
minimization objective over a convex domain can be cast as a convex set feasibility problem—
given a convex set K, return a point θ̂ ∈ K. Thus, we can use algorithms for convex set feasibility
to implement the squared loss minimization oracles. However, even given this observation, our key
challenge for an efficient algorithm is that the corresponding convex set could be exponentially large
and only be described using exponentially many number of linear constraints. Fortunately, various
works in the optimization literature propose computationally efficient procedures to find feasible
points within such ill-defined sets, under mild oracle assumptions.

6.1 COMPUTATIONALLY EFFICIENT CONVEX SET FEASIBILITY

In this section, we paraphrase the work of Bertsimas & Vempala (2004) that provide a computation-
ally efficient procedure for finding feasible points within a convex set by random walks. Notably, the
computational complexity of their algorithm only depends logarithmically on the size of the convex
set, and thus their approach is well suited for the corresponding convex feasibility problems that
appear in our approach. At a high level, they provide an algorithm that takes an input an arbitrary
convex set K ⊆ Rd, and returns a feasible point ẑ ∈ K. Their algorithm accesses the convex set K
via a separation oracle defined as follows:

Definition 4 (Separation oracle). A separation oracle for a convex setK, denoted byOsep
K , is defined

such that on any input z ∈ Rd, the oracle either confirms that z ∈ K or returns a hyperplane ⟨a, z⟩ ≤ b
that separates the point z from the set K.

In order to ensure finite time convergence for their procedure, they assume that the convex set K is
not degenerate and is bounded in any direction. This is formalized by the following assumption:

Assumption 5. The convex setK is (r,R)−Bounded, i.e. there exist parameters 0 < r ≤ R such that
(a) K ⊆ R∞(R), and (b) there exists a vector z ∈ Rd such that the shifted cube (z +R∞(r)) ⊆ K.

The computationally efficiency, and the convergence guarantee, of the algorithm of Bertsimas &
Vempala (2004) are:

Theorem 4 (Bertsimas & Vempala (2004)). Let δ ∈ (0,1) and K ⊂ Rd be an arbitrary convex set
that satisfies Assumption 5 for some 0 ≤ r ≤ R. Then, Algorithm 2 (given in the appendix), when
invoked with the separation oracle Osep

K w.r.t. K, returns a feasible point ẑ ∈ K with probability at
least 1 − δ. Moreover, Algorithm 2 makes O(d log(R/δr)) calls to the oracle Osep

K and runs in time
O(d7 log(R/δr)).

Notice that both the number of oracle calls and the computation time only depend logarithmically
on R and r, and thus their procedure can be efficiently implemented for our applications where R/r
may be exponentially large in the corresponding problem parameters.

6.2 COMPUTATIONALLY EFFICIENT ESTIMATION OF VALUE FUNCTION (EQN (1))

We now described how to use the convex set procedure of Bertsimas & Vempala (2004) for convex
set feasibility to estimate the parameters for the value functions in (1) in Algorithm 1. Note that for
any time t and horizon h ∈ [H], the objective in (1) is the optimization problem

θ̂t,h ← argmin
θ∈O(Wh)

t−1
∑
i=1
(⟨θ, ϕ(si,h, ai,h)⟩ − V t,h+1(si,h+1))

2

, (3)

where Wh = Θ̃((d
√
mH)H−h(ε1dγ

√
H +d3/2+d

√
mH)). We provide a computationally efficient

procedure to approximately solve the above given a linear optimization oracle over the feature space.

Assumption 6 (Linear optimization oracle over the feature space). Learner has access to a
linear optimization oracle Olin that on taking input θ ∈ Rd, returns a feature ϕ(s′, a′) ∈
argmaxs,a⟨θ, ϕ(s, a)⟩.

9
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The key observation we use is that under linear Bellman completeness (Definition 1) and deter-
ministic dynamics (Assumption 1), any solution θ for (3) must satisfy ∑t−1

i=1(⟨θ, ϕ(si,h, ai,h)⟩ −
V t,h+1(si,h+1))2 = 0. On the other hand, the converse also holds that any point θ ∈ O(Wh) for
which the objective value is 0 must be a solution to (3). Thus, the minimization problem in (3) is
equivalent to finding a feasible point within the convex set

K ∶=
⎧⎪⎪⎨⎪⎪⎩
θ ∈ Rd

RRRRRRRRRRR
(⟨θ, ϕ(si,h, ai,h)⟩ − V t,h+1(si,h+1))

2 = 0 for all i ≤ t
∣⟨θ, ϕ(s, a)⟩∣ ≤Wh for all s, a

⎫⎪⎪⎬⎪⎪⎭
(4)

Given the above reformulation of the optimization objective (3) as a feasibility problem, we can
now use the procedure of Bertsimas & Vempala (2004) for finding θt,h ∈ K. However, we first need
to define a separation oracle for the set K and verify Assumption 5. Unfortunately, there may not
exist any r > 0 for which (z +R∞(r)) ⊆ K for some z ∈ Rd and thus the above K may not satisfy
Assumption 5. This can, however, be easily fixed by artificially increasing the set K to allow for
some approximation errors. In particular, let ε > 0 and define the convex set

KAPX ∶=
⎧⎪⎪⎪⎨⎪⎪⎪⎩
θ ∈ Rd

RRRRRRRRRRR

⟨θ, ϕ(si,h, ai,h)⟩ − V t,h+1(si,h+1) ≤ ε for all i ≤ t
⟨θ, ϕ(si,h, ai,h)⟩ − V t,h+1(si,h+1) ≥ −ε for all i ≤ t

∣⟨θ, ϕ(s, a)⟩∣ ≤Wh + ε for all s, a

⎫⎪⎪⎪⎬⎪⎪⎪⎭
. (5)

Clearly, since there exists at least one point θt,h ∈ K, we must have that (θt,h +R∞(ε)) ⊆ KAPX. To
ensure an outer bounding box for the set KAPX, we need to make an additional assumption:

Assumption 7. Let Φ = {ϕ(s, a) ∣ s, a ∈ S × A}. There exist some R ≥ 0 such that 1
R
ei ∈ Φ, where

ei denotes the unit basis vector along the i-th direction in Rd.

The above assumption ensures thatK ⊆ B∞(WhR). Note that we can tolerate the parameter R to be
exponential in the dimension d or the horizon H . Finally, a separation oracle can be implemented
using Olin (see Algorithm 4 for details). Thus, one can use Algorithm 2 (given in appendix), due
to Bertsimas & Vempala (2004), and the guarantee in Theorem 4 to find a feasible point in KAPX,
which corresponds to an approximate solution to (3)

Theorem 5. Let ε > 0, δ ∈ (0,1), and suppose Assumption 7 holds with some parameter R > 0.
Additionally, suppose Assumption 6 holds with the linear optimization oracle denoted byOlin. Then,
there exists a computationally efficient procedure (given in Algorithm 4 in the appendix), that for
any t ∈ [T ] and h ∈ [H], returns a point θ̂t,h that, with probability at least 1 − δ, satisfies

t−1
∑
i=1
(⟨θ̂t,h, ϕ(si,h, ai,h)⟩ − V t,h+1(si,h+1))

2

≤ Tε and θ̂t,h ∈ O(Wh + ε).

Furthermore, Algorithm 4 takes O(d7 log( R
δε
)) time in addition to O(d log(THR

δε
)) calls to Olin.

The above techniques and Algorithm 4 can be easily extended to get a computationally efficient
procedure to estimate the reward parameter in (2). The main difference, however, is that the value of
the optimization objective in (2) is not zero at the minimizer (due to stochasticity). Thus, we need
to construct a set feasibility problem for every desired target value of the objective function within
the grid [0, ε,2ε, . . . ,2−ε,2], and use a separating hyperplane w.r.t. the ellipsoid constraint in (2) to
implement the separating hyperplane forKAPX (which can be easily implemented using projections).

7 CONCLUSION

In this paper, we develop a computationally efficient RL algorithm under linear Bellman complete-
ness with deterministic dynamics, aiming to bridge the statistical-computational gap in this setting.
Our algorithm injects random noise into regression estimates only in the null space to ensure opti-
mism and leverages a span argument to bound regret. It handles large action spaces, random initial
states, and stochastic rewards. Our key observation is that deterministic dynamics simplifies the
learning process by ensuring accurate value estimates within the data span, allowing noise injection
to be confined to the null space. Extending our algorithm to stochastic dynamics remains an open
challenge.
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A TABLE OF NOTATION

We list the notation used in this paper in table 1, for the convenience of reference.

Table 1: Notation used in the paper.

Symbol Description

O(W ) {θ ∈ Rd ∶ ∣⟨θ, ϕ(s, a)⟩∣ ≤W for all s ∈ S, a ∈ A}
R∞(W ) {θ ∈ Rd ∶ ∥θ∥∞ ≤W}
R2(W ) {θ ∈ Rd ∶ ∥θ∥2 ≤W}
ηt,h T (ωt,h+1 + θt,h+1) − θ̂t,h
ηRt,h ω⋆h − ω̂t,h

ξRt ωt,h − ω̂t,h

ξPt,h θt,h − θ̂t,h
Ehigh High probability event, defined in Definition 5

Espan
t Event that trajectory at round t is within the span of historical data, defined in (6)

Eoptm
t Optimism event at round t, defined in Lemma 14

Ut,h Value function lower bound, defined in Appendix C.2

BR
err Upper bound of ∥ω̂t,h − ω⋆h∥Σt , defined in Definition 5

BP
err Upper bound of ∥θ̂t,h − T (ωt,h + θt,h+1)∥Σ̂t,h

, defined in Lemma 7

BR
noise Upper bound of ∥ξRt,h∥Σt,h

, defined in Definition 5

BP
noise,h Upper bound of ∥ξPt,h∥Λt,h

, defined in Definition 5

BR
ϕ Upper bound of ∑T

t=1 ∥ϕ(st,h, at,h)∥Σ−1t,h defined in Lemma 16

BP
ϕ Upper bound of ∑T

t=1 1{Espan
t }∥ϕ(st,h, at,h)∥Σ̂†

t,h
, defined in Lemma 16

BV Upper bound of ∣V t∣ conditioning on Espan
t and Ehigh, defined in Lemma 13

Σt,h ∑m
i=1 ρiϕiϕ

⊺
i +∑

t−1
i=1 ϕ(si,h, ai,h)ϕ⊺(si,h, ai,h)

Σ̂t,h ∑t−1
i=1 ϕ(si,h, ai,h)ϕ⊺(si,h, ai,h)

Wh Recursively defined as Wh−1 =Wh + 2ε2 +
√
2d ⋅BP

noise,h +
√
2d ⋅BR

noise + 1
with WH+1 = 1
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B PROOF OVERVIEW

In this section, we provide an sketch of the proof of Theorem 1 (exact oracle and zero inherent linear
Bellman error). The detailed proofs are deferred to Appendix C. To better convey the intuition, we
now assume that the reward function is known, as reward learning is largely standard. In particular,
we temporarily remove the estimation and perturbation of rewards (Lines 9 and 11) and simply
assume ωt,h = ω⋆h in Line 12.

B.1 SPAN ARGUMENT

The very first step of our analysis revolve around two complimentary cases – whether the trajectory
at round t is in the span of the historical data or not. Let Dt,h ∶= {ϕ(si,h, ai,h)}ti=1 and define Espan

t
as the event that the trajectory at round t is in the span of the historical data, i.e.,

Espan
t ∶= {∀h ∈ [H] ∶ ϕ(st,h, at,h) ∈ span(Dt−1,h)} . (6)

(1) In-span case. When the trajectory generated in the round t is completely within the span of
historical data, we can assert that the value function estimation is accurate under πt. Particularly, by
linear Bellman completeness, the Bayes optimal of the regression in Line 9 zeros the empirical risk,
as formally stated in the following lemma.

Lemma 1. For any t ∈ [T ], we have ∑t−1
i=1(⟨θ̂t,h, ϕ(si,h, ai,h)⟩ − V t,h+1(si,h+1))2 = 0.

Define Ut(⋅) as a version of V t(⋅) that minimizes V t(st,1) while satisfying the high probability
bound (precise definition provided at the beginning of Appendix C.2). It implies the following.

Lemma 2. For any t ∈ [T ], whenever Espan
t holds, we have V t(st,1) = Ut(st,1) = V πt(st,1).

To understand Lemma 2, we consider two fact: (1) πt is the optimal policy for the estimated value
function V t, and (2) both V t and Ut has accurate value estimate for the trajectory induced by πt,
starting from st,1, because it is in the span of the historical data when Espan

t holds.

(2) Out-of-span case. When any segment of the trajectory is not within the span, we simply pay
H in regret and can assert that this will not occur too many times. To see this, we observe the
following fact: whenever Espan

t does not hold, there must exists h ∈ [H] such that dimspan(Dt,h) =
dimspan(Dt−1,h) + 1 by definition. Since the dimension of spans cannot exceed d for any h ∈ [H],
the case that Espan

t does not hold cannot happen for more than dH times. We formally state it in the
following lemma.

Lemma 3. We have ∑T
t=1 1{(Espan

t )∁} ≤ dH.

Hence, we have the following decomposition:

V ⋆(st,1) − V πt(st,1) = 1{Espan
t }(V ⋆(st,1) − V πt(st,1)) + 1{(Espan

t )∁}(V ⋆(st,1) − V πt(st,1))
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

≤ dH2 when summed over t

Therefore, we only need to focus on the rounds where Espan
t holds. This will be the aim of the

subsequent sections.

B.2 EXPLORATION IN THE NULL SPACE

Lemma 1 implies that the estimation error only comes from the null space of the historical data, i.e.,
null({ϕ(si,h, ai,h) ∶ i = 1, . . . , t − 1}). Therefore, we only need to explore in this null space. While
adding explicit bonus is infeasible under linear Bellman completeness, we add noise (Line 11) that
can cancel out the estimation error in the null space. This achieves the following:

Lemma 4 (Optimism with constant probability). Denote Eoptm
t as the event that V ⋆(st,1) ≤

V t(st,1). Then, for any t ∈ [T ], we have Pr(Eoptm
t ) ≥ Γ2(−1) where Γ is the cumulative dis-

tribution function of the standard normal distribution.

This result has been the key idea in randomized RL algorithms, such as RLSVI. In the next section,
we will explore how this lemma is utilized.
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B.3 PROOF OUTLINE

In this section, we outline the structure of the whole proof. Let Ṽ denote an i.i.d. copy of V , and
Ẽspan
t , Ẽoptm

t denote the counterpart of Espan
t ,Eoptm

t for Ṽ . We first invoke Lemma 2 and get

1{Espan
t }(V ⋆(st,1) − V πt(st,1)) = 1{Espan

t }(V ⋆(st,1) −Ut(st,1)) ≤ V ⋆(st,1) − 1{Espan
t }Ut(st,1)

where the last step is by the non-negativity of V ⋆. Next, we apply Lemma 4 and get

≤ Ẽ
Vt

[min{Ṽt(st,1),H} − 1{Espan
t }Ut(st,1) ∣ Ẽoptm

t ]

Split it into two parts:

= Ẽ
Vt

[1{Ẽspan
t }(min{Ṽt(st,1),H} − 1{Espan

t }Ut(st,1)) ∣ Ẽoptm
t ]

+ Ẽ
Vt

[1{(Ẽspan
t )∁}(min{Ṽt(st,1),H} − 1{Espan

t }Ut(st,1)) ∣ Ẽoptm
t ]

Note that the quantity inside the first expectation is non-negative, so we can peel off the conditioning
event; the quantity in the second term is simply upper bounded by H . Hence, we have

≤ 1

Γ2(−1) ẼVt

[1{Ẽspan
t }(min{Ṽt(st,1),H} − 1{Espan

t }Ut(st,1))] +
1

Γ2(−1) ẼVt

[1{(Ẽspan
t )∁}H]

Now we split the first term into two parts again:

= 1

Γ2(−1) ẼVt

[1{Ẽspan
t }min{Ṽt(st,1),H} − 1{Espan

t }Ut(st,1)]

+ 1

Γ2(−1) ẼVt

[1{(Ẽspan
t )∁ ∩Espan

t }Ut(st,1)] +
1

Γ2(−1) ẼVt

[1{(Ẽspan
t )∁}H]

≤ 1

Γ2(−1) ẼVt

[1{Ẽspan
t }min{Ṽt(st,1),H} − 1{Espan

t }Ut(st,1)] +
2

Γ2(−1) ẼVt

[1{(Ẽspan
t )∁}H]

where we used the fact that 1{Espan
t }Ut(st,1) ≤ H . Taking the expectation over the randomness of

the algorithm and use the tower property, which converts Ṽ into V , we obtain

≤ 1

Γ2(−1) E [1{E
span
t }min{V t(st,1),H} − 1{Espan

t }Ut(st,1)] +
2

Γ2(−1) E [1{(E
span
t )∁}H]

The first term is upper bounded by zero due to Lemma 2, and the second term is upper bounded by
dH2 by Lemma 3 when summed over t. This finishes the proof.
Remark 1 (Span Argument and Exponential Blow-Up). In the proof sketch above, we did not uti-
lize any ℓ2-norm bound on θt,h or θ̂t,h as did in many prior works. We actually cannot leverage
them since they can be exponentially large due to the addition of exponentially large noise. This
phenomenon is widely observed in the literature (e.g., Agrawal et al. (2021); Zanette et al. (2020a))
and is addressed through truncation. However, truncation does not work under linear Bellman com-
pleteness, as the Bellman backup of a truncated value function is not necessarily linear. This is why
we use the span argument to circumvent this issue.

C FULL PROOF FOR SECTION 5

In this section, we present and prove the following main theorem, which provides the regret bound
in terms of parameters ε1, ε2, and εB. Setting ε1 = ε2 = εB = 0 yields Theorem 1, setting εB = 0
yields Theorem 2, and setting ε1 = ε2 = 0 yields Theorem 3.
Theorem 6. Assume the MDP has εB-inherent linear Bellman error. Under Assumptions 1, 3 and 4,
when executing Algorithm 1 with parameters σR =

√
HBR

err and σh ≥
√
H(
√
3γBP

err +
√
8m(Wh +

ε2)), we have

E [
T

∑
t=1
(V ⋆(st,1) − V πt(st,1))] = Õ(d5/2H5/2 + d2H3/2√T + ε1γ(dH2 + d3/2H

√
T)

+√εB(d2H5/2√T + d3/2H3/2T) + εBγ(dH2
√
T + d3/2HT)).

18



972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025

Under review as a conference paper at ICLR 2025

Exact value of parameters σR and σh in Theorem 6. We define WH+1 = 1 and recursively define
Wh−1 =Wh + 2ε2 +

√
2d ⋅BP

noise,h +
√
2d ⋅BR

noise + 1. Plugging the definition of all these symbols
involved and ignoring lower order terms (i.e., logarithmic and constant terms), we get

Wh−1 ≈ d
√
mH ⋅Wh + ε1 ⋅ dγ

√
H + εB ⋅ dγ

√
HT +√εB ⋅ d

√
T + d3/2. (7)

Solving this recursion, we get

Wh ≈ (d
√
mH)H+1−h + (d

√
mH)H−h(ε1 ⋅ dγ

√
H + εB ⋅ dγ

√
HT +√εB ⋅ d

√
T + d3/2)

≈ (d
√
mH)H−h(ε1 ⋅ dγ

√
H + εB ⋅ dγ

√
HT +√εB ⋅ d

√
T + d3/2 + d

√
mH).

We insert this into the value of σh and get

σh ≈ (d
√
mH)H−h+1(ε1 ⋅ γ

√
H + εB ⋅ γ

√
HT +√εB ⋅

√
T + d1/2 +

√
mH).

We can also get the value of σR as

σR ≈
√
H(
√
d log(HT ) + ε1 +

√
εBT).

Define Λ = ∑m
i=1 ρiϕiϕ

⊺
i . It is straightforward that both Λ and Λt,h (constructed in Line 7 of Algo-

rithm 1) are invertible. We define λ ∶=maxs,a ∥ϕ(s, a)∥Λ−1 and λt,h ∶=maxs,a ∥ϕ(s, a)∥Λ−1
t,h

.

Lemma 5. The matrices Λ and Λt,h are invertible. Furthermore, we also have that

• λ ≤
√
d;

• λt,h ≤
√
2d for all t ∈ [T ] and all h ∈ [H].

Proof of Lemma 5. By the last item in Lemma 23, we have λ ≤
√
d. In what follows, we will show

that Λ ⪯ 2Λt,h, which implies λt,h ≤
√
2λ ≤

√
2d.

For any x ∈ Rd, we have

x⊺Λx =
m

∑
i=1

ρi(x⊺ϕi)2 =
m

∑
i=1

ρi (x⊺ϕ∥t,h,i + x
⊺ϕ⊥t,h,i)

2

≤ 2
m

∑
i=1

ρi (x⊺ϕ∥t,h,i)
2
+ 2

m

∑
i=1

ρi (x⊺ϕ⊥t,h,i)
2

(using (a + b)2 ≤ 2a2 + 2b2)

= 2x⊺Λt,hx.

This implies that Λ ⪯ 2Λt,h.

C.1 HIGH-PROBABILITY EVENT AND BOUNDEDNESS

Lemma 6 (Reward estimation). With probability at least 1 − δ, for any t ∈ [T ] and h ∈ [H],

∥ω̂t,h − ω⋆h∥Σt
≤
√

1030(1 + ε2)4d log (8(1 + ε2)e2T 2H/δ) + 4ε21 + 16(1 + ε2)(1 + εBT ).

Proof of Lemma 6. For the ease of notation, we fixed t and h in the proof and simply write the
regression problem as

ω̂ ← argmin
ω∈O(1)

n

∑
i=1
(ω⊺ϕi − ri)

2

where we have dropped the subscripts t and h for notational simplicity. Here ϕi and ri are abbrevi-
ated notations for ϕ(si,h, ai,h) and ri,h, respectively, and n = t − 1.

Note that, due to approximate oracle (Assumption 3), ω̂ actually belongs to O(1 + ε2) instead of
O(1). Denote C as an ℓ1-norm α-cover (Definition 6) on O(1+ ε2) such that for any ω ∈ O(1+ ε2),
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there exists a ω̃ ∈ C, such that ∑n
i=1 ∣ω⊺ϕi − ω̃⊺ϕi∣/n ≤ α. Since O(1 + ε2) is a linear function class,

which has pseudo-dimension d (Definition 8), we have

∣C∣ ≤ (8(1 + ε2)e2/α)
d

(8)

by Lemma 27. Now define zωi = (ω⊺ϕi − ri)2 − ((ω⋆)⊺ϕi − ri)2. Then we have ∣zωi ∣ ≤ 4(1 + ε2)2,
and

E
i
[zωi ] = E

i
[(ω⊺ϕi − (ω⋆)⊺ϕi)(ω⊺ϕi + (ω⋆)⊺ϕi − 2ri)]

= E
i
[(ω⊺ϕi − (ω⋆)⊺ϕi) (ω⊺ϕi − (ω⋆)⊺ϕi + 2((ω⋆)⊺ϕi − ri))]

≥ (ω⊺ϕi − (ω⋆)⊺ϕi)2 − 4(1 + ε2)εB,
and moreover,

E
i
[(zωi )2] = E

i
[(ω⊺ϕi − (ω⋆)⊺ϕi)2(ω⊺ϕi + (ω⋆)⊺ϕi − 2ri)2] ≤ 16(1 + ε2)2(ω⊺ϕi − (ω⋆)⊺ϕi)2

We note that zωi −Ei z
ω
i is a martingale difference sequence and ∣zωi −Ei z

ω
i ∣ ≤ 8(1+ ε2)2. Applying

Freedman’s inequality (Lemma 22) and a union bound over ω ∈ C, we have with probability at least
1 − δ, for all ω ∈ C,

n

∑
i=1
(ω⊺ϕi − (ω⋆)⊺ϕi)2 −

n

∑
i=1

zωi

≤ η
n

∑
i=1

16(1 + ε2)2(ω⊺ϕi − (ω⋆)⊺ϕi)2 +
8(1 + ε2)2 log(∣C∣/δ)

η
+ 4(1 + ε2)εBT. (9)

Recall that ω̂ is the least square solution. Denote ω̃ ∈ C as the point that is closest to ω̂, which means
that: ∑n

i=1 ∣ω̂⊺ϕi − ω̃⊺ϕi∣ ≤ nα. We can derive the following relationship between ω̂ and ω̃:
n

∑
i=1
(ω̂⊺ϕi − (ω⋆)⊺ϕi)2 ≤ 2

n

∑
i=1
(ω̂⊺ϕi − ω̃⊺ϕi)2 + 2

n

∑
i=1
(ω̃⊺ϕi − (ω⋆)⊺ϕi)2 ≤ 2n2α2 + 2

n

∑
i=1
(ω̃⊺ϕi − (ω⋆)⊺ϕi)2,

n

∑
i=1

zω̃i −
n

∑
i=1

zω̂i =
n

∑
i=1
(ω̃⊺ϕi − ω̂⊺ϕi)(ω̃⊺ϕi + ω̂⊺ϕi − 2ri) ≤ 4(1 + ε2)nα.

Now plug ω̃ into (9) and re-arrange terms, we get:
n

∑
i=1
(ω̃⊺ϕi − (ω⋆)⊺ϕi)2 ≤

1

1 − 16(1 + ε2)2η
n

∑
i=1

zω̃i +
8(1 + ε2)2

η(1 − 16(1 + ε2)2η)
⋅ log(∣C∣/δ) + 4(1 + ε2)εBT

1 − 16(1 + ε2)2η
.

Setting η = (32(1 + ε2)2)−1, we get
n

∑
i=1
(ω̃⊺ϕi − (ω⋆)⊺ϕi)2 ≤ 2

n

∑
i=1

zω̃i + 512(1 + ε2)4 log(∣C∣/δ) + 8(1 + ε2)εBT.

Using the relationships between ω̂ and ω̃ that we derived above, we have:
n

∑
i=1
(ω̂⊺ϕi − (ω⋆)⊺ϕi)2

≤ 2n2α2 + 4
n

∑
i=1

zω̃i + 1024(1 + ε2)4 log(∣C∣/δ) + 16(1 + ε2)εBT.

≤ 2n2α2 + 4
n

∑
i=1

zω̂i + 1024(1 + ε2)4 log(∣C∣/δ) + 16(1 + ε2)nα + 16(1 + ε2)εBT.

Since ω̂ is the (approximate) least square solution, we have ∑i z
ω̂
i ≤ ε21. This implies that:

n

∑
i=1
(ω̂⊺ϕi − (ω⋆)⊺ϕi)2 ≤ 2n2α2 + 4ε21 + 1024(1 + ε2)4 log(∣C∣/δ) + 16(1 + ε2)(nα + εBT ).
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Now plugging the covering number (8) and setting α = 1/n, we obtain
n

∑
i=1
(ω̂⊺ϕi − (ω⋆)⊺ϕi)2 ≤ 2 + 4ε21 + 1024(1 + ε2)4d log(8(1 + ε2)e2n/δ) + 16(1 + ε2)(1 + εBT )

≤ 1026(1 + ε2)4d log(8(1 + ε2)e2n/δ) + 4ε21 + 16(1 + ε2)(1 + εBT ).
Finally, we have

∥ω̂ − ω⋆h∥
2
Σt
=

n

∑
i=1
(ω̂⊺ϕi − (ω⋆)⊺ϕi)2 +

m

∑
i=1

ρi(ω̂⊺ϕi − (ω⋆)⊺ϕi)2.

Here, with some abuse of notation, the ϕi’s in the right term are the support points of the optimal
design. The first term is already bounded above. The second term can be bounded by

m

∑
i=1

ρi(ω̂⊺ϕi − (ω⋆)⊺ϕi)2 ≤
m

∑
i=1

ρi ⋅ 4(1 + ε2) = 4(1 + ε2).

We add it into the constant of the first term. Then, we apply the union bound over all t ∈ [T ] and
h ∈ [H] to get the desired result.

Lemma 7 (Value function estimation). Suppose that T (ωt,h + θt,h+1) ∈ O(Wh). Then,
t−1
∑
i=1
(⟨θ̂t,h, ϕ(si,h, ai,h)⟩ − V t,h+1(si,h+1))

2 ≤ ε21 + Tε2B.

Furthermore, ∥θ̂t,h − T (ωt,h + θt,h+1)∥Σ̂t,h
≤
√
2ε21 + 4Tε2B =∶ BP

err.

Proof of Lemma 7. The Bayes optimal T (ωt,h + θt,h+1) should achieve the empirical risk of at
most εB, i.e.,

∀i ∈ [t − 1] ∶ ∣⟨ϕ(si,h, ai,h),T (ωt,h + θt,h+1)⟩ − V t,h+1(si,h+1)∣ ≤ εB.

Since T (ωt,h + θt,h+1) is realizable (i.e., T (ωt,h + θt,h+1) ∈ O(Wh)), and θ̂t,h minimizes the
objective up to precision ε1, it should satisfy the following

t−1
∑
i=1
(⟨θ̂t,h, ϕ(si,h, ai,h)⟩ − V t,h+1(si,h+1))

2

≤ ε21 + Tε2B.

Combining the above two results, we arrive at the following:
t−1
∑
i=1
⟨ϕ(si,h, ai,h), θ̂t,h − T (ωt,h + θt,h+1)⟩

2

≤ 2
t−1
∑
i=1
(⟨ϕ(si,h, ai,h), θ̂t,h⟩ − V t,h+1(si,h+1))

2

+ 2
t−1
∑
i=1
(V t,h+1(si,h+1) − ⟨ϕ(si,h, ai,h), T (ωt,h + θt,h+1)⟩)

2

(using (a + b)2 ≤ 2a2 + 2b2)

≤ 2ε21 + 4Tε2B.
This implies that

∥θ̂t,h − T (ωt,h + θt,h+1)∥
2

Σ̂t,h
≤ 2ε21 + 4Tε2B.

Definition 5 (High-probability events). Define event Ehigh as

Ehigh ∶= {∀t ∈ [T ],∀h ∈ [H] ∶ ∥ξPt,h∥Λt,h
≤ σh

√
2d log(6dH2T 2) =∶ BP

noise,h}

∩ {∀t ∈ [T ],∀h ∈ [H] ∶ ∥ξRt,h∥Σt,h
≤ σR

√
2d log(6dHT 2) =∶ BR

noise}

∩ {∀t ∈ [T ],∀h ∈ [H] ∶ ∥ηRt,h∥Σt,h
≤ BR

err}

where BR
err ∶=

√
1030(1 + ε2)4d log (24(1 + ε2)e2T 3H2) + 4ε21 + 16(1 + ε2)(1 + εBT ).
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Lemma 8. We have Pr(Ehigh) > 1 − 1/(HT ).

Proof of Lemma 8. Below we show that each event defined in Definition 5 holds with probability
at least 1 − 1/(3HT ). Then, by union bound, we have the desired result.

Proof of the first event. The way we generate ξPt,h is equivalent to first sampling ζt,h ∼
N(0, (σh)2Λ−1t,h) and then set ξPt,h ← (I − Pt,h)ζt,h. By Lemma 20 and the union bound, we
have

Pr (∀t ∈ [T ],∀h ∈ [H] ∶ ∥ζt,h∥Λt,h
> σh

√
2d log(6dH2T 2)) ≤ 1/(3HT ).

Then, by definition, we have

∥ξPt,h∥2Λt,h
= ∥(1 − Pt,h)ζt,h∥2Λt,h

= ζ⊺t,h(I − Pt,h)
m

∑
i=1
(ϕ∥t,h,i(ϕ

∥
t,h,i)

⊺ + ϕ⊥t,h,i(ϕ⊥t,h,i)⊺)(I − Pt,h)ζt,h

= ζ⊺t,h
m

∑
i=1

ϕ⊥t,h,i(ϕ⊥t,h,i)⊺ζt,h

≤ ζ⊺t,h
m

∑
i=1
(ϕ∥t,h,i(ϕ

∥
t,h,i)

⊺ + ϕ⊥t,h,i(ϕ⊥t,h,i)⊺)ζt,h

where the third step holds by the fact that ϕ⊥ is in the null space and ϕ∥ is in the span. Hence, we
conclude that ∥ξPt,h∥Λt,h

≤ ∥ζt,h∥Λt,h
.

Proof of the second event. Applying Lemma 20 and the union bound, we have

Pr (∀t ∈ [T ] ∶ ∥ξRt ∥Σt > σR

√
2d log(6dHT 2)) ≤ 1/(3HT ).

Proof of the third event. This is directly from Lemma 6.

Lemma 9 (Boundness of parameters). Under Assumption 4, conditioning on Ehigh, the following
hold for all t ∈ [T ] and h ∈ [H]:

1. maxs,a ∣⟨ϕ(s, a), θ̂t,h⟩∣ ≤Wh + ε2;

2. maxs,a ∣⟨ϕ(s, a),T (ωt,h + θt,h+1)⟩∣ ≤Wh;

3. ∥ηt,h∥Σ̂t,h
≤ BP

err;

4. ∥ηt,h∥Λ ≤ 2(Wh + ε2)
√
m;

5. ∥ηt,h∥Λt,h
≤
√
3γBP

err +
√
8m(Wh + ε2) ;

6. maxs,a ∣⟨ϕ(s, a), θt,h⟩∣ ≤Wh−1 −
√
2d ⋅BR

noise − 1 − ε2

7. maxs V t,h(s) =maxs,a ∣Qt,h(s, a)∣ ≤Wh−1.

Proof of Lemma 9. Fix t ∈ [T ]. We prove these items by induction on h. The base case (h =H+1)
clearly holds since there is actually nothing at (H +1)-th step. Now assume they hold for h+1, and
we will show that they hold for h as well.

Proof of Item 1. It is simply by Line 9 of Algorithm 1 and Assumption 3.

Proof of Item 2. By linear Bellman completeness (Definition 1), for any s, a, we have,

∣⟨ϕ(s, a),T (ωt,h + θt,h+1)⟩∣ = ∣ E
s′∼T(s,a)

max
a′
⟨ϕ(s′, a′), ωt,h + θt,h+1⟩∣

≤max
s,a
∣⟨ϕ(s, a), ωt,h + θt,h+1⟩∣
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≤max
s,a
∣⟨ϕ(s, a), ω̂t,h⟩∣ +max

s,a
∣⟨ϕ(s, a), ξRt,h⟩∣ +max

s,a
∣⟨ϕ(s, a), θt,h+1⟩∣

≤ (1 + ε2) +max
s,a
∥ϕ(s, a)∥Σ−1

t,h
∥ξRt,h∥Σt,h

+ (Wh −
√
2d ⋅BR

noise − 1 − ε2)

≤ 1 + ε2 +
√
2d ⋅BR

noise + (Wh −
√
2d ⋅BR

noise − 1 − ε2) =Wh.

Proof of Item 3. This is directly from Lemma 7.

Proof of Item 4. By triangle inequality, we have

∥ηt,h∥Λ = ∥θ̂t,h − T (ωt,h + θt,h+1)∥Λ ≤ ∥θ̂t,h∥Λ + ∥T (ωt,h + θt,h+1)∥Λ ≤ 2(Wh + ε2)
√
m.

where the last step is by

∥θ̂t,h∥Λ =
¿
ÁÁÀ

m

∑
i=1
⟨ϕi, θ̂t,h⟩

2 ≤
¿
ÁÁÀ

m

∑
i=1
(Wh + ε2)2 = (Wh + ε2)

√
m

and the similar for T (ωt,h + θt,h+1).
Proof of Item 5. By definition, we have

∥ηt,h∥2Λt,h
=

m

∑
i=1

ρi(⟨ϕ∥t,h,i, ηt,h⟩
2
+ ⟨ϕ⊥t,h,i, ηt,h⟩

2)

=
m

∑
i=1

ρi(⟨Pt,hϕi, ηt,h⟩2 + ⟨(I − Pt,h)ϕi, ηt,h⟩2)

≤
m

∑
i=1

ρi(3⟨Pt,hϕi, ηt,h⟩2 + 2⟨ϕi, ηt,h⟩2) (using (a + b)2 ≤ a2 + b2)

≤ 3
m

∑
i=1

ρi(∥ϕ∥t,h,i∥
2

Σ̂†
t,h

∥ηt,h∥2Σ̂t,h
) + 2∥ηt,h∥2Λ (Cauchy-Schwartz, Lemma 25)

We have ∥ϕ∥t,h,i∥Σ̂†
t,h
= ∥Pt,hϕi∥Σ̂†

t,h
= ∥ϕi∥Σ̂†

t,h
by Lemma 26. By Assumption 4, this is upper

bounded by γ. The second term, ∥ηt,h∥Σ̂t,h
, is upper bounded by BP

err by Item 3.

Hence, we have

∥ηt,h∥2Λt,h
≤ 3γ2(BP

err)2 + 2∥ηt,h∥2Λ
≤ 3γ2(BP

err)2 + 8(Wh + ε2)2m. (Item 4)

Proof of Item 6. We have

max
s,a
∣⟨ϕ(s, a), θt,h⟩∣ =max

s,a
∣⟨ϕ(s, a), θ̂t,h + ξPt,h⟩∣

≤max
s,a
∣⟨ϕ(s, a), θ̂t,h⟩∣ +max

s,a
∣⟨ϕ(s, a), ξPt,h⟩∣

≤Wh + ε2 +max
s,a
∥ϕ(s, a)∥Λ−1

t,h
∥ξPt,h∥Λt,h

≤Wh + ε2 +
√
2d ⋅BP

noise,h (Lemma 5)

=Wh−1 −
√
2d ⋅BR

noise − 1 − ε2.

Proof of Item 7. We have

∣Qt,h(s, a)∣ = ∣⟨ϕ(s, a), θt,h⟩ + ⟨ϕ(s, a), ωt,h⟩∣
≤ ∣⟨ϕ(s, a), θt,h⟩∣ + ∣⟨ϕ(s, a), ω̂t,h⟩∣ + ∣⟨ϕ(s, a), ξRt ⟩∣
≤ (Wh−1 −

√
2d ⋅BR

noise − 1 − ε2) + (1 + ε2) +
√
2d ⋅BR

noise

=Wh−1.

and also, maxs ∣V t,h(s)∣ =maxs,a ∣Qt,h(s, a)∣ ≤Wh−1.
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C.2 VALUE DECOMPOSITION

We note that, at any round t ∈ [T ], conditioning on all information collected up to round t − 1, the
randomness of V t only comes from the Gaussian noise {ξPt,h, ξRt,h}Hh=1. In other words, V t can be
considered a functional of the Gaussian noise. In light of this, we define

Vt,h[ξ̌P1 , . . . , ξ̌PH , ξ̌R1 , . . . , ξ̌
R
H](⋅)

as a functional of the noise variable, which maps the given noise variable to the value func-
tion produced by the algorithm by replacing the random Gaussian noise with the variable
ξ̌P1 , . . . , ξ̌

P
H , ξ̌R1 , . . . , ξ̌

R
H . By definition, we immediately have

V t,h(⋅) = Vt,h[ξPt,1, . . . , ξPt,H , ξRt,1, . . . , ξ
R
t,H](⋅).

Next, we define Ut as the minimum of the following program

min
ξ̌P1 ,...,ξ̌P

H
,ξ̌R1 ,...,ξ̌R

H

Vt,1 [ξ̌P1 , . . . , ξ̌PH , ξ̌R1 , . . . , ξ̌
R
H] (st,1)

s.t. ∀h ∈ [H] ∶ ∥ξ̌Pt,h∥Λt,h
≤ BP

noise,h, ∥ξ̌Rt,h∥Σt,h
≤ BR

noise.

In other words, Ut achieves the minimum value at st,1 while satisfying the high-probability con-
straints (Ehigh) on the noise variable. We denote ξP

1
, . . . , ξP

H
, ξR

1
, . . . , ξR

H
as the minimizer of the

above program, and will always use underlined variables to represent the intermediate variables cor-
responding to Ut (such as θ̂, θ, ω̂, ω, Q, V ) to distinguish them from the variables corresponding to
V t, (θ̂, θ, ω̂, ω, Q, V ). We note that, under Ehigh, we directly have Ut(st,1) ≤ V t(st,1).

Below is the a decomposition lemma under deterministic transition. We denote {st,h, at,h}Hh=1 as the
trajectory generated by executing πt with initial state st,1, and {s⋆t,h, a⋆t,h}Hh=1 denote the trajectory
generated by executing π⋆ with initial state s⋆t,1 = st,1.

Lemma 10 (Value decomposition under deterministic transition). Under deterministic transition
(Assumption 1), we have

V πt(st,1) − V t(st,1) =
H

∑
h=1
(V t,h+1(st,h+1) − ⟨θt,h, ϕ(st,h, at,h)⟩ + ⟨ω⋆h − ωt,h, ϕ(st,h, at,h)⟩);

(10)

V ⋆(st,1) − V t(st,1) ≤
H

∑
h=1
(V t,h+1(s⋆t,h+1) − ⟨θt,h, ϕ(s⋆t,h, a⋆t,h)⟩ + ⟨ω⋆h − ωt,h, ϕ(s⋆t,h, a⋆t,h)⟩).

(11)

Similarly, we have

V πt(st,1) −Ut(st,1) ≤
H

∑
h=1
(Ut,h+1(st,h+1) − ⟨θt,h, ϕ(st,h, at,h)⟩ + ⟨ω⋆h − ωt,h, ϕ(st,h, at,h)⟩).

(12)

Proof of Lemma 10. We will prove (10) and (11) altogether, and then prove (12).

Proof of (10) and (11). We consider an arbitrary policy π. Let {s′t,h, a′t,h}Hh=1 denote the determin-
istic trajectory generated by π with initial state s′t,1 = st,1. By definition, we have

V π(s′t,1) − V t(s′t,1)
= Qπ

1 (s′t,1, π(s′t,1)) −max
a

Qt,1(s′t,1, a)

≤ Qπ
1 (s′t,1, π(s′t,1)) −Qt,1(s′t,1, π(s′t,1)) (13)

= V π
2 (s′t,2) + rh(s′t,1, a′t,1) − ⟨θt,1, ϕ(s′t,1, π(s′t,1))⟩ − ⟨ωt,h, ϕ(s′t,1, π(s′t,1))⟩ (by definition)

= (V π
2 (s′t,2) − V t,2(s′t,2)) + (V t,2(s′t,2) − ⟨θt,1, ϕ(s′t,1, π(s′t,1))⟩) + ⟨ω⋆h − ωt,h, ϕ(s′t,1, a′t,1)⟩

24



1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349

Under review as a conference paper at ICLR 2025

Recursively expanding the first term, we obtain

V π(s′t,1) − V t(s′t,1) ≤
H

∑
h=1
(V t,h+1(s′t,h+1) − ⟨θt,h, ϕ(s′t,h, a′t,h)⟩ + ⟨ω⋆h − ωt,h, ϕ(s′t,h, a′t,h)⟩).

This proves (11) by specifying π = π⋆. Similarly, (10) can be proved by observing that the only
inequality (13) becomes equality when π = πt.

Proof of (12). The proof is quite similar. We have

V πt(st,1) −Ut(st,1)
= Qπt

1 (st,1, πt(st,1)) −max
a

Q
t,1
(st,1, a)

≤ Qπt

1 (st,1, πt(st,1)) −Qt,1
(st,1, πt(st,1))

= V πt

2 (st,2) + rh(st,1, at,1) − ⟨θt,1, ϕ(st,1, πt(st,1))⟩ − ⟨ωt,h, ϕ(st,1, at,1)⟩ (by definition)

= (V πt

2 (st,2) −Ut,2(st,2)) + (Ut,2(st,2) − ⟨θt,1, ϕ(st,1, πt(st,1))⟩) + ⟨ω⋆h − ωt,h, ϕ(st,1, at,1)⟩

Recursively expanding the first term, we obtain

V πt(st,1) −Ut(st,1) ≤
H

∑
h=1
(Ut,h+1(st,h+1) − ⟨θt,h, ϕ(st,h, at,h)⟩ + ⟨ω⋆h − ωt,h, ϕ(st,h, at,h)⟩).

This completes the proof.

Lemma 11. For any t ∈ [T ], conditioning on Espan
t , we have the following (in)equalities:

V t(st,1) =
H

∑
h=1
(⟨θ̂t,h − T (θt,h+1 + ωt,h+1), ϕ(st,h, at,h)⟩ + ⟨ωt,h, ϕ(st,h, at,h)⟩),

Ut(st,1) ≥
H

∑
h=1
(⟨θ̂t,h − T (θt,h+1 + ωt,h+1), ϕ(st,h, at,h)⟩ + ⟨ωt,h, ϕ(st,h, at,h)⟩).

Proof of Lemma 11. We will prove the two statements separately, but the proofs are quite similar.

Proof of the first statement. By Lemma 10, we have

V t(st,1) − V πt(st,1)

=
H

∑
h=1
(⟨θ̂t,h, ϕ(st,h, at,h)⟩ + ⟨ξPt,h, ϕ(st,h, at,h)⟩ − V t,h+1(st,h+1) + ⟨ωt,h − ω⋆h, ϕ(st,h, at,h)⟩)

By linear Bellman completeness (Definition 1), there exists a vector, denoted by T (θt,h+1+ωt,h+1),
such that V t,h+1(⋅) = ⟨ϕ(⋅, a),T (θt,h+1 + ωt,h+1)⟩. Hence, we can rewrite the above as

V t(st,1) − V πt(st,1)

=
H

∑
h=1
(⟨θ̂t,h − T (θt,h+1 + ωt,h+1), ϕ(st,h, at,h)⟩ + ⟨ξPt,h, ϕ(st,h, at,h)⟩ + ⟨ωt,h − ω⋆h, ϕ(st,h, at,h)⟩).

Note that by definition of V πt we have V πt(st,1) = ∑H
h=1⟨ω⋆, ϕ(st,h, at,h)⟩. Hence, the above

implies

V t(st,1) =
H

∑
h=1
(⟨θ̂t,h − T (θt,h+1 + ωt,h+1) + ξPt,h, ϕ(st,h, at,h)⟩ + ⟨ωt,h, ϕ(st,h, at,h)⟩).

We can remove ξPt,h since ⟨ξPt,h, ϕ(st,h, at,h)⟩ = 0 conditioning on Espan
t .

Proof of the second statement. By Lemma 10, we have

V πt(st,1) −Ut(st,1) ≤
H

∑
h=1
(Ut,h+1(st,h+1) − ⟨θt,h, ϕ(st,h, at,h)⟩ + ⟨ω⋆h − ωt,h, ϕ(st,h, at,h)⟩)
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Again, by the definition of V πt , we conclude that

Ut(st,1) ≥
H

∑
h=1
(⟨ωt,h, ϕ(st,h, at,h)⟩ + ⟨θ̂t,h − T (θt,h+1 + ωt,h+1) + ξ

P

t,h
, ϕ(st,h, at,h)⟩).

We can remove ξP
t,h

since ⟨ξP
t,h

, ϕ(st,h, at,h)⟩ = 0 conditioning on Espan
t .

The following lemma shows that, conditioning on the span event Espan
t , the value function V t cannot

deviate too much from the value function V πt on average.

Lemma 12. For any t ∈ [T ], under Assumption 4 and conditioning on Espan
t and Ehigh, we have

T

∑
t=1
(V t(st,1) − V πt(st,1)) ≤ BP

errγH + (BR
noise +BR

err) ⋅BR
ϕ .

Proof of Lemma 12. We apply Lemma 11 to decompose V t and obtain

T

∑
t=1
(V t(st,1) − V πt(st,1))

=
T

∑
t=1
(⟨θ̂t,h − T (θt,h+1 + ωt,h+1), ϕ(st,h, at,h)⟩ + ⟨ωt,h − ω⋆h, ϕ(st,h, at,h)⟩)

Applying Cauchy-Schwartz yields

≤
T

∑
t=1
(∥θ̂t,h − T (θt,h+1 + ωt,h+1)∥Σ̂t,h

∥ϕ(st,h, at,h)∥Σ̂†
t,h
+ ∥ωt,h − ω⋆h∥Σt,h

, ∥ϕ(st,h, at,h)∥Σ−1
t,h
)

We apply Lemma 7 and Assumption 4 to the left term and Lemmas 6 and 16 and Definition 5 to the
right. Then, we obtain

≤H ⋅BP
errγ + (BR

noise +BR
err) ⋅BR

ϕ .

This completes the proof.

The following lemma establishes upper bounds on the value functions when conditioning on the
span event Espan

t .

Lemma 13. For any t ∈ [T ], conditioning on Espan
t and Ehigh, we have

∣Ut(st,1)∣ ≤H ⋅ (BR
noise +BR

err) ⋅
√
d +H ⋅ (1 +BP

errγ).

Moreover, we have

∣V t(st,1)∣ ≤H ⋅ (BR
noise +BR

err) ⋅
√
d +H ⋅ (1 +BP

errγ).

We abbreviate BV ∶=H ⋅ (BR
noise +BR

err) ⋅
√
d +H ⋅ (1 +BP

errγ).

Proof of Lemma 13. We will first prove the second statement and then the first statement.

Proof of the second statement. Applying Lemma 11 and the triangle inequality, we have the follow-
ing

∣V t(st,1)∣ ≤ ∣
H

∑
h=1
⟨ωt,h, ϕ(st,h, at,h)⟩∣ + ∣

H

∑
h=1
⟨θ̂t,h − T (θt,h+1 + ωt,h+1), ϕ(st,h, at,h)⟩∣

=∶ T1 + T2.

We bound the two terms separately. For T1, we have

T1 = ∣
H

∑
h=1
⟨(ωt,h − ω̂t,h) + (ω̂t,h − ω⋆) + ω⋆h, ϕ(st,h, at,h)⟩∣
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≤
H

∑
h=1
(∥ωt,h − ω̂t,h∥Σt,h

+ ∥ω̂t,h − ω⋆h∥Σt,h
) ∥ϕ(st,h, at,h)∥Σ−1

t,h
+ V πt (Cauchy-Schwartz)

≤H ⋅ (BR
noise +BR

err) ⋅
√
d +H. (Definition 5 and lemma 5)

For T2, we can use Cauchy-Schwartz:

T2 = ∣
H

∑
h=1
⟨θ̂t,h − T (θt,h+1 + ωt,h+1), ϕ(st,h, at,h)⟩∣

≤
H

∑
h=1
∥θ̂t,h − T (θt,h+1 + ωt,h+1)∥Σ̂t,h

∥ϕ(st,h, at,h)∥Σ̂†
t,h

(Cauchy-Schwartz, Lemma 25)

≤ BP
errγH. (Assumption 4 and lemma 7)

Proof of the first statement. We prove it by establishing a lower bound and an upper bound of
Ut(st,1) separately. We start with the lower bound, whose derivation is similar to the second state-
ment we just proved above:

Ut(st,1) ≥
H

∑
h=1
(⟨θ̂t,h − T (θt,h+1 + ωt,h+1), ϕ(st,h, at,h)⟩ + ⟨ωt,h, ϕ(st,h, at,h)⟩) (Lemma 11)

≥ −BP
errγH − ∣

H

∑
h=1
⟨(ωt,h − ω̂t,h) + (ω̂t,h − ω⋆h) + ω⋆h, ϕ(st,h, at,h)⟩∣

(following a similar argument as above)

≥ −BP
errγH −

H

∑
h=1
(∥ωt,h − ω̂t,h∥Σt,h

+ ∥ω̂t,h − ω⋆h∥Σt,h
) ∥ϕ(st,h, at,h)∥Σ−1

t,h

(Cauchy-Schwartz)

≥ −BP
errγH −H ⋅ (BR

noise +BR
err) ⋅

√
d. (Lemma 8)

The upper bound of Ut(st,1) is a consequence of the second statement we just proved above:

Ut(st,1) ≤ E[V t(st,1) ∣Ehigh] (by definition)

≤ BP
errγH +H ⋅ (BR

noise +BR
err) ⋅

√
d +H.

We finish the proof by combining the lower and upper bounds.

C.3 EXPLORATION IN THE NULL SPACE

Lemma 14 (optimism with constant probability). For any t ∈ [T ], denote Eoptm
t as the event that

V ⋆(st,1) ≤ V t(st,1) +BP
errγH.

Then, under Assumption 4 and conditioning on the high-probability event Ehigh, we have

Pr (Eoptm
t ) ≥ Γ2(−1)

where Γ(⋅) is the CDF of the standard normal distribution.

Proof of Lemma 14. By Lemma 10, we have:

V ⋆(st,1) − V t(st,1) ≤
H

∑
h=1
(V t,h+1(s⋆t,h+1) − ⟨θt,h, ϕ(s⋆t,h, a⋆t,h)⟩ + ⟨ω⋆h − ωt,h, ϕ(s⋆t,h, a⋆t,h)⟩)

=
H

∑
h=1
(V t,h+1(s⋆t,h+1) − ⟨θ̂t,h, ϕ(s⋆t,h, a⋆t,h)⟩)

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
(i)

−
H

∑
h=1
⟨ξPt,h, ϕ(s⋆t,h, a⋆t,h)⟩

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
(ii)

+
H

∑
h=1
⟨ω⋆h − ω̂t,h, ϕ(s⋆t,h, a⋆t,h)⟩

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
(iii)

−
H

∑
h=1
⟨ξRt,h, ϕ(s⋆t,h, a⋆t,h)⟩

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
(iv)

.
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Note that, given any state-action-state triple (s, a, s′), we have

V t,h+1(s′) − ⟨θ̂t,h, ϕ(s, a)⟩ = ⟨T (ωt,h+1 + θt,h+1) − θ̂t,h, ϕ(s, a)⟩ = ⟨ηt,h, ϕ(s, a)⟩.

Plugging this back to (i), we obtain

(i) − (ii) ≤
H

∑
h=1
⟨ηt,h − ξPt,h, ϕ(s⋆t,h, a⋆t,h)⟩ =∶

H

∑
h=1
⟨ηt,h − ξPt,h, ϕ⋆h⟩

where we abbreviate ϕ⋆h ∶= ϕ(s⋆t,h, a⋆t,h). Next, we split it into two parts:

(i) − (ii) ≤
H

∑
h=1
⟨ηt,h, Pt,hϕ

⋆
h⟩ +

H

∑
h=1
⟨ηt,h, (I − Pt,h)ϕ⋆h⟩ −

H

∑
h=1
⟨ξPt,h, ϕ⋆h⟩

≤
H

∑
h=1
∥ηt,h∥Σ̂t,h

∥Pt,hϕ
⋆
h∥Σ̂†

t,h
+

H

∑
h=1
∥ηt,h∥Λt,h

∥(I − Pt,h)ϕ⋆h∥Λ−1t,h −
H

∑
h=1
⟨ξPt,h, ϕ⋆h⟩

(Cauchy-Schwartz, Lemma 25)

≤ BP
errγH +

H

∑
h=1
∥ηt,h∥Λt,h

∥(I − Pt,h)ϕ⋆h∥Λ−1t,h −
H

∑
h=1
⟨ξPt,h, ϕ⋆h⟩

(Assumption 4 and Lemmas 7 and 26)

≤ BP
errγH +

¿
ÁÁÀH

H

∑
h=1
∥ηt,h∥2Λt,h

∥(I − Pt,h)ϕ⋆h∥2Λ−1
t,h

−
H

∑
h=1
⟨ξPt,h, ϕ⋆h⟩ (Cauchy-Schwartz)

Recall that ξPt,h is sampled from N(0, σ2
h(I − Pt,h)Λ−1t,h(I − Pt,h)). Therefore,

H

∑
h=1
⟨ξPt,h, ϕ⋆h⟩ ∼ N (0,

H

∑
h=1

σ2
h∥(I − Pt,h)ϕ⋆h∥

2

Λ−1
t,h

) .

Since σh ≥
√
H∥ηt,h∥Λt,h

under high-probability event Ehigh, we have

Pr ((i) − (ii) ≤ BP
errγH) ≥ Γ(−1).

Next, we consider (iii) − (iv). By a similar argument, we have

(iii) − (iv) =
H

∑
h=1
⟨ω⋆h − ω̂t,h, ϕ

⋆
h⟩ −

H

∑
h=1
⟨ξRt,h, ϕ⋆h⟩

≤
H

∑
h=1
∥ω⋆h − ω̂t,h∥Σt,h

∥ϕ⋆h∥Σ−1t,h −
H

∑
h=1
⟨ξRt,h, ϕ⋆h⟩

≤

¿
ÁÁÀH ⋅

H

∑
h=1
∥ω⋆h − ω̂t,h∥2Σt,h

∥ϕ⋆h∥2Σ−1
t,h

−
H

∑
h=1
⟨ξRt,h, ϕ⋆h⟩.

Recall that ξRt is sampled from N(0, σ2
RΣ
−1
t,h), and thus, we have

H

∑
h=1
⟨ξRt , ϕ⋆h⟩ ∼ N (0,

H

∑
h=1

σ2
R∥ϕ⋆h∥

2

Σ−1
t,h

) .

Therefore, since σR ≥
√
H∥ω⋆h − ω̂t,h∥Σt (Lemma 9), we have

Pr ((iii) − (iv) ≤ 0) ≥ Γ(−1).

Since the two events are independent, the probability that both events happen is at least Γ2(−1).

Lemma 15. The number of times Espan
t does not hold will not exceed dH , i.e.,

T

∑
t=1

1{(Espan
t )∁} ≤ dH.
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Proof. By definition, when Espan
t does not hold, there exists h ∈ [H] such that ϕ(st,h, at,h) is not

in the span of {ϕ(si,h, ai,h)}t−1i=1 . That means, the dimension of the span should increase by exactly
one after this iteration, i.e.,

dim (span ({ϕ(si,h, ai,h)}ti=1)) = dim (span ({ϕ(si,h, ai,h)}t−1i=1)) + 1.
However, the dimension cannot exceed d, so it can only increase at most d times. This argument
holds for any h ∈ [H], and thus, the total number of times Espan

t does not happen will not exceed
dH .

Lemma 16. For any h ∈ [H], it holds that

T

∑
t=1
∥ϕ(st,h, at,h)∥Σ−1

t,h
≤ d
√
2T log(T + 1) =∶ BR

ϕ ,

T

∑
t=1

1{Espan
t }∥ϕ(st,h, at,h)∥Σ̂†

t,h
≤ γd
√
2dT log (2Tγ2) =∶ BP

ϕ .

Proof of Lemma 16. We prove the two inequalities separately.

Proof of the first inequality. For any t ∈ [T ] and h ∈ [H], we have the following bound on the norm
of features (Lemma 5):

∥ϕ(st,h, at,h)∥Σ−1
t,h
≤ ∥ϕ(st,h, at,h)∥Λ−1 ≤

√
d.

Hence, by Cauchy-Schwartz, we have

T

∑
t=1
∥ϕ(st,h, at,h)∥Σ−1

t,h
≤

¿
ÁÁÀT ⋅

T

∑
t=1
∥ϕ(st,h, at,h)∥2Σ−1

t,h

=

¿
ÁÁÀT ⋅

T

∑
t=1

min{∥ϕ(st,h, at,h)∥2Σ−1
t,h

, d}

≤

¿
ÁÁÀTd ⋅

T

∑
t=1

min{∥ϕ(st,h, at,h)∥2Σ−1
t,h

, 1}

≤
√
Td ⋅ 2d log(T + 1) (elliptical potential lemma, Lemma 21)

= d
√
2T log(T + 1).

Proof of the second inequality. We divide the rounds into d consecutive blocks, in each of which the
rank of Σ̂t,h remains the same. To be specific, let t1, t2, . . . , td, td+1 be a sequence of integers such
that for any i ∈ [d] and any t ∈ {ti, ti+1, . . . , ti+1 − 1}, we have rank(Σ̂t,h) = i.
We will apply the elliptical potential lemma to each block separately. Now let’s fix i ∈ [d] and
consider the i-th block. Let the reduced eigen-decomposition of Σ̂ti,h be Σ̂ti,h = UDU⊺ where
U ∈ Rd×i and D ∈ Ri×i. For each t ∈ {ti, ti+1, . . . , ti+1 − 1}, since ϕ(st,h, at,h) is in the span of Σ̂t,h

conditioning on Espan
t , there exists a vector xt such that ϕ(st,h, at,h) = Uxt.

For any t ∈ {ti, ti+1, . . . , ti+1 − 1}, we have

∥ϕ(st,h, at,h)∥2Σ̂†
t,h

= ϕ(st,h, at,h)⊺Σ̂†
t,hϕ(st,h, at,h)

= ϕ(st,h, at,h)⊺
⎛
⎝
Σ̂ti,h +

t−1
∑
j=ti

ϕ(sj,h, aj,h)ϕ⊺(sj,h, aj,h)
⎞
⎠

†

ϕ(st,h, at,h)

= x⊺tU⊺
⎛
⎝
UDU⊺ +

t−1
∑
j=ti

Uxjx
⊺
jU
⊺⎞
⎠

†

Uxt

= x⊺t
⎛
⎝
D +

t−1
∑
j=ti

xjx
⊺
j

⎞
⎠

−1

xt.
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Define Dt =D +∑t−1
j=ti xjx

⊺
j . Hence, we have

ti+1−1
∑
t=ti

1{Espan
t }∥ϕ(st,h, at,h)∥Σ̂†

t,h
=

ti+1−1
∑
t=ti

1{Espan
t }∥xt∥D−1t

.

By Assumption 4, the eigenvalues of D are lower bounded by 1/γ2. And clearly, its eigenvalues are
upper bounded by ti ≤ T . Therefore, we have

ti+1−1
∑
t=ti

1{Espan
t }∥xt∥D−1t

≤
¿
ÁÁÀT ⋅

ti+1−1
∑
t=ti

1{Espan
t }∥xt∥2D−1t

=
¿
ÁÁÀT ⋅

ti+1−1
∑
t=ti

1{Espan
t }min{∥xt∥2D−1t

, γ2}

≤ γ
¿
ÁÁÀT ⋅

ti+1−1
∑
t=ti

1{Espan
t }min{∥xt∥2D−1t

,1}

≤ γ
√
T ⋅ 2d log (Tγ2(1 + 1/d)) (elliptical potential lemma, Lemma 21)

≤ γ
√
T ⋅ 2d log (2Tγ2).

This finishes the summation of one block. Notice that we have d such blocks, we complete the proof
by multiplying the above by d.

C.4 MAIN STEPS OF THE PROOF

Let Ṽt(st,1) denote an i.i.d. copy of V t conditioned on initial state st,1 and Ẽoptm
t and Ẽhigh denote

the counterparts of Eoptm
t and Ehigh but for Ṽt(st,1).

The proof starts with the following decomposition of the regret:

E [
T

∑
t=1
(V ⋆(st,1) − V πt(st,1))] ≤ E [1{Ehigh}

T

∑
t=1

1{Espan
t }(V ⋆(st,1) − V πt(st,1))]

+E [1{(Ehigh)∁}
T

∑
t=1
(V ⋆(st,1) − V πt(st,1))]

+E [
T

∑
t=1

1{(Espan
t )∁}(V ⋆(st,1) − V πt(st,1))]

We will later show that the second and third terms can be easily bounded separately by observing
the following two fact: (1) the probability that Ehigh doesn’t hold is very small, and (2) the number
of times Espan

t doesn’t hold is also small. Hence, it remains to bound the first term, which is the
most challenging. The most of the proof below is devoted to bounding it.

As the first step, we will add some necessary event conditions to the first term, using the following
lemma.
Lemma 17 (Adding necessary event conditions). It holds that

E [1{Ehigh}
T

∑
t=1

1{Espan
t }(V ⋆(st,1) − V πt(st,1))]

≤ 1

Γ2(−1) E [
T

∑
t=1

Ẽ
Vt

[1{Ẽhigh ∩ Ẽspan
t ∩Ehigh}Ṽt(st,1) − 1{Espan

t ∩Ehigh ∩ Ẽhigh ∩ Ẽspan
t }Ut(st,1)]]

+ 1

Γ2(−1) ⋅ (dHBV +BP
errγH + (BR

noise +BR
err) ⋅BR

ϕ + dH2 + 1)

where the expectation EṼt
is taken over the randomness of Ṽt (an i.i.d. copy of V t) only.

Proof of Lemma 17. We have

E [1{Ehigh}
T

∑
t=1

1{Espan
t }(V ⋆(st,1) − V πt(st,1))]
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≤ E [1{Ehigh}
T

∑
t=1
(V ⋆(st,1) − 1{Espan

t }V πt(st,1))] (V ⋆ is non-negative)

Plugging the condition on Ẽoptm
t (Lemma 14), we get

≤ E [1{Ehigh}
T

∑
t=1

Ẽ
Vt

[min{H, Ṽt(st,1)} − 1{Espan
t }V πt(st,1) ∣ Ẽoptm

t ]] +BP
errγH

We aim to add two event indicators, Ẽhigh and Ẽspan
t , and thus split the whole thing into several

terms:

≤ E [1{Ehigh}
T

∑
t=1

Ẽ
Vt

[1{Ẽhigh ∩ Ẽspan
t } (Ṽt(st,1) − 1{Espan

t }V πt(st,1)) ∣ Ẽoptm
t ]]

+E [1{Ehigh}
T

∑
t=1

Ẽ
Vt

[1{(Ẽhigh)∁} (min{H, Ṽt(st,1)} − 1{Espan
t }V πt(st,1)) ∣ Ẽoptm

t ]]

+E [1{Ehigh}
T

∑
t=1

Ẽ
Vt

[1{(Ẽspan
t )∁} (min{H, Ṽt(st,1)} − 1{Espan

t }V πt(st,1)) ∣ Ẽoptm
t ]]

+BP
errγH

=∶ T1 + T2 + T3 +BP
errγH.

Below we bound each term separately.

Bounding T1. To bound T1, we will first drop the conditioning event Ẽoptm
t to make things cleaner.

To that end, we re-arange it in the following way

T1 = E

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

1{Ehigh
}

T

∑

t=1

Ẽ
Vt

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

1{Ẽhigh
∩ Ẽspan

t } (Ṽt(st,1) − 1{E
span
t }Ut(st,1)) + 1{(E

span
t )

∁
} ⋅BV

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

(∗)

RRRRRRRRRRRRRRRRRR

Ẽoptm
t

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

+ E [1{Ehigh
}

T

∑

t=1

Ẽ
Vt

[1{Ẽhigh
∩ Ẽspan

t }1{Espan
t }(Ut(st,1) − V

πt
(st,1)) ∣ Ẽ

optm
t ]]

− E [1{Ehigh
}

T

∑

t=1

Ẽ
Vt

[1{(Espan
t )

∁
} ⋅BV ∣ Ẽ

optm
t ]]

=∶ T1.1 + T1.2 + T1.3.

The reason we did this is that we want to make sure (∗) is non-negative, so we can drop the
conditioning event Ẽoptm

t . To see why it is non-negative, we consider two cases: first, if Espan
t

holds, then we already have 1{Ẽhigh}(Ṽt(st,1) − 1{Espan
t }Ut(st,1)) ≥ 0 by definition of Ut(st,1);

second, if Espan
t does not hold, then we have 1{Ẽhigh ∩ Ẽspan

t }Ṽt(st,1) + 1{(Espan
t )∁} ⋅BV ≥ 0 by

Lemma 13.

Hence, for T1.1, we can drop the conditioning event using the following rule (for non-negative
variable X):

E[X ∣E] = E[X ⋅ 1{E}]/Pr(E) ≤ E[X]/Pr(E)
and using Lemma 14 to get

T1.1 ≤
1

Γ2
(−1)

E [1{Ehigh
}

T

∑

t=1

Ẽ
Vt

[1{Ẽhigh
∩ Ẽspan

t } (Ṽt(st,1) − 1{E
span
t }Ut(st,1)) + 1{(E

span
t )

∁
} ⋅BV ]]

=
1

Γ2
(−1)

E [1{Ehigh
}

T

∑

t=1

Ẽ
Vt

[1{Ẽhigh
∩ Ẽ

span
t } (Ṽt(st,1) − 1{E

span
t }Ut(st,1))]]

+
1

Γ2
(−1)

E [1{Ehigh
}

T

∑

t=1

1{(Espan
t )

∁
} ⋅BV ]

≤
1

Γ2
(−1)

E [1{Ehigh
}

T

∑

t=1

Ẽ
Vt

[1{Ẽhigh
∩ Ẽspan

t } (Ṽt(st,1) − 1{E
span
t }Ut(st,1))]]
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+
1

Γ2
(−1)

⋅ dHBV (Lemma 15)

For T1.2, we apply Lemma 12 to get

T1.2 ≤ E [1{Ehigh}
T

∑
t=1

Ẽ
Vt

[1{Ẽhigh ∩ Ẽspan
t }1{Espan

t }(V t(st,1) − V πt(st,1)) ∣ Ẽoptm
t ]]

(V t ≥ Ut conditioning on Ehigh)

≤ BP
errγH + (BR

noise +BR
err) ⋅BR

ϕ .

We simply upper bound T1.3 by zero. Plugging all these upper bounds back, we obtain

T1 ≤
1

Γ2(−1) E [1{E
high}

T

∑
t=1

Ẽ
Vt

[1{Ẽhigh ∩ Ẽspan
t } (Ṽt(st,1) − 1{Espan

t }Ut(st,1))]]

+ 1

Γ2(−1) ⋅ dHBV +BP
errγH + (BR

noise +BR
err) ⋅BR

ϕ

= 1

Γ2(−1) E [
T

∑
t=1

Ẽ
Vt

[1{Ẽhigh ∩ Ẽspan
t ∩Ehigh}Ṽt(st,1) − 1{Espan

t ∩Ehigh ∩ Ẽhigh ∩ Ẽspan
t }Ut(st,1)]]

+ 1

Γ2(−1) ⋅ dHBV +BP
errγH + (BR

noise +BR
err) ⋅BR

ϕ

This is the final bound of T1 we need. Next, we go back to bound T2 and T3.

Bounding T2. We upper bound the value function inside the expectation by H and obtain

T2 ≤H ⋅E [1{Ehigh}
T

∑
t=1

Ẽ
Vt

[1{(Ẽhigh)∁} ∣ Ẽoptm
t ]]

≤H ⋅E [
T

∑
t=1

Ẽ
Vt

[1{(Ẽhigh)∁} ∣ Ẽoptm
t ]] (dropping Ehigh)

=H ⋅E [
T

∑
t=1

Pr ((Ẽhigh)∁ ∩ Ẽoptm
t ) /Pr (Ẽoptm

t )]

≤ HT

Γ2(−1) ⋅Pr
((Ehigh)∁)

≤ 1

Γ2(−1) . (Lemma 8)

Bounding T3. Similar, we upper bound the value function inside the expectation by H and obtain

T3 ≤H ⋅E [1{Ehigh}
T

∑
t=1

Ẽ
Vt

[1{(Ẽspan
t )∁} ∣ Ẽoptm

t ]]

≤H ⋅E [
T

∑
t=1

Ẽ
Vt

[1{(Ẽspan
t )∁} ∣ Ẽoptm

t ]] (dropping Ehigh)

=H ⋅E [
T

∑
t=1

Ẽ
Vt

[1{(Ẽspan
t )∁ ∩ Ẽoptm

t }] /Pr(Ẽoptm
t )]

≤H ⋅E [
T

∑
t=1

Ẽ
Vt

[1{(Ẽspan
t )∁}] /Pr(Ẽoptm

t )]

≤ H

Γ2(−1) ⋅E [
T

∑
t=1

1{(Espan
t )∁}] (tower rule)

≤ dH2

Γ2(−1) (Lemma 15)

Plugging all these back, we conclude the proof.
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The following lemma refines the event conditions established in Lemma 17 to make the whole thing
more manageable.
Lemma 18 (Refining event conditions). It holds that

E [
T

∑
t=1

Ẽ
Vt

[1{Ẽhigh ∩ Ẽspan
t ∩Ehigh}Ṽt(st,1) − 1{Espan

t ∩Ehigh ∩ Ẽhigh ∩ Ẽspan
t }Ut(st,1)]]

≤ E [
T

∑
t=1

Ẽ
Vt

[1{Ẽhigh ∩ Ẽspan
t }Ṽt(st,1) − 1{Espan

t ∩Ehigh}Ut(st,1)]]

+ dHBV + 2BV /H.

Proof of Lemma 18. We start with refining the event conditions on the first term. We remove un-
needed events by splitting the first term into two parts:

E [
T

∑
t=1

Ẽ
Vt

[1{Ẽhigh ∩ Ẽspan
t ∩Ehigh}Ṽt(st,1) − 1{Espan

t ∩Ehigh ∩ Ẽhigh ∩ Ẽspan
t }Ut(st,1)]]

= E [
T

∑
t=1

Ẽ
Vt

[1{Ẽhigh ∩ Ẽspan
t }Ṽt(st,1) − 1{Espan

t ∩Ehigh ∩ Ẽhigh ∩ Ẽspan
t }Ut(st,1)]]

−E [
T

∑
t=1

Ẽ
Vt

[1{Ẽhigh ∩ Ẽspan
t ∩ (Ehigh)∁}Ṽt(st,1)]]

Here, using Lemma 13, the last term can be bounded by

−E [
T

∑
t=1

Ẽ
Vt

[1{Ẽhigh ∩ Ẽspan
t ∩ (Ehigh)∁}Ṽt(st,1)]] ≤ E [

T

∑
t=1

1{(Ehigh)∁}BV ] ≤ BV /H

where we used Lemma 8 in the last inequality.

Now we seek to remove unneeded event conditions on Ut as well. We notice the following decom-
position

1{Espan
t ∩Ehigh ∩ Ẽhigh ∩ Ẽspan

t }Ut(st,1)
≥ 1{Espan

t ∩Ehigh}Ut(st,1)
− 1{Espan

t ∩Ehigh ∩ (Ẽhigh)∁}Ut(st,1)
− 1{Espan

t ∩Ehigh ∩ (Ẽspan
t )∁}Ut(st,1).

Plugging this back, we obtain

E [
T

∑
t=1

Ẽ
Vt

[1{Ẽhigh ∩ Ẽspan
t ∩Ehigh}Ṽt(st,1) − 1{Espan

t ∩Ehigh ∩ Ẽhigh ∩ Ẽspan
t }Ut(st,1)]]

≤ E [
T

∑
t=1

Ẽ
Vt

[1{Ẽhigh ∩ Ẽspan
t }Ṽt(st,1) − 1{Espan

t ∩Ehigh}Ut(st,1)]]

+E [
T

∑
t=1

Ẽ
Vt

[1{Espan
t ∩Ehigh ∩ (Ẽhigh)∁}Ut(st,1)]]

+E [
T

∑
t=1

Ẽ
Vt

[1{Espan
t ∩Ehigh ∩ (Ẽspan

t )∁}Ut(st,1)]]

+BV /H
The first term is exactly what we want. Now we bound the middle two terms separately below:

E [
T

∑
t=1

Ẽ
Vt

[1{Espan
t ∩Ehigh ∩ (Ẽhigh)∁}Ut(st,1)]]

≤ E [
T

∑
t=1

Ẽ
Vt

[1{Espan
t ∩Ehigh ∩ (Ẽhigh)∁}BV ]] (Lemma 13)

33



1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835

Under review as a conference paper at ICLR 2025

≤ T ⋅Pr((Ẽhigh)∁)BV

≤ BV /H (Lemma 8)

and for the other term we also have

E [
T

∑
t=1

Ẽ
Vt

[1{Espan
t ∩Ehigh ∩ (Ẽspan

t )∁}Ut(st,1)]]

≤ E [
T

∑
t=1

Ẽ
Vt

[1{(Ẽspan
t )∁}]BV ] (Lemma 13)

= BV E [
T

∑
t=1

1{(Espan
t )∁}] (tower rule)

≤ dHBV . (Lemma 15)

Hence, putting all together, we complete the proof.

The following lemma provides a final bound for the first term in Lemma 18.
Lemma 19 (Final bound). It holds that

E [
T

∑
t=1

Ẽ
Vt

[1{Ẽhigh ∩ Ẽspan
t }Ṽt(st,1) − 1{Espan

t ∩Ehigh}Ut(st,1)]]

≤ 2HBP
errB

P
ϕ + 2(BR

err +BR
noise) ⋅HBR

ϕ .

Proof of Lemma 19. By tower rule, we have

E [
T

∑
t=1

Ẽ
Vt

[1{Ẽhigh ∩ Ẽspan
t }Ṽt(st,1) − 1{Espan

t ∩Ehigh}Ut(st,1)]]

= E [
T

∑
t=1

1{Ehigh ∩Espan
t }V t(st,1) − 1{Espan

t ∩Ehigh}Ut(st,1)]

We plug in the result in Lemma 11 and get

≤ E [
T

∑
t=1

1{Ehigh ∩Espan
t }

H

∑
h=1
⟨θ̂t,h − T (θt,h+1 + ωt,h+1), ϕ(st,h, at,h)⟩]

+E [
T

∑
t=1

1{Ehigh ∩Espan
t }

H

∑
h=1
⟨T (θt,h+1 + ωt,h+1) − θ̂t,h, ϕ(st,h, at,h)⟩]

+E [
T

∑
t=1

1{Ehigh ∩Espan
t }

H

∑
h=1
⟨ωt,h − ωt,h, ϕ(st,h, at,h)⟩]

Applying Cauchy-Schwartz inequality to each term yields

≤ E [
T

∑
t=1

1{Ehigh ∩Espan
t }

H

∑
h=1
∥θ̂t,h − T (θt,h+1 + ωt,h+1)∥Σ̂t,h

∥ϕ(st,h, at,h)∥Σ̂†
t,h
]

+E [
T

∑
t=1

1{Ehigh ∩Espan
t }

H

∑
h=1
∥T (θt,h+1 + ωt,h+1) − θ̂t,h∥Σ̂t,h

∥ϕ(st,h, at,h)∥Σ̂†
t,h
]

+E [
T

∑
t=1

1{Ehigh ∩Espan
t }

H

∑
h=1
(∥ωt,h − ω⋆h∥Σt,h

+ ∥ω⋆h − ωt,h∥Σt,h
)∥ϕ(st,h, at,h)∥Σ−1

t,h
]

The first two terms can be bounded by HBP
errB

P
ϕ using Lemmas 7 and 16. For the last term, condi-

tioning on Ehigh, we have

∥ωt,h − ω⋆h∥Σt,h
≤ ∥ωt,h − ω̂t,h∥Σt,h

+ ∥ω̂t,h − ω⋆h∥Σt,h
≤ BR

err +BR
noise

and similarly for ∥ω⋆h − ωt,h∥Σt,h
. Also, applying Lemma 16, we have

T

∑
t=1

H

∑
h=1
∥ϕ(st,h, at,h)∥Σ−1

t,h
≤HBR

ϕ .
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Inserting all these back, we get the upper bound of

2HBP
errB

P
ϕ + 2(BR

err +BR
noise) ⋅HBR

ϕ .

Hence, we complete the proof.

Proof of Theorem 6. We have

E [
T

∑
t=1
(V ⋆(st,1) − V πt(st,1))] ≤ E [1{Ehigh}

T

∑
t=1

1{Espan
t }(V ⋆(st,1) − V πt(st,1))]

+E [1{(Ehigh)∁}
T

∑
t=1
(V ⋆(st,1) − V πt(st,1))]

+E [
T

∑
t=1

1{(Espan
t )∁}(V ⋆(st,1) − V πt(st,1))]

=∶ TA + TB + TC.

For TA, by Lemmas 17 to 19 and re-arranging the results, we have

TA ≤
1

Γ2(−1) ⋅ (2BV (dH + 1/H) +HBP
errγ + dH2 + 1 + (BR

err +BR
noise)(2H + 1)BR

ϕ + 2HBP
errB

P
ϕ )

= Õ(d5/2H5/2 + d2H3/2√T + ε1γ(dH2 + d3/2H
√
T)

+√εB(d2H5/2√T + d3/2H3/2T) + εBγ(dH2
√
T + d3/2HT))

For TB, by Lemma 8, we have

TB ≤HT ⋅Pr ((Ehigh)∁) ≤ 1.

For TC, by Lemma 15, we have

TC ≤H ⋅E [
T

∑
t=1

1{(Espan
t )∁}] ≤ dH2.

Putting everything together, we complete the proof.

D SUPPORTING LEMMAS

Lemma 20 (Gaussian concentration). (Abeille & Lazaric, 2017) Let x ∼ N (0, cΣ−1) for c ∈ R+and

Σ a positive definite matrix. Then, for any δ > 0, we have Pr (∥x∥Σ >
√
2cd log(2d/δ)) ≤ δ

Lemma 21 (Elliptical potential lemma). Assume that X ⊆ {x ∶ ∥x∥2 ≤ 1} is compact and
span(X) = Rd. Let x1, . . . , xT ∈ X be a sequence of vectors, Σ1 be a positive definite matrix
with each eigenvalue bounded within the range of [a, b] for some a, b > 0, and Σt+1 = Σt + xtx

⊺
t .

Then, we have

T

∑
t=1

min{1, x⊺tΣ−1t xt} ≤ 2d log (
b

a
+ T

ad
) .

Furthermore, if Σ1 is constructed via optimal design, i.e., Σ1 = Ex∼ρ xx
⊺ where ρ ∈ ∆(X) is an

optimal design over X , then we have

T

∑
t=1

min{1, x⊺tΣ−1t xt} ≤ 2d log (T + 1) .
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Proof of Lemma 21. First we claim that

min{1, x⊺tΣ−1t xt} ≤ 2x⊺tΣ−1t+1xt (14)

To show this, we use Sherman-Morrison-Woodbury formula (Bhatia, 2013) for rank-one updates to
a matrix inverse:

x⊺tΣ
−1
t+1xt = x⊺t (Σt + xtx

⊺
t )
−1

xt = x⊺t
⎛
⎝
Σ−1t −

Σ−1t xtx
⊺
tΣ
−1
t

1 + ∥xt∥2Σ−1t

⎞
⎠
xt = ∥xt∥2Σ−1t −

∥xt∥4Σ−1t
1 + ∥xt∥2Σ−1t

=
∥xt∥2Σ−1t

1 + ∥xt∥2Σ−1t
.

Now let us consider two cases for the right-hand side of the above:

Case 1 : x⊺tΣ
−1
t xt ≤ 1. Then, we can lower bound the right-hand side above by ∥xt∥2Σ−1t /2.

Case 2 : x⊺tΣ
−1
t xt ≥ 1. Then the right-hand side above is directly at least 1/2 since the function

x/(1 + x) is increasing in x.

Hence, in both cases, we have x⊺tΣ
−1
t+1xt ≥min{1, x⊺tΣ−1t xt} /2, which finishes the proof of (14).

Since the log-determinant function is concave, we can obtain that log det (Σt) − log detΣt+1 ≤
tr (Σ−1t+1 (Σt −Σt+1)) via first-order Taylor approximation. This gives us the following

T

∑
t=1

x⊺tΣ
−1
t+1xt =

T

∑
t=1

tr (Σ−1t+1 (Σt+1 −Σt)) ≤
T

∑
t=1
(log detΣt+1 − log detΣt) = log (

detΣT+1
detΣ1

)

where the last step follows from telescoping. Since each eigenvalue of Σ1 is lower bounded by a,
we have detΣ1 ≥ ad. Towards an upper bound of detΣT+1 = det(Σ1+∑T

t=1 xtx
⊺
t ), let (λ1, . . . , λd)

denote the eigenvalues of ∑T
t=1 xtx

⊺
t , and then we have

det(Σ1 +
T

∑
t=1

xtx
⊺
t ) ≤

d

∏
i=1
(b + λi) ≤ (

1

d

d

∑
i=1
(b + λi))

d

≤ (b + 1

d
tr(

T

∑
t=1

xtx
⊺
t ))

d

≤ (b + T

d
)
d

Here, the first step is Weyl’s inequality, the second step is AM-GM inequality, and the last step is
because the trace is bounded by T . Plugging this upper bound back, we have

log (detΣT+1
detΣ1

) ≤ d log ( b
a
+ T

ad
) .

This completes the proof of the first statement.

For the case where Σ1 is constructed via optimal design, we can rewrite ΣT+1 in the following way:

ΣT+1 = E
x∼ρ

xx⊺ +
T

∑
t=1

xtx
⊺
t = (T + 1)(

1

1 + T ⋅ Ex∼ρxx
⊺ +

T

∑
t=1

1

1 + T ⋅ xtx
⊺
t )

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
(∗)

=∶ (T + 1) E
x∼ρ′

xx⊺

where we consider (∗) as an expectation of xx⊺ over a new distribution that we denote by ρ′. Recall
that Σ1 is constructed via optimal design, which implies detΣ1 ≥ detEx∼ρ′ xx

⊺ (Lemma 23). This
gives us

log (detΣT+1
detΣ1

) = log((T + 1)
d detEx∼ρ′ xx

⊺

detΣ1
) ≤ log ((T + 1)d) = d log (T + 1) .

This completes the proof.

The following inequality is well-known; we use the version stated in Zhu & Nowak (2022).
Lemma 22 (Freedman’s inequality). Let {Xt}t≤T be a real-valued martingale different sequence
adapted to the filtration Ft, and let Et[⋅] ∶= E[⋅ ∣ Ft−1]. If ∣Xt∣ ≤ B almost surely, then for any
η ∈ (0,1/B), the following holds with probability at least 1 − δ:

T

∑
t=1

Xt ≤ η
T

∑
t=1

Et[X2
t ] +

B log(1/δ)
η

.
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Lemma 23. (Lattimore & Szepesvári, 2020) Assume that Φ ⊆ Rd is compact and span(Φ) = Rd.
For a distribution ρ over Φ, define Λ(ρ) = ∑ϕ∈Φ ρ(ϕ)ϕϕ⊺ and g(ρ) =maxϕ∈Φ ∥ϕ∥2Λ(ρ)−1 . Then, the
following are equivalent:

• ρ is a minimizer of g.

• ρ is a maximizer of f(ρ) ∶= log detΛ(ρ).

• g(ρ) = d.

Furthermore, there exists a minimizer ρ of g such that ∣supp(ρ)∣ ≤ d(d + 1)/2.

Below we show that the Cauchy-Schwarz inequality is still valid when the matrix is not invertible
under some conditions. We start with the following lemma.

Lemma 24. Let A be a positive semi-definite matrix. Let B be a square root of A, i.e., A = BB⊺.
Then range(A) = range(B).

Proof of Lemma 24. We first show that range(A) ⊆ range(B). To see this, for any y ∈ range(A),
there exists x such that y = Ax = BB⊺x = B(B⊺x). Hence y ∈ range(B). Next, we show
that range(B) ⊆ range(A). To see this, for any y ∈ range(B), there exists x such that y = Bx.
Let x = x0 + x1 where x0 ∈ null(B) and x1 ∈ rowspace(B). Then, y = Bx = Bx1. Since
x1 ∈ rowspace(B), there exists z such that x1 = B⊺z. Thus, y = Bx1 = BB⊺z = Az. Hence,
y ∈ range(A).

Lemma 25 (Cauchy-Schwarz under pseudo-inverse). Let Σ be a positive semi-definite matrix (that
is unnecessarily invertible). Then, for any x ∈ range(Σ) and any y ∈ Rd, we have

x⊺y ≤ ∥x∥Σ†∥y∥Σ.

Proof of Lemma 25. Let B denote the square root of Σ and force B to be positive semi-definite.
One can verify that BB† is the orthogonal projection matrix onto range(B), and hence, range(Σ)
(recalling that range(B) = range(Σ) by Lemma 24). Therefore, for any x ∈ range(Σ), we have
BB†x = x. Then, we have

x⊺y = x⊺B†By ≤
√
x⊺B†B†x

√
y⊺BBy = ∥x∥Σ†∥y∥Σ

where the inequality follows from the standard Cauchy-Schwarz inequality.

Lemma 26 (Invariance under projection). Let Σ ∈ Rd×d be a positive semi-definite matrix of rank r.
For any vector ϕ ∈ Rd, we have ∥ϕ∥Σ† = ∥Pϕ∥Σ† where P is the projection onto the range of Σ.

Proof of Lemma 26. Assume the eigen-decomposition of Σ = UΛU⊺, so Σ† = UΛ†U⊺. Without
loss of generality, we assume Λ has all its non-zero elements at the front and zero elements at the
back on the diagonal. Denote Ur as the matrix obtained by replacing the last n− r columns of U by
0. Note that the first r columns of U is in the range of Σ, so we must have PU = Ur. Then, we have
the following

∥Pϕ∥2Σ† = ϕ⊺P ⊺Σ†Pϕ = ϕ⊺P ⊺UΛ†U⊺Pϕ = ϕ⊺P ⊺UrΛ
†U⊺r Pϕ = ϕ⊺UrΛ

†U⊺r ϕ = ϕ⊺UΛ†U⊺ϕ = ∥ϕ∥2Σ† .

This completes the proof.

D.1 PSEUDO DIMENSION AND COVERING NUMBER

Definition 6 (ℓ1-Covering number). (Definition 4 of Modi et al. (2024)) Given a hypothesis class
H ⊆ (Z ↦ R) and Zn = (z1, . . . , zn) ∈ Zn, ε > 0, define N(ε,H, Zn) as the minimum cardinality
of a set C ⊆ H, such that for any h ∈ H, there exists h′ ∈ C such that ∑n

i=1 ∣h(zi) − h′(zi)∣/n ≤ ε. We
define N(ε,H, n) =maxZn∈Zn N(ε,H, Zn).

Below we define the pseudo-dimension (Haussler, 2018; Modi et al., 2024).
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Definition 7 (VC-dimension). For hypothesis class H ⊆ (X → {0,1}), we define its VC-
dimension VC-dim(H) as the maximal cardinality of a set X = {x1, . . . , x∣X ∣} ⊆ X that sat-
isfies ∣HX ∣ = 2∣X ∣ (or X is shattered by H), where HX is the restriction of H to X , i.e.,
{(h (x1) , . . . , h (x∣X ∣)) ∶ h ∈ H}.
Definition 8 (Pseudo-dimension). For hypothesis class H ⊆ (X → R), we define its pseudo dimen-
sion Pdim(H) as Pdim(H) = VCdim (H+), where H+ = {(x, ξ) ↦ 1[h(x) > ξ] ∶ h ∈ H} ⊆
(X ×R→ {0,1})

The following lemma provides a bound on the covering number of a hypothesis class via pseudo
dimension.
Lemma 27. (Corollary 42 of Modi et al. (2024)) Given a hypothesis class H ⊆ Z ↦ [a, b] with
Pdim(H) ≤ d, then, for any n, we have

N(ε,H, n) ≤ (4e2(b − a)/ε)d .
Note that the right-hand side is independent of n.

E LINEAR MDPS AND LQRS IMPLY LINEAR BELLMAN COMPLETENESS

It is already well known that linear Bellman completeness captures linear MDPs, as demonstrated
in works such as Agarwal et al. (2019); Zanette et al. (2020b). Here, we show why it also captures
LQRs. We start with the definition.
Definition 9 (Linear Quadratic Regulator). A linear quadratic regulator (LQR) problem is defined
by a tuple (A,B,Q,R) where A ∈ Rd×d, B ∈ Rd×m, Q ∈ Rd×d, and R ∈ Rm×m. The objective is to
find a policy π that minimizes the following:

J(π) = E [
H

∑
h=1

x⊺hQxh + u⊺hRuh]

where xt+1 = Axh +Buh +wh where wh ∼ N(0, σ2I).

When R is positive definite, we can show that the optimal policy is linear in the state, i.e., π⋆(xh) =
Khxh for some matrix Kh. The proof can be found, for example, in Agarwal et al. (2019). This is
enough for us to show that LQR is captured by linear Bellman completeness. We define the feature
map to be the quadratic form, i.e.,

ϕ(x,u) =

⎡⎢⎢⎢⎢⎢⎢⎣

vec(xx⊺)
vec(uu⊺)
vec(xu⊺)

1

⎤⎥⎥⎥⎥⎥⎥⎦
where vec(⋅) means the vectorization of a matrix. Then, we need to show that, for any x,u and any
vector θ, the following is a linear function of x and u:

E
w∼N(0,σ2I)

[min
u′
⟨ϕ(Ax +Bu +w,u′), θ⟩].

Since the optimal policy is linear in the state, we can write u′ = Kx for some matrix K. Then, the
above is equivalent to

E
w∼N(0,σ2I)

[⟨ϕ(Ax +Bu +w,K(Ax +Bu +w)), θ⟩].

We observe that the feature inside the expectation is a quadratic function of x u, and w. In other
words, there must exist a vector θ′ such that

⟨ϕ(Ax +Bu +w,K(Ax +Bu +w)), θ⟩ = ⟨

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

vec(xx⊺)
vec(uu⊺)
vec(ww⊺)
vec(xu⊺)
vec(xw⊺)
vec(uw⊺)

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

, θ′⟩.
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Since w is sampled from isotropic Gaussian distribution, when taking the expectation, the cross
terms vec(xw⊺) and vec(uw⊺) will vanish, and vec(ww⊺) will be the constant vector vec(σ2I).
Therefore, it simply becomes a quadratic function of x and u. In other words, there exists a vector
θ′′ such that

E
w∼N(0,σ2I)

[⟨ϕ(Ax +Bu +w,K(Ax +Bu +w)), θ⟩] = ⟨

⎡⎢⎢⎢⎢⎢⎢⎣

vec(xx⊺)
vec(uu⊺)
vec(xu⊺)

1

⎤⎥⎥⎥⎥⎥⎥⎦

, θ′′⟩ = ⟨ϕ(x,u), θ′′⟩.

This is exactly what we want to show. We can also easily verify that the reward (cost) function is
linear in the quadratic feature. Hence, LQR is captured by linear Bellman completeness.

F COMPUTATIONALLY EFFICIENT IMPLEMENTATIONS FOR OPTIMIZATION
ORACLES

The convex programming algorithm given in Algorithm 2 is due to Bertsimas & Vempala (2004).
In the following, we provide an informal description of Algorithm 2 below but refer the reader to
Bertsimas & Vempala (2004) for the full details.

At an iteration t ≤ T , Algorithm 2 stars with a setDt which contains the setK, and a set of 2N points
Ut sampled (approximately) uniformly from Dt using the SAMPLER subroutine in Algorithm 3. It
then uses the first N samples from Ut to compute an approximate centroid zt of the set Dt in line 6;
the remaining points from Ut are denoted by Vt. It then queries the separation oracle Osep

K at the
point zt. If zt ∈ K, then we terminate and return zt. Otherwise, we use the separating hyperplane
between zt and K to shrink the set Dt further into Dt+1 in line 12. Finally, it calls SAMPLER again
using the set of points Vt as a warm start to get 2N new (approximately) i.i.d. sample from Dt+1 in
line 13. Equipped with the sets Dt+1 and Ut+1, another iteration of the algorithm follows.

On receiving a convex setD and a set of points V , the SAMPLER protocol in Algorithm 3 first refines
V to V ′ by disposing off any points z ∈ V that do not lie inD. Then, it starts a random ball walk from
the samples in V ′: in order to update the current point ẑ we first sample a point z′ uniformly from
the ellipsoid ẑ + ηΛ1/2Bd(1) (where Λ is defined using the points in V ′) and then updates ẑ ← z′

if z′ ∈ D. The analysis of Bertsimas & Vempala (2004) shows that this ball walk mixes fast to a
uniform distribution over the set D.

Algorithm 2 Solving Convex Programs by Random Walks (Bertsimas & Vempala (2004))

Require: • Separation oracle Osep
K for the convex set K ⊆ Rd.

• Parameters r,R, δ.

1: Let T = 2d log(R/δr) and N = O(d log(1/δ))
2: Let D1 be the axis-aligned cube with width R with center z1 = 0.
3: Sample 2N points U1 ∶= {z11 , . . . , z2N1 } ← Uniform(D1).
4: Let V1 ∶= {z11 , . . . , zN1 } and V̄1 ∶= U1 ∖ V1.
5: for t = 1, . . . , T do
6: Compute the point zt ← 1

N ∑z∈Vt
z.

7: if zt ∈K then
8: Return zt and terminate.
9: else

10: // If zt ∉ K, shrink the set Dt using a separating hyperplane //
11: Let ⟨at, z⟩ ≤ b be the separating hyperplane returned by Osep

K (zt).
12: Let Dt+1 ← Dt ∩Ht whereHt denotes the halfspace {z ∣ ⟨at, z⟩ ≤ ⟨at, zt⟩}.
13: Sample 2N points Ut+1 ∶= {z11 , . . . , z2N1 } ← SAMPLER(Dt+1,N,Vt).
14: Let Vt+1 ∶= {z11 , . . . , zN1 } and V̄t+1 ∶= Ut+1 ∖ Vt+1.
15: end if
16: end for
17: Terminate and report that K is empty.
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Algorithm 3 SAMPLER used in Algorithm 2
Require: • Convex set D.

• Parameter N .
• Points V = {z1, . . . , zN}.

1: Let step size η = Θ(1/√d), and number of iterations N ′ = Õ(d3N).
2: Let V ′ ∶= {z ∈ V ∣ z lies in D}, and define

z̄ = 1

∣V ′∣z and Λ = 1

∣V ′∣ ∑z∈V ′
(z − z̄)(z − z̄)T .

3: Let U = ∅ and ẑ ∈ V ′ be any arbitrary stating point (note that ẑ ∈ D).
4: while ∣U ∣ ≤ 2N do
5: Initialize i← 1.
6: while i ≤ N ′ do
7: Sample z′ ∼ Uniform(ẑ + ηΛ1/2Bd(1)). // Ball walk //
8: if z′ ∈ D then
9: Update ẑ ← z′ and i← i + 1.

10: end if
11: end while
12: Update U = U ∪ {ẑ}.
13: end while
14: Return U . // Distribution of samples in U closely approximates Uniform(D) //

G MISSING DETAILS FROM SECTION 6.2

Algorithm 4 Computationally Efficient Implementation of Osq
apx for Value Estimation

Require: • Data samples {(si, ai, ui)}i≤t.
• Convex domain O(W ).
• Approximation parameter ε.
• Linear optimization oracle Olin defined in Assumption 6.

1: // Convert Square Loss Minimization into a Set Feasibility Problem //
2: Define the convex set

KAPX ∶=
⎧⎪⎪⎪⎨⎪⎪⎪⎩
θ ∈ Rd

RRRRRRRRRRR

⟨θ, ϕ(si, ai)⟩ − ui ≤ ε for all i ≤ t
⟨θ, ϕ(si, ai)⟩ − ui ≥ −ε for all i ≤ t
∣⟨θ, ϕ(s, a)⟩∣ ≤Wh + ε for all s, a

⎫⎪⎪⎪⎬⎪⎪⎪⎭
(15)

3: // Define a Separation Oracle for the set KAPX using Olin //
4: Definition Osep

KAPX
(Input: parameter θ ∈ Rd)

● For all i ≤ t, verify if −ε ≤ ⟨θ, ϕ(si, ai)⟩ − ui ≤ ε for all i ≤ t.
▸ Output any violating constraint as a separating hyperplane. Terminate.

● Then, verify if max{maxs,a⟨θ, ϕ(s, a)⟩,maxs,a⟨−θ, ϕ(s, a)⟩} ≤W + ε using the linear
optimization oracle Olin (Assumption 6).
▸ If violated, useOlin to compute a violating constraint and return it as the separat-

ing hyperplane. Terminate.
▸ Otherwise, return that the point θ ∈ KAPX. Terminate.

5: EndDefinition
6: // Find a feasible point in KAPX //
7: Invoke Algorithm 2 to return a feasible point in the setKAPX withOsep

KAPX
as the separation oracle.
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G.1 COMPUTATIONALLY EFFICIENT ESTIMATION OF REWARD FUNCTION (EQN. 2)

The convex set feasibility procedure of Bertsimas & Vempala (2004) can also be used to estimate
the parameters for the reward functions in (2) in Algorithm 1. Note that for any time t and horizon
h ∈ [H], the objective in (1) is the optimization problem

ω̂t,h ← argmin
ω∈O(1)

t−1
∑
i=1
(⟨ω,ϕ(si,h, ai,h)⟩ − ri,h)

2

. (16)

In the following, we provide a computationally efficient procedure, based off on Algorithm 2, to
approximately solve the above squared loss minimization problem given a linear optimization oracle
over the feature space (Assumption 6). Note that since ri,h ∈ [0,1], the constraint on the point ω
implies that the objective value in (16) is at most 2. Thus, we can solve the above optimization
problem upto precision ε, by iterating over the set ∆ ∈ {0, ε,2ε, . . . ,2 − ε,2} in order to solve the
set feasibility problem

K∆
APX ∶=

⎧⎪⎪⎨⎪⎪⎩
ω ∈ Rd

RRRRRRRRRRR
∑t−1

i=1(⟨ω,ϕ(si,h, ai,h)⟩ − ri,h)
2 ≤∆ + ε

∣⟨ω,ϕ(s, a)⟩∣ ≤ 1 + ε for all s, a

⎫⎪⎪⎬⎪⎪⎭
(17)

and stopping at the smallest point ∆ for which K∆
APX has a feasible solution. It is easy to see that

for any ∆, either K∆
APX is empty or the shifted cube ω̂t,h + R∞(ε) ⊆ K∆

APX. Furthermore, under
Assumption 7 we also have that K∆

APX ⊆ R∞(R) for any ∆. Thus, for any ∆, whenever a feasible
solution exists, the set K∆

APX satisfies the prerequisites for Theorem 4, where recall that we can
tolerate the parameter R to be exponential in the dimension d or the horizon H . Furthermore, a
separation oracle Osep

K∆
APX

can be easily implemented by using the linear optimization oracle Olin

w.r.t. the feature space (Assumption 6) and by explicitly constructing a separation oracle for the
ellipsoidal constraint

t−1
∑
i=1
(⟨ω,ϕ(si,h, ai,h)⟩ − ri,h)2 ≤∆ + ε.

We provide the implementation of the above in Algorithm 5, which relies on Algorithm 2 for solving
the corresponding set feasibility problems. The guarantee in Theorem 4 to find a feasible point in
K∆

APX (for each ∆) gives the following guarantee on computational efficiency for Algorithm 5.
Theorem 7. Let ε > 0, δ ∈ (0,1), and suppose Assumption 7 holds with some parameter R > 0.
Additionally, suppose Assumption 6 holds with the linear optimization oracle denoted byOlin. Then,
for any t ∈ [T ] and h ∈ [H], Algorithm 5 returns a point ω̂t,h that, with probability at least 1 − δ,
satisfies

t−1
∑
i=1
(⟨ω̂, ϕ(si,h, ai,h)⟩ − ri,h)2 ≤ min

ω∈O(1)

t−1
∑
i=1
(⟨ω,ϕ(si,h, ai,h)⟩ − ri,h)2 + ε and ω̂t,h ∈ O(1 + ε).

Furthermore, Algorithm 5 takes O(d7

ε
log( R

δε
)) time in addition to O(d

ε
log(THR

δε
)) calls to Olin.
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Algorithm 5 Computationally Efficient Implementation of Osq
apx for Reward Estimation

Require: • Data samples {(si, ai, ri)}i≤t.
• Convex domain O(1).
• Approximation parameter ε.
• Linear optimization oracle Olin defined in Assumption 6.

1: for ∆ ∈ {0, ε,2ε, . . . ,2 − ε,2} do
2: // Define a Set Feasibility Problem using ∆ //
3: Define the convex set

K∆
APX ∶=

⎧⎪⎪⎨⎪⎪⎩
ω ∈ Rd

RRRRRRRRRRR
∑t−1

i=1(⟨ω,ϕ(si, ai)⟩ − ri)
2 ≤∆ + ε

∣⟨ω,ϕ(s, a)⟩∣ ≤ 1 + ε for all s, a

⎫⎪⎪⎬⎪⎪⎭
(18)

4: // Define a Separation Oracle for K∆
APX using Olin //

5: Definition Osep

K∆
APX

(Input: parameter ω ∈ Rd)

● Verify if ∑t−1
i=1(⟨ω,ϕ(si, ai)⟩ − ri)

2 ≤∆ + ε.
▸ If not, return a separating hyperplane for the ellipsoid

∑t−1
i=1(⟨ω,ϕ(si, ai)⟩ − ri)

2 ≤∆ + ε w.r.t. ω. Terminate.
● Then, verify if max{maxs,a⟨ω,ϕ(s, a)⟩,maxs,a⟨−ω,ϕ(s, a)⟩} ≤ 1 + ε using the

linear optimization oracle Olin (Assumption 6).
▸ If violated, use Olin to compute a violating constraint and return it as the

separating hyperplane. Terminate.
▸ Otherwise, return that the point ω ∈ K∆

APX. Terminate.
6: EndDefinition
7: // Find a feasible point in K∆

APX //
8: Invoke Algorithm 2 with Osep

K∆
APX

as the separation oracle.

● If succeeded in finding a feasible point ω̂ ∈ K∆
APX. Return ω̂ and terminate.

● Else, continue.
9: end for
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