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Abstract

NLP research is impeded by a lack of re-
sources and awareness of the challenges pre-
sented by under-represented languages and di-
alects. Focusing on the languages spoken in In-
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donesia, the second most linguistically diverse
and the fourth most populous nation of the
world, we provide an overview of the current
state of NLP research for Indonesia’s 700+ lan-
guages. We highlight challenges in Indonesian
NLP and how these affect the performance of
current NLP systems. Finally, we provide gen-
eral recommendations to help develop NLP
technology not only for languages of Indone-
sia, but also other underrepresented languages.

1 Introduction

Research in natural language processing (NLP)
has traditionally focused on developing models for
English and a small set of other languages with
large amounts of data (see Figure 1, bottom right).
While the lack of data is generally cited as the key
reason for the lack of progress in NLP for under-
represented languages (Hu et al., 2020; Joshi et al.,
2020), we argue that another factor relates to the
diversity and the lack of understanding of the lin-
guistic characteristics of such languages. Through
the lens of the languages spoken in Indonesia, the
world’s second-most linguistically diverse country,
we seek to illustrate the challenges in applying NLP
technology to a such diverse pool of languages.
Indonesia is the 4th most populous nation glob-
ally with 273 million people spread over 17,508
islands. There are more than 700 languages spo-
ken in Indonesia, equal to 10% of the world’s lan-
guages, second only to Papua New Guinea (Eber-
hard et al., 2021). However, most of these lan-
guages are not well documented in the literature;
many are not formally taught and no established
standard exists across speakers (Novitasari et al.,
2020). Many of them are decreasing in use, as
Indonesian (Bahasa Indonesia), the national lan-
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Figure 1: Following Joshi et al. (2020), we compile
ACL Anthology (main conferences and workshops) to
count the distribution of published works that mention
Indonesian languages. Top: Distribution of papers in
20 years. Bottom: Distribution per million speakers,
compared to other Asian and European languages.

guage, is more frequently used as the primary lan-
guage across the country. This process may ulti-
mately result in a monolingual society (Cohn and
Ravindranath, 2014). One study finds that among
98 Indonesian local languages, 36 are considered
safe, 51 are endangered, and 11 are already ex-
tinct (Anindyatri and Mufidah, 2020).

Table 1 shows the 10 Indonesian local languages
with the most speakers, along with Indonesian for
comparison (Eberhard et al., 2021). Javanese and
Sundanese are at the top with 84M and 34M speak-
ers respectively, while Madura, Minangkabau, and
Buginese have around 6M speakers. Despite their
large speaker populations, these local languages
are poorly represented in the NLP literature. Com-
pared to Indonesian, the number of research papers



Language ISO  # Speakers
Indonesian id 198 M
Javanese jav 84 M
Sundanese / Sunda su 34 M
Madurese / Madura mad 7™M
Minangkabau min 6 M
Buginese bug 6 M
Betawi bew 5M
Acehnese / Aceh ace 4 M
Banjar bjn 4 M
Balinese ban 3M
Palembang Malay (musi) mus 3M

Table 1: The 10 most spoken Indonesian local lan-
guages according to Ethnologue (Eberhard et al.,
2021).

mentioning these languages has barely increased
over the past 20 years (Figure 1, top). Furthermore,
compared to their European counterparts, Indone-
sian languages are drastically understudied (Figure
1, bottom). This is true even for Indonesian, which
has nearly 200M speakers.

Language technology should be accessible to
everyone in their native languages (European Lan-
guage Resources Association, 2019), including In-
donesians. In the context of Indonesia, language
technology research offers some benefits. First,
language technology is one of the potential peace-
maker tools in a multi-ethnic country, helping In-
donesians understand each other better and avoid
the ethnic conflicts of the past (Bertrand, 2004).
On a larger scale, language technology promotes
language use (European Language Resources As-
sociation, 2019) and helps language preservation.
Despite these benefits, following Bird (2020), we
recommend a careful assessment of individual us-
age scenarios of language technology so they are
implemented for the good of the local population.

For language technology to be useful in the In-
donesian context, it additionally has to account
for the dialects of local languages. Dialects in
Indonesia are influenced by the geographical lo-
cation and regional culture of their speakers (Van-
der Klok, 2015) and thus often differ substantially
in morphology and vocabulary, posing challenges
for NLP systems. In this paper, we provide an
overview of the current state of NLP for Indone-
sian languages. We then discuss the challenges
presented by those languages and demonstrate how
they affect state-of-the-art systems in NLP. We fi-
nally provide recommendations for developing bet-
ter NLP technology not only for languages in In-
donesia but also other under-represented languages.
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Figure 2: Map of Austronesian and Papuan languages
in Indonesia

2 Background and Related Work

2.1 History and Taxonomy

Indonesia is one of the richest countries in the
world in terms of linguistic diversity. More
than 400 of its languages belong to the Aus-
tronesian language family, while the others are
Papuan languages spoken in the eastern part of
the country. As shown in Figure 2, the Aus-
tronesian languages in Indonesia belong to three
main groups: Western-Malayo-Polynesian (WMP),
Central-Malayo-Polynesian (CMP), and South-
Halmahera-West-New-Guinea (SHWNG) (Blust,
1980). WMP languages are Malay, Indonesian, Ja-
vanese, Sundanese, Balinese, and Minangkabau,
among others. All languages mentioned in Table 1
are in this group. Languages belonging to CMP
are languages of the Lesser Sunda Islands from
East Sumbawa (with Bimanese) onwards to the
east, and languages of the central and southern
Moluccas (including the Aru Islands and the Sula
Archipelago). The SHWNG group consists of lan-
guages of Halmahera and Cenderawasih Bay, as
far as the Mamberamo River, and of the Raja Am-
pat Islands. The Papuan languages, meanwhile,
are mainly spoken in Papua, such as Dani, Asmat,
Maybrat, and Sentani. Some Papuan languages
are also spoken in Halmahera, Timor, and the Alor
Archipelago (Palmer, 2018; Ross, 2005).

Most Austronesian linguists and archaeologists
agree that the original ‘homeland’ of Austronesian
languages must be sought in Taiwan and, prior to
Taiwan, in coastal South China (Adelaar, 2005;
Bellwood and Dizon, 2008; Bellwood et al., 2011).
The Austronesian people moved from Taiwan to the
Philippines in the second millennium CE. From the
Philippines, they moved southward to Borneo and



Sulawesi. From Borneo, they migrated to Sumatra,
the Malay Peninsula, Java, and even to Madagascar.
From Sulawesi, they moved southward to the CMP
area and eastward to the SHWNG area. From there,
they migrated to Oceania and Polynesia, as far as
New Zealand, Easter Island, and Hawaii (Gray and
Jordan, 2000). The people that lived in insular
Southeast Asia, such as in the Philippines and In-
donesia, before the arrival of Austronesians were
Australo-Melanesians (Bellwood, 1997). Gradual
assimilation with Austronesians occurred although
some pre-Austronesian groups still survive such
as Melanesian people in eastern Indonesia (Ross,
2005; Coupe and Kratochvil, 2020).

At the time of the arrival of the first Europeans,
Malay had become the major language (lingua
franca) of interethnic communication in Southeast
Asia and beyond (Steinhauer, 2005; Coupe and
Kratochvil, 2020). It functioned as the language of
trade and the language of Islam because Muslim
merchants from India and the Middle East were
the first to introduce the religion into the harbor
towns of Indonesia. After the arrival of Europeans,
Malay was used by the Portuguese and Dutch
to spread Catholicism and Protestantism. When
the Dutch extended their rule over areas outside
Java in the nineteenth century, the importance of
Malay increased, and thus, the first standardiza-
tion of the spelling and grammar occurred in 1901,
based on Classical Malay (Abas, 1987; Sneddon,
2003). In 1928, the participants of the Second Na-
tional Youth Congress proclaimed Malay (hence-
forth called Indonesian) as the unifying language
of Indonesia. During World War 11, the Japanese
occupying forces forbade all use of Dutch in favor
of Indonesian, which from then onward effectively
became the new national language. After indepen-
dence until the present, Indonesian has functioned
as the main language in education, mass media, and
government activities. Many local language speak-
ers are increasingly using Indonesian with their
children because they believe it will help them to-
ward a better education and career (Klamer, 2018).

2.2 Efforts in Multilingual Research

Recently, pretrained multilingual language models
such as mBERT (Devlin et al., 2019), mBART (Liu
et al., 2020), and mT5 (Xue et al., 2021b) were pro-
posed. Their coverage, however, focuses on high-
resource languages. Among them, only mBERT
and mT5 include Indonesian local languages, i.e.,

Javanese, Sundanese, and Minangkabau, but with
comparatively little pretraining data.

Some multilingual datasets for question an-
swering (TyDi QA; Clark et al., 2020), dia-
logue (XPersona; Lin et al., 2021), passage
ranking (mMARCO; Bonifacio et al., 2021),
cross-lingual visual question answering (XGQA;
Pfeiffer et al., 2021), common sense reason-
ing (XCOPA; Ponti et al., 2020), abstractive sum-
marization (Hasan et al., 2021), language and vi-
sion reasoning (MaRVL; Liu et al., 2021), and ma-
chine translation (FLORES-101; Goyal et al., 2021)
include Indonesian but most others do not, and very
few include Indonesian local languages. An excep-
tion is the weakly supervised named entity recog-
nition dataset, WikiAnn (Pan et al., 2017), which
covers several Indonesian local languages, namely
Acehnese, Javanese, Minangkabau, and Sundanese.

Parallel corpora including Indonesian local lan-
guages are i) CommonCrawl; ii) Wikipedia parallel
corpora like MediaWiki Translations! and Wiki-
Matrix (Schwenk et al., 2021); iii) the Leipzig
corpora (Goldhahn et al., 2012), which include
Indonesian, Javanese, Sundanese, Minangkabau,
Madurese, Acehnese, Buginese, Banjar, and Bali-
nese; and iv) JW-300 (Agi¢ and Vuli¢, 2019), which
includes dozens of Indonesian local languages, e.g.,
Batak language groups, Javanese, Dayak language
groups, and several languages in Nusa Tenggara.’

2.3 Progress in Indonesian NLP

Most NLP research on Indonesian has been done
across multiple topics, such as sentiment analy-
sis (Naradhipa and Purwarianti, 2011; Lunando and
Purwarianti, 2013), hate speech detection (Alfina
et al., 2017; Ibrohim and Budi, 2019; Sutejo and
Lestari, 2018), morphological analysis (Pisceldo
et al., 2008), POS tagging (Wicaksono and Purwari-
anti, 2010; Dinakaramani et al., 2014; Kurniawan
and Aji, 2018), named entity recognition (Budi
et al., 2005; Gunawan et al., 2018), question an-
swering (Mahendra et al., 2008; Fikri and Purwari-
anti, 2012), machine translation (Yulianti et al.,
2011), and speech recognition (Lestari et al., 2006;
Baskoro and Adriani, 2008; Zahra et al., 2009).
However, many of these studies either kept the data
private or used non-standardized resources with
a lack of documentation and open-sourced code,

"https://mediawiki.org/wiki/Content_translation

ZRecent studies (Caswell et al., 2021), however, have
raised concerns regarding the quality of such multilingual
corpora for under-represented languages.
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which makes them extremely difficult to reproduce.
Recently, Wilie et al. (2020), Koto et al. (2020b),
and Cahyawijaya et al. (2021) collect Indonesian
NLP resources as benchmark data. Others have
also begun to create standardized labelled data for
Indonesian NLP, e.g. the works of Kurniawan and
Louvan (2018), Guntara et al. (2020), Mahendra
et al. (2021), Koto et al. (2021), and Artari et al.
(2021).

On the other hand, a handful of NLP research
explore the local languages. Suryani et al. (2015)
study machine translation in Sundanese by using
prior POS tagging information, while Suryani et al.
(2018) develop a word stemmer for Sundanese.
Koto and Koto (2020) explore sentiment analysis
and machine translation for Minangkabau. Safitri
et al. (2016) work on spoken data language identifi-
cation in three Indonesian local languages, i.e., Mi-
nangkabau, Sundanese and Javanese. Azizah et al.
(2020) develop end-to-end neural text-to-speech
model for Indonesian, Sundanese, and Javanese.
Recently, Cahyawijaya et al. (2021) established a
machine translation benchmark in Sundanese and
Javanese using Bible data. Wibowo et al. (2021)
studied a family of colloquial Indonesian, which is
influenced by some local languages via morpholog-
ical transformation, and Putri et al. (2021) worked
on abusive language and hate speech detection on
Twitter for five local languages, namely Javanese,
Sundanese, Madurese, Minangkabau, and Musi.

3 Challenges for Indonesian NLP

3.1 Limited Resources

Monolingual Data Unlabelled corpora are cru-
cial for building large language models, such as
GPT-2 (Radford et al., 2019) or BERT (Devlin
et al., 2019). Available unlabelled corpora such
as Indo4B (Wilie et al., 2020) and Indo4B-Plus
(Cahyawijaya et al., 2021) mainly include data in
Indonesian, with the latter containing ~10% of
data in Javanese and Sundanese (see Appendix
O). In comparison, in multilingual corpora such as
CC-100 (Conneau et al., 2020), Javanese and Sun-
danese data accounts for only 0.001% and 0.002%
of the corpus size while in mC4 (Xue et al., 2021b),
there are only 0.6M Javanese and 0.3M Sundanese
tokens out of a total of 6.3T tokens.

In addition, we measure data availability in
Wikipedia, compared to the number of speakers
as in Figure 3. Among highly spoken local lan-

3The number of speakers is collected from Wiki-
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Figure 3: Wikipedia data size (in GB) compared to the
number of speakers.

guages, much fewer data is available for Indone-
sian languages, compared to European languages
with similar numbers of speakers. For example,
Wikipedia contains more than 3 GB of Italian arti-
cles but less than 50 MB of Javanese articles, de-
spite both languages having a comparable number
of speakers. Similarly, Sundanese has less than 25
MB of articles, whereas languages of comparable
speakers have more than 1.5 GB of articles. Similar
trends hold for most other Asian languages.*

Beyond the most spoken local languages, other
Indonesian local languages do not have Wikipedia
instances, in contrast to European languages with
few speakers. However, it is very difficult to find
alternative sources for high-quality text data for
other local languages of Indonesia (such as news
websites), as most such sources are written in In-
donesian. Resources in tail languages are even
more lacking, due to a very low number of speak-
ers. Moreover, most of the languages in the long
tail are mainly used in a spoken context, making
text data difficult to obtain.

These statistics demonstrate that collecting un-
labelled corpora for Indonesian local languages
is extremely difficult. This makes it impractical
to develop strong pretrained language models for
these languages, which have been the foundation
for many recent state-of-the-art NLP systems.

Labelled Data Most work on Indonesian NLP
(see §2) did not publicly release their data or mod-

data (Vrandeci¢ and Krotzsch, 2014), from the number of
speakers (P1098) property as of Nov 7th 2021, while
the size is collected from the 20211101 Wikipedia dump.
4Other continents such as Africa are even more under-
represented in terms of Wikipedia data (see Appendix D).



English  Mudung Laut  Dusun Teluk Mersam  Suo Suo  Teluk Kuali  Lubuk Telau  Bunga Tanjung  Pulau Aro
I/me sayo aku awa? sayo kito, awa? am®o ambo ambo
You kau, kamu kau ka’n kamu kaan kamu ay, kau, kayo ba?ay
he/she dio? dio?, po no kau no no no ino

if kalu jiko, kalu kalu bilao kalu jiko ko? kalu
one satu seko? seko? seko? cis? seko? seko?, so seko?

Table 2: Lexical variation of Jambi Malay across different villages in Jambi, collected from Anderbeck (2008).

English  Context Ngoko Krama
Western Central Eastern Eastern

I/me I like to eat fried rice. inyong, enyong  aku aku kulo

You Where will you go? rika, kowe, ko kowe, siro, sampeyan  koen, awakmu, sampeyan  panjenengan

How How do I read this? priwe piye yo’opo pripun

Why Why is this door broken? ngapa ngopo opo’o punapa

Will Where will you go? arep arep kate, ate badhe

Not/no The calculation is not correct.  ora ora gak mboten

Table 3: Lexical variation of Javanese dialects and styles across different regions of Java island. Native speakers

were asked to translate the words, given the context.

els, thus limiting reproducibility. Although recent
Indonesian NLP benchmarks are addressing this is-
sue, they mostly focus on the Indonesian language
(see Appendix C). Some widely spoken local lan-
guages such as Javanese, Sundanese, or Minangk-
abau have extremely small labelled datasets com-
pared to Indonesian, while others have barely any.
The lack of such datasets makes NLP develop-
ment for the local languages difficult. However,
constructing new labelled datasets is still challeng-
ing due to (1) the lack of speakers of some lan-
guages, (2) the vast continuum of dialectical vari-
ation (see §3.2.1), and (3) the absence of writing
standard in most local languages (see §3.3).

3.2 Language Diversity

The diversity of Indonesian languages is not only
due to the large number of local languages, but also
the large number of dialects of these languages
(§3.2.1). Speakers of local languages also often
mix languages in conversation, which makes collo-
quial Indonesian more diverse (§3.2.2). In addition,
some local languages are more commonly used in
conversational contexts, so they do not have con-
sistent writing forms in written media (§3.3).

3.2.1 Regional Dialects and Style Differences

Indonesian local languages often have multiple di-
alects, depending on the geographical location. Lo-
cal languages of Indonesian spoken in different
locations might be different (have some lexical
variation) to one another, despite still being catego-
rized as the same language (Fauzi and Puspitorini,
2018). For example, Anderbeck (2008) shows that

villages across the Jambi province use different di-
alects of Jambi Malay. Similarly, Kartikasari et al.
(2018) show that Javanese between different cities
in central and eastern Java can have more than 50%
lexical variation, while Purwaningsih (2017) shows
that Javanese in different districts in the Lamongan
Regency has up to 13% lexical variation. Similar
studies have been conducted on other languages,
such as Balinese (Maharani and Candra, 2018) and
Sasak (Sarwadi et al., 2019).

Moreover, Indonesian and its local languages
have multiple styles, even within the same dialect.
One factor that affects style is the level of politeness
and formality—similar to Japanese and other Asian
languages (Bond and Baldwin, 2016). More polite
language is used when speaking to a person with a
higher social position, especially to elders, seniors,
and sometimes strangers. Different politeness lev-
els manifest in the use of different honorifics and
even different lexical terms.

To illustrate the distinctions between regional di-
alects and styles, we highlight common words and
utterances across dialects and styles in Jambi Malay
and Javanese in Tables 2 and 3. For Jambi Malay,
we sample the result from Anderbeck (2008). For
Javanese, we ask native speakers to translate ba-
sic words across three regional dialects: Western,
Central, and Eastern Javanese, and two different
styles: Ngoko (standard, daily-use Javanese) and
Krama (polite Javanese, used to communicate to
elders and those with higher social status). How-
ever, since contemporary Krama Javanese is not
very different between regions, we only consider
Krama from Eastern speaker’s perspective.



Model

FastText CLD3
Top-1 Top-3 Top-1

0.069 0.379 0.759
0.379 0.724 0.828
0.103 0.379 0.552
0.379 0.586 0.897

Langid.py
Top-1 Top-3

0.241 0.621
0.345 0.690
0.276 0.552
0.345 0.759

Style Region

Western
Central
Eastern
Eastern

Ngoko
Ngoko
Ngoko
Krama

Table 4: Language identification accuracy based on dif-
ferent Javanese dialects and styles. Systems do not per-
form equally well across dialects and styles.

Jambi Malay is not widely spoken (1M speak-
ers), but has many dialects across villages. As
shown in Table 2, many common words are spo-
ken differently across dialects and styles. Similarly,
Javanese is also different across regions. Not ev-
ery Javanese speaker understands Krama, since its
usage is very limited. Moreover, the number of
Javanese speakers who can use Krama is declin-
ing (Cohn and Ravindranath, 2014).> Examples
from other languages are shown in Appendix E.

Case Study in Javanese

Dialectical and style differences pose a challenge
to NLP systems. To explore the extent of this chal-
lenge, we conduct an experiment to test the ro-
bustness of NLP systems to variations in Javanese
dialects. We ask native speakers® to translate 29
simple sentences into Javanese according to the
specified dialect and style. We then evaluate sev-
eral language identification systems on those in-
stances. Language identification is a core part of
multilingual NLP and a necessary step for collect-
ing textual data in a language. Despite its impor-
tance, it is an open research area, particularly for
under-represented languages (Caswell et al., 2020).

We compare Langid.py (Lui and Baldwin, 2012),
FastText (Joulin et al., 2017), and CLD3.” The
results can be seen in Table 4. In general, the lan-
guage identification systems are more accurate in
detecting Javanese texts in the Ngoko-Central di-
alect, or Krama, since the systems were trained on
Javanese Wikipedia data, which is written in either

>Krama is used to speak formally (e.g., with older or re-
spected people). Nowadays, however, people prefer to use
Indonesian more in formal situation. People who move from
sub-urban areas to bigger cities tend to continue to use Ngoko
and thus also pass Ngoko on to their children.

®Qur annotators are based in Banyumas for Western Ja-
vanese, Jogjakarta for Central Javanese, and Jember for East-
ern Javanese. Using dialects from different cities might result
in a slightly different result.

"https://github.com/google/cld3

Colloquial Indonesian

Translation

Ada yang tag foto
lawas di FB

Quotenya Andrew Ng ini
relevan

Bilo kita pergi main lagi?
Ini teh aksara jawa kenapa

Someone is tagging old pho-
tos in FB

This Andrew Ng quote is
very relevant

When will we go play again?
Why is this Javanese script

susah ? very difficult?

Table 5: Colloquial Indonesian code-mixing examples
from social media. Color code: English, s
Javanese, Minangkabau, Sundanese, Indonesian.

the Ngoko-Central or Krama dialects and styles.
If an NLP system can only detect certain dialects,
then this information should be conveyed explic-
itly. Problems arise if we assume that the model
works equally well across dialects. For example,
in the case of language identification, if we use
the model to collect datasets automatically, then Ja-
vanese datasets with poor-performing dialects will
be under represented in the data.

3.2.2 Code-Mixing

Code-mixing is an occurrence where a person
speaks alternately in two or more languages in a
conversation (Poplack, 1980; Winata et al., 2019,
2021a). This phenomenon is common in Indone-
sian conversations (Barik et al., 2019; Wibowo
et al., 2020, 2021). In a conversational context,
people sometimes mix their local languages with
standard Indonesian, resulting in colloquial Indone-
sian (Siregar et al., 2014). This colloquial-style
Indonesian is used daily in speech and conversa-
tion, and is common on social media (Sutrisno and
Ariesta, 2019). Some frequently used code-mixed
words (especially on social media) are even intelli-
gible to people that do not speak the original local
languages. Interestingly, code-mixing can also oc-
cur in border areas where people are exposed to
multiple languages, therefore mixing them together.
For example, people in Jember (a regency district
in East Java) combine Javanese and Madurese in
their daily conversation (Haryono, 2012).

Indonesian code-mixing not only occurs at the
word level but also at the morpheme level (Winata,
2021). For example, quotenya (‘his/her quote’, see
Table 5) combines the English word ‘quote’ and the
Indonesian suffix -nya, which denotes possession;
similarly, ngetag combines the Betawinese prefix
nge- and the English word ‘tag’. More examples
can be found in Table 5.
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Language ‘ Meaning Written Variation IPA
Javanese what apa / opo /opo/
(Eastern— | there is ana / ono / onok /ono?/
Ngoko) you kon / koen /kon/
Balinese yes inggih / nggih /?ngih/
(Alus— 1/ me tiang / tyang /tian/
Singgih) | <greeting> swastyastu / swastiastu /swastiastu/
Sundanese|please / sorry  punten / punteun /punton/
(Badui— red beureum / berem /borim/
Loma) salivating ngacai / ngacay /yacar/

Table 6: Written form variations in several local lan-
guages, confirmed by native speakers.

3.3 Orthography Variation

Many Indonesian local languages are mainly used
in spoken settings and have no established stan-
dard orthography system. Some local languages
do originally have their own archaic writing sys-
tems that derive from the Jawi alphabet or Kawi
script, and even though standard transliteration into
the Roman alphabet exists for some (e.g., Javanese
and Sundanese), they are not widely known and
practiced (Soeparno, 2015). Hence, some words
have multiple romanized writings that are mutually
intelligible by speakers, as they are pronounced the
same. Some examples can be seen in Table 6. Such
variety of the written form is common in many lo-
cal languages in Indonesia. This variation leads to
a significantly larger vocabulary size, especially for
NLP systems that use word-based representations,
and results in words being spelled differently de-
spite referring to the same word, a challenge for
subword-based models.

3.4 Societal Challenges

Language evolves together with the speakers. A
more widely used language may have a larger dig-
ital presence, which fosters a more written form
of communication while languages that are used
only within small communities may emphasize
the spoken form. There are also languages that
are declining, where the speakers prefer to use In-
donesian rather than their local language. In con-
trast, there are isolated residents that use the local
language daily and are less proficient in Indone-
sian (Nurjanah et al., 2018; Jahang and Meirina,
2021). These variations give rise to different re-
quirements and there is no single solution for all.
Technology and education is not well-distributed
within the nation. Internet penetration in Indonesia
is 73.7% in 2020, but is mainly concentrated on the

Java island. Among the non-Internet users, 39%
explain that they do not understand the technology,
while 15% state that they do not have the device to
access the internet.® In some areas where Internet is
not seen as a basic need, imposing NLP technology
on them may not necessarily be relevant. At the
same time, general NLP development within the
nation faces difficulties due to the lack of funding
especially in universities outside of Java. GPU
servers are still scarce, even on Java.’

The dynamics of population movement in In-
donesia also need to be taken into consideration.
For example, there are urban communities who
transmigrate to remote areas for social purposes,
such as teaching or becoming doctors for underde-
veloped villages. Each of these situations might
call for various new NLP technologies to be devel-
oped to facilitate better communication.

4 Opportunities

Based on the challenges for Indonesian NLP high-
lighted in the previous section, we formulate pro-
posals for improving the state of Indonesian NLP
research, as well as of other under-represented lan-
guages. Our proposals cover several aspects includ-
ing metadata documentation; potential research di-
rections; and engagement with communities.

4.1 Better Documentation

In line with studies promoting proper data docu-
mentation for NLP research (Bender and Friedman,
2018; Rogers et al., 2021; Alyafeai et al., 2021),
we recommend the following considerations.

Regional Dialect Metadata We have shown that
the same languages can have a large variation de-
pending on region and dialect. Therefore, we
suggest adding regional dialect metadata to NLP
datasets and models, not only for Indonesian but
for other languages as well. This is particularly
important for languages with large dialectical dif-
ferences. Regional dialect metadata is also impor-
tant to clearly communicate NLP capabilities to
stakeholders and end users as it will help set an
expectation of what types of dialects systems can
handle. Additionally, regional metadata can indi-
rectly inform the topics of the data, especially for
crawled data sources.

8The Indonesian Internet Providers Association (APIII)
survey: https://apjii.or.id/survei2019x

°For instance, we estimate the whole computer science
faculty of the nation’s top university owns 8 V100 GPUs.
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Style and Register Metadata Similarly, we also
suggest adding style and register metadata. This
metadata can capture the politeness level of the text,
not only for Indonesian but also other languages.
In addition, this metadata can be used to document
the formality level of the text, so may be useful for
research on modeling style or style transfer.

4.2 Potential Research Direction

In Indonesia, there are only few widely spoken lan-
guages that have been investigated in NLP, while
the rest remain unstudied. Mitigating this limita-
tion, we suggest future research to focus more on
under-represented and unexplored languages.

Data-Efficient NLP Pretrained language mod-
els, which have taken NLP world by storm, re-
quire an abundant amount of monolingual data.
However, data collection has been a long-standing
problem for low-resource languages. Therefore,
we recommend more exploration into designing
data-efficient approaches such as adaptation meth-
ods (Artetxe et al., 2020; Aji et al., 2020; Guru-
rangan et al., 2020; Koto et al., 2021), few-shot
learning (Winata et al., 2021b; Madotto et al., 2021;
Le Scao and Rush, 2021), and learning from related
languages (Khanuja et al., 2021; Khemchandani
etal., 2021). The goal of these methods is effective
resource utilization, that is, to minimize the finan-
cial costs for computation and data collection as
advocated by Schwartz et al. (2020), Cahyawijaya
(2021), and Nityasya et al. (2021).

Data Generation Data collection efforts need to
be commenced as soon as possible, despite all the
challenges (§3.1). Here, we suggest collecting par-
allel data between Indonesian and each of the local
languages due to several reasons. First, a lot of
Indonesians are bilingual (Koto and Koto, 2020),
that is, they speak both Indonesian and their local
language, which facilitates data collection. More-
over, the fact that the local languages have some
vocabulary overlap with Indonesian (See Table 7 in
Appendix) might help building translation systems
using relatively fewer parallel data (Nguyen and
Chiang, 2017). Finally, having such parallel data,
we can build translation systems for synthetic data
generation. In line with this approach, the effec-
tiveness of models trained on synthetic translated
dataset can be explored.

Robustness to Code-mixing and Non-Standard
Orthography Languages in Indonesia are prone

to variations due to code-mixing and non-standard
orthography, which occurs on the morpheme or
even grapheme level. Models that are applied to In-
donesian code-mixed data need to be able to learn
morphologically faithful representations. There-
fore, we recommend more exploration on methods
derived from subword tokenization (Gage, 1994;
Kudo, 2018) and token-free models (Gillick et al.,
2016; Tay et al., 2021; Xue et al., 2021a) to deal
with this problem.

NLP Beyond Text For many Indonesian local
languages that are rarely if ever written, speech is
a more natural communication format. We thus
recommend more attention on less text-focused
research, such as spoken language understanding
(SLU) (Chung et al., 2021; Serdyuk et al., 2018),
speech recognition (Besacier et al., 2014; Winata
et al., 2020), and multimodality (Dai et al., 2020,
2021) in order to progress NLP in such languages.

4.3 Engage with Communities

As discussed in §3.4, it is difficult to generalize a
solution across local languages. We thus encourage
the NLP community to work more closely with na-
tive speakers and local communities (Nekoto et al.,
2020). This is necessary to provide solutions and re-
sources that support use cases benefiting the native
speakers and communities of under-represented
languages. We advise the involvement of linguists,
for example to aid the language documentation pro-
cess (Anastasopoulos et al., 2020). As GPU access
can be a challenge for Indonesian research institu-
tions, we suggest to engage with academic commu-
nities. We support open-science movements such
as BigScience!® or ICLR CoSubmitting Summer!'!,
which help to start collaborations and to reduce the
entry barrier to NLP research.

5 Conclusion

In this paper, we have highlighted challenges in
Indonesian NLP. Indonesia is one of the most pop-
ulous country and the second-most linguistically
diverse, with over 700 local languages, yet Indone-
sian NLP is under represented and under explored.
Based on the observed challenges, we have also
presented recommendations to improve the situa-
tion, not only for Indonesian, but for other under
represented languages as well.

Phttps://bigscience.huggingface.co/
"https://blog.iclr.cc/2021/08/10/
broadening-our-call-for-participation-to-iclr-2022/
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A Language Statistics

In Figure 4, we contrast the distribution of publi-
cation with Indonesian language compared to Eu-
ropean languages. Despite number of Indonesian
speakers is much larger compared to some Euro-
pean languages, number of published research in
Indonesian is still comparatively lower.
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Figure 4: Number of published research works per year
in Indonesian and European languages from 2000 to
2020.

B Wikipedia Vocabulary Overlap

# Vocab
Lang Top 1% N Top 100 N
All (k) KBBI (%) KBBI (%)
id 2023 59.3 96
jav 435 46.8 43
su 286 443 47
min 252 30.3 41
bug 23 35.7 27
map-bms 14 76.7 79
gor 12 40.5 49
ace 12 37.6 46
ban 10 433 46
bjn 4 62.9 69
nia 1 259 30
mad 1 26.9 24

Table 7: Vocabulary of Indonesian languages in
Wikipedia, filtered with KBBI third edition 12

In Table 7, we present vocabulary statistics of
Indonesian languages in Wikipedia. Due to the
noisy nature of Wikipedia, we use “Kamus Besar
Bahasa Indonesia” (KBBI) third edition,!? the offi-
cial dictionary for the Indonesian language to filter
the top 1% and top-100 most frequent words. As

12KBBI is the official Indonesian dictionary.
Bhttps://github.com/geovedi/indonesian-wordlist
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expected, the top 1% words are less reliable, with
only 59.3% of the vocabulary overlap between id
and KBBI. In the top-100 words, there is a 96%
word overlap with KBBI, making this set more re-
liable. Previous work on Minangkabau by Koto
and Koto (2020) also showed that i d-min words
have a 55% overlap in a manually curated bilingual
dictionary, closer to the top-100 value for min in
Table 7.

C Indonesian NLP Resources

On Table 8, we list statistics of Indonesian lan-
guage corpora for different tasks, including senti-
ment analysis, part-of-speech tagging, summariza-
tion, NLI, and discourse. Although most datasets
are in Indonesian and only a few are in Minangk-
abau (Koto and Koto, 2020), Javanese and Sun-
danese (Cahyawijaya et al., 2021), these resource
collections are arguably beneficial for constructing
resources in other local languages. This is because
1) Indonesian can be used as a pivot language with
regard to local languages due to the large vocabu-
lary overlap (see Table 7), and 2) most Indonesians
are bilingual, speaking both Indonesian and their
local language (Koto and Koto, 2020).

D Wikipedia Availability

In Figure 5 we compare Wikipedia size (in GB file
size) compared to the number of speakers across
various languages. We show that some African
languages are even more under-resourced.
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Figure 5: Wikipedia data size (in GB) compared to the
number of speakers.


https://github.com/geovedi/indonesian-wordlist

Name Task Type Size % Indo % Local
Labelled Datasets
POSP (Hoesen and Purwarianti, 2018) PoS Tagging 8k 100% 0%
BaPOS (Dinakaramani et al., 2014) PoS Tagging 10k 100% 0%
NERGrit (Wilie et al., 2020) Named Entity Recognition 2k 100% 0%
NERP (Hoesen and Purwarianti, 2018) Named Entity Recognition 8k 100% 0%
(Gultom and Wibowo, 2017) Named Entity Recognition 2k 100% 0%
Singgalang (Alfina et al., 2016) Named Entity Recognition 48K 100% 0%
(Fachri, 2014) Named Entity Recognition 2K 100% 0%
KEPS (Mahfuzh et al., 2019) Keyphrase Extraction 1k 100% 0%
FacQA (Purwarianti et al., 2007) Question Answering 3k 100% 0%
WREeTE (Setya and Mahendra, 2018) Natural Language Inference 0.5k 100% 0%
IndoNLI (Mahendra et al., 2021) Natural Language Inference 18k 100% 0%
CASA (Ilmania et al., 2018) Sentiment Analysis 1k 100% 0%
SmSA (Purwarianti and Crisdayanti, 2019) Sentiment Analysis 13k 100% 0%
HoASA (Azhar et al., 2019) Sentiment Analysis 3k 100% 0%
SA in IndoLEM (Koto et al., 2020b) Sentiment Analysis S5k 100% 0%
SA in MinangNLP (Koto and Koto, 2020) Sentiment Analysis 5K 0% 100%
(Saputri et al., 2018) Emotion Classification 4k 100% 0%
(Ibrohim and Budi, 2019) Hate Speech Detection 13k 100% 0%
TED En-Id (Guntara et al., 2020) Machine Translation 93k 100% 0%
News En-Id (Guntara et al., 2020) Machine Translation 42k 100% 0%
Religion En-Id (Guntara et al., 2020) Machine Translation 590k 100% 0%
MT in MinangNLP (Koto and Koto, 2020) Machine Translation 11K 0% 100%
EN«ID MT (Cahyawijaya et al., 2021) Machine Translation 31K 100% 0%
SU«+ID MT (Cahyawijaya et al., 2021) Machine Translation 16K 0% 100%
JV+ID MT (Cahyawijaya et al., 2021) Machine Translation 16K 0% 100%
IndoSum (Kurniawan and Louvan, 2018) Summarization 20k 100% 0%
Liputan6 (Koto et al., 2020a) Summarization 215k 100% 0%
Kethu (Arwidarasti et al., 2019) Constituency Parsing 1k 100% 0%
UD-Id GSD (McDonald et al., 2013) Dependency Parsing 5k 100% 0%
UD-Id PUD (Zeman et al., 2018) Dependency Parsing 1k 100% 0%
(Mahendra et al., 2018) Word Sense Disambiguation 2k 100% 0%
IndoCoref (Artari et al., 2021) Coreference Resolution 0.2k 100% 0%
NTP and Tweet Ordering (Koto et al., 2020b)  Discourse Tk 100% 0%
Pretraining Corpora

Indo4B (Wilie et al., 2020) - 3.6B words 100% 0%
Indo4B-Plus (Cahyawijaya et al., 2021) - 4.0B words  89.64% 10.36%

Table 8: Statistics of publicly available datasets, most datasets are covered on the existing Indonesian languages
NLP benchmarks (Wilie et al., 2020; Koto et al., 2020b; Cahyawijaya et al., 2021).

E Dialect Differences

In this section, we present more examples of lexical
variation of other local languages. Maharani and
Candra (2018) and Sarwadi et al. (2019) show lex-
ical variation of Balinese and Sasak, respectively,
where they ask locals to translate general/common
words. Then, they compare the vocabulary across
different locations (in this case, villages) to each
other. Some of the examples can be seen in Table 9
and 10. Unfortunately, they did not provide quanti-
tative results. Pamolango (2012) conducted a simi-
lar experiment in the Banggai district in South Su-
lawesi across 31 observation points for the Saluan
language. While Pamolango (2012) did not provide
full examples, they reported up to 23.5% lexical
variation among 200 basic vocabulary items.
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F Local Language Classification

As shown in Table 11, some of the Javanese
texts are misidentified as Indonesian, English, and
Malaysian. Javanese and Indonesian (which is sim-
ilar to Malasyian) share some words. We believe
English mis-classification is due to the data size
bias.



English Kedonganan  Jimbaran Unggasan

I/me Tyang Tyang Aku

You Béné Béné Engko

Umbrella Pajéng Pajéng Pajong

Hat Capil Topong Cecapil, Tetopong
How Engken Engken Kengen

Where Dijé Dijé Di joho

All Konyangan Onyé Konyangan, onyang
Swallow (vb) Gélék, ngélék Gélék, ngélék Ngélokang
Scratch (vb)  Gagas Gagas Gauk

Cough (vb) Kokoan Dékah Kohkohan

Dawn Plimunan Plimunan Sémongan
Afternoon Sanjé Sanjé Sanjano

Table 9: Lexical variation of Balinese across different
villages in South Kuta district, Bali (Maharani and Can-

dra, 2018)
English Perr}enang Jenggala Genggelang Kayangan Akar-Akar
Timur
Here Ite ite ite ite tinl
There Ito ito ito ito tinO
You di? sita di? sita di?
Husband kuronan sawa sawa sawa sawa
No de? de? de? de? sora?
Paddle  bose bose dayung dayung bose
Spear tsr cinokan  tsr tombak  tombak
Black biron, biron, biron, biron, pisak
Red bonon, bonon, bonon, bonon, aban,
White puts? puts? puts? puts? potak
Worm gumbor lona gumbor gumbor  gumbor

Table 10: Lexical variation of Sasak across different
villages in North Lombok district (Sarwadi et al., 2019)

Dialect/ classified as
Style Method  jv id en ms
Western-  Langid 0.241 0.103 0.172 0.069
Ngoko FastText 0.069 0.276 0.276 0.069
CLD3 0.759 0.000 0.000 0.034
Central-  Langid 0.345 0.138 0.069 0.069
Ngoko FastText 0.379 0.310 0.069 0.069
CLD3 0.828 0.000 0.000 0.034
Eastern-  Langid 0.276  0.103 0.069 0.138
Ngoko FastText 0.103 0.310 0.103 0.034
CLD3 0.552  0.103 0.000 0.000
Eastern-  Langid 0.345 0.241 0.034 0.172
Krama FastText 0.379 0.310 0.069 0.034
CLD3 0.897 0.000 0.000 0.000
Table 11: Language identification mis-classification
rate.
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