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ABSTRACT

We develop two novel stochastic variance-reduction methods to approximate a
solution of generalized equations applicable to both equations and inclusions.
Our algorithms leverage a new combination of ideas from the forward-reflected-
backward splitting method and a class of unbiased variance-reduced estimators.
We construct two new stochastic estimators within this class, inspired by the well-
known SVRG and SAGA estimators. These estimators significantly differ from
existing approaches used in minimax and variational inequality problems. By
appropriately selecting parameters, both algorithms achieve the state-of-the-art
oracle complexity of O(n + n?/3¢~2) for obtaining an e-solution in terms of
the operator residual norm, where n represents the number of summands and e
signifies the desired accuracy. This complexity aligns with the best-known re-
sults in SVRG and SAGA methods for stochastic nonconvex optimization. We
test our algorithms on two numerical examples and compare them with existing
methods. The results demonstrate promising improvements offered by the new
methods compared to their competitors.

1 INTRODUCTION

Linear and nonlinear equations and inclusions are cornerstones of computational mathematics,
finding applications in diverse fields like engineering, mechanics, economics, statistics, optimiza-
tion, and machine learning, see, e.g., |Bauschke & Combettes| (2017); Burachik & Iusem (2008);
Facchinei & Pang (2003); Phelps (2009); Ryu & Yin|(2022); Ryu & Boyd|(2016). These problems,
known as generalized equations (Rockafellar & Wets,|1997)), are equivalent to fixed-point problems.
The recent revolution in deep learning and generative Al has brought renewed interest to general-
ized equations and their special cases: minimax problems. They serve as powerful tools for handling
Nash’s equilibria and minimax models in generative machine learning, adversarial learning, and ro-
bust learning, see|Arjovsky et al.|(2017); \Goodfellow et al. (2014); [Madry et al. (2018); |Namkoong
& Duchi (2016). Notably, most problems arising from these applications are nonmonotone, non-
smooth, and large-scale. This paper develops new and simple stochastic algorithms with variance
reduction for solving this class of problems, equipped with rigorous theoretical guarantees.

1.1 PROBLEM STATEMENT AND MOTIVATION

[Non]linear inclusion. The central problem studied in this paper is the following [non]linear
composite inclusion (also called a generalized equation (Rockafellar & Wets| [1997)):

Find z* € dom(¥) such that: 0 € U™ := Ga* + Tz™, (NI)

where G : RP — RP is a given single-valued operator, possibly nonlinear, and 7" : RP = 2% isa
multivalued mapping from R? to 28" (the set of all subsets of R?). Here, ¥ := G + T is the sum of
G and T, and dom(¥) := dom(G) N dom(T"), where dom(R) is the domain of R.

[Non]linear equation. If 7' = 0, then reduces to the following [non]linear equation:
Find z* € dom(G) such that: Gz* = 0. (NE)

Both and (NE) are also called root-finding problems. Clearly, is a special case of (NI).
However, under appropriate assumptions on G and/or 1" (e.g., using the resolvent of 7"), one can also
transform to (NE). Let zer(¥) := {z* € dom(¥) : 0 € Uz*} and zer(G) := {z* € dom(G) :
Gz* = 0} be the solution sets of and (NE), respectively, which are assumed to be nonempty.
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Variational inequality problems (VIPs). If 7'(-) = Nx (), the normal cone of a nonempty, closed,
and convex set X’ in RP, then reduces to the following VIP as a special case:

Find 2* € X such that: (Ga*,z —z*) >0, foralla € X. (VIP)

If T = 0Og, the subdifferential of a convex function g, then reduces to a mixed VIP, denoted
by MVIP. Both VIP and MVIP cover many problems in practice, including minimax problems and
Nash’s equilibria, see, e.g.,Burachik & Iusem (2008)); Facchinei & Pang (2003); |Phelps| (2009).

Minimax problem. Another important special case of (NI) (or MVIP) is the following minimax
problem, which has found various applications in machine learning and robust optimization:

Jnin max {E(u, v) == p(u) + H(u,v) — 1/)(1))}, (Minimax)
where H : RP' x RP2 — R is a smooth function, and ¢ and v are proper, closed, and con-
vex. Let us define z := [u,v] € RP as the concatenation of v and v with p := p; + pa,
Gr = [V, H(u,v), =V, H(u,v)], and Tz := [0p(u), 0y (v)]. Then, the optimality condition
of is written in the form of (NI). Since (VIP), and in particular, are special
cases of (NI), our algorithms for (NI) in the sequel can be specified to solve these problems.

Fixed-point problem. Problem (NE) is equivalent to the following fixed-point problem:
Find z* € dom(F’) such that: * = Fz*, (FP)

where F' := [— G with [ being the identity operator. Since (FP) is equivalent to (NE), our algorithms
for (NE) developed in this paper can also be applied to solve (FP).

Finite-sum structure. In this paper, we are interested in the case where G is a large finite-sum:

Gz :=1Y" G, 1
where G; : RP — RP are given operators for all i € [n] := {1,2,--- ,n} and n > 1. This structure
often arises from machine learning, networks, distributed systems, and data science. Note that our
methods developed in this paper can be extended to tackle Gx = E¢p [G(m, £ )] as the expectation

of a stochastic operator G involving a random vector £ defined on a probability space (2, P, X).
Motivation. Our work is mainly motivated by the following aspects.

Recent applications. Both (NE) and cover minimax problems of the form as special
cases. The minimax problem, especially in nonconvex-nonconcave settings, has recently gained
its popularity as it provides a powerful tool to model applications in generative machine learning
(Arjovsky et al., 2017; |Goodfellow et al.l |2014)), robust and distributionally robust optimization
(Ben-Tal et al., 2009} Bertsimas & Caramanis, 2011} |Levy et al.,[2020), adversarial training (Madry
et al., |2018)), online optimization (Bhatia & Sridharan, 2020), and reinforcement learning (Azar,
et al.| 2017;Zhang et al.,2021)). Our work is motivated by those applications.

Optimality certification. Existing stochastic methods often target special cases of such as (NE)
and (VIP). In addition, these methods frequently rely on a monotonicity assumption, which excludes
many problems of current interest, e.g., |Alacaoglu et al.| (2022); |Alacaoglu & Malitsky| (2021);
Beznosikov et al.| (2023)); |Gorbunov et al.| (2022a); [Loizou et al.| (2021). Furthermore, existing
methods analyze convergence based on a [duality] gap function (Facchinei & Pang, 2003) or a
restricted gap function (Nesterov, 2007). As discussed in |Cai et al.| (2023)); Diakonikolas| (2020},
these metrics have limitations, particularly in nonmonotone settings. It is important to note that
standard gap functions are not applicable to our settings due to Assumption Regarding oracle
complexity, several works, e.g., /Alacaoglu & Malitsky|(2021); |Beznosikov et al.[(2023); Gorbunov
et al. (2022a); Loizou et al.| (2021) claim an oracle complexity of O(n + ﬁe_2) to attain an e-
solution, but this is measured using a restricted gap function. Again, as highlighted in |Cai et al.
(2023)); IDiakonikolas| (2020), this certification does not translate to the operator residual norm and is
inapplicable to nonmonotone settings. Therefore, a direct comparison between our results and these
previous works is challenging due to these methodological discrepancies.

New and simple algorithms. Many existing stochastic methods for solving (VIP) and rely
on established techniques. These include mirror-prox/averaging and extragradient-type schemes
combined with the classic Robbin-Monro stochastic approximation (Robbins & Monro||1951)) (e.g.,
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Cui & Shanbhag| (2021); Tusem et al.| (2017); Juditsky et al. (2011); [Kannan & Shanbhag| (2019);
Kotsalis et al. (2022); |Yousefian et al. (2018))). Some approaches utilize increasing mini-batch sizes
for variance reduction (e.g.,|{lusem et al.|(2017)). Recent works have explored alternative variance-
reduced methods for and its special cases (e.g.,|Alacaoglu et al.|(2022); |Alacaoglu & Malitsky
(2021); [Bot et al.|(2019); |Cai et al.| (2022); Davis (2022)). However, these methods primarily adapt
existing optimization estimators to approximate the operator G without significant differences. Our
approach departs from directly approximating G. Instead, we construct an intermediate object S’j =

Ga* — yG2*~1 as a linear combination of two consecutive evaluations of G (i.e. Gz* and Gz*~1).
We then develop stochastic variance-reduced estimators specifically for S*. This idea allows us
to design new and simple algorithms with a single loop for solving both (NE) and where the
state-of-the-art oracle complexity is achieved (cf. Sections [3|and [).

1.2 BASIC ASSUMPTIONS

In this paper, we consider both (NE) and covered by the following basic assumptions (see
Bauschke & Combettes|(2017)) for terminologies and concepts used in these assumptions).

Assumption 1.1. [Well-definedness] zer(¥) of and zer(G) of (NE) are nonempty.
Assumption 1.2. [Maximal monotonicity of T T in is maximally monotone on dom(7').
Assumption 1.3. [Lipschitz continuity of G] G in (1)) is L-averaged Lipschitz continuous, i.e.:

v iz IGir = Gay||? < LP||lz — ylf*,  Va,y € dom(G). )

Assumption 1.4. [Weak-Minty solution] There exist a solution 2* € zer(¥) and £ > 0 such that
(Gx + v,z — 2*) > —k||Gz + v||? for all z € dom(¥) and v € Tz.

While Assumption is basic, Assumption guarantees the single-valued and well-definiteness
of the resolvent Jp of T'. In fact, this assumption can be relaxed to some classes of nonmonotone
operators 7', but we omit this extension. The L-averaged Lipschitz continuity is standard and
has been used in most deterministic, randomized, and stochastic methods. It is slightly stronger
that the L-Lipschitz continuity of the sum G. The star-co-hypomonotonicity in Assumption [T.4]is
significantly different from the star-strong monotonicity used in, e.g., Kotsalis et al. (2022). In fact,
Assumption covers a class of nonmonotone operators G. However, if Kk = 0, then W is just
star-monotone, i.e. (Gx + v,z —z*) > 0 for all x € dom(¥).

1.3 CONTRIBUTION AND RELATED WORK

Our primary goal is to develop a class of stochastic variance-reduction methods to solve both (NE)
and (NI), their special cases such as (VIP) and (Minimax), and equivalent problems such as (EP).

Our contribution. Our main contribution can be summarized as follows.

(a) We introduce a new operator S’j in (FRO)) and propose a class of unbiased variance-reduced
estimators S for S7 satisfying our Deﬁmtlon

(b) We construct two instances of S,’j by leveraging the SVRG (Johnson & Zhang, 2013) and
SAGA (Defazio et al., [2014) estimators, respectively that fulfill our Definition These
estimators are also of independent interest, and can be applied to develop other methods.

(c) We develop a stochastic variance-reduced forward-reflected method to solve (NE)
which requires O(n + n?/3¢~2) evaluations of G; to obtain an e-solution of (NE).

(d) We also design a novel stochastic variance-reduced forward-reflected-backward splitting
method to solve that also requires O(n + n?/3¢~2) evaluations of G;.

Let us highlight the following points of our contribution. First, our intermediate operator SL“ can be
viewed as a generalization of the forward-reflected-backward splitting (FRBS) operator (Malitsky
& Taml 2020) or an optimistic gradient operator (Daskalakis et al.| 2018)) used in the literature.
However, the chosen range v € (1/2, 1) excludes these classical methods from recovering as special
cases of S¥. Second, since our SVRG and SAGA estimators are designed specifically for S’,j, they
differ from existing estimators in the literature, including recent works (Alacaoglu et al.| 2022}
Alacaoglu & Malitsky, 2021; Bot et al., [2019). Third, both proposed algorithms are single-loop
and straightforward to implement. Fourth, our algorithm for nonlinear inclusions significantly
differs from existing methods, including deterministic ones, due to the additional term v~ (2y —
1)(y* — 2%). For a comprehensive survey of deterministic methods, we refer to Tran-Dinh| (2023).
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Fifth, our oracle complexity estimates rely on the metric E[||Gz*||?] or E[||Gz* + v*||?] for v* €
Tk, commonly used in nonmonotone settings. Unlike the monotone case, this metric cannot be
directly converted to a gap function, see, e.g.,|/Alacaoglu et al. (2022); Alacaoglu & Malitsky (2021).
Our complexity bounds match the best known in stochastic nonconvex optimization using SAGA or
SVRG without additional enhancements, e.g., utilizing a nested technique as in|Zhou et al.|(2018)).

Related work. Since both theory and solution methods for solving and are ubiquitous,
see, e.g., Bauschke & Combettes| (2017); Burachik & Iusem| (2008); |[Facchine1 & Pang (2003);
Phelps|(2009); Ryu & Yin|(2022); Ryu & Boyd| (2016), especially under the monotonicity, we only
highlight the most recent related works and a further discussion is deferred to Supp. Doc. [A.

Weak-Minty solution. Assumption [I.4]is known as a weak-Minty solution of (in particular, of
@)), which has been widely used in recent works, e.g., Bohm (2022); Diakonikolas et al. (2021);
Lee & Kim|(2021); Pethick et al.[(2022); Tran-Dinh|(2023a) for deterministic methods and, e.g.,|Lee
& Kim|(2021); |Pethick et al. (2023); [Tran-Dinh & Luo (2023)) for stochastic methods. This weak-
Minty solution condition is weaker than the co-hypomonotonicity (Bauschke et al., [2020), which
was used earlier in proximal-point methods (Combettes & Pennanen, 2004). Diakonikolas et al.
exploited this condition to develop an extragradient variant (called EG+) to solve (NE). Following
up works include/Bohm|(2022));|Cai & Zheng|(2022); Luo & Tran-Dinh|(2022); Pethick et al.|(2022);
Tran-Dinh|(2023a). A recent survey in/Tran-Dinh|(2023) provides several deterministic methods that
rely on this condition. This assumption covers a class of nonmonotone operators G or G + T.

Stochastic approximation methods. Stochastic methods for both (NE) and and their special
cases have been extensively developed, see, e.g.,/Juditsky et al. (201 1); |[Kotsalis et al. (2022)); Pethick
et al.[(2023). Several methods exploited mirror-prox and averaging techniques such as/Juditsky et al.
(2011); Kotsalis et al.[(2022), while others relied on projection or extragradient schemes, e.g., /Cui &
Shanbhag (2021); Tusem et al. (2017); Kannan & Shanbhag|(2019); |Pethick et al.| (2023)); [Yousefian
et al. (2018). Many of these algorithms use standard Robbin-Monro stochastic approximation with
fixed or increasing batch sizes. Some other works generalized the analysis to a general class of
algorithms such as (Beznosikov et al., 2023} |Gorbunov et al.| 2022a; |Loizou et al., [2021) covering
both standard stochastic approximation and variance reduction algorithms.

Variance-reduction methods. Variance-reduction techniques have been broadly explored in opti-
mization, where many estimators were proposed, including SAGA (Defazio et al., 2014), SVRG
(Johnson & Zhang}|2013), SARAH (Nguyen et al.,|2017), and Hybrid-SGD (Tran-Dinh et al.,[2019;
2022), and STORM (Cutkosky & Orabona, [2019). Researchers have adopted these estimators to
develop methods for (NE) and (NI). For example, [Davis (2022) proposed a SAGA-type methods
for under a [quasi]-strong monotonicity. The authors in|Alacaoglu et al. (2022); |Alacaoglu &
Malitsky (2021) employed SVRG estimators and developed methods for (VIP). Other works can
be found in |Bot et al.|(2019); Carmon et al. (2019); |Chavdarova et al.[ (2019); Huang et al. (2022);
Palaniappan & Bach (2016); [Yu et al.| (2022)). All of these results are different from ours. Some
recent works exploited Halpern’s fixed-point iterations and develop corresponding variance-reduced
methods, see, e.g.,|Cai et al.| (2023} 2022). However, varying parameters or incorporating double-
loop/inexact methods must be used to achieve improved theoretical oracle complexity. We believe
that such approaches may be challenging to select parameters and to implement in practice.

Notation. We use Fj, := (2%, 2!, .-, 2¥) to denote the o-algebra generated by 20, - - -, z* up to
the iteration k. Ej [ - | = E[- | Fi] denotes the conditional expectation w.r.t. Fi, and E[ - | is the
total expectation. We also use O (-) to characterize convergence rates and oracle complexity. For an
operator G, dom(G) := {x : Gz # ()} denotes its domain, and J¢ denotes its resolvent.

Paper organization. Sectionintroduces our operator S’; and defines a class of stochastic estima-

tors for S*. It also constructs two instances: SVRG and SAGA, and proves their key properties.
Section [3| develops an algorithm for solving (NE) and establishes its oracle complexity. Section ]
designs a new algorithm for solving and proves its oracle complexity. Section [5 presents two
concrete numerical examples. Proofs and additional results are deferred to Sup. Docs. [A/to[E.

2 FORWARD-REFLECTED OPERATOR AND ITS STOCHASTIC ESTIMATORS

We first introduce a new forward-reflected operator (FRO) for G in (NE) and (NI). Next, we propose
a class of unbiased variance-reduced estimators for FRO. Finally, we construct two instances relying
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on the two well-known estimators: SVRG from Johnson & Zhang (2013) and SAGA from [Defazio
et al./(2014). However, any other estimator could be used if it satisfies our Definition below.

2.1 FORWARD-REFLECTED OPERATOR
Our methods for solving and rely on the following intermediate operator constructed from
G via two consecutive iterates %~ and 2* controlled by a parameter v € [0, 1]:

S¥ = Ga¥ — yGaF . (FRO)
Here, v plays a crucial role in our methods in the sequel as v € (%, 1). Clearly, if v = % then
we can write Sf/2 = 1Ga" + 1(GaF — GzF~1) = 1[2Gz* — G2*~1] used in both the forward-
reflected-backward splitting (FRBS) method (Malitsky & Tam), |2020) and the optimistic gradient
method (Daskalakis et al., |2018). In deterministic unconstrained settings (i.e. solving (EE)), see
(Tran-Dinh, [2023), FRBS is also equivalent to Popov’s past-extragradient method (Popov, [1980),
reflected-forward-backward splitting algorithm (Cevher & Vi, [2021; [Malitsky, 2015)), and opti-

mistic gradient scheme (Daskalakis et al.,|2018). In the deterministic constrained case, i.e. solving
(NI), these methods are different. Since v € (3, 1), our methods below exclude these classical

schemes. However, due to a similarity pattern of and FRBS, we still term our operator S by
the “forward-reflected operator”, abbreviated by FRO.

2.2  STOCHASTIC UNBIASED VARIANCE-REDUCED ESTIMATORS FOR FRO

Now, let us propose the following class of stochastic variance-reduced estimators S’; of S’j.

Definition 2.1. A stochastic estimator S’; is said to be a stochastic unbiased variance-reduced esti-

mator of Sfj in (FRO) if there exist three constants p € (0, 1], C > 0 and C > 0, and a nonnegative
sequence {Ay} such that the following three conditions hold:

Ey[S%] = S5,
B[S~ 5517 < A N
Ay <

(1 =p)Apa+ S YL Bl|Giak — Gia™ 17
+ % . Z?Zl EmGixk_l . Gi.%‘k_ZHQ].

Here, A_y > 0,272 =27 ' = 2% and E;, [ - | and E[ - | are the conditional and total expectations
defined earlier, respectively. The condition p > 0 is important to achieve a variance reduction as

long as 2" is close to z*~! and 2%~ ! is close to 2% ~2. Otherwise, §’§ may not be a variance-reduced
estimator of S¥. Since S¥ is evaluated at both %~ and z*, our bounds for the estimator g’j depends
on three consecutive points 2*~2, 2¥~1 and x*, which is different from previous works, including
Alacaoglu et al.|(2021); Beznosikov et al.|(2023); |Davis (2022); |Driggs et al.| (2020).

We now construct two estimators that satisfy Definition @using SVRG (Johnson & Zhang, [2013)
and SAGA (Defazio et al.,|2014).
(a) Loopless-SVRG estimator for S%. Consider a mini-batch By, C [n] := {1,2,--- ,n} witha
fixed batch size b := |By|. Denote Gg, z := § >, 5, Giz for a given z € dom(G). We define the
following estimator for S’j in (FRO):
gfj = (1 —)(Guw* — Gp,w*) + Gp, 2% — vGp, 2", (L-SVRG)

where the reference or the snapshot point w” is selected randomly as follows:

x® with probability p

wk with probability 1 — p.

wh =

“4)

The probability p € (0, 1) will appropriately be chosen later by flipping a coin. This estimator is
known as a loopless variant (Kovalev et al.,[2020) of the SVRG estimator (Johnson & Zhang; 2013)).
However, it is different from existing estimators used for root-finding problems, including |Davis
(2022) because we define it for S¥, not for Ga*. In addition, the first term is also damped by a

factor (1 — ) to guarantee the unbiasedness of §,’j to S’j.

. . ok . oy
The following lemma shows that our estimator S7 satisfies Deﬁnltlon
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Lemma 2.1. Let S§ be given by and §’; be generated by the SVRG estimator (L-SVRG)) and
Ay = LS E[||Gia? — 4Giak Tt — (1 —4)Giw®|?].
Then, 55 satisfies Deﬁnitionwith this {Ar}, p:=5,C = %, and C = 272(2_1772‘”"2).

(b) SAGA estimator for the FR operator. Let Slj be defined by (FRO) and G, be a mini-batch
estimator defined as in (L-SVRG], we propose the following SAGA estimator for Sfj :

Sk = UL G 4 [Gs,a* —1Gsat ! — (1= )G, ], (SAGA)
where B, C [n] is a mini-batch of size b of [n], and G¥ for i € [n] is updated as
k . .
é?“ _ szl“ if i € By, 5)
GF ifi ¢ By.

To form S ’“, we need to store n components (?f computed so far for ¢ € [n] in a table T, =

(GE,GE ... GF] initialized at G := G20 for all i € [n]. Clearly, the SAGA estimator requires
significant memory to store 7 if n and p are both large. We have the following result.

Lemma 2.2. Let S,’j be defined by (FRO)) and §’; be generated by the SAGA estimator (SAGA), and
A= XL E[|Giat =Gt - (1= )G,

Then Sk satisfies Deﬁmtwn’wnh this { Ay} sequence, p := 3~ € (0,1], C := %W
_ 2(n—b)(2n+b)~?

We only provide two instances: ([L SVRG) and (SAGA) covered by Definition[2.1| However, we be-
lieve that similar estimators for S relied on, e.g., JacSketch (Gower et al.,|2021) or SEGA (Hanzely
et al.|[2018)), among others can fulﬁll our Definition

3 A VARIANCE-REDUCED FORWARD-REFLECTED METHOD FOR (NE)

Let us first utilize the class of stochastic estimators proposed in Definition[2.T]to develop a stochastic
variance-reduced forward-reflected method for solving (NE) under Assumptions[I.3]and [T.4]

3.1 THE VFR METHOD AND ITS CONVERGENCE GUARANTEE
(a) Variance-reduced Forward-Reflected Method (VFR). Our method is described as follows.

Starting from 2° € dom(G), at each iteration k > 0, we construct an estimator gfj that satisfies
Deﬁnitionwith parameters p € (0,1], C > 0, and C > 0, and then update

af = ok — Sk, (VFR)
where n > 0 and v > 0 are determined below, t™' = 72 := 2, and SO (1 —~)Ga°.
There are at least two stochastic estimators gfj satisfying Deﬁnitioncan be used in (VFR):

o The Loopless-SVRG estimator S% constructed by (L-SVRG).
o The SAGA estimator g’,j constructed by (SAGA).

In terms of per-iteration complexity, each iteration k of [VFR, the loopless SVRG instance requires
three mini-batch evaluations G, w*, G, x*, and G, 2F~1 of G, and occasionally computes one
full evaluation Gw”® of G with the probability p. It needs one more mini-batch evaluation G5, %!
compared to SVRG-type methods for optimization. Similarly, the SAGA instance also requires two
mini-batch evaluations Gz, z* and G, #*~1, which is one more mini-batch G5, z¥~! compared to
SAGA-type methods in optimization, see, e.g.,[Reddi et al. (2016a). The[SAGA]estimator can avoid
the occasional full-batch evaluation ka from | but as a compensation, we need to store a
table 7 := [G T, GQ, ceey G,’,j], which requires significant memory in the large-scale regime.
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(b) Convergence guarantee. Fixed v € (%7 1), with p, C, and C asin Deﬁnitionmwe define

. y(1+57) 1+6y . C+C L 2y—1
M - 3(2,‘/,1) + 3(2771) ) and 6 = Sm- (6)

Then, the following theorem states the convergence of (VER), whose proof is in Supp. Doc. [C]
Theorem 3.1. Let us fix v € (%, 1), and define M and § as in (6). Suppose that Assumptions

and hold for (NE) for some k > 0 such that L. < 6. Let {x*} be generated by (VFR)
using a learning rate 1 > 0 such that Sfl <n< L\}M' Then, the following bounds hold:

2y
1 K k 2(1+L%9°)
71 Lo B[[|IGZF 7] < s 170 — 2 1P, o
Q=ML K gl gh-1)2] < S0HE0)

0 2
KT s e =2t

Theorem H only proves a O(1/K) convergence rate of both ﬁZfZOE[||ka\|2] and

ﬁ Zle E[|lz* — z*1||?], but does not characterize the oracle complexity of (VER). If we

choose v := 2, then from (6), we have M = 5T + 11((;:@) and 6 = 16\1/F’ which can simplify the

bounds in Theorem In addition, it allows x > O such that Lx < § = O (\//3), which means that
K can be positive, but depends on ,/p. This condition allows us to cover a class of nonmonotone
operators G, where a weak-Minty solution exists as stated in Assumption[T.4]

3.2 ORACLE COMPLEXITY BOUNDs OF[VER]USING SVRG AND SAGA ESTIMATORS

Let us first apply Theorem [3.1] to the mini-batch SVRG estimator (L-SVRG) in Section 2] For
simplicity of our presentation, we choose v := 2 and 7 := ﬁ, butany v € (3,1) still works.
Corollary 3.1. Suppose that Assumptions and hold for (NE) with k > 0 as in
Theorem Let {x*} be generated by (VFR) using the SVRG estimator (L-SVRG), v := %,

andn = L\}M > 0'144L0\/5p, provided that bp? < 1. Then, the following bound holds:

K 526 L% R2 .
—K}H ZkZOE[HGazkHz] < WKJ&V where Ry := ||2° — 2*|. (8)
For a given ¢ > 0, if we choose p := n~ /3 and b := |n*/3|, then (VER) requires T¢;, :=

252 2/3
n+ L%J evaluations of G; to achieve ﬁ 22{:0 E[|Gz*||?] < €2, where T := T731.

Corollary [3.1]states that the oracle complexity of is O (n + n?/3¢~?), matching the one of
SVRG for nonconvex optimization in, e.g.,|Allen-Zhu & Hazan (2016)); Reddi et al. (2016b) (up to a
constant). It improves by a factor O (nl/ 3) compared to deterministic counterparts. This complexity
is known to be the best for SVRG so far without any additional enhancement (e.g., nested techniques
(Zhou et al.| 2018)) even for a special case of (NE): Gz = V f(z) in nonconvex optimization.

Note that 7 can be computed explicitly when b and p are given. For example, if n = 10000, and we
choose p = n~1/3 = 0.0464 and b = an/gj = 464, then ) = %. If we increase p = 0.1, then
n = 23938 Note that, in general, we can choose any p := O(n~"1/?) and b := O(n?/?).
Alternatively, we can apply Theorem 3.1]to the mini-batch SAGA estimator (SAGA).

Corollary 3.2. Suppose that Assumptions and hold for (NE) with k > 0 as in

Theorem Let {x*} be generated by (VER) using the SAGA estimator (SAGA), ~ : %, and
n:i= L\lm > 0'143#3/2, provided that 1 < b < n?/3. Then, the following bound holds:
K 489L° R
7T Soh—o E[IG2F|?] < ity Where Ro:= |2 — x*]. 9

Moreover, for a given ¢ > 0, if we choose b := |n?/?|, then (VFR) requires Tg, = n +

7
L?’FLQS#J evaluations of G; to achieve %ﬂ ZkK:O E[||Gmk||2] < €2, where T := 2816.

Similar to Corollary the learning rate 7 in Corollary [3.2]can explicitly be computed if we know
n and b. For instance, if n = 10000, and we choose b = [n*/®|, then n = %1003,

If k = 0, i.e. G reduces to a star-monotone operator, then we can choose v € (%, 1) and 7 as:
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e For SVRG: 0 < <
e For SAGA: 0 <n <

Ifp = O(n~1/3) and b = O(n?/3), then n = O(L);

If b= O(n*3), thenn = O(%).

1
VM’

1
LvVM’®

Hitherto, the constant factor I' in both corollaries is still relatively large, but it can be further im-
proved by refining our technical proofs (e.g., carefully using Young’s inequality).

4 A NEW VARIANCE-REDUCED FRBS METHOD FOR (NI)

In this section, we develop a new stochastic variance-reduced forward-reflected-backward splitting
(FRBS) method to solve under Assumptions [I.2][T.3] and [T.4]

4.1 THE VARIANCE-REDUCED FRBS ALGORITHM AND ITS CONVERGENCE
(a) The variance-reduced FRBS method (VFRBS). Our scheme for solving (NI) is as follows.
Starting from x° € dom(V), at each iteration k > 0, we generate an estimator S,]j that satisfies

Deﬁnitionwith p€ (0,1, C >0, and C>0and update
ohtl = gk — 77§’§ — (k= (2y = 1)o*), (VFRBS)
wheren > 0 and y > 0 are determined later, v* € Tz*, 271 = 272 := 29, and SO (1—7)G=".

(b) Implementable version. Since vk tl € Tz**! appears on the right-hand side of (VFRBS),
using the resolvent J.,,7(-) :== (I + vnT) L(.) of T, we can rewrite (VFRBS) equivalently to

yM = ak Sk BT (R o), (10)
ahtl = J’WIT( o )
Here, y° € dom(¥) is given, and z° = ! := J,,7(y°). This is an implementable variant of

(VERBS) using the resolvent .J,,;r. Clearly, if v = 1, then reduces to 25 = J,) o) (aF —
nSf /2), which can be viewed as a stochastic forward-reflected-backward splitting scheme. However,
our v € (3, 1), making (10) different from existing methods, even in the deterministic case.

Compared to |Alacaoglu & Malitsky| (2021), requires only one J,,7 as in |Alacaoglu et al.

(2022), while |Alacaoglu & Malitsky| (2021) needs more than ones. Moreover, our estimator Slj is
also different tfrom the one in|Alacaoglu & Malitsky (2021)). Compared to Beznosikov et al.| (2023)
and also Alacaoglu et al. (2022), the term v~ (27 — 1)(y* — 2*) makes it different from SGDA in
Beznosikov et al.|(2023) and |Alacaoglu et al.|(2022), and also existing deterministic methods.

(c) Approximate solution certification. To certify an approximate solution of (NI), we note that
its exact solution z* € zer(V) satisfies |Gz* + v*||> = 0 for some v* € Tz*. Therefore, if
(z,vF) satisfies E[[|Gz* + v¥||2] < € for some v* € Tz, then we can say that z* is an e-
solution of @ Alternatlvely, we can define a forward-backward splitting (FBS) residual for
as G,z =1 —nGx)) for any n > 0. It is well-known that z* € zer(¥) iff G,2* = 0.
Hence, if IE[HQ xk|| } S €2, then z* is also called an e-solution of (NI). One can easily prove
that ||G,z*|| < ||Ga* + v*|| for any v* € Tz*. Clearly, the former metric implies the latter one.
Therefore, it is sufficient to only certify E[||Gz* + v¥||?] < €2, which implies E[||G,z"[|?] < €2.

(d) Convergence analysis. For simplicity of our presentation, for a given v € (%, 1), with p, C,
and C in Deﬁnition we define the following two parameters:

482 1L Y CcHC . _v(2y=1)
M = 4~v* 4+ i ; and 9§ := Gy DVIL" (11)

Then, Theorem 4.1 below states the convergence of (VFRBS), whose proof is in Supp. Doc. [D.
Theorem 4.1. Let us fix v € (%, 1), and define M and ¢ as in (11). Suppose that Assump-
tions and holdfor (NI) for some k > 0 such that Lk < 8. Let {z*} be generated

by (VERBS) using a learning rate 1 such that 5,3&7 1)1) <n< g \ﬁ Then, we have

K OR?
7T Lo E[IG2* +v¥||?] < PR

(1—ML?n?) k kb 4(3y—1)R2
K+177 Zk o E[ll* —z*=11?] (1—";)(K+?)’
(By=1)m

T DA > 0and RY = |2 — 27?4+ %n?|Ga® + 0|12,

12)

IN

where © := 0
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The bounds in Theorem [d.1] are similar to the ones in Theorem [3.1] but their proof relies on a new
Lyapunov function. Note that the condition on Lk still depends on pas Lrx < § = O(ﬁ)

4.2 ORACLE COMPLEXITY BOUNDS OF[VFRBS USING SVRG AND SAGA ESTIMATORS
Similar to Section 3] we can apply Theorem (1] for the mini-batch SVRG estimator in Section

Corollary 4.1. Suppose that Assumptions and hold for with k > 0 as in
Theorem Let {z*} be generated by (VERBS)) using the SVRG estimator (L-SVRG), v € (%, 1),

andn = L\}M > g pr with o 1= P e m, provided that bp? < 1. Then, we have
K . OL3R2 A
77 Loneo E[IIG2F 4+ 0F[?] < STy Where Y = [Ja® — 2|12 + 9°n?||Ga® + 002, (13)
For a given € > 0, if we choose p = n~'/% and b := LnQ/BJ, then (VERBS)) requires
o 4T L2 R2n?/3 . _ | TL%R2 . .
Ta, =n+ L572J evaluations of G; and T = L — J evaluations of J,r to achieve

7 DI E[IGa" + o5 ?] < &, where T := S,

Alternatively, we can apply Theorem [4.T]to the mini-batch SAGA estimator (SAGA) in Section[2]

Corollary 4.2. Suppose that Assumptions and hold for with k > 0 as in
Theorem Let {z*} be generated by using the SAGA estimator (SAGA), v € (%, 1),
andn = —— > V2 yithg = — VT

LvM = nkL 2/7(104+7+772)

n2 2 pH2 ~
T Shco E[IGa" + v¥||2) < JSleis, where B3 i= ||2° — 2|2 + 72| Ga® + 0|2 (14)

provided that 1 < b < n2/3. Then, we have

; ; 2/3 . 3TL2R2n?/3
For a given € > 0, if we choose b := n*/>, then (VERBS) requires Te;, :== n+ Lgizo
2 H2
ations of G; and Tr = LFLezROJ evaluations of Jyr to achieve %H ZkK:o E [||ka + ok Hz} < €2,
e

02"

J evalu-

where I" .=

Similar to Subsection @ when ~, n, b, and p are given, we can compute concrete values of the
theoretical learning rate 7 in both corollaries. They are larger than the corresponding lower bounds.

5 NUMERICAL EXPERIMENTS

We provide two examples to illustrate (VFR) and (VFRBS)) and compare them with other methods.

Example 1. We consider the following unconstrained nonconvex-nonconcave minimax problem:

: 1y T T T T T
Jnin max {E(u, v) =+ 3" [ul Aju+u" Liv — v Biv 4+ b] u — ¢ v] }, (15)
where A; € RP1*Pt and B; € RP2*P2 are symmetric matrices, L; € RP1*P2_}, € RP1, and
c; € RP2, The optimality of becomes Equation (NE) (see Supp. Doc. [E for details).

We generate A; = Q;D; QT for a given orthonormal matrix (); and a diagonal matrix D;, where
its elements D] are generated from standard normal distribution and clipped as max{D?, —0.1}.
The matrix B; is also generated by the same way, while L;, b;, and ¢; are generated from standard
normal distribution. In this case, G in (NE) is not symmetric and possibly not positive semidefinite.

We implement three variants of to solve (15): VEFR-svrg (double-loop SVRG),
LVFR-svrg (loopless SVRG), VFR-saga (using SAGA estimator) in Python. We also compare
our methods with the deterministic optimistic gradient method (OG) in|Daskalakis et al.|(2018)), the
variance-reduced FRBS scheme (VFRBS) in|Alacaoglu et al.| (2022)), and the variance-reduced ex-
tragradient algorithm (VEG) in|Alacaoglu & Malitsky|(2021). We select the parameters as suggested
by our theory, while choosing appropriate parameters for OG, VFRBS, and VEG. The details of this
experiment, including generating data and specific choice of parameters, are given in Supp. Doc. [E.

The relative residual norm ||Gz*||/||G2°|| against the number of epochs averaged on 10 problem
instances is revealed in Figure[I|for two datasets (p, n) = (100, 5000) and (p,n) = (200, 10000).

Clearly, with these experiments, three SVRG variants of our method (VFRBS) work well and sig-
nificantly outperform other competitors. The LVFR~-svrg variant of (VFRBS)) seems to work best,
while VFRBS and VEG still cannot beat the deterministic algorithm OG in this example.
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Relative operator norm [|Ga¥|| /|| G

1073 4

2
IS

Experiment 1: n = 5000 and p = 100

Experiment 2: n = 10000 and p = 200

Relative operator norm ||Gz¥||/[|G®

Number of epochs

1 —e- 0G 10-54 —e+ 0G
1051 == VFRsvrg S i
—— LVFR-svrg —+— LVFR-svrg
1076 4 =+« VFR-saga 10-74 =m+ VFR-saga
) VFRBS . VFRBS
1077 4 e VEG 10771 e VEG
0 10 20 30 140 50 0 10 20 30 140 50

Number of epochs

Figure 1: Comparison of 6 algorithms to solve (15) on 2 experiments (The average of 10 runs).

Example 2. We consider the following minimax problem arising from a regularized logistic regres-
sion with ambiguous features (see Supp. Doc. [E for the details of modeling this problem):
min max

min max { £(w,2) = % S, S 250Xy w). ) + TR(w) — 6a,,(2)}.

where £(7, s) := log(1 + exp(7)) — s7 is the standard logistic loss, R(w) := ||w||1 is an ¢1-norm
regularizer, 7 > 0 is a regularization parameter, and d, is the indicator of A,, that handles the
constraint z € A,,. Then, the optimality condition of can be cast into (NI), where = := [w, z].

We implement three variants of to solve (I6): VFR-svrg, LVFR-svrg, and
VFR-saga. We also compare our methods with OG, VFRBS, and VEG as in Example 1. We
cary out a fine tuning procedure to select appropriate learning rates for all methods. We test these
algorithms on two real datasets: a9a (134 features and 3561 samples) and w8a (311 features and
45546 samples) downloaded from LIBSVM (Chang & Lin, 2011). We first normalize the feature
vector X; and add a column of all ones to address the bias term. To generate ambiguous features,
we take the nominal feature vector X; and add a random noise generated from a normal distribution
of zero mean and variance of 02 = 0.5. In our test, we choose 7 := 1073 and m := 10. The relative
FBS residual norm ||G,,z*||/||G,° || against the epochs is plotted in Figure for both datasets.

(16)

The a9a Dataset: (n, p, m) = (32561, 134, 10)

The w8a Dataset: (n, p, m) = (45546, 311, 10)

= 0 4 = 0 g
L w0 —e- 0G I w0 oG
i -+~ VFR-svrg i —=- VFR-svrg
= —— LVFR-svrg | = 10-14 —+— LVFR-svrg
& 1071 5 “‘\o*_‘ —=- VFR-saga & - —=- VFR-saga
= g ‘..o = .
c 0-.,_._‘_‘_‘-_ VFRBS c ., VFRBS
5 —— VEG 5 1024 VEG
€ 1024 g
o o
e € 10734
g g 10
o 1073 4 o
g 2 o]
© ©
Q Q
< 104 o
0 20 40 60 80 100 0 20 40 60 80 100

Number of epochs Number of epochs

Figure 2: Comparison of 6 algorithms to solve on two real datasets: a8a and w8a.

As we can observe from Figure |Z| that three variants VFR-svrg, LVFR-svrg, and VFR-saga
have similar performance and are better than their competitors. Among three competitors, VERBS
still works well, and is much better than OG and VEG. The deterministic method, OG, is the worst
one in terms of oracle complexity. In this test, VEG has a larger learning rate than ours and VFRBS.

6 CONCLUSIONS

This work introduces two innovative variance-reduced algorithms based on the forward-reflected-
backward splitting method to tackle equations (NE) and inclusions (NI). These methods encompass
both SVRG and SAGA estimators as special cases. By carefully selecting the parameters, our algo-
rithms achieve the state-of-the-art oracle complexity for reaching an e-solution, matching the state-
of-the-art complexity bounds observed in nonconvex optimization methods using SVRG and SAGA.
While the first scheme resembles a stochastic variant of the optimistic gradient method, the second
algorithm is entirely novel and distinct from existing approaches, even their deterministic counter-
parts. We have validated our methods through numerical examples, and the results demonstrate
promising performance compared to existing techniques under carefully tuned parameter selections.

10
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