
Fine-Grained Object Detection and Manipulation with
Segmentation-Conditioned Perceiver-Actor*

Shogo Akiyama1, Dan Ogawa Lillrank1 and Kai Arulkumaran1

Abstract— Prior work has shown the benefits of using a
3D representation space—in particular, voxels—for 3D ma-
nipulation tasks. However, computation with voxels requires
N3 memory, which limits the possible observation size. While
the structure of voxels convey spatial information, limited
resolution can obscure semantically-relevant information. In
this work, we show this can be overcome by conditioning a
3D-based agent, Perceiver-Actor, on additional segmentation
information, which allows it to successfully distinguish between
similar objects for manipulation tasks. This is achieved by
using pretrained segmentation and text-image models to extract
segmentation masks for relevant objects in a zero-shot manner.
We demonstrate our model on a real robot, where we show it
can correctly interact with objects with fine-grained differences,
such as a “Cola” can versus a “Dr. Pepper” can.

I. INTRODUCTION

The last few years in machine learning have been domi-
nated by “the bitter lesson”—that scaling (relatively) sim-
ple models and data can surpass many ingenious, hand-
engineered solutions [1]. This has held in domains where
data is plentiful, such as text and images, but notwithstanding
large industrial efforts [2], this seems infeasible for robotics.
The field of robot learning has therefore sought to combine
the best of both worlds—pretrained deep learning models,
with established solutions for robotics.

One such example is CLIPort [3], an agent that can
perform a wide range of tabletop manipulation tasks by
combining the general semantic information learned by the
CLIP text-vision multimodal model [4], with the spatial
inductive biases of Transporter networks [5]. CLIP has been
widely used in many domains, and robotics is no exception
[3], [6], [7], [8], [9], [10], [11].

However, we are still a way from a general solution for
manipulation, as dictated by the large-scale vision-guided
manipulation RLBench benchmark [12]. Challenges include
using image sensors to locate objects, controlling an arm
with several joints, and performing manipulation with 6
DoF (translation + rotation). Significant progress on this
benchmark was achieved by the C2F-ARM agent [13],
which uses 3D (voxel) observation and action spaces, far
outperforming the best 2D agent [14]. Notably, the C2F-
ARM agent is data-efficient, outperforming baselines with
100 demos, when it itself is only given 10 demos. C2F-
ARM was then superseded by the Perceiver-Actor (PerAct)
agent [10], which replaced the “coarse-to-fine” hard attention

*Work supported by JST, Moonshot R&D Grant Number JPMJMS2012.
1Shogo Akiyama, Dan Ogawa Lillrank and Kai Arulkumaran are

with Araya Inc., Tokyo 107-0052, Japan {akiyama_shogo,
dan_ogawa, kai_arulkumaran}@araya.org

Fig. 1: 720 × 1280 image view from the RGBD camera
(top) vs. 1003 voxel view (bottom). Fine-grained semantic
information somewhat diminished in the voxel view.

mechanism in C2F-ARM with a Perceiver IO Transformer
[15] to efficiently process the voxel observation space.

However, PerAct is still fundamentally limited by the
size of the raw observation space. The authors use an
input and output size of 1003 voxels, representing 1m3, and
train their model on a batch size of 16 over 8 NVIDIA
V100 GPUs. With the chosen hyperparameters, a backwards
pass (with the LAMB optimiser [16]) with a single sample
requires ∼11GB. As seen in Fig. 1, whilst it is possible to
distinguish between similar objects, such as different soft
drink cans, in the 720× 1280 RGB image, this information
can be more difficult to extract when voxelised to 1003,
and even more so at even lower resolutions. Furthermore,
PerAct’s feature space (Sec. II) biases its policy towards
spatial location/object shapes. As such, the PerAct agent
often chooses the wrong object to interact with if it is difficult
to distinguish from other objects in the scene.

We propose a relatively simple solution—conditioning
the agent on an additional object mask—a solution often
employed by grasp controllers [17], [18], [19], [20], [21]. If



Fig. 2: PerAct architecture. The voxel and text inputs are
separately encoded, with proprioceptive inputs embedded
and then concatenated with the output of the voxel encoder.
These are then processed by a Perceiver IO Transformer,
and decoded back to voxels. The voxels are used to directly
predict the end-effector translation, and further processed
through pooling and fully-connected layers to predict the
rotation, gripper state, and motion planner mode.

a mask can be extracted from the raw 2D RGB(D) image,
then it can be included in the voxels along with the RGB
values. To be scalable, we require a segmentation model that
can extract a wide variety of objects, and performs robustly
on real-world images. Ideally such a model should operate
in a “zero-shot” fashion, where rather than predicting masks
based on preset classes, we can query it for our objects of
interest. Recently this has been enabled by text-conditioned
segmentation models [22], [23], [24]. However, in initial ex-
periments we found these were not robust. Instead, we found
that the recently-released SAM model [25], that can propose
label-agnostic segmentation masks for the whole image, was
robust enough to provide good quality segmentation masks
on our real robot setup without requiring further training. By
combining this with text-image similarity search, we could
thereby extract masks for objects of interest. By conditioning
PerAct on these masks, we enabled it to push objects with
similar appearance in the real world, where PerAct without
this information failed.

II. METHOD

The core of our method is the PerAct agent [10]. The
model takes voxels and a text-based task condition as input,
and produces a structured action space for the end-effector as
output: translation, rotation, gripper state, and motion planner
mode (Fig. 2). Based on prior work on RLBench [14], the
agent’s prediction is fed into a motion planner (which must
avoid collisions when moving in open space, or “not” if
it needs contact with an object), resulting in an observe-
plan-execute loop. The authors chose to use a pretrained
CLIP model [4] for the language encoder, which provides
vision-guided language embeddings, but PerAct learns vision
from scratch, which means that it does not benefit from
generalisation across the visual domain—only language.

The PerAct agent is trained using supervised learning,
similarly to behavioural cloning, on a set of demonstrations.
For full architectural and training details, we refer readers to
the original work [10]. We added two further regularisation
methods to improve PerAct’s performance on the real robot:

(a) CRIS (b) ODISE

(c) CLIPSeg (d) OWL-ViT + GrabCut

Fig. 3: Segmentation masks for “Cola” from different models
for the image in Fig. 1. Mistakes include selecting parts of
the workspace, not making any selections at all, selecting
several objects (which may/may not include the target ob-
ject), or producing incomplete masks.

TABLE I: Segmentation GPU inference time and memory
usage, evaluated with 1 720×1280 image and 1 text prompt.

Name Time (s) Memory (GB)
CLIPSeg 0.70 1.68

CRIS 0.72 3.30
ODISE 4.82 16.3

OWL-ViT + GrabCut 1.82 1.60
SAM + CLIP 4.07 6.14

dropout on the point clouds (at a rate of 30%), and additive
noise on the robot joint positions (∼ N (0, 0.1)).

The viability of adding segmentation masks into PerAct
depends on the quality of current pretrained (zero-shot)
segmentation models. Although these have improved signif-
icantly in recent years, we found that most were not robust
in cluttered scenes (the area outside of the table workspace),
and even when restricted to the tabletop1 failed to associate
the correct object with its corresponding text label, if at all
[22], [23], [24]. We also tried an alternative approach, using
the OWL-ViT zero-shot object detector [26] + the bounding-
box-based segmentation algorithm GrabCut [27], but either
algorithm could fail and introduce errors into the process.
Fig. 3 shows some failure cases with these methods.

In comparison, SAM, which is simply trained to predict
object-agnostic masks given a variety of spatial-conditioning
prompts, provides a comprehensive segmentation of the
entire image input (Fig. 4). Although the authors of SAM
trained a text-conditioned variant, this model was not re-
leased. Therefore, we first use SAM’s automatic mask gen-
erator mode to propose masks for the whole scene, tuning
its hyperparameters to reduce over-segmentation (Fig. 4). We
then embed the (image) parts using CLIP’s vision encoder,
and compare these to query text embeddings from CLIP’s
text encoder using cosine similarity. As taking the the

1Information which is already required for PerAct’s voxelisation process.



Fig. 4: Mask predictions from pretrained SAM model with
default (top) and tuned (bottom) hyperparameters. By default
SAM tends to over-segment areas in an image.

segmented object with the highest similarity can sometimes
result in selecting a similar object to the desired one, we
also query for all relevant objects on the table and use the
Hungarian method to solve for assignments. Although this
is one of the more resource-intensive methods (see Tab. I),
it is little overhead compared to running PerAct.

PerAct’s voxelisation process involves taking an RGBD
image from a camera with known extrinsic parameters,
turning this into a point cloud, and then constructing the
voxel grid with respect to a fixed frame (the robot base).
PerAct uses a 10D voxel grid: 3 for RGB values, 3 for
Cartesian coordinates, 1 for occupancy, and 3 for voxel grid
indices. We augment this with an 11th dimension for a binary
segmentation mask: 1 for the object, and 0 otherwise.

III. EXPERIMENTS

For our experiments we use a Franka Panda robot with
its standard gripper, with an Intel D435i camera with RGBD
images captured at a resolution of 720× 1280. We use ROS
[28] to interface with the robot and the MoveIt package
[29] with RRT-connect [30], restricted to Cartesian path
planning, as PerAct’s motion planner. Demos were collected
by specifying gripper positions2 for the motion planner with
an XBox One controller, with sensory inputs synchronised
and sampled at 30Hz. To compute the camera extrinsic
parameters we used ArUco markers [31] and the default
hand-eye calibration package from MoveIt.

The environment is as shown in Fig. 1: the robot is placed
in front of a tabletop with 4 coloured markers, and 2 objects
(one target, one distractor). The set of objects we use are a
“Cola” can, a “Dr. Pepper” can and a “black bottle” (Fig.
5). The task is for the agent to push the target object to
a target marker, specified via text, e.g., “push the Cola
to the green marker”. Both when collecting training data
and evaluating the agent, the objects are placed between

2Which are used as the keypoints for PerAct’s training.

Fig. 5: Objects: “Cola”, “Dr. Pepper” and “black bottle”.

TABLE II: Training and evaluation object pair settings.

Target Obj. Distractor
Training + Evaluation Cola Dr. Pepper

Dr. Pepper Cola
Evaluation black bottle Cola

the markers such that either the target or distractor object
might be closer to the target marker, but a solution trajectory
would not cause a collision between the objects. We collected
a total of 40 demos (2 object pairs × 4 markers × 5
positions) for training, and performed evaluation 48 times
per model (3 object pairs × 4 markers × 4 positions),
using both in-domain pairs and an unseen object pair to
test zero-shot generalisation ability (Tbl. II). During training
we randomised the object positions, but used fixed positions
during evaluation to keep these consistent across models.

Due to hardware limitations for training PerAct, we
changed several hyperparameters: a voxel grid of 603 (which
was shown in the original work to have relatively close
performance to 1003 [10]), a hidden size of 512, a latent size
of 512, and a batch size of 4 (which still requires gradient
accumulation on our hardware). The original authors used
a multitask model for their main results, so it is possible to
train single task models using reduced compute and memory.
Indeed, despite the reduction in capacity, we were able
to successfully replicate performance on several RLBench
tasks with our single task models, so proceeded with these
hyperparameters for experiments with the real robot.

Conditioning PerAct on segmentation masks successfully
improved its ability to distinguish between objects, and even
interact with an object that was not seen in the training data
(Tbl. III). Although on average the standard PerAct agent
achieves a 50% success rate on the in-domain object pairs,
almost every failure occurs due to pushing the wrong object
(to the correct marker). On the other hand, when conditioned
on segmentation, most failures were due to the segmentation
failing—so making this more robust should improve results
further. As further evidence of this hypothesis, preliminary
experiments on the “lift numbered block” task in RLBench

TABLE III: Success rate (%) of PerAct models.

Target Obj. Distractor PerAct PerAct + Seg.
Cola Dr. Pepper 37.5 81.2

Dr. Pepper Cola 62.5 75.0
black bottle Cola 25.0 50.0



using ground truth segmentation masks resulted in high
success rates, versus the standard PerAct agent.

In the zero-shot setting, the standard PerAct agent usually
pushed the “Cola” can, overfitting to this object from its
training data. When conditioned on segmentation masks,
PerAct typically pushed the “Cola” can if the segmenta-
tion failed, but even when segmentation was successful it
sometimes failed to complete the task successfully. Some of
the failures came from the gripper colliding with the “black
bottle” when coming down, hitting the area to the side of the
cap. We hypothesise that since the training data consisted
exclusively of objects of perfectly cylindrical shapes, the
model made such mistakes.

IV. DISCUSSION
In this work, we introduced segmentation-conditioned

PerAct. Using the power of pretrained segmentation and
text-vision models, we can cheaply generate useful semantic
information for robotic control, without requiring further
training of the pretrained models. In our experiments on a
real Franka Panda we demonstrated improved success rates
on a task involving distinguishing between similar objects.

The success rate could be improved by collecting more
data, with more varied data to improve generalisation. Al-
though adding segmentation information improved zero-shot
performance, a wide enough dataset could also provide
this improvement. However, collecting demonstrations is a
time-consuming process, so methods that are more sample-
efficient are still relevant for robotics applications.

Although the generalisation ability of SAM enabled us to
extract good masks, its “segment anything” mode did require
further processing. Text-image similarity search with CLIP
embeddings was not always successful, and having a single
model perform zero-shot text-conditioned object segmenta-
tion could alleviate this—in particular, the knowledge that
there are several known objects in the scene and matching
these can reduce false positives. Further work on improv-
ing this post-processing phase should lead to downstream
improvements for segmentation-conditioned policies.

REFERENCES

[1] R. Sutton, “The bitter lesson,” Incomplete Ideas (blog), 2019.
[2] A. Brohan, N. Brown, J. Carbajal, Y. Chebotar, J. Dabis, C. Finn,

K. Gopalakrishnan, K. Hausman, A. Herzog, J. Hsu, et al.,
“RT-1: Robotics transformer for real-world control at scale,”
arXiv:2212.06817, 2022.

[3] M. Shridhar, L. Manuelli, and D. Fox, “CLIPort: What and where
pathways for robotic manipulation,” in CoRL, 2022, pp. 894–906.

[4] A. Radford, J. W. Kim, C. Hallacy, A. Ramesh, G. Goh, S. Agarwal,
G. Sastry, A. Askell, P. Mishkin, J. Clark, et al., “Learning transferable
visual models from natural language supervision,” in ICML, 2021, pp.
8748–8763.

[5] A. Zeng, P. Florence, J. Tompson, S. Welker, J. Chien, M. Attarian,
T. Armstrong, I. Krasin, D. Duong, V. Sindhwani, et al., “Transporter
networks: Rearranging the visual world for robotic manipulation,” in
CoRL, 2021, pp. 726–747.

[6] P. Sharma, B. Sundaralingam, V. Blukis, C. Paxton, T. Hermans,
A. Torralba, J. Andreas, and D. Fox, “Correcting robot plans with
natural language feedback,” arXiv:2204.05186, 2022.

[7] T. Xiao, H. Chan, P. Sermanet, A. Wahid, A. Brohan, K. Hausman,
S. Levine, and J. Tompson, “Robotic Skill Acquisition via Instruction
Augmentation with Vision-Language Models,” in CoRL Workshop on
Language and Robotics, 2022.

[8] C. Lynch, A. Wahid, J. Tompson, T. Ding, J. Betker, R. Baruch,
T. Armstrong, and P. Florence, “Interactive language: Talking to robots
in real time,” arXiv:2210.06407, 2022.

[9] P.-L. Guhur, S. Chen, R. G. Pinel, M. Tapaswi, I. Laptev, and
C. Schmid, “Instruction-driven history-aware policies for robotic ma-
nipulations,” in CoRL, 2023, pp. 175–187.

[10] M. Shridhar, L. Manuelli, and D. Fox, “Perceiver-Actor: A multi-task
transformer for robotic manipulation,” in CoRL, 2023, pp. 785–799.

[11] D. Shah, B. Osiński, S. Levine, et al., “LM-Nav: Robotic navigation
with large pre-trained models of language, vision, and action,” in
CoRL, 2023, pp. 492–504.

[12] S. James, Z. Ma, D. R. Arrojo, and A. J. Davison, “RLBench: The
robot learning benchmark & learning environment,” IEEE RA-L, vol. 5,
no. 2, pp. 3019–3026, 2020.

[13] S. James, K. Wada, T. Laidlow, and A. J. Davison, “Coarse-to-fine
Q-attention: Efficient learning for visual robotic manipulation via
discretisation,” in CVPR, 2022, pp. 13 739–13 748.

[14] S. James and A. J. Davison, “Q-attention: Enabling efficient learning
for vision-based robotic manipulation,” IEEE RA-L, vol. 7, no. 2, pp.
1612–1619, 2022.

[15] A. Jaegle, S. Borgeaud, J.-B. Alayrac, C. Doersch, C. Ionescu,
D. Ding, S. Koppula, D. Zoran, A. Brock, E. Shelhamer, et al.,
“Perceiver IO: A general architecture for structured inputs & outputs,”
arXiv:2107.14795, 2021.

[16] Y. You, J. Li, S. Reddi, J. Hseu, S. Kumar, S. Bhojanapalli, X. Song,
J. Demmel, K. Keutzer, and C.-J. Hsieh, “Large batch optimization
for deep learning: Training BERT in 76 minutes,” arXiv:1904.00962,
2019.

[17] I. Lenz, H. Lee, and A. Saxena, “Deep learning for detecting robotic
grasps,” Int. J. Robot. Res., vol. 34, no. 4-5, pp. 705–724, 2015.

[18] A. Murali, A. Mousavian, C. Eppner, C. Paxton, and D. Fox, “6-DOF
grasping for target-driven object manipulation in clutter,” in ICRA,
2020, pp. 6232–6238.

[19] A. M. Christopher Xie, Yu Xiang and D. Fox, “The Best of Both
Modes: Separately Leveraging RGB and Depth for Unseen Object
Instance Segmentation,” in CoRL, 2020.

[20] Y. Li, T. Kong, R. Chu, Y. Li, P. Wang, and L. Li, “Simultaneous
semantic and collision learning for 6-DoF grasp pose estimation,” in
IROS, 2021, pp. 3571–3578.

[21] S. Back, J. Lee, T. Kim, S. Noh, R. Kang, S. Bak, and K. Lee, “Un-
seen object amodal instance segmentation via hierarchical occlusion
modeling,” in ICRA, 2022, pp. 5085–5092.

[22] T. Lüddecke and A. Ecker, “Image segmentation using text and image
prompts,” in CVPR, 2022, pp. 7086–7096.

[23] Z. Wang, Y. Lu, Q. Li, X. Tao, Y. Guo, M. Gong, and T. Liu,
“CRIS: CLIP-driven referring image segmentation,” in CVPR, 2022,
pp. 11 686–11 695.

[24] J. Xu, S. Liu, A. Vahdat, W. Byeon, X. Wang, and S. De Mello,
“Open-Vocabulary Panoptic Segmentation with Text-to-Image Diffu-
sion Models,” arXiv:2303.04803, 2023.

[25] A. Kirillov, E. Mintun, N. Ravi, H. Mao, C. Rolland, L. Gustafson,
T. Xiao, S. Whitehead, A. C. Berg, W.-Y. Lo, et al., “Segment
Anything,” arXiv:2304.02643, 2023.

[26] M. Minderer, A. Gritsenko, A. Stone, M. Neumann, D. Weissenborn,
A. Dosovitskiy, A. Mahendran, A. Arnab, M. Dehghani, Z. Shen, et al.,
“Simple open-vocabulary object detection with vision transformers,”
arXiv:2205.06230, 2022.

[27] C. Rother, V. Kolmogorov, and A. Blake, “"GrabCut" - Interactive
foreground extraction using iterated graph cuts,” ACM TOG, vol. 23,
no. 3, pp. 309–314, 2004.

[28] M. Quigley, K. Conley, B. Gerkey, J. Faust, T. Foote, J. Leibs,
R. Wheeler, A. Y. Ng, et al., “ROS: an open-source Robot Operating
System,” in ICRA Workshop on Open Source Software, vol. 3, no. 3.2,
2009, p. 5.

[29] S. Chitta, I. Sucan, and S. Cousins, “MoveIt!” IEEE RAM, vol. 19,
no. 1, pp. 18–19, 2012.

[30] J. J. Kuffner and S. M. LaValle, “RRT-connect: An efficient approach
to single-query path planning,” in ICRA, vol. 2, 2000, pp. 995–1001.

[31] S. Garrido-Jurado, R. Muñoz-Salinas, F. J. Madrid-Cuevas, and M. J.
Marín-Jiménez, “Automatic generation and detection of highly reliable
fiducial markers under occlusion,” Pattern Recognit., vol. 47, no. 6,
pp. 2280–2292, 2014.


