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ABSTRACT

Exploration in environments which differ across episodes has received increasing
attention in recent years. Current methods use some combination of global novelty

bonuses, computed using the agent’s entire training experience, and episodic nov-

elty bonuses, computed using only experience from the current episode. However,
the use of these two types of bonuses has been ad-hoc and poorly understood. In
this work, we first shed light on the behavior these two kinds of bonuses on hard
exploration tasks through easily interpretable examples. We find that the two types
of bonuses succeed in different settings, with episodic bonuses being most effec-
tive when there is little shared structure between environments and global bonuses
being effective when more structure is shared. We also find that combining the two
bonuses leads to more robust behavior across both of these settings. Motivated by
these findings, we then investigate different algorithmic choices for defining and
combining function approximation-based global and episodic bonuses. This re-
sults in a new algorithm which sets a new state of the art across 18 tasks from the
MiniHack suite used in prior work. Our code is public at web-link.

1 INTRODUCTION

Balancing exploration and exploitation is a long-standing challenge in reinforcement learning (RL).
A large body of research has studied this problem within the Markov Decision Processes (MDP)
framework (Sutton & Barto, 2018), both from a theoretical standpoint (Kearns & Singh, 2002; Braf-
man & Tennenholtz, 2002; Agarwal et al., 2020) and an empirical one. This has led to practical
exploration algorithms such as pseudocounts (Bellemare et al., 2016b), intrinsic curiosity modules
(Pathak et al., 2017) and random network distillation (Burda et al., 2019), yielding impressive results
on hard exploration problems like Montezuma’s Revenge and PitFall (Bellemare et al., 2012).

More recently, there has been increasing interest in algorithms which move beyond the MDP frame-
work. The standard MDP framework assumes that the agent is initialized in the same environment at
each episode (we will refer to these MDPs as singleton MDPs). However, several studies have found
that agents trained in singleton MDPs exhibit poor generalization, and that even minor changes to the
environment can cause substantial degradation in agent performance (Zhang et al., 2018b; Justesen
et al., 2018; Zhang et al., 2018a; Cobbe et al., 2019; Kirk et al., 2021a). This has motivated the use of
contextual MDPs (CMDPs, (Hallak et al., 2015)), where different episodes correspond to different
environments which nevertheless share some structure. Examples of CMDPs include procedurally-
generated environments (Chevalier-Boisvert et al., 2018; Samvelyan et al., 2021; Küttler et al., 2020;
Juliani et al., 2019; Cobbe et al., 2020; Beattie et al., 2016; Hafner, 2021; Petrenko et al., 2021) or
embodied AI tasks where the agent must generalize across different physical spaces (Savva et al.,
2019; Shen et al., 2020; Gan et al., 2020; Xiang et al., 2020).

While exploration is well-studied in the singleton MDP case, it becomes more nuanced when deal-
ing with CMDPs. For singleton MDPs, a common and successful strategy consists of defining an
exploration bonus which is added to the reward function being optimized. This exploration bonus
typically represents how novel the current state is, where novelty is computed with respect to the
entirety of the agent’s experience across all episodes. However, it is unclear to what extent this strat-
egy is applicable in the CMDP setting—if two environments corresponding to different episodes
are very different, we might not want the experience gathered in one to affect the novelty of a state
observed in the other.
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An alternative to using global bonuses is to use episodic ones. Episodic bonuses define novelty
with respect to the experience gathered in the current episode alone, rather than across all episodes.
Recently, several works (Stanton & Clune, 2018; Raileanu & Rocktäschel, 2020; Flet-Berliac et al.,
2021; Zhang et al., 2021b; Henaff et al., 2022) have used episodic bonuses, with Henaff et al. (2022)
showing that this is an essential ingredient for solving sparse reward CMDPs. However, as we will
show, an episodic bonus alone may not be optimal if there is considerable shared structure across
different episodes in the CMDP.

In this work, we study how to best define and integrate episodic and global novelty bonuses for
exploration in CMDPs. First, through a series of easily interpretable examples using episodic and
global count-based bonuses, we shed light on the strengths and weaknesses of both types of bonuses.
In particular, we show that global bonuses, which are commonly used in singleton MDPs, can be

poorly suited for CMDPs that share little structure across episodes; however, episodic bonuses,

which are commonly used in contextual MDPs, can also fail in certain classes of singleton MDPs

where knowledge transfer across episodes is crucial. Second, we show that by multiplicatively
combining episodic and global bonuses, we are able to get robust performance on both contex-
tual MDPs that share little structure across episodes and singleton MDPs that are identical across
episodes. Third, motivated by these observations, we comprehensively evaluate different combina-
tions of episodic and global bonuses which do not rely on counts, as well as strategies for integrating
them, on a wide array of tasks from the MiniHack suite (Samvelyan et al., 2021). Our investigations
yield a new algorithm which combines the elliptical episodic bonus of Henaff et al. (2022) and the
NovelD global bonus of Zhang et al. (2021b), which sets a new state of the art across 18 tasks from
the MiniHack environment, solving the majority of them. Our code is available at web-link.

2 BACKGROUND

2.1 CONTEXTUAL MDPS

We consider a contextual Markov Decision Process (CMDP) defined by (S,A, C, P, r, µC , µS)
where S is the state space, A is the action space, C is the context space, P is the transition function,
µS is the initial state distribution conditioned on context and µC is the context distribution. At each
episode, we first sample a context c ⇠ µC and an initial state s0 ⇠ µS(·|c). At each step t in the
episode, the next state is then sampled according to st+1 ⇠ P (·|st, at, c) and the reward is given
by rt = r(st, at, c). Let dc⇡ represent the distribution over states induced by following policy ⇡
with context c. The goal is to learn a policy which maximizes the expected return, averaged across
contexts:

R = Ec⇠µC ,s⇠dc
⇡,a⇠⇡(·|s)[r(s, a)]

Examples of CMDPs include procedurally-generated environments, such as ProcGen (Cobbe
et al., 2020), MiniGrid (Chevalier-Boisvert et al., 2018), NetHack (Küttler et al., 2020), or Mini-
Hack (Samvelyan et al., 2021), where each context c corresponds to the random seed used to gener-
ate the environment; in this case, the number of contexts |C| is effectively infinite (we will slightly
abuse notation and denote this case by |C| = 1). Other examples include embodied AI environ-
ments (Savva et al., 2019; Szot et al., 2021; Gan et al., 2020; Shen et al., 2020; Xiang et al., 2020),
where the agent is placed in different simulated houses and must navigate to a location or find an
object. In this setting, each context c 2 C represents a house identifier and the number of houses |C|
is typically between 20 and 1000. More recently, CARL (Benjamins et al., 2021) was introduced as
a benchmark for testing generalization in contextual MDPs. However, their focus is on using privi-
leged information about the context c to improve generalization, which we do not assume access to
here. For an in-depth review of the literature on CMDPs and generalization in RL, see Kirk et al.
(2021b). Singleton MDPs are a special case of contextual MDPs with |C| = 1.

2.2 EXPLORATION BONUSES

At a high level, exploration bonuses operate by estimating the novelty of a given state, and assigning
a high bonus if the state is novel according to some measure. The exploration bonus is then combined
with the extrinsic reward provided by the environment, and the result is optimized using RL. More
precisely, the reward function optimized by the agent is given by:
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r̄(s, a) = r(s, a) + ↵ · b(s, a) (1)

where r(s, a) is the extrinsic reward, b(s, a) is the exploration bonus, and ↵ is a parameter governing
the balance between exploration and exploitation. Some bonuses do not depend on a or additionally
depend the next state s0, which will be clear from the context. To account for the sometimes wide
variation in the scale of exploration bonuses across different environments and different points in
time during training, the exploration bonus is sometimes divided by a running estimate of its standard
deviation, as is done in Burda et al. (2019).

In tabular domains with a small number of discrete states, a common choice is to use the inverse
counts: b(s) = 1/

p
N(s) (Strehl & Littman, 2006), where N(s) is the number of times state s

has been encountered by the agent. However, in many settings of interest the number of possible
states is large or infinite, and many states will not be seen more than once, rendering this bonus
ineffective since all states will be rewarded by the same amount. This has motivated alternative
approaches using function approximation. The methods below have proven successful on sparse
reward singleton MDPs (RND) and/or sparse reward CMDPs (RIDE, AGAC, NovelD and E3B).

Random Network Distillation (RND) (Burda et al., 2019) randomly initializes a neural network
f̄ : S ! Rk, and then trains a second neural network f with the same architecture to predict the
outputs of f̄ on states encountered by the agent. The exploration bonus associated with a given state
s is given by the MSE:

bRND(st) = kf(st)� f̄(st)k22 (2)
The intuition is that for states similar to ones previously encountered by the agent, the error will be
low, whereas it will be high for very different states. RND has performed well on hard singleton
MDPs and is a commonly used component of other exploration algorithms.

Novelty Difference (NovelD) (Zhang et al., 2021b) uses the difference between RND bonuses at
two consecutive time steps, regulated by an episodic count-based bonus. Specifically, its bonus is:

bNovelD(st, a, st+1) =
h
bRND(st+1)� c · bRND(st)

i

+
· I[Ne(st+1) = 1] (3)

Here bRND represents the RND bonus defined above, and Ne(s) represents the number of times s
has been encountered within the current episode. The first term is a global novelty bonus, which
measures novelty with respect to cross-episode experience, whereas the second term is an episodic

novelty bonus, which measures novelty with respect to experience within the current episode only.

Adversarially Guided Actor-Critic (AGAC) (Flet-Berliac et al., 2021) also combines global and
episodic novelty bonuses. Its bonus is defined by:

bAGAC(st) = DKL(⇡(·|st)k⇡adv(·|st)) + �
1p

Ne(st)
(4)

where ⇡adv is a policy trained to mimic the behavior policy ⇡ (usually with a smaller learning rate).
The motivation is that this will encourage the policy to adopt different behaviors as it tries to remain
different from the adversary. The second term is an episodic bonus based on Ne(s), the number of
times the state s has been encountered within the current episode.

Rewarding Impact-Driven Exploration (RIDE) (Raileanu & Rocktäschel, 2020) uses an episodic
novelty bonus which is the product of two terms: a count-based reward and the difference between
two consecutive state embeddings:

bRIDE(st) =
1p

Ne(st)
k�(st+1)� �(st)k2 (5)

Here the � embedding is learned using a combination of inverse and forward dynamics models. The
motivation for the second term in the bonus is to reward the agent for taking actions which cause
significant changes in the environment. RIDE does not use a global novelty bonus.

Exploration via Elliptical Episodic Bonuses (E3B) (Henaff et al., 2022) also uses an episodic
novelty bonus only, and is motivated by the following observation: while the count-based episodic
bonuses used in NovelD, RIDE and AGAC are essential for good performance, they do not scale to
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complex environments where a given state is unlikely to be seen more than once within an episode.
E3B uses a feature extractor � learned using an inverse dynamics model, and defines the episodic
bonus as follows:

bE3B(st) = �(st)
>C�1

t�1�(st), Ct�1 =
t�1X

i=t0

�(si)�(si)
> + �I (6)

Here t0 denotes the start of the current episode. This can be seen as a generalization of an episodic
count-based bonus to continuous state spaces.

3 WHEN ARE EPISODIC AND GLOBAL NOVELTY BONUSES USEFUL?

Although RIDE, NovelD, AGAC and E3B all use different combinations of episodic and global
novelty bonuses, their use in CMDPs has been largely heuristic. The RIDE and NovelD papers
simply state that the episodic bonus is included to prevent the agent from going back and forth
between a sequence of states within the same episode. Furthermore, the global novelty bonuses are
justified using the singleton MDP case, but it is unclear to what extent these justifications carry over
to the CMDP case. Therefore, a closer investigation of when episodic and global novelty bonuses
are useful in CMDPs is required. Details for all experiments in this section are in Appendix D.

3.1 ADVANTAGES OF EPISODIC BONUSES

Figure 1: Two different contexts of the
MultiRoom-N6-Lava environment. Leg-
end: @ : agent, < : start, > : goal, } : lava

We begin by providing an example of CMDPs
where global novelty bonuses fail and episodic
bonuses succeed. Consider the procedurally-
generated MiniHack environment shown in Figure
1. Here, each episode corresponds to a different
map where the agent must navigate from the start-
ing location to the goal. The agent only receives
reward if it reaches the goal, and the episode ter-
minates if it touches the walls which are made of
lava. Because of this, random exploration has a
very small chance of reaching the goal before the
episode ends, and exploration bonuses are needed.

We ask the question: are global or episodic nov-
elty bonuses more appropriate here? For simplic-
ity, we consider bonuses based on counts of (x, y)
locations, which are commonly used in prior work
(Flet-Berliac et al., 2021; Samvelyan et al., 2021;
Zhang et al., 2021b) to avoid the issue of each state
being unique:

bglobal(s) =
1p

N( (s))
, bepisodic(s) = I[Ne( (s)) = 1]1 (7)

Here N represents counts over all the agent’s experience, and Ne represents counts only within the
current episode, while  is a feature extractor which extracts the (x, y) coordinates of the agent from
the state. In general, methods which do not require handcrafted features are preferable, and we focus
on them in Section 4. However, this simple bonus facilitates interpretability, which is the focus of
this section.

Using the global novelty bonus encourages the agent to learn a sequence of policies which, together,
cover all the (x, y) locations. This is appropriate when the map is the same across all episodes:
eventually, one of the policies will cover the (x, y) location corresponding to the goal and the agent
will receive reward. However, this is not appropriate in this CMDP setting where the environment

1We also tried 1p
Ne(s)

for the episodic bonus, but it didn’t work as well.
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changes each episode. To see this, note since the goal location changes along with the rest of the
map each episode, it can find itself in a region whose global bonus has already been depleted. The
more uniform the goal sampling is, the less likely it is the global bonus will be useful.

In contrast, the episodic bonus encourages the agent to visit as many (x, y) locations as possible
within each episode. Since each episode corresponds to its own map, a well-optimized policy will
thus have a high chance of visiting a region close to the goal, which in turn will increase the chance
of reaching the goal and receiving reward.

Figure 2: Mean performance for global and
episodic count-based exploration bonuses with
different numbers of contexts (i.e. maps). Shaded
region indicates standard deviation over 5 seeds.

To verify this argument, we train agents us-
ing the global and episodic bonuses in equa-
tion 7 over different numbers of contexts |C| on
the MiniHack-MultiRoom-N6-Lava en-
vironment shown in Figure 1. The number
of contexts represents the number of distinct
maps, and one of them is chosen at random at
the start of each episode. Results are shown
in Figure 2. The agent using the global bonus
obtains perfect performance for the singleton
MDP setting where |C| = 1, but performance
steadily degrades as the number of contexts in-
creases. In contrast, when using the episodic
bonus, performance remains high as the num-
ber of contexts increases. We found that per-
formance remains high (0.86± 0.1) even when
|C| = 1 (no two maps are repeated during
training).

Global bonuses

Episodic bonus

Figure 3: Habitat exploration with |C| = 1000.

We provide further evidence for this ar-
gument with experiments on Habitat, a
photorealistic simulator of indoor environ-
ments. Habitat is conceptually similar to
the MiniHack-MultiRoom environment in
the sense that at each episode, the agent
finds itself in a different indoor space con-
sisting of connected rooms. However, the
maps in Habitat are considerably more com-
plex and the observations are pixel-based.
Here we compare global and episodic bonuses
based on function approximation, since counts
are not meaningful with high-dimensional im-
ages. We use the reward-free exploration setup described in (Henaff et al., 2022). Results are shown
in Figure 3. We see that, similarly to MiniHack-MultiRoom, the global bonuses (ICM and RND)
perform poorly whereas the episodic bonus (E3B) performs well. See Appendix D for details.

3.2 ADVANTAGES OF GLOBAL BONUSES

….

…
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…
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…
.

…
.
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T steps

M corridors

start

….

Figure 4: Simple example
where episodic bonus fails.

Does this mean that we should always prefer an episodic bonus to a
global one? Unfortunately, the answer is not so clear-cut. We now
provide an example where the episodic bonus fails but the global
bonus succeeds. Consider a singleton MDP with M corridors which
can be crossed in T steps, with a single one containing reward at the
end (shown in Figure 4). If the episode length is T , then any policy
which goes to the end of any of the M corridors will get equivalent
episodic bonus, and hence the chance of success will be 1/M . On
the other hand, a global bonus will solve the task: after visiting one
of the corridors, the global bonus there will eventually become de-
pleted and the agent will move on to another one, eventually visiting
the corridor with the reward.
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We illustrate this argument using a singleton version of the MiniHack-Corridors-R5 envi-
ronment (shown in Figure 5a), where the agent must explore different corridors to find its way to
the exit. This is similar to the example in Figure 4 in the sense that the agent will likely need to
explore multiple dead ends before finding the goal. Figure 5b shows results for agents trained with
the episodic and global bonus. In contrast to the previous example, but consistent with our argument
above, the global bonus succeeds across all seeds whereas the episodic bonus produces inconsistent
performance across seeds, leading to poor performance overall.

(a) (b)

Figure 5: a) Example map for MiniHack-Corridors-R5 enviroment. @ indicates agent, #
corridors connecting rooms, < start location and > goal. b) Performance of agents trained with the
global bonus and the episodic bonus on a singleton version of the environment. Error bars represent
the standard deviation across 5 random seeds.

Are global bonuses only useful in the special case of singleton MDPs? We next show that this is
not the case, and that global bonuses can also be useful in general CMDPs with large |C|, provided
they exhibit certain shared structures across contexts. We consider the MiniHack-KeyRoom-S10
environment, illustrated in Figure 6a. In this environment, the agent must pick up a key and use it
to open a door to a small room and reach the exit. Here different contexts correspond to different
placements of the agent, key, room, door and exit. A property of this environment is that when the
agent visits certain states along the optimal trajectory, it receives messages which are common across
all contexts. For example, whenever the agent moves to the key location in any context, it receives
the same message “You see here a key named The Master Key of Thievery”. Similarly, when picking
up the key, it receives the same message, “g - a key named The Master Key of Thievery.” Here, we
define the  feature extractor in equation 7 to extract the message rather than the (x, y) coordinates.
Results in Figure 6b show that both the global and episodic bonuses work well for |C| = 1. This
can be explained by the fact that regardless of the context, a policy which activates both of these
messages aligns with the optimal policy. A global bonus will encourage the agent to explore diverse
messages throughout training, eventually activating the two messages above which bring it close to
the optimal policy. An episodic bonus will encourage the agent to activate diverse messages within
each episode, which in this case similarly brings it close to the optimal policy.

3.3 COMBINING GLOBAL AND EPISODIC BONUSES

Taken together, the above examples suggest that global and episodic bonuses have complementary
strengths and weaknesses, and that their effectiveness depends on the amount of shared structure
among different contexts in the CMDP. At one end of the spectrum, singleton MDPs have complete
sharing of structure among contexts (since they are all identical), and global episodic bonuses are
best suited. At the other end of the spectrum, CMDPs such as the MultiRoom environment share
little structure between contexts and episodic bonuses are preferred. The KeyRoom environment
sits somewhere in between, where contexts are different but there is nevertheless shared structure
between them, and both types of bonus are effective.

This raises the question: is there a bonus which works well across all of these different settings? We
hypothesize that multiplying the episodic and global bonuses together would be more effective than
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(a) (b)

Figure 6: a) Two example maps for MiniHack-KeyRoom-S10 enviroment. @ indicates agent,
( key, + door, < start location and > goal. b) Performance of agents trained with the global

bonus and the episodic bonus. Error bars represent the standard deviation across 5 random seeds.

either of them alone, and would work well across a wide range of CMDPs with differing amounts
of common structure across episodes. The resulting combined bonus is given by:

bcombined(st) = I[Ne( (st)) = 1] · 1p
N( (st))

(8)

This is motivated by the following observations. First, let us consider the MDP in Fig-
ure 4: note that following any of the corridors will maximize the episodic bonus by pro-
viding an episodic bonus of 1 at each step. The total combined bonus in equation 8
is then equal to the global bonus, and optimizing the global bonus causes the agent to
visit each of the corridors until it reaches the one with the reward, solving the MDP.

Figure 7: Performance of combined bonus. Er-
ror bars indicate standard deviation over 5 seeds.

Now let us consider the MultiRoom environ-
ment. If the agent is initialized roughly uniformly
throughout the map, the global bonus will de-
cay roughly uniformly across regions over time.
This means that the bonus in equation 8 will be
roughly equal to the episodic bonus (scaled by a
constant), which we know is effective. Finally,
as noted previously, in KeyRoom-S10 both the
episodic and global bonuses will assign high nov-
elty to messages associated with picking up the
key, which aligns with the optimal policy, sug-
gesting that their product will also be effective.

Empirical results for all three environments are
shown in Figure 7 (we use the same  feature ex-
tractor as in previous experiments for each envi-
ronment). We see that the combined bonus obtains good performance on all three environments,
which suggests that it retains the advantages of both the global and episodic bonus.

4 DESIGN CHOICES FOR EPISODIC AND GLOBAL NOVELTY BONUSES

The previous section has shown that global and episodic bonuses succeed in different types of
CMDPs, and that combining them via multiplication can yield a bonus which is more robustly
effective. However, in order to facilitate interpretability we used count-based bonuses, which do
not scale to complex, high-dimensional environments unless task-specific prior knowledge is used
(e.g. knowing to extract (x, y) positions or messages). In this section, we investigate whether our
insights still hold when using more general bonuses which do not assume such prior knowledge. We
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do this through a study of global and episodic bonuses based on function approximation across a
wide range of tasks from the MiniHack suite (Samvelyan et al., 2021).

4.1 EXPERIMENTAL SETUP

As our experimental testbed, we use 18 procedurally-generated tasks from the MiniHack suite
(Samvelyan et al., 2021) used in prior work (Henaff et al., 2022). The MiniHack tasks are de-
signed to precisely evaluate different capabilities of a given agent, such as navigation, planning or
the ability to use objects. Furthermore, many of the MiniHack tasks involve sparse rewards (which
are only given on completion of the task) and complex observations which include irrelevant infor-
mation. For evaluation, we follow the protocol suggested by Agarwal et al. (2021) and report the
mean, median and interquartile mean (IQM) together with 95% confidence intervals using stratified
bootstrapping. We use 5 random seeds for each of the 18 tasks. Our full experimental details can be
found in Appendix D.

4.2 RESULTS

We now investigate combining different global novelty bonuses from AGAC, RND and NovelD
with the elliptical episodic bonus. We use E3B’s elliptical bonus as our episodic bonus instead
of a count-based one, since prior work has shown that count-based bonuses either fail in complex
environments, or are highly dependent on task-specific feature extractors (Henaff et al., 2022). In
contrast, the elliptical bonus has been shown to work well across a wide range of environments
without requiring task-specific prior knowledge.

Two questions we aim to answer are: i) which global bonus (if any) gives the most improvements
when combined with E3B’s elliptical bonus, and ii) which strategy is best for combining the two
bonuses. To answer these, we consider the following algorithms:

bE3B⇥AGAC(st) =
h
�(st)

>C�1
t�1�(st)

i
·DKL(⇡(·|st)k⇡adv(·|st))

bE3B⇥RND(st) =
h
�(st)

>C�1
t�1�(st)

i
· kf(st)� f̄(st)k22

bE3B⇥NovelD(st) =
h
�(st)

>C�1
t�1�(st)

i
·
h
kf(st+1)� f̄(st+1)k22 � ckf(st)� f̄(st)k22

i

+

bE3B+AGAC(st) =
h
�(st)

>C�1
t�1�(st)

i
+ �DKL(⇡(·|st)k⇡adv(·|st))

bE3B+RND(st) =
h
�(st)

>C�1
t�1�(st)

i
+ �kf(st)� f̄(st)k22

bE3B+NovelD(st) =
h
�(st)

>C�1
t�1�(st)

i
+ �

h
kf(st+1)� f̄(st+1)k22 � ckf(st)� f̄(st)k22

i

+

Here � is learned online using an inverse dynamics model. The algorithms above include all possible
combinations of global bonuses (second term) with the elliptical bonus (first term), and combining
the two by multiplication or by taking a weighted sum. For the algorithms which take a weighted
sum, we tuned the � term on a subset of tasks, and report the best value on all 18 tasks. We compare
to E3B as a baseline since it was previously shown to outperform other methods such as IMPALA,
RND, ICM, RIDE and NovelD (Henaff et al., 2022).

Results are shown in Figure 8. First, we see that additively combining any of the global bonuses
with the elliptical episodic bonus does not provide a meaningful improvement over E3B for any
metric. However, multiplicatively combining E3B with either RND or NovelD bonuses produces a
large and statistically significant improvement in both median and IQM performance over E3B (the
more robust metrics according to Agarwal et al. (2021)), as well as a modest improvement in mean
performance. This establishes a new state-of-the-art on MiniHack.

One explanation for the superior performance of the multiplicative combination over the additive
one is that the scale of the global bonus decreases significantly throughout training whereas the scale
of the episodic bonus does not, since it is reset each episode. Because of this, if we combine the
two bonuses via addition, the combined bonus will become increasingly dominated by the episodic
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Figure 8: Aggregate performance on 18 MiniHack tasks. Bars indicate 95% confidence intervals
computed using stratified bootstrapping.

bonus. However, if we are combining the two multiplicatively, the global bonus will still have an
effect regardless of its scale. See Appendix E for additional results and discussion.

5 RELATED WORK

Exploration in singleton MDPs is a well-studied problem in RL, we give a more detailed overview
of existing methods in Appendix C. However, these methods are designed for the singleton MDP
setting and use some form of global bonus which, as we show in Section 3, is not always appropriate
to the more general CMDP setting we consider here. More recently, RIDE (Raileanu & Rocktäschel,
2020), AGAC (Flet-Berliac et al., 2021) and NovelD (Zhang et al., 2021b) have begun to tackle ex-
ploration in procedurally-generated MDPs, a type of CMDP commonly used in empirical research.
These methods use combinations of global bonuses designed for singleton MDPs and count-based
episodic bonuses. The recent work of Henaff et al. (2022) highlighted the practical importance of
these episodic bonuses, as well as the weaknesses of count-based episodic bonuses, and proposed
the elliptical episodic bonus as a solution, but did not include a global bonus. Compared to these
prior works, our work makes two contributions. First, whereas previous works justified using global
bonuses by appealing to intuitions from singleton MDPs, and provided little justification for using
episodic bonuses aside from their empirical performance, we provide deeper justifications for the
use of each bonus in CMDPs. In particular, we examine in detail the behavior of global and episodic
count-based bonuses across different representative settings, and shed light on how each bonus can
drive exploration depending on the amount of shared structure across episodes. Second, whereas
previous works have investigated different combinations of bonuses in isolation, there has not been
a systematic comparison of bonuses and combination strategies, which we do in Section 4. This
investigation results in a new algorithm which outperforms the previously proposed ones. Further-
more, our algorithm’s multiplicative combination of global and episodic bonuses is well justified
based on our previous investigations in Section 3.

6 CONCLUSION

In this work, we have taken steps towards better understanding the roles of global and episodic
exploration bonuses in CMDPs. First, we study illustrative examples in which count-based versions
of each bonus succeed and fail, showing that the two bonuses have complementary strengths and
weaknesses. In particular, our experiments suggest that the effectiveness of each bonus depends on
the amount of structure which is shared across episodes in the CMDP, and that episodic bonuses
are more effective when there is little shared structure, while global bonuses benefit from more
shared structure. We also show that combining global and episodic bonuses multiplicatively leads
to increased robustness across different settings. Motivated by these observations, we perform an
in-depth empirical study of approaches which combine global and episodic bonuses in the function
approximation setting. This results in a new algorithm that sets a new state-of-the-art across 18
tasks from the MiniHack suite. Future research directions include more precisely understanding and
characterizing the settings where each bonus will succeed, which may lead to improved algorithms
which can adapt automatically to the setting at hand.
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