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Abstract
Adapting pre-trained large language models
(LLMs) is crucial but challenging due to their
enormous size. Parameter-efficient fine-tuning
(PEFT) techniques typically employ additive
adapters applied to frozen model weights. To fur-
ther reduce memory usage, model weights are
often compressed through quantization. How-
ever, existing PEFT methods often yield subop-
timal model quality because they rely on restric-
tive assumptions, such as low-rank constraints
on adapters to limit the number of trainable pa-
rameters. We find that sketching, a popular data
compression technique, can serve as an efficient
LLM adaptation strategy while avoiding the low-
rank assumption. We introduce SketchTune, a
compressive adaptation strategy that compresses
LLM weights into compact fine-tunable sketches,
integrating compression and adaptation into a
unified framework. This integration eliminates
the need for complex two-path computation in
existing PEFT techniques, enabling faster and
more memory-efficient training and inference.
SketchTune is supported by mathematical insights
into matrix classes that are better approximated
using sketching rather than low-rank methods.
Our extensive evaluations with Llama and Mis-
tral models demonstrate that SketchTune outper-
forms leading PEFT methods across diverse tasks
while using substantially smaller base models and
comparable trainable parameters. As a highlight,
SketchTune outperforms LoRA, DoRA, and S2FT
on commonsense and math benchmarks using 2.6-
3.5× smaller base models and exceeds LoftQ in
accuracy by 14.48% on GSM8K with 7.3× fewer
trainable parameters.
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1. Introduction
Recent advancements in Large Language Models (LLMs)
have demonstrated their potential to drive significant
progress in various fields, including natural language pro-
cessing (Min et al., 2023), reasoning (Wei et al., 2022), and
problem-solving (Kojima et al., 2022). These pre-trained
LLMs can tackle a wide range of challenges thanks to the
extensive knowledge acquired during pre-training, but they
still require fine-tuning for optimal performance on specific
downstream tasks (Longpre et al., 2023). Unfortunately,
fine-tuning LLMs can be prohibitively resource-intensive
due to their large size. Many existing works address this is-
sue by adding a small set of additional trainable parameters
while fixing the pre-trained parameters (Han et al., 2024).

Restrictive Linear Algebraic Assumptions in LLM
Adapters. Parameter-efficient fine-tuning (PEFT) methods
aim to reduce the number of trainable parameters by impos-
ing specific linear algebraic assumptions on LLM weight
updates. For instance, sparsity-based approaches assume
that only a small subset of weights undergo updates (Sung
et al., 2021; Yang et al., 2024b), while the more popular
low-rank adapter-based methods (Hu et al., 2022; Liu et al.,
2024b) enforce the restrictive assumption that weight up-
dates are inherently low rank. However, recent studies (Liu
et al., 2024a) challenge this assumption, showing that fully
fine-tuned weight updates can exhibit high-rank patterns.
Our empirical findings further support this, revealing that
low-rank representations may not be optimal for capturing
weight updates, as illustrated in Figure 1. Additionally,
compressing weight updates alone may not be sufficient for
fine-tuning LLMs under resource constraints. To address
this, existing methods incorporate weight quantization to
further lower memory for fine-tuning (Dettmers et al., 2023;
Yin et al., 2023; Li et al., 2023b).

Quantized Fine-Tuning Produces Sub-Optimal Results.
To reduce the memory usage for adapting full LLM pa-
rameters, quantized fine-tuning methods freeze the low-
bit quantized base weights and update additional low-rank
adapters (Dettmers et al., 2023; Yin et al., 2023). How-
ever, this combination of the low-rank adapter assumption
and quantized weights results in sub-optimal performance
compared to PEFT methods using full base models (Li
et al., 2023b; Yin et al., 2023). Additionally, since quan-

1



Sketch to Adapt: Fine-Tunable Sketches for Efficient LLM Adaptation

tized model weights and trainable adapters use different
bit widths, input tensors must pass through two unmerge-
able computation paths during a forward pass, leading to
increased latency and lower throughput.

SketchTune: Fine-Tunable Sketches for Unified Com-
pression and Adaptation. We introduce SketchTune, a
method that unifies compression and adaptation of LLMs
with sketching. SketchTune uses a learned sketching al-
gorithm to compress the LLM into a small set of shared
sketched parameters. These sketched parameters are fully
differentiable, allowing us to directly update them for adap-
tation. The original parameters can be approximately recon-
structed from the shared sketched parameters via a mapping
matrix that projects each original parameter to a shared one.
By leveraging a carefully designed, learned sketching pro-
cedure, SketchTune preserves the pre-trained capabilities of
the full model while drastically reducing the model size by
3–8×. Furthermore, SketchTune goes beyond the restrictive
low-rank or sparse assumption on weight updates. We pro-
vide mathematical insights into the scenarios where weight
updates are better approximated by sketching, as well as em-
pirical evidence for why sketching can approximate weight
updates with lower errors.

Through extensive experiments, we show that SketchTune
models achieve higher average accuracy on commonsense
and math reasoning benchmarks compared to competitive
PEFT baselines, while utilizing sketched models that are
2.6–3.6× smaller than the full base models used by these
baselines. When compared to competitive quantized fine-
tuning methods at the 2-bit region, SketchTune achieves
14.48% better accuracy while using 7.4× fewer trainable
parameters. By leveraging dedicated CUDA kernels, Sketch-
Tune demonstrates better training and inference efficiency
than PEFT and quantized fine-tuning methods. Our code
and model checkpoints are available publicly1.

2. SketchTune: Fine-Tunable Sketches for
LLM Adaptation

Fine-tuning LLMs presents significant computational and
memory challenges. To address this, we propose Sketch-
Tune, a novel approach that compresses LLM weights into
memory-efficient sketches and fine-tunes these sketches di-
rectly to adapt to downstream tasks. We begin by motivating
the use of sketching for compressing model weight updates
through empirical evidence. We then describe our method
for learned sketching of LLM weights and the techniques
for fine-tuning sketched models efficiently on GPUs.

1https://github.com/LeanModels/SketchTune
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Figure 1. (Top 2) Minimum rank required by low-rank matrices to
explain varying percentages of variance in fine-tuned LLM weight
updates. (Bottom 4) Optimal approximation errors for sketching
and low-rank matrices under different compression ratios.

2.1. Weight Updates Are Far from Low-Rank:
Sketching Provides a Superior Alternative

In this section, we provide empirical evidence that weight
updates resulting from full fine-tuning of LLMs are high-
rank, which limits the effectiveness of low-rank approxima-
tions for capturing these updates. We further demonstrate
that our proposed sketching-based compression technique
achieves substantially lower approximation errors than con-
ventional low-rank methods when representing the weight
updates.

Let W represent the original model weights and W′ rep-
resent the fine-tuned weights. The weight update, defined
as ∆ ≜ W′ −W, typically requires as much storage as
the original weights. LoRA (Hu et al., 2022), a prevalent
PEFT method, compresses weight updates by representing
them as a product of two low-rank matrices. To evaluate the
effectiveness of this approach, we examine the capacity of
low-rank matrices to approximate weight updates from two
fine-tuned LLMs: Llama-3-8B (Dubey et al., 2024), fine-
tuned on OpenChat (Wang et al., 2024), and Qwen2.5-7B,
fine-tuned on source code (Yang et al., 2024a).
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Figure 2. An illustration of SketchTune’s process of sketching for
model compression and fine-tuning.

We perform singular value decomposition (SVD) on each
weight update matrix ∆ to determine the matrix rank re-
quired to capture a specified percentage of variance. Figure 1
illustrates the rank (and its standard deviation) necessary to
account for different levels of variance in ∆. The results
show that an average rank exceeding 1000 is required to ex-
plain merely 75% of the variance. This finding suggests that
standard low-rank approaches, typically employing ranks
ranging from 4 to 64, may inadequately capture the com-
plexity of fine-tuned weight updates.

In contrast, we propose SketchTune, a novel approach that
uses sketching to compress and represent weight updates.
Unlike traditional PEFT methods that rely on adapters or
additional parameters added to frozen weights, SketchTune
directly compresses the entire model through a set of fine-
tunable sketched parameters. Specifically, the sketched
model utilizes shared parameters along with a mapping
matrix that associates each original parameter with these
shared parameters.

We compare the quality of SketchTune and low-rank matri-
ces in approximating the weight updates on the previously
mentioned Llama and Qwen models. We measure the ap-
proximation quality using the normalized approximation
error defined as ∥∆−∆̂∥F

∥∆∥F
, where ∆̂ represents the approxi-

mated weight update (see Appendix B). Figure 1 shows that
SketchTune achieves lower approximation errors than low-
rank matrices across most layers, suggesting its superior
effectiveness in capturing weight updates.

2.2. Formulation: Learning to Sketch LLM Weights

Sketching is a data compression technique that preserves
essential properties of the original data while substan-
tially reducing memory requirements. Conventional ma-
trix sketching techniques employ randomized algorithms
such as column/row sampling (Liberty, 2013) and random

projection (Raskutti & Mahoney, 2016), but these stochas-
tic methods can corrupt the pre-trained knowledge embed-
ded in LLM weights. To prevent such degradation, we
introduce a learned sketching approach that preserves the
model’s pre-trained capabilities. The core idea is to com-
press each weight matrix W ∈ Rr×c into a sketched matrix
Wsketched ∈ Rr×k, where k ≪ c, without significantly af-
fecting the loss of the model. During inference, we recover
an approximate weight matrix Ŵ ∈ Rr×c from Wsketched

on-the-fly for matrix multiplications.

For learning sketched matrices, our goal is to keep the loss
of the sketched model as close as possible to that of the
original network. Let WN and ŴN denote the tensors
representing the weights of network N and its recovered
weights from sketches, respectively. The learning objective
for the sketched weights is to minimize L(ŴN )−L(WN ),
where L(WN ) represents the loss evaluated at WN . To
make the learning tractable, we employ an approximation
proposed by Nagel et al. (2020):

L(ŴN )− L(WN ) ≈
∑

W∈N

∥WX− ŴX∥2F (1)

where W denotes a weight matrix in the network, and X
represents its corresponding input matrix. This approxi-
mation offers two key advantages: 1. it decomposes the
learning into a layer-wise convex problem, making it com-
putationally feasible, 2. it enables layer-by-layer learning,
allowing large models to be processed on a single GPU.
Furthermore, since ∥WX− ŴX∥2F can be expressed as a
sum over the products of all row vectors of W and X, the
learning process can be further decomposed into row-wise
independent problems. This leads to the learning objective:

argmin
ŵ
∥wX− ŵX∥22 (2)

where w and ŵ represent a row in the original weight ma-
trix and its corresponding approximation recovered from
row sketches, respectively. We learn the sketched weights
by minimizing output distortions introduced by the recon-
structed weights, using a small sample drawn from the em-
pirical distribution of X.

2.3. A Row-Wise Learning Strategy

For each weight matrix W ∈ Rr×c in the LLM, we inde-
pendently compress each row vector w ∈ R1×c using a
learned sketching process. The process involves learning
two matrices: a sketching matrix S for compression and a
mapping matrix M for reconstruction.

The sketching matrix S ∈ Rc×k projects w into a lower-
dimensional space, producing a sketched row wsketched ∈
R1×k. The mapping matrix M ∈ {0, 1}k×c, a column-
wise one-hot binary matrix, recovers an approximation ŵ ∈
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R1×c of the original row for use in matrix multiplications.
Formally, this process is defined as:

wsketched = wS, ŵ = wsketchedM. (3)

After sketching, the original row w and the sketching ma-
trix S are no longer required. Only the sketched weights
wsketched and the mapping matrix M need to be stored in
GPU memory during training and inference, leading to re-
source efficiency.

To learn the mapping matrix M for parameter reconstruc-
tion, we apply the iterative quantization strategy proposed by
Frantar et al. (2022b) and Frantar & Alistarh (2022) to pre-
serve model quality. Each column of M is a binary one-hot
vector that maps an original parameter (from a row of size c)
to one of the k entries in the sketched parameters wsketched ,
where k ≪ c. This mapping inevitably introduces some
error in the model output. To minimize this error, we learn
the columns of M sequentially and iteratively update the
remaining unmapped parameters to compensate for the in-
troduced error after each step. Concretely, for each original
parameter, we identify the entry in wsketched that is closest
to it and assign the corresponding one-hot value to M. After
fixing this column of M, we apply an update δ (Equation 13
in the Appendix) to the remaining unmapped parameters
to absorb the approximation error. This process is repeated
until all columns of M are assigned.

For learning the sketched parameters wsketched , a straight-
forward method is to perform clustering on the c original
parameters to obtain a set of k centers as the sketched pa-
rameters. To minimize the impact on model quality, we
prioritize preserving the precision of parameters with large,
outlying inverse Hessian diagonals 1

H−1
i,i

, where H is the

second-order derivative of Equation 2. We achieve this
by adopting the learning objective proposed by Zhang &
Shrivastava, which emphasizes the preservation of more
influential parameters:

argmin
wsketched∈Rk

∑
i

( 1

H−1
i,i

)s∣∣∣RTN(wi,wsketched)−wi

∣∣∣2
(4)

where RTN(wi,wsketched) (round-to-nearest operator)
rounds the value of wi to its nearest sketched parameter
in wsketched , and s is a hyperparameter controlling the em-
phasis on preserving outliers of 1

H−1
i,i

, which we set s = 3.

More details on the mathematical derivations are presented
in Appendix D.

Using Equation 4 as objective, we learn wsketched by lever-
aging the weighted k-means (Lloyd, 1982; Zhang & Amini,
2021) algorithm. Consequently, we learn the sketching
matrix S as follows. Let a1, . . . , ac ∈ {1, . . . , k} be
the cluster indices of parameters w1, . . . ,wc weighted by

(
1

H−1
1,1

)s
, . . . ,

(
1

H−1
c,c

)s
, produced by the weighted k-means

algorithm. Then, the i-th row and j-th column of the sketch-
ing matrix S is given as follows:

Si,j =


(

1

H
−1
i,i

)s
wi∑

l

(
1

H
−1
l,l

)s if ai = j

0 otherwise

(5)

The final learning procedure for model sketching proceeds
as follows: we first learn the sketching matrix S through
weighted k-means, and obtain the sketched parameters
wsketched as wS. We then initialize the mapping matrix
M to be empty, and iteratively learn the columns of M.
In each learning step, we fix the next column of M to
map the next parameter to its nearest sketched parameter in
wsketched , and apply an update to the unmapped parameters
to compensate for the errors. During the iterative process,
the error in the weight update can accumulate, degrading
sketched model quality. To address this, we apply the strat-
egy proposed by Frantar et al. (2022b) to use the Cholesky
reformulation for inverse Hessian calculations and apply the
weight updates in a block-wise manner. Specifically, we di-
vide the weights into blocks of B = 128 columns and keep
weight updates contained to those columns. Once all param-
eters within the block have been mapped, we apply a global
weight update to the rest of the unmapped parameters.

2.4. Scaling Up Number of Trainable Parameters

To scale up the learning capacity of the sketched models, we
need to increase the count of trainable parameters. Unlike
adapter-based methods, the number of trainable parameters
in SketchTune models is fixed after model sketching. Hence,
to allow more flexibility in the amount of sketched parame-
ters, we propose to divide each row into multiple sub-rows,
and sketch each sub-row independently. Specifically, we
divide each row w ∈ R1×c into g non-overlapping, con-
tiguous groups of sub-rows w′ ∈ R1× c

g . With g groups per
row, we are increasing the number of trainable parameters
g-fold compared to row-wise sketching. We use the nota-
tion SketchTuneGPR=g to represent a sketched model with
g groups per row (GPR). With everything put together, the
final algorithm for weight sketching is given in Algorithm 1.
We present a quality comparison between the sketched mod-
els and the original models in Appendix G.

2.5. Fine-Tuning Sketches

Once the model weights have been sketched, the original
weights w and the sketching matrix S are no longer needed
for training or inference. During training and inference,
we use the sketched weights wsketched and the mapping
matrix M to reconstruct weights ŵ as wsketchedM. Thus,
with X being the layer input, the forward pass computes
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Algorithm 1 Learning to Sketch LLM Weights
1: Function LearnSketchingMatrix(w,X)

Input: sub-row weights w′, layer input X
Output: sketching matrix S

2: a1, . . . , ac ←WeightedKMeansCluster(
[w′

1, . . . ,w
′
c
G
], [( 1

H−1
1,1

)s, . . . , ( 1
H−1

c
G

, c
G

)s], k)

3: let S ∈ R c
G ,k,Si,j ←


(

1

H
−1
i,i

)s
wi∑

l

(
1

H
−1
l,l

)s if ai = j

0 otherwise
4: return S

5: Function LearnToSketch(w,X, G)
Input: row weights w, layer input X, groups per row
G
Output: sketched weights of all G group
w0

sketched , . . . , w
G−1
sketched , the mapping matrix M

6: M← 0k×c ▷ initialize mapping matrix
7: ŵ← 01×c ▷ initialize reconstructed weights
8: e← 01×B ▷ initialize weight errors
9: H−1 ← cholesky

(
[2XX⊤]−1

)
10: for g ← 0, . . . , G− 1 do
11: w′ ← wg c

G :(g+1) c
G

▷ get current sub-row
12: S← LearnSketchingMatrix(w′,X)
13: wg

sketched ← w′S
14: for i← g c

G , g c
G +B, g c

G + 2B, . . . , (g + 1) c
G do

15: for j ← i, . . . , i+B − 1 do
16: m← argminl

∣∣∣[wg
sketched ]l −wj

∣∣∣
17: Mm,j ← 1 ▷ set the current mapping column
18: ŵj ← [wg

sketched ]m

19: ej−i ← wj−ŵj

H−1
j,j

20: wj:(i+B) ← wj:(i+B) − ej−iH
−1
j,j:(i+B)

21: end for
22: w(i+B): ← w(i+B): − eH−1

i:(i+B),(i+B):

23: end for
24: end for
25: return [w0

sketched , . . . , w
G−1
sketched ],M

y = wsketchedMX. For adaptation, we freeze M and
perform back-propagation to update the sketched parameters
wsketched . The gradients of the sketched parameters are
given as:

∂L
∂wsketched

=
∂L
∂y

(
MX

)⊤
(6)

We present an illustration of the sketching and fine-tuning
process of SketchTune in Figure 2.

2.6. Custom CUDA Kernel for Efficient Training and
Inference

We develop dedicated CUDA kernels for efficient training
and inference of sketched models on GPUs by leveraging
the shared memory (see Appendix E for details). In Sec-
tion 4.2, we perform a comprehensive evaluation of the
efficiency of SketchTune during training and inference and
compare it against competitive methods. To ensure efficient
storage, we store the mapping matrix M ∈ {0, 1}k×c, a
column-wise one-hot binary matrix, as an integer matrix.
Due to its one-hot nature, each column of M can be com-
pactly represented with the index of its one-hot entry using
a ⌈log2 k⌉-bit integer. To leverage the full bit widths, we
take k ∈ {16, 8, 4} to use the data types INT4, INT3, and
INT2, respectively.

3. Theoretical Analysis
The properties of the true update matrix ∆, i.e. the update
matrix obtained after full fine-tuning, determine a good as-
sumption for compression of weight update. However, the
true ∆ is not known apriori. In this section, we analyze
characteristics of ∆ and the effect of sketching-based meth-
ods such as SketchTune, especially against popular low-rank
approximation alternatives. Since ∆ and the mappings Ms
for each row derived from W can be unrelated, it is safe
to assume {M} is random w.r.t ∆. For ease of exposition,
we assume that {M}s belong to a specific kind of random
sketching matrices derived from random-fold hashing (De-
sai & Shrivastava, 2023). Our result is presented below:

Theorem 3.1. Consider a matrix ∆ : n × n with sorted
(descending) singular values {ρi}ni=1, squares of which are
drawn from power law i−η parameterized by coefficient η.
Under the compression factor α (i.e. using n2/α parame-
ters), let low-rank approximation and sketch approximation
be ∆l and ∆s respectively. Then, the low-rank error is

||∆−∆l||2F = ||∆||2F −
n/2k∑
i=1

ρ2i (7)

The expected error of random-fold sketching approximation
is,

E(||∆−∆l||2F ) = ||∆||2F −
1

α

(
n∑

i=1

ρ2i

)
(8)

For large enough n, the expected sketching approximation
error is smaller than low-rank approximation error if

η ∈
[
0, 1− log(α)

log(2α)

]
(9)

The proof of the theorem is presented in Appendix F. The
above theorem characterizes matrices that are well approxi-
mated by sketching instead of low-rank decomposition. It
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Table 1. Accuracy of SketchTune compared to competitive PEFT methods for fine-tuning Llama models on math datasets. Baseline results
are taken from Yang et al. (2024b). SketchTune achieves better or comparable accuracy while using sketched models that are 2.6–3.6×
smaller than the full base models used by other PEFT methods.

Model Method Base Model
(GB)

Trainable
Param (M) MultiArith GSM8K AddSub AQuA SingleEq SVAMP MAWPS Avg. ↑

GPT-3.5 - - - 83.8 56.4 85.3 38.9 88.1 69.9 87.4 72.8

LLaMA-7B

Full FT 13.48 6,738.4 98.8 43.1 91.1 20.9 94.3 60.6 88.2 71.0

LoRA 13.48 55.9 98.0 40.0 91.2 21.7 93.1 56.7 85.3 69.7
DoRA 13.48 56.6 97.3 38.9 89.6 22.4 93.9 58.4 85.3 69.4
S2FT 13.48 54.6 98.8 41.3 91.4 21.3 93.5 58.4 86.1 70.1
SketchTuneGPR=1 3.89 21.8 97.8 36.5 89.9 25.2 90.7 55.7 86.6 68.9
SketchTuneGPR=2 3.93 43.5 96.8 39.0 92.2 20.1 92.7 55.5 86.6 69.0
SketchTuneGPR=4 4.02 87.0 98.3 39.7 90.9 22.0 93.5 58.0 87.4 70.0
SketchTuneGPR=8 4.19 174.1 98.3 40.6 91.9 19.7 95.1 57.5 88.7 70.3

LLaMA-13B

Full FT 26.03 13,015.9 98.3 47.6 92.9 26.0 95.1 65.7 88.7 73.5

LoRA 26.03 87.2 97.5 47.8 89.9 20.5 94.3 61.2 87.4 71.2
DoRA 26.03 88.5 97.2 48.1 90.6 20.9 93.9 63.8 88.2 71.8
S2FT 26.03 84.6 97.7 48.4 90.4 22.8 95.5 63.9 87.8 72.4
SketchTuneGPR=1 7.14 34.1 97.2 44.0 88.6 26.0 91.7 64.9 85.7 71.2
SketchTuneGPR=2 7.21 68.2 98.2 46.9 91.1 27.2 93.9 61.8 86.6 72.2
SketchTuneGPR=4 7.36 136.3 98.5 47.8 91.9 24.0 95.9 64.2 89.1 73.1
SketchTuneGPR=8 7.67 272.6 98.8 47.6 92.2 25.2 95.5 66.8 87.4 73.4

LLaMA2-7B

Full FT 13.48 6,738.4 99.3 47.5 91.1 24.4 96.7 62.5 89.1 72.9

LoRA 13.48 55.9 97.5 44.0 91.2 20.9 94.1 59.2 85.7 70.4
DoRA 13.48 56.6 98.2 43.8 90.1 24.4 94.5 59.1 89.1 71.3
S2FT 13.48 54.6 98.5 44.3 91.1 25.2 94.7 61.8 88.2 72.0
SketchTuneGPR=1 3.92 21.8 98.0 41.4 89.6 26.4 92.9 59.3 89.1 71.0
SketchTuneGPR=2 3.97 43.5 98.8 43.5 92.2 20.5 95.3 59.9 89.1 71.3
SketchTuneGPR=4 4.05 87.0 99.3 46.5 91.1 23.2 94.5 59.8 88.2 71.8
SketchTuneGPR=8 4.23 174.1 98.7 46.5 93.9 24.0 96.7 61.7 90.3 73.1

LLaMA3-8B

Full FT 16.06 8,030.3 99.2 62.0 93.9 26.8 96.7 74.0 91.2 77.7

LoRA 16.06 56.2 99.5 61.6 92.7 25.6 96.3 73.8 90.8 77.2
DoRA 16.06 57.0 98.8 62.7 92.2 26.8 96.9 74.0 91.2 77.5
S2FT 16.06 56.2 99.7 65.8 93.7 31.5 97.8 76.0 92.4 79.6
SketchTuneGPR=1 5.77 22.0 97.8 66.3 90.1 26.8 95.5 79.8 90.8 78.2
SketchTuneGPR=2 5.81 44.0 98.3 69.4 90.6 29.5 94.3 76.8 91.2 78.6
SketchTuneGPR=4 5.92 88.1 99.2 68.2 91.4 30.7 97.0 76.2 92.4 79.3
SketchTuneGPR=8 6.10 176.2 99.7 68.8 92.7 29.1 98.6 77.5 92.9 79.9

implies if the update-matrix ∆ is close to full-rank, i.e. η is
closer to 0, then SketchTune is well suited to approximate
∆, whereas η closer to 1 would make low-rank a superior
alternative. Clearly, as we can see from Figure 1, that ∆ is
far from being low rank, which indicates the superiority of
SketchTune over low-rank approximations.

4. Experiments
We conduct comprehensive experiments to evaluate the
adaptation capabilities of SketchTune against competitive
baselines across diverse tasks, including math problem solv-
ing, commonsense reasoning, and instruction following.
Below, we introduce the datasets, models, and baselines
used for evaluation, as well as the software and hardware
for conducting the experiments.

Models and Benchmarks. We fine-tune and evaluate the
following models: 1. Llama-7B, 2. Llama-13B (Touvron
et al., 2023a), 3. Llama-2-7B, 4. Llama-2-13B (Touvron
et al., 2023b), 5. Llama-3-8B (Dubey et al., 2024), 6. Mis-
tral-7B (Jiang et al., 2023). For math problem-solving, we
fine-tune these models on the Math10K dataset and evaluate
on 7 different math reasoning datasets (Hu et al., 2023).
For commonsense reasoning, we fine-tune on the Common-
sense170K dataset and evaluate on 8 different commonsense
reasoning datasets (Hu et al., 2023). For instruction fine-
tuning, we fine-tune Mistral-7B (Jiang et al., 2023) on the
Alpaca-GPT4 dataset (Peng et al., 2023) for one epoch and
evaluate it on MT-Bench (Zheng et al., 2023) using GPT-4o
as a judge. Detailed descriptions of the datasets are provided
in Appendix H. To compare SketchTune against efficient
quantized model fine-tuning methods, we follow the settings
in Li et al. (2023b) to fine-tune and test Llama-2 models
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Table 2. Accuracy of SketchTune compared to competitive PEFT methods for fine-tuning Llama models on commonsense reasoning
datasets. Baseline results are taken from Yang et al. (2024b). SketchTune achieves better or comparable accuracy while using sketched
models that are 2.7–3.5× smaller than the full base models used by other PEFT methods.

Model Method Base Model
(GB)

Trainable
Param (M) BoolQ PIQA SIQA HellaSwag Wino ARC-e ARC-c OBQA Avg.↑

ChatGPT - - - 73.1 85.4 68.5 78.5 66.1 89.8 79.9 74.8 77.0

Llama-7B

Full FT 13.48 6,738.4 70.3 84.2 80.1 92.3 85.4 86.6 72.8 83.4 81.9

LoRA 13.48 55.9 69.2 81.7 78.4 83.4 80.8 79.0 62.4 78.4 76.7
DoRA 13.48 56.6 68.5 82.9 79.6 84.8 80.8 81.4 65.8 81.0 78.1
Galore 13.48 55.9 68.6 79.0 78.5 84.7 80.1 80.3 62.1 77.3 76.3
LoReFT 13.48 2.0 69.3 84.4 80.3 93.1 84.2 83.2 68.2 78.9 80.2
LISA 13.48 667.8 70.4 82.1 78.7 92.4 82.9 84.9 70.2 78.4 80.0
S2FT 13.48 54.6 72.7 83.7 79.6 93.4 83.5 86.1 72.2 83.4 81.8
SketchTuneGPR=4 4.02 87.0 72.1 85.6 80.2 93.7 84.6 86.2 71.0 84.8 82.3

Llama-13B

Full FT 26.03 13,015.9 74.5 86.3 81.3 94.4 86.9 89.7 77.9 88.8 85.0

LoRA 26.03 87.2 72.1 83.5 80.5 90.5 83.7 82.8 68.3 82.4 80.5
DoRA 26.03 88.5 72.4 84.9 81.5 92.4 84.2 84.2 69.6 82.8 81.5
LoReFT 26.03 3.9 72.1 86.3 81.8 95.1 87.2 86.2 73.7 84.2 83.3
S2FT 26.03 84.6 74.2 85.7 80.7 94.9 86.4 88.4 76.3 87.8 84.3
SketchTuneGPR=4 7.36 136.3 73.9 87.4 82.5 95.6 86.1 90.3 75.7 89.4 85.1

Llama-2-7B

Full FT 13.48 6,738.4 74.7 84.9 78.7 93.7 84.1 87.5 75.2 85.0 83.0

LoRA 13.48 55.9 69.8 79.9 79.5 83.6 82.6 79.8 64.7 81.0 77.6
DoRA 13.48 56.6 71.8 83.7 76.0 89.1 82.6 83.7 68.2 82.4 79.7
S2FT 13.48 54.6 72.9 86.1 80.2 94.3 85.5 87.2 74.6 83.4 83.0
SketchTuneGPR=4 4.05 87.0 73.3 86.2 81.2 94.1 85.4 87.6 75.2 85.8 83.6

Llama-3-8B

Full FT 16.06 8,030.3 73.9 86.2 79.1 93.1 85.8 88.1 78.2 84.0 83.6

LoRA 16.06 56.2 70.8 85.2 79.7 92.5 84.9 88.9 78.7 84.4 82.5
DoRA 16.06 57.0 74.6 89.3 79.9 95.5 85.6 90.5 80.4 85.8 85.2
S2FT 16.06 56.2 75.0 89.0 80.7 96.5 88.0 92.5 83.4 87.8 86.6
SketchTuneGPR=4 5.92 88.1 75.0 90.2 82.7 95.9 88.2 92.6 82.1 89.4 87.0

Table 3. MT-Bench scores for Mistral-7B fine-tuned on the Alpaca-GPT4 training set. The baseline results are taken from Yang et al.
(2024b). Despite using a 3.1× smaller base model, SketchTune achieves a better average score than baselines.

Method Base Model (GB) Writing Roleplay Reasoning Code Math Extraction STEM Humanities Avg.

Full FT 14.48 5.50 4.45 5.45 2.50 3.25 5.78 4.75 5.45 4.64
S2FT 14.48 6.95 4.40 5.50 2.70 3.55 5.95 6.35 6.75 5.27
SketchTuneGPR=4 4.66 4.60 5.20 9.23 3.05 4.80 7.45 8.13 8.45 6.36

on the language modeling dataset WikiText-2 (Merity et al.,
2022) and the math reasoning dataset GSM8K (Cobbe et al.,
2021). Additional instruction following evaluations against
quantized model fine-tuning methods are presented in Ap-
pendix K.

Baselines. We compare SketchTune against the following
PEFT baselines: 1. Galore (Zhao et al., 2024), 2. LoReFT
(Wu et al., 2024), 3. LISA (Pan et al., 2024), 4. LoRA
(Hu et al., 2022), 5. DoRA (Liu et al., 2024b), 6. S2FT
(Yang et al., 2024b). We also report the results of full fine-
tuning, GPT-3.5 (text-Davinci-003), and ChatGPT
(gpt-3.5-turbo) from Hu et al. (2023). For Sketch-
Tune, we use sketched models compressed with the INT4
data type and compare them against baselines that use the
original weights as the base model. For baseline meth-

ods that fine-tune quantized models, we use 1. QLoRA
(Dettmers et al., 2023), 2. LoftQ (Li et al., 2023b) and com-
pare with SketchTune at different bit widths. We optimize
SketchTune’s hyper-parameters, including learning rate and
batch size, through a parameter sweep, and we report the
hyper-parameters for training in Appendix I.

Software and Hardware. We implement SketchTune using
PyTorch (Paszke et al., 2019) and the Transformers library
(Wolf et al., 2020). We develop custom CUDA kernels op-
timized for the specific operations required in SketchTune,
ensuring high-performance execution on modern GPU ar-
chitectures. We sketch each model using a single Quadro
RTX 8000-48GB GPU. For model training, we train each
model using a single NVIDIA A100-40GB GPU.
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Table 4. Perplexity and accuracy of SketchTune compared to QLoRA and LoftQ, two efficient fine-tuning methods for quantized models,
at various bit-widths. Baseline results are taken from Li et al. (2023b). N.A denotes that the model failed to converge. SketchTune
achieves better or comparable perplexity and accuracy while using 1.8–29.4× less trainable parameters than baseline methods.

WikiText-2 GSM8K

Method Data
Type

Llama-2-7B Llama-2-13B Method Data
Type

Llama-2-7B Llama-2-13B

Trainable
Param (M) PPL ↓ Trainable

Param (M) PPL ↓ Trainable
Param (M) ACC↑ Trainable

Param (M) ACC↑

LoRArank=64 FP16 159.91 5.08 250.35 5.12 LoRArank=64 FP16 159.91 36.90 250.35 43.10
LoRArank=64+Reg FP16 159.91 - 250.35 - LoRArank=64+Reg FP16 159.91 34.40 250.35 45.30

QLoRArank=64 NF4 159.91 5.70 250.35 5.22 QLoRArank=64 NF4 159.91 35.10 250.35 39.90
LoftQrank=64 NF4 159.91 5.24 250.35 5.16 LoftQrank=64 NF4 159.91 35.00 250.35 45.00
SketchTuneGPR=1 INT4 21.76 5.32 34.08 4.81 SketchTuneGPR=4 INT4 87.03 39.73 136.31 50.34

QLoRArank=64 NF3 159.91 5.73 250.35 5.22 QLoRArank=64 NF3 159.91 32.10 250.35 40.70
LoftQrank=64 NF3 159.91 5.63 250.35 5.13 LoftQrank=64 NF3 159.91 32.90 250.35 44.40
SketchTuneGPR=1 INT3 10.90 5.63 17.04 5.05 SketchTuneGPR=4 INT3 43.50 37.15 68.16 47.54

QLoRArank=64 NF2 159.91 N.A 250.35 N.A. QLoRArank=64 NF2 159.91 N.A. 250.35 N.A.
LoftQrank=64 NF2 159.91 7.85 250.35 7.69 LoftQrank=64 NF2 159.91 20.90 250.35 25.40
SketchTuneGPR=1 INT2 5.44 7.40 8.52 6.22 SketchTuneGPR=4 INT2 21.75 29.95 34.08 39.88
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Figure 3. A comparison on the training and inference efficiency of SketchTune, LoRA, and QLoRA.

4.1. Results

4.1.1. COMPARISON WITH PEFT METHODS

Math Problem-Solving. Table 1 presents the accuracy
results of models fine-tuned on the Math10K dataset (Hu
et al., 2023). SketchTune models are compressed to use
INT4 representation for weights, while baselines use full
models for fine-tuning. We explore the effectiveness of
SketchTune at different compression rates by varying groups
per row (GPR) in the sketched models. We highlight that
SketchTuneGPR=8 consistently achieves the best accuracy
compared to PEFT baselines despite using 2.6-3.4× smaller
models, and is on par with full fine-tuning and GPT-3.5.
Regarding parameter efficiency, SketchTuneGPR=2 performs
better or on par with LoRA and DoRA, despite using fewer
trainable parameters. We also conclude that scaling up the
number of parameters by increasing GPR leads to a consis-
tent improvement in the average accuracy across datasets.

Commonsense Reasoning. Table 2 presents the accuracy
results of models fine-tuned on the Commonsense170K
dataset. To maintain a practical trade-off between memory

efficiency and final performance, all SketchTune models use
the INT4 representation and GPR=4 for model sketching,
while the baseline methods employ the original weights as
the base. Despite using 2.7-3.5× smaller base model size,
SketchTune consistently outperforms competitive PEFT
methods and even full fine-tuning in the average accuracy
across benchmarks.

Instruction Fine-tuning Table 3 shows the MT-Bench
scores, judged by GPT-4o, for SketchTune, S2FT, and fully
fine-tuned models. SketchTune outperforms both baselines
on most tasks, while using 67.8% smaller base model.

4.1.2. COMPARISON WITH COMPRESSIVE FINE-TUNING

Table 4 reports the perplexity on WikiText-2 and accuracy
on GSM8K for models fine-tuned with QLoRA, LoftQ,
and SketchTune at different bit widths. QLoRA and
LoftQ use 4/3/2-bit NormalFloat (NF4/NF3/NF2) (Dettmers
et al., 2023), while SketchTune uses 4/3/2-bit integers
(INT4/INT3/INT2). SketchTune achieves lower perplex-
ity on WikiText-2 in most cases and higher accuracy on
GSM8K across all bit widths. Notably, it outperforms LoftQ
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by 4.73 and 5.34 points on GSM8K (4-bit) with 1.8× fewer
trainable parameters and by 9.05 and 14.48 points (2-bit)
with 7.3× fewer parameters. Moreover, SketchTune sur-
passes LoftQ on WikiText-2 (2-bit) while using 29.4× fewer
trainable parameters. Details on calculating SketchTune’s
number of trainable parameters can be found in Appendix C.

4.2. Efficiency Analysis

In Figure 3, we report the training and inference efficiency
of SketchTune. Moreover we compare SketchTune with
LoRA and QLoRA. All experiments are performed on an
NVIDIA A100-40GB GPU. The results are averaged over
10 runs, each with 10 warmup steps. LoRA and QLoRA-
based methods keep base and adapter weights separately,
which requires two matrix multiplications for each layer,
leading to inefficiencies and difficulties in implementation.
SketchTune is free of adapters and requires a single ma-
trix multiplication for each layer. SketchTune demonstrates
2.0-2.4× lower time to first token (TTFT) than LoRA, and
2.9-3.3× lower TTFT than QLoRA. For decoding latency,
SketchTune is consistently faster than LoRA and QLoRA.
For training time, SketchTune is lower or on par with base-
lines. Regarding GPU memory usage, SketchTune con-
sumes 1.6-2.7× less memory than LoRA during training
and inference due to the smaller size of sketched models.

5. Related Works
Resource-Efficient Fine-Tuning of LLMs. As fine-tuning
LLMs is resource intensive, existing works reduce the
computational and memory resources demands through
parameter-efficient adapters, optimizer state compression,
base model quantization, and more (Han et al., 2024).
Adapter-based methods attempt to reduce the parameters for
capturing model weight updates through low-rank methods
(Hu et al., 2022; Liu et al., 2024b), vector-based random
matrix adaptation (Kopiczko et al., 2024), sparsity (Guo
et al., 2021; Yang et al., 2024b), orthogonal fine-tuning (Qiu
et al., 2023; Liu et al., 2024c), etc. Optimizer states typ-
ically consume twice the amount of memory as trainable
parameters (Loshchilov & Hutter, 2019), and existing works
reduce this overhead through low-rank approximation (Zhao
et al., 2024) and quantization (Dettmers et al., 2022; Li et al.,
2023a). To reduce the memory demand for the base model,
existing works (Dettmers et al., 2023; Li et al., 2023b; Qin
et al., 2024; Yin et al., 2023) quantize the full model to inte-
gers and fine-tune full-precision adapters added on top. To
make LLMs more memory efficient, existing works apply
compression to the model weights (Frantar et al., 2022a;
Zhang et al., 2025), activations (Xiao et al., 2023), and KV
cache (Zhang et al., 2024a;b), while maintaining model
accuracy.

Sketching for Model Compression. Sketching techniques

have been explored as effective methods for compressing
neural networks (Xu, 2025), aiming to reduce computa-
tional and storage requirements while maintaining perfor-
mance. Random sketching for model compression has been
explored recently in a variety of settings, including embed-
ding compression (Chen et al., 2015; Desai et al., 2022;
Desai & Shrivastava, 2022) and general model compression
(Desai et al., 2023; Desai & Shrivastava, 2023). However,
these methods are not suitable for compressing models after
training; they are most effective for training compressed
models from scratch. SketchTune is among the first to ex-
plore sketching techniques for post-training model compres-
sion. Other techniques include multi-hashing (Eban et al.,
2020), tensor sketching (Kasiviswanathan et al., 2017), ran-
dom projection (Ravi, 2019), linear sketches (Daniely et al.,
2016), and higher-order count sketch (Shi & Anandkumar,
2020).

6. Conclusion
In this work, we introduced SketchTune, a novel approach
that unifies model compression and adaptation through
weight sketching. Our method addresses the fundamental
limitations of existing PEFT approaches by eliminating low-
rank constraints and avoiding the computational overhead
of separate adapter paths. Through theoretical analysis and
comprehensive empirical evaluation across diverse tasks,
we demonstrated that SketchTune achieves superior perfor-
mance while using significantly smaller base models than
competitive baselines. These results establish SketchTune
as a promising direction for efficient adaptation of LLMs.
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Appendix
A. Mathematical Notations
A summary of the mathematical notations used in the paper is presented in Table 5.

Table 5. Notations used in the paper.

Notation Type Explanations

r, c Z+,Z+ The number of rows and columns in a weight matrix
k Z+ The number of compressed columns in sketches

W,w Rr×c,R1×c A weight matrix, a row of the weight matrix
Wsketched ,wsketched Rr×k,R1×k The sketched parameters of a weight matrix, the sketched parameters of a row

Ŵ, ŵ Rr×c,R1×c The reconstructed weight matrix and row from sketched parameters
S Rc×k The sketching matrix for compression, where wS = wsketched

M {0, 1}k×c The mapping matrix for reconstruction, where ŵ = wsketchedM

B. Calculating Errors of Weight Update Approximation
In this section, we describe the details for calculating the approximation errors of weight updates using low-rank matrices
and sketching. We use the update ∆ of two fully fine-tuned models: 1. openchat/openchat-3.5-1210 (Wang et al.,
2024) from the base model meta-llama/Meta-Llama-3-8B (Dubey et al., 2024), 2. Qwen/Qwen2.5-Coder-7B
from the base model Qwen/Qwen2.5-7B (Yang et al., 2024a).

We use the metric of normalized approximation error ∥∆−∆̂∥F

∥∆∥F
, where ∆̂ is the best approximation of ∆ achievable using

low-rank matrices or sketching. For low-rank matrices, we calculate ∆̂ using the first r dominant entries of singular value
decomposition (SVD), where r is the rank of the low rank matrices. For sketching, we first sketch the models using the
SketchTune algorithm to derive the row-wise mapping matrix M. Then, we calculate a row of the optimal approximation δ̂
as

δ̂ = M(M⊤M)−1M⊤δ (10)

C. Calculating Total Number of Sketched Parameters
In this section, we detail the method for calculating the number of trainable parameters in a SketchTune model. Our approach
involves sketching all linear projection layers within a LLM, excluding the token embedding layer and the final prediction
head layer.

Each row of the weight matrix in these projection layers is divided into g sketching groups, where g represents the Groups
Per Row (GPR) configured prior to sketching. Utilizing an n-bit weight representation, each parameter within a sketching
group is encoded using an n-bit integer, allowing for 2n distinct values. Consequently, the number of trainable parameters
for each linear projection layer is calculated as:

Trainable Parameters = Number of Rows× g × 2n

To illustrate, consider sketching the LLaMA-2-7B model with GPR = 4 and INT4 weight representation. Each transformer
layer in the LLaMA-2-7B model includes key, query, value, and output projection layers with dimensions 4096× 4096, as
well as Multi-Layer Perceptron (MLP) layers sized 4096× 11008 (down), 11008× 4096 (up), and 11008× 4096 (gate).

For all 32 transformer layers, the total number of trainable parameters is:

Total Trainable Parameters = 32× 4× 24 × (4096× 4 + 4096 + 11008× 2) = 87, 031, 808

Given that the full model comprises 6,738 million parameters, this results in a compression ratio of approximately 77×.
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D. Details of Row-Wise Sketch Learning
We denote the weight reconstruction error δ and the loss error ϵ, where

δ ≜ ŵ −w, ϵ ≜ L(w + δ)− L(w). (11)

Our objective is to solve for the optimal weight update δ to apply to the weights w such that the loss error ϵ is minimized.
The learning process then proceeds as follows: we sequentially learn and fix the i-th column of the mapping matrix, denoted
as M:,i, during the i-th step. At each step, based on the loss error ϵi introduced by the current mapping, we solve for the
optimal weight update δi that minimizes ϵi, and apply the update to the unmapped original weights. This process is repeated
until all columns of M have been fixed.

To simplify solving for δ, we use a second-order Taylor expansion to approximate the loss error ϵ (Nagel et al., 2020):

ϵ ≈ (
∂L
∂w

)⊤δ +
1

2
δ⊤Hδ, where H =

∂2L
∂w2

,

≈ 1

2
δ⊤Hδ, since

∂L
∂w
≈ 0 in a pre-trained LLM. (12)

For the Hessian H, we approximate it by leveraging the second-order derivative of Equation 2, where H = 2XX⊤. In
practice, we compute X using a small calibration dataset consisting of 128 sequences of 2048 tokens sampled from the C4
dataset (Dodge et al., 2021). Equation 12 can now be solved with a Lagrangian (Frantar & Alistarh, 2022), which yields the
following solutions for δi and ϵi:

δi =
wsketchedM:,i −wi

H−1
i,i

H−1
:,i , ϵi =

1

2

(wsketchedM:,i −wi)
2

H−1
i,i

. (13)

where H−1
i,i ,H

−1
:,i , is the i-th diagonal entry, and the i-th column of the Hessian, respectively.

From the solution of ϵi, we gain two key insights towards minimizing the loss error:

ϵi ∝ (wsketchedM:,i −wi)
2, ϵi ∝

1

H−1
i,i

. (14)

These two facts lead to two takeaways: 1. Since the loss error is proportional to the squared difference between the sketched
parameter and the original parameter, a column of M should always be set to map an original parameter to its nearest
sketched parameter. 2. As the loss error is proportional to the inverse Hessian diagonals, the sketched parameters should be
optimized to prioritize preserving the precision of weights with larger inverse Hessian diagonals. Therefore, to learn the set
of k sketched parameters, we perform clustering to derive k centers from the c original parameters. We further leverage
the learning objective proposed by Zhang & Shrivastava to emphasize preserving parameters with outlier inverse Hessian
diagonals:

argmin
wsketched∈Rk

∑
i

( 1

H−1
i,i

)s∣∣∣RTN(wi,wsketched)−wi

∣∣∣2, (15)

where RTN(wi,wsketched) (round-to-nearest operator) maps the parameter wi to the nearest sketched parameter in
wsketched , and s is a hyperparameter controlling the emphasis on preserving outliers in the inverse Hessian diagonals. In our
experiments, we set s = 3.

E. CUDA Kernel Implementation Details
We develop custom CUDA kernels for efficient training and inference of SketchTune. Specifically, we develop two dedicated
CUDA kernels: 1. A kernel for weight reconstruction, which computes Ŵ from Wsketched . 2. A kernel for gradient
computation of the sketched parameters, which calculates ∂Wsketched

∂L from ∂Ŵ
∂L .

During training, the approximate weights Ŵ are only reconstructed when needed and not kept in memory to save memory
usage. For the weight reconstruction kernel, each thread block is responsible for reconstructing a single row of weights by
computing ŵ = wsketchedM. The mapping matrix M is stored in a packed integer format. Each thread block allocates
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sufficient shared memory to cache wsketched (utilizing only 32 bytes for k = 16). It then reads the integer indices from M
to perform low-latency lookups from wsketched in shared memory and writes the retrieved entries of ŵ to global memory.

For the gradient computation kernel, each thread block handles the computation of the gradient for a single row
of sketched parameters, specifically calculating

∂L
∂wsketched

=
∂L
∂ŵ

M⊤.

Each thread block allocates enough memory to cache ∂L
∂wsketched

t times, where t is the number of threads in each thread
block. Threads within the same thread block reads different entries of ∂L

∂ŵ and accumulates the values into its own copy of
∂L

∂wsketched
. Since each thread maintains its own accumulator, atomic operations are unnecessary for ensuring consistency.

Finally, an aggregation step combines the intermediate results from all threads to produce the final gradient.

F. Theory
For the sake of analysis, consider a square matrix Ŵ : n × n of post-quantized weights, where c = r = n. Let the true
update under full-scale fine-tuning be ∆. Let ∆l be the low-rank approximation learned via Low-rank methods. Let ∆s be
the sketch-based adaptation learned via methods such as SketchTune. Let the compression factor be α. For simplicity, we
assume that α ∈ N and α|n.

Errors with low-rank approximation Under the learning, the best approximation of the ∆ under low-rank methods can
be given by Eckart-Young-Mirsky theorem,

||∆−∆l||2F =

n∑
i=n/2k+1

ρ2i = ||∆||2F −
n/2k∑
i=1

ρ2i (16)

where ρi is the ith largest singular value.

Errors with SketchTune Consider a single row of the matrix w : 1 × n, the sketched matrix wsketched : 1 × k, the
mapping discovered M : k × n. Consider how SketchTune approximates the true corresponding row in ∆, say δ. It tries to
learn the best possible solution inside the row-subspace(M). To analyze the errors, we will make the following assumptions,

• For ease of exposition, we assume the mapping M is a balanced mapping where each parameter in wsketched is used
equal number of times.

• Since δ is not known apriori, we assume that mapping M is a random w.r.t δ with the distribution over M being the
random-fold mapping defined in (Desai & Shrivastava, 2023).

Under these assumptions, we can analyze the error incurred by SketchTune while approximating ∆i. The load of each
parameter in wsketched is α = n/k. The approximation error can be written as follows.

||δs − δ||22 =
∑
i

(
δi − g(i)

∑
j,h(i)=h(j)) g(j)δj

α

)2

(17)

E
(
||δs − δ||22

)
=
∑
i

 (α− 1)2

α2
δ2i +

1

α2

∑
j ̸=i,h(j)=h(i)

δ2j

 (18)

The δj appears in α− 1 other terms. So aggregating,

E
(
||δs − δ||22

)
=
∑
i

(
(α− 1)2

α2
δ2i +

α− 1

α2
δ2i

)
(19)
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E
(
||δs − δ||22

)
=
∑
i

(
(α− 1)

α
δ2i

)
(20)

E
(
||δs − δ||22

)
=

(α− 1)

α
||δ||22 (21)

Considering all the rows together and linearity of expectations,

E
(
||∆s −∆||22

)
=

(α− 1)

α
||∆||22 (22)

It is important to note that depending on the ∆, one of the approximations will be better than the other. For instance, if ∆ is
indeed low-rank, then LoRA will be the best approximation to use. We will show that if ∆ is near full rank, then Sketching
dominates LoRA-based approximations. We quantify this observation below,

Let the squared singular values, indexed by i and sorted in the descending order, be represented by power-law i−η

parameterized by coefficient η. If η = 0, then all the singular values are 1, and as η increases, the ∆ becomes more low-rank.
η = 1 implies logarithmic sparsity. So we assume η ∈ [0, 1)

ρ2i = ρ2(i) = i−η (23)

Since ρi is monotonically decreasing, it can be bounded as follows,

∫ n+1

x=1

ρ2(x)dx ≤
n∑

i=1

ρ2i ≤ 1 +

∫ n

x=1

ρ2(x)dx (24)

[
x1−η

1− η

]n+1

1

<

n∑
i=1

ρ2i < 1 +

[
x1−η

1− η

]n
1

(25)

1

1− η

(
(n+ 1)1−η − 1

)
<

n∑
i=1

ρ2i < 1 +
1

1− η

(
n1−η − 1

)
(26)

L(n) =
1

1− η

(
(n+ 1)1−η − 1

)
<

n∑
i=1

ρ2i < 1 +
1

1− η

(
n1−η − 1

)
= R(n) (27)

Let us quantify the η for which Sketching dominates Low-rank. Under the budget k for each row, α = n/k. Sketching is
superior in expectation if,

E
(
||∆s −∆||2F

)
< ||∆l −∆||2F (28)

which requires,

1

α

(
n∑

i=1

ρ2i

)
>

n/2α∑
i=1

ρ2i (29)

Using the bounds defined above,
1

α
L(n) > R(n/2α) (30)

For large n, we can approximate the ratio as
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Figure 4. Depending on the power-law coefficient in the singular values (a soft proxy for rank) of the unknown ∆ matrix, one method
dominates the other. We show this classification for a sample case of n = 1024 and k = 2

1
αL(n)

R(n/2α)
=

1

α

1
1−η

(
(n+ 1)1−η − 1

)
1 + 1

1−η

(
n1−η

(2α)1−η − 1
) (31)

1
αL(n)

R(n/2α)
=

1

α

1
1−η

1
1−η

1
(2α)1−η

(32)

1
αL(n)

R(n/2α)
=

1

α

1
1

(2α)1−η

(33)

This fraction is equal to 1 when
α = (2α)1−η (34)

Thus,

η = 1− log(α)

log(2α)
(35)

Thus Sketching dominates the low-rank approximation on average in the region η ∈
[
0, 1− log(α)

log(2α)

]
. An example of the

bounds is shown in figure 4

Theorem F.1. Consider a matrix ∆ : n× n with sorted (descending) singular values {ρi}ni=1, squares of which are drawn
from power law i−η parameterized by coefficient η. Under the compression factor α (i.e. using n2/α parameters), let
low-rank approximation and sketch approximation be ∆l and ∆s respectively. Then, the low-rank error is

||∆−∆l||2F = ||∆||2F −
n/2k∑
i=1

ρ2i (36)
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The expected error of random-fold sketching approximation is ,

E(||∆−∆l||2F ) = ||∆||2F −
1

α

(
n∑

i=1

ρ2i

)
(37)

For large enough n, the expected sketching approximation error is smaller than the low-rank approximation error if

η ∈
[
0, 1− log(α)

log(2α)

]
(38)

G. Model Sketching Details

Table 6. Perplexity of SketchTune, without fine-tuning, on WikiText-2, PTB, and C4 compared to full model. We also report the overhead
of sketching time.

Model Data Type GPR Model Size
(GB)

Sketching Time
(minutes) WikiText-2 ↓ PTB ↓ C4 ↓

Llama-7B

FP16 - - - 5.68 41.15 7.34

INT2 4 3.89 34.93 12.37 199.47 15.10
INT3 4 3.93 37.86 6.29 48.92 8.11
INT4 1 3.89 35.03 5.82 44.22 7.53
INT4 2 3.93 40.06 5.81 43.49 7.51
INT4 4 4.02 49.58 5.82 43.44 7.51
INT4 8 4.19 106.28 5.77 43.12 7.50

Llama-13B

FP16 - - - 5.09 28.10 6.80

INT2 4 7.14 60.58 9.23 63.68 11.08
INT3 4 7.21 64.18 5.55 30.15 7.30
INT4 1 7.14 62.70 5.20 27.67 6.91
INT4 2 7.21 71.28 5.20 28.34 6.91
INT4 4 7.36 88.97 5.18 28.51 6.90
INT4 8 7.67 112.43 5.20 28.04 6.90

Llama-2-7B

FP16 - - - 5.47 37.91 7.26

INT2 4 3.92 35.20 15.91 166.08 18.48
INT3 4 3.97 38.13 6.14 42.46 8.13
INT4 1 3.92 33.24 5.67 52.39 7.46
INT4 2 3.97 38.91 5.62 47.09 7.45
INT4 4 4.05 48.10 5.61 43.07 7.43
INT4 8 4.23 66.91 5.62 38.93 7.44

Llama-3-8B

BF16 - - - 6.14 11.18 9.45

INT2 4 5.77 74.63 28.52 36.04 30.79
INT3 4 5.81 78.83 7.73 12.87 12.09
INT4 1 5.77 69.56 6.59 11.59 10.18
INT4 2 5.81 79.00 6.54 11.63 10.12
INT4 4 5.92 88.83 6.52 11.52 10.09
INT4 8 6.10 106.28 6.47 11.49 10.00

We performed model sketching using C4 (Dodge et al., 2021) as calibration dataset (for computing the Hessian H for model
sketching), consisting of 128 sample sequences each with 2048 tokens.

All model are sketched using a single Nvidia Quadro RTX8000 GPU. In Table 6, we provide details on model sketching
overhead (sketching time), as well as perplexity comparisons against the original models on WikiText-2 (Merity et al., 2022),
PTB (Marcus et al., 1993), and C4 (Dodge et al., 2021) dataset, using 128 sequences of 2048 tokens each.

While SketchTune introduces an additional sketching step before fine-tuning, this preprocessing is fast, resource-efficient,
and one-time per base model. In Table 7, we report additional end-to-end sketching time and memory usage (INT4, GPR=4)
for different sized models, using a single A100-40GB GPU and the aforementioned calibration setup.
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Table 7. End to end sketching time (using INT4, GPR=4 setup) for different sized models on a single A100-40GB GPU. Thanks to our
layer-wise optimization objective (equation (1)), the sketching process scales efficiently to large models (70B).

Model Original Size (GB) Sketched Size (GB) Max GPU Mem (GB) Sketching Time (min)

Llama-3.2-3B 6.43 3.18 9.92 20.70
Llama-3.1-8B 16.07 5.92 18.37 41.62
Llama-3.1-70B 141.12 40.15 28.05 266.87

H. Dataset Information
Math Problem-Solving To fine-tune and evaluate on math problem solving tasks, we fine-tuned our models on the Math10K
dataset (Hu et al., 2023), which includes the training set from GSM8K (Cobbe et al., 2021), AQuA (Ling et al., 2017), and
MAWPS (Koncel-Kedziorski et al., 2016) and agumented with language model generated chain-of-thoughts steps. We
performed evaluation on 7 math datasets: MultiArith (Roy & Roth, 2016), GSM8K (Cobbe et al., 2021), AddSub (Hosseini
et al., 2014), AQuA (Ling et al., 2017), SingleEQ (Koncel-Kedziorski et al., 2015), SVAMP (Patel et al., 2021), and
MAWPS (Koncel-Kedziorski et al., 2016). For each test sample, the model performs generation. And a final answer is
extracted to calculate model’s response accuracy.

Commonsense Reasoning The commonsense reasoning tasks consists of questions from 8 different datasets:
BoolQ (Clark et al., 2019), PIQA (Bisk et al., 2020), SIQA (Sap et al., 2019), HellaSwag (Zellers et al., 2019),
WinoGrande (Sakaguchi et al., 2019), Arc-e, Arc-c (Clark et al., 2018), and OBQA (Mihaylov et al., 2018). The training set
consists of training data from all 8 datasets, formatted using a consistent pre-defined template (Hu et al., 2023), resulting in
170K samples. The test set from each dataset is then used individually to evaluate the fine-tuned model’s performance.

WikiText-2 The WikiText-2 dataset (Merity et al., 2016) consists of 44.8k training data, consisting of 36.7K
training data, 3.76K validatiaon data, and 4.36K test data. Following LoftQ (Li et al., 2023b), we used the training set to
perform fine-tuning, and the validataion set to evaluate fine-tuned model’s performance.

MT-Bench The MT-Bench dataset (Zheng et al., 2023) is a set of 80 challenging multi-turn open-ended ques-
tions across 8 categories: writing, humanities, STEM, extraction, coding, math, reasoning, and roleplay.

Alpaca We used the Alpaca dataset (Taori et al., 2023) to evaluate SketchTune’s performance on language gener-
ation tasks. The Alpaca dataset consist of 52K training samples, with no test or validation split. The responses are generated
with the text-davinci-003 engine. Alpaca-GPT4 (Peng et al., 2023) is a similar dataset, which contains outputs generated by
GPT-4 using the same prompts as the original Alpaca dataset. We adopted the FastChat framework from Zheng et al. (2023)
to perform pair-wise compitition, using GPT-4o as a judge for model generation quality.

I. Experimental Settings
In this section, we provide a comprehensive overview of the training and evaluation settings employed in our experiments
and benchmarks. We begin by detailing the hyperparameter configurations used for each experiment. Following this, we
describe the training and generation settings utilized to profile the training and inference efficiency of SketchTune.

I.1. Hyperparameter Selection

I.1.1. COMPARISON WITH PEFT METHODS

We followed experimental settings described in S2FT (Yang et al., 2024b). We used AdamW (Loshchilov & Hutter, 2019)
optimizer for all our experiments. The optimal hyperparamters chosen to produce the final results are provided in Table 8.

I.1.2. COMPARISON WITH COMPRESSIVE FINE-TUNING

For comparing with QLoRA and LoftQ, we followed the experimental settings described in LoftQ (Li et al., 2023b). We
used AdamW (Loshchilov & Hutter, 2019) optimizer for all our experiments. The optimal hyperparameters chosen to
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Table 8. Hyperparameter selections for fine-tuning SketchTune on math reasoning and commonsense reasoning tasks.

Task Model LR Optimizer Batch Size Epochs LR Scheduler Warmup Steps

Math
Reasoning

Llama-7B
Llama-13B
Llama-2-7B

8×10-5 AdamW 16 4 linear 100

Llama-3-8B 3×10-5 AdamW 16 4 linear 100

Commonsense
Reasoning

Llama-7B
Llama-13B
Llama-2-7B

8×10-5 AdamW 64 2 linear 100

Llama-3-8B 2×10-5 AdamW 64 2 linear 100

produce the final results are provided in Table 9.

Table 9. Hyperparameter selections for fine-tuning SketchTune on WikiText-2 and GSM8K tasks.

Task Model LR Optimizer Batch Size Epochs LR Scheduler

WikiText-2
Llama-2-7B
Llama-2-13B 3×10-5 AdamW 4 4 cosine

GSM8k
Llama-2-7B
Llama-2-13B 8×10-5 AdamW 16 4 cosine

I.1.3. INSTRUCTION FINE-TUNING

For instruction fine-tuning tasks on Mistral-7B, we trained on the Alpaca-GPT4 dataset for one epoch. We employed a
learning rate of 8× 10−6, AdamW (Loshchilov & Hutter, 2019) for optimizer, linear LR scheduler, and a batch size of 16
with 100 warmup steps.

I.2. Efficiency Evaluation Settings

Details on memory and speed efficiency evaluation settings are provided in Table 10.

Table 10. Efficiency evaluation settings for inference and training

Stage Metric Context Length Batch Size Warmup

Inference

Time to First Token 4000 1 10
8000 1 10

Decoding Latency 2000 1 10
2000 8 10

Peak Memory 10000 1 10

Training Training Latency 512 1 10
Training Peak Memory 512 1 10

J. Comparison against Sparse Adapters
Table 11 presents additional accuracy results of fine-tuned Llama models on the commonsense reasoning tasks using
SketchTune and sparsity based PEFT methods, including SpIEL (Ansell et al., 2024) and SMT (He et al., 2025). For
SketchTune, we use the INT4 data representation and GPR=4 for model sketching, while baseline methods use the original
weights. SketchTune is able to achieve better or comparable accuracy consistently across different tasks while using

21



Sketch to Adapt: Fine-Tunable Sketches for Efficient LLM Adaptation

2.71− 3.54× smaller base models.

Table 11. Accuracy of SketchTune compared to sprasity-based PEFT methods for fine-tuning Llama models on commonsense reasoning
datasets. Baseline results are taken from He et al. (2025). SketchTune achieve better or comparable accuracy while using sketched models
that are smaller than the full base models used by baseline methods.

Model Method Base Model
(GB)

Trainable
Param(M) BoolQ PIQA SIQA HellaSwag Wino ARC-e ARC-c OBQA Avg.

LLaMA-7B
SpIEL 13.48 56.6 67.7 81.2 78.6 84 80.2 78.3 62.8 78.8 76.5
SMT(Best) 13.48 330.9 72 82.9 80.7 93.3 82.4 86.1 70.6 83 81.4
SketchTuneGPR=4 4.02 87.0 72.1 85.6 80.2 93.7 84.6 86.2 71.0 84.8 82.3

LLaMA-13B
SpIEL 26.03 45.8 73.2 84.3 81.4 91.2 84.1 83.1 68.8 82.8 81.1
SMT(Best) 26.03 330.9 72.6 86.1 81.9 95 86.1 88.2 77.1 87.4 84.3
SketchTuneGPR=4 7.36 136.3 73.9 87.4 82.5 95.6 86.1 90.3 75.7 89.4 85.1

LLaMA-2-7B
SpIEL 13.48 55.9 70.5 80.6 80.8 85.8 83.4 81.2 65.8 81.8 78.3
SMT(Best) 13.48 330.9 72.6 85.2 82 94.4 85.7 87.8 74.5 85 83.4
SketchTuneGPR=4 4.05 87.0 73.3 86.2 81.2 94.1 85.4 87.6 75.2 85.8 83.6

LLaMA-3-8B
SpIEL 16.06 47.2 72.1 83.6 80 91.8 85.4 91.2 76.8 80.8 82.7
SMT(Best) 16.06 202.8 75.1 89.9 82.4 96.3 88.8 92.6 82.8 89.6 87.2
SketchTuneGPR=4 5.92 88.1 75.0 90.2 82.7 95.9 88.2 92.6 82.1 89.4 87.0

K. LLM-as-a-judge Comparison with LoftQ

Table 12. LLM-as-a-judge evaluation between SketchTune and LoftQ

Method Data Type Win Loss Tie Win Rate Loss Rate Tie Rate

LoftQrank=64 NF4 93 147 60 0.31 0.49 0.39

SketchTuneGPR=8 INT4 147 93 60 0.49 0.31 0.61

In this section, we evaluate the performance of SketchTune in comparison to LoftQ on language generation tasks using
the LLM-as-a-judge framework (Zheng et al., 2023). Both methods were fine-tuned on the Llama-3-8B model (Dubey
et al., 2024) using 4,096 randomly selected inputs from the Alpaca dataset (Taori et al., 2023). The fine-tuned models then
generated responses on 300 distinct test inputs, which were also randomly sampled from the same dataset. GPT-4o was used
as a judge to evaluate the models’ generation quality. As illustrated in Table 12, SketchTune achieved a win-loss ratio of
0.61 against LoftQ, demonstrating superior language generation capabilities.

L. Math Evaluations: Regular Expression Matching vs. LLM-Based Judging
For the experimental results in Table 1, we adopt the evaluation approach used in prior works (Hu et al., 2023; Yang et al.,
2024b), where the last number in an LLM’s response is extracted via regular expression matching and treated as the predicted
answer. For instance, if an LLM outputs “Thus, Alice would need 570 tiles to cover 36 sqft area.”, the method extracts 36 as
the answer. However, this extraction is incorrect, as the intended answer is 570, but the regex-based approach mistakenly
identifies 36.

To address this issue, we propose a more reliable evaluation method using an LLM as the answer extractor. Specifically, we
use o3-mini to extract the final answer from each response. We observe that this LLM-based judging improves accuracy
on math datasets by several percentage points compared to regular expression matching. Table 13 presents a detailed
comparison of results for LoRA, DoRA, and our proposed method, SketchTune.
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Table 13. Accuracy score comparison between LLM-based judgement and regex-based extraction.

Dataset Eval Method LoRAr=2 LoRAr=4 LoRAr=8 LoRAr=16 DoRAr=2 DoRAr=4 DoRAr=8 DoRAr=16
Sketch-

TuneGPR=4

Sketch-
TuneGPR=8

AQuA Regex 28.3 28.7 25.2 24.4 25.6 26.8 26.0 25.6 28.7 29.1
o3-mini 39.8 34.6 39.0 38.6 35.0 35.4 38.2 37.4 37.0 39.0

GMS8K Regex 66.9 66.3 69.2 68.8 66.3 67.2 68.8 69.4 68.2 68.8
o3-mini 68.8 69.4 71.0 71.0 68.3 69.4 70.9 72.0 71.6 71.4
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