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ABSTRACT

In this paper we introduce BO-Muse, a new approach to human-AI teaming for
the optimisation of expensive blackbox functions. Inspired by the intrinsic dif-
ficulty of extracting expert knowledge and distilling it back into AI models and
by observations of human behaviour in real-world experimental design, our algo-
rithm lets the human expert take the lead in the experimental process. The human
expert can use their domain expertise to its full potential, while the AI plays the
role of a muse, injecting novelty and searching for areas of weakness to break the
human out of over-exploitation induced by cognitive entrenchment. With mild as-
sumptions, we show that our algorithm converges sub-linearly, at a rate faster than
the AI or human alone. We validate our algorithm using synthetic data and with
human experts performing real-world experiments.

1 INTRODUCTION

Bayesian Optimisation (BO) (Shahriari et al., 2015) is a popular sample-efficient optimisation tech-
nique to solve problems where the objective is expensive. It has been applied successfully in diverse
areas (Greenhill et al., 2020) including material discovery (Li et al., 2017), alloy design (Barnett
et al., 2020) and molecular design (Gómez-Bombarelli et al., 2018). However, standard BO typi-
cally operates tabula rasa, building its model of the objective from minimal priors that do not include
domain-specific detail. While there has been some progress made incorporating domain-specific
knowledge to accelerate BO (Li et al., 2018; Hvarfner et al., 2022) or transfer learnings from pre-
vious experiments (Shilton et al., 2017), it remains the case that there is a significant corpus of
knowledge and expertise that could potentially accelerate BO even further but which remain largely
untapped due to the inherent complexities involved in knowledge extraction and exploitation. In
particular, this often arises from the fact that experts tend to organise their knowledge in complex
schema containing concepts, attributes and relationships (Rousseau, 2001), making the elicitation of
relevant expert knowledge, both quantitative and qualitative, a difficult task.
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Figure 1: Bo-Muse Workflow.

Experimental design underpins the discovery of
new materials, processes and products. How-
ever, experiments are costly, the target func-
tion is unknown and the search space unclear.
To be sample-efficient, the least number of ex-
periments must be performed. Traditionally
experimental design is guided by (human) ex-
perts who uses their domain expertise and intu-
ition to formulate an experimental design, test
it, and iterate based on observations. Living be-
ings from fungi (Watkinson et al., 2005) to ants
(Pratt & Sumpter, 2006) and humans (Daw et al., 2006; Cohen et al., 2007) face a dilemma when
they make these decisions: exploit the information they have, or explore to gather new informa-
tion. How humans balance this dilemma has been studied in Daw et al. (2006)– examining human
choices in a n-arm bandit problem, they showed that humans were highly skewed towards exploita-
tion. Moreover, when the task requires specialised experts, cognitive entrenchment is heightened and
the balance between expertise and flexibility swings further towards remaining in known paradigms.
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To break out of this, dynamic environments of engagement are needed to force experts to incorpo-
rate new points of view (Dane, 2010). For such lateral thinking to catalyse creativity, Beaney (2005)
has further confirmed that random stimuli are crucial. For example, using random stimuli to boost
creativity has been attempted in the context of games (Yannakakis et al., 2014). In Sentient Sketch-
book, a machine creates sketches that the human can refine, and sketches are readily created through
machine learning models trained on ample data. Other approaches use machine representations to
learn models of human knowledge, narrowing down options for the human to consider. Recently,
Vasylenko et al. (2021) constructs a variational auto-encoder from underlying patterns of chemistry
based on structure/composition and then a human generated hypothesis guides possible solutions.
An entirely different approach refines a target function by allowing machine learning to discover
relations between mathematical objects, and guides humans to make new conjectures (Davies et al.,
2021). Note, however, that there is still a requirement for large datasets to formulate representations
of mathematical objects, which is antithetical to sample-efficiency as typically in experimental de-
sign we have a budget on the number of experiments, data from past designs is lean, and formulation
of hypothesis is difficult in this lean data space.

The use of BO for experimental design overcomes the problems of over-exploitation and cognitive
entrenchment and provides mathematically rigorous guarantees of convergence to the optimal de-
sign. However, as noted previously, this often means that domain-specific knowledge and expertise
is lost. In this paper, motivated by our observations, rather than attempting to enrich AI models
using expert knowledge to accelerate BO, we propose the BO-Muse algorithm that lets the human
expert take the lead in experimental design with the aid of an AI “muse” whose job is to augment
the expert’s intuition through AI suggestions. Thus the AI’s role is to provide dynamism to break
an expert’s cognitive entrenchment and go beyond the state-of-the-art in new problems, while the
expert’s role is to harness their vast knowledge and extensive experience to produce state-of-the-art
designs. Combining these roles in a formal framework is the main contribution of this paper.

BO-Muse is a formal framework that inserts BO into the expert’s workflow (see Figure 1), allowing
adjustment of the AI exploit/explore strategy in response to the human expert suggestions. This
process results in a batch of suggestions from the human expert and the AI at each iteration. This
batch of designs is experimentally evaluated and shared with the human and the AI. The AI model is
updated and the process iterated until the target is reached. We analyse the sample-efficiency of BO-
Muse and provide a sub-linear regret bound. We validate BO-Muse using optimisation benchmarks
and teaming with experts to perform complex real-world tasks. Our contributions are:

• Design of a framework (BO-Muse) for a human expert and an AI to work in concert to
accelerate experimental design, taking advantage of the human’s deeper insight into the
problem and the AI’s advantage in using rigorous models to complement the expert to
achieve sample-efficiency;

• Design of an algorithm that compensates for the human tendency to be overly exploitative
by appropriately boosting the AI exploration;

• Provide a sub-linear regret bound for BO-Muse to demonstrate the accelerated convergence
due to the human-AI teaming in the optimisation process; and

• Provide experimental validation both using optimisation benchmark functions and with
human experts to perform complex real-world tasks.

2 BACKGROUND

2.1 HUMAN MACHINE PARTNERSHIPS

Mixed initiative creative interfaces propose a tight coupling of human and machine to foster creativ-
ity. Thus far, however, research has been largely restricted to game design (Deterding et al., 2017),
where the authors identified open challenges including “what kinds of human-AI co-creativity can
we envision across and beyond creative practice?”. Our work is the first example of the use such a
paradigm to accelerate experimental design. Also of importance, though beyond the scope of this
study, is the design of interfaces for such systems (Rezwana & Maher, 2022) and how the differing
ways human and machine express confidence affects performance (Steyvers et al., 2022).
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2.2 BAYESIAN OPTIMISATION

Bayesian Optimisation (BO, (Brochu et al., 2010)) is an optimisation method for solving the prob-
lems of the form: x⋆ = argmaxx∈Xf

⋆(x) in the least possible number of iterations when f⋆ is an
expensive blackbox function. Bayesian optimisation models f⋆ as a draw from a Gaussian Process
GP(0,K) with prior covariance (kernel) K (Rasmussen, 2006) and, at each iteration t, recommends
the next function evaluation point xt by optimising a (cheap) acquisition function at : X → R based
on the posterior mean and variance given a dataset of observations Dt−1 = {(xi, yi) : i ∈ Nt−1}:

µt−1 (x) = yT
t−1

(
Kt−1 + σ2I

)−1
kt−1 (x)

σ2
t−1 (x) = Kt−1 (x,x)− kT

t−1 (x)
(
Kt−1 + σ2I

)−1
kt−1 (x)

where yt−1 = [yi]i∈Nt−1
is the set of observed outputs, Kt−1 = [K(xi,xj)]i,j∈Nt−1

and kt−1(x) =
[K(xi,x)]i∈Nt−1

. Experiments evaluate yt = f⋆(xt) + νt, where νt is noise, the GP model is
updated to include the new observation, and the process repeats either until a convergence criteria is
met or a fixed budget of evaluations is exhausted. Common acquisition functions include Expected
Improvement (EI, (Jones et al., 1998)) and GP-UCB (Srinivas et al., 2012). GP-UCB uses:

at (x) = µt−1 (x) + β
1/2
t σt−1 (x) (1)

Here βt is a variable controlling the trade-off between exploitation of known minima (if βt is small)
and exploration (if βt is large). The optimisation performance depends on βt. To achieve sub-linear
convergence Chowdhury & Gopalan (2017) recommend βt = χt, where:

χt =
(

Σ√
σ

√
2 ln

(
1
δ

)
+ 1 + γt + ∥f⋆∥HK

)2
(2)

and γt is the maximum information gain (maximum mutual information between f⋆ and any t
observations (Srinivas et al., 2012)). Typically it is assumed that f⋆ ∼ GP(0,K) or f⋆ ∈ HK ,
where HK is the reproducing kernel Hilbert space of the kernel K (Srinivas et al., 2012). Otherwise
the problem is mis-specified. One approach to mis-specified BO is enlarged confidence GP-UCB
(EC-GP-UCB, (Bogunovic & Krause, 2021)). In EC-GP-UCB, the function closest to the objective
f⋆ is denoted f# = argminf∈HK

∥f⋆ − f∥∞, and the acquisition function takes the form:

at (x) = µt−1 (x) +
(
β
1/2
t + ϵ

√
t

σ

)
σt−1 (x) (3)

where ϵ = ∥f#−f⋆∥∞ is the mis-specification gap. The additional term in the acquisition function
is required to ensure sub-linear convergence in this case.

3 FRAMEWORK

We consider the following optimisation problem x⋆ = argmaxx∈Xf
⋆ (x), where f⋆ : X → R is

expensive and evaluation is noisy, with results y = f⋆(x)+ν, where ν is Σ-sub-Gaussian noise. We
optimise f⋆ as a series of experimental batches, indexed by s = 1, 2, . . .. For each batch a human
expert suggests x̂s for evaluation and an AI suggests x̆s (hatted variables relate to the human expert,
breved variables to the AI). Both experiments are carried out, the human expert and the AI update
their models based on the results, and the process is repeated for a total of S batches.

We do not know precisely how the human expert will model f⋆, but the AI maintains a GP model
with kernel (prior covariance) K̆s and we assume the human expert does the same with some un-
known kernel K̂s (we discuss this in detail in section 3.1), where K̆s and K̂s may be updated after
each batch. The posterior means and variances given dataset Ds = {(x̂i, ŷi), (x̆i, y̆i) : i ≤ s} are:

µ̂s (x) = yT
s (K̂s + σ2I)−1k̂s (x) , σ̂2

s (x) = K̂s (x,x)− k̂T
s (x) (K̂s + σ2I)−1k̂s (x)

µ̆s (x) = yT
s (K̆s + σ2I)−1k̆s (x) , σ̆2

s (x) = K̆s (x,x)− k̆T
s (x) (K̆s + σ2I)−1k̆s (x)

for the human and AI, respectively. We assume f⋆ ∈ H̆s = HK̆s
lies in the RKHS of the AI’s kernel

K̆s. We do not make this assumption for the human expert, making the problem mis-specified from
their perspective. Hence borrowing from (Bogunovic & Krause, 2021), we assume that for batch s

the human by default attempts to maximise the closest function to f⋆ in Ĥs:

f̂#
s = argminf∈Ĥs:∥f∥Ĥs

≤B̂ ∥f − f⋆∥∞ (here Ĥs = HK̂s
)
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We further assume that the gap between f⋆ and f̂#
s is bounded as ∥f̂#

i,s − f⋆∥∞ ≤ ϵ̂s, and that the
human is able to learn (in effect, update their kernel) to “close the gap”, so lim

s→∞
ϵ̂s → 0.

The AI generates recommendations using GP-UCB. Motivated by (Borji & Itti, 2013), we assume
the human in effect generates recommendations using EC-GP-UCB (Bogunovic & Krause, 2021):

x̂s = argminx∈Xâs (x) = µ̂s−1 (x) + (β̂
1/2
s + ϵ̂s

σ

√
2s)σ̂s−1 (x)

x̆s = argminx∈Xăs (x) = µ̆s−1 (x) + β̆
1/2
s σ̆s−1 (x)

(4)

The form of âs captures the broad behaviour of human recommendation selection, balancing ex-
ploitation of known good regions, which corresponds to β̂s → 0 (e.g. “based on my model, this
experiment should yield good results”), and exploration of areas of uncertainty, which corresponds
to β̂s → ∞ (e.g. “explore here, I’m curious”). We do not presume to know the precise trade-off
β̂s used by the human but, based on (Borji & Itti, 2013; Dane, 2010), it appears probable that the
human will pursue a conservative policy, so β̂s may be small. We therefore use the AI trade-off β̆s,
which we control, to compensate for the potential conservative tendencies of the expert.

It is convenient to specify the exploration/exploitation trade-off parameters β̂s and β̆s relative to (2)
(Chowdhury & Gopalan, 2017; Bogunovic & Krause, 2021). Without loss of generality we require
that β̂s ∈ (ζ̂s↓χ̂s, ζ̂s↑χ̂s) and β̆s = ζ̆sχ̆s, where 0 ≤ ζ̂s↓ ≤ 1 ≤ ζ̂s↑ ≤ ∞, ζ̆s ≥ 1 and (2):

χ̂s =
(

Σ√
σ

√
2 ln (1/δ) + 1 + γ̂s + ∥f̂#

s ∥Ĥs

)2
, χ̆s =

(
Σ√
σ

√
2 ln (1/δ) + 1 + γ̆s + ∥f⋆∥H̆s

)2 (5)

where γ̂s and γ̆s are, respectively, the max information-gain for human expert and the AI. We show
in section 3.3 that the this suffices to ensure sublinear convergence for any human expert selections,
and moreover that the convergence rate can be improved beyond what can be achieved by standard
GP-UCB if the human operates as described here.

3.1 THE HUMAN MODEL

We posit that the human expert will maintain, explicitly or implicitly, an evolving weight-space
model (we do not presume to know the details of this, only that it exists, explicitly or otherwise):

f̂s (x) = ĝs (p̂s (x))

of f⋆, where ĝs is in some sense “simple” and p̂s : Rn → Rm̂s represents the human’s understand-
ing of important features. This fits into the above scheme if we let the form of ĝs dictate the kernel
K̂s. For example if we know that ĝs is linear (so f̂s(x) = ŵT

s p̂s(x) in weight-space) then we can
say that the human is, in effect, using a GP model with a linear-derived model:

K̂s (x,x
′) = p̂T

s (x) p̂s (x
′)

Similarly if the human is using a model ĝi,s captured by a dth-order approximation model f̂s(x) =
ŵT

s [p̂
⊗q
s (x)]q=0,1,...,d then we can assume a GP with a polynomial-derived kernel:

K̂s (x,x
′) =

(
1 + p̂T

s (x) p̂s (x
′)
)d

As discussed previously we do not assume that the human expert’s evolving model suffices to com-
pletely replicate f⋆, particularly in the earlier stages of the algorithm, but we do assume that the
human expert is capable of learning from observations of f⋆ to refine their model, closing the gap
ϵ̂2s between their model and f⋆ so that lims→∞ ϵ̂2s = 0.

With regard to max information gain, we can reasonably assume that the human expert (the expertise
is important) starts with a better understanding of f⋆ than the AI - the underlying physics of the
system, the behaviour one might expect in similar experiments, etc. So the human expert may begin
with an incomplete but informative set of features that relate to their knowledge of the system or
similar systems similar, or an understanding of the covariance structure of design space, so:

• The prior variance of the human expert’s GP will vary between a zero-knowledge base level
in regions that are a mystery to the expert, and much lower in regions where the expert has
a good understanding from past experience, understanding of underlying physics etc.
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• The prior covariance of the expert’s GP (the expert’s kernel) will have a structure informed
by the expert’s understanding and knowledge, for example, of the “region A will behave
like region B because they have feature/attribute C in common” type, so an experiment in
region A will reduce the human expert’s posterior variance both in regions.

By comparison, the AI will typically start with a generic kernel prior like an SE kernel, Matern
kernel or similar. Such priors are “flat” over the design space, with no areas of lower prior variance
and no “region A will behave like B” behaviour, so an experiment will only reduce the AI’s local
variance.1 Thus as the algorithm progresses the human expert’s variance will both start from a lower
prior and decrease more quickly than the AI’s. We know that max information gain is bounded as the
sum of the logs of the pre-experiment posterior variance (Srinivas et al., 2012, Lemma 5.3), so we
may reasonably assume that the expert’s max information gain will be lower than the AI’s. Finally,
we argue that, as the human expert’s kernel is built on relatively few, highly informative features,
the expert’s RKHS norm ∥f#

s ∥K̂s
= ∥ŵ∥2 will be less than the AI’s norm ∥f⋆∥K̆s

= ∥w̆∥2.

3.2 THE BO-MUSE ALGORITHM

The BO-Muse algorithm is shown in algorithm 1, where f⋆ is optimised using a sequence of batches
s = 1, 2, . . . , S, each containing one human and one AI recommendation, respectively x̂s and x̆s.
The AI recommendation minimises the GP-UCB acquisition function on the AI’s GP posterior, with
the exploration/exploitation trade-off β̆s given (see section 3.4). The human recommendation is
assumed to be implicitly selected to minimise the EC-GP-UCB acquisition function (3), where the
exploitation/exploration trade-off β̂s is unknown but assumed to lie in the range β̂s ∈ (ζ̂s↓χ̂s, ζ̂s↑χ̂s),
and the gap ϵ̂s is unknown but assume to converge to 0 at the rate to be specified in theorem 1).

We use two approximations in our definition of β̆s. Following the standard practice, we approximate
the max information gain γ̆s as

∑
(x,...)∈Ds−1

ln(1 + σ−2σ̆2
i (x)); and we approximate the RKHS

norm bound B̆ = ∥f⋆∥Hs as ∥µ̆s∥Hs , which is updates using max to ensure it is non-decreasing
with s (this will tend to over-estimate the norm, but this should not affect the algorithm’s rate of
convergence). For simplicity we assume that σ = Σ (the model parameter matches the noise).

Algorithm 1 BO-Muse

Input: Initial observations D0 = {(x1, y1) , (x2, y2) , . . .}, AI prior GP(0,K). Let B̆ = 1.
for s ∈ 1, 2, . . . , S do

Set β̆s = 7
(√

σ
√
2 ln(1/δ) + 1 +

∑
(x,...)∈Ds−1

ln (1 + σ−2σ̆2
i (x)) + B̆

)2
as per (5), (8).

AI recommends x̆s as x̆s = argmaxx∈Xăs (x) = µ̆s−1 (x) + β̆
1/2
s σ̆s−1 (x).

Human recommends x̂s.
Run experiments to obtain ŷs = f⋆ (x̂s) + ν̂s and y̆s = f⋆ (x̆s) + ν̆s.
Set Ds = Ds−1 ∪ {(x̂s, ŷs) , (x̆s, y̆s)} and update the AI GP posterior.
Set B̆ = max{B̆,yT

s

(
Ks + σ2I

)−1
ys}.

end for

3.3 CONVERGENCE AND REGRET BOUNDS

We now discuss the convergence properties of BO-Muse. Our goal here is twofold: first we show
that BO-Muse converges even in the worst-case where the human operates arbitrarily; and second,
assuming the human behaves according to our assumptions, we analyse how convergence is acceler-
ated. Our approach is based on regret analysis (Srinivas et al., 2012; Chowdhury & Gopalan, 2017;
Bogunovic & Krause, 2021). As experiments arebatched we are concerned with instantaneous regret
per batch, not per experiment. The instantaneous regret for batch s is:

rs = min {f⋆ (x⋆)− f⋆ (x̂s) , f
⋆ (x⋆)− f⋆ (x̆s)}

and the cumulative regret up to and including batch S is RS =
∑S

s=1rs. If RS grows sub-linearly
then the minimum instantaneous regret will converge to 0 as S → ∞.

1We do not consider the possibility of transfer learning of this structure, as this requires the expert to distill
their knowledge in an amenable form which, as noted previously, is highly non-trivial.
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Consider first the worst-case scenario, i.e. an arbitrary, non-expert human. In this case the BO-
Muse algorithm 1 effectively involves the AI using a GP-UCB acquisition function (the constant
scaling factor on β̆s does not change the convergence properties of GP-UCB) to design a sequence
of experiments x̆s, where each experiment costs twice as much as usual to evaluate and yields
two observations, (x̆s, y̆s = f⋆(x̆s) + η̆s) and (x̂s, ŷs = f⋆(x̂s) + η̂s), where x̂s is arbitrary.
Additional observations can only improve the accuracy of the posterior, so using standard methods
(e.g. Chowdhury & Gopalan (2017); Bogunovic & Krause (2021); Srinivas et al. (2012)), we see
that RS = O(B

√
γ̆2S2S+

√
(ln(1/δ) + γ̆2S)γ̆2S2S), which is sub-linear for well-behaved kernels.

Thus we see that the worst-case convergence of BO-Muse is the same, in the big-O sense, as that of
GP-UCB. However this is pessimistic: in reality we assume a human is generating experiments x̂s

using an EC-GP-UCB style trade-off between exploitation and exploration, and moreover that the
human is an expert with an implicit or explicit evolving model of the system that is superior to the
AI’s generic prior. For this case we have the following result:
Theorem 1. Fix δ > 0, θ↓ > 0, θs ∈ [θ↓,∞], S ∈ N+. Assume ζ̂s↓ ∈ (0, 1], ζ̆s = ζ̆ ≥ 1 so:

Mθs

(
exp(χ̂

1/2
s (1− ζ̂

1/2
s↓ )+σs−1↑), exp(χ̆

1/2
s (1− ζ̆1/2)−σs−1↓)

)
≤ 1 (6)

for all s ≤ S, where σs−1↑ = max(σ̂s−1(x
⋆), σ̆s−1(x

⋆)), σs−1↓ = min(σ̂s−1(x
⋆), σ̆s−1(x

⋆)),
Mθ(a, b) = (12 (a

θ + bθ))1/θ is the generalised mean, and χ̂s, χ̆s as per (5). If ϵ̂2s = O(s−
1
2 ) then:

1
SRS ≤ ln

(
M−θ↓

(
exp
(√

Ĉ χ̂S γ̂S

S +O
(
1
S

))
, exp

(√
C̆
(
1
2 (1 + ζ̆1/2)

)2 χ̆S γ̆S

S

)))
(7)

with probability ≥ 1− δ, where Ĉ, C̆ > 0 are constants.

We present the proof of this theorem in the appendix. As discussed previously γ̂S and γ̆S are the
max information gains for the human and AI, respectively; ζ̂s↓ ∈ (0, 1] defines the degree to which
the human is allowed to over-exploit; and ζ̆ defines the degree to which the AI must over-explore to
compensate. The parameters θs constrain the range of ζ̆ for which the theorem is applicable through
the condition (6), and the “mix” between human and AI in the regret bound (7). Assuming the max
information gain for the human model has better convergence properties than the AI model, which
we consider reasonable based on previous discussion, and noting that the power mean Mθ(a, b) will
be dominated by max(a, b) as θ → ∞ and by min(a, b) as θ → −∞, we see that:

• When θs is large the AI trade-off parameter ζ̆ must be large to satisfy (6), corresponding
to a very explorative AI, and the regret bound (7) will be asymptotically superior, being
dominated by the human’s max information gain γ̆S for large S which, as discussed in
section 3.1, may be reasonably expected to be smaller than the AI’s max information gain
due to the human expert’s superior understanding of f⋆.

• When θs is small the AI is less constrained, so the theorem is applicable for more ex-
poitative AIs, but the regret bound (7) will be more strongly influenced by the AI max
information gain and hence asymptotically inferior.

Note that, while larger θs will lead to tighter regret bounds in the asymptotic regime, this bound
will only apply for very explorative AIs, and moreover the factor ( 12 (1 + ζ̆1/2))2 will also be large,
so the regret bound may only be superior for very large S. The “ideal” trade-off is unclear, but
the important observation from this theorem is that the human’s expertise, and subsequent superior
maximum information gain, will improve the regret bound and thus convergence.

3.4 TUNING PARAMETER SELECTION

We now consider the selection of the tuning parameter β̆s to ensure faster convergence than standard
BO alone. The conditions that β̆s must meet are specified by (6). Equivalently, taking the maxi-
mally pessimistic view of human under-exploration (i.e. ζ̂s↓ = 0), we require that exp(θs

√
χ̆s(1 −

ζ̆
1/2
s )σs−1↓) ≤ 2 − exp(θs

√
χ̂sσs−1↑) or, equivalently, ζ̆s ≥

(
1 + ( χ̂s

χ̆s
)1/2

σs−1↑
σs−1↓

1
ϕs

ln
(

1
2−eϕs

))2
,

where2 ϕs = θs
√
χ̂sσs−1↑ ∈ (0, ln 2), and, noting that the right of the inequality is strictly increas-

ing, ϕs = 0 corresponds to ζ̆s = 1 + ( χ̂s

χ̆s
)1/2

σs−1↑
σs−1↓

and ϕs = ln 2 to ζ̆s = ∞.

2We need ϕs > 0 to ensure θs > 0, and note that h(ϕ) = 1
ϕ
ln( 1

2−eϕ
) is increasing and h(ln 2) = ∞.
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Table 1: Synthetic benchmark functions. Analytical forms are provided in the second column and
the last column depicts the high level features used by a simulated human expert.

Functions f⋆(x) High Level Features

Matyas-2D 0.26 ∗ (x2
1 + x2

2)− 0.48 ∗ (x1 ∗ x2)
x′
1 = x2

1, x′
2 = x2

2

x′
3 = x1 ∗ x2

Ackley-4D −ae−b
√

1
d
||x||22 − e

√
1
d

∑
i cos(cxi) + a+ e1

x′
1 = cos(x1), x′

2 = cos(x2)
x′
3 = cos(x3),x′

4 = cos(x4),x′
5 = ||x||2

Levy-6D

sin2(πw1) + s+ (wd − 1)2[1 + sin2(2πwd)] x′
1 = (sinx1)

2,
where s =

∑d−1
i (w1 − 1)2[1 + 10 sin2(πwi + 1)] x′

j+1 = x2
j (sinxj)

2

and wi = 1 + xi−1
4

∀i ∈ N6 ∀j ∈ N6

As discussed in section 3.1, it is reasonable to assume that the max information gains satisfy γ̆s ≥ γ̂s,
and that ∥f#

s ∥K̂s
≤ ∥f⋆∥K̆s

. With these assumptions
√
χ̂s ≤

√
χ̆s. Furthermore we prove in the

Appendix that lims→∞
σs−1↑
σs−1↓

= 1, so we approximate the bound on ζ̆s as ζ̆s ≥ (1+ 1
ϕs

ln( 1
2−eϕs

))2.
Recalling ϕs ∈ (ln 1, ln 2) we finally, somewhat arbitrarily select ϕs = ln 3/2 (the middle of the
range in the log domain), which leads to the following heuristic used in the BO-Muse algorithm:

ζ̆s ≥
(
1 + ln 2

ln 3/2

)2
≈ 7 (8)

4 EXPERIMENTS

We validate the performance of our proposed BO-Muse algorithm in the optimisation of synthetic
benchmark functions, and the real-world tasks involving human experts. In all our experiments,
we have used Squared Exponential (SE) kernel at all levels with associated hyper-parameters tuned
using maximum-likelihood estimation. We measure the sample-efficiency of BO-Muse framework
and other standard baselines in terms of the simple regret (rt): rt = f⋆(x⋆) − maxxt∈Dt

f⋆(xt),
where f⋆(x⋆) is the true global optima and f⋆(xt) is the best solution observed in t iterations.
Experiments were run on an Intel Xeon CPU@ 3.60GHz workstation with 16 GB RAM capacity.

4.1 EXPERIMENTS WITH OPTIMISATION BENCHMARK FUNCTIONS

We have evaluated BO-Muse on synthetic test functions covering a range of dimensions, as detailed
in Table 1. We compare the sample-efficiency of BO-Muse with (i) Generic BO: A standard GP-
UCB based BO algorithm with the exploration-exploitation trade-off factor (β) set as per Srinivas
et al. (2012); (ii) Simulated Human: A simulated human with access to higher level properties
(refer to Section 3.1 and high level features in Table 1) that may help to model the optimisation
function more accurately; and (iii) Simulated Human + PE: A simulated human teamed with an
AI agent using a pure exploration strategy (that is, an AI policy with ζ̆s = ∞). To simulate a
human expert (with high exploitation), we use a standard BO algorithm with small exploration
factor maximising âs(x) = µ̂s(x) + 0.001σ̂s(x). Furthermore, we have ensured to allocate the
same function evaluation budget for all the competing methods.

Figure 2a and 2b shows the simple regret computed for the Ackley-4D and Levy-6D functions
averaged over 10 randomly initialised runs – BO-Muse consistently outperforms all the baselines
for both functions. We believe that the poor performance of Simulated Human + PE is due to
the pure exploration strategy used. Additionally, we have conducted an ablation study by varying
the degrees of exploitation-exploration strategy (β̂s) to simulate covering over-exploitative to over-
explorative experts. Figure 2c shows the result of the ablation study for Matyas-2D function and
we refer to the appendix for the additional results. To further understand the behaviour of BO-Muse
framework with other human acquisition functions, we have also considered an additional function
optimisation experiment to include Expected Improvement acquisition function for human experts.
The experimental details and results of the ablation study are provided in the Appendix.

7



Under review as a conference paper at ICLR 2023

5 10 15 20 25 30 35 40 45
Function Evaluations

12

14

16

18

20

22

24

Si
m

pl
e 

Re
gr

et

Ackley-4D Function
BO-Muse + Human
Generic BO
Simulated Human
Simulated Human + PE

(a)

8 16 24 32 40 48 56 64
Function Evaluations

5

10

15

20

25

30

Si
m

pl
e 

Re
gr

et

Levy6D Function
BO-Muse + Human
Generic BO
Simulated Human
Simulated Human + PE

(b)

3 6 9 12 15 18 21
Function Evaluations

0.0

0.5

1.0

1.5

2.0

2.5

3.0

Si
m

pl
e 

Re
gr

et

Ablation Study - Matyas Function

s = 1

s = 10

s = 100

s = 1000

(c)

Figure 2: Simple regret versus iterations for (a) Ackley-4D (b) Levy-6D functions. Ablation study
with varying degrees of exploitation-exploration parameter (β̂s) is shown in (c).

4.2 REAL-WORLD EXPERIMENTS

We now evaluate the performance of our proposed framework in complex real-world tasks.

4.2.1 CLASSIFICATION TASKS – SUPPORT VECTOR MACHINES AND RANDOM FORESTS

Experimental Set-up. The expert task is to choose hyper-parameters for Support Vector Machine
(SVM) and Random Forest (RF) classifiers operating on real-world Biodeg dataset from UCI repos-
itory (Dua & Graff, 2017). We divide the dataset into random 80/20 train/test splits. We set up two
human expert teams. Each member of Team 1 works in partnership with BO-Muse, whilst mem-
bers of Team 2 work individually without BO-Muse. We recruited 8 participants3 consisting of 4
postdocs and 4 postgraduate students. 2 postdocs and 2 students are allocated to each team ran-
domly so that each team has 4 participants, with roughly similar expertise. Each participant is given
the same budget, 3 random initial designs + 30 further iterations. At the end of each iteration, the
test classification error for the suggested hyper-parameter set is computed. We measure the overall
performance using simple regret, which will be the minimum test classification error observed so
far. The individual results from each team are averaged to compare (Team 1) BO-Muse + Human
vs (Team 2) Human alone (baseline). Additionally, we also report the performance of Generic BO
(AI alone) method to demonstrate the efficacy of our approach. Further, we have set the same seed
initialisation and allocated the same evaluation budget for all the algorithms. As we provide each
participant the same set of random initial observations, we do not compute the descriptive statistics
for the Generic BO baseline. We note that BO-Muse is designed to work with experts at various
levels as we assume an imperfect expert model via a mis-specified GP.

Interfacing with Experts. The human experts perform two hyper-parameter tuning experiments
to minimise the test classification error of SVM and RF. The expert is provided with a simple graphi-
cal interface (Figure 3a) which shows accumulated observations of classifier performance as a func-
tion of hyper-parameters, with the best result so far shown in dark blue. Interfaces for both teams
are similar excepting that teams working with BO-Muse also see the previous AI-generated obser-
vations indicated by ▼. Experts suggest the next hyper-parameter set by clicking at a point of their
choice inside the plot. We refer to Appendix A.9 for more details.

Experiment 1 – SVM Classification. In this experiment we have considered C-SVM classifiers
with Radial Basis Function (RBF) kernel. We have used LibSVM (Chang & Lin, 2011) imple-
mentation of SVM with hyper-parameters kernel scale γ and the cost parameter C. The SVM
hyper-parameters i.e., γ and C are tuned in the exponent space of [−3, 3].

Experiment 2 – Random Forest Classification. In the classification tasks with random forests
we let the experts and BO-Muse tune the hyper-parameters maximum depth of the decision tree and
the number of samples per split in the range (0, 100], and (1, 50], respectively.

3Necessary ethics approval obtained.
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Figure 3: (a) Interface used by participants showing performance vs hyper-parameters: best per-
formances indicated in blue (darker is higher). If working with BO-Muse, machine point from the
previous iteration (#) are shown with ▼; Simple regret vs iterations for the hyper-parameter tuning
of classifiers comparing Team 1 (BO-Muse + Human) (red) vs Team 2 (Human only) (black) vs AI
alone (blue). We report the simple regret mean (along with its standard deviation) for (b) Support
Vector Machines (SVM) and (c) Random Forests (RF) classifiers.

The results of our classification experiments are depicted in Figure 3b and Figure 3c. In both exper-
iments, the BO-Muse + Human team outperforms the experts working on their own.

4.2.2 SUPPLEMENTARY SPACE SHIELD DESIGN EXPERIMENT

Our third experiment evaluates BO-Muse in a real applied engineering experiment. We consider the
design of a shield for protecting spacecraft against the impact of a space debris particle by partnering
with a world leading impact expert. For this problem, i.e., impact of a cubic steel debris particle,
there exists no state-of-the-art solution. We include this experiment in Appendix A.10 because of
the lack of familiarity of CS with this problem and the detail required to give sufficient background.

In the experiment (see Table 6 in Appendix A.10) we observe the human expert initially exploring
solutions based on the state-of-the-art for more typical debris impact problems (which are normally
simplified to spherical aluminium projectiles). The expert is observed to rapidly exploit their initial
3 designs to identify two feasible shielding solutions within the first four batch iterations (ID 4–11,
marked in blue). The expert performs further exploitation of these successful designs (Result=0)
over the next four batch iterations (ID 12-19, marked in brown) in an attempt to reduce the weight,
but is unsuccessful. To this point the expert does not appear to have been influenced at all by the BO
suggestions. However, in the next four batch iterations (ID 20-27, marked in green) we can observe
the expert taking inspiration from the previous BO-Muse suggestions. One such exploitation results
in a successful solution (ID 27), further exploitation of which provides the best solution identified
by the experiment ID 29. This solution is highly irregular for spacecraft debris shields, utilising a
polymer outer layer in contact with a metallic backing to disrupt the debris particle. Such a design is
not reminiscent of any established flight hardware, see e.g., Christiansen et al. (2009). Thus, the BO-
Muse is demonstrated to have performed its role as hypothesised, inspiring the human expert with
novel designs that are subsequently subject to exploitation by the human expert. The experimental
set-up and results are discussed in detail in Appendix A.10.

5 CONCLUSION

We have presented a new approach to human expert/AI teaming for experimental optimisation. Our
algorithm lets the human expert take the lead in the experimental process thus allowing them to fully
use their domain expertise, while the AI plays the role of a muse, injecting novelty and searching
for regions the human may have overlooked to break the human out of over-exploitation induced by
cognitive entrenchment. We show that our algorithm converges sub-linearly and faster than either
the AI or human expert alone.
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A APPENDIX

A.1 PROOFS OF REGRET BOUNDS

In this appendix we consider a generalised version of the framework. For clarity (we favour brevity
in the paper body, but clarity is essential here) we also require some additional notations. As in the
main paper, our goal is to solve:

x⋆ = argmax
x∈X

f⋆ (x)

where f⋆ is only measurable via an expensive and noisy process:

y = f⋆ (x) + ν

where ν is Σ-sub-Gaussian noise.

Let’s assume that we have a series of experimental batches 1, 2, . . ., where batch s contains p̂ human
generated experiments and p̆ AI generated experiments, giving a total of p = p̂+ p̆ experiments. We
use a hat with an index i ∈ M̂ to indicate a property relating to human i, and a breve with an index
j ∈ M̆ to indicate a property relating to AI j, where:

M̂ = Np̂ (set of humans)
M̆ = Np̆ (set of AIs)

We assume the batches are run sequentially, and wlog that the experiments within each batch are
nominally ordered, so the set of all experiments may be indexed with t. We use a bar to differentiate
between a property indexed by experiment number t, which is unbarred (e.g. ct), and a property
indexed by batch number s, which is barred (e.g. d̄s). For simplicity we define:

st =
⌈

t
p

⌉
(batch s in which experiment t occurs)

ts = p (s− 1) + 1 (first experiment in batch s)
t = p (st − 1) + 1 (first experiment in batch st)
t̂s = p (s− 1) + 1 (first human experiment in the batch s)
t̂ = p (st − 1) + 1 (first human experiment in the batch st)
t̆s = p (s− 1) + 1 + p̂ (first AI experiment in the batch s)
t̆ = p (st − 1) + 1 + p̂ (first AI experiment in the batch st)

Ts = Np + p (s− 1) + 1 (set of experiments in batch s)
T≤s = Nsp + 1 (set of experiments up to and including batch s)

We assume that humans and AIs maintain a GP model that is updated after each batch. So, after
batch s, the posterior means and variances are, respectively:

ˆ̄µi,s (x) = ˆ̄α
T
i,s

ˆ̄ki,s (x) , ˆ̄σ
2
i,s (x) = ˆ̄Ki,s (x,x)− ˆ̄k

T

i,s (x)
(
ˆ̄Ki,s + ˆ̄σ

2
I
)−1

ˆ̄ki,s (x)

˘̄µj,s (x) = ˘̄α
T
j,s

˘̄kj,s (x) , ˘̄σ
2
j,s (x) = ˘̄Kj,s (x,x)− ˘̄k

T

j,s (x)
(
˘̄Kj,s + ˘̄σ

2
I
)−1

˘̄kj,s (x)

where:

ˆ̄αi,s =
(
ˆ̄Ki,s + ˆ̄σ

2
I
)−1

ȳs, ˘̄αj,s =
(
˘̄Kj,s + ˘̄σ

2
I
)−1

ȳs

ˆ̄Ki,s =
[

ˆ̄Ki,s (xt,xt′)
]
t,t′∈T≤s

, ˘̄Kj,s =
[

˘̄Kj,s (xt,xt′)
]
t,t′∈T≤s

ˆ̄ki,s (x) =
[

ˆ̄Ki,s (xt,x)
]
t∈T≤s

, ˘̄kj,s (x) =
[

˘̄Kj,s (xt,x)
]
t∈T≤s

ȳs = [ f⋆ (xt) + νt ]
t∈T≤s

, f̄s = [ f⋆ (xt) ]
t∈T≤s

We also occasionally use:

yt = [ f⋆ (xt′) + νt′ ]
t′≤t

, ft = [ f⋆ (xt′) ]
t′≤t

As this is a batch algorithm we are concerned with the instantaneous regret for the batches, not the
individual experiments therein. The instantaneous regret for batch s is:

r̄s = min
t∈Ts

rt, rt = f⋆ (x⋆)− f⋆ (xt)
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where rt is the instantaneous regret for experiment t. The cumulative regret up to and including
batch S is:

R̄S =
∑

s∈NS+1

r̄s

We do not assume f⋆ is drawn from any of the GP models for humans or AIs, so the problem mis-
specified. So, borrowing from Bogunovic & Krause (2021), we assume humans and AIs attempt to
maximise the “closest” (best-in-class) function to f⋆ in the respective hypothesis spaces, using the
shorthand ˆ̄Hi,s = H ˆ̄Ki,s

, ˘̄Hj,s = H ˘̄Kj,s
:

ˆ̄Hi,s =
{
f ∈ ˆ̄Hi,s

∣∣∣ ∥f∥ ˆ̄Hi,s
≤ B̂i

}
˘̄Hj,s =

{
f ∈ ˘̄Hj,s

∣∣∣ ∥f∥ ˘̄Hj,s
≤ B̆j

}
where the closest to optimal approximations of f⋆ in the hypothesis spaces are:

ˆ̄f
#

i,s = argmin
f∈ ˆ̄Hi,s

∥f − f⋆∥∞ , ˘̄f
#

j,s = argmin
f∈ ˘̄Hj,s

∥f − f⋆∥∞

As is usual in practice, kernels may be updated when the GP models are updated, typically using
max-log-likelihood for AIs or something more radical for the humans, which modifies the corre-
sponding RKHSs. The difference between the best-in-class approximations and f⋆ for batch s are
assumed bounded as: ∥∥∥∥ ˆ̄f#

i,s − f⋆

∥∥∥∥
∞

≤ ˆ̄ϵi,s,

∥∥∥∥ ˘̄f#

j,s − f⋆

∥∥∥∥
∞

≤ ˘̄ϵj,s

After each batch s, we have the (nominal) GP models built on (nominal) observations of ˆ̄f
#

i,s and
˘̄f
#

j,s, which have the same variance as the (real) models (the posterior variance is independent of y)
but different posterior means:

ˆ̄µ
#
i,s (x) = ˆ̄α

#T
i,s

ˆ̄ki,s (x) , ˘̄µ
#
j,s (x) = ˘̄α

#T
j,s

˘̄kj,s (x)

We assume that test points are generated, either nominally (for humans) or directly (for AIs), EC-
GP-UCB style (Bogunovic & Krause, 2021), from a sequence of interleaved βt sequences by the
relevant human i = t− t̂ if i ∈ M̂ or AI j = t− t̆ if j ∈ M̆ in batch st, so:

βt =

{
β̂i,t if i = t− t̂ ∈ M̂
β̆j,t if j = t− t̆ ∈ M̆

ϵt =

{
ϵ̂i,t if i = t− t̂ ∈ M̂
ϵ̆j,t if j = t− t̆ ∈ M̆

µt−1 (x) =

{
ˆ̄µi,st−1 (x) if i = t− t̂ ∈ M̂
˘̄µj,st−1 (x) if j = t− t̆ ∈ M̆

σt−1 (x) =

{
ˆ̄σi,st−1 (x) if i = t− t̂ ∈ M̂
˘̄σj,st−1 (x) if j = t− t̆ ∈ M̆

using the acquisition function:

αt (x) = µt−1 (x) +
(√

βt +
ϵt
σ

√
t
)
σt−1 (x)

Generally we cannot control the human’s exploitation/exploration trade-off sequence β̂i,t, but we
assume humans are conservative, so the sequence may be assumed small. We use the AI trade-off
sequence β̆j,t, which we do control, to compensate for the conservative tendencies of the humans
involved. We do however assume that the humans include at least some exploration in their decisions
on the understanding that their knowledge is not, in fact, perfect, so β̂i,t ≥ 0 (note that a human who
over-estimates their abilities may fail to meet this requirement, so care is required to avoid this). For
reasons which will become apparent, we assume that:

β̂i,ts
∈
(
ˆ̄ζi,s↓ ˆ̄χi,s,

ˆ̄ζi,s↑ ˆ̄χi,s

)
β̆j,ts

∈
(
˘̄ζj,s↓ ˘̄χj,s,

˘̄ζj,s↑ ˘̄χj,s

)
14
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where ˆ̄ζi,s↓ ≤ 1, which we will see makes the humans over-exploitative, and ˘̄ζj,s↓ ≥ 1, which we
will see makes the AIs over-explorative, and:

ˆ̄χi,s =

(
Σ√
σ

√
2 ln

(
1
δ

)
+ 1 + ˆ̄γi,s +

∥∥∥∥ ˆ̄f#

i,s

∥∥∥∥
ˆ̄Hi,s

)2

˘̄χj,s =

(
Σ√
σ

√
2 ln

(
1
δ

)
+ 1 + ˘̄γj,s +

∥∥∥∥ ˘̄f#

j,s

∥∥∥∥
˘̄Hj,s

)2

where ˆ̄γi,s and ˘̄γj,s are, respectively, the max-information-gain terms for humans i ∈ M̂ and AIs
j ∈ M̆, as will be described shortly.

A.2 NOTES ON MAXIMUM INFORMATION GAIN

We are assuming p GPs, each of which will have a different information gain that is a function of its
kernel. All have the same dataset and get updated at the batch boundary. Thus, after S batches, if
we consider human i ∈ M̂:

Îi (ySp : fSp) = H (ySp)− 1
2 ln

∣∣∣2πeˆ̄σ2
ISp

∣∣∣
= H (ySp−1) +H

(
ySp|y(S−1)p

)
− 1

2 ln
∣∣∣2πeˆ̄σ2

ISp

∣∣∣
= H (ySp−2) +H

(
ySp|y(S−1)p

)
+H

(
ySp−1|y(S−1)p

)
− 1

2 ln
∣∣∣2πeˆ̄σ2

ISp

∣∣∣
= . . .

= H
(
y(S−1)p

)
+
∑

t∈TS

H
(
yt|yt−1

)
− 1

2 ln
∣∣∣2πeˆ̄σ2

ISp

∣∣∣
= H

(
y(S−2)p

)
+
∑

t∈TS

H
(
yt|yt−1

)
+

∑
t∈TS−1

H
(
yt|yt−1

)
− 1

2 ln
∣∣∣2πeˆ̄σ2

ISp

∣∣∣
= . . .

=
∑

t∈T≤S

H
(
yt|yt−1

)
− 1

2 ln
∣∣∣2πeˆ̄σ2

ISp

∣∣∣
= 1

2

∑
t∈T≤S

ln
(
2πe

(
ˆ̄σ
2
+ ˆ̄σ

−2 ˆ̄σ
2
i,t−1 (xt)

))
− 1

2 ln
∣∣∣2πeˆ̄σ2

IT

∣∣∣
= 1

2

∑
t∈T≤S

ln
(
1 + ˆ̄σ

−2 ˆ̄σ
2
i,t−1 (xt)

)
where we have used that x1, . . . ,xsp are deterministic conditioned on y(s−1)p, and that the variances
do not depend on y. The derivation for AI j is essentially identical. In summary, therefore, the
information gain is:

Îi (ySp : fSp) =
1
2

∑
t∈T≤S

ln
(
1 + ˆ̄σ

−2 ˆ̄σ
2
i,t−1 (xt)

)
≤ ˆ̄γi,S

Ĭj (ySp : fSp) =
1
2

∑
t∈T≤S

ln
(
1 + ˘̄σ

−2 ˘̄σ
2
j,t−1 (xt)

)
≤ ˘̄γj,S

where ˆ̄γi,S and ˘̄γj,S are, respectively, the maximum information gains for human i and AI j over S
batches.

A.3 NOTES ON THE HUMAN MODEL

We posit that every human i ∈ M̂ has an evolving model of the system:

ˆ̄f i,s (x) = ˆ̄gi,s
(
ˆ̄pi,s (x)

)
where ˆ̄gi,s is in some sense “simple” and ˆ̄pi,s : Rn → R ˆ̄mi,s . This fits into the above scheme if

we let the form of ˆ̄gi,s dictate the kernel ˆ̄Ki,s. For example if we know that ˆ̄gi,s is linear - i.e., the
human is known to be using some heuristic model of the form:

ˆ̄f i,s (x) = ˆ̄w
T
i,s

ˆ̄pi,s (x)
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then we can use a GP with a linear-derived kernel:
ˆ̄Ki,s (x,x

′) = ˆ̄p
T
i,s (x) ˆ̄pi,s (x

′)

Similarly if the human is using a model ˆ̄gi,s that can be captured by a dth-order polynomial model:

ˆ̄f i,s (x) = ˆ̄w
T
i,s

[√(
d
q

)
ˆ̄p
⊗q
i,s (x)

]
q∈Nd+1

then we can use a GP with a polynomial-derived kernel:

ˆ̄Ki,s (x,x
′) =

(
1 + ˆ̄p

T
i,s (x) ˆ̄pi,s (x

′)
)d

Alternatively, if ˆ̄gi,s is more vague (i.e., the researcher knows that the factors ˆ̄pi,s are important but
not the exact form of the relationship) then we might use a GP assuming a distance-based model:

ˆ̄Ki,s (x,x
′) = exp

(
− 1

2l

∥∥ˆ̄pi,s (x)− ˆ̄pi,s (x
′)
∥∥2
2

)
or some similarly generic model that captures the worst-case behaviour of the human, along, hope-
fully, with some insight into the thought processes used by them.

With regard to maximum information gain, because the human models are evolving, ˆ̄mi,s will
change with s, so it is convenient to define define ˆ̄mi,s↑ = maxt∈Ts

ˆ̄mi,s to capture the worst-
case feature-space dimensionality over S batches. We can then bound the maximum information
gain for the human as the worst-case of these models over all S batches. So for example, depending
on the specifics of ˆ̄gi,s, we have (Srinivas et al., 2012; Scetbon & Harchaoui, 2021):

Linear: ˆ̄γi,s = O (ln (Sp))
Polynomial: ˆ̄γi,s = O (ln (Sp))

Squared-Exponential: ˆ̄γi,s = O
(
ln

ˆ̄mi,s↑+1 (Sp)
)

In general we assume that the asymptotic behaviour of the human maximum information gain con-
verges more quickly than that of the machine models. This makes intuitive sense of the human is
applying a linear or polynomial heuristic model ˆ̄gi,s, which is captured by a linear or polynomial
kernel, while the machines use more general GP models with SE or Matern type kernels (as is com-
mon practice). Thus in this case the human has a better behaved maximum information gain at the
cost of a potentially non-zero gap ˆ̄ϵi,s (presumably trending to 0 as the human gains improved in-
sight into the problem and evolves their model to better match the problem), while the machine has
a worse behaved maximum information gain but zero gap (assuming a universal kernel like an SE
kernel).

A.4 MATHEMATICAL PRELIMINARIES

We use p-norms extensively, where:

∥x∥p = (
∑

i |xi|p)
1
p where x ∈ Rn

∥f∥p =
(∫

x
|f (x)|p dx

) 1
p where f : Rn → R

with the extensions:
∥x∥∞ = maxi |xi|

∥x∥−∞ = mini |xi|
∥f∥∞ = inf {C ≥ 0 : |f (x)| ≤ C for almost all x ∈ Rn}

∥f∥−∞ = sup {C ≥ 0 : |f (x)| ≥ C for almost all x ∈ Rn}
This is only a norm for p ∈ [1,∞] (though we may occasionally refer to it as such in a loose sense),
but is well defined for p ∈ [−∞, 0) ∪ (0,∞]. It is not difficult to see that:

∥x∥p ≥ ∥x∥p′ , ∀p, p′ ∈ (0,∞], p ≤ p′

∥x∥p ≥ ∥x∥p′ , ∀p, p′ ∈ [−∞, 0), p ≤ p′

∥x∥p ≥ ∥x∥p′ , ∀p ∈ (0,∞], p′ ∈ [−∞, 0)
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(the final inequality follows from the first two, noting that mini |xi| < maxi |xi|, and similarly for
functions); and furthermore:

∥x∥p ≤ n
1
p−

1
p′ ∥x∥p′ ∀1 ≤ p ≤ p′ ≤ ∞

when x ∈ Rn. We also use the following inequalities (⊙ is the Hadamaard product):

∥x⊙ x′ ⊙ . . .⊙ x′′′′∥r ≤ ∥x∥p ∥x′∥p′ . . . ∥x′′′′∥p′′′′

∥f ⊙ f ′ ⊙ . . .⊙ f ′′′′∥r ≤ ∥f∥p ∥f ′∥p′ . . . ∥f ′′′′∥p′′′′

}
General. Hölder inequality

∥x⊙ x′∥1 ≥ ∥x∥ 1
q
∥x′∥ −1

q−1

∥f ⊙ f ′∥1 ≥ ∥f∥ 1
q
∥f ′∥ −1

q−1

}
Reverse Hölder inequality

where 1
p + 1

p′ + . . . + 1
p′′′′ = 1

r and r, p, p′, . . . , p′′′′ ∈ (0,∞], with the convention 1
∞ = 0; and

q ∈ (0,∞).

We also use generalised (power) mean (Pečarić, 1991; Pyun, 1974), defined as:

Mθ ({a1, a2, . . . an}) =



mini ai if θ = −∞(
1
n

∑
i a

θ
i

) 1
θ if θ ∈ (−∞, 0)

(
∏

i ai)
1
n if θ = 0(

1
n

∑
i a

θ
i

) 1
θ if θ ∈ (0,∞)

maxi ai if θ = ∞
where θ ∈ [−∞,∞]. For example θ = −1, 0, 1 correspond, respectively, to the harmonic, geometric
and arithmetric means. Note that, for all θ, θ′ ∈ [−∞,∞], θ ≤ θ′:

Mθ ({a1, a2, . . . an}) ≤ Mθ′ ({a1, a2, . . . an})
With a minor abuse of notation, we define:

Mθ (a) = Mθ ({a1, a2, . . . an})
for a ∈ Rn, so that, for a ∈ Rn

+, we have the connection to the p-norms:

Mθ (a) =

{
n− 1

θ ∥a∥θ if θ ∈ [−∞, 0) ∪ (0,∞]

(
∏

i ai)
1
n if θ = 0

The following result is central to our proof:4

Lemma 2. Let a,b ∈ Rn
+, z ∈ [−∞,∞], q, q′ ∈ [1,∞], 1

q + 1
q′ = 1, 1

∞ = 0. Then we have the
following bounds on M−∞(a⊙ b):

M−∞ (a⊙ b) ≤ M−z (a)Mz (b)
M−∞ (a⊙ b) ≤ M|zq| (a)M|zq′| (b)
M−∞ (a⊙ b) ≤ M−|z| (a)M q

q−1 |z| (b)

Proof. Let us suppose that, unlike in the theorem, z ∈ (−∞, 0)∪(0,∞). Then, using the generalised
mean inequality:

M−∞ (a⊙ b) ≤ Mz (a⊙ b) = n− 1
z ∥a⊙ b∥z = n− 1

z ∥a⊙z ⊙ b⊙z∥
1
z
1

If z > 0 then, using Hölder’s inequality:

M−∞ (a⊙ b) = n− 1
|z|
∥∥a⊙|z| ⊙ b⊙|z|

∥∥ 1
|z|
1

≤ n− 1
|z|
∥∥a⊙|z|

∥∥ 1
|z|
q

∥∥b⊙|z|
∥∥ 1

|z|
q′

= n− 1
|z|
∥∥a⊙|zq|

∥∥ 1
|zq|
1

∥∥∥b⊙|zq′|
∥∥∥ 1

|zq′|

1

= n− 1
|z|n

1
|zq|n

1

|zq′|
∥∥ 1
na

⊙|zq|
∥∥ 1

|zq|
1

∥∥∥ 1
nb

⊙|zq′|
∥∥∥ 1

|zq′|

1

= n
− 1

|zq′| ∥a∥|zq| n
− 1

|zq′| ∥b∥|zq′|
= M|zq| (a)M|zq′| (b)

4This result may be well known, but we have been unable to find it in the literature.
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If z < 0 then, using the reverse Hölder inequality (noting the negative exponent):

M−∞ (a⊙ b) = n
1
|z|
∥∥a⊙−|z| ⊙ b⊙−|z|

∥∥− 1
|z|

1

≤ n
1
|z|
∥∥a⊙−|z|

∥∥− 1
|z|

1
q

∥∥b⊙−|z|
∥∥− 1

|z|

− 1
q−1

= n
1
|z|

∥∥∥a⊙− |z|
q

∥∥∥− q
|z|

1

∥∥∥b⊙ |z|
q−1

∥∥∥ q−1
|z|

1

= n
1
|z|n− q

|z|n
q−1
|z|

∥∥∥ 1
na

⊙− |z|
q

∥∥∥− q
|z|

1

∥∥∥ 1
nb

⊙ |z|
q−1

∥∥∥ q−1
|z|

1

= n
q
|z| ∥a∥− |z|

q
n− q−1

|z| ∥b∥ |z|
q−1

= M− |z|
q
(a)M |z|

q−1
(b)

It is instructive to let r = |z|/q. Then the most recent bound becomes:

M−∞ (a⊙ b) ≤ M−r (a)M q
q−1 r

(b)

which in the limit q → ∞ simplifies to:

M−∞ (a⊙ b) ≤ M−r (a)Mr (b)

Finally, using the definitions:

M−∞ (a⊙ b) ≤ M0 (a⊙ b) = M0 (a)M0 (b)

completing the proof.

A.5 BOGUNOVIC’S LEMMA

We have the following from Bogunovic & Krause (2021):∣∣∣µ#
t−1 (x)− µt−1 (x)

∣∣∣ ≤ ϵt
σ

√
tσt−1 (x) (9)

This follows from (Bogunovic & Krause, 2021, Lemma 2) using that all models satisfy this result,
and that the model is posterior on the observations up to and including the previous batch. It follows
from this and the definitions that, for all x ∈ X:

∣∣ ˆ̄µi,s−1 (x)− f⋆ (x)
∣∣ ≤

∣∣∣∣ ˆ̄µ#
i,s−1 (x)− ˆ̄f

#

i,s−1 (x)

∣∣∣∣+ ϵ̂i,ts
σ

√
ts ˆ̄σi,s−1 (x) + ϵ̂i,ts∣∣ ˘̄µj,s−1 (x)− f⋆ (x)

∣∣ ≤
∣∣∣∣ ˘̄µ#

j,s−1 (x)− ˘̄f
#

j,s−1 (x)

∣∣∣∣+ ϵ̆j,ts
σ

√
ts ˘̄σj,s−1 (x) + ϵ̆j,ts

(10)

A.6 THE REGRET BOUND

We begin with the following uncertainty bound, which is largely based on the bound (Chowdhury &
Gopalan, 2017, Theorem 2) and analogous to (Srinivas et al., 2012, Lemma 5.1) and (Bogunovic &
Krause, 2021, Lemma 1):

Lemma 3. Let δ ∈ (0, 1). Assume noise variables are Σ-sub-Gaussian. Let:

ˆ̄χi,s =

(
Σ√
ˆ̄σ

√
2 ln

(
1
δ

)
+ 1 + ˆ̄γi,s +

∥∥∥∥ ˆ̄f#

i,s

∥∥∥∥
ˆ̄Hi,s

)2

˘̄χj,s =

(
Σ√
˘̄σ

√
2 ln

(
1
δ

)
+ 1 + ˘̄γj,s +

∥∥∥∥ ˘̄f#

j,s

∥∥∥∥
˘̄Hj,s

)2 (11)
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Then, for all i ∈ M̂ and j ∈ M̆:

Pr

{
∀s,∀x ∈ X,

∣∣ ˆ̄µi,s−1 (x)− f⋆ (x)
∣∣ ≤ . . .

(√
ˆ̄χi,s +

ϵ̂i,ts
ˆ̄σ

√
ts

)
ˆ̄σi,s−1 (x) + ϵ̂i,ts

}
≥ 1− δ

Pr

{
∀s,∀x ∈ X,

∣∣ ˘̄µj,s−1 (x)− f⋆ (x)
∣∣ ≤ . . .

(√
˘̄χj,s +

ϵ̆j,ts
˘̄σ

√
ts

)
˘̄σj,s−1 (x) + ϵ̆j,ts

}
≥ 1− δ

Proof. We start with (Chowdhury & Gopalan, 2017, Theorem 2). This states that, in our setting,
with probability ≥ 1− δ, simultaneously for all s ≥ 1 and x ∈ D:∣∣∣∣ ˆ̄µ#

i,s−1 (x)− ˆ̄f
#

i,s−1 (x)

∣∣∣∣ ≤ ˆ̄σ
−1
i,s−1 (x)

√
ˆ̄χi,s∣∣∣∣ ˘̄µ#

j,s−1 (x)− ˘̄f
#

j,s−1 (x)

∣∣∣∣ ≤ ˘̄σ
−1
j,s−1 (x)

√
˘̄χj,s

for ˆ̄χi,s, ˘̄χj,s as specified by (11). Next, recall (10):∣∣ ˆ̄µi,s−1 (x)− f⋆ (x)
∣∣≤ ∣∣∣∣ ˆ̄µ#

i,s−1 (x)− ˆ̄f
#

i,s−1 (x)

∣∣∣∣+ ϵ̂i,s
ˆ̄σ

√
ts ˆ̄σi,s−1 (x) + ϵ̂i,s∣∣ ˘̄µj,s−1 (x)− f⋆ (x)

∣∣≤ ∣∣∣∣ ˘̄µ#
j,s−1 (x)− ˘̄f

#

j,s−1 (x)

∣∣∣∣+ ϵ̆j,s
˘̄σ

√
ts ˘̄σj,s−1 (x) + ϵ̆j,s

and the result follows.

Remark: Alternatively, following (Fiedler et al., 2021, Theorem 1) we can use:

ˆ̄χi,s ≥

(
Σ√
ˆ̄σ

√
2 ln

(
1
δ

)
+ ln

(
det
(
ˆ̄Ki,s−1 + ˆ̄σ

2
I
))

+

∥∥∥∥ ˆ̄f#

i,s

∥∥∥∥
ˆ̄Hi,s

)2

˘̄χj,s ≥

(
Σ√
˘̄σ

√
2 ln

(
1
δ

)
+ ln

(
det
(
˘̄Kj,s−1 + ˘̄σ

2
I
))

+

∥∥∥∥ ˘̄f#

j,s

∥∥∥∥
˘̄Hj,s

)2

Using the uncertainty bound above, we obtain our first bound on instantaneous experiment-wise
regret based on (Srinivas et al., 2012, Lemma 5.2) with some techniques borrowed from Bogunovic
& Krause (2021):
Lemma 4. Let δ ∈ (0, 1). Assume noise variables are Σ-sub-Gaussian. Assume that:

β̂i,ts
∈
(
ˆ̄ζi,s↓ ˆ̄χi,s,

ˆ̄ζi,s↑ ˆ̄χi,s

)
β̆j,ts

=
(
˘̄ζj,s↓ ˘̄χj,s,

˘̄ζj,s↑ ˘̄χj,s

)
where:

ˆ̄χi,s =

(
Σ√
ˆ̄σ

√
2 ln

(
1
δ

)
+ 1 + ˆ̄γi,s +

∥∥∥∥ ˆ̄f#

i,s

∥∥∥∥
ˆ̄Hi,s

)2

˘̄χj,s =

(
Σ√
˘̄σ

√
2 ln

(
1
δ

)
+ 1 + ˘̄γj,s +

∥∥∥∥ ˘̄f#

j,s

∥∥∥∥
˘̄Hj,s

)2

Then, simultaneously for all s ≥ 1, the instantaneous regret is bounded as:

rt̂s+i ≤ ˆ̄ri,s↑ +

(
1−

√
ˆ̄ζi,s↓

)√
ˆ̄χi,s

ˆ̄σi,s−1 (x
⋆)

rt̆s+j ≤ ˘̄rj,s↑ +

(
1−

√
˘̄ζj,s↓

)√
˘̄χj,s

˘̄σj,s−1 (x
⋆)
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with probability ≥ 1− δ, where:

ˆ̄ri,s↑ = 2

(
1+

√
ˆ̄ζi,s↑
2

√
ˆ̄χi,s +

ϵ̂i,ts
ˆ̄σ

√
ts

)
ˆ̄σi,s−1

(
xt̂s+i

)
+ 2ϵ̂i,ts

˘̄rj,s↑ = 2

(
1+

√
˘̄ζj,s↑
2

√
˘̄χj,s +

ϵ̆j,ts
˘̄σ

√
ts

)
˘̄σj,s−1

(
xt̆s+j

)
+ 2ϵ̆j,ts

Proof. By the pretext and Lemma 3:

f⋆ (x⋆) ≤ ˆ̄µi,s−1 (x
⋆) +

(√
ˆ̄χi,s +

ϵ̂i,ts
ˆ̄σ

√
ts

)
ˆ̄σi,s−1 (x

⋆) + ϵ̂i,ts

with probability ≥ 1− δ. By definition xt maximises the acquisition function, so:

ˆ̄µi,s−1 (x
⋆) ≤ ˆ̄µi,s−1

(
xt̂s+i

)
+

(√
β̂i,ts

+
ϵ̂i,ts
ˆ̄σ

√
ts

)
ˆ̄σi,s−1

(
xt̂s+i

)
−
(√

β̂i,ts
+

ϵ̂i,ts
ˆ̄σ

√
ts

)
ˆ̄σi,s−1 (x

⋆)

and hence:

f⋆ (x⋆)− f⋆
(
xt̂s+i

)
≤ ˆ̄µi,}s−1

(
xt̂s+i

)
+

(√
β̂i,ts

+
ϵ̂i,ts
ˆ̄σ

√
ts

)
ˆ̄σi,s−1

(
xt̂s+i

)
+ ϵ̂i,ts . . .

+

(√
ˆ̄χi,s −

√
β̂i,ts

)
ˆ̄σi,s−1 (x

⋆)− f⋆
(
xt̂s+i

)
It follows that the instantaneous regret is bounded by:

rt̂s+i ≤ ˆ̄µi,s−1

(
xt̂s+i

)
+

(√
β̂i,ts

+
ϵ̂i,ts
ˆ̄σ

√
ts

)
ˆ̄σi,s−1

(
xt̂s+i

)
+ ϵ̂i,ts . . .

+

(√
ˆ̄χi,s −

√
β̂i,ts

)
ˆ̄σi,s−1 (x

⋆)− f⋆
(
xt̂s+i

)
So, using our assumptions on β we find that:

rt̂s+i ≤ ˆ̄µi,s−1

(
xt̂s+i

)
+

(√
ˆ̄ζi,s↑

√
ˆ̄χi,s +

ϵ̂i,ts
ˆ̄σ

√
ts

)
ˆ̄σi,s−1

(
xt̂s+i

)
+ ϵ̂i,ts . . .

+

(
1−

√
ˆ̄ζi,s↓

)√
ˆ̄χi,s

ˆ̄σi,s−1 (x
⋆)− f⋆

(
xt̂s+i

)
Once again using our pretext and Lemma 3 we see that:

f⋆
(
xt̂s+i

)
≥ ˆ̄µi,s−1

(
xt̂s+i

)
−
(√

ˆ̄χi,s +
ϵ̂i,ts
ˆ̄σ

√
ts

)
ˆ̄σi,s−1

(
xt̂s+i

)
− ϵ̂i,ts

Hence:

rt̂s+i ≤ 2

(
1+

√
ˆ̄ζi,s↑
2

√
ˆ̄χi,s +

ϵ̂i,ts
ˆ̄σ

√
ts

)
ˆ̄σi,s−1

(
xt̂s+i

)
. . .

+

(
1−

√
ˆ̄ζi,s↓

)√
ˆ̄χi,s

ˆ̄σi,s−1 (x
⋆) + 2ϵ̂i,ts

and the desired result follows from the definitions. The proof for AI regret follows by an analogous
argument.

To extend this to usable batchwise instantaneous regret bound we need to deal with the variance
terms ˆ̄σi,s−1(x

⋆), ˘̄σi,s−1(x
⋆) in the above theorem. To do this, in the following theorem we use

the generalised (power) mean, and in particular lemma 2, to split the batchwise risk bound into
a constraint term containing the free variances and a risk bound that depends only on the various
parameters of the problem:
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Lemma 5. Fix δ > 0 and θ̄s ∈ [0,∞].5 Assume noise variables are Σ-sub-Gaussian, and that:

β̂i,ts
∈
(
ˆ̄ζi,s↓ ˆ̄χi,s,

ˆ̄ζi,s↑ ˆ̄χi,s

)
β̆j,ts

=
(
˘̄ζj,s↓ ˘̄χj,s,

˘̄ζj,s↑ ˘̄χj,s

)

where ˆ̄ζi,s↓ ≤ 1, ˘̄ζj,s↓ ≥ 1, and:

ˆ̄χi,s =

(
Σ√
ˆ̄σ

√
2 ln

(
1
δ

)
+ 1 + ˆ̄γi,s +

∥∥∥∥ ˆ̄f#

i,s

∥∥∥∥
ˆ̄Hi,s

)2

˘̄χj,s =

(
Σ√
˘̄σ

√
2 ln

(
1
δ

)
+ 1 + ˘̄γj,s +

∥∥∥∥ ˘̄f#

j,s

∥∥∥∥
˘̄Hj,s

)2

If:

Mθ̄s


{
exp

(√
ˆ̄χi,s

(
1−

√
ˆ̄ζi,s↓

)
+

σ̄s−1↑

)
: i ∈ M̂

}⋃
. . .{

exp

(√
˘̄χj,s

(
1−

√
˘̄ζj,s↓

)
−
σ̄s−1↓

)
: j ∈ M̆

}
 ≤ 1

Then, simultaneously for all s ≥ 1, the batchwise instantaneous regret is bounded as:

r̄s ≤ ln
(
M−θ̄s (exp (r̄s↑))

)
with probability ≥ 1− δ, where:

r̄s↑ =


[

2

(
1+

√
ˆ̄ζi,s↑
2

√
ˆ̄χi,s +

ϵ̂i,ts
ˆ̄σ

√
ts

)
ˆ̄σi,s−1

(
xt̂s+i

)
+ 2ϵ̂i,ts

]
i∈M̂[

2

(
1+

√
˘̄ζj,s↑
2

√
˘̄χj,s +

ϵ̆j,ts
˘̄σ

√
ts

)
˘̄σj,s−1

(
xt̆s+j

)
+ 2ϵ̆j,ts

]
i∈M̂


and:

σ̄s−1↑ = max

{
max
i∈M̂

{
ˆ̄σi,s−1 (x

⋆)
}
,max
j∈M̆

{
˘̄σj,s−1 (x

⋆)
}}

σ̄s−1↓ = min

{
min
i∈M̂

{
ˆ̄σi,s−1 (x

⋆)
}
,min
j∈M̆

{
˘̄σj,s−1 (x

⋆)
}}

and exp is applied elementwise.

5The proof is true for θ̄s ∈ [−∞,∞], but the negative θ̄s case is not of interest here.
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Proof. It is convenient to re-frame the batch-wise instantaneous regret in log-space, and extract the
max variance upper bound. Recalling that ˆ̄ζi,s↓ ≤ 1, ˘̄ζj,s↓ ≥ 1:

r̄s ≤ min

{
min
i∈M̂


2

(
1+

√
ˆ̄ζj,s↑
2

√
ˆ̄χi,s +

ϵ̂i,ts
ˆ̄σ

√
ts

)
ˆ̄σi,s−1

(
xt̂s+i

)
+ . . .(

1−
√

ˆ̄ζi,s↓

)√
ˆ̄χi,s

ˆ̄σi,s−1 (x
⋆) + 2ϵ̂i,ts

 ,

min
j∈M̆


2

(
1+

√
˘̄ζj,s↑
2

√
˘̄χj,s +

ϵ̆j,ts
˘̄σ

√
ts

)
˘̄σj,s−1

(
xt̆s+j

)
+ . . .(

1−
√

˘̄ζj,s↓

)√
˘̄χj,s

˘̄σj,s−1 (x
⋆) + 2ϵ̆j,ts


}

≤ ln

(
min

{
min
i∈M̂


exp

(
2

(
1+

√
ˆ̄ζi,s↑
2

√
ˆ̄χi,s +

ϵ̂i,ts
ˆ̄σ

√
ts

)
ˆ̄σi,s−1

(
xt̂s+i

)
+ 2ϵ̂i,ts

)
. . .

exp

(√
ˆ̄χi,s

(
1−

√
ˆ̄ζi,s↓

)
+

σ̄s−1↑

)
 ,

min
j∈M̆


exp

(
2

(
1+

√
˘̄ζj,s↑
2

√
˘̄χj,s +

ϵ̆j,ts
˘̄σ

√
ts

)
˘̄σj,s−1

(
xt̆s+j

)
+ 2ϵ̆j,ts

)
. . .

exp

(√
˘̄χj,s

(
1−

√
˘̄ζj,s↓

)
−
σ̄s−1↓

)

})

which may be re-written:
r̄s ≤ ln (M−∞ (a⊙ b))

where:

a =

[
â
ă

]
∈ Rp

+, b =

[
b̂

b̆

]
∈ Rp

+

â =

[
exp

(
2

(
1+

√
ˆ̄ζi,s↑
2

√
ˆ̄χi,s +

ϵ̂i,ts
ˆ̄σ

√
ts

)
ˆ̄σi,s−1

(
xt̂s+i

)
+ 2ϵ̂i,ts

) ]
i∈M̂

b̂ =

[
exp

(√
ˆ̄χi,s

(
1−

√
ˆ̄ζi,s↓

)
+

σ̄s−1↑

) ]
i∈M̂

ă =

[
exp

(
2

(
1+

√
˘̄ζj,s↑
2

√
˘̄χj,s +

ϵ̆j,ts
˘̄σ

√
ts

)
˘̄σj,s−1

(
xt̆s+j

)
+ 2ϵ̆j,ts

) ]
j∈M̆

b̆ =

[
exp

(√
˘̄χj,s

(
1−

√
˘̄ζj,s↓

)
−
σ̄s−1↓

) ]
j∈M̆

So, by lemma 2, we have that:

r̄s ≤ ln
(
M−θ̄s (a)Mθ̄s (b)

)
= ln

(
M−θ̄s (a)

)
+ ln

(
Mθ̄s (b)

)
and by assumption Mθ̄s (b) ≤ 1, so:

r̄s ≤ ln
(
M−θ̄s (a)

)
and the result follows by the definition.

The next step is to convert this bound into a bound on the total regret. To obtain such a bound
we need some additional assumptions regarding “gap” parameters ϵ and the explorative/exploitative
nature of the humans and AIs. We do this with the following theorem:
Theorem 6. Fix δ > 0 and θ̄s ∈ [0,∞].6 Assume noise variables are Σ-sub-Gaussian, and that:

β̂i,ts
∈
(
ˆ̄ζi,s↓ ˆ̄χi,s,

ˆ̄ζi,s↑ ˆ̄χi,s

)
β̆j,ts

=
(
˘̄ζj,s↓ ˘̄χj,s,

˘̄ζj,s↑ ˘̄χj,s

)
6The proof is true for θ̄s ∈ [−∞,∞], but the negative θ̄s case is not of interest here.
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where ˆ̄ζi,s↓ ≤ 1, ˘̄ζj,s↓ ≥ 1, and:

ˆ̄χi,s =

(
Σ√
ˆ̄σ

√
2 ln

(
1
δ

)
+ 1 + ˆ̄γi,s +

∥∥∥∥ ˆ̄f#

i,s

∥∥∥∥
ˆ̄Hi,s

)2

˘̄χj,s =

(
Σ√
˘̄σ

√
2 ln

(
1
δ

)
+ 1 + ˘̄γj,s +

∥∥∥∥ ˘̄f#

j,s

∥∥∥∥
˘̄Hj,s

)2

and:

Mθ̄s


{
exp

(√
ˆ̄χi,s

(
1−

√
ˆ̄ζi,s↓

)
+

σ̄s−1↑

)
: i ∈ M̂

}⋃
. . .{

exp

(√
˘̄χj,s

(
1−

√
˘̄ζj,s↓

)
−
σ̄s−1↓

)
: j ∈ M̆

}
 ≤ 1

for all s, where:

σ̄s−1↑ = max

{
max
i∈M̂

{
ˆ̄σi,s−1 (x

⋆)
}
,max
j∈M̆

{
˘̄σj,s−1 (x

⋆)
}}

σ̄s−1↓ = min

{
min
i∈M̂

{
ˆ̄σi,s−1 (x

⋆)
}
,min
j∈M̆

{
˘̄σj,s−1 (x

⋆)
}}

If ϵ̂i,ts , ϵ̆j,ts = O(s−q) for some q ∈ ( 12 ,∞) then, with probability ≥ 1− δ:

1
S R̄S ≤ ln

(
M−θ̄↓

(
exp

({{√
8ˆ̄σ

2
(√

ˆ̄χi,S +O (1)
)2

Ĉi,2
1
S
ˆ̄γi,S +O (1)

∣∣∣∣∣ i ∈ M̂

}⋃
. . .

√√√√8˘̄σ
2

(
1+

√
˘̄ζj∼

2

√
˘̄χj,S +O (1)

)2

C̆j,2
1
S
˘̄γj,S +O (1)

∣∣∣∣∣∣ j ∈ M̆


})))

where Ĉi,2 = maxs
ˆ̄σ−2 ˆ̄Ki,s↑

ln
(
1+ˆ̄σ−2 ˆ̄Ki,s↑

) and C̆j,2 = maxs
˘̄σ−2 ˘̄Kj,s↑

ln
(
1+˘̄σ−2 ˘̄Kj,}s↑

) ; and:

θ̄↓ = min
s∈NS+1

θ̄s

˘̄ζj∼ = max
s∈NS+1

˘̄ζj,s

Proof. Using the assumptions and Lemma 5, we have that, with probability ≥ 1−δ, simultaneously
for all s ≥ 1:

r̄s ≤ ln (M−θs (exp (r̄s↑))) ≤ ln
(
M−θ̄s (exp (r̄s↑))

)
where r̄s↑ ≥ 0. Using the definition of M−θ̄s :∑

s∈NS+1

r̄s ≤
∑

s∈NS+1

ln
(
M−θ̄↓ (exp (r̄s↑))

)
= ln

( ∏
s∈NS+1

M−θ̄↓ (exp (r̄s↑))

)

= ln

( ∏
s∈NS+1

(
1
p ∥exp (r̄s↑)∥−θ̄↓

)− 1
θ̄↓

)

= ln

(( ∏
s∈NS+1

p
S
θ̄↓

∥∥∥(exp (r̄s↑))⊙−θ̄↓
∥∥∥− 1

θ̄↓

1

))

= ln


 ∏

s∈NS+1

p
S
θ̄↓

∥∥∥∥∥
(
(exp (r̄s↑))

⊙−
θ̄↓
S

)⊙S
∥∥∥∥∥

1
S

1

− S
θ̄↓




= ln

(( ∏
s∈NS+1

p
S
θ̄↓

∥∥∥∥(exp (r̄s↑))⊙−
θ̄↓
S

∥∥∥∥− S
θ̄↓

S

))
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Using the generalised Hölder inequality and the definition of M−θ̄↓ :

∑
s∈NS+1

r̄s ≤ ln

(( ∏
s∈NS+1

p
S
θ̄↓

∥∥∥∥(exp (r̄s↑))⊙−
θ̄↓
S

∥∥∥∥− S
θ̄↓

S

))

≤ ln

∥∥∥∥∥ ⊙
s∈NS+1

p
S
θ̄↓ (exp (r̄s↑))

⊙−
θ̄↓
S

∥∥∥∥∥
− S

θ̄↓

1


= ln



 1

p

∥∥∥∥∥∥∥
( ⊙

s∈NS+1

exp (r̄s↑)

)⊙−
θ̄↓
S

∥∥∥∥∥∥∥
1


− S

θ̄↓




= ln

(
M

−
θ̄↓
S

( ⊙
s∈NS+1

exp (r̄s↑)

))

and so, again recalling that r̄s↑ ≥ 0:

∑
s∈NS+1

r̄s ≤ ln

(
M

−
θ̄↓
S

( ⊙
s∈NS+1

exp (r̄s↑)

))

= ln

(
M

−
θ̄↓
S

(
exp

( ∑
s∈NS+1

r̄s↑

)))

Next, using that χ is increasing with s, and noting our restricted range in ζ, note that:

ˆ̄r
2
i,s↑ ≤ 4

((√
ˆ̄χi,S +

ϵ̂i,ts
ˆ̄σ

√
ts

)
ˆ̄σi,s−1

(
xt̂s+i

)
+ ϵ̂i,ts

)2
≤ 8max

{(√
ˆ̄χi,S +

ϵ̂i,ts
ˆ̄σ

√
ts

)2
ˆ̄σ
2
i,s−1

(
xt̂s+i

)
, ϵ̂2i,ts

}
˘̄r
2
j,s↑ ≤ 4

((
1+

√
˘̄ζj∼

2

√
˘̄χj,S +

ϵ̆j,ts
˘̄σ

√
ts

)
˘̄σj,s−1

(
xt̆s+j

)
+ ϵ̆j,ts

)2

≤ 8max


(

1+

√
˘̄ζj∼

2

√
˘̄χj,S +

ϵ̆j,ts
˘̄σ

√
ts

)2

˘̄σ
2
j,s−1

(
xt̆s+j

)
, ϵ̆2j,ts


and so:∑

s∈NS+1

ˆ̄r
2
i,s↑ ≤ 8

∑
s∈NS+1

max

{(√
ˆ̄χi,S +

ϵ̂i,ts
ˆ̄σ

√
ts

)2
ˆ̄σ
2
i,s−1

(
xt̂s+i

)
, ϵ̂2i,ts

}
≤ 8

∑
s∈NS+1

(√
ˆ̄χi,S +

ϵ̂i,ts
ˆ̄σ

√
ts

)2
ˆ̄σ
2
i,s−1

(
xt̂s+i

)
+ 8

∑
s∈NS+1

ϵ̂2i,ts

∑
s∈NS+1

˘̄r
2
j,s↑ ≤ 8

∑
s∈NS+1

max


(

1+

√
˘̄ζj∼

2

√
˘̄χj,S +

ϵ̆j,ts
˘̄σ

√
ts

)2

˘̄σ
2
j,s−1

(
xt̆s+j

)
, ϵ̆2j,ts


≤ 8

∑
s∈NS+1

(
1+

√
˘̄ζj∼

2

√
˘̄χj,S +

ϵ̆j,ts
˘̄σ

√
ts

)2

˘̄σ
2
j,s−1

(
xt̆s+j

)
+ 8

∑
s∈NS+1

ϵ̆2j,ts

Recalling our assumption ϵ̂i,ts , ϵ̆j,ts = O(s−q) for some q > 1
2 we find that, as

∑
s∈N

1
s2q̂i

=
ζ(2q̂i) < ∞ (ζ here is the Reimann zeta function):

∑
s∈NS+1

ˆ̄r
2
i,s↑ ≤ 8

∑
s∈NS+1

(√
ˆ̄χi,S +O (1)

)2
ˆ̄σ
2
i,s−1

(
xt̂s+i

)
+O (1)

∑
s∈NS+1

˘̄r
2
j,s↑ ≤ 8

∑
s∈NS+1

(
1+

√
˘̄ζj∼

2

√
˘̄χj,S +O (1)

)2

˘̄σ
2
j,s−1

(
xt̆s+j

)
+O (1)
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Now, by the standard procedure:∑
s∈NS+1

ˆ̄σ
−2 ˆ̄σ

2
i,s−1

(
xts+i

)
≤ Ĉi,2

∑
s∈NS+1

ln
(
1 + ˆ̄σ

−2 ˆ̄σ
2
i,s−1

(
xts+i

))
≤ Ĉi,2

∑
t∈T≤S

ln
(
1 + ˆ̄σ

−2 ˆ̄σ
2
i,st−1 (xt)

)
≤ Ĉi,2 ˆ̄γi,S∑

s∈NS+1

˘̄σ
−2 ˘̄σ

2
j,s−1

(
xts+j

)
≤ C̆j,2

∑
s∈NS+1

ln
(
1 + ˘̄σ

−2 ˘̄σ
2
j,s−1

(
xts+j

))
≤ C̆j,2

∑
t∈T≤S

ln
(
1 + ˘̄σ

−2 ˘̄σ
2
j,st−1 (xt)

)
≤ C̆j,2 ˘̄γj,S

where:
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Finally, noting that, for a > 0:

1
S ln

(
M

−
θ̄↓
S

(exp (a))

)
= ln

(
M

1
S

−
θ̄↓
S

(exp (a))

)
= ln

((
1
p

∑
i (e

ai)
−

θ̄↓
S

)− 1
θ̄↓

)

= ln

((
1
p

∑
i

(
e

1
S ai

)−θ̄↓
)− 1

θ̄↓

)
= ln

(
M−θ̄↓

(
exp

(
1
Sa
)))

25



Under review as a conference paper at ICLR 2023

we obtain:

1
S
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as required.

Finally, we consider the bounds on the posterior variance at x⋆. We have the following result:

Lemma 7. Fix j′ ∈ M̆. We have the bounds for all i ∈ M̂, j ∈ M̆:
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Proof. Using the definition of GP posterior variance and K bounds we can minimise the posterior
variance within the constraints given as:
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and likewise for the AI posterior variances. For the upper bound, we may pessimise the bound by
first using the maximum eigenvalue:
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and likewise for AI variances.

In this theorem the sequence ˆ̄Di,s,t =
ˆ̄Ki,s(x

⋆,x⋆)−| ˆ̄Ki,s(x
⋆,xt)| ≥ 0 is a proxy for convergence,

being minimised for xt = x⋆ and increasing as xt becomes (a-posterior) less correlated with x⋆. If
we consider the case considered in the paper - namely 1 human and 1 AI with zero gap and a trade-off
sequence meeting the conditions of GP-UCB - then we know that the AI, operating alone, suffices
to ensure convergence; and moreover adding additional observations (the human recommendations)
will not prevent this. From here, it is not difficult to see that the upper and lower bounds in the above
theorem converge not just to 0 but to one another, and if we further assume that ˆ̄K

⋆⋆

i,s = ˘̄K
⋆⋆

j,s then
the ratio of any upper bound on the posterior variance to the lower bound on any posterior variance
will convergen to 1.

A.7 ADDITIONAL SYNTHETIC EXPERIMENTS

In addition to the experimental results mentioned in the main paper, we provide the optimisation
performance of our proposed BO-Muse framework on the following synthetic benchmark functions:
(a) Matyas-2D, and (b) Rastrigin-5D. The details of the additional synthetic optimisation benchmark
functions are mentioned in Table 2.

We maintain the same experimental settings mentioned in the main paper for the additional experi-
ments conducted. For a given d dimensional problem, we use d+1 initial observations and optimise
for 10× d iterations i.e., the budget allocated for our synthetic experiments is set to 10× d function
evaluations. The simple regret plots obtained for Matyas-2D function and Rastrigin-5D function
after 10 runs with random initialisations are shown in Figure 4a and Figure 4b, respectively.

A.8 ABLATION STUDIES

A.8.1 VARYING DEGREES OF EXPLOITATION-EXPLORATION

We study the sensitivity of the exploitation-exploration parameter (β̂s) in our proposed BO-Muse
framework and compare the optimisation performance. We vary the exploitation-exploration param-
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Functions f⋆(x) High Level Features

Matyas-2D 0.26(x2
1 + x2

2)− 0.48(x1x2)
x′
1 = x2

1, x′
2 = x2

2
x′
3 = x1x2

Rastrigin-5D 10d+
∑d

i [x
2
i − 10 cos(2πxi)] ∀i ∈ N5

x′
i = x2

i ∀i ∈ N5

x′
j+5 = cosxj ∀j ∈ N5

Table 2: Synthetic optimisation benchmark functions. Analytical forms are provided in the second
column and the last column depicts the features used by a simulated human expert.
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Figure 4: Simple regret vs iterations for synthetic Functions:(a) Matyas-2D (b) Rastrigin-5D

eter (β̂s) in the exponent range of [0, 3] i.e., β̂s ∈ 10[0,3] to cover the whole spectrum from over-
exploitative experts (β̂s = 1) to over-explorative experts (β̂s = 1000). We have tuned the Squared
Exponential (SE) kernel hyper-parameters of the inherent GP surrogate models using maximum-
likelihood estimation. The empirical results obtained for various synthetic functions are depicted in
Figure 5. It is evident from the empirical results that BO-Muse teamed up with an expert following
more of an exploitation strategy (β̂s = 1) has better convergence when compared to its counterpart
teamed with pure explorative expert (β̂s = 1000).

A.8.2 BO-MUSE WITH EXPECTED IMPROVEMENT ACQUISITION FUNCTION

We have conducted an additional experiment to study the behaviour of our BO-Muse framework
with different acquisition function strategies for the human experts. Expected Improvement (EI)
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Figure 5: Ablation study with varying degrees of exploration-exploitation parameter (β̂s) obtained
for (a) Ackley-4D (b) Levy-6D functions (c) Rastrigin-5D functions.
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Figure 6: Ablation study with EI acquisition function obtained for Ackley function.

acquisition function (Wilson et al., 2018) guides the search for optima by taking into account the
expected improvement over the current best solution. If f⋆(x+) is the best value observed, then the
next best query point is obtained by maximising the EI acquisition function âEI

s (x), given by:

âEI
s (x) =

{
(µ̂s(x)− f⋆(x+)) Φ(Z) + σ̂s(x) ϕ(Z) if σ̂s(x)>0

0 if σ̂s(x)=0

Z =
µ̂s(x)− f⋆(x+)

σ̂s(x)

where Φ(Z) and ϕ(Z) represents the Cumulative Distribution Function (CDF) and the Probability
Density Function (PDF) of the standard normal distribution, respectively.

In this experiment, the GP-UCB acquisition function used by the human expert in BO-Muse frame-
work is now replaced with the Expected Improvement acquisition function. We compare this new
baseline (BO-Muse + Human (EI)) with BO-Muse + Human (GP-UCB) and all the other compet-
ing baselines. The empirical results obtained for the experiment with EI acquisition function is
depicted in Figure 6. As expected BO-Muse with the EI acquisition function still outperforms the
standard baselines considered. However, BO-Muse with GP-UCB acquisition function has superior
performance when compared to its counterpart with the EI acquisition function.

A.9 ADDITIONAL DETAILS OF CLASSIFICATION EXPERIMENTS

We have considered two real-world classification tasks using Support Vector Machines (SVMs)
and Random Forests (RFs). This experiment involves hyperparameter tuning of SVMs and RFs
operating on the Biodeg dataset to classify biodegradable and non-biodegradable materials. We used
publicly available Biodeg dataset from the UCI data repository (Dua & Graff, 2017). Biodeg dataset
consists of 1056 instances with 41 features. We randomly split the dataset into 80/20 train/test splits.
Each time a hyperparameter set (design) is chosen, the model needs to retrained and evaluated on a
held out set. The goal is to reach to the hyperparameter set that leads to a classification model with
the minimum test classification error.

We have created two groups (arms) with 4 members (2 students and 2 postdoctoral researchers)
randomly allocated in each group. Each expert in the first group teams up with AI as per BO-
Muse, while each expert in the second group (baseline) tunes the classifier completely on their own.
For each of the classification tasks, the two groups use the same tuning budget (3 random initial
designs + 30 further iterations. The aforementioned real-world task is suitable for our case: (1)
It is easier to find multiple human experts for this task as AI graduate students and post-doctoral
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researchers have a good understanding of classification (SVM and RF) models and understand how
its hyperparameters generally influence the model fitting, (2) This task is familiar to the ICLR and
machine learning community.

The simple graphical interface used by each participant is shown in Figure 7a and 7b. The interface
shows accumulated observations of classifier performance as a function of hyper-parameters, with
the best results shown in darker shades of blue. Interfaces for both teams are the same, excepting that
participants working with BO-Muse see the AI-generated observation in the previous (#) iteration
(indicated by ▼) in addition to the existing set of observed samples. Experts click on the plot to
provide their suggestion on the next hyper-parameter set to evaluate. The co-ordinates of the clicked
point is used as the expert suggestion.
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Figure 7: Simple graphical interface used by (a) Team 1 and (b) Team 2 for both the classification
experiments using SVM and RF classifiers.

A.10 SPACECRAFT SHIELDING DESIGN EXPERIMENT

Our third experiment is to team with an expert to design spacecraft shields to protect from impact
by orbital debris particles.

A.10.1 EXPERIMENTAL PROBLEM

Here we consider the design of a two- or three-wall shield for protection against a cubic steel pro-
jectile impacting face on, normal to the surface of the target plates, at an impact velocity of 7.0
km/s. There exists no state-of-the-art solution for such an impact threat, however for protecting
against a spherical aluminium projectiles in this velocity domain the state-of-the-art solution would
be a “stuffed Whipple shield” after Christiansen et al. (1995), consisting of an outer aluminium
plate, inner layers of aramid and ceramic fabrics, and a rear wall (pressure hull) of aluminium.
US, Japanese, and European modules on the ISS all utilise stuffed Whipple shield designs (Chris-
tiansen et al., 2009). The design space is schematically shown in Figure 8. Design variables include:
(1) plate material - AA6061-T651 (“AL”), 4340 steel (“ST”), Kevlar/epoxy (“KE”), and ultra-high
molecular weight polyethylene (“PE”); (2) plate thickness - 0.1 cm to 1.0 cm in 0.1 cm increments;
(3) plate spacing, S - 0.0 cm to 10 cm in 1.0 cm increments, an; (4) number of plates, 2 or 3 (i.e., the
’outer bumper’ plate may or may not be used). Only metal plates (i.e., “AL” or “ST”) may be used
for the 3rd plate. The full factorial design space includes 577,365 options.

A.10.2 BACKGROUND

Spacecraft are subject to impact by natural micrometeoroid and man-made orbital debris particles,
collectively referred to as space debris, during their orbital lifetime. The impact of such particles
(typically at velocities above 10 km/s) is a significant risk to the safe operation of spacecraft and
the fulfillment of mission objectives. Indeed, for manned spacecraft such as the International Space
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Figure 8: Schematic of the spec debris shield design problem. Our objective is a design solution that
will prevent perforation of the spacecraft hull (Plate 3, rear wall) by modifying the plate materials,
plate thicknesses, and plate spacing (S).

Station (ISS) and Space Shuttle Orbiter, space debris impact is the top mission risk (see e.g., Hamlin
et al. (2013)). As such, all manned spacecraft and some robotic spacecraft carry dedicated protective
shields. The most common shield configuration is a simple design known as a Whipple shield with
two thin plates separated by a gap. Meteoroid and debris particles, upon impact with the outer
plate, fragment into a cloud of solid, molten, and vaporised particles. This debris cloud expands
as it propagates through the gap, resulting in a dispersed and substantially less lethal load upon the
spacecraft hull. Multiple variants of the Whipple shield exist, including stuffed Whipple shields
which utilise intermediate layers of high-strength and high-impedence fabric (see e.g., Christiansen
et al. (1995)) and multi-shock shields which induce multiple impact shocks into the projectile to
promote maximum melting and vaporisation (Cour-Palais & Crews, 1990).

Spacecraft debris shields are typically designed using a combination of semi-analytical equations,
numerical simulations, and experimental testing. Simulations are performed in either explicit finite
element solvers, e.g., ANSYS LS-DYNA, or shock physics solvers, e.g., CTH from Sandia National
Laboratory. Modelling hypervelocity impact in those simulation codes requires substantial exper-
tise to accurately projectile and target kinetmatics together with material response. Furthermore,
such simulations can be computationally expensive, requiring hundreds of CPU hours depending
on the geometric discretisation of the model. Experimentation is typically performed on laboratory
accelerators known as two-stage light gas guns. The number of such facilities that can perform
experiments with millimetre and centimetre sized proejctiles up to impact velocities of 7+ km/s is
very limited (estimated to be < 20 globally). Such experiments are also expensive, costing on the
order of thousands of dollars, with a low through-put of approximately 1 experiment per day. In
the design of space debris shielding, in order to minimise the number of experiments and simula-
tions required, space debris is typically simplified to spherical aluminium particles. In reality, of
course, the debris environment consists of a range of materials, both metallic and non-metallic, the
properties of which influence their impact lethality. Similarly, for robotic and manned spacecraft
the majority of impact risk is represented by millimeter-sized objects, the majority of which are
fragmentation debris that have been generated by catestrophic breakup of a satellite or rocket body
and are thus highly irregular in shape, see Rivero et al. (2016). Until recently the engineering envi-
ronment models used to predict mission risk to space debris impact have also simplified the debris
population as spherical aluminium objects, thus there was little incentive to introduce the added
complexity of projectile shape and material effects in shielding design or characterisation studies.
However, recent improvements in orbital debris environment engineering models, e.g., ORDEM 3.0
(Krisko, 2014), and planned improvements to debris population source models, e.g., via DebriSat
(Rivero et al., 2016), aim to address some of these deficiencies. Shield design and characterisation,
therefore, must also begin to account for projectile shape and material effects.

A.10.3 DETAILS OF EXPERIMENT

The spacecraft shielding design experiment utilises synthetic data generated via numerical simula-
tion. This section provides additional information on the simulation setup and evaluation. Simula-
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Parameter Value Units Source
EoS: Gruneisen
Density, ρ 2700 kg/m3 (Anon., 2003)
Shear modulus, G 26.2 GPa (Anon., 2003)
Elastic modulus, E 68.3 GPa (Anon., 2003)
Poisson’s ratio, ν 0.33 - (Anon., 2003)
Melting temperature, Tm 930 K (Corbett, 2006)
Bulk soundspeed, c0 5240 m/s (Corbett, 2006)
Parameter S1 1.4 - (Corbett, 2006)
Parameter S2 0.0 - (Corbett, 2006)
Parameter S3 0.0 - (Corbett, 2006)
Gruneisen gamma, Γ 1.97 - (Corbett, 2006)
Specific heat, cp 885 J/kgK (Corbett, 2006)

Strength: Johnson-Cook
Yield stress, A 324 MPa (Anderson Jr et al., 2006)
Hardening constant, B 114 MPa (Anderson Jr et al., 2006)
Hardening exponent, n 0.42 - (Anderson Jr et al., 2006)
Strain rate constant, C 0.002 - (Anderson Jr et al., 2006)
Thermal softening exponent, m 1.34 - (Anderson Jr et al., 2006)
Reference strain rate, ε̇0 1.0 /s (Anderson Jr et al., 2006)

Failure: Johnson-Cook
Failure constant, d1 0.0 - (Anderson Jr et al., 2006)
Triaxiality constant, d2 1.11 - (Anderson Jr et al., 2006)
Triaxiality exponent, d3 -1.5 - (Anderson Jr et al., 2006)
Strain rate constant, d4 0.0 - (Anderson Jr et al., 2006)
Thermal softening constant, d5 0.0 - (Anderson Jr et al., 2006)

Table 3: Constitutive model parameters for AA6061-T651 used in the numerical simulations.

tions are performed in the explicit structural mechanics solver LS-DYNA from ANSYS (Hallquist,
2006). Simulations are performed in 3D using a smooth particle hydrodynamics (SPH) discreti-
sation scheme, which enables projectile fragmentation to be modelled without arbitrary numerical
erosion that would otherwise be required for a mesh-based Lagrangian scheme. SPH elements of
0.05 mm diameter are used to disretise all simulated parts. The metallic materials, AA6061-T651
(“AL”) and 4340 steel (“ST”), utilise a Gruneisen equation of state (EoS) (Gruneisen, 1959), a
Johnson-Cook viscoplasticity model (Johnson & Cook, 1983) and a Johnson-Cook fracture model
(Johnson & Cook, 1985), the constants for which are given in Tables 3 and 4. The aramid composite
(“KE”) is modelled as a continuum using the elastic-plastic orthotropic strength with failure model
from LS-DYNA (MAT 059) and a linear EoS, the constants for which are given in Table 5. The
ultra-high molecular weight polyethylene (“PE”), specifically Dyneema HB26, is modelled using
the orthotropic non-linear model and material constants from (Nguyen et al., 2016).

In Figure 9 a series of frames from a representative LS-DYNA simulation are provided, depicting
the impact of the cubic steel projectile against a three-wall shield design.

Simulations are performed on AMD EPYC servers with 64 CPU cores (2.25 GHz) and 1 TB of
RAM. All simulations are performed in parallel on 4 CPU cores and require 20-40 CPU hours
to run, depending on the complexity (in this case thickness) of the target plates. The simulation
models included a 3.0 cm thick aluminium alloy witness plate located 10.0 cm from the rear surface
of the target rear wall (Plate 3 in Figure 8) to measure residual penetration in the event that the
shield was perforated. Results were recorded as a binary pass/fail related to non-perforation or
perforation of the target rear wall, respectively, together with a continuous Depth of Penetration
(DoP) measurement into the witness plate. Our objective is to design a protective shield that can
defeat the projectile threat for minimal weight.
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Parameter Value Units Source
EoS: Gruneisen
Density, ρ 7850 kg/m3 (Anon., 2022)
Shear modulus, G 80.0 GPa (Anon., 2022)
Elastic modulus, E 205.0 GPa (Anon., 2022)
Poisson’s ratio, ν 0.29 - (Anon., 2022)
Melting temperature, Tm 1700 K (Anon., 2022)
Bulk soundspeed, c0 3935 m/s (Banerjee, 2007)
Parameter S1 1.578 - (Banerjee, 2007)
Parameter S2 0.0 - (Banerjee, 2007)
Parameter S3 0.0 - (Banerjee, 2007)
Gruneisen gamma, Γ 1.69 - (Banerjee, 2007)
Specific heat, cp 475 J/kgK (Anon., 2022)

Strength: Johnson-Cook
Yield stress, A 910 MPa (Holmquist et al., 2001)
Hardening constant, B 586 MPa (Holmquist et al., 2001)
Hardening exponent, n 0.26 - (Holmquist et al., 2001)
Strain rate constant, C 0.014 - (Holmquist et al., 2001)
Thermal softening exponent, m 1.03 - (Holmquist et al., 2001)
Reference strain rate, ε̇0 1.0 /s (Holmquist et al., 2001)

Failure: Johnson-Cook
Failure constant, d1 -0.80 - (Holmquist et al., 2001)
Triaxiality constant, d2 2.10 - (Holmquist et al., 2001)
Triaxiality exponent, d3 -0.50 - (Holmquist et al., 2001)
Strain rate constant, d4 0.002 - (Holmquist et al., 2001)
Thermal softening constant, d5 0.61 - (Holmquist et al., 2001)

Table 4: Constitutive model parameters for 4340 steel used in the numerical simulations.

Parameter Value Units Source
EoS: Linear
Density, ρ 1230 kg/m3 (van Hoof et al., 1999)
Shear modulus, G11 0.77 GPa (van Hoof et al., 1999)
Shear modulus, G22 1.36 GPa (van Hoof et al., 1999)
Shear modulus, G33 1.36 GPa (van Hoof et al., 1999)
Elastic modulus, E11 18.5 GPa (van Hoof et al., 1999)
Elastic modulus, E22 18.5 GPa (van Hoof et al., 1999)
Elastic modulus, E33 6.0 GPa (van Hoof et al., 1999)
Poisson’s ratio, ν21 0.25 - (van Hoof et al., 1999)
Poisson’s ratio, ν31 0.33 - (van Hoof et al., 1999)
Poisson’s ratio, ν32 0.33 - (van Hoof et al., 1999)

Strength: Composite Failure
In-plane shear strength, S21 9.0 MPa (van Hoof et al., 1999)
Transverse shear strength, S31 271.5 MPa (van Hoof et al., 1999)
Transverse shear strength, S32 271.5 MPa (van Hoof et al., 1999)
Longitudinal compressive strength, C11 221.0 MPa (Silcock et al., 2006)
Transverse compressive strength, C22 221.0 MPa (Silcock et al., 2006)
Normal compressive strength, C33 1200.0 MPa (van Hoof et al., 1999)
Longitudinal tensile strength, T11 740.0 MPa (van Hoof et al., 1999)
Transverse tensile strength, T22 740.0 MPa (van Hoof et al., 1999)
Normal tensile strength, T33 34.5 MPa (van Hoof et al., 1999)

Table 5: Constitutive model parameters for woven aramid composite used in the numerical simula-
tions.
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Figure 9: Series of frames from an LS-DYNA simulation showing the impact of a steel cubic particle
(yellow) at 7 km/s against a shield consisting of three 1.0 cm thick plates of AA6061-T651 (red -
outer bumper, blue - inner bumper, green - rear wall) with a 3.0 mm thick AA6061-T651 witness
plate (brown) positioned 10 cm behind the rearmost surface of the shield. The projectile is shown
to fragment into a dispersed cloud of projectile and shield fragments which radially disperse before
impacting upon the rear wall. The rear wall is perforated and fragments are observed to crater the
witness plate, providing a non-zero depth of penetration measurement.

Three initial designs are evaluated by the human expert, the details of which are provided in Table 6
together with the simulation results. Based on these results we assume that target designs with areal
weights significantly less than 5 kg/m2 are likely infeasible, while designs significantly heavier (>
15kg/m2) are not of interest. Within this weight range the design space includes 577,365 potential
options. We perform the optimisation in iterative batches of size 2, with one suggestion from the
BO and one from the human expert.

A.10.4 DIFFERENCE TO A CLASSICAL CS SETTING

We work with one expert and this differs from usual CS settings where multiple experts perform the
same task because:

1. Level of expertise required is high, and access is difficult: The design of shields for protect-
ing against space debris impact at hypervelocity is a highly specialised discipline typically
limited to national space agencies or their primary contractors. For instance, shielding
onboard the ISS was predominantly developed by NASA and Boeing for US modules,
ROSCOSMOS and RKK Energia for Russian modules, and JAXA for the Japanese mod-
ule. Shielding on the European Coloumbus module was designed primarily by Alenia
Aerospazio under contract to the European Space Agency, but borrowed heavily from the
NASA designs (see e.g.,Destefanis et al. (1999)). Therefore, recruiting multiple experts is
a formidable task.

2. The cost of experiments is high: Due to the cost and access limitations on experimental
facilities, we utilise numerical simulations for this design study. Such simulations are dif-
ficult to design and validate, our expert (with 20 years experience on such codes) required
about 120 hours to build the simulation models. In addition, the simulations can be com-
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putationally expensive, requiring on the order of 100-200 CPU hours per simulation for a
moderate CPU.

3. The design problem is hard: There exists no state-of-the-art solution for the defined prob-
lem. The nearest analogue is a shield designed for a spherical aluminium projectile, for
which the state-of-the-art is a stuffed Whipple shield. This shielding configuration has
been used to define our optimisation variables. Existing semi-analytical penetration laws,
such as those in Christiansen et al. (1995), are not valid for application with non-spherical
or non-aluminium projectiles.

4. The expert cannot repeat the same design task as they learn during the first experiment.

All these factors mean that for a real experiment we can only show how BO-Muse helps a single
expert for a new problem for which there is no state-of-art solution.

A.10.5 RESULTS

Results of the experiment are provided in Table 6. We can observe that the human expert initially
explored designs similar to the stuffed Whipple concept (i.e., metallic outer bumper, KE or PE
inner bumper, and metallic rear wall, with the inner bumper being roughly located at the mid-point
between the two metallic plates). By design ID 9 the expert had identified a stuffed Whipple design
that was successful at defeating the projectile, with an areal weight of 14.3 kg/m2. Between design
IDs 9 and 19 we can observe the expert exploiting this successful design to identify a lower weight
solution, without success. Up to this point the expert does not seem to have been influenced by the
BO suggestions. By design ID 21, however, we can observe the expert beginning to exploit BO
suggestions, with design ID 21 a modification of ID 5 and 14, design ID 23 a modification of 18,
and so on. Design ID 27, an expert suggestion that is an exploitation of the BO suggested ID 22,
was successful at defeating the projectile, albeit at a higher weight than the previously identified
solutions at ID 9 and 11 (16.9 kg/m2). The final expert design, ID 29, is a further exploitations of
ID 27 intended to reduce weight and is found to be the best solution identified during the experiment,
with an areal weight of 13.8 kg/m2.

The BO-Muse design ID 22 and subsequent human exploitations (design IDs 27 and 29) are, ac-
cording to our human expert, highly unusual configurations for spacecraft debris shielding that they
would not have otherwise considered if not for the BO suggestion. The conventional design method-
ology based on typical shields used in flight harware suggest that the outer bumper have a density and
a shock impedance comparable to that of the projectile and be sized such that the shock rarefaction
and tensile release wave superimpose towards the back of the projectile, maximising fragmentation
and radial dispersion. An internal fabric layer, such as that used in stuffed Whipple shields (see e.g.,
Christiansen et al. (1995)) is then intended to catch and decelerate projectile fragments prior to im-
pact upon the shield rear wall. This general design principle has been established through ongoing
investigation since the Apollo program and matured for the International Space Station with signif-
icant, proven success. Design ID 22 and the subsequent designs (IDs 27 and 29) are a substantial
deviation from these established principles and at current it is unclear why they have been successful
- further investigation is needed.

Evaluating this experiment - the role of BO-Muse was to inject novelty in the design process, from
which the human expert could take inspiration and perform exploitation. We consider this to have
been successfully demonstrated in a real applied engineering design experiment

A.11 DISCUSSION OF LIMITATIONS

In this section we present a brief discussion of the limitations of our work. With regard to the
human expert, we have assumed that “Cognitive entrenchment” behaviour occurs, which is backed
by recent studies (Dane, 2010; Daw et al., 2006). This may not hold strictly in all cases, which may
cause the algorithm’s sample efficiency to be lower than expected as BO may over-compensate for
expected expert over-exploitation that does not eventuate. Similarly, we assume that the expert is
able to improve their model as the number of observations available to them increases. However
a less skilled expert may fail to do this, and subsequently the algorithm’s sample efficiency may
suffer as, after a point, expert suggestions may cease to be useful. Finally, the human expert may
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ID Source
Plate 1 Gap1 Plate 2 Gap2 Plate 3 SC Weight Result DoP

Mat t(cm) (cm) Mat t(cm) (cm) Mat t(cm) (cm) (kg/m2) [1/0] (cm)

1 expert ST 0.2 2.0 ST 0.2 5.0 ST 0.5 7.9 7.1 1 2.89

2 expert AL 1.0 3.5 AL 1.0 3.0 AL 1.0 9.5 8.1 1 0.31

3 expert ST 1.0 6.0 AL 1.0 1.0 AL 1.0 10.0 13.3 1 0.01

4 BO ST 0.9 0.0 AL 0.9 7.0 AL 0.6 9.4 11.1 1 0.43

5 expert AL 0.5 5.0 KE 1.0 2.0 AL 1.0 9.5 5.3 1 0.22

6 BO ST 0.3 8.0 PE 0.6 0.0 AL 0.9 9.8 5.4 1 0.31

7 expert ST 0.3 5.0 KE 1.0 2.0 ST 1.0 9.3 11.4 1 0.07

8 BO ST 0.5 7.0 ST 0.9 0.0 AL 0.9 9.3 13.4 1 0.68

9 expert ST 0.7 4.0 PE 1.0 3.0 ST 1.0 9.7 14.3 0 0.0

10 BO AL 0.9 0.0 KE 0.2 8.0 ST 0.5 9.6 6.6 1 1.90

11 expert ST 0.7 4.0 KE 1.0 3.0 ST 1.0 9.7 14.6 0 0.0

12 BO PE 0.2 8.0 AL 0.9 0.0 ST 0.9 10.0 9.7 1 2.84

13 expert ST 0.6 4.0 KE 1.0 3.0 ST 0.9 9.5 13.0 1 0.01

14 BO - - 0.0 KE 0.9 0.0 ST 0.9 1.8 8.2 1 0.84

15 expert ST 0.5 4.0 KE 1.0 3.0 ST 1.0 9.5 13.0 1 0.01

16 BO - - 0.0 ST 0.9 9.0 AL 0.1 10.0 7.3 1 0.32

17 expert ST 0.7 4.0 KE 1.0 3.0 ST 0.8 9.5 13.0 1 0.01

18 BO AL 0.9 8.0 ST 0.1 0.0 AL 0.9 9.9 5.6 1 0.39

19 expert ST 0.5 6.0 PE 1.0 1.0 ST 1.0 9.5 12.8 1 0.06

20 BO PE 0.0 0.0 ST 0.4 8.0 AL 0.9 9.3 5.6 1 0.31

21 expert ST 0.7 0.0 KE 1.0 7.0 ST 1.0 9.7 14.6 1 0.33

22 BO KE 0.9 0.0 ST 0.9 8.0 ST 0.1 9.9 9.0 1 0.26

23 expert ST 1.0 5.0 KE 1.0 2.0 AL 1.0 10.0 11.8 1 0.11

24 BO - - 0.0 ST 0.9 0.0 ST 0.1 1.0 7.9 1 0.82

25 expert ST 0.4 6.0 AL 1.0 1.0 ST 1.0 9.4 13.7 1 0.03

26 BO - - 0.0 PE 0.1 9.0 ST 0.9 10.0 7.2 1 1.53

27 expert KE 1.0 0.0 ST 1.0 7.0 ST 1.0 10.0 16.9 0 0.0

28 BO AL 0.9 0.0 ST 0.1 8.0 AL 0.9 9.9 5.6 1 1.75

29 expert KE 1.0 0.0 ST 0.8 7.0 ST 0.8 9.6 13.8 0 0.0

Table 6: Results of the spacecraft protective design optimisation experiment. The best results are
indicated in bold (SC - space claim).
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not behave precisely like a GP-UCB model would suggest, again resulting in lower efficiency. We
note, however, that even when the human is unable to perform as expected, BO-Muse will still have
sublinear convergence. In such a worst-case scenario every second experiment will, in effect, be
wasted. However the data from these “wasted” experiments will still provide additional observations
of f⋆ for the machine’s GP model, which can only improve the model’s accuracy. The behaviour of
the algorithm in this case can therefore be analysed in the “machine running GP-UCB plus improved
prior due to additional data” regime - that is, a GP-UCB algorithm with AI-generated suggestions,
an exploration parameter β that is increased by a constant multiplicative factor, and a stream of
additional (harmless or even potentially informative) human-guided experimental observations -
which suffices to ensure sublinear convergence (Srinivas et al., 2012). We also note that the aforesaid
worst-case scenario is highly unlikely on the assumption that the human expert is knowledgeable in
the relevant field.
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