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Abstract

Cross-domain retrieval (CDR) is finding increasingly broad applications across
various domains. However, existing efforts have several major limitations, with the
most critical being their reliance on accurate supervision. Recent studies thus focus
on achieving unsupervised CDR, but they typically assume that the category spaces
across domains are identical, an assumption that is often unrealistic in real-world
scenarios. This is because only through dedicated and comprehensive analysis
can the category composition of a data domain be obtained, which contradicts
the premise of unsupervised scenarios. Therefore, in this work, we introduce the
problem of Universal Unsupervised Cross-Domain Retrieval (U2CDR) for the first
time and design a two-stage semantic feature learning framework to address it. In
the first stage, a cross-domain unified prototypical structure is established under the
guidance of an instance-prototype-mixed contrastive loss and a semantic-enhanced
loss, to counteract category space differences. In the second stage, through a
modified adversarial training mechanism, we ensure minimal changes for the
established prototypical structure during domain alignment, enabling more accurate
nearest-neighbor searching. Extensive experiments across multiple datasets and
scenarios, including close-set, partial, and open-set CDR, demonstrate that our
approach significantly outperforms existing state-of-the-art CDR methods and
other related methods in solving U2CDR challenges.

1 Introduction

In real-world applications, cross-domain retrieval (CDR) finds extensive utility across diverse domains,
such as image search [1], product recommendations [2], and artistic creation [3, 4]. However, the
efficacy of current CDR methods relies heavily on accurate and sufficient supervision [5, 6] to provide
categorical or cross-domain pairing labels. The acquisition of such information demands costly
efforts and resources. Hence, there is an urgent need to develop unsupervised CDR techniques.

For the regular Unsupervised CDR (UCDR) problem [7, 8], there are two data domains with semantic
similarity but distinct characteristics: the query domain and the retrieval domain. Despite the absence
of category labels, regular UCDR typically assumes that the label spaces of both domains are identical.
However, in real-world applications [5], the categorical composition of an unlabeled data domain is
usually uncertain, which is hard to acquire without detailed analysis and dedicated expertise. In
this work, we focus on extending UCDR to more universal scenarios, which allow for the possibility
of disparate category spaces across domains. The objective of this Universal UCDR (U2CDR) problem
is to retrieve samples from the retrieval domain that share the same category label with a query sample
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Figure 1: Overview of our proposed UEM semantic feature learning framework for U2CDR. In the first
stage of Intra-Domain Semantic-Enhanced Learning, UEM establishes a unified prototypical structure
across domains, which is driven and enhanced by an instance-prototype-mixed contrastive loss and a
semantic-enhanced loss. In the second stage of Cross-Domain Semantic-Matched Learning, Semantic-
Preserving Domain Alignment aligns domains while preserving the built prototypical structure, and
Switchable Nearest Neighboring Match achieves more accurate cross-domain categorical pairing.

from the query domain. Naturally, in the case of private categories exclusive to the query domain, the
retrieval result should be null.

Two issues must be addressed in solving traditional UCDR: 1) effectively distinguishing data samples
in each domain, and 2) achieving alignment across domains for samples of the same category. For the
first issue, self-supervised learning [9, 10] (SSL) is employed independently within each domain. For
the second, many nearest-neighbor searching algorithms may apply. However, for U2CDR, applying
these existing methods introduces new challenges. First, the prevailing SSL methods, particularly
contrastive learning [9, 11, 10], are highly influenced by the category label space [12], which means
different label spaces lead to distinct semantic structures. Second, existing nearest-neighbor searching
algorithms [13, 14, 7] overlook the presence of domain gaps. We found that only by first addressing
the domain gap can the nearest neighbor searching become reliable and accurate.

Thus, to effectively address the above challenges in solving U2CDR, we propose a two-stage Unified,
Enhanced, and Matched (UEM) semantic feature learning framework, as in Figure 1. In the first stage,
we establish a cross-domain unified prototypical structure with an instance-prototype-mixed (IPM)
contrastive loss, accompanied by a semantic-enhanced loss (SEL). In the second stage, before con-
ducting cross-domain category alignment, we incorporate Semantic-Preserving Domain Alignment
(SPDA) to diminish the domain gap while ensuring minimal changes for the established prototypical
structure. As the domain gap diminishes, we propose Switchable Nearest Neighboring Match (SN2M),
to select more reliable cross-domain neighbors based on the relationship between instances and
prototypes. Extensive experiments and ablation studies on popular benchmark datasets demonstrate
that our method can substantially outperform state-of-the-art methods from UCDR and other related
problems. In addition, we also theoretically analyze the principles behind the major challenges of
U2CDR and the design intuition of UEM. In summary, this work made the following contributions:

• We are the first to identify and solve an important problem when employing UCDR in practice –
Universal UCDR (U2CDR), where the category spaces of different domains are distinct.

• We propose a two-stage Unified, Enhanced, and Matched (UEM) semantic feature learning framework
to solve U2CDR. In the first stage, UEM establishes a unified prototypical structure across domains,
to ensure consistent semantic learning under category space differences. In the second stage, UEM
achieves more effective domain alignment and cross-domain pairing.

• We conduct extensive experiments on multiple benchmark datasets, with settings including Close-
set, Partial, and Open-set UCDR. The results demonstrate that UEM can substantially outperform
state-of-the-art methods of UCDR and other potential solutions in all settings.

2 Related Work

Cross-Domain Retrieval (CDR) is not very difficult to achieve if there are categorical labels [15, 16].
However, in real-world applications, such categorical labeling information is hard to acquire, thus
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more recent works [7, 8, 17] focus on achieving unsupervised CDR (UCDR). CDS [14] proposes
a contrastive learning-based cross-domain pre-training to align different domains. PCS [13] incor-
porates prototype contrastive learning [11] into the cross-domain pre-training. Recent studies also
search ways like clustering [7], pseudo-labeling [18], classifier mixup [17], and data augmentation [8]
to achieve more advanced CDR. However, all these UCDR works assume that the query and retrieval
domains share the same category space. Although there is a study [19] that can achieve CDR with
distinct categories, its effectiveness relies on accurate and sufficient data labels.

Universal Cross-Domain Learning. Cross-domain learning consists of domain adaptation (DA)
and domain generalization (DG) [20]. Regular DA and DG also only consider the scenario where
the label space of the target domain is the same as the source label space, which is termed Close-
set DA/DG. Recently, more studies have realized that the target label space may be a subset of
the source one (i.e., Partial DA/DG) [21, 22] or contain some private labels that other domains
do not have (i.e., Open-set DA/DG) [23, 24]. To deal with more universal setups, UniDA [25]
unifies entropy and domain similarity to quantify sample transferability across domains. CMU [26]
extends transferability quantification into entropy, consistency, and confidence. More recent works
search ways like clustering [27, 28] and nearest neighbor matching [29, 30] to achieve universal
DA/DG. In addition, some studies appear to achieve unsupervised DG where the source domain is
also unlabeled [31, 32], which is similar to the setup of UCDR. However, these studies consider
the classification task and cannot effectively work in image retrieval, especially in completely
unsupervised cases.

3 Methodology

3.1 Problem Formulation

In the problem of U2CDR, we assume there are two domains characterized by NA and NB unlabeled
instances, which are denoted asDA={xA

i }N
A

i=1 andDB={xB
i }N

B

i=1, respectively. Although these two
domains are provided as unlabeled data without category labels, we assume their label spaces YA,YB

consist of CA and CB different categories, and there is a relationship that CA ̸= CB,YA ∩ YB ̸=
YA ∪ YB. Without losing generality, if we regard domain A as the query domain, while domain B is
the retrieval domain, the objective of U2CDR is to retrieve correct data from domain B that belongs to
the same categories as the query data provided by domain A. To achieve this objective, it is required
to train a valid feature extractor fθ : X → R that can map both these two domains from the input
space X to a feature space R. Then the retrieval process R(fθ,x

A
i ) is shaped like for a particular

query instance xA
i with the label yAi from domain A, the representation distance between all instances

in domain B and xA
i needs to be calculated to form a set, i.e., S = {d(f(xB

j ), f(x
A
i ))}N

B

j=1 where
d(·) is a particular distance metric (e.g., Euclidean Distance), and we have

R(fθ,x
A
i ) =

{
null, if yAi ∈ YA \ YB

sort↑(S)[1 : k], otherwise, (1)

where sort↑(·) means ascending order sorting, and [1 : k] denotes the first k elements of a set.

Method Overview. To solve U2CDR, we propose a Unified, Enhanced, and Matched (UEM) semantic
feature learning framework that consists of two stages – Intra-Domain Semantic-Enhanced (IDSE,
Section 3.2) Learning and Cross-Domain Semantic-Matched (CDSM, Section 3.3) Learning, which
is shown in Figure 1. IDSE can help the feature extractor fθ to extract categorical semantics and
ensure a unified semantic structure across domains at the same time, which is achieved by instance-
prototype-mixed (IPM, Section 3.2.1) contrastive learning and a novel Semantic-Enhanced Loss
(SEL, Section 3.2.2). After IDSE, CDSM conducts Semantic-Preserving Domain Alignment (SPDA,
Section 3.3.1) to minimize the domain gap while preserving the semantic structure learned by IDSE.
With the minimization of the domain gap, more accurate nearest-neighbor searching can be achieved
by our Switchable Nearest Neighboring Match (SN2M, Section 3.3.2).

3.2 Intra-Domain Semantic-Enhanced Learning

To achieve effective cross-domain retrieval, feature extractor fθ needs to learn consistent cross-
domain features to differentiate data categories. Instance Discrimination [9] is usually employed to

3



achieve discriminative feature learning, but directly applying it in U2CDR has four fundamental issues
that hinder the possibility of accurate cross-domain categorical matching later:

1) Instance discrimination tends to extract semantics that separate domains rather than categories,

d(f(xA
i ), f(x

A
j )) < d(f(xA

i ), f(x
B
j )), y

A
i = yB

j ̸= yA
j . (2)

2) Instance discrimination cannot characterize categorical semantics in the feature space,

d(xA
i ,x

A
j1)

d(xA
i ,x

A
j2
)
<

d(f(xA
i ), f(x

A
j1))

d(f(xA
i ), f(x

A
j2
))
, yAi = yA

j1 ̸= yA
j2 . (3)

3) The randomness introduced by stochastic data augmentations results in evident changes in learned
categorical semantic structures during training, i.e.,

d(G(PA
t ), G(PA

t+1)) ≫ min
PA

i ,PA
j ∼H

d(G(PA
i ), G(PA

j )), (4)

where G(·) corresponds to a graph constructed by the input vectors, and P denotes the set of
categorical prototypes for a domain. The subscript t denotes different training iterations, while H
represents the hypothesis space of possible categorical prototype sets for a particular domain. d(·)
here is a measurement for graph difference, e.g., graph edit distance [33].

4) Distinct label spaces make instance discrimination learn different categorical semantic structures:

Theorem 3.1 (Geometry Distinctness). Suppose data distributions of two domains (A and B) have
mutually disjoint supports, and they are uniform over these supports. Assuming the support sets
of domains A and B are not identical, the optimal feature extractors f∗ that minimize the instance
discrimination loss of different domains present distinct geometric feature spaces.

3.2.1 Instance-Prototype-Mixed Contrastive Learning.

To fix the above issues, we adopt a slowly momentum-updated contrastive learning algorithm –
MoCo [10], to handle the third issue reflected by Eq. (4). Moreover, the MoCo-based instance
discrimination is conducted separately for each domain, which encourages fθ to focus less on
learning domain semantics (for the first issue, Eq. (2)). Besides, we accompany MoCo with a
prototypical contrastive loss, to enhance the mapping of categorical semantics from the input space to
the feature space (for addressing the second issue, Eq. (3)). With a well-crafted prototype update
mechanism, this prototypical contrastive loss can also help build a unified semantic structure across
domains (for the last issue, Theorem 3.1). Then let us introduce IPM contrastive learning in detail.
First of all, two memory banksMA andMB are maintained for domains A and B, which store
historical features m of data samples x:

MA =
[
mA

1 , ...,m
A
NA

]
,MB =

[
mB

1 , ...,m
B
NB

]
,wheremi ← βmi + (1− β)fθ(xi). (5)

Here mi is initialized by the feature of xi extracted by the initial fθ and updated in momentum,
where β controls the momentum speed, and we set it as a popular value 0.99. With these two memory
banks, MoCo builds the positive pairs as the pair of each instance and its historical feature, while the
negative ones are pairs of each instance and the historical features of all other instances:

LINCE =

B∑
i=1

− log
exp (fθ(xi) ·mi/τ)∑B
j=1 exp (fθ(xi) ·mj/τ)

, (6)

where B is the batch size and τ is a temperature factor that is set as 0.07.

As for the design of our prototypical contrastive loss, K-Means is applied on MA and MB to
construct prototypes as cluster centers P = {pc}Ĉc=1. In our problem, the cluster number C is
unknown, thus we apply the Elbow approach [34] to estimate it as Ĉ. Then, for each instance xi, if it
belongs to the ci-th cluster, the prototypical contrastive loss LPNCE shapes like,

LPNCE =

B∑
i=1

− log
exp (fθ(xi) · pci/τ)∑Ĉ
c=1 exp (fθ(xi) · pc/τ)

. (7)

Until here, the first three issues can be fixed by mixing LINCE and LPNCE, but the last issue,
Theorem 3.1, is the bottleneck of U2CDR. Next, let us introduce how we build a unified prototypical
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structure for LPNCE to address the last issue. Specifically, after obtaining the prototype sets PA,PB

of domain A and B, if we take domain A as an example to illustrate the prototypical structure building
process, the prototype set PB of domain B will be translated to domain A as,

PB→A = {pB→A
c =

−→
pB
c +
−−−−−−→
MBMA}Ĉ

B

c=1, (8)

whereM denotes the average vector of all vectors inM. Next, each prototype pA
c ∈ PA searches its

closest pB→A
c′ ∈ PB→A (we use Hungarian algorithm to search the closest cross-domain prototypes)

for the opportunity of merging, which needs to satisfy the condition,

d(pB→A
c′ ,pA

c ) < min

[
min

pi,pj∈PA
d(pi,pj), min

pi,pj∈PB
d(pi,pj)

]
, (9)

where d(·, ·) computes the Euclidean distance. If we use the symbol ⊕ to identify pro-
totypes that satisfy this merging condition, the final prototypical structure for domain A is
PA′

=
(
PA \ PA,⊕) ∪ (PB→A \ PB→A,⊕) ∪ (PA,⊕ ⊕ PB→A,⊕) where

(
PA,⊕ ⊕ PB→A,⊕) ={(

pB→A,⊕
c′ + pA,⊕

c

)
/2
}C⊕

c=1
. Then the computation of LA′

PNCE – Eq. (7) for domain A is conducted

on the newly-built PA′
, and all these operations are same for domain B.

However, as establishing the semantic cluster-like structure requires time, it is unreasonable to
conduct prototype contrastive learning from the beginning of training. Therefore, we conduct instance
discrimination at the beginning and progressively incorporate LPNCE. In this case, not only are the
constructed cluster centers more reliable, but the Elbow approach also provides more accurate cluster
number estimations. Specifically, we use a coefficient α that is scheduled by a Sigmoid function to
control the incorporation weight of LPNCE, i.e.,

LIPM = LINCE + αLPNCE, whereα =
1

1 + exp (0.5E − e)
, (10)

E and e here are the overall training epochs and the current epoch for IDSE.

3.2.2 Semantic-Enhanced Loss.

For the IPM contrastive learning, it is arbitrary to allocate a data instance xi to a single cluster when
the preferred semantic prototypical structure cannot be learned in advance. As a result, to speed up the
structure-building process, we propose a novel Semantic-Enhanced Loss (SEL) to align data instances
with the prototypes better. Specifically, instead of assigning data instances with a single cluster, SEL
considers potential semantic relationships between instances with all clusters, which are measured by
the Softmax probability. Moreover, as both PA and PB are obtained by the Euclidean distance-based
K-Means, we directly minimize the Euclidean distance between samples and prototypes:

LSEL =
1

B

B∑
i=1

C̃∑
c=1

exp(fθ(xi) · pc/τ)

C̃∑
c=1

exp(fθ(xi) · pc/τ)

d(fθ(xi),pc), (11)

where C̃ denotes the number of prototypes after merging, e.g., C̃A is the number of elements in
PA′

. By taking all potential semantic correlations into account, SEL can alleviate the impact of the
noise within the K-Means clustering results and further guide the model to learn more distinguishable
semantic information in terms of Euclidean distance. Certainly, such SEL benefits also rely on
high-quality semantic prototypical structures. As a result, we also apply the progressive coefficient α
to SEL, then the final optimization objective for IDSE is

LIDSE = (LA
IPM + LB

IPM) + α(LA
SEL + LB

SEL). (12)

3.3 Cross-Domain Semantic-Matched Learning

3.3.1 Semantic-Preserving Domain Alignment.

Domain invariance is another requirement for the extracted features in UEM. However, it is difficult
to effectively align feature clusters across domains when no category label nor correspondence
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annotation can be utilized in U2CDR. Instance matching [7, 32, 13] is proposed to match an instance xA
i

to another instance xB
j in the other domain with the most similar features. However, due to the domain

gap, instances can be easily mapped mistakenly. For example, if there is an instance in one domain that
is extremely close to the other domain, it will be determined as the nearest neighbor for all instances
in the other domain [13], shown in Figure 2. As a result, before conducting instance matching, the
domain gap needs to be diminished. Existing works usually leverage discrepancy minimization [35]
or adversarial learning [36] to achieve domain alignment. However, these methods provide inferior
performance due to semantic categorical structure changes, i.e., the semantic correlations among
instances within domains change a great deal during domain alignment, shown in Figure 3.

To achieve more effective domain alignment, especially with semantic preservation, we propose
Semantic-Preserving Domain Alignment (SPDA). Similar to the standard domain adversarial learning,
SPDA happens on two parties, one is the feature extractor fθ, and the other is a domain classifier gω
parameterized on ω. The domain classifier tries to distinguish the representations of two domains,
while the feature extractor tries to fool the domain classifier. Thus, the training is shaped like a
bi-level optimization in terms of the domain classification task on θ and ω, shown as follows,

LDAL =

2B∑
i=1

−yi · log gω(fθ(xi))− (1− yi) · log(1− gω(fθ(xi))), (13)

where y here denotes the domain label, e.g., if we regard y = 1 for domain A, the domain label
of domain B is y = 0. After sufficient adversarial training, the feature extractor captures nearly
domain-invariant features, thus achieving domain alignment.

To prevent the semantic structure from being changed, we first make a copy for the model trained
by IDSE and denote it as f ′θ. Then for a mini-batch of a particular domain, we feed all instances to
f ′θ and calculate pair-wise cosine similarity and Euclidean distance. In this way, all these instances
constrain and influence each other, which means that when the correlation of a particular instance pair
changes, it will affect the correlations of other related pairs. Then, we apply a semantic-preserving
regulation into domain adversarial learning to make the pair-wise correlations unchanged,

LSPR =
1

B2

B∑
i=1

B∑
j=1

{
[
fθ(xi) · fθ(xj)

|fθ(xi)||fθ(xj)|
− fθ′(xi) · fθ′(xj)

|fθ′(xi)||fθ′(xj)|

]2
+ [d(fθ(xi), fθ(xj))− d(fθ′(xi), fθ′(xj))]

2}.

(14)

Recall IPM Contrastive Learning. Actually, aligning two domains together without any semantic
structure change is impossible. As a result, there is a need for a dedicated design to alleviate the
impact of such unavoidable changes. Our solution is to strengthen the instances’ semantic correlations
by enhancing the cluster’s inner density and inter-separability. For the final convergence of IPM
contrastive learning, each instance is optimized to get as close to its corresponding cluster prototype
as possible, and as far to other cluster prototypes as possible:

Theorem 3.2 (Convergence of IPM). Suppose the data distribution of a domain has mutually
disjoint supports, and it is uniform over these supports. Simplex Equiangular Tight Frame (ETF)
representations [37] minimize the Instance-Prototype-Mixed Loss of this domain.
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3.3.2 Switchable Nearest Neighboring Match.

With SPDA, the domain gap could be effectively minimized to enable more accurate cross-domain
instance matching. However, existing instance matching approaches [7, 13, 32] lack the capability of
measuring the matching reliability between an instance and its nearest neighbor, which allows us to
conduct cross-domain matching with different weights. For example, if an instance is located at the
joint boundary of multiple categories, which indicates that the current feature extractor cannot extract
sufficiently distinguishable semantic features for this instance, we are supposed to lay less emphasis
on this case. To fix such issues, we propose the Switchable Nearest Neighboring Match (SN2M).

The principle behind SN2M is that prototypes are more convincing and reliable. Specifically, for a
particular sample xA

i in domain A, we first determine its inner nearest cluster prototype pA
ci in domain

A. We can also search for the nearest instance xA,B
i in domain B. Both these two searching processes

are based on the product of a modified cosine similarity and Euclidean distance,

pA
ci = argmin

pA
j

[(
1−

fθ(x
A
i ) · pA

j

|fθ(xA
i )||pA

j |

)
· d(fθ(xA

i ),p
A
j )

]
(15)

xA,B
i = argmin

xB
j

[(
1−

fθ(x
A
i ) · fθ(xB

j )

|fθ(xA
i )||fθ(xB

j )|

)
· d(fθ(xA

i ), fθ(x
B
j ))

]
. (16)

After obtaining xA,B
i , SN2M searches for its inner nearest prototype pA,B′

ci in PB′
(which has been

merged with the translated prototype set PA→B from domain A) and two cases allows us to measure
the reliability of xA,B

i . Before introducing these two cases, the inner nearest prototype pA
ci of xA

i
needs to be translated to domain B and checked whether should be merged to follow condition
Eq. (9), and we denote the translated prototype as p̃A

ci . Then the first potential case is pA,B′

ci is exactly
identical to p̃A

ci , which means, xA,B
i is convincing since it shares the same prototype correlations

with xA
i across two domains. Then the pair of xA,B

i and xA
i should be viewed as a positive pair in

the contrastive loss. Otherwise, if pA,B′

ci is different from p̃A
ci , it may be located at the intersection

region of multiple clusters. In this case, the pair of xA,B
i and xA

i is not supposed to be treated as a
positive pair. However, it does not mean SN2M does nothing for these unreliable cases, instead, SN2M
leverages a modified prototype contrastive loss to match the pair of xA

i and p̃A
ci . The modification is

to incorporate cross-domain instance-wise negative comparison,

LSN2M =
1

B

B∑
i=1

− log
∆∑C̃B

c=1 exp(fθ(x
A
i ) · pB′

c /τ) +
∑NB

j=1 exp(fθ(x
A
i ) · fθ(xB

j )/τ)

where∆ =

{
exp(fθ(x

A
i ) · p̃A

ci/τ), ifpA,B′

ci ̸= p̃A
ci

exp(fθ(x
A
i ) · p̃A

ci/τ) + exp(fθ(x
A
i ) · fθ(x

A,B
i )/τ), otherwise.

(17)

Finally, the overall optimization objective of CDSM follows

LCDSM = LDAL + LA
SPR + LB

SPR + LA
SN2M + LB

SN2M. (18)

4 Experiments

The datasets, experimental settings, and comparison baselines are introduced below. More implemen-
tation details, experiment results, and source codes are provided in the Supplementary Materials.

Datasets. Office-31 [38] includes three domains with 31 classes: Amazon (A), DSLR (D), Webcam
(W). Office-Home [39] contains four different domains: Art (A), Clipart (C), Product (P), Real (R).
And each domain has 67 data categories. DomainNet [40] is the most challenging cross-domain
dataset to our best knowledge, which includes six domains: Quickdraw (Qu), Clipart (Cl), Painting
(Pa), Infograph (In), Sketch (Sk) and Real (Re). DomainNet is originally class-imbalanced, thus we
follow [7] to select 7 data classes that contain more than 200 samples.

Experiment Settings. For fair comparison, we apply ResNet-50 [41] pre-trained with ImageNet in
MoCov2 [10] as the feature extractor. The domain classifier consists of two fully-connected layers.
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The SGD optimizer with a momentum of 0.9 is adopted with an initial learning rate of 0.0002 that is
scheduled to zero by a cosine learning strategy. The batch size is 64. The training epochs of IDSE are
100 for Office-31 and Office-Home, and 200 for DomainNet. The epoch number of CDSM is 50 for all
three datasets. Following [17], we adopt mean average precision on all retrieved results (mAP@All)
to measure the performance. All experiments are run repeatedly 3 times with seeds 2024, 2025, and
2026, and we report the mean performance and standard deviation.

Comparison Baselines. Our proposed method is compared with a comprehensive set of state-of-the-
art works from Cross-Domain Representation Learning (CDS [14], PCS [13]), Unsupervised Domain
Generalization (DARL [31], DN2A [32]), and Unsupervised Cross-Domain Retrieval (UCDIR [7],
CoDA [17], DGDIR [8]). We follow their default settings and only conduct compulsory customization.

Table 1: Performance comparison (mAP@All) between ours and other baseline methods on Office-31
and DomainNet in Close-set Unsupervised Cross-Domain Retrieval. We blue and bold the best
performance, and bold the second best, same for all tables.

Methods A→D A→W D→A D→W W→A W→D Avg. Qu→Cl Cl→Pa Pa→In In→Sk Sk→Re Avg.

CDS 66.7±1.1 62.5±0.9 70.9±1.0 90.0±0.4 64.4±1.5 88.4±2.1 73.8±0.5 19.2±1.0 35.1±1.3 24.4±0.5 25.5±0.7 32.3±1.7 27.3±0.8

PCS 72.7±2.2 70.7±0.7 75.3±1.4 88.5±3.0 71.2±1.5 89.2±2.6 77.9±1.1 22.2±0.9 36.0±1.3 27.7±0.3 28.0±0.5 33.0±0.7 29.4±0.1

DARL 65.5±2.5 70.2±1.9 73.4±3.0 86.6±2.2 69.0±3.5 83.7±2.5 74.7±1.2 22.1±1.0 33.7±1.1 25.9±0.8 27.2±0.6 32.5±1.0 28.3±0.4

DN2A 71.1±1.0 72.4±2.2 72.5±1.4 85.8±0.7 71.2±1.1 90.0±1.5 77.2±0.8 23.3±0.2 35.0±0.6 26.0±1.1 27.7±2.0 33.0±1.6 29.0±0.7

UCDIR 73.7±1.5 69.9±3.1 74.6±0.4 91.4±1.1 73.1±0.9 90.2±0.6 78.8±1.2 25.8±1.1 36.6±1.3 28.0±0.5 27.5±1.3 34.1±0.7 30.4±0.4

CoDA 71.7±2.0 71.4±4.3 74.9±2.7 91.4±1.2 73.1±0.9 90.2±1.1 78.8±1.5 26.0±0.8 34.9±1.1 29.2±0.4 27.9±1.0 33.8±1.0 30.4±0.5

DGDIR 73.5±2.1 71.2±1.4 75.1±3.0 91.7±1.1 74.0±1.7 90.5±0.4 79.3±0.6 27.7±0.4 35.0±1.5 30.0±2.2 27.8±1.5 33.6±2.0 30.8±0.9

Ours 76.2±1.4 77.0±2.1 75.6±2.0 92.5±0.7 78.9±3.0 91.0±0.2 81.9±0.5 31.9±0.9 39.4±1.4 35.0±0.7 29.8±0.6 35.7±1.8 34.4±0.5

Query Sample: Retrieval Results of UEM:

Amazon DSLR

Art Clipart

Clipart Painting

Retrieval Results of DGDIR:

DSLR

Clipart

Painting

Figure 4: Retrieval results of UEM and DGDIR on Office-31 (A→D), Office-Home (A→C), and
DomainNet (Cl→Pa) in Close-set Unsupervised Cross-Domain Retrieval. Green and red rectangles
denote correct and incorrect retrieval results. Best viewed in colors.

4.1 Effectiveness of UEM When Solving U2CDR

Close-set Unsupervised Cross-Domain Retrieval. For the close-set setting, the label space of the
query domain is identical to the retrieval domain. All domain pairs of Office-31 and Office-Home are
tested, and 5 pairs of DomainNet. The results for Office-31 and DomainNet are shown in Table 1
(Office-Home can be found in the Appendix). According to these results, we can observe that UEM
significantly outperforms other baselines in all cases. Specifically, we can achieve mAP@All
improvement of 2.6% compared to the best baseline method on Office-31, and such improvement is
even larger on DomainNet with an average of 3.6%. Figure 4 also shows the retrieval results of our
approach on Office-31, Office-Home, and DomainNet, and we can observe that all results are correct.

Partial Unsupervised Cross-Domain Retrieval. To establish the partial setting, the query domain
contains only half of the label space of the retrieval domain, and the query label space is randomly
selected. As shown in Table 2, we can observe that UEM exceeds all other baseline methods
significantly in mAP@All, which is much more substantial than close-set UCDR. For example,
UEM outperforms the second-best with an average of 12.4% on Office-Home. Similar improvements
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on Office-31 and DomainNet can be observed (results are provided in the Appendix). Besides, we
can easily observe that existing state-of-the-art studies are nearly incapable of dealing with the label
space difference in partial UCDR (see Theorem 3.1), while our UEM can work effectively.

Open-set Unsupervised Cross-Domain Retrieval. As for the open-set setups, we ensure that the
label space of the retrieval domain is half of the query label space. The experiment results for
DomainNet (results for Office-31 and Office-Home are in the Appendix) are presented in Table 3 with
two metrics – mAP@All for the shared label set, and detection accuracy for the private (open-set)
query labels (please refer to Appendix for how to detect the private query labels). According to these
results, we can easily observe that our approach substantially exceeds other baseline methods in
both metrics. Similar trends can also be found for Office-31 and Office-Home. All these results
strongly validate the effectiveness of UEM in open-set UCDR.

Table 2: Performance comparison (mAP@All) between ours and other baseline methods on Office-
Home in Partial Unsupervised Cross-Domain Retrieval.

Methods A→C A→P A→R C→A C→P C→R P→A P→C P→R R→A R→C R→P Avg.

CDS 22.0±1.1 31.1±0.7 32.5±2.0 26.5±1.0 25.6±0.2 27.9±1.5 30.0±0.9 31.8±1.1 40.5±2.7 32.3±1.8 25.5±1.2 37.6±3.0 30.3±1.1

PCS 24.5±0.4 36.5±1.2 38.8±2.0 24.9±1.6 28.8±1.1 29.0±1.0 28.6±2.1 35.3±0.7 41.7±1.4 37.5±2.0 26.9±1.6 40.0±0.9 32.7±0.8

DARL 25.5±1.5 34.7±2.0 29.8±3.1 25.0±1.9 23.9±1.7 27.5±1.5 26.8±2.6 31.9±1.1 40.0±2.3 35.5±1.4 27.7±2.0 40.0±1.5 30.7±1.6

DN2A 25.9±0.9 37.0±1.4 29.5±2.0 25.2±1.0 27.0±0.5 30.5±1.1 29.0±1.3 31.5±0.7 40.6±0.4 35.7±1.7 28.0±0.6 41.0±1.1 31.7±0.5

UCDIR 23.0±1.0 28.7±2.2 31.0±0.9 26.0±1.6 22.0±1.1 23.5±1.6 31.1±1.5 30.4±0.2 40.2±0.6 36.9±1.2 27.0±2.1 36.8±0.7 29.7±0.7

CoDA 22.5±1.2 34.2±1.0 35.7±2.0 25.0±1.7 29.5±0.8 30.0±0.9 30.7±1.1 32.0±1.5 43.2±1.3 35.2±2.2 28.5±1.4 41.3±0.3 32.3±0.7

DGDIR 24.4±0.5 30.9±2.0 41.0±0.7 27.2±1.2 30.5±2.4 29.6±1.7 30.4±2.6 33.2±1.0 45.5±0.2 37.1±1.1 30.9±1.5 42.0±1.0 33.6±0.5

Ours 40.5±1.4 45.8±2.0 48.0±2.1 35.1±1.0 39.2±0.5 41.1±0.9 52.4±3.0 46.0±2.1 55.0±1.7 49.0±2.1 43.1±1.0 56.7±1.2 46.0±1.1

Table 3: Performance comparison (mAP@All for
shared-label set, detection accuracy for open-label set)
between ours and other baseline methods on Domain-
Net in Open-set Unsupervised Cross-Domain Retrieval.

Methods Qu→Cl Cl→Pa Pa→In In→Sk Sk→Re Avg.

Shared-set mAP@All / Open-set Acc

CDS 22.4 58.9 34.5 65.2 25.5 60.7 25.0 59.2 33.7 64.9 28.2 61.8
PCS 23.3 57.8 34.2 67.8 24.9 60.5 27.8 65.4 34.7 66.9 29.0 63.7
DARL 21.9 54.4 32.5 60.2 22.0 53.9 26.6 60.6 32.3 62.8 27.1 58.4
DN2A 22.7 56.6 33.4 60.7 21.9 55.2 24.8 57.8 34.0 61.2 27.4 58.3
UCDIR 24.4 59.0 34.4 67.0 26.7 62.9 25.6 63.4 35.5 68.2 29.3 64.1
CoDA 24.2 58.8 35.6 66.6 27.0 61.1 24.9 58.0 34.6 62.9 29.3 61.5
DGDIR 23.5 57.5 36.0 68.3 25.8 60.6 25.8 59.1 35.0 64.3 29.2 62.0

Ours 30.3 72.9 40.2 88.1 36.0 82.5 31.1 78.2 36.6 83.0 34.8 80.9

Table 4: Ablation studies of UEM on
Office-31, Office-Home, and DomainNet
in Open-set Unsupervised Cross-Domain
Retrieval. The average values of Shared-
set mAP@All and Open-set Acc for all
domain pairs are reported here.

Variations Office-31 Office-Home DomainNet

Shared-set mAP@All / Open-set Acc

Ours w/o P.M. 68.3 78.8 45.7 72.6 30.9 70.2
Ours w/o SEL 72.2 88.3 47.5 81.7 33.0 76.4
Ours w/o SPDA 62.2 61.9 39.0 60.8 24.4 60.5
Ours w/o SN2M 75.0 89.2 48.8 82.8 33.3 80.5
Ours 77.4 92.5 50.2 86.7 34.8 80.9

4.2 Ablation Study

All the ablation studies are carried out in open-set UCDR on three datasets, and the average metrics
(Shared-set mAP@All and Open-set Acc) for all domain pairs of a single dataset are reported here.

Effectiveness of Prototype Merging. When evaluating the effectiveness of a unified prototypical
structure, we do not use prototype merging in IDSE. According to the results of ‘Ours w/o P.M.’
in Table 4, there is a non-negligible performance drop in both shared-set mAP@All and open-set
accuracy. This validates the importance of building a unified prototypical structure across domains.

Effectiveness of SEL. When evaluating SEL, we detach it during the model training. According to
the results of ‘Ours w/o SEL’ in Table 4, there is also an evident performance drop compared to the
full UEM. This validates that SEL is vital as it can help prepare a better base model for CDSM.

Effectiveness of SPDA. We replace our SPDA with the standard domain adversarial learning for the
ablation study. As shown in Table 4, there is a significant performance difference between ‘Ours
w/o SPDA’ and the full UEM, which illustrates the importance of semantic preservation during domain
alignment, as well as indirectly verifying the necessity of SPDA.
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Effectiveness of SN2M. We also replace SN2M with the nearest neighboring search approach leveraged
by UCDIR. By comparing the results of ‘Ours w/o SN2M’ and ‘Ours’, we can conclude that SN2M is
more compatible with UEM and able to achieve more accurate cross-domain categorical matching.

5 Conclusion

In this work, we focus on two major challenges when conducting cross-domain retrieval (CDR) in
real-world scenarios: one is that the category space across domains is usually distinct, and the other
is that both the query and retrieval domains are unlabeled. To tackle these challenges, we propose
a Unified, Enhanced, and Matched (UEM) semantic feature learning framework that can establish a
unified semantic structure across domains and preserve this structure during categorical matching.
Extensive experiments in cases including close-set, partial, open-set unsupervised CDR on multiple
datasets demonstrate the effectiveness and universality of UEM, which are reflected in the substantial
performance improvement over state-of-the-art studies from Cross-Domain Representation Learning,
Unsupervised Domain Generalization, and Unsupervised CDR.

6 Limitations and Future Work

To solve the real-world challenges when employing cross-domain retrieval, especially considering
the category distinctness across unsupervised data domains, we propose the UEM semantic feature
learning framework in this work. Although extensive empirical evaluation and theoretical analysis
have validated the effectiveness of UEM, some minor limitations still need more exploration. First, the
current UEM framework is composed of two stages, and we empirically determine the switching point.
In the future, we need to achieve a real end-to-end UEM by changing the training stage automatically.
Besides, there is a lack of theoretical analysis for the second stage (CDSM). In future efforts, we
should theoretically prove the semantic preservation of SPDA and the reliability of SN2M. Lastly, the
general applicability of UEM also needs testing. For instance, cross-person generalization in wearable
devices [42] and property analysis of material [43] or molecular [44] structures require cross-domain
retrieval. Therefore, we should test UEM on other modalities like time series and graph data.
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Appendix
This Appendix includes additional details for the paper“Semantic Feature Learning for Universal
Unsupervised Cross-Domain Retrieval”, including theoretical proofs (Section A), implementation
details (Section B), additional experiment results (Section C), and broader impact (Section D).

A Theoretical Proofs

Theorem 3.1 (Geometry Distinctness). Suppose data distributions of two domains (A and B) have
mutually disjoint supports, and they are uniform over these supports. Assuming the support sets
of domains A and B are not identical, the optimal feature extractors f∗ that minimize the instance
discrimination loss of different domains present distinct geometric feature spaces.

Proof. Suppose a data distribution is made of mutually disjoint supports and distributed uniformly
over these supports, there is a theorem demonstrating the representation geometry learned by instance
discrimination in a research work [45], i.e.,

Theorem A.1. Assuming a data distribution has mutually disjoint supports and is uniform over these
supports, any Simplex ETF representation extracted by f minimizes LNCE(f) for any convex and
non-increasing loss function l. Moreover, if l is strictly convex (e.g., logistic loss), then Simplex ETF
representations are the only minimizes of LNCE(f).

The Simplex ETF representations are defined as follows,

Definition A.2 (Simplex ETF). A simplex ETF is a collection of equal-length and maximally
equiangular vectors. We call a P ×K matrix M an ETF if it satisfies

MTM = α

(
K

K − 1
I− 1

K − 1
1K1T

K

)
, (19)

where α is a non-zero scalar, I is the identity matrix and 1K is an all-ones vector.

In representation learning, ETF representations mean that samples from different categories
(xi, yi), (xj , yj) satisfy

∀yi ̸= yj ,
fθ(xi) · fθ(xj)

|fθ(xi)||fθ(xj)|
=
−1

C − 1
. (20)

With the above preparations, we apply proof by contradiction to prove that different domains
hold distinct geometric feature spaces when their respective instance discrimination loss achieves
minimization. Specifically, we assume domains A and B share C categories and there is only one
category exclusively owned by domain B, i.e.,

YA ∩ YB = {yi}Ci=1, YB \ YA = yC+1,B, CB = CA + 1. (21)
This assumption satisfies that the support sets of domains A and B are not identical. Then suppose
that the geometric structures of domains A and B are identical when the instance discrimination
loss has been minimized, according to Theorem A.1, both domains A and B present Simplex ETF
representations. In this case, if we randomly select two categories yp, yq ∈ YA ∩ YB from the
domain-shared category set, and their samples within each domain have the following relation,

∀yp, yq ∈ YA ∩ YB,
fθ(x

p,A) · fθ(xq,A)

|fθ(xp,A)||fθ(xq,A)|
=

−1
CA − 1

,
fθ(x

p,B) · fθ(xq,B)

|fθ(xp,B)||fθ(xq,B)|
=

−1
CB − 1

. (22)

According to Eq. (21), Eq. (22) implies that the same category pair across domains has different
cosine similarities, which contradicts the assumption of identical geometry across domains.

Theorem 3.2 (Convergence of IPM). Suppose the data distribution of a domain has mutually dis-
joint supports, and it is uniform over these supports. Simplex Equiangular Tight Frame (ETF)
representations minimize the Instance-Prototype-Mixed Loss of this domain.

Proof. As shown in Eq. (10), the Instance-Prototype-Mixed loss is composed of instance discrimina-
tion and prototype contrastive loss. The simplex ETF representations have been proven to minimize
instance discrimination in Theorem A.1. Then we only need to prove that the prototype contrastive
loss satisfies the convex and non-increasing properties,
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Property A.3. For a loss function l defined on a set V = {vi}ti=1 with the size of t, it holds for all
subsets of index S ⊆ {1, ..., t} that

l(V) ≥ 1

|S|
∑
j∈S

l(VS←j), whereVS←j
i :=

{
vi, if i /∈ S
vj , otherwise. (23)

To prove the non-increasing property of prototype contrastive loss, we can view LPNCE is built on
the set V = {vc = fθ(xi) · pci/τ − fθ(xi) · pc/τ}Cc=1, then LPNCE(xi) = llog(V) := log(1 +∑

c exp(−vc)). We can leverage the concavity of the log function (Jensen’s inequality) and denote
T := 1 +

∑
j /∈S exp(−vj), and we have

llog(V) = log(T +
∑
c∈S

exp(−vc)) ≥
1

|S|
∑
c∈S

log(T + |S| exp(−vc)) =
1

|S|
∑
c∈S

llog(VS←c).

(24)

Therefore, the prototype contrastive loss also holds the non-increasing property, which proves that
simplex ETF representations minimize the Instance-Prototype-Mixed Loss.

B Implementation Details

B.1 Open-set Query Label Detection

In open-set unsupervised cross-domain retrieval (UCDR) settings, the query domain has some private
categories that are not included in the retrieval domain. In this case, the retrieval results of query
samples for such private query categories should be null. As aforementioned, for a query sample
xA
i , the retrieval process needs to calculate the distance between all samples in the retrieval domain

and xA
i . Then the most similar retrieval samples are supposed to be those located as close to xA

i

as possible. Intuitively, if xA
i belongs to the private query categories, the nearest sample in the

retrieval domain should be relatively distant. Therefore, there is a need for a threshold that allows us
to determine whether the closest retrieval sample of a query sample is located too far to be a similar
sample. Next, let us introduce how our UEM detects and identifies whether a query sample belongs to
private query categories.

In our UEM framework, the crucial design is to build a unified prototypical structure across domains,
which also shapes the private label detection strategy. Specifically, after the training of CDSM, we
apply K-Means to the query and retrieval domain datasets again to construct the prototype sets PA

and PB. Then the prototypes of the retrieval domain are translated to the query domain for potential
merging. The detailed prototype translation and merging have been introduced in Section 3.2.1.
After the prototype merging, both PA and PB are divided into two groups by satisfying the merging
condition (Eq. (9)) or not. For the prototype pairs that satisfy the merging condition, we record the
maximum inter-sample distance among their clusters as

Dc⊕ = max
xA

i ∈XA
c⊕

,xB
j ∈XB

c⊕

[(
1−

fθ(x
A
i ) · fθ(xB

j )
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i )||fθ(xB

j )|

)
· d(fθ(xA

i ), fθ(x
B
j ))

]
(25)
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Then for any query sample xA
i , there are two cases for its belonging. One is xA

i belongs to the
clusters of prototypes unmerged, i.e., PA \ PA,⊕. In this case, xA

i is supposed to come from private
query labels with high confidence. The other case is that the closest prototype of xA

i satisfies the
merging condition, i.e., argminpA

[
d(fθ(x

A
i ),p

A)
]
= pA,⊕

c⊕ ∈ PA,⊕, in which we should compare
the recorded Dc⊕ and the minimal distance between all samples in the retrieval domain and xA

i , i.e.,

DA→B
i = min

xB
j ∈DB
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If Dc⊕ < DA→B
i , we have faith that there is no sample similar enough in the retrieval domain, which

means xA
i should belong to private query categories. Otherwise, xA

i comes from the shared label set,
and we should conduct the normal retrieval operation.

B.2 Comparison Baseline Implementation

In our evaluation process, we implement a number of state-of-the-art baseline methods to compare our
proposed UEM in U2CDR. For a fair comparison, we ensure two principles for all these used baselines –
one is that the training data consists of at least two domains, and the other is that the training data
is unlabeled. Following these two principles, in addition to unsupervised cross-domain retrieval
studies [7, 8, 17], two other problems share similar setups: cross-domain representation learning
(CDRL) [14, 13] and unsupervised domain generalization (UDG) [31, 32]. For CDRL, the objective
is to learn domain-generalizable representations that provide domain-transferable knowledge for any
downstream task. One of the most typical downstream tasks of CDRL is cross-domain retrieval. As for
UDG, in addition to achieving effective cross-domain representation learning, domain-generalizable
classifiers are also needed. However, in our evaluation, the retrieval process does not require any
classifier, thus we omit all techniques related to classifier training for the used UDG approaches.

For the specific setups of our experiments, we consider close-set, partial, and open-set UCDR. The
close-set UCDR assumes that the label spaces of the query and retrieval domains are identical, which
is the benchmark setup of other baseline methods. In this case, we follow the default settings of these
baseline methods to evaluate their performance in close-set UCDR. As for the partial UCDR, the
label space of the query domain is half of the retrieval label space, where most baseline methods
can work normally without any modification. But some baseline approaches (PCS [13], UCDIR [7],
DGDIR [8]), especially those based on prototype learning, require the knowledge of category numbers
for domains, therefore, we suppose the category numbers are known to these approaches. The last
open-set UCDR supposes the retrieval label space is half of the query label space. In this setup, the
query domain has private categories, and if we conduct retrieval for samples from these categories,
the retrieval results should be null. To detect private categories, we follow the strategy leveraged by
UEM (Section B.1) to employ a similar one for the used baseline methods. Specifically, we divide
all baseline methods into two groups by whether there is a dedicated nearest neighboring searching
algorithm. For those (DARL [31]) that don’t have the nearest neighboring search, we attach the
searching algorithm used by UCDIR [7]. After conducting all training and operations of any baseline
method, we use the nearest neighboring search to pair samples from the query and retrieval domains.
Moreover, we conduct K-Means in the query domain to build the prototype set PA (for CoDA [17],
we leverage its auxiliary classifiers to construct the prototype set). Then for each cluster in the query
domain, we record the maximum inter-sample distance DA

c . Note that the distance measurement
here is different from the product of minus cosine similarity and Euclidean distance (Eq. (25)),
and different approaches use diverse measurement, e.g., UCDIR [7] uses cosine similarity while
DN2A [32] leverages Euclidean distance.

Table 5: Performance comparison (mAP@All) between ours and other baseline methods on Office-
Home in Close-set Unsupervised Cross-Domain Retrieval.

Methods A→C A→P A→R C→A C→P C→R P→A P→C P→R R→A R→C R→P Avg.

CDS 33.0±0.3 44.5±1.1 51.4±2.3 32.4±0.9 40.3±1.9 41.8±2.0 45.3±1.5 41.5±1.6 60.8±0.8 51.1±2.9 42.0±1.8 58.8±1.0 45.2±1.2

PCS 34.3±1.1 46.3±1.4 51.6±0.5 32.3±2.0 40.5±1.1 40.6±0.6 47.0±0.6 42.1±1.5 61.3±2.5 51.6±2.7 42.8±1.9 60.1±1.3 45.9±0.9

DARL 32.4±1.0 40.9±2.2 50.5±2.0 33.0±1.9 36.7±0.7 41.5±1.7 47.0±2.5 40.9±1.4 59.0±0.9 51.1±1.2 43.0±2.0 60.8±3.1 44.7±1.4

DN2A 35.5±0.5 42.8±1.7 52.9±2.6 34.0±1.4 35.7±1.1 42.0±1.0 48.0±2.7 43.2±1.6 59.8±1.4 49.0±2.3 44.7±1.1 56.5±2.0 45.3±1.3

UCDIR 36.1±1.5 46.5±0.9 55.9±1.2 34.0±1.8 44.1±1.3 43.1±2.0 51.2±1.1 44.1±1.4 67.1±2.3 52.7±1.9 43.0±3.7 66.5±0.4 48.7±1.6

CoDA 34.7±0.8 49.6±1.0 53.2±0.9 33.2±1.1 42.9±2.0 44.7±1.5 50.4±2.5 45.2±2.2 65.2±1.0 53.1±0.9 46.0±2.4 65.2±1.6 46.8±1.2

DGDIR 36.0±1.0 50.1±1.7 55.5±0.4 34.1±1.1 44.9±0.9 43.0±2.2 51.5±1.7 45.5±1.9 66.6±2.2 53.0±2.0 44.5±1.1 67.0±1.3 49.3±1.4

Ours 38.5±1.5 52.6±0.9 59.0±1.2 34.2±0.3 47.5±2.0 49.0±1.7 55.2±1.3 49.0±1.1 69.5±1.7 56.9±2.1 48.7±0.4 68.2±1.0 52.4±0.7

C Additional Experiments

Here we provide the additional experiment results including the close-set UCDR on Office-Home
(Table 5), partial UCDR on Office-31 and DomainNet (Table 6), and open-set UCDR on Office-31
(Table 7) and Office-Home (Table 8). According to these results, we can obtain similar observations
and conclusions to the main paper. First, our UEM can achieve the best performance in close-set
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Table 6: Performance comparison (mAP@All) between ours and other baseline methods on Office-31
and DomainNet in Partial Unsupervised Cross-Domain Retrieval.

Methods A→D A→W D→A D→W W→A W→D Avg. Qu→Cl Cl→Pa Pa→In In→Sk Sk→Re Avg.

CDS 42.5±1.2 39.7±1.4 45.4±2.0 68.8±0.6 40.7±0.7 55.8±1.1 48.8±0.5 17.7±1.9 31.1±1.2 22.0±2.3 21.8±1.1 29.6±0.6 24.4±1.0

PCS 44.0±2.3 41.5±1.4 47.9±1.9 65.9±2.2 47.3±0.9 56.5±0.2 50.5±1.2 18.0±0.8 31.5±1.3 23.4±1.8 22.1±0.7 27.9±0.5 24.6±0.4

DARL 41.5±1.0 38.9±2.2 49.0±2.5 65.5±3.3 45.7±1.9 53.6±2.4 49.0±1.8 19.0±1.1 30.5±2.0 23.3±1.6 23.0±2.2 28.7±1.3 24.9±1.2

DN2A 42.5±1.0 40.0±2.6 51.1±0.5 66.7±1.5 46.5±0.9 55.0±1.3 50.3±1.1 18.7±0.4 31.1±1.3 25.0±0.7 24.4±1.4 30.7±1.8 26.0±0.9

UCDIR 46.0±1.4 41.8±2.0 50.3±1.2 62.9±2.1 47.0±1.4 56.9±3.2 50.8±1.5 19.3±1.3 29.8±0.8 24.4±1.4 23.1±0.7 29.0±1.1 25.1±0.8

CoDA 45.1±2.0 40.7±1.2 49.3±3.0 66.0±1.4 47.0±1.6 57.8±0.3 51.0±1.3 20.2±0.3 30.9±1.0 25.2±1.1 24.0±0.9 31.0±0.5 26.3±0.6

DGDIR 45.0±1.2 39.2±0.6 49.7±1.3 64.4±2.0 48.5±1.0 55.2±1.3 50.3±0.8 18.8±0.5 30.4±1.6 25.0±0.2 24.5±0.8 31.2±1.0 26.0±0.5

Ours 64.4±1.6 51.0±2.2 59.4±1.4 76.9±2.2 61.5±1.2 65.0±2.0 63.0±1.7 28.2±1.2 34.9±0.4 32.7±0.7 26.6±1.5 34.0±0.9 31.3±0.8

Table 7: Performance comparison (mAP@All for shared-label set, detection accuracy for open-label
set) between ours and other baselines on Office-31 in Open-set Unsupervised Cross-Domain Retrieval.

Methods A→D A→W D→A D→W W→A W→D Avg.

Shared-set mAP@All / Open-set Acc

CDS 60.7±0.8 76.2±2.3 56.8±1.3 80.2±1.9 62.9±0.6 81.3±1.7 80.7±1.4 90.2±2.7 60.2±1.5 79.0±3.0 80.3±1.0 89.7±2.2 66.9±0.7 82.8±2.0

PCS 62.5±1.4 78.9±2.2 67.3±0.6 84.4±1.0 65.8±1.2 82.9±3.4 82.9±0.9 90.8±1.5 63.3±0.9 79.5±1.9 81.6±1.8 91.1±2.9 70.6±1.1 84.6±1.8

DARL 60.9±1.2 78.0±2.4 60.5±0.9 77.2±1.9 62.6±1.1 78.0±1.5 78.3±1.6 88.4±3.0 60.0±1.3 79.4±2.7 78.1±0.5 87.9±1.3 66.7±0.8 81.5±2.1

DN2A 61.7±0.4 76.9±1.6 60.8±1.1 75.3±2.3 62.5±0.5 78.0±1.0 80.2±2.3 90.4±5.6 61.1±1.0 76.7±2.6 78.8±0.7 90.0±1.8 67.5±1.2 81.2±2.4

UCDIR 62.9±0.6 78.1±1.4 65.5±0.9 82.4±1.6 62.6±2.0 80.4±4.7 79.9±1.3 86.9±2.2 64.4±0.9 84.3±1.7 80.5±0.9 91.1±2.0 69.3±0.9 83.9±1.6

CoDA 60.9±1.1 74.6±2.0 62.4±1.3 78.0±1.9 66.6±0.6 82.2±1.4 83.5±1.8 90.0±3.8 70.3±0.2 85.0±1.1 78.5±1.0 89.0±2.4 70.4±0.9 83.1±1.9

DGDIR 65.0±0.9 81.1±1.7 62.3±1.6 80.0±2.9 64.0±0.7 79.9±1.7 80.9±1.1 87.5±2.0 66.8±0.3 79.4±1.2 82.2±1.8 91.0±3.5 70.2±1.1 83.2±2.2

Ours 70.6±1.2 90.7±1.9 76.8±0.4 93.0±1.5 72.4±2.0 89.8±3.9 87.7±1.7 95.5±3.2 74.0±1.1 90.2±2.0 82.9±1.9 95.8±3.3 77.4±1.4 92.5±2.5

UCDR, which is reflected by the average performance improvement of 3.1% on Office-Home.
Moreover, UEM can exceed all other baseline methods much more substantially in both partial and
open-set UCDR. Specifically, our methods outperform the best baseline with a margin of 5.0% on
DomainNet and 12.0% on Office-31 in partial UCDR. As for open-set UCDR, UEM exceeds other
baseline methods with a range of 6.8% and 7.9% on Office-31 for shared-set mAP@All and open-set
detection accuracy respectively, and such improvement is much higher on Office-Home in 15.1%
for shared-set mAP@All and 13.1% for open-set detection accuracy. In addition, if we compare the
results of the same domain pairs between close-set and partial/open-set UCDR for baseline methods,
we can observe that the performance drops a lot, which also validates the existence of geometry
distinctness (Theorem 3.1). In particular, such geometry distinctness originating from the category
space difference can incur a performance drop of up to 29% for DGDIR on Office-31 between
close-set and partial UCDR.

D Broader Impact

The research development for solving Universal Unsupervised Cross-Domain Retrieval (U2CDR)
has the potential to make a significant positive impact across various sectors. By enabling more
accurate and flexible retrieval of information across different domains without the need for supervision
and the concern about semantic category distinctness, our proposed UEM framework can enhance
user experiences in product recommendation systems, leading to more personalized and relevant
suggestions. In the realm of artistic creation, UEM can facilitate novel connections and inspirations
by retrieving cross-domain artistic elements, fostering creativity and innovation. Beyond these
applications, UEM can also be beneficial in healthcare, finance, and scientific research with certain
adaptive modifications. In healthcare, it can improve diagnostic tools and personalized treatment
plans by integrating diverse data sources. In finance, it can enhance risk assessment and fraud
detection by analyzing cross-domain financial data. In scientific research, it can accelerate discoveries
by connecting insights from different fields. While UEM has substantial benefits, it is crucial that its
deployment adheres to existing privacy and intellectual property protection regulations and policies.
Ensuring that data used in cross-domain retrieval respects user privacy and intellectual property rights
is essential to prevent misuse and maintain public trust. Thus, applying this research in the real world
should consider ethical issues to ensure responsible and fair use, thereby aiming for a positive societal
impact without any negative social consequences.
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Table 8: Performance comparison (mAP@All for shared-label set, detection accuracy for open-label
set) between ours and others on Office-Home in Open-set Unsupervised Cross-Domain Retrieval.

Methods A→C A→P A→R C→A C→P C→R P→A P→C P→R R→A R→C R→P Avg.

Shared-set mAP@All / Open-set Acc

CDS 26.9 60.2 34.7 68.7 33.9 67.5 27.9 66.2 28.8 65.5 30.0 66.2 32.1 68.9 32.5 70.4 44.2 74.5 32.5 69.0 26.7 65.4 40.0 76.0 32.5 68.2
PCS 26.6 61.1 37.8 72.0 40.9 76.6 29.0 65.4 30.1 69.9 34.2 71.9 31.5 70.8 37.9 74.0 42.6 77.4 38.9 72.8 29.4 66.6 42.7 78.0 35.1 71.4
DARL 26.9 64.0 36.9 70.1 28.5 66.4 26.7 65.0 22.0 60.6 29.4 68.2 25.9 64.3 33.0 69.1 42.5 79.5 35.0 72.2 28.0 65.1 42.2 78.0 31.4 68.5
DN2A 27.0 63.3 38.2 74.4 29.0 68.8 26.8 65.4 28.9 67.5 34.0 72.4 29.0 66.8 33.0 71.5 42.0 80.3 35.5 72.6 29.4 68.8 41.5 79.4 32.9 70.9
UCDIR 24.7 62.2 30.1 64.4 26.8 64.0 26.5 65.2 21.5 62.0 25.5 67.0 32.0 71.9 31.1 70.8 43.0 78.9 37.6 76.6 28.0 69.2 38.5 77.4 30.4 69.1
CoDA 24.9 63.0 35.5 74.3 36.0 74.5 25.5 65.9 31.1 70.8 32.5 72.3 30.5 71.1 33.7 74.4 44.4 81.5 37.0 78.3 36.6 76.0 42.1 80.9 34.2 73.6
DGDIR 25.5 62.5 31.7 67.7 41.5 78.9 27.8 67.5 31.2 68.1 29.0 66.5 31.0 68.3 33.0 68.9 45.8 80.9 37.0 76.6 31.5 68.0 44.0 82.2 34.1 71.3

Ours 40.6 80.8 49.0 87.7 55.4 92.0 33.7 72.2 45.0 85.3 47.7 87.9 53.5 90.2 48.7 87.8 64.4 90.0 52.2 90.3 47.7 86.7 64.5 89.5 50.2 86.7
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• If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

8. Experiments Compute Resources
Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?

Answer: [Yes]

Justification: The Appendix discusses all relevant computing requirements in detail.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The paper should indicate the type of compute workers CPU or GPU, internal cluster,

or cloud provider, including relevant memory and storage.
• The paper should provide the amount of compute required for each of the individual

experimental runs as well as estimate the total compute.
• The paper should disclose whether the full research project required more compute

than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

9. Code Of Ethics
Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?

Answer: [Yes]

Justification: Our work adheres to all the ethical guidelines outlined by NeurIPS.

Guidelines:

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
• If the authors answer No, they should explain the special circumstances that require a

deviation from the Code of Ethics.
• The authors should make sure to preserve anonymity (e.g., if there is a special consid-

eration due to laws or regulations in their jurisdiction).

10. Broader Impacts
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Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?

Answer: [Yes]

Justification: The broader impacts are discussed in Section D of the Appendix.

Guidelines:

• The answer NA means that there is no societal impact of the work performed.
• If the authors answer NA or No, they should explain why their work has no societal

impact or why the paper does not address societal impact.
• Examples of negative societal impacts include potential malicious or unintended uses

(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

• The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

• The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

• If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

11. Safeguards
Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?

Answer: [NA]

Justification: Our work does not pose any explicit risks as we use public datasets, and
applying our proposed methods to other areas needs dedicated modifications.

Guidelines:

• The answer NA means that the paper poses no such risks.
• Released models that have a high risk for misuse or dual-use should be released with

necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

• Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

• We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

12. Licenses for existing assets
Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?

Answer: [Yes]

Justification: All dataset details and original authorship are cited in Section 4.

Guidelines:
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• The answer NA means that the paper does not use existing assets.
• The authors should cite the original paper that produced the code package or dataset.
• The authors should state which version of the asset is used and, if possible, include a

URL.
• The name of the license (e.g., CC-BY 4.0) should be included for each asset.
• For scraped data from a particular source (e.g., website), the copyright and terms of

service of that source should be provided.
• If assets are released, the license, copyright information, and terms of use in the

package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

• For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

• If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

13. New Assets
Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?

Answer: [NA]

Justification: The paper does not release any new assets.

Guidelines:

• The answer NA means that the paper does not release new assets.
• Researchers should communicate the details of the dataset/code/model as part of their

submissions via structured templates. This includes details about training, license,
limitations, etc.

• The paper should discuss whether and how consent was obtained from people whose
asset is used.

• At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and Research with Human Subjects
Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?

Answer: [NA]

Justification: Our paper does not involve crowdsourcing or research with human subjects.

Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

15. Institutional Review Board (IRB) Approvals or Equivalent for Research with Human
Subjects
Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?

Answer: [NA]
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Justification: Our paper does not involve crowdsourcing nor research with human subjects,
hence do not require IRB approval.
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

• We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

• For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.
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