Under review as a conference paper at ICLR 2025

SPARSITYSOLVER: EFFICIENT REINFORCEMENT
LEARNING-BASED PRUNING FOR LLMS

Anonymous authors
Paper under double-blind review

ABSTRACT

Large Language Models (LLMs) have achieved significant success in the field of
Natural Language Processing (NLP). However, due to their large model size and
high inference costs, the application of LLMs is restricted. Pruning is regarded as
an effective method to reduce the size of LLMs. Mainstream pruning methods for
LLMs typically apply a uniform ratio to prune all the layers or determine layerwise
sparsity based on simple criteria. Such manually or semi-manually designed prun-
ing strategies often lead to suboptimal results, which makes reinforcement learn-
ing a feasible solution. However, current reinforcement learning-based pruning
methods usually have redundant environment designs or multiple agents, render-
ing them ill-suited to massive LLMs. Hence, we propose SparsitySolver, which
first incorporates reinforcement learning into the pruning of LLMs, supporting
various pruning granularity. SparsitySolver employs an improved reinforcement
learning environment, allowing for a rapid pruning strategy search with a small-
scale agent. Moreover, to lessen the performance decline caused by structured
pruning, we propose a compensation method capable of restoring performance
without introducing additional parameters to the model. We evaluate our approach
on LLaMA-V1/V2, Mistral, and the OPT families across multiple pruning granu-
larities, achieving performances surpassing the state-of-the-art methods.

1 INTRODUCTION

Large Language Models (LLMs) have demonstrated outstanding performance in a wide range of lan-
guage tasks|Zhang et al.|(2022)); Brown et al.| (2020); Bubeck et al.| (2023)); Touvron et al.| (2023azb)).
However, LLMs come with a substantial model size and high inference costs, meaning deploying
pre-trained models demands expensive computational resources. Hence, techniques aiming at re-
ducing the size and computational demands of LLMs, commonly known as model compression, are
gaining increasing attention. Numerous compression methods for LLMs have been introduced, en-
compassing distillation, quantization, and pruning |[Hu et al.|(2021); |[Frantar et al.|(2022)); Xiao et al.
(2023)); ILin et al.|(2023)); |[Lee et al.| (2023)); [Frantar & Alistarh|(2023); |Ashkboos et al.[(2024)).

Pruning is an effective method to reduce the quantity of model parameters and computations. Con-
sidering the substantial cost of fine-tuning for LLMs, mainstream research concentrates on post-
training pruning of LLMs without fine-tuning |Frantar & Alistarh! (2023); |Ashkboos et al.| (2024);
An et al.| (2024); Wang et al.| (2024); [Sun et al| (2023). In this area, several pruning methods for
LLMs, including Wanda [Sun et al.| (2023)), SparseGPT |Frantar & Alistarh| (2023)) and SliceGPT
Ashkboos et al.| (2024), opt to prune LLMs using uniform sparsity ratios per layer. Compared to
the costly global pruning |An et al.| (2024])), such a uniform strategy is simpler and more suitable for
large-scale LLMs. In addition, certain approaches propose layerwise sparsity ratios that are non-
uniform, an example being OWL Yin et al.| (2023)) that determines the layerwise sparsity ratio based
on the proportion of outliers in each layer, while BESA [Xu et al.| proposes searching for the optimal
pruning rate for each layer in a differentiable manner. However, based on previous studies Wang
& Tu| (2020); Fang et al.| (2023), the differences and inter-dependencies between various layers of
the model constitute a complex issue. Factors such as the type of each layer, its location within
the network, and the associated operators, all influence the appropriate sparsity ratio for that layer.
Thereby, a question arises: what is the most suitable sparsity strategy for large language models?

Under review as a conference paper at ICLR 2025

Action

, ' i)
' ' ' 1
. P, 1 ' '
P | State — p -2 ! ! '
. ! |l ho kg ha hs | he bz s ho R head |
. '
1 1
P : P ' [0 Xneadt '
' ' 1 - 1
1
: ' CITTTTTTTI« :
MHA ' HE \ :
1 7
p . P yaa o G => Ox |
1 ! 1
' ' ! linear combination !
FFN 1 ! FFN e osmssan s s asesnen !
| Reinforcement , . H
P ¢ i Leaming Purey gl(' ;
. Agent . ' outproj |
L ' 'Y I '
ayer; 1+ Layer, ! :
: ' ' ' =>0Ox[])
1 Pl+1 ! !
. 1 ' '
' 1 ' ' |
| Reward 6 2 Piis ! . !
. '
p 1
. ' ' Reconstructed out proj |
__ !
Uniform Pruning §(Searched Sparsity (f' Reconstruction

Figure 1: An overview of SparsitySolver. Left: Uniform pruning. Right: SparsitySolver. Spar-
sitySolver first employs a reinforcement learning agent to search for the sparsity ratios for each
prunable unit. The agent receives the total pruning ratio from the environment as the state, provides
the network’s sparsity strategy as an action within one step, and finally, evaluates the perplexity of
the pruned network as a reward given to the agent. Second, when using structured pruning, we re-
construct the parameters of the last linear layer of the pruned module as a recovery. Specifically, we
compensate for the pruned channels with the linear combination of other channels.

Given that the massive structure of LLMs usually includes dozens of decoder layers, each containing
numerous parameters, the search space for pruning strategy is immense. Thus, manually designing
or brute-force exploring sparsity strategy becomes nearly impossible. Reinforcement learning poses
a solution to this challenge, with various methods exploring the use of reinforcement learning for
pruning strategy search |[He et al.| (2018)); |/Alwani et al.| (2022); [Yu et al.| (2021} 2022). However,
the environments constructed by these methods are overly redundant, making them unsuitable for
massive LLMs. Also, their environment design is skewed. In the environment designed by AMC
He et al.| (2018), the rewards for intermediate layers pruning are all zero. Only once the pruning of
the final layer is done, can a valid reward be assessed on the test set. This type of environment is
abnormal as reinforcement learning finds it difficult to manage sparse reward scenarios. Therefore,
we suggest simplifying the pruning environment as a solution to correct the sparse reward and avoid
additional computations arising from dealing with the environment.

To efficiently and accurately explore the suitable pruning strategy for LLMs, we propose Sparsi-
tySolver, a reinforcement learning-based post-training pruning method for LLMs, supporting both
structured and unstructured pruning. Furthermore, to address the model damage after structured
pruning, we introduce a compensation method to recover the model’s performance. Fig. [I]illustrates
an overview of our approach. The contributions are summarized as follows:

* We propose a simple and efficient reinforcement learning environment, improving the
sparse reward environment in existing RL pruning methods without the need for additional
computation. Within our developed environment, a small-scale RL agent is enough to attain
quick convergence, thereby making it apt for searching pruning strategies for LLMs.

* To mitigate the performance loss after structured pruning, we propose reconstruction com-
pensation, which requires no additional parameters for recovery.

* We conduct multiple experiments on LLMs including OPT [Zhang et al.| (2022), Mistral
Jiang et al.| (2023), LLaMA-V1 [Touvron et al.| (2023a), and LLaMA-V2 [Touvron et al.
(2023b) families, verifying that SparsitySolver can explore more suitable sparsity strate-
gies in both structured and unstructured pruning, demonstrating better perplexity than cor-
responding state-of-the-art methods.

Under review as a conference paper at ICLR 2025

Action Action Action
Agent Environment Agent Environment Agent Environment

State Simple State s; = P

NN-based State

Sparse Rewards Rewards Continuous Rewards

Figure 2: The comparison of reinforcement learning environments. Left: Environment with sparse
rewards, like AMC He et al.|(2018). Middle: Environment that processes states through a neural
network, like AGMC|Yu et al.[(2021). Right: The environment we proposed, featuring simple states
and continuous rewards.

2 RELATED WORKS

LLM Pruning Many studies Frantar & Alistarh|(2023));/Sun et al.|(2023)); Yin et al.|(2023); /Ashk-
boos et al.| (2024); Ma et al.[(2023); |/An et al|(2024) indicate that pruning is a practical approach
for reducing the scale of LLMs. SparseGPT, according to |[Frantar & Alistarh| (2023)), utilizes the
inverse of the Hessian matrix to prune and subsequently update weights. In a different study, Wanda
Sun et al.[(2023) brings a new pruning criterion for LLMs, combining the weight magnitude and
input activations to retain outliers. Carrying this forward, OWL|Yin et al.| (2023) introduces a non-
uniform layerwise sparsity ratio, decided based on the proportion of outliers in each layer. BESA
Xu et al.| proposes searching for the optimal pruning rate for each layer in a differentiable manner.
However, the above methods either only support or mainly support unstructured pruning. Since
unstructured pruning leads to irregular sparse patterns and requires specialized hardware support,
other approaches are centered around the exploration of structured pruning. LLM-Pruner Ma et al.
(2023)) performs structured pruning based on gradient information, and then conducts fine-tuning
using LoRA Hu et al.| (2021)). SliceGPT |Ashkboos et al.| (2024) converts the LayerNorm into RM-
SNorm, performs a transformation on every block of the model through computational invariance,
and then carries out the corresponding pruning. FLAP|An et al.|(2024) proposes a framework that in-
cludes global structure search and baseline bias compensation. However, the above methods either
require fine-tuning or introduce additional parameters. For example, the baseline bias compensa-
tion in FLAP introduces bias to linear layers that are initially without bias. The transformation in
SliceGPT goes even further by adding a new linear layer to each skip connection. These compensa-
tion methods, which require the introduction of additional parameters, contradict the original intent
of pruning and may impact subsequent deployment and inference.

Reinforcement Learning-based Pruning Several methods|He et al.|(2018)); Alwani et al.|(2022));
Chen et al.|(2020); [Yu et al.| (2021} [2022) propose utilizing RL agents to search for pruning strate-
gies. AMC |He et al.| (2018)) first suggests using reinforcement learning agents to explore pruning
strategies. (Chen et al.| (2020) propose a deep reinforcement learning-based runtime pruning method,
where a runtime agent and a static agent jointly make sparsities. DECORE |Alwani et al.| (2022)
utilizes multi-agent reinforcement learning to determine whether each channel should be pruned.
GNN-RL |Yu et al.| (2022) and AGMC |Yu et al.| (2021) employ Graph Neural Networks to capture
the features of the pruned network, and then use reinforcement learning to search for effective prun-
ing strategies. However, the aforementioned methods either require complex environment handling,
such as GNN-RL and AGMC, need cooperation among multiple agents, like in the case of DECORE
and DRL-based methods, or involve abnormal environments like AMC. Such complex methods are
unsuitable for exploring pruning strategies in large-scale LLMs.

3 METHODOLOGY

3.1 EXPLORING WITH REINFORCEMENT LEARNING

A number of approaches suggest using reinforcement learning agents to search for pruning strate-
gies within Convolutional Neural Networks |[He et al.| (2018)); |Alwanti et al.| (2022); Yu et al.| (2021}

Under review as a conference paper at ICLR 2025

2022). However, the reinforcement learning environments constructed by these methods tend to be
over-complicated and ill-suited for large-scale LLMs. As shown in Fig. [2] we propose simplifying
the pruning environment as a solution to rectify sparse rewards and avoid additional computations
incurred by processing the environment. In the following, we provide a detailed description of the
reinforcement learning setup.

State Space In our proposed pruning environment, we define the state as:

Si=P 1
where P is the total pruning ratio. Such a design of the state space not only negates the need for extra
computations but also eliminates the necessity for dynamic implicit modeling of the environment.
At this point, the agent can be regarded as a differential mapping of the pruning strategy to rewards,
which means the agent directly models the actions. Experiments show that the simplified state space
does not affect the performance of reinforcement learning. On the contrary, such a simplified state
design accelerates the speed of the search, with specific details provided in Sec.

Action Space The action given by
the RL agent is the preserved ratio for
every layer within a continuous space,

Algorithm 1 Action Constraints
Initial: The number of parameters per prunable unit W =

which is defined as: l[)wl, 1(1112, e w é\;], totalbnumliaer of parameters W,;;, lower
- o N ound d,,;,, and upper bound a,,, 4.
Ap = [a1, az, ;an] € R) Input: The original action A; = [a1, a2, -+ ,an] pro-
where a; € [@min, @maz)s @min and yided by the agent and the total pruning ratio P.
@maz are the lower and upper bounds Output: The constrained action A; = [a1, a2, ,aN]-

on the sparsity rate for each layer. NV
represents the number of prunable units
in the network. In the case of struc-
tured pruning, prunable units refer to
Multi-Head Attention (MHA) layers
and Feed-Forward Network (FFN) lay-
ers. For MHA layers, we carry out
pruning at the granularity of attention
heads. In unstructured pruning, prun-
able units are defined as weight matri-
ces. For the agent-given action A;, we
need to enforce constraints on it to obtain A, as illustrated in Alg. |1} After obtaining the sparsity
strategy A, we prune the network using the derived strategy.

1: At < tanh(At + 1)/2

2: Ay A X (Gmaz — min + 0.1) 4+ @min

3: At — Clip(At, 0, amw)

4: for all a; in A; do

5: a; < Round(a; x w;)/w;

6: end for

7: for all a; in A; do

8 Wother — Zk<i dk X Wk + Zk‘>i Amin X Wk
9: di = min(ai, ((1 — P) X Wall — Wother)/wi)
10: end for

For the pruning criteria, our method is compatible with most of the mainstream pruning criteria cur-
rently in use. In unstructured pruning, we choose Wanda Sun et al.| (2023) as the pruning criterion,
while in structured pruning, we opt for the £2-norm of the activations as the criterion. It is worth not-
ing that our layer-by-layer pruning does not require any global information or gradient information
as a pruning criterion, which is memory-friendly.

Reward Function Given the above-mentioned state space and action space, the policy only needs
to execute one step per episode. After pruning the model with the searched strategy, we obtain a
model that meets the total pruning ratio P and subsequently evaluate the pruned model according
to the task metric. Considering that our experiments are primarily performed on WikiText Merity
et al.[(2016) and perplexity is used as the evaluation metric, we define the default reward function
as R = ﬁ where ppl is the perplexity evaluated on the WikiText validation. We expect the final
convergence value to fall within the range of (1, 2), remaining within the same order of magnitude.
Based on current LLM benchmarks, we set the coefficient of the reward function to 10.

Proximal Policy Optimization (PPO) Multiple reinforcement learning algorithms aim to search
within continuous action spaces, examples include Deep Deterministic Policy Gradient (DDPG)
Lillicrap et al.|(2016), Proximal Policy Optimization (PPO) Schulman et al.|(2017)), and Soft Actor-
Critic (SAC) Haarnoja et al.| (2018). We utilize PPO as the reinforcement learning algorithm for
search due to its highly efficient policy. Essentially, we only require our agent to learn a differen-
tiable mapping from pruning strategy to rewards. Given the simplicity of our designed environment
state, we can further reduce the size of the critic network.

Under review as a conference paper at ICLR 2025

3.2 COMPENSATION THROUGH RECONSTRUCTION

Our method supports both structured and unstructured pruning. To reduce the negative impact on
network performance caused by structured pruning, we propose compensating for the pruned MHA
layers and FEN layers. Inspired by the data-free compression method UDFC Bai et al. (2023),
we assume that the channels that are damaged due to pruning can be restored through a linear
combination of other channels.

For each pruned module, we consider the last linear layer W?}” € RNoutXNin a5 the reconstruction
layer. For the pruned channel W"“t the assumption of recovery can be formulated as follows.
Nin
Wolm > sy x WO, VpeP 3)
Jj=14¢P
where s, ; is a scale factor that evaluates the level of association between the j-th channel and the

p-th channel, and P is the set of indices of the pruned channels. At this point, the preserved channel
W24 can be written as:

WOt =Wt 43 5,5 x Wt Vi€ [L,Nim], j¢P (4)
pEP
Without pruning, the k-th output channel of the last linear layer can be represented as:

X (e+1) Z WOUtX(I) + bout vk e [Nout} 5)

j=1
where X](-Z) represents the input corresponding to each input channel W,‘f’,";t and b3“! represents the
bias, which can be 0. Without loss of generality, we assume that only the p-th input channel is

pruned. After pruning and reconstruction with equation] the k-th output channel can be repre-
sented as follows.

Nin
X = ST W sy x WP X 452 Yk € [1, Now] (6)
J=1j#p
The reconstruction error £,.. of the k-th output channel can be defined as:
Nin
41 £4+1 ou out v (£
re = XY = X = WX = 3T sy x WXl
J=1j#p
N. (N
= ||WOUt(X(L]) Z Sp,j X X)H2
Jj=Lj#p
Note that pruning does not change W'/ out Therefore, we further define the reconstruction error as:
Nin Nin
‘
e =1X0 = 37 5oy x XA D0 sl ®)
J=1j#p J=1j#p

where A is a non-negative penalty coefficient. Next, by minimizing the reconstruction error, we
prove the existence of the optimal solution s. For simplicity, we define:

X, = [XO), X=X s=[s,]. JeLNal j#p ©)

The reconstruction error can be simplified as £, = (X, —sX)" (X, —sX) + As"s . The first and
second derivative of the s is:

gre 257‘8
8as = —2X "X, +2s(X"X + \I), 382S =2X "X + 2AI (10)
It can be seen that ¢, is a convex function and there exists a unique optimal solution s such that
oe
Ofre _ ().
Os

We generalize the p-th pruned channel to all pruned channels set P. For each pruned channel, we
can solve equation through Ridge regression to obtain a set of scale factors s, .. With these scale
factors, we can recover the pruned channels using a linear combination of the preserved channels, as
shown in equation 4] Notably, our reconstruction method only updates the weights of the last linear
layer and avoids introducing any extra parameters.

Under review as a conference paper at ICLR 2025

4 EXPERIMENTS

Models and Datasets We evaluate the performance of SparsitySolver across a series of LLMs, in-
cluding the OPT [Zhang et al.|(2022), LLaMA-V 1 |Touvron et al.|(2023a)), LLaMA-V2 Touvron et al.
(2023b) and Mistral |Jiang et al.| (2023)) model families. Our evaluation aligns with the existing LLM
pruning methods |Ashkboos et al.| (2024)); |An et al.| (2024); [Yin et al.| (2023)), including perplexity
assessment on the WikiText Merity et al.| (2016)) validation and evaluation on seven common-sense
benchmarks (BoolQ [Wang et al.| (2019), OpenbookQA |Mihaylov et al.| (2018), WinoGrande [Sak-
aguchi et al.| (2021)), HellaSwag |Zellers et al.| (2019), PIQA Bisk et al|(2020), ARC-e, and ARC-c
Clark et al.|(2018))) in zero-shot setting consistent with the LM-Evaluation-Harness|Gao et al.|(2021)).

Baseline We select the corresponding LLM pruning baseline according to specific pruning gran-
ularities. In terms of unstructured pruning, we employ Wanda Sun et al.| (2023)), BESA [Xu et al.,
and OWL |Yin et al.| (2023)) as comparative baselines. In terms of structured pruning, we compare
SparsitySolver with the SOTA post-training structured pruning methods SliceGPT |Ashkboos et al.
(2024) and FLAP|An et al.[(2024). We also compare the singular value decomposition-based method
SVD-LLM Wang et al.| (2024]).

Setup We utilize the Proximal Policy Optimization (PPO) as our reinforcement learning agent.
Our actor network comprises two hidden layers, with each layer holding 256 neurons, our critic
network also consists of two hidden layers, each of which has 64 neurons. The learning rate is 5e-4,
the number of samples per update is 15, the learning epoch is 10, and 3000 episodes are searched.

4.1 LANGUAGE MODELING PERFORMANCE

Table 1: WikiText validation perplexity of various unstructured pruning methods on LLaMA-V1-
7B/13B at 50%, 60% and 70% sparsity. * indicates the experimental results we reproduced using
the open-source code. The bolded results indicate the best performance.

Layerwise Searched 50% 60% 70%
Method . .

Sparsity Sparsity 77357 78 138 7B 13B
Dense - - 568 5.09 568 509 5.68 5.09
Wanda * X X 726 6.17 10.86 891 93.07 57.70
OWL w.t. Wanda * v X 722 6.06 9.52 7.62 2496 17.37
BESA * v X 7.12 6.13 12.66 9.87 8470 54.40
Ours v v/ 694 6.02 950 741 2284 16.57

Table 2: WikiText validation perplexity of structured pruning methods for OPT-125M/1.3B/2.7B/
6.7B/13B, LLaMA-V2-7B/13B/70B and Mistral-7B at 20% sparsity. The dash ‘-’ represents results
that could not be reproduced with the open-source code.

Searched Weight Additional OPT LLaMA-V2 Mistral
Method Sparsit Undate Parameters
parsity Update Farameters — j5sp 13B 27B 67B 13B 7B 13B 70B 7B

Dense - - - 27.64 14.61 1246 10.85 10.12 547 488 332 525
SliceGPT * X 4 4 34.10 16.51 13.89 11.60 10.71 6.84 6.06 4.25 6.96
FLAP * X v v 3445 17.37 1538 1279 13.17 7.15 631 4.12 6.57
SVD-LLM * X v X 38.86 17.82 15.22 12.06 - 8.38 6.66 4.66 -

Ours 4 X X 3144 17.26 1455 13.07 11.80 7.54 645 432 6.89
Ours (Recon) v 4 X 30.67 15.82 13.75 1047 1023 6.79 6.01 4.06 6.48

Table [T] presents the performance of various unstructured pruning methods on language modeling
with sparsity levels of 50%, 60%, and 70% on WikiText. Our method achieves a high sparsity
rate of 70% in unstructured pruning and outperforms Wanda, OWL, and BESA across a range of
sparsity levels. This comparison indicates that the pruning strategy provided by the reinforcement
learning agent is superior to the hierarchical layerwise sparsity rates determined by the proportion
of outliers in OWL and also outperforms the layerwise sparsity rates searched in a differentiable

Under review as a conference paper at ICLR 2025

manner in BESA, as the RL agent demonstrates stronger capabilities in managing inter-layer dif-
ferences. More detailed comparisons of unstructured pruning strategies are presented in App.

Table2]presents the performance of various structured pruning meth-] - oense

SliceGPT

ods for LLMs under a sparsity ratio of 20% on WikiText. It canbe] ¢
observed from Table [2] that even if we only use the searched strat- 2]+ o=
egy without incorporating reconstruction compensation, our method

can still achieve an acceptably low level of perplexity. In the case 3
of certain models (such as OPT-125M), our pure searched strat-
egy achieves better results than other pruning methods incorporat- 2
ing compensation. Furthermore, when the reconstruction compen- 10 o B
sation is combined with the strategy we searched, our method sur- m

passes other structured pruning techniques, as shown in Table 2] un- Figure 3: Comparison of the
der “Ours (Recon)’. Figure 3| illustrates a comparison of the PPL- pp] _gparsity pattern Pareto
Sparsity pattern Pareto curves for various pruning on the OPT-125M . ;rve of the OPT-125M.
model, showing that the Pareto curve of SparsitySolver with recon-

struction compensation significantly outperforms other methods.

PPL
w
8

4.2 ZERO-SHOT TASKS PERFORMANCE

Table 3: Zero-shot performance of structured pruning on LLaMA-V1-7B at 20% sparsity. The
underlined results indicate the second-best performance.

Searched Weight Additional

Method Sparsity Update Parameters BoolQ PIQA HellaSwag WinoGrande ARC-e ARC-c OBQA Ave.
Dense - - - 75.02 79.16 76.20 70.09 72.85 44.62 4440 66.05
SliceGPT * X v v 58.99 69.86 59.45 68.43 62.37 36.60 37.40 56.15
FLAP * X v v 71.44 7514 67.71 67.40 67.21 37.46 42.00 61.19
Ours(C4) 4 4 X 7275 75.73 69.34 68.27 66.53 36.59 39.14 61.19
Ours(Recon) v v X 7437 75.29 68.41 67.85 70.23 3747 39.60 61.89

Table 4: Zero-shot performance of unstructured pruning on LLaMA-V1-7B at 70% sparsity.

Layerwise Searched

Method Sparsity Sparsity BoolQ PIQA HellaSwag WinoGrande ARC-e ARC-c OBQA Ave.
Dense - - 75.02 79.16 76.20 70.09 72.85 44.62 4440 66.05
Wanda X X 55.11 57.18 31.83 51.38 34.22 19.80 26.00 39.36
OWL * v X 63.48 64.90 44.79 58.72 45.03 26.19 29.60 47.53
BESA * v X 57.86 55.88 31.27 50.75 32.07 22.10 27.60 39.64
Ours v v 63.97 65.67 45.16 59.22 47.35 27.13 31.80 48.61

We evaluated the zero-shot capability of our method under structured and unstructured pruning
settings across seven downstream tasks, as shown in Tables [3] and [respectively. In structured
pruning, our model searches for sparsity strategies on WikiText. ‘Ours(C4)’ represents the com-
pensation results using samples from the C4 Raffel et al.| (2020) training set as the calibration set,
while ‘Ours(Recon)’ indicates the compensation results using samples from the respective down-
stream task dataset as the calibration set. The calibration set consists of 32 samples, each containing
2048 tokens. It is worth noting that our method shows an increase in accuracy in most of the tested
downstream tasks, achieving better average results than other methods. Compared to the SliceGPT
method, which introduces additional parameters, the total number of model parameters obtained
using SparsitySolver is less than that of SliceGPT. When the sparsity rate of the LLaMA-V1-7B
model is 20%, the number of parameters after pruning with the SliceGPT method is 6.1B, whereas
our method results in only 5.4B parameters, while achieving comparable performance and better
average accuracy.

In unstructured pruning, we conducted a direct search on the downstream target dataset, with the
reward function defined by zero-shot accuracy. It can be observed that our method outperforms
Wanda, OWL, and BESA even at a high sparsity rate of 70%.

Under review as a conference paper at ICLR 2025

4.3 SEARCHED STRATEGY

—— Ours —— Ours
067 — owL 061 — owL
[-4 4 o +
zoe mu mulllll II Ilaul
|/ Il |
0.2 0.21 ' '
0.0k + . y N v v y v v v v 0.0 ; ;
0 6 12 18 24 30 36 42 48 54 60 66 72 0 24 36 48 72 84 96 108 120 132 144
(@) (b)
1.00 4 1.00 4
0.751 0.75 1
[-4 o
d 0.50 d 0.50 1
0.25 0.25 1
—— opt-1.3B —— opt-6.7B
0.00 4+ 0.00
0 10 20 30 40 0 10 20 30 40 50 60
© (@
1.00 1.00
0.754 0.75 4
“.‘ [-4
d 0.50 d 0.50
0.25 0.25 4
— LLaMA-2-7B —— LLaMA-2-13B
0.00 4 + + 0.00 4 ; ; ; ; ; ; ;
0 10 20 30 40 50 60 0 10 20 30 40 50 60 70 80
© ®

Figure 4: The searched pruning strategies. The horizontal axis is the index of the layer, while the
vertical axis ”P-R” represents the preserved ratio of parameters in each layer or each weight. (a)-(b):
A comparison of unstructured sparsity strategies for OPT-125M and OPT-1.3B under 70% sparsity
on WikiText. (c)-(f): The searched pruning strategies of OPT-1.3B/6.7B and LLaMA-V2-7B/13B at
a sparsity of 20% under structured pruning. The yellow dashed line represents the MHA layer, and
the gray dashed line represents the FFN layer.

We also focus on the pruning strategies obtained from the search. Fig.[d]depicts the pruning strate-
gies obtained from specific models in the OPT and LLaMA families, under the environment and
agent we designed. More detailed searched pruning strategies are presented in App. [C| Fig.[4aland
Fig. [4b] show the comparison of the strategies we obtained from the search and OWL'’s strategies
under unstructured pruning. It can be observed that our method is more flexible, allowing different
sparsity rates to be assigned to weight matrices at different locations. Fig.[dc|and Fig. [4d|depict the
structured pruning strategies obtained for the OPT series at a sparsity ratio of 20%, with the cor-
responding perplexities shown in Table 2] Differing from the searched strategies for convolutional
neural networks obtained in AMC |He et al.| (2018)), the agent tends to retain more parameters in the
middle layers of LLMs and focuses on pruning at the front and back ends of the model. Fig. Ae]
and Fig. fifleach present the searched strategies of the LLaMA-V2-7B and LLaMA-V2-13B models,
respectively. In the LLaMA model, the pruning strategy becomes increasingly complex, making it
difficult to summarize a unified trend.

4.4 COMPENSATION

25

For the reconstruction compensation part, we set 2] R B
the default calibration set for compensation to . |

contain 32 samples sampled from the training ¢

set, each containing 2048 tokens. The Ridge re- 27] _‘\
gression hyperparameter X is set to 0.9. Fig. [j] 214]

shows the effect on the compensation results when S N O O O O O IR A
changing the number of reconstruction samples O reton e e e 3236

in the MHA and FEN layers. The results clearly

show that for both the MHA and FFN layers, as Figure 5: The perplexity of OPT-1.3B at 30%
the number of reconstruction samples increases, sparsity with different numbers of reconstruc-
the performance improves. tion samples used in the MHA and FFN layers.

Under review as a conference paper at ICLR 2025

The GPU time required for reconstruction is related to the sparsity strategy searched. As the searched
sparsity ratios vary, the speed of reconstruction also changes. The smaller the sparsity of a layer, the
faster its reconstruction speed. On an NVIDIA 80G A800, reconstructing an MHA layer of LLaMA-
V2-70B with a 20% sparsity using 32 samples requires 0.21 GPU hours, while reconstructing a 20%
sparsity MHA layer of LLaMA-V2-7B and LLaMA-V2-13B takes less than 2 minutes.

4.5 ABLATION STUDY

Table 5: A comparison of the pruning results on various models at a 20% sparsity using the different
components we proposed. ‘Recon’ refers to the results obtained using a uniform sparsity strategy
combined with the reconstruction, ‘Search’ indicates the results from pruning with the searched
sparsity strategy without reconstruction, and ‘Search + Recon’ represents the results obtained after
applying our search strategy followed by reconstruction.

Searched Weight OPT LLaMA-V2 Mistral
Method .

Sparsity Update jr5ni 138 278 7B 7B
Dense - - 27.64 1461 12.46 5.47 5.25
SliceGPT * X v 34.10 16.51 13.89 6.84 6.96
FLAP * X v 34.45 17.37 15.38 7.15 6.57
Recon X v 3225 17.15 14.65 7.14 7.22
Search v X 31.44 17.26 14.55 7.54 6.89
Search + Recon v v 30.67 15.82 13.75 6.79 6.48

Additionally, we analyze the effectiveness of each component we proposed, as shown in Table [5
where we conducted ablation experiments on the search strategy and reconstruction. It is evident
that both search and reconstruction effectively improve pruning results. In some certain models,
both the search-only and reconstruction-only methods yield better results than SliceGPT or FLAP.
However, ‘Search + Recon’, which combines both methods, achieve the highest performance.

4.6 REINFORCEMENT LEARNING

1.4+ 300000
Ours ours
AMC 250000
1.24 200000
& 150000
1.0 =
100000
v 0.8 50000
e
© o
2 064 0 500 1000 1500 2000 2500 3000
e 300000 1 Fpisode -
~—— AMC
0.44 250000
200000
0.29 & 150000
100000
0.0 .
50000
T T T T T T T
0 500 1000 1500 2000 2500 3000 4
Ep|50de o 500 1000 E;igge 2000 2500 3000
(@) (b)

Figure 6: Comparison of our proposed reinforcement learning method with the AMC, conducting
structured pruning strategy search on LLaMA-V2-7B with a sparsity ratio of 20%. (a) Comparison
of the rewards curves. (b) Comparison of the perplexity curves.

We focus on analyzing the performance of our proposed reinforcement learning method. Fig. [6]
shows the comparison of our proposed RL agent with AMC He et al.|(2018]). It is demonstrated that
our improved reinforcement learning environment drastically enhances exploration performance.
Our continuous reward environment accelerates the convergence speed of the agent, with rewards
steadily increasing after 500 episodes. However, it is difficult for the agent to converge when em-
ploying AMC’s sparse reward environment. As shown by the violet-red curve in Fig. [6b] its per-
plexity also experiences strong oscillations and remains high. From the reward curve in Fig. [6a

Under review as a conference paper at ICLR 2025

60

50

40+ 1.01

P
Rewards
o
©
|

o
o
|

20 A

o
ES
L

10 A

e
[N}
N

0 -r T T T T T T T T T T T T T T
0 20 40 60 80 100 120 140 0 20 40 60 80 100 120 140
Episode Episode

o
o

Figure 7: The PPL curve and reward curve for the Mistral-7B model during a 30% sparsity search
by the RL agent, which was trained over 1500 episodes at a 20% sparsity rate. Left: The PPL curve.
Right: The rewards curve.

it can be seen that our agent achieves convergence between 1500-2000 episodes, delivering a rel-
atively satisfactory outcome. The reinforcement learning curves for other models are provided in
App. [B] display the same trend. This indicates that a search with 3000 episodes is saturated, and the
reinforcement learning design of SparsitySolver is highly efficient, exceeding our expectations.

Moreover, the RL agent trained at one sparsity iS Tuple 6: The pruning results for the OPT-
reusable for another. We utilized an RL agent 125M/1.3B/2.7B and Mistral-7B models us-

trained over 1500 episodes at a 20% sparsity rate ing the reused RL agent at a 30% sparsity.
to perform a search at a 30% sparsity rate. Figure

[7)illustrates the PPL and reward curves during the OPT Mistral
search process. It can be observed that we achieved Method

relatively good results at around 100 episodes. Table 125M 138 27B B
[Blpresents the 30% sparsity pruning results obtained ~ Dense 2764 1461 1246 525
by reusing the RL agent trained over 1500 episodes SliceGPT * 4423 1958 1631 9.46
at a 20% sparsity on the OPT-125M/1.3B/2.7B and FLAP * 40.05 20.77 18.31 8.90
Mistral-7B models. The ‘Episode’ indicates the Episode 112 135 102 101
number of episodes required for re-searching and Episode time (s) 12.62 25.86 35.06 74.48
‘Episode time’ indicates the time to search for one (g 3953 2171 1751 822

episode. On two 4090 GPUs, the total search time Ours (Recon) 3619 18.65 1623 7.79
for Mistral-7B is within 2 GPU hours, and the prun-
ing results for pure search have outperformed SliceGPT’s and FLAP’s. The trade-off in pruning
time for our method is acceptable in practical applications.

5 CONCLUSION

We propose SparsitySolver, a reinforcement learning-based method for large language model prun-
ing that allows for various levels of granularity. In order to more effectively explore suitable pruning
strategies for LLMs, we introduce reinforcement learning search into LLM pruning for the first time.
Through our enhanced reinforcement learning environment, the agent can converge in a short pe-
riod and quickly derive a pruning strategy. Furthermore, we propose a reconstruction compensation
method for structured pruning to recover the model performance without introducing additional pa-
rameters. Our experimental results have confirmed the efficacy of our method. We hope our work
can provide assistance in the design of future LLM pruning strategies.

REFERENCES

Manoj Alwani, Yang Wang, and Vashisht Madhavan. Decore: Deep compression with reinforce-
ment learning. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern
Recognition, pp. 12349-12359, 2022.

10

Under review as a conference paper at ICLR 2025

Yongqi An, Xu Zhao, Tao Yu, Ming Tang, and Jinqiao Wang. Fluctuation-based adaptive struc-
tured pruning for large language models. In Proceedings of the AAAI Conference on Artificial
Intelligence, volume 38, pp. 10865-10873, 2024.

Saleh Ashkboos, Maximilian L. Croci, Marcelo Gennari do Nascimento, Torsten Hoefler, and James
Hensman. Slicegpt: Compress large language models by deleting rows and columns. arXiv
preprint arXiv:2401.15024, 2024.

Shipeng Bai, Jun Chen, Xintian Shen, Yixuan Qian, and Yong Liu. Unified data-free compression:
Pruning and quantization without fine-tuning. In Proceedings of the IEEE/CVF International
Conference on Computer Vision (ICCV), pp. 5876-5885, October 2023.

Yonatan Bisk, Rowan Zellers, Jianfeng Gao, Yejin Choi, et al. Piga: Reasoning about physical com-
monsense in natural language. In Proceedings of the AAAI conference on artificial intelligence,
volume 34, pp. 7432-7439, 2020.

Tom Brown, Benjamin Mann, Nick Ryder, Melanie Subbiah, Jared D Kaplan, Prafulla Dhariwal,
Arvind Neelakantan, Pranav Shyam, Girish Sastry, Amanda Askell, et al. Language models are
few-shot learners. Advances in neural information processing systems, 33:1877-1901, 2020.

Sébastien Bubeck, Varun Chandrasekaran, Ronen Eldan, Johannes Gehrke, Eric Horvitz, Ece Ka-
mar, Peter Lee, Yin Tat Lee, Yuanzhi Li, Scott Lundberg, et al. Sparks of artificial general
intelligence: Early experiments with gpt-4. arXiv preprint arXiv:2303.12712, 2023.

Jianda Chen, Shangyu Chen, and Sinno Jialin Pan. Storage efficient and dynamic flexible runtime
channel pruning via deep reinforcement learning. Advances in neural information processing
systems, 33:14747-14758, 2020.

Peter Clark, Isaac Cowhey, Oren Etzioni, Tushar Khot, Ashish Sabharwal, Carissa Schoenick, and
Oyvind Tafjord. Think you have solved question answering? try arc, the ai2 reasoning challenge.
arXiv preprint arXiv:1803.05457, 2018.

Gongfan Fang, Xinyin Ma, Mingli Song, Michael Bi Mi, and Xinchao Wang. Depgraph: Towards
any structural pruning. In Proceedings of the IEEE/CVF Conference on Computer Vision and
Pattern Recognition (CVPR), pp. 16091-16101, June 2023.

Elias Frantar and Dan Alistarh. Sparsegpt: Massive language models can be accurately pruned in
one-shot. In International Conference on Machine Learning, pp. 10323—-10337. PMLR, 2023.

Elias Frantar, Saleh Ashkboos, Torsten Hoefler, and Dan Alistarh. Gptq: Accurate post-training
quantization for generative pre-trained transformers. arXiv preprint arXiv:2210.17323,2022.

Leo Gao, Jonathan Tow, Stella Biderman, Sid Black, Anthony DiPofi, Charles Foster, Laurence
Golding, Jeffrey Hsu, Kyle McDonell, Niklas Muennighoff, Jason Phang, Laria Reynolds, Eric
Tang, Anish Thite, Ben Wang, Kevin Wang, and Andy Zou. A framework for few-shot lan-
guage model evaluation, September 2021. URL https://doi.org/10.5281/zenodo.
5371628.

Tuomas Haarnoja, Aurick Zhou, Pieter Abbeel, and Sergey Levine. Soft actor-critic: Off-policy
maximum entropy deep reinforcement learning with a stochastic actor. In Jennifer G. Dy and
Andreas Krause (eds.), Proceedings of the 35th International Conference on Machine Learning,
ICML 2018, Stockholmsmdssan, Stockholm, Sweden, July 10-15, 2018, volume 80 of Proceedings
of Machine Learning Research, pp. 1856-1865. PMLR, 2018. URL http://proceedings.
mlr.press/v80/haarnojal8b.html.

Yihui He, Ji Lin, Zhijian Liu, Hanrui Wang, Li-Jia Li, and Song Han. Amc: Automl for model
compression and acceleration on mobile devices. In European Conference on Computer Vision
(ECCV), 2018.

Edward J Hu, Yelong Shen, Phillip Wallis, Zeyuan Allen-Zhu, Yuanzhi Li, Shean Wang, Lu Wang,
and Weizhu Chen. Lora: Low-rank adaptation of large language models. arXiv preprint
arXiv:2106.09685, 2021.

11

https://doi.org/10.5281/zenodo.5371628
https://doi.org/10.5281/zenodo.5371628
http://proceedings.mlr.press/v80/haarnoja18b.html
http://proceedings.mlr.press/v80/haarnoja18b.html

Under review as a conference paper at ICLR 2025

Albert Q Jiang, Alexandre Sablayrolles, Arthur Mensch, Chris Bamford, Devendra Singh Chaplot,
Diego de las Casas, Florian Bressand, Gianna Lengyel, Guillaume Lample, Lucile Saulnier, et al.
Mistral 7b. arXiv preprint arXiv:2310.06825, 2023.

Changhun Lee, Jungyu Jin, Taesu Kim, Hyungjun Kim, and Eunhyeok Park. Owq: Lessons
learned from activation outliers for weight quantization in large language models. arXiv preprint
arXiv:2306.02272, 2023.

Timothy P. Lillicrap, Jonathan J. Hunt, Alexander Pritzel, Nicolas Heess, Tom Erez, Yuval Tassa,
David Silver, and Daan Wierstra. Continuous control with deep reinforcement learning. In Yoshua
Bengio and Yann LeCun (eds.), 4th International Conference on Learning Representations, ICLR
2016, San Juan, Puerto Rico, May 2-4, 2016, Conference Track Proceedings,2016. URL http:
//arxiv.org/abs/1509.02971.

Ji Lin, Jiaming Tang, Haotian Tang, Shang Yang, Xingyu Dang, and Song Han. Awq:
Activation-aware weight quantization for llm compression and acceleration. arXiv preprint
arXiv:2306.00978, 2023.

Xinyin Ma, Gongfan Fang, and Xinchao Wang. Llm-pruner: On the structural pruning of large
language models. Advances in neural information processing systems, 36:21702-21720, 2023.

Stephen Merity, Caiming Xiong, James Bradbury, and Richard Socher. Pointer sentinel mixture
models. arXiv preprint arXiv:1609.07843, 2016.

Todor Mihaylov, Peter Clark, Tushar Khot, and Ashish Sabharwal. Can a suit of armor conduct

electricity? a new dataset for open book question answering. arXiv preprint arXiv:1809.02789,
2018.

Colin Raffel, Noam Shazeer, Adam Roberts, Katherine Lee, Sharan Narang, Michael Matena, Yanqi
Zhou, Wei Li, and Peter J Liu. Exploring the limits of transfer learning with a unified text-to-text
transformer. Journal of machine learning research, 21(140):1-67, 2020.

Keisuke Sakaguchi, Ronan Le Bras, Chandra Bhagavatula, and Yejin Choi. Winogrande: An adver-
sarial winograd schema challenge at scale. Communications of the ACM, 64(9):99—-106, 2021.

John Schulman, Filip Wolski, Prafulla Dhariwal, Alec Radford, and Oleg Klimov. Proximal policy
optimization algorithms. arXiv preprint arXiv:1707.06347, 2017.

Mingjie Sun, Zhuang Liu, Anna Bair, and J Zico Kolter. A simple and effective pruning approach
for large language models. arXiv preprint arXiv:2306.11695, 2023.

Hugo Touvron, Thibaut Lavril, Gautier Izacard, Xavier Martinet, Marie-Anne Lachaux, Timothée
Lacroix, Baptiste Roziere, Naman Goyal, Eric Hambro, Faisal Azhar, et al. Llama: Open and
efficient foundation language models. arXiv preprint arXiv:2302.13971, 2023a.

Hugo Touvron, Louis Martin, Kevin Stone, Peter Albert, Amjad Almahairi, Yasmine Babaei, Niko-
lay Bashlykov, Soumya Batra, Prajjwal Bhargava, Shruti Bhosale, et al. Llama 2: Open founda-
tion and fine-tuned chat models. arXiv preprint arXiv:2307.09288, 2023b.

Alex Wang, Yada Pruksachatkun, Nikita Nangia, Amanpreet Singh, Julian Michael, Felix Hill, Omer
Levy, and Samuel Bowman. Superglue: A stickier benchmark for general-purpose language un-
derstanding systems. In H. Wallach, H. Larochelle, A. Beygelzimer, F. d'Alché-Buc, E. Fox, and
R. Garnett (eds.), Advances in Neural Information Processing Systems, volume 32. Curran As-
sociates, Inc., 2019. URL https://proceedings.neurips.cc/paper/2019/file/
4496bf24afe7fab6f046bf4923da8de6—Paper.pdf.

Wenxuan Wang and Zhaopeng Tu. Rethinking the value of transformer components. arXiv preprint
arXiv:2011.03803, 2020.

Xin Wang, Yu Zheng, Zhongwei Wan, and Mi Zhang. Svd-llm: Truncation-aware singular value
decomposition for large language model compression. arXiv preprint arXiv:2403.07378, 2024.

12

http://arxiv.org/abs/1509.02971
http://arxiv.org/abs/1509.02971
https://proceedings.neurips.cc/paper/2019/file/4496bf24afe7fab6f046bf4923da8de6-Paper.pdf
https://proceedings.neurips.cc/paper/2019/file/4496bf24afe7fab6f046bf4923da8de6-Paper.pdf

Under review as a conference paper at ICLR 2025

Guangxuan Xiao, Ji Lin, Mickael Seznec, Hao Wu, Julien Demouth, and Song Han. Smoothquant:
Accurate and efficient post-training quantization for large language models. In International
Conference on Machine Learning, pp. 38087-38099. PMLR, 2023.

Peng Xu, Wenqgi Shao, Mengzhao Chen, Shitao Tang, Kaipeng Zhang, Peng Gao, Fengwei An,
Yu Qiao, and Ping Luo. Besa: Pruning large language models with blockwise parameter-efficient
sparsity allocation. In The Twelfth International Conference on Learning Representations.

Lu Yin, You Wu, Zhenyu Zhang, Cheng-Yu Hsieh, Yaqing Wang, Yiling Jia, Mykola Pechenizkiy,
Yi Liang, Zhangyang Wang, and Shiwei Liu. Outlier weighed layerwise sparsity (owl): A missing
secret sauce for pruning llms to high sparsity. arXiv preprint arXiv:2310.05175, 2023.

Sixing Yu, Arya Mazaheri, and Ali Jannesari. Auto graph encoder-decoder for neural network
pruning. In Proceedings of the IEEE/CVF International Conference on Computer Vision, pp.
6362-6372, 2021.

Sixing Yu, Arya Mazaheri, and Ali Jannesari. Topology-aware network pruning using multi-stage
graph embedding and reinforcement learning. In International Conference on Machine Learning,
pp. 25656-25667. PMLR, 2022.

Rowan Zellers, Ari Holtzman, Yonatan Bisk, Ali Farhadi, and Yejin Choi. Hellaswag: Can a ma-
chine really finish your sentence? arXiv preprint arXiv:1905.07830, 2019.

Susan Zhang, Stephen Roller, Naman Goyal, Mikel Artetxe, Moya Chen, Shuohui Chen, Christo-
pher Dewan, Mona Diab, Xian Li, Xi Victoria Lin, et al. Opt: Open pre-trained transformer
language models. arXiv preprint arXiv:2205.01068, 2022.

13

Under review as a conference paper at ICLR 2025

Appendix

A EXPERIMENTAL DETAILS

Table 7: Parameters for the PPO agent.

Parameters Value
Actor learning rate Se-4
Critic learning rate Se-4
Actor hidden size 256
Critic hidden size 64
Optimizer Adam
number of samples per update 15
number of learning epochs 10
number of episodes 3000

The specific parameters of the PPO agent utilized in the SparsitySolver method are summarized in
Table[7] For unstructured pruning, we use Wanda as the pruning criterion, with the number of cal-
ibration samples set to 128. For structured pruning, we use the £2-norm of the activation values as
the pruning criterion, with the number of calibration samples set to 64. During reconstruction com-
pensation, we set the number of reconstruction samples to 32, and A to 0.9. Each sample contains
2048 tokens.

B REINFORCEMENT LEARNING

Fig. [8] - [I0] show the reward curves and perplexity curves for various models during the process of
reinforcement learning search.

3000 A
2500 4 0.20 A
2000 ~ 0.15 1
wn
B B
2 1500 - 2
& 0.10
1000 +
0.05 1
500 4
0 ! el 0.00
0 500 1000 1500 2000 2500 3000 0 500 1000 1500 2000 2500 3000
Episode Episode

Figure 8: Reinforcement learning reward curve and perplexity curve for OPT-125M under structured
pruning with a sparsity ratio of 20% on Wikitext.

14

Under review as a conference paper at ICLR 2025

12000 - 0.5
10000 - 0.4
8000
6000
0.2
4000
2000 011
0 A - 0.0 1

0 500 1000 1500 2000 2500 3000 0 500 1000 1500 2000 2500 3000
Episode Episode

PPL
Rewards
o
w

Figure 9: Reinforcement learning reward curve and perplexity curve for OPT-1.3B under structured
pruning with a sparsity ratio of 20% on Wikitext.

8000 -
6000 -
& 4000
2000 -
0- " L
0 500

1000 1500 2000 2500 3000 0 500 1000 1500 2000 2500 3000
Episode Episode

PL
Rewards

Figure 10: Reinforcement learning reward curve and perplexity curve for OPT-2.7B under structured
pruning with a sparsity ratio of 20% on Wikitext.

C SEARCHED STRATEGY

Fig. [TT] depicts the pruning strategies obtained from specific models in the OPT and LLaMA fami-
lies, under structured pruning in the environment and agents we designed. Fig.[I2]presents a compar-
ison between the sparsity strategy we searched for and that of OWL within the scope of unstructured
pruning.

Fig.[13]shows the searched strategies for the intermediate episodes during a search process of 3000
episodes. As can be seen, the sparsity ratio presents a somewhat random distribution without a spe-
cific trend in the initial part of the search (the 0-th episode). In the later stages of the search process,
there is considerable overlap in the strategies of the 1999-th and 2999-th episodes, indicating that
the sparsity strategy is gradually stabilizing.

D INFERENCE SPEED

We measured the inference time of the model after pruning with our method. Figure [T4] shows
the inference time of the OPT-6.7B after 20% sparsity pruning on two 4090 GPUs. It can be seen
that our approach reduces the inference time of the model. Compared with the 20%-SliceGPT that
introduces extra parameters, our method has a better speedup.

15

"0 12 24 36 48 60 72 84 96 108 120 132 144 156 168 180 192

Under review as a conference paper at ICLR 2025

"0 12 24 36 48 60 72 84 96 108 120 132 144 156 168 180 192

-
REBZE 3
= — O = =
2 525220 fs 1
B N m o < [CR LS
= -
g 7pAeO \Illl
P te qoT “ __Al1 °
SRR — 1
2 = ——
—g——====—————=d 1 (0]
AD.\.eraO.vc =18
D_-.het > | -
] S=E S —1 .
> S2£€T 2 — |
L%%mmc —] _ Ls
R B REE = o
- = o o So gy 3 — " =
s = 2 S e € mE8CSEg 1, €
=18
] Sl2cwo —
= v O — ©
/el.ﬂh u <
<o =20 ak — le
LS g3 2 M [™
] N = @ 7 ==
mMES G, 2 =
3WdCMﬂ =] N
== --------1 — . 2<R & lN,Z
g8 z ="
L] - W = \M/m.n)..m =
NEEE 4= »=%s PR
A © o o o — 0 0 .. ~M s o o o
£EE5Ea
—— = PcanW,..ﬂ Q
““““““ -3 1B Crs5o sl g3
— : zE2z2q £
— 3 = <o __
e =
\\\\\\\\\\\\ 5 I %mMFfV_ re
““““““““ - | 4R o %MOA
““““““““ 2s8=253 B
— ——===-----:-1 H g8 s
3 I e —— t.l.ltrL | o
5 et | o @ (=R <
g < g.lsepL
L I e aiaiantatatats A = setieeteiteiers R S X5 8 Py o
S e | .latman [~
= E—-2&ac%®§
V I e | 5 S E ox ©
e te javg—— raB [™
— ~~ [FF=22222=2=222293 ~ aga s o=
) o B) S 5o I52) <
0 g ~ ~ |mf=======----4 ~ U R an ra ~
oo I O .~ .2
3 p====t=-zooo] S Hea T/
11 I e —| Lo 0O Q0w — I~ b
sg —Ss-ooIoIstoy D <= LR -
ST o 8K S
—_—] ee.lh ~ [o
—] 2 B2 Mm e
““““““““““““ . MTrdO./.
I e lo . Loy
S —— - mey«mﬂ -
““““““ B .5 2> 8@
s — = 5 b wnn [
““““““ o f=Essssooitig —~g 2% ¢ 2=
3 S m 2 @ o oZ &g g e
2 S ~ w8 2 a~x 25 © ¥ & 9
S A S oo o o uw dms e ° ©° ©
¥d .Wonmn«hz ud
oo © @ —

(@

T-125M/1.3B/2.7B/6.7B on WikiText
while the vertical axis "P-R”

]

16

©

represents the preserved ratio of parameters in each weight. (a): OPT-125M. (b): OPT-1.3B. (c):

at a sparsity of 70%. The horizontal axis is the index of the weight
OPT-2.7B. (d): OPT-6.7B.

Figure 12: The searched unstructured pruning strategies of OP'

Under review as a conference paper at ICLR 2025

864
865
866
867
868
869
870
871

872 1.0
0.5

o 0.0-
874 1.0
875 0-51
876 £
877 0.5
e 19
879 0.5
880 0.0
881

882

883

884 Figure 13: The pruning strategies obtained from the intermediate episodes during the search process
885 for LLaMA-V2-7B at a sparsity of 20%.

886

887

888

889

890

891

892

893

894

895

896

897

898

899

900 400 1 3 i
901 ‘\.__//——Q
902 350
903
904
905

: i
906 250 */*__— -@- Dense

~®- SliceGPT
907 —#— Ours

908 200 ;
0 1 2 3 4 5

909 Batchsize

910

911 Figure 14: Comparison of inference speed of the OPT-6.7B.
912

913

914

915

916

917

#0

#2999 #1999 #999

o
[
o
N
o
w
o
N
o
u
o
(=)}
o

Layer index

300 ®-

Times (ms)

17

	Introduction
	Related Works
	Methodology
	Exploring with Reinforcement Learning
	Compensation through Reconstruction

	Experiments
	Language Modeling Performance
	Zero-shot Tasks Performance
	Searched Strategy
	Compensation
	Ablation Study
	Reinforcement Learning

	Conclusion
	Experimental Details
	Reinforcement Learning
	Searched Strategy
	Inference Speed

