
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2025

SPARSITYSOLVER: EFFICIENT REINFORCEMENT
LEARNING-BASED PRUNING FOR LLMS

Anonymous authors
Paper under double-blind review

ABSTRACT

Large Language Models (LLMs) have achieved significant success in the field of
Natural Language Processing (NLP). However, due to their large model size and
high inference costs, the application of LLMs is restricted. Pruning is regarded as
an effective method to reduce the size of LLMs. Mainstream pruning methods for
LLMs typically apply a uniform ratio to prune all the layers or determine layerwise
sparsity based on simple criteria. Such manually or semi-manually designed prun-
ing strategies often lead to suboptimal results, which makes reinforcement learn-
ing a feasible solution. However, current reinforcement learning-based pruning
methods usually have redundant environment designs or multiple agents, render-
ing them ill-suited to massive LLMs. Hence, we propose SparsitySolver, which
first incorporates reinforcement learning into the pruning of LLMs, supporting
various pruning granularity. SparsitySolver employs an improved reinforcement
learning environment, allowing for a rapid pruning strategy search with a small-
scale agent. Moreover, to lessen the performance decline caused by structured
pruning, we propose a compensation method capable of restoring performance
without introducing additional parameters to the model. We evaluate our approach
on LLaMA-V1/V2, Mistral, and the OPT families across multiple pruning granu-
larities, achieving performances surpassing the state-of-the-art methods.

1 INTRODUCTION

Large Language Models (LLMs) have demonstrated outstanding performance in a wide range of lan-
guage tasks Zhang et al. (2022); Brown et al. (2020); Bubeck et al. (2023); Touvron et al. (2023a;b).
However, LLMs come with a substantial model size and high inference costs, meaning deploying
pre-trained models demands expensive computational resources. Hence, techniques aiming at re-
ducing the size and computational demands of LLMs, commonly known as model compression, are
gaining increasing attention. Numerous compression methods for LLMs have been introduced, en-
compassing distillation, quantization, and pruning Hu et al. (2021); Frantar et al. (2022); Xiao et al.
(2023); Lin et al. (2023); Lee et al. (2023); Frantar & Alistarh (2023); Ashkboos et al. (2024).

Pruning is an effective method to reduce the quantity of model parameters and computations. Con-
sidering the substantial cost of fine-tuning for LLMs, mainstream research concentrates on post-
training pruning of LLMs without fine-tuning Frantar & Alistarh (2023); Ashkboos et al. (2024);
An et al. (2024); Wang et al. (2024); Sun et al. (2023). In this area, several pruning methods for
LLMs, including Wanda Sun et al. (2023), SparseGPT Frantar & Alistarh (2023) and SliceGPT
Ashkboos et al. (2024), opt to prune LLMs using uniform sparsity ratios per layer. Compared to
the costly global pruning An et al. (2024), such a uniform strategy is simpler and more suitable for
large-scale LLMs. In addition, certain approaches propose layerwise sparsity ratios that are non-
uniform, an example being OWL Yin et al. (2023) that determines the layerwise sparsity ratio based
on the proportion of outliers in each layer, while BESA Xu et al. proposes searching for the optimal
pruning rate for each layer in a differentiable manner. However, based on previous studies Wang
& Tu (2020); Fang et al. (2023), the differences and inter-dependencies between various layers of
the model constitute a complex issue. Factors such as the type of each layer, its location within
the network, and the associated operators, all influence the appropriate sparsity ratio for that layer.
Thereby, a question arises: what is the most suitable sparsity strategy for large language models?

1

054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2025

Searched Sparsity

Reinforcement
Learning
Agent

FFN

MHA

head

out proj

Reconstruction

Reconstructed out proj

Uniform Pruning

Action

State

linear combination
FFN

MHA

Reward

MHA

Figure 1: An overview of SparsitySolver. Left: Uniform pruning. Right: SparsitySolver. Spar-
sitySolver first employs a reinforcement learning agent to search for the sparsity ratios for each
prunable unit. The agent receives the total pruning ratio from the environment as the state, provides
the network’s sparsity strategy as an action within one step, and finally, evaluates the perplexity of
the pruned network as a reward given to the agent. Second, when using structured pruning, we re-
construct the parameters of the last linear layer of the pruned module as a recovery. Specifically, we
compensate for the pruned channels with the linear combination of other channels.

Given that the massive structure of LLMs usually includes dozens of decoder layers, each containing
numerous parameters, the search space for pruning strategy is immense. Thus, manually designing
or brute-force exploring sparsity strategy becomes nearly impossible. Reinforcement learning poses
a solution to this challenge, with various methods exploring the use of reinforcement learning for
pruning strategy search He et al. (2018); Alwani et al. (2022); Yu et al. (2021; 2022). However,
the environments constructed by these methods are overly redundant, making them unsuitable for
massive LLMs. Also, their environment design is skewed. In the environment designed by AMC
He et al. (2018), the rewards for intermediate layers pruning are all zero. Only once the pruning of
the final layer is done, can a valid reward be assessed on the test set. This type of environment is
abnormal as reinforcement learning finds it difficult to manage sparse reward scenarios. Therefore,
we suggest simplifying the pruning environment as a solution to correct the sparse reward and avoid
additional computations arising from dealing with the environment.

To efficiently and accurately explore the suitable pruning strategy for LLMs, we propose Sparsi-
tySolver, a reinforcement learning-based post-training pruning method for LLMs, supporting both
structured and unstructured pruning. Furthermore, to address the model damage after structured
pruning, we introduce a compensation method to recover the model’s performance. Fig. 1 illustrates
an overview of our approach. The contributions are summarized as follows:

• We propose a simple and efficient reinforcement learning environment, improving the
sparse reward environment in existing RL pruning methods without the need for additional
computation. Within our developed environment, a small-scale RL agent is enough to attain
quick convergence, thereby making it apt for searching pruning strategies for LLMs.

• To mitigate the performance loss after structured pruning, we propose reconstruction com-
pensation, which requires no additional parameters for recovery.

• We conduct multiple experiments on LLMs including OPT Zhang et al. (2022), Mistral
Jiang et al. (2023), LLaMA-V1 Touvron et al. (2023a), and LLaMA-V2 Touvron et al.
(2023b) families, verifying that SparsitySolver can explore more suitable sparsity strate-
gies in both structured and unstructured pruning, demonstrating better perplexity than cor-
responding state-of-the-art methods.

2

108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2025

Agent

State

Rewards Continuous RewardsSparse Rewards

Environment

Action

Agent

NN-based State

Environment

Action

Agent

Simple State

Environment

Action

Figure 2: The comparison of reinforcement learning environments. Left: Environment with sparse
rewards, like AMC He et al. (2018). Middle: Environment that processes states through a neural
network, like AGMC Yu et al. (2021). Right: The environment we proposed, featuring simple states
and continuous rewards.

2 RELATED WORKS

LLM Pruning Many studies Frantar & Alistarh (2023); Sun et al. (2023); Yin et al. (2023); Ashk-
boos et al. (2024); Ma et al. (2023); An et al. (2024) indicate that pruning is a practical approach
for reducing the scale of LLMs. SparseGPT, according to Frantar & Alistarh (2023), utilizes the
inverse of the Hessian matrix to prune and subsequently update weights. In a different study, Wanda
Sun et al. (2023) brings a new pruning criterion for LLMs, combining the weight magnitude and
input activations to retain outliers. Carrying this forward, OWL Yin et al. (2023) introduces a non-
uniform layerwise sparsity ratio, decided based on the proportion of outliers in each layer. BESA
Xu et al. proposes searching for the optimal pruning rate for each layer in a differentiable manner.
However, the above methods either only support or mainly support unstructured pruning. Since
unstructured pruning leads to irregular sparse patterns and requires specialized hardware support,
other approaches are centered around the exploration of structured pruning. LLM-Pruner Ma et al.
(2023) performs structured pruning based on gradient information, and then conducts fine-tuning
using LoRA Hu et al. (2021). SliceGPT Ashkboos et al. (2024) converts the LayerNorm into RM-
SNorm, performs a transformation on every block of the model through computational invariance,
and then carries out the corresponding pruning. FLAP An et al. (2024) proposes a framework that in-
cludes global structure search and baseline bias compensation. However, the above methods either
require fine-tuning or introduce additional parameters. For example, the baseline bias compensa-
tion in FLAP introduces bias to linear layers that are initially without bias. The transformation in
SliceGPT goes even further by adding a new linear layer to each skip connection. These compensa-
tion methods, which require the introduction of additional parameters, contradict the original intent
of pruning and may impact subsequent deployment and inference.

Reinforcement Learning-based Pruning Several methods He et al. (2018); Alwani et al. (2022);
Chen et al. (2020); Yu et al. (2021; 2022) propose utilizing RL agents to search for pruning strate-
gies. AMC He et al. (2018) first suggests using reinforcement learning agents to explore pruning
strategies. Chen et al. (2020) propose a deep reinforcement learning-based runtime pruning method,
where a runtime agent and a static agent jointly make sparsities. DECORE Alwani et al. (2022)
utilizes multi-agent reinforcement learning to determine whether each channel should be pruned.
GNN-RL Yu et al. (2022) and AGMC Yu et al. (2021) employ Graph Neural Networks to capture
the features of the pruned network, and then use reinforcement learning to search for effective prun-
ing strategies. However, the aforementioned methods either require complex environment handling,
such as GNN-RL and AGMC, need cooperation among multiple agents, like in the case of DECORE
and DRL-based methods, or involve abnormal environments like AMC. Such complex methods are
unsuitable for exploring pruning strategies in large-scale LLMs.

3 METHODOLOGY

3.1 EXPLORING WITH REINFORCEMENT LEARNING

A number of approaches suggest using reinforcement learning agents to search for pruning strate-
gies within Convolutional Neural Networks He et al. (2018); Alwani et al. (2022); Yu et al. (2021;

3

162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2025

2022). However, the reinforcement learning environments constructed by these methods tend to be
over-complicated and ill-suited for large-scale LLMs. As shown in Fig. 2, we propose simplifying
the pruning environment as a solution to rectify sparse rewards and avoid additional computations
incurred by processing the environment. In the following, we provide a detailed description of the
reinforcement learning setup.

State Space In our proposed pruning environment, we define the state as:
St = P (1)

where P is the total pruning ratio. Such a design of the state space not only negates the need for extra
computations but also eliminates the necessity for dynamic implicit modeling of the environment.
At this point, the agent can be regarded as a differential mapping of the pruning strategy to rewards,
which means the agent directly models the actions. Experiments show that the simplified state space
does not affect the performance of reinforcement learning. On the contrary, such a simplified state
design accelerates the speed of the search, with specific details provided in Sec. 4.6.

Algorithm 1 Action Constraints
Initial: The number of parameters per prunable unit W =
[w1, w2, · · · , wN], total number of parameters Wall, lower
bound amin and upper bound amax.
Input: The original action At = [a1, a2, · · · , aN] pro-
vided by the agent and the total pruning ratio P .
Output: The constrained action Ãt = [ã1, ã2, · · · , ãN].

1: At ← tanh(At + 1)/2
2: At ← At × (amax − amin + 0.1) + amin

3: At ← clip(At, 0, amax)
4: for all ai in At do
5: ai ← Round(ai × wi)/wi

6: end for
7: for all ai in At do
8: Wother ←

∑
k<i ãk × wk +

∑
k>i amin × wk

9: ãi = min(ai, ((1− P)×Wall −Wother)/wi)
10: end for

Action Space The action given by
the RL agent is the preserved ratio for
every layer within a continuous space,
which is defined as:

At = [a1, a2, · · · , aN] ∈ RN (2)
where ai ∈ [amin, amax], amin and
amax are the lower and upper bounds
on the sparsity rate for each layer. N
represents the number of prunable units
in the network. In the case of struc-
tured pruning, prunable units refer to
Multi-Head Attention (MHA) layers
and Feed-Forward Network (FFN) lay-
ers. For MHA layers, we carry out
pruning at the granularity of attention
heads. In unstructured pruning, prun-
able units are defined as weight matri-
ces. For the agent-given action At, we
need to enforce constraints on it to obtain Ã, as illustrated in Alg. 1. After obtaining the sparsity
strategy Ã, we prune the network using the derived strategy.

For the pruning criteria, our method is compatible with most of the mainstream pruning criteria cur-
rently in use. In unstructured pruning, we choose Wanda Sun et al. (2023) as the pruning criterion,
while in structured pruning, we opt for the ℓ2-norm of the activations as the criterion. It is worth not-
ing that our layer-by-layer pruning does not require any global information or gradient information
as a pruning criterion, which is memory-friendly.

Reward Function Given the above-mentioned state space and action space, the policy only needs
to execute one step per episode. After pruning the model with the searched strategy, we obtain a
model that meets the total pruning ratio P and subsequently evaluate the pruned model according
to the task metric. Considering that our experiments are primarily performed on WikiText Merity
et al. (2016) and perplexity is used as the evaluation metric, we define the default reward function
as R = 10

ppl , where ppl is the perplexity evaluated on the WikiText validation. We expect the final
convergence value to fall within the range of (1, 2), remaining within the same order of magnitude.
Based on current LLM benchmarks, we set the coefficient of the reward function to 10.

Proximal Policy Optimization (PPO) Multiple reinforcement learning algorithms aim to search
within continuous action spaces, examples include Deep Deterministic Policy Gradient (DDPG)
Lillicrap et al. (2016), Proximal Policy Optimization (PPO) Schulman et al. (2017), and Soft Actor-
Critic (SAC) Haarnoja et al. (2018). We utilize PPO as the reinforcement learning algorithm for
search due to its highly efficient policy. Essentially, we only require our agent to learn a differen-
tiable mapping from pruning strategy to rewards. Given the simplicity of our designed environment
state, we can further reduce the size of the critic network.

4

216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2025

3.2 COMPENSATION THROUGH RECONSTRUCTION

Our method supports both structured and unstructured pruning. To reduce the negative impact on
network performance caused by structured pruning, we propose compensating for the pruned MHA
layers and FFN layers. Inspired by the data-free compression method UDFC Bai et al. (2023),
we assume that the channels that are damaged due to pruning can be restored through a linear
combination of other channels.

For each pruned module, we consider the last linear layer W out
:,: ∈ RNout×Nin as the reconstruction

layer. For the pruned channel W out
:,p , the assumption of recovery can be formulated as follows.

W out
:,p ≈

Nin∑
j=1,j /∈P

sp,j ×W out
:,j , ∀p ∈ P (3)

where sp,j is a scale factor that evaluates the level of association between the j-th channel and the
p-th channel, and P is the set of indices of the pruned channels. At this point, the preserved channel
W out

:,j can be written as:

W out
:,j = W out

:,j +
∑
p∈P

sp,j ×W out
:,p , ∀j ∈ [1, Nin], j /∈ P (4)

Without pruning, the k-th output channel of the last linear layer can be represented as:

X
(ℓ+1)
k =

Nin∑
j=1

W out
k,j X

(ℓ)
j + boutk ∀k ∈ [1, Nout] (5)

where X
(ℓ)
j represents the input corresponding to each input channel W out

k,j and boutk represents the
bias, which can be 0. Without loss of generality, we assume that only the p-th input channel is
pruned. After pruning and reconstruction with equation 4, the k-th output channel can be repre-
sented as follows.

X̂
(ℓ+1)
k =

Nin∑
j=1,j ̸=p

(W out
k,j + sp,j ×W out

k,p)X
(ℓ)
j + boutk ∀k ∈ [1, Nout] (6)

The reconstruction error ℓre of the k-th output channel can be defined as:

ℓre = ∥X(ℓ+1)
k − X̂

(ℓ+1)
k ∥22 = ∥W out

k,p X
(ℓ)
p −

Nin∑
j=1,j ̸=p

sp,j ×W out
k,p X

(ℓ)
j ∥

2
2

= ∥W out
k,p (X

(ℓ)
p −

Nin∑
j=1,j ̸=p

sp,j ×X
(ℓ)
j)∥22

(7)

Note that pruning does not change W out
k,p . Therefore, we further define the reconstruction error as:

ℓre = ∥X(ℓ)
p −

Nin∑
j=1,j ̸=p

sp,j ×X
(ℓ)
j ∥

2
2 + λ

Nin∑
j=1,j ̸=p

∥sp,j∥22 (8)

where λ is a non-negative penalty coefficient. Next, by minimizing the reconstruction error, we
prove the existence of the optimal solution s. For simplicity, we define:

Xp = [X(ℓ)
p], X = [X

(ℓ)
j], s = [sp,j]. j ∈ [1, Nin], j ̸= p (9)

The reconstruction error can be simplified as ℓre = (Xp − sX)⊤(Xp − sX) + λs⊤s . The first and
second derivative of the s is:

∂ℓre
∂s

= −2X⊤Xp + 2s(X⊤X+ λI),
∂2ℓre
∂2s

= 2X⊤X+ 2λI (10)

It can be seen that ℓre is a convex function and there exists a unique optimal solution s such that
∂ℓre
∂s = 0.

We generalize the p-th pruned channel to all pruned channels set P . For each pruned channel, we
can solve equation 8 through Ridge regression to obtain a set of scale factors sp,:. With these scale
factors, we can recover the pruned channels using a linear combination of the preserved channels, as
shown in equation 4. Notably, our reconstruction method only updates the weights of the last linear
layer and avoids introducing any extra parameters.

5

270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2025

4 EXPERIMENTS

Models and Datasets We evaluate the performance of SparsitySolver across a series of LLMs, in-
cluding the OPT Zhang et al. (2022), LLaMA-V1 Touvron et al. (2023a), LLaMA-V2 Touvron et al.
(2023b) and Mistral Jiang et al. (2023) model families. Our evaluation aligns with the existing LLM
pruning methods Ashkboos et al. (2024); An et al. (2024); Yin et al. (2023), including perplexity
assessment on the WikiText Merity et al. (2016) validation and evaluation on seven common-sense
benchmarks (BoolQ Wang et al. (2019), OpenbookQA Mihaylov et al. (2018), WinoGrande Sak-
aguchi et al. (2021), HellaSwag Zellers et al. (2019), PIQA Bisk et al. (2020), ARC-e, and ARC-c
Clark et al. (2018)) in zero-shot setting consistent with the LM-Evaluation-Harness Gao et al. (2021).

Baseline We select the corresponding LLM pruning baseline according to specific pruning gran-
ularities. In terms of unstructured pruning, we employ Wanda Sun et al. (2023), BESA Xu et al.,
and OWL Yin et al. (2023) as comparative baselines. In terms of structured pruning, we compare
SparsitySolver with the SOTA post-training structured pruning methods SliceGPT Ashkboos et al.
(2024) and FLAP An et al. (2024). We also compare the singular value decomposition-based method
SVD-LLM Wang et al. (2024).

Setup We utilize the Proximal Policy Optimization (PPO) as our reinforcement learning agent.
Our actor network comprises two hidden layers, with each layer holding 256 neurons, our critic
network also consists of two hidden layers, each of which has 64 neurons. The learning rate is 5e-4,
the number of samples per update is 15, the learning epoch is 10, and 3000 episodes are searched.

4.1 LANGUAGE MODELING PERFORMANCE

Table 1: WikiText validation perplexity of various unstructured pruning methods on LLaMA-V1-
7B/13B at 50%, 60% and 70% sparsity. * indicates the experimental results we reproduced using
the open-source code. The bolded results indicate the best performance.

Method Layerwise
Sparsity

Searched
Sparsity

50% 60% 70%

7B 13B 7B 13B 7B 13B

Dense - - 5.68 5.09 5.68 5.09 5.68 5.09

Wanda * 7.26 6.17 10.86 8.91 93.07 57.70
OWL w.t. Wanda * 7.22 6.06 9.52 7.62 24.96 17.37
BESA * 7.12 6.13 12.66 9.87 84.70 54.40

Ours 6.94 6.02 9.50 7.41 22.84 16.57

Table 2: WikiText validation perplexity of structured pruning methods for OPT-125M/1.3B/2.7B/
6.7B/13B, LLaMA-V2-7B/13B/70B and Mistral-7B at 20% sparsity. The dash ‘-’ represents results
that could not be reproduced with the open-source code.

Method Searched
Sparsity

Weight
Update

Additional
Parameters

OPT LLaMA-V2 Mistral

125M 1.3B 2.7B 6.7B 13B 7B 13B 70B 7B

Dense - - - 27.64 14.61 12.46 10.85 10.12 5.47 4.88 3.32 5.25

SliceGPT * 34.10 16.51 13.89 11.60 10.71 6.84 6.06 4.25 6.96
FLAP * 34.45 17.37 15.38 12.79 13.17 7.15 6.31 4.12 6.57
SVD-LLM * 38.86 17.82 15.22 12.06 - 8.38 6.66 4.66 -

Ours 31.44 17.26 14.55 13.07 11.80 7.54 6.45 4.32 6.89
Ours (Recon) 30.67 15.82 13.75 10.47 10.23 6.79 6.01 4.06 6.48

Table 1 presents the performance of various unstructured pruning methods on language modeling
with sparsity levels of 50%, 60%, and 70% on WikiText. Our method achieves a high sparsity
rate of 70% in unstructured pruning and outperforms Wanda, OWL, and BESA across a range of
sparsity levels. This comparison indicates that the pruning strategy provided by the reinforcement
learning agent is superior to the hierarchical layerwise sparsity rates determined by the proportion
of outliers in OWL and also outperforms the layerwise sparsity rates searched in a differentiable

6

324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2025

manner in BESA, as the RL agent demonstrates stronger capabilities in managing inter-layer dif-
ferences. More detailed comparisons of unstructured pruning strategies are presented in App. C.

10 20 30
Sparsity

26
28
30
32
34
36
38
40
42
44
46
48
50

PP
L

Dense
SliceGPT
FLAP
SVD-LLM
Ours
Ours+Recon

Figure 3: Comparison of the
PPL-Sparsity pattern Pareto
curve of the OPT-125M.

Table 2 presents the performance of various structured pruning meth-
ods for LLMs under a sparsity ratio of 20% on WikiText. It can be
observed from Table 2 that even if we only use the searched strat-
egy without incorporating reconstruction compensation, our method
can still achieve an acceptably low level of perplexity. In the case
of certain models (such as OPT-125M), our pure searched strat-
egy achieves better results than other pruning methods incorporat-
ing compensation. Furthermore, when the reconstruction compen-
sation is combined with the strategy we searched, our method sur-
passes other structured pruning techniques, as shown in Table 2 un-
der ‘Ours (Recon)’. Figure 3 illustrates a comparison of the PPL-
Sparsity pattern Pareto curves for various pruning on the OPT-125M
model, showing that the Pareto curve of SparsitySolver with recon-
struction compensation significantly outperforms other methods.

4.2 ZERO-SHOT TASKS PERFORMANCE

Table 3: Zero-shot performance of structured pruning on LLaMA-V1-7B at 20% sparsity. The
underlined results indicate the second-best performance.

Method Searched
Sparsity

Weight
Update

Additional
Parameters BoolQ PIQA HellaSwag WinoGrande ARC-e ARC-c OBQA Ave.

Dense - - - 75.02 79.16 76.20 70.09 72.85 44.62 44.40 66.05

SliceGPT * 58.99 69.86 59.45 68.43 62.37 36.60 37.40 56.15
FLAP * 71.44 75.14 67.71 67.40 67.21 37.46 42.00 61.19

Ours(C4) 72.75 75.73 69.34 68.27 66.53 36.59 39.14 61.19
Ours(Recon) 74.37 75.29 68.41 67.85 70.23 37.47 39.60 61.89

Table 4: Zero-shot performance of unstructured pruning on LLaMA-V1-7B at 70% sparsity.

Method Layerwise
Sparsity

Searched
Sparsity BoolQ PIQA HellaSwag WinoGrande ARC-e ARC-c OBQA Ave.

Dense - - 75.02 79.16 76.20 70.09 72.85 44.62 44.40 66.05

Wanda 55.11 57.18 31.83 51.38 34.22 19.80 26.00 39.36
OWL * 63.48 64.90 44.79 58.72 45.03 26.19 29.60 47.53
BESA * 57.86 55.88 31.27 50.75 32.07 22.10 27.60 39.64

Ours 63.97 65.67 45.16 59.22 47.35 27.13 31.80 48.61

We evaluated the zero-shot capability of our method under structured and unstructured pruning
settings across seven downstream tasks, as shown in Tables 3 and 4, respectively. In structured
pruning, our model searches for sparsity strategies on WikiText. ‘Ours(C4)’ represents the com-
pensation results using samples from the C4 Raffel et al. (2020) training set as the calibration set,
while ‘Ours(Recon)’ indicates the compensation results using samples from the respective down-
stream task dataset as the calibration set. The calibration set consists of 32 samples, each containing
2048 tokens. It is worth noting that our method shows an increase in accuracy in most of the tested
downstream tasks, achieving better average results than other methods. Compared to the SliceGPT
method, which introduces additional parameters, the total number of model parameters obtained
using SparsitySolver is less than that of SliceGPT. When the sparsity rate of the LLaMA-V1-7B
model is 20%, the number of parameters after pruning with the SliceGPT method is 6.1B, whereas
our method results in only 5.4B parameters, while achieving comparable performance and better
average accuracy.

In unstructured pruning, we conducted a direct search on the downstream target dataset, with the
reward function defined by zero-shot accuracy. It can be observed that our method outperforms
Wanda, OWL, and BESA even at a high sparsity rate of 70%.

7

378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2025

4.3 SEARCHED STRATEGY

0 6 12 18 24 30 36 42 48 54 60 66 72
0.0

0.2

0.4

0.6
P-

R
Ours
OWL

(a)

0 12 24 36 48 60 72 84 96 108 120 132 144
0.0

0.2

0.4

0.6

P-
R

Ours
OWL

(b)

0 10 20 30 40
0.00

0.25

0.50

0.75

1.00

P-
R

opt-1.3B

(c)

0 10 20 30 40 50 60
0.00

0.25

0.50

0.75

1.00

P-
R

opt-6.7B

(d)

0 10 20 30 40 50 60
0.00

0.25

0.50

0.75

1.00

P-
R

LLaMA-2-7B

(e)

0 10 20 30 40 50 60 70 80
0.00

0.25

0.50

0.75

1.00

P-
R

LLaMA-2-13B

(f)

Figure 4: The searched pruning strategies. The horizontal axis is the index of the layer, while the
vertical axis ”P-R” represents the preserved ratio of parameters in each layer or each weight. (a)-(b):
A comparison of unstructured sparsity strategies for OPT-125M and OPT-1.3B under 70% sparsity
on WikiText. (c)-(f): The searched pruning strategies of OPT-1.3B/6.7B and LLaMA-V2-7B/13B at
a sparsity of 20% under structured pruning. The yellow dashed line represents the MHA layer, and
the gray dashed line represents the FFN layer.

We also focus on the pruning strategies obtained from the search. Fig. 4 depicts the pruning strate-
gies obtained from specific models in the OPT and LLaMA families, under the environment and
agent we designed. More detailed searched pruning strategies are presented in App. C. Fig. 4a and
Fig. 4b show the comparison of the strategies we obtained from the search and OWL’s strategies
under unstructured pruning. It can be observed that our method is more flexible, allowing different
sparsity rates to be assigned to weight matrices at different locations. Fig. 4c and Fig. 4d depict the
structured pruning strategies obtained for the OPT series at a sparsity ratio of 20%, with the cor-
responding perplexities shown in Table 2. Differing from the searched strategies for convolutional
neural networks obtained in AMC He et al. (2018), the agent tends to retain more parameters in the
middle layers of LLMs and focuses on pruning at the front and back ends of the model. Fig. 4e
and Fig. 4f each present the searched strategies of the LLaMA-V2-7B and LLaMA-V2-13B models,
respectively. In the LLaMA model, the pruning strategy becomes increasingly complex, making it
difficult to summarize a unified trend.

4.4 COMPENSATION

0 4 8 12 16 20 24 28 32 36
FFN recon samples

20

21

22

23

24

25

PP
L

MHA recon samples=32

0 4 8 12 16 20 24 28 32 36
MHA recon samples

FFN recon samples=32

Figure 5: The perplexity of OPT-1.3B at 30%
sparsity with different numbers of reconstruc-
tion samples used in the MHA and FFN layers.

For the reconstruction compensation part, we set
the default calibration set for compensation to
contain 32 samples sampled from the training
set, each containing 2048 tokens. The Ridge re-
gression hyperparameter λ is set to 0.9. Fig. 5
shows the effect on the compensation results when
changing the number of reconstruction samples
in the MHA and FFN layers. The results clearly
show that for both the MHA and FFN layers, as
the number of reconstruction samples increases,
the performance improves.

8

432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2025

The GPU time required for reconstruction is related to the sparsity strategy searched. As the searched
sparsity ratios vary, the speed of reconstruction also changes. The smaller the sparsity of a layer, the
faster its reconstruction speed. On an NVIDIA 80G A800, reconstructing an MHA layer of LLaMA-
V2-70B with a 20% sparsity using 32 samples requires 0.21 GPU hours, while reconstructing a 20%
sparsity MHA layer of LLaMA-V2-7B and LLaMA-V2-13B takes less than 2 minutes.

4.5 ABLATION STUDY

Table 5: A comparison of the pruning results on various models at a 20% sparsity using the different
components we proposed. ‘Recon’ refers to the results obtained using a uniform sparsity strategy
combined with the reconstruction, ‘Search’ indicates the results from pruning with the searched
sparsity strategy without reconstruction, and ‘Search + Recon’ represents the results obtained after
applying our search strategy followed by reconstruction.

Method Searched
Sparsity

Weight
Update

OPT LLaMA-V2 Mistral

125M 1.3B 2.7B 7B 7B

Dense - - 27.64 14.61 12.46 5.47 5.25

SliceGPT * 34.10 16.51 13.89 6.84 6.96
FLAP * 34.45 17.37 15.38 7.15 6.57

Recon 32.25 17.15 14.65 7.14 7.22
Search 31.44 17.26 14.55 7.54 6.89
Search + Recon 30.67 15.82 13.75 6.79 6.48

Additionally, we analyze the effectiveness of each component we proposed, as shown in Table 5,
where we conducted ablation experiments on the search strategy and reconstruction. It is evident
that both search and reconstruction effectively improve pruning results. In some certain models,
both the search-only and reconstruction-only methods yield better results than SliceGPT or FLAP.
However, ‘Search + Recon’, which combines both methods, achieve the highest performance.

4.6 REINFORCEMENT LEARNING

0 500 1000 1500 2000 2500 3000
Episode

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

Re
wa

rd
s

Ours
AMC

(a)

0 500 1000 1500 2000 2500 3000
Episode

0

50000

100000

150000

200000

250000

300000

PP
L

Ours

0 500 1000 1500 2000 2500 3000
Episode

0

50000

100000

150000

200000

250000

300000

PP
L

AMC

(b)

Figure 6: Comparison of our proposed reinforcement learning method with the AMC, conducting
structured pruning strategy search on LLaMA-V2-7B with a sparsity ratio of 20%. (a) Comparison
of the rewards curves. (b) Comparison of the perplexity curves.

We focus on analyzing the performance of our proposed reinforcement learning method. Fig. 6
shows the comparison of our proposed RL agent with AMC He et al. (2018). It is demonstrated that
our improved reinforcement learning environment drastically enhances exploration performance.
Our continuous reward environment accelerates the convergence speed of the agent, with rewards
steadily increasing after 500 episodes. However, it is difficult for the agent to converge when em-
ploying AMC’s sparse reward environment. As shown by the violet-red curve in Fig. 6b, its per-
plexity also experiences strong oscillations and remains high. From the reward curve in Fig. 6a,

9

486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2025

0 20 40 60 80 100 120 140
Episode

0

10

20

30

40

50

60

PP
L

0 20 40 60 80 100 120 140
Episode

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

Re
wa

rd
s

Figure 7: The PPL curve and reward curve for the Mistral-7B model during a 30% sparsity search
by the RL agent, which was trained over 1500 episodes at a 20% sparsity rate. Left: The PPL curve.
Right: The rewards curve.

it can be seen that our agent achieves convergence between 1500-2000 episodes, delivering a rel-
atively satisfactory outcome. The reinforcement learning curves for other models are provided in
App. B, display the same trend. This indicates that a search with 3000 episodes is saturated, and the
reinforcement learning design of SparsitySolver is highly efficient, exceeding our expectations.

Table 6: The pruning results for the OPT-
125M/1.3B/2.7B and Mistral-7B models us-
ing the reused RL agent at a 30% sparsity.

Method OPT Mistral

125M 1.3B 2.7B 7B

Dense 27.64 14.61 12.46 5.25

SliceGPT * 44.23 19.58 16.31 9.46
FLAP * 40.05 20.77 18.31 8.90

Episode 112 135 102 101
Episode time (s) 12.62 25.86 35.06 74.48

Ours 39.53 21.71 17.51 8.22
Ours (Recon) 36.19 18.65 16.23 7.79

Moreover, the RL agent trained at one sparsity is
reusable for another. We utilized an RL agent
trained over 1500 episodes at a 20% sparsity rate
to perform a search at a 30% sparsity rate. Figure
7 illustrates the PPL and reward curves during the
search process. It can be observed that we achieved
relatively good results at around 100 episodes. Table
6 presents the 30% sparsity pruning results obtained
by reusing the RL agent trained over 1500 episodes
at a 20% sparsity on the OPT-125M/1.3B/2.7B and
Mistral-7B models. The ‘Episode’ indicates the
number of episodes required for re-searching and
‘Episode time’ indicates the time to search for one
episode. On two 4090 GPUs, the total search time
for Mistral-7B is within 2 GPU hours, and the prun-
ing results for pure search have outperformed SliceGPT’s and FLAP’s. The trade-off in pruning
time for our method is acceptable in practical applications.

5 CONCLUSION

We propose SparsitySolver, a reinforcement learning-based method for large language model prun-
ing that allows for various levels of granularity. In order to more effectively explore suitable pruning
strategies for LLMs, we introduce reinforcement learning search into LLM pruning for the first time.
Through our enhanced reinforcement learning environment, the agent can converge in a short pe-
riod and quickly derive a pruning strategy. Furthermore, we propose a reconstruction compensation
method for structured pruning to recover the model performance without introducing additional pa-
rameters. Our experimental results have confirmed the efficacy of our method. We hope our work
can provide assistance in the design of future LLM pruning strategies.

REFERENCES

Manoj Alwani, Yang Wang, and Vashisht Madhavan. Decore: Deep compression with reinforce-
ment learning. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern
Recognition, pp. 12349–12359, 2022.

10

540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2025

Yongqi An, Xu Zhao, Tao Yu, Ming Tang, and Jinqiao Wang. Fluctuation-based adaptive struc-
tured pruning for large language models. In Proceedings of the AAAI Conference on Artificial
Intelligence, volume 38, pp. 10865–10873, 2024.

Saleh Ashkboos, Maximilian L Croci, Marcelo Gennari do Nascimento, Torsten Hoefler, and James
Hensman. Slicegpt: Compress large language models by deleting rows and columns. arXiv
preprint arXiv:2401.15024, 2024.

Shipeng Bai, Jun Chen, Xintian Shen, Yixuan Qian, and Yong Liu. Unified data-free compression:
Pruning and quantization without fine-tuning. In Proceedings of the IEEE/CVF International
Conference on Computer Vision (ICCV), pp. 5876–5885, October 2023.

Yonatan Bisk, Rowan Zellers, Jianfeng Gao, Yejin Choi, et al. Piqa: Reasoning about physical com-
monsense in natural language. In Proceedings of the AAAI conference on artificial intelligence,
volume 34, pp. 7432–7439, 2020.

Tom Brown, Benjamin Mann, Nick Ryder, Melanie Subbiah, Jared D Kaplan, Prafulla Dhariwal,
Arvind Neelakantan, Pranav Shyam, Girish Sastry, Amanda Askell, et al. Language models are
few-shot learners. Advances in neural information processing systems, 33:1877–1901, 2020.

Sébastien Bubeck, Varun Chandrasekaran, Ronen Eldan, Johannes Gehrke, Eric Horvitz, Ece Ka-
mar, Peter Lee, Yin Tat Lee, Yuanzhi Li, Scott Lundberg, et al. Sparks of artificial general
intelligence: Early experiments with gpt-4. arXiv preprint arXiv:2303.12712, 2023.

Jianda Chen, Shangyu Chen, and Sinno Jialin Pan. Storage efficient and dynamic flexible runtime
channel pruning via deep reinforcement learning. Advances in neural information processing
systems, 33:14747–14758, 2020.

Peter Clark, Isaac Cowhey, Oren Etzioni, Tushar Khot, Ashish Sabharwal, Carissa Schoenick, and
Oyvind Tafjord. Think you have solved question answering? try arc, the ai2 reasoning challenge.
arXiv preprint arXiv:1803.05457, 2018.

Gongfan Fang, Xinyin Ma, Mingli Song, Michael Bi Mi, and Xinchao Wang. Depgraph: Towards
any structural pruning. In Proceedings of the IEEE/CVF Conference on Computer Vision and
Pattern Recognition (CVPR), pp. 16091–16101, June 2023.

Elias Frantar and Dan Alistarh. Sparsegpt: Massive language models can be accurately pruned in
one-shot. In International Conference on Machine Learning, pp. 10323–10337. PMLR, 2023.

Elias Frantar, Saleh Ashkboos, Torsten Hoefler, and Dan Alistarh. Gptq: Accurate post-training
quantization for generative pre-trained transformers. arXiv preprint arXiv:2210.17323, 2022.

Leo Gao, Jonathan Tow, Stella Biderman, Sid Black, Anthony DiPofi, Charles Foster, Laurence
Golding, Jeffrey Hsu, Kyle McDonell, Niklas Muennighoff, Jason Phang, Laria Reynolds, Eric
Tang, Anish Thite, Ben Wang, Kevin Wang, and Andy Zou. A framework for few-shot lan-
guage model evaluation, September 2021. URL https://doi.org/10.5281/zenodo.
5371628.

Tuomas Haarnoja, Aurick Zhou, Pieter Abbeel, and Sergey Levine. Soft actor-critic: Off-policy
maximum entropy deep reinforcement learning with a stochastic actor. In Jennifer G. Dy and
Andreas Krause (eds.), Proceedings of the 35th International Conference on Machine Learning,
ICML 2018, Stockholmsmässan, Stockholm, Sweden, July 10-15, 2018, volume 80 of Proceedings
of Machine Learning Research, pp. 1856–1865. PMLR, 2018. URL http://proceedings.
mlr.press/v80/haarnoja18b.html.

Yihui He, Ji Lin, Zhijian Liu, Hanrui Wang, Li-Jia Li, and Song Han. Amc: Automl for model
compression and acceleration on mobile devices. In European Conference on Computer Vision
(ECCV), 2018.

Edward J Hu, Yelong Shen, Phillip Wallis, Zeyuan Allen-Zhu, Yuanzhi Li, Shean Wang, Lu Wang,
and Weizhu Chen. Lora: Low-rank adaptation of large language models. arXiv preprint
arXiv:2106.09685, 2021.

11

https://doi.org/10.5281/zenodo.5371628
https://doi.org/10.5281/zenodo.5371628
http://proceedings.mlr.press/v80/haarnoja18b.html
http://proceedings.mlr.press/v80/haarnoja18b.html

594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2025

Albert Q Jiang, Alexandre Sablayrolles, Arthur Mensch, Chris Bamford, Devendra Singh Chaplot,
Diego de las Casas, Florian Bressand, Gianna Lengyel, Guillaume Lample, Lucile Saulnier, et al.
Mistral 7b. arXiv preprint arXiv:2310.06825, 2023.

Changhun Lee, Jungyu Jin, Taesu Kim, Hyungjun Kim, and Eunhyeok Park. Owq: Lessons
learned from activation outliers for weight quantization in large language models. arXiv preprint
arXiv:2306.02272, 2023.

Timothy P. Lillicrap, Jonathan J. Hunt, Alexander Pritzel, Nicolas Heess, Tom Erez, Yuval Tassa,
David Silver, and Daan Wierstra. Continuous control with deep reinforcement learning. In Yoshua
Bengio and Yann LeCun (eds.), 4th International Conference on Learning Representations, ICLR
2016, San Juan, Puerto Rico, May 2-4, 2016, Conference Track Proceedings, 2016. URL http:
//arxiv.org/abs/1509.02971.

Ji Lin, Jiaming Tang, Haotian Tang, Shang Yang, Xingyu Dang, and Song Han. Awq:
Activation-aware weight quantization for llm compression and acceleration. arXiv preprint
arXiv:2306.00978, 2023.

Xinyin Ma, Gongfan Fang, and Xinchao Wang. Llm-pruner: On the structural pruning of large
language models. Advances in neural information processing systems, 36:21702–21720, 2023.

Stephen Merity, Caiming Xiong, James Bradbury, and Richard Socher. Pointer sentinel mixture
models. arXiv preprint arXiv:1609.07843, 2016.

Todor Mihaylov, Peter Clark, Tushar Khot, and Ashish Sabharwal. Can a suit of armor conduct
electricity? a new dataset for open book question answering. arXiv preprint arXiv:1809.02789,
2018.

Colin Raffel, Noam Shazeer, Adam Roberts, Katherine Lee, Sharan Narang, Michael Matena, Yanqi
Zhou, Wei Li, and Peter J Liu. Exploring the limits of transfer learning with a unified text-to-text
transformer. Journal of machine learning research, 21(140):1–67, 2020.

Keisuke Sakaguchi, Ronan Le Bras, Chandra Bhagavatula, and Yejin Choi. Winogrande: An adver-
sarial winograd schema challenge at scale. Communications of the ACM, 64(9):99–106, 2021.

John Schulman, Filip Wolski, Prafulla Dhariwal, Alec Radford, and Oleg Klimov. Proximal policy
optimization algorithms. arXiv preprint arXiv:1707.06347, 2017.

Mingjie Sun, Zhuang Liu, Anna Bair, and J Zico Kolter. A simple and effective pruning approach
for large language models. arXiv preprint arXiv:2306.11695, 2023.

Hugo Touvron, Thibaut Lavril, Gautier Izacard, Xavier Martinet, Marie-Anne Lachaux, Timothée
Lacroix, Baptiste Rozière, Naman Goyal, Eric Hambro, Faisal Azhar, et al. Llama: Open and
efficient foundation language models. arXiv preprint arXiv:2302.13971, 2023a.

Hugo Touvron, Louis Martin, Kevin Stone, Peter Albert, Amjad Almahairi, Yasmine Babaei, Niko-
lay Bashlykov, Soumya Batra, Prajjwal Bhargava, Shruti Bhosale, et al. Llama 2: Open founda-
tion and fine-tuned chat models. arXiv preprint arXiv:2307.09288, 2023b.

Alex Wang, Yada Pruksachatkun, Nikita Nangia, Amanpreet Singh, Julian Michael, Felix Hill, Omer
Levy, and Samuel Bowman. Superglue: A stickier benchmark for general-purpose language un-
derstanding systems. In H. Wallach, H. Larochelle, A. Beygelzimer, F. d'Alché-Buc, E. Fox, and
R. Garnett (eds.), Advances in Neural Information Processing Systems, volume 32. Curran As-
sociates, Inc., 2019. URL https://proceedings.neurips.cc/paper/2019/file/
4496bf24afe7fab6f046bf4923da8de6-Paper.pdf.

Wenxuan Wang and Zhaopeng Tu. Rethinking the value of transformer components. arXiv preprint
arXiv:2011.03803, 2020.

Xin Wang, Yu Zheng, Zhongwei Wan, and Mi Zhang. Svd-llm: Truncation-aware singular value
decomposition for large language model compression. arXiv preprint arXiv:2403.07378, 2024.

12

http://arxiv.org/abs/1509.02971
http://arxiv.org/abs/1509.02971
https://proceedings.neurips.cc/paper/2019/file/4496bf24afe7fab6f046bf4923da8de6-Paper.pdf
https://proceedings.neurips.cc/paper/2019/file/4496bf24afe7fab6f046bf4923da8de6-Paper.pdf

648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2025

Guangxuan Xiao, Ji Lin, Mickael Seznec, Hao Wu, Julien Demouth, and Song Han. Smoothquant:
Accurate and efficient post-training quantization for large language models. In International
Conference on Machine Learning, pp. 38087–38099. PMLR, 2023.

Peng Xu, Wenqi Shao, Mengzhao Chen, Shitao Tang, Kaipeng Zhang, Peng Gao, Fengwei An,
Yu Qiao, and Ping Luo. Besa: Pruning large language models with blockwise parameter-efficient
sparsity allocation. In The Twelfth International Conference on Learning Representations.

Lu Yin, You Wu, Zhenyu Zhang, Cheng-Yu Hsieh, Yaqing Wang, Yiling Jia, Mykola Pechenizkiy,
Yi Liang, Zhangyang Wang, and Shiwei Liu. Outlier weighed layerwise sparsity (owl): A missing
secret sauce for pruning llms to high sparsity. arXiv preprint arXiv:2310.05175, 2023.

Sixing Yu, Arya Mazaheri, and Ali Jannesari. Auto graph encoder-decoder for neural network
pruning. In Proceedings of the IEEE/CVF International Conference on Computer Vision, pp.
6362–6372, 2021.

Sixing Yu, Arya Mazaheri, and Ali Jannesari. Topology-aware network pruning using multi-stage
graph embedding and reinforcement learning. In International Conference on Machine Learning,
pp. 25656–25667. PMLR, 2022.

Rowan Zellers, Ari Holtzman, Yonatan Bisk, Ali Farhadi, and Yejin Choi. Hellaswag: Can a ma-
chine really finish your sentence? arXiv preprint arXiv:1905.07830, 2019.

Susan Zhang, Stephen Roller, Naman Goyal, Mikel Artetxe, Moya Chen, Shuohui Chen, Christo-
pher Dewan, Mona Diab, Xian Li, Xi Victoria Lin, et al. Opt: Open pre-trained transformer
language models. arXiv preprint arXiv:2205.01068, 2022.

13

702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2025

Appendix

A EXPERIMENTAL DETAILS

Table 7: Parameters for the PPO agent.

Parameters Value
Actor learning rate 5e-4

Critic learning rate 5e-4

Actor hidden size 256

Critic hidden size 64

Optimizer Adam

number of samples per update 15

number of learning epochs 10

number of episodes 3000

The specific parameters of the PPO agent utilized in the SparsitySolver method are summarized in
Table 7. For unstructured pruning, we use Wanda as the pruning criterion, with the number of cal-
ibration samples set to 128. For structured pruning, we use the ℓ2-norm of the activation values as
the pruning criterion, with the number of calibration samples set to 64. During reconstruction com-
pensation, we set the number of reconstruction samples to 32, and λ to 0.9. Each sample contains
2048 tokens.

B REINFORCEMENT LEARNING

Fig. 8 - 10 show the reward curves and perplexity curves for various models during the process of
reinforcement learning search.

0 500 1000 1500 2000 2500 3000
Episode

0

500

1000

1500

2000

2500

3000

PP
L

0 500 1000 1500 2000 2500 3000
Episode

0.00

0.05

0.10

0.15

0.20

Re
wa

rd
s

Figure 8: Reinforcement learning reward curve and perplexity curve for OPT-125M under structured
pruning with a sparsity ratio of 20% on Wikitext.

14

756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2025

0 500 1000 1500 2000 2500 3000
Episode

0

2000

4000

6000

8000

10000

12000
PP

L

0 500 1000 1500 2000 2500 3000
Episode

0.0

0.1

0.2

0.3

0.4

0.5

Re
wa

rd
s

Figure 9: Reinforcement learning reward curve and perplexity curve for OPT-1.3B under structured
pruning with a sparsity ratio of 20% on Wikitext.

0 500 1000 1500 2000 2500 3000
Episode

0

2000

4000

6000

8000

PP
L

0 500 1000 1500 2000 2500 3000
Episode

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

Re
wa

rd
s

Figure 10: Reinforcement learning reward curve and perplexity curve for OPT-2.7B under structured
pruning with a sparsity ratio of 20% on Wikitext.

C SEARCHED STRATEGY

Fig. 11 depicts the pruning strategies obtained from specific models in the OPT and LLaMA fami-
lies, under structured pruning in the environment and agents we designed. Fig. 12 presents a compar-
ison between the sparsity strategy we searched for and that of OWL within the scope of unstructured
pruning.

Fig. 13 shows the searched strategies for the intermediate episodes during a search process of 3000
episodes. As can be seen, the sparsity ratio presents a somewhat random distribution without a spe-
cific trend in the initial part of the search (the 0-th episode). In the later stages of the search process,
there is considerable overlap in the strategies of the 1999-th and 2999-th episodes, indicating that
the sparsity strategy is gradually stabilizing.

D INFERENCE SPEED

We measured the inference time of the model after pruning with our method. Figure 14 shows
the inference time of the OPT-6.7B after 20% sparsity pruning on two 4090 GPUs. It can be seen
that our approach reduces the inference time of the model. Compared with the 20%-SliceGPT that
introduces extra parameters, our method has a better speedup.

15

810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2025

0 10 20
0.00

0.25

0.50

0.75

1.00

P-
R

ppl=42.25
ppl=43.80

ppl=42.98
ppl=41.08

(a)

0 10 20
0.00

0.25

0.50

0.75

1.00

P-
R

opt-125M

(b)

0 10 20 30 40
0.00

0.25

0.50

0.75

1.00

P-
R

opt-1.3B

(c)

0 10 20 30 40 50 60
0.00

0.25

0.50

0.75

1.00

P-
R

opt-2.7B

(d)

0 10 20 30 40 50 60
0.00

0.25

0.50

0.75

1.00

P-
R

opt-6.7B

(e)

0 10 20 30 40 50 60 70 80
0.00

0.25

0.50

0.75

1.00

P-
R

opt-13B

(f)

0 10 20 30 40 50 60
0.00

0.25

0.50

0.75

1.00

P-
R

LLaMA-2-7B

(g)

0 10 20 30 40 50 60 70 80
0.00

0.25

0.50

0.75

1.00

P-
R

LLaMA-2-13B

(h)

Figure 11: The searched pruning strategies of OPT-125M/1.3B/2.7B/6.7B and LLaMA-V2-7B/13B
on WikiText. The horizontal axis is the index of the layer, while the vertical axis ”P-R” represents
the preserved ratio of parameters in each layer. The yellow dashed line represents the MHA layer,
and the gray dashed line represents the FFN layer. (a): A comparison of four different searched
strategies for OPT-125M at a sparsity of 30%. (b)-(f): The searched pruning strategies of OPT-
125M/1.3B/2.7B/6.7B/13B and LLaMA-V2-7B/13B at a sparsity of 20%.

0 6 12 18 24 30 36 42 48 54 60 66 72
0.0

0.2

0.4

0.6

P-
R

Ours
OWL

(a)

0 12 24 36 48 60 72 84 96 108 120 132 144
0.0

0.2

0.4

0.6

P-
R

Ours
OWL

(b)

0 12 24 36 48 60 72 84 96 108 120 132 144 156 168 180 192
0.0

0.2

0.4

0.6

P-
R

Ours
OWL

(c)

0 12 24 36 48 60 72 84 96 108 120 132 144 156 168 180 192
0.0

0.2

0.4

0.6

P-
R

Ours
OWL

(d)

Figure 12: The searched unstructured pruning strategies of OPT-125M/1.3B/2.7B/6.7B on WikiText
at a sparsity of 70%. The horizontal axis is the index of the weight, while the vertical axis ”P-R”
represents the preserved ratio of parameters in each weight. (a): OPT-125M. (b): OPT-1.3B. (c):
OPT-2.7B. (d): OPT-6.7B.

16

864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

Under review as a conference paper at ICLR 2025

0.0
0.5
1.0

#0

0.0
0.5
1.0

#9
99

0.0
0.5
1.0

#1
99

9

0 10 20 30 40 50 60
Layer index

0.0
0.5
1.0

#2
99

9

Figure 13: The pruning strategies obtained from the intermediate episodes during the search process
for LLaMA-V2-7B at a sparsity of 20%.

0 1 2 3 4 5
Batchsize

200

250

300

350

400

Ti
m

es
 (m

s)

Dense
SliceGPT
Ours

Figure 14: Comparison of inference speed of the OPT-6.7B.

17

	Introduction
	Related Works
	Methodology
	Exploring with Reinforcement Learning
	Compensation through Reconstruction

	Experiments
	Language Modeling Performance
	Zero-shot Tasks Performance
	Searched Strategy
	Compensation
	Ablation Study
	Reinforcement Learning

	Conclusion
	Experimental Details
	Reinforcement Learning
	Searched Strategy
	Inference Speed

