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Abstract

Machine unlearning—the ability to erase the effect of specific training samples
without retraining from scratch—is critical for privacy, regulation, and efficiency.
However, most progress in unlearning has been empirical, with little theoretical
understanding of when and why unlearning works. We tackle this gap by framing
unlearning through the lens of asymptotic linear stability to capture the interaction
between optimization dynamics and data geometry. The key quantity in our
analysis is data coherence - the cross-sample alignment of loss-surface directions
near the optimum. We decompose coherence along three axes: within the retain
set, within the forget set, and between them, and prove tight stability thresholds
that separate convergence from divergence. To further link data properties to
forgettability, we study a two-layer ReLU CNN under a signal-plus-noise model and
show that stronger memorization makes forgetting easier: when the signal-to-noise
ratio (SNR) is lower, cross-sample alignment is weaker, reducing coherence and
making unlearning easier; conversely, high-SNR, highly aligned models resist
unlearning. For empirical verification, we show that Hessian tests and CNN
heatmaps align closely with the predicted boundary, mapping the stability frontier
of gradient-based unlearning as a function of batching, mixing, and data/model
alignment. Our analysis is grounded in random matrix theory tools and provides
the first principled account of the trade-offs between memorization, coherence,
and unlearning.

1 Introduction

Machine unlearning – the ability to erase specific training samples’ influence from a model – is critical
for compliance, privacy, and model maintenance. Practically, retraining an N -sample model from
scratch after removing even one sample incurs prohibitive cost, motivating a flurry of approximate
unlearning methods. (Shen et al., 2024b;a; Hatua et al., 2024; Bourtoule et al., 2020; Cao & Yang,
2015; Golatkar et al., 2020; Ginart et al., 2019; Golatkar et al., 2021; Graves et al., 2020; Sekhari
et al., 2021). However, despite this rapid progress, most unlearning work remains empirical and
ad-hoc. We lack a unifying theoretical framework to predict when and why a given model can be
efficiently unlearned. Notably, even initial theoretical treatments (e.g. from a differential-privacy
viewpoint providing deletion guarantees (Sekhari et al., 2021; Chien et al., 2025)) do not explain the
dynamics of forgetting or the interaction between the forget and retain sets. This gap motivates our
work: we seek a principled understanding of the optimization dynamics of unlearning, grounded in
the geometry of the model’s loss landscape.

Our approach. We frame the unlearning process through the lens of asymptotic linear stability
analysis in optimization. In this work, we analyze the asymptotic behavior of the stability of
an unlearning solution, which fundamentally differs from the fine-tuning perspective (Ding et al.,
2025) typically adopted in unlearning, and show that this stability is what ultimately determines
whether a solution is unlearnable or not. Intuitively, unlike standard training which begins at random
initialization, unlearning starts from a pre-trained model near a local minimum of the loss. We analyze
small perturbation dynamics around that optimum to determine whether a “forgetting update” (e.g.
gradient steps that increase loss on the forget set) will remain confined to a neighborhood of the
original minimum (stable minima, no unlearning) or cause the model to drift off and diverge (unstable
minima, unlearning possible). This linear stability perspective, inspired by prior analyses of SGD
near minima (Ma & Ying, 2021; Dexter et al., 2024), provides a tractable characterization of the
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transition between convergence vs. catastrophic forgetting. The key quantities in our analysis are
a set of data coherence measures that quantify the alignment of loss gradients across samples near
the optimum. We formally decompose coherence along three axes – (i) within the retain set, (ii)
within the forget set, and (iii) between retain and forget sets – and derive stability thresholds in terms
of these coherence values. Our theory thus for the first time links interactions between retain and
forget data to unlearning success: for example, if the gradient directions of forget-set samples are
highly aligned with those of retain-set samples (high retain-forget coherence), the model will resist
unlearning because any parameter change that increases forget-set loss will also significantly hurt
retain-set loss. Conversely, if the forget-set gradients live in a subspace largely independent from
the retain-set (low inter-coherence), we prove the existence of a stable update direction that forgets
the target data while leaving the rest of the model performance intact. These results yield a stability
frontier in terms of data coherence: a boundary in data-geometry space separating regimes where
gradient-based unlearning can succeed from where it fails.

Our framework also yields an intriguing insight into the relationship between training memorization
and subsequent forgettability. Interestingly and perhaps surprisingly, we find that stronger memoriza-
tion can make forgetting easier. In our framework, memorization corresponds to a regime of complex
data where the model fits idiosyncratic details. We formalize this by adapting a two-layer ReLU CNN
signal-plus-noise model from prior work on benign overfitting (Kou et al., 2023). Using random
matrix theory tools, we prove that when the signal-to-noise ratio (SNR) in the data is lower (i.e. the
model has to memorize more spurious noise), the cross-sample alignment of gradients is weaker –
reducing the coherence terms, allowing effective forgetting of those samples. In contrast, a model
trained on high-SNR data (with strongly aligned, dominant features) has very coherent gradients that
push it to the edge of the stability frontier, making it resist unlearning – any attempt to forget one sam-
ple’s influence will strongly perturb many others. We analytically identify this coherence-controlled
stability boundary, and our experimental results confirm the trend: e.g. Hessian eigenvalue tests
and CNN heatmaps of forget vs. retain influence align with the predicted boundary, mapping out
how changes in batch size, mixing of forget/retain data, or network alignment affect the outcome of
unlearning.

Contributions To summarize, our contributions are as follows: (1) We develop the first theoretical
framework for machine unlearning based on linear stability analysis to address what local optimization
dynamics govern unlearning?. We derive precise conditions (in terms of Hessian spectra and data
coherence) under which standard gradient-based unlearning converges/diverges. (2) We address
how do the retain and forget sets interact, quantitatively, in determining stability? Towards this
goal, we introduce novel coherence metrics to quantify the retain–forget interaction, and prove
how each coherence component (retain-retain, forget-forget, retain-forget) influences the stability
of the unlearning process. These results formally characterize the joint role of data geometry
and data distribution in forgetting dynamics. (3) To address how does a model’s propensity to
memorize interact with its ability to forget?, we establish a surprising link between memorization and
forgettability: using a two-layer CNN with controllable noise, we prove that increased memorization
(lower SNR) expands the range of stable unlearning (making forgetting easier), whereas high SNR
(less overfitting) shrinks it (more resistant to forgetting). This is, to our knowledge, the first result
to rigorously connect a model’s generalization/memorization properties to its unlearning behavior.
(4) Our empirical tests measure stability indicators (e.g. sharpness via Hessian eigenvalues) and
unlearning performance under various conditions, and show strong agreement with the theoretical
stability frontier. Taken together, our results provide the first principled account of the trade-offs
between memorization, data coherence, and unlearning in modern ML models.

2 Related Work

Linear stability Prior works (Wu et al., 2022; 2018; Wu & Su, 2023) utilize the linear stability
framework to understand the relation between converging-diverging boundary and alignment of
noise and loss landscape. Furthermore, Wu et al. (2022); Wu & Su (2023) connect the alignment
properties to the simplicity bias that occurs in generic SGD. Additionally, Ma & Ying (2021)
extend the framework by incorporating higher-order moments of the noise, revealing subtle implicit
regularization effects on parameter evolution. Dexter et al. (2024) introduced the notion of data
coherence, which directly quantifies the alignment of sample-specific gradients in the loss landscape,
offering a fine-grained tool to analyze sample interactions. Compared to alternative theoretical
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approaches, such as gradient flow or dynamical system approximations, linear stability has the
distinct advantage of making explicit connections between model architecture, data distribution,
and optimization algorithm. Unlike the standard learning scenario, unlearning requires analyzing
the interleaving interaction between retain and forget sets, which introduces new dynamics not
present in classical stability analysis. To address these challenges, we introduce new analytical
tools and definitions that generalize coherence to mixed retain–forget settings. In doing so, we not
only provide stability criteria for unlearning but also establish the first formal connection between
memorization and forgetting, thereby broadening the scope of linear stability analysis beyond its
traditional application to standard training.

Theoretical works on Unlearning. A number of foundational studies analyze machine unlearning
by examining the optimization trajectory and its deviation from the original training dynamics.
For example, Golatkar et al. (2020) model unlearning under a quadratic loss and characterize the
drift in optimization trajectories by comparing the original and unlearned weights in the infinite-
time limit. Ding et al. (2025) study approximate unlearning in linear models via weight-space
distances, using the loss difference between the fine-tuned and unlearned models as the central
metric. The recent work (Mavrothalassitis et al., 2025) analyzes linear logistic regression and
expresses forgetting through closed-form weight difference between the original optimum and the
unlearned solution. Thudi et al. (2022) unroll the SGD recursion to study unlearning dynamics
through linearized gradient-flow approximation, and define unlearning directly in weight space,
linking it to membership inference vulnerability. For further discussion, please see Appendix 5.4
and Appendix 5.1. Our work builds upon this prior theoretical foundation but departs conceptually:
rather than characterizing forgetting via distance between solutions, we introduce a stability-based
perspective grounded in optimization dynamics. By analyzing asymptotic linear stability of the
unlearning update operator, we show how interactions between the retain and forget sets—mediated
through curvature and data coherence—govern whether the optimizer will remain near the original
minimum or diverge away, thereby determining whether unlearning is feasible.

3 Theory

3.1 Background
Linear stability around minima. Linear stability provides a principled lens for analyzing the
local dynamics of iterative optimization near a critical point (e.g., local minima or saddles) by
linearizing the update map and studying the resulting linear time-varying system to characterize
convergence/divergence behavior of stochastic iterative algorithms for that critical point. This
perspective underlies modern convergence analyses of SGD and its variants and, more recently,
has proved effective for characterizing generalization-relevant phenomena such as rapid escape
from sharp minima (Wu et al., 2018; Dexter et al., 2024). In our context, we consider a loss
L(w) = 1

n

∑n
i=1 ℓi(w) for model parameters w ∈ Rd. Let w∗ be a local minimum. For a small

perturbation δ around w∗, a first-order Taylor expansion gives
∇L(w∗ + δ) ≈ ∇2L(w∗) δ,

since ∇L(w∗) = 0. This linearization suggests that near w∗, the gradient is approximately given
by the Hessian H = ∇2L(w∗) times the perturbation. Since we are only interested in the dynamics
of the optimizer (rather than its absolute position), without loss of generality we take w∗ = 0 as in
prior works. For more discussion regarding assumption used in our work, please refer appendix 5.2.

Stochastic gradient updates. We are interested in the dynamics of stochastic gradient descent
(SGD) near w∗. A generic SGD update can be written as

wt+1 = wt − η gt,

where η > 0 is the learning rate and gt is the stochastic gradient at step t. In the neighborhood of
w∗, using the linear approximation, we can write gt ≈ Ht wt, where Ht is a random Hessian matrix
(a mini-batch estimate of H). Thus the update becomes

wt+1 = wt − η Ht wt = (I − ηHt)wt . (1)
Here Ht = 1

B

∑
i∈Dt

Hi is the average Hessian over the mini-batch Dt of size B, and Hi =

∇2ℓi(w
∗). By construction H = 1

n

∑n
i=1 Hi. Following Dexter et al. (2024), we model mini-

batch sampling via Bernoulli selection (each data point is included in the batch independently with
probability B/n).
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Sample wise gradient. In the above equation, we assume that sample wise gradient at w∗ to be zero
i.e.,

∇li(w) = ∇li(w
∗) +Hi(w − w∗).

= Hi(w − w∗).
(2)

This means that all gradients are results from curvatures. This assumption follows the standard
linear interpolating regime used in prior works such as (Dexter et al., 2024; Wu & Su, 2023) and
verified through empirical and theoretical studies (Tang et al., 2023; Chizat & Bach, 2020). In this
regime, the local dynamics are dominated by the Hessian curvature to align with our focus. For more
discussion regarding assumption used and limitation in our work, please refer appendix 5.2.

Unlearning update rule. To analyze machine unlearning (where a subset of the training data,
called the forget set, is to be “forgotten” while the remaining data in the retain set is preserved), we
adopt the update rule of Kurmanji et al. (2023). In this scheme, each step performs simultaneous
gradient descent on the retain set and ascent on the forget set. Intuitively, this means we take a
step that decreases loss on retained data while increasing loss on data that should be unlearned.
Many gradient-based unlearning algorithms can be viewed as variants of this approach with different
weighting of these components. We use nf , fr for number of forget and retain samples respectively.
In our linearized framework, the update with forget importance hyper-parameter α ∈ [0, 1] is:

wk+1 = wk − η
[
(1− α)

1

B

∑
i∈Dr,k

Hi wk − α
1

B

∑
i∈Df,k

Hi wk

]
, (3)

where Dr,k and Df,k denote the mini-batch of retain-set and forget-set examples at step k, respec-
tively. This can be rewritten in operator form as

wk+1 = Jk wk, Jk = I − η(1− α)
1

B

∑
i∈Dr,k

Hi + ηα
1

B

∑
i∈Df,k

Hi . (4)

The random linear operator Jk captures the combined effect of the retain and forget gradients at step
k. Note that Jk is itself random due to sampling of a mini-batch from each set.

A central question in linear stability analysis is whether the iterates remain near the original optimum
or diverge away. To quantify this, we examine the expected squared norm of the parameters after
k steps, E∥wk∥2 = E[wT

k wk]. Starting from an isotropic small perturbation w0 (we assume
w0 ∼ N (0, I) without loss of generality), one can expand wk = Jk−1 · · · J0 w0. This yields

E∥wk∥2 = E[wT
0 (J

T
0 · · · JT

k−1Jk−1 · · · J0)w0] = ETr
(
Jk−1 · · · J0JT

0 · · · JT
k−1

)
, (5)

where we used E[w0w
T
0 ] = I in the final equality. Eq (5) is the key quantity we will analyze to

determine stability: if E∥wk∥2 remains bounded (or decays) as k → ∞, the unlearning process is
stable (convergent) around w∗, whereas if E∥wk∥2 → ∞, the process is unstable (diverges, escaping
w∗). For more discussion regarding the assumptions used in our work, please refer Appendix 5.2,
and for more discussion regarding divergence and unlearning, please refer to Appendix 5.4.

3.2 Coherence Measures for Unlearning

Coherence in single-dataset SGD. Before introducing our new coherence measures tailored to
unlearning, we briefly review the original notion of Hessian coherence from Dexter et al. (2024)
for standard (single dataset) learning. The coherence quantifies the alignment between per-sample
Hessians in the training set. Intuitively, if all samples induce very aligned curvature directions, SGD
will experience less “randomness” and more stable updates, whereas if each sample’s loss landscape
is oriented differently, the optimization dynamics are more erratic.
Definition 1 (Coherence, single set (Dexter et al., 2024)). Given a collection of positive semidefinite
(PSD) Hessian matrices {Hi : i ∈ [n]} for n training samples, the coherence matrix S ∈ Rn×n is
defined by

Ssingle
ij = ∥H1/2

i H
1/2
j ∥F ,

the Frobenius norm of the product of the square-root Hessians of sample i and j. The associated
coherence measure is

σsingle =
λmax(S

single)

maxi∈[n] λmax(Hi)
,

i.e. the largest eigenvalue of Ssingle normalized by the largest individual sample Hessian eigenvalue.
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Intuitively, σsingle close to 1 indicates that the top curvature directions of all samples are closely
aligned (high coherence), whereas a small σsingle indicates disparate or orthogonal curvatures across
samples. Prior work showed that higher coherence σsingle correlates with greater stability of SGD.
In other words, when the loss landscapes of different samples “point” in similar directions, gradient
steps reinforce each other and it is more resistant for SGD to diverge away from the optimum. For
discussion about the practical feasibility of calculation for coherence matrix, please refer to Appendix
5.5.

Coherence with retain and forget sets. In an unlearning scenario, we have two disjoint sets of
samples: the retain set Dr (of size nr) and the forget set Df (of size nf ). Coherence within each set
(retain vs. forget) is not sufficient to describe the behavior of the combined ascent-descent dynamics.
We need to also quantify the interaction between the two sets. We therefore introduce a series of
definitions that extend coherence to the multi-set setting.

First, we define a weighted combination of Hessians from a retain-forget pair, which will serve as an
effective “mixing Hessian:”
Definition 2 (Mix-Hessian).

D :=
1

nrnf

∑
r∈Dr,f∈Df

C
1
2
r

C
1
2
r + C

1
2

f

Hr +
C

1
2

f

C
1
2
r + C

1
2

f

Hf =
1

nrnf

∑
rf

Drf , (6)

HereCr = η2(1−α)2 1
nr

( 1
B − 1

nr
), Cf = η2α2 1

nf
( 1
B − 1

nf
), Drf = C

1
2
r

C
1
2
r +C

1
2
f

Hr+
C

1
2
f

C
1
2
r +C

1
2
f

Hf . The

constantsCr andCf reflect the relative contribution of retain vs forget Hessians to the second-moment
dynamics of wk (these arise from the SGD noise analysis in Lemma 3.1 later). The mix-Hessian D
aggregates the pairwise influence of retain and forget sets; it effectively summarizes how the two sets
jointly affect curvature when considered together in the update. Next, analogous to the single-set
case, we define a coherence matrix that captures alignment across pairs of retain/forget examples:
Definition 3 (Mix-coherence matrix). Construct an index set for all retain–forget pairs: P =
{(r, f) : r ∈ Dr, f ∈ Df} of size |P| = nrnf . The mix-coherence matrix S ∈ R|P|×|P| is defined
entrywise by

S(r,f),(r′,f ′) =
∥∥D1/2

rf D
1/2
r′f ′

∥∥
F
,

for any (r, f), (r′, f ′) ∈ P .

In words, S measures the alignment between every pair of mixed Hessians Drf and Dr′f ′ . Finally,
we define an overall coherence measure for unlearning, generalizing the single-set σ:
Definition 4 (Unlearning Coherence Measure). The unlearning coherence is

σ =
λmax(S)

max(r,f)∈P λmax(Drf )
,

the leading eigenvalue of the mix-coherence matrix S normalized by the largest eigenvalue among
all individual Drf matrices.

This definition reduces to the original coherence measure in the limit where one of the sets is absent
(e.g. nf = 0 or α = 0 yields only a retain set). It simultaneously captures the within-set coherence
and the cross-set coupling. Intuitively, if the retain and forget sets are highly aligned in terms of
curvature directions, the mix-coherence σ will be large. In that case, performing ascent on forget
and descent on retain will tend to cancel out: the update directions from the two sets are similar
but with opposite sign, leading to minimal movement away from w∗. This predicts stability for the
current optimum (i.e. resistance to unlearning). Conversely, if the two sets are incoherent (small σ),
their Hessians push in different directions; the ascent on forget set will not be canceled by descent
on retain, making it easier for the iterates wk to escape the original minimum. In summary, our
multi-set coherence measure σ quantifies how conducive the data geometry is to either divergence
or convergence during unlearning. To our knowledge, this is the first work to explicitly incorporate
multiple data subsets into a stability analysis of optimization.

5
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3.3 Linear Stability Analysis of Unlearning

In the theory section, we study a more fundamental problem regarding whether a set is unlearnable
in asymptotic manner through optimization instead of in a fine-tuning regime. We now leverage the
above framework to derive conditions under which the unlearning dynamics (3) will converge or
diverge. In our work, A key technical challenge is that, unlike in the single-set case, the influence
of SGD noise cannot be captured by a simple closed-form recursion. This is because the gradient
noise now comes from two interleaved sources (retain and forget sets) with potentially different
magnitudes.

We begin with a lemma that describes the evolution of the second moment E∥wk∥2 in terms of a
recursive sequence of matrices Nk. This lemma generalizes the stability condition from Dexter et al.
(2024) to account for the alternating ascent/descent updates.
Lemma 3.1 (Stability recurrence for unlearning). Consider the unlearning update operator Jk
defined in (4). Define a sequence of PSD matrices {Nk}k≥0 by N0 = I and for k ≥ 1:

Nk = Cf

∑
i∈Df

Hi Nk−1 Hi + Cr

∑
i∈Dr

Hi Nk−1 Hi , (7)

with Cr, Cf as given in Definition 2. Also let Mk = J2k + Nk. (J = I − η(1 − α)HR + ηαHF

where HR and HF ar full Hessian of retain and forget set. See definition 6) Then:

1. (Lower bound) ETr
(
JT
0 · · · JT

k−1Jk−1 · · · J0
)

≥ Tr(Mk). Moreover, if Tr(Nk) → ∞ as
k → ∞, then E∥wk∥2 → ∞ as well.

2. (Upper bound) If at each step Jk is spectrally bounded as (1 − ϵ)I ⪰ J ⪰ −(1 − ϵ)I for
some ϵ ∈ (0, 1) (i.e. all eigenvalues of J lie in [−(1− ϵ), 1− ϵ]), then

ETr
(
JT
0 · · · JT

k−1Jk−1 · · · J0
)

≤
k−1∑
r=0

(
k

r

)
(1− ϵ)2(k−r) Tr(Nr) .

If in addition Tr(Nr) ≤ ϵ for all r, then E∥wk∥2 → 0 as k → ∞ (the unlearning update
converges in mean square).

Discussion. Part (1) of Lemma 3.1 provides a sufficient condition for divergence: if the “noise
accumulation” matrices Nk (which capture how SGD variance builds up over iterations) have un-
bounded trace, then the model will eventually blow up (escape the optimum). Part (2) gives a
sufficient condition for convergence: if each J is a contraction (spectral norm < 1 by a margin ϵ)
and the accumulated noise remains small, then the model’s parameter norm will vanish (meaning wk

returns to the optimum). These statements generalize classical stability results to the unlearning case.
Importantly, the recursion (7) for Nk does not admit a simple closed form because Nk−1 appears
inside sums over both sets Dr and Df . This coupling between retain and forget sets is what makes
analyzing unlearning challenging. By introducing the coherence measures (Definition 4 and related
definition), we overcome this hurdle: the coherence will allow us to relate Tr(Nk) to data-dependent
quantities like λmax(D) and thereby derive interpretable stability criteria.

Using the coherence framework, we can now state our main stability thresholds. The first result is a
condition under which the unlearning dynamics diverge (fail to stay at the original minimum):
Theorem 3.2 (Divergence criterion for unlearning). Under the setup of Lemma 3.1, the unlearning
process will diverge if the mix-Hessian eigenvalue exceeds a threshold determined by the coherence.
In particular, if

λmax(D) ≥
√
2σ

η
(
(1− α)nf

√
nr

B − 1 + αnr

√
nf

B − 1
) , (8)

then lim
k→∞

E∥wk∥2 = ∞. Equivalently, condition (8) guarantees the unlearning algorithm will
escape the original minima (diverge) due to the stochastic dynamics.

In plain terms, Theorem 3.2 says that if the influence of the forget–retain interaction (measured by
λmax(D)) is sufficiently large relative to the stabilizing effect of coherence σ (and other factors like
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batch size B and relative set sizes), then the gradient ascent on the forget set will overpower the
descent on the retain set, leading to instability. The inequality (8) can be viewed as a quantitative
stability limit or “edge of chaos” for unlearning: beyond this point, the original solution w∗ cannot
hold.

Our next theorem establishes a matching lower bound, showing that the above divergence condition
is essentially tight. It guarantees that when λmax(D) is below a certain threshold (of the same order
as in (8)), one can find a scenario where the unlearning process converges, thereby demonstrating
that the threshold cannot be significantly improved in general:
Theorem 3.3 (Convergence condition (matching lower bound)). Suppose λmax(D) and σ satisfy

λmax(D) ≤ 2σ

η C ′
r

(
σ + nf

(
nr

B − 1
)) , (9)

where C ′
r =

√
Cr/(

√
Cr +

√
Cf ) (with Cr, Cf from Definition 2). Then there exists a choice of

PSD Hessians {Hi} for the retain and forget sets such that the unlearning update converges (i.e.
limk→∞ E∥wk∥2 = 0) under those Hessians.

The convergence condition (9) mirrors the divergence condition in its dependence on σ, nr, nf ,
and B. The existence of a construction that achieves convergence when (9) holds indicates that our
divergence criterion in Theorem 3.2 is tight up to constant factors. In summary, Theorems 3.2 and
3.3 together pin down a theoretical threshold curve in the space of data coherence and algorithm
parameters that separates stable (convergent) unlearning from unstable (divergent) unlearning. We
can now interpret some common unlearning strategies:

Naive negative gradient. A straightforward unlearning baseline is to set α = 1 and run gradient
ascent on the forget set alone. Our framework explains why this often fails. If the forget set has
high internal coherence, its gradients align with the curvature at w∗, so ascent follows a single
stable direction and does not escape the minimum due to lack of stochasticity. Without rendering of
stochasticity, the small learning rate can give slow diverging behavior. If the forget and retain sets
are also highly coherent, the overall coherence stays large even without the retain set. In both cases
divergence is inhibited or slowed down, matching empirical reports that naive negative-gradient
unlearning typically stagnates or oscillates, hurting retained data while barely reducing forget-set
performance (Ding et al., 2025; Fan et al., 2025; Ding et al., 2025).

Random label perturbation. Another strategy is to add randomness to the forgetting process, for
instance by using mislabeled data or injecting noise into the forget set’s gradients (see, e.g., random
label unlearning). In our terms, this deliberately breaks the coherence of the forget set: if labels
are randomized, the gradients from forget-set samples become effectively uncorrelated, dramatically
lowering the forget-set’s internal σ. This, in turn, allows the model to escape the original minimum
much faster. Moreover, randomizing forget labels also reduces the coupling between forget and
retain sets (since the forget-set gradient is now essentially random noise orthogonal to the retain-set
Hessians). Thus, random label methods improve unlearning by driving the coherence measure σ
downward, so the divergence criterion is more easily satisfied. (Graves et al., 2020)

Min-Max (targeted forget) methods. More sophisticated approaches pick a subset of model
weights or directions that are most “responsible” for the forget set’s performance, and then apply
ascent/descent on those components. This can be seen as applying projection matrices PF and PR

to the Hessians Hf , Hr respectively, focusing updates on certain eigen-directions. Such projections
effectively reduce the overlap between forget-set and retain-set update directions (since PFHf and
PRHr act in different subspaces), thereby reducing the cross-coherence between the two sets. In our
framework, this corresponds to a smaller overall σ as well. By isolating the forgetting dynamics,
Min-Max methods thus decrease the ability of the retain set to interfere with forgetting (and vice
versa), making the unlearning process more effective. (Tang & Khanna, 2025; Fan et al., 2024)

3.4 Memorization and Forgetting

So far, our analysis has focused on the role of stochastic gradient noise (from mini-batch sampling).
We now turn to another key factor: the inherent signal vs. noise structure of the data itself. We ask:
if a model has memorized certain training examples (as opposed to learning a shared signal), does
that make it easier or more resistant to forget those examples? We will show a theoretical connection
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between a model’s tendency to memorize (which occurs when data has low signal-to-noise ratio) and
the ease of unlearning. Our work aims to identify the memorization resulting from highly orthogonal
component (noise, outlier features) and its relationship to forgetting (see Appendix 5.6 for further
discussion.) To make this concrete, we consider a specific data model and network, inspired by the
theoretical construction by Kou et al. (2023). The data distribution is designed so that each example
contains a mixture of a common signal and independent noise. This is formalized as follows:
Definition 5 (Data Setup). Let µ ∈ Rd be a fixed unit-norm signal vector. Each training example
consists of a feature pair x = [x(1); x(2)] ∈ R2d (concatenation of two d-dimensional parts) and a
label y ∈ {−1,+1}. The example is generated by:

1. Sample y as a Rademacher random variable (Pr(y = +1) = Pr(y = −1) = 1
2 ).

2. Sample a noise vector ξ ∼ N (0, σ2Id) in Rd, where σ2 is the noise variance.

3. With equal probability, set either x(1) = y µ and x(2) = ξ, or x(1) = ξ and x(2) = y µ.
In other words, one of the two halves of x carries the signal y µ and the other carries
independent noise.

We then consider a two-layer convolutional neural network (CNN) with ReLU activations operating
on this data.. The network has two sets of convolutional filters (for the positive and negative class)
and outputs a score f(W,x) whose sign determines the predicted label. Specifically, let W (+1)

and W (−1) be the weight matrices for the two classes, each of shape m × d (with m filters). The
network’s output is

f(W,x) =
1

m

m∑
r=1

(
ReLU(⟨w(+1)

r , x(1)⟩) + ReLU(⟨w(+1)
r , x(2)⟩)

)
− 1

m

m∑
r=1

(
ReLU(⟨w(−1)

r , x(1)⟩) + ReLU(⟨w(−1)
r , x(2)⟩)

)
,

(10)

and the model is trained with logistic loss LS(W ) = 1
n

∑n
i=1 log

(
1 + exp(−yi f(W,xi))

)
. We

focus on the case where the network can fit the training data perfectly (interpolating regime) and
potentially overfits.

In this setting, we can analyze the coherence of the Hessians at the trained solution. The following
result provides an upper bound on the coherence in terms of the signal-to-noise ratio (SNR) of the
data, defined as SNR = ∥µ∥

σ
√
d

(which measures the strength of the common signal relative to noise in
each example):
Theorem 3.4 (Coherence bound in the CNN memorization model). Under the data model of
Definition 5 and the two-layer ReLU CNN defined above, suppose the network is trained to near-zero
training loss. Then with probability at least 1− 8δ (over the random draw of the dataset), the largest
eigenvalue of the coherence matrix S for the retain/forget split satisfies

λmax(S) ≤ O
(
nr nf dσ

2
[
(
√

C ′
r +

√
C ′

f )
2 (SNR)2 + (C ′

r + C ′
f )
])

, (11)

max
rf

λmax(Drf ) ≤ O((C ′
r + C ′

f )(dσ
2(SNR)2 + 1)), (12)

where C ′
r and C ′

f are the normalized retain/forget weight fractions as defined in Theorem 3.3.
Consider division of two quantities and we can find that for small SNR limit and large SNR limit:

lim
SNR→0

λmax(S)
upper

maxrf D
upper
rf

= O(nrnf ) , lim
SNR→∞

λmax(S)
upper

maxrf D
upper
rf

= O(nrnf (1 +
2
√
C ′

rC
′
f

C ′
r + C ′

f

)). (13)

Discussion Theorem 3.4 shows the surprising role of SNR in stability of the optimizer through its
control over the coherence. In particular, if the data has a very low SNR (meaning µ is small relative
to the noise σ), then the network is likely to memorize the noise. In that regime, high-dimensional
random noise vectors are nearly orthogonal to each other, so Hessians for different samples align
poorly. Our bound indicates that coherence measure is larger in large SNR limit compared to

8
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(a) Learning rate η = 0.5 (b) Learning rate η = 0.8

Figure 1: Tight upper and lower bounds. Blue = convergence, red = divergence. The dashed line
is the lower bound (Theorem 3.3), the solid line the divergence criterion (Theorem 3.2). Both closely
track the true boundary.

small SNR limit, so a smaller SNR yields a smaller coherence. Consequently, when the model has
memorized (low SNR), the unlearning process becomes easier: the model can move away from the
original fit with less resistance, as formalized by our earlier stability criteria. Conversely, if the
data has high SNR (dominant signal shared across examples), the model will latch onto that signal,
resulting in large coherence, and the the model resists leaving the optimum since all samples agree
on the direction.

This gives a rigorous basis for a perhaps counter-intuitive aphorism: the more you memorize, the
easier you forget. In other words, models that rely heavily on idiosyncratic features of individual
data points (memorization) are in fact less stable at those points and can forget them with less effort,
whereas models that have learned a strong global structure (signal) are more stable and resistant to
having a single sample’s influence removed. Our work is the first to formally establish this connection
between memorization (in terms of data geometry) and unlearning. We believe this provides valuable
insight into the trade-offs inherent in machine unlearning.

4 Experiments

4.1 Diverging and converging condition.

Experimental setup. In this section, we simulate experiments to test Theorems 3.2 and 3.3. We fix
nf = nr = 50 and set α = 0.1. Say Q is a hyper-parameter constant. We will set Q to different
values to control various quantities in the experiments. For the retain set, Hessians are defined as
Hi = me1e

T
1 for i ∈ [Q], and Hi = mei−Q+1e

T
i−Q+1 otherwise, with m = 2nr/Q; the forget set

uses the same construction. This ensures λ1(HR) = λ1(HF ) = λ1(D) = 2, controlling sharpness.
We choose η ≤ 1 to avoid divergence from the standard criterion η ≥ 2/λ1, so any escaping behavior
stems solely from stochasticity, consistent with our theorem.

To vary coherence, we change Q and compute (B, σ) pairs by adjusting batch size. For each pair, we
randomly initialize w, run 1000 updates, and record ∥w1000∥. Runs with ∥w1000∥/∥w0∥ ≥ 1000 are
marked as diverging. Each experiment is repeated 10 times, and the majority outcome determines
convergence/divergence.

Bounds on divergence. Figure 1 shows that both our upper and lower bounds predict the divergence
region accurately; the bounds are tighter for batch sizes ≥ 10. The divergence criterion in particular
matches the true boundary, demonstrating that our coherence-based measure captures the essential
optimization dynamics accurately. This highlights coherence as a meaningful lens on unlearning
dynamics, with potential applications beyond our scope. Please see appendix 5.3 for further details.

4.2 Relation between memorization and forgetting.

Experimental setup. We generate data as in Definition 5 along with the 2 layer CNN. The dataset
has 50 training samples without label noise. We set µ = ∥µ∥2[1, 0, . . . , 0] and add Gaussian noise
ξ ∼ N (0, σ2Id) with σ = 1.0. To control the SNR in our experiments, we vary the signal strength to

9
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Figure 2: (Left) Training loss. (Middle) Test error. (Right) Forget loss. Memorization and forgetting
regions strongly overlap as indicated by the overlap blue region.

achieve different level of SNR while fixing the noise magnitude. We vary the value of d ∈ [100, 1100]
to verify our results with varying levels of over-parametrization. The CNN has m = 10 filters and
is trained by full-batch gradient descent for 100 epochs at learning rate 0.1, ensuring training loss
≤ 0.1.

We record training loss and test error (on 1000 unseen samples). For unlearning, out of total 50
samples, we use 25 samples to form the forget set and the other 25 to build the retain set. We apply
mini-batch unlearning (batch size 5) using the negative-gradient method with learning rate 0.1 and
α = 0.3 for 90 steps, then record the average forget loss. Each experiment is repeated 20 times and
averaged.

Memorization–forgetting overlap. Figure 2 shows heatmaps over signal strength and dimension.
Memorization is identified where training loss is low but test error high (left, middle). Strikingly,
these regions coincide with high loss on the forget (right), confirming our prediction: memorization
corresponds to low coherence, making solutions unstable and easier to escape, thus making unlearn-
ing easier. This provides strong evidence for our framework and, to our knowledge, is the first work
to connect memorization and forgetting through coherence. For more detailed discussion regarding
the setup and its corresponding purpose, please refer appendix 5.3.

Larger scale and real world data. To validate our results on real world scenarios, we conduct
additional experiments on a more realistic setting: CIFAR-10 with a ResNet-18 model. We first
train the model to convergence (100 percent training accuracy). We then perform unlearning steps as
stated in eq 3. We use step size as 0.01 with forget set being 10 percent of the training set. We set α or
weighting between forget set and training set is set to 0.3. We record the loss on the forget set for the
first 500 steps at interval of 50 steps. To probe the relationship between memorization and unlearning
predicted by our theory, we inject Gaussian noise of varying variance (0.1,0.3,0.5) into the inputs.
Higher noise variance produces stronger memorization, since the network overfits the idiosyncratic
noise patterns. As shown in Table 1 and predicted by our coherence framework, models with higher
memorization (larger variance) exhibit faster loss increase on the forget set during unlearning.

Step Var = 0.1 Var = 0.3 Var = 0.5

0 0.0016±0.0005 0.0019±0.0004 0.0016±0.0004
50 0.0024±0.0014 0.0016±0.0003 0.0700±0.0730

100 0.0694±0.0858 0.0428±0.0539 0.0715±0.0667
150 0.0477±0.0508 0.0356±0.0401 0.1575±0.1692
200 0.0722±0.0762 0.1582±0.1744 0.6279±0.5556
250 0.1758±0.2054 0.1671±0.1508 1.1366±0.6084
300 0.3888±0.4347 0.5626±0.5598 1.4868±0.9849
350 0.6515±0.7707 0.8544±0.7993 2.4464±1.5124
400 1.4362±1.5605 2.3895±1.2796 5.5148±1.8706
450 2.5029±2.3457 2.9324±1.2882 5.5811±1.8397

Table 1: Forget-set loss (mean ± std) during unlearning across noise levels.
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5 Appendix

5.1 Additional related works

Machine unlearning and memorization. Many unlearning methods are proposed to effectively
erase information of selected samples. Several basic but well-known methods such as random
labeling of forget set (Graves et al., 2020) and explicit gradient ascent on the forget set (Warnecke
et al., 2023) lay foundation for current unlearning methods. More recent works extend on those
works to improve overall performance of unlearning. For example, SCRUB (Kurmanji et al., 2023)
simultaneously perform gradient ascent on forget set and gradient descent in the retain set to better
preserve performance of retain during unlearning. Influence based (Izzo et al., 2021) unlearning
propose idea that takes into account of the Hessian information of datasets to perform update of the
model weights. Saliency Unlearning (Fan et al., 2024) identity weights that react strongly to forget
set through magnitude of gradient and perform unlearning only on those weight to achieve better
performance. There are several theoretical studies about unlearning through the lens of the differential
privacy and provide performance guarantee. For example, Langevin Unlearning Chien et al. (2025)
study unlearning with privacy guarantee through projected noisy gradient descent. Sekhari et al.
(2021) studies unlearning problem and provide performance guarantee and the corresponding sample
complexity. There are also works discussing relationship between memorization and generalization.
Attias et al. (2024) discuss the fundamental trade-off between generalization and memorization under
information theory framework. Carlini et al. (2019) discuss different metrics for identifying sample
of different type (memorized, prototypical and so on). Feldman (2021) provide theoretical and
experimental analysis saying the memorization is necessary to achieve optimal performance. There
are also several works studying memorization with different tasks and model architectures (Biderman
et al. (2023); Li et al. (2025); Prashanth et al. (2025)).

5.2 Discussion about assumptions

Linearized dynamics and quadratic approximation: In this section, we provide a consolidated
and detailed discussion for why this modeling choice is (1) standard, (2) empirically grounded, and
(3) necessary for theoretical progress in unlearning.

First, the local quadratic approximation is a well-established and widely validated modeling frame-
work in the theory of deep learning. A large body of recent work successfully explains diverse
optimization behaviors using this approximation, including the Edge-of-Stability phenomenon (An-
dreyev & Beneventano, 2025; Lee & Jang, 2023), implicit bias and generalization (Wu & Su, 2023;
Wu et al., 2022), eigenvalue dynamics and curvature structures (Agarwala & Dauphin, 2023), and
stability versus divergence of SGD (Dexter et al., 2024; Chang & Khanna, 2025). While the ap-
proximation does impose limitations as (all theoretical frameworks do) it also provides meaningful
insights into real-world systems that alternative approaches currently cannot offer. The success of
these works illustrates that quadratic modeling is both theoretically fruitful and empirically relevant.
Use of the same approximation follows this tradition and enables us to reveal new connections
between the forget set and retain set via their geometric interactions.

Second, multiple empirical studies show that the loss landscape near well-trained minima is smooth
and locally well-approximated by a quadratic form (Li et al., 2018; Singh & Alistarh, 2020; Ghorbani
et al., 2019). This has been repeatedly observed across architectures, datasets, and training regimes.
Importantly, unlearning is a fine-tuning procedure that begins from an already-converged minimum,
precisely the region where such local approximations are the most accurate. Thus, the theoretical
foundation is not only supported by prior empirical evidence but is also particularly appropriate for
modeling unlearning dynamics.

Third, a key question is: why do we need approximations at all in theoretical unlearning? Existing
theoretical works on machine unlearning also rely on simplified or linearized systems in order to
obtain analyzable results. For example, Golatkar et al. (2020) study unlearning under a quadratic
model and analyze the drift of optimization trajectories which is exactly the type of measure we
employ. Ding et al. (2025) use linear feature–weight dot product models and weight-space distances
to characterize approximate unlearning. The recent work (Mavrothalassitis et al., 2025) operates
in linear logistic regression, enabling closed-form solutions and a theoretical characterization of
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forgetting difficulty. Thudi et al. (2022) analyze unlearning by unrolling the SGD recursion, which
again relies on linearization of the gradient dynamics.

One commonality across all these theoretical frameworks is that they require simplifying assumptions
to make the problem analyzable. Our quadratic approximation fits within this established method-
ology. Although no single abstraction captures the full complexity of deep networks, each sheds
light on a different aspect of the phenomenon. Our framework contributes by offering a principled
geometric description of how the retain and forget sets interact through curvature and coherence,
revealing a new mechanistic explanation for when gradient-based unlearning becomes difficult or
feasible.

Sample wise gradient This assumption used in our work required that sample wise gradient at w∗

to be zero i.e.,

∇li(w) = ∇li(w
∗) +Hi(w − w∗)

= Hi(w − w∗)
(14)

This means that all gradients around the optimum strictly depend on curvatures. This aligns with
the focus of our work which is to study how curvatures influence the optimization behavior. This
assumption follows the standard linear interpolating regime used in prior works such as (Dexter
et al., 2024; Wu & Su, 2023) widely observed in overparameterized networks, where training loss
and sample-wise losses approach zero near convergence. Empirical and theoretical studies (Tang
et al., 2023; Chizat & Bach, 2020) have shown that modern neural networks can fit all training labels
exactly, implying that the close-to-zero loss results from vanishing per-sample gradients rather than
balanced large gradients. In this regime, the local dynamics are dominated by the Hessian curvature,
making the linear approximation around minima both standard and justified.

5.3 More discussion about the experiments

Below we clarify the design and purpose of our experiments and will add the discussion into
the updated version of our work. The experiments serve two distinct goals: (1) verifying the
theoretical divergence criterion and matching lower bound under a controlled synthetic setting, and
(2) empirically testing the predicted link between memorization and forgetting using a two-layer
CNN.

Synthetic verification. We construct sample-wise Hessians such that the overall dataset Hessian is
constrained by 2 / η, ensuring that any divergence behavior arises purely from stochasticity and data
geometry. We vary the sample-wise Hessian coherence while maintaining the same global sharpness,
then run training under different learning rates. Divergence is detected when the weight norm grows
1000× larger than initialization (repeated over five runs). As shown in Fig. 1, the empirically
observed divergence boundary (red/blue transition) aligns closely with both our theoretical criterion
and the matching lower bound, confirming that the theory precisely predicts optimization stability.

Memorization–forgetting test. For the second part, we want to verify the whether or not stronger
memorization will lead to stronger forgetting or unlearning as our theory indicates that when model
memorize the data, it will map the data to space where it is orthogonal to the main dataset in terms of
loss curvatures and give low coherence measure. This low coherence measure will therefore lead to
easier forgetting process as predicted by our theory. To control memorization strength, we generate
datasets with varying signal-to-noise ratio (SNR). Low-SNR data force the model to memorize noise
(learn orthogonal noise directions in the loss curvature space) yielding low coherence. After training,
we apply our unlearning procedure and track forget losses. The training loss indicates that all models
properly learn the data and converge. The testing loss is to demonstrate whether or not the model
memorize the data. This is due to the fact that the when the model perform well in train but bad in
the testing, it indicate there exist memorization. We therefore can observe that small SNR regime
show strong memorization. Lastly, the forget loss indicate that whether or not we can escape the
current minima and perform successful unlearning. Our results show that it is consistence with our
theoretical prediction. The regime of memorization will also give stronger forgetting results aligning
with our coherence measure.
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5.4 Discussion about divergence and unlearning.

In this section, we discuss how the divergence and unlearning are related under different scopes of
unlearning and how is this relationship being explored in prior works. Further more, we want to
answer why the loss or distance based metric is still valuable and remain one stander for unlearning
problem.

First, divergence and distance is widely used unlearning metrics in many prior works. while
there is currently no single universal definition of unlearning across domains: some applications
emphasize privacy (MIA resistance), others focus on confusion removal, bias removal, safety, or
utility preservation. Despite this diversity, loss and distance based metrics remain among the most
commonly used evaluation tools, and our work is consistent with this long line of literature. Our
use of the metric is consistent with many established works that continue to evaluate unlearning
effectiveness using forget-set loss or accuracy. Examples include unlearning accuracy (Fan et al.,
2024), forgetting error (Kurmanji et al., 2023), forget performance (Kurmanji et al., 2023), forgetting
loss (Graves et al., 2020; Golatkar et al., 2020) and distance-based measures (Thudi et al., 2022).
They are also work characterizing the distance between solutions resulting from different algorithms
(Mavrothalassitis et al., 2025). These metrics are still used because they capture the effect of
removing the forget set and they correlate strongly with practical privacy risks (e.g., MIA success).
In this sense, analyzing divergence or distance quantities that govern how the model leaves the old
solution is aligned with standard practice.

Second, why divergence is theoretically meaningful and aligns with prior unlearning theory? Several
foundational works analyze unlearning by studying optimization trajectory and its reaction to different
component involved in unlearning. For example, Golatkar et al. (2020) study unlearning through
analyzing drift of optimization trajectories built on quadratic loss and determine the weight difference
at infinity time limit. Ding et al. (2025) use linear models and weight-space distances to characterize
approximate unlearning. Specifically, they use loss as criterion to quantify the difference brought
by unlearning process. The recent work (Mavrothalassitis et al., 2025) operates in linear logistic
regression, by studying closed solution based on the logistic loss, they describe the unlearning
process through the weight difference between original one and the unlearned one. Thudi et al.
(2022)analyze unlearning by unrolling the SGD recursion, which again relies on linearization of the
gradient dynamics. Also their definition of unlearning error directly use the difference in weight
space and connect the MIA attack to this theoretically defined quantity.

5.5 Feasibility of computing data coherence

A practical concern raised by reviewers is that the theory’s “central metric relies on per-sample
Hessians or Gram matrices,” which are expensive or infeasible to compute on modern large models.
This is a valid point. Exact per-sample Hessians in a deep network can be enormous but it is not a
fatal flaw of the approach. There is strong precedent in ML theory where initially intractable quan-
tities inspired new insights and eventually yielded practical approximations. The Fisher Information
Matrix (FIM) and the full Hessian of a network are classic examples: early theoretical research
treated them as important objects despite their size, and this spurred the development of methods to
approximate or constrain them(Martens & Grosse, 2020; Yao et al., 2020). Natural gradient methods
and second-order optimizers like K-FAC (Kronecker-Factored Approximate Curvature)(Martens &
Grosse, 2020) explicitly approximate the Fisher/Hessian to achieve near-optimal descent directions.
In fact, Sharpness-Aware Minimization (SAM)(Foret et al., 2021) (a recent regularizer that improves
generalization) was inspired by the idea of penalizing the Hessian’s largest eigenvalues (i.e. mini-
mizing sharpness). SAM doesn’t compute the full Hessian; it uses a clever first-order approximation
(perturbing weights to measure curvature indirectly), yet it stemmed from the principle that the Hes-
sian spectrum matters. Likewise, the Neural Tangent Kernel was originally an N×N Gram matrix
over data points which is seemingly impractical beyond toy datasets, but it led to kernel proxies and
inspired practical diagnostics. For instance, researchers developed ways to estimate the NTK(Novak
et al., 2019) or related Gram matrices for subsets of data to monitor training dynamics, and used the
constant-NTK theory to justify why wide networks behave more predictably.

In our case, Hessian alignment/coherence is introduced as a conceptual tool to understand unlearning.
While we indeed computed it in a small controlled CNN to validate the theory, this is akin to how many
theoretical analyses proceed: first verify on a “toy” setup where the exact metrics can be computed for

16



864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

Under review as a conference paper at ICLR 2026

clarity, then later work on scaling it up. It’s worth noting that many large-scale theoretical studies have
found ways to approximate Hessian-based measures. For example, Ghorbani et al. (2019) developed
numerical linear algebra techniques to estimate the entire Hessian eigenvalue density for ImageNet-
scale networks. They used random matrix sketching and power-iteration methods to produce the
Hessian spectrum efficiently, a feat that seemed impossible a few years prior. This underscores that
what’s “infeasible” with brute force can become feasible with algorithmic ingenuity. The history of
deep learning research shows that what starts as “only explanatory” can become actionable. The
NTK was once purely theoretical, yet now practitioners talk about “NTK conditioning” and use
kernel analogies to choose architectures. Likewise, we anticipate that coherence measures could
inspire new diagnostics (perhaps a coherence score computed on a small held-out batch as a proxy)
or new training procedures (e.g. encourage decorrelation between forget and retain gradients). In
our submission, we acknowledged that directly computing per-sample Hessians for a giant model
is impractical today, but we intentionally validated our theory in a setting where we could compute
them exactly, thus establishing a clear ground truth. This is a valuable first step. Moving forward, our
framework can guide research into scalable approximations: perhaps using low-rank factorization
of the Hessian, or computing block-wise coherence (layer-wise, or between specific neural units) as
a cheaper metric. Thus, we confidently defend the use of linear stability and local linearization in
our analysis: it is a principled approach grounded in prior successes in deep learning theory, and it
offers a powerful explanatory framework for understanding when models will – or won’t – let go of
what they have learned.

5.6 More discussion about memorization and forgetting.

Our definition of memorization is grounded in the observation that, to minimize training loss, models
often overfit to highly orthogonal components of the data and the directions that are uncorrelated
with the main signal. This view aligns with our coherence-based analysis: in our signal-plus-noise
experiments, noise components are orthogonal in expectation, and the theory predicts that such
directions are easily forgotten once ascent begins.

Similar notions have been explored in recent work. Wen et al. (2023) show that memorized examples
correspond to orthogonal activation patterns within the network, which translate into orthogonal
Hessian directions, while Yu et al. (2024) study memorization in highly orthogonal subspaces. These
results support our geometric interpretation that memorization arises from localized, low-coherence
modes.

The type of memorization captured by our coherence framework (fitting orthogonal directions or
outlier features) is one of the most fundamental and widely studied forms of memorization in
modern deep learning. It is closely connected to optimization stability, generalization behavior,
and ultimately forgetting. We agree that verbatim sequence memorization in large language models
may involve additional mechanisms; however, the underlying causes of such memorization remain an
open research question with no corresponding theoretical formulation and/or studies to the best of our
knowledge yet. Because our work focuses on the optimization geometry governing gradient-based
learning, extending coherence-based analysis to sequential or long-context memorization in LLMs
represents an exciting future direction.

5.7 Lemmas and proofs

Definition 6 (Full forget Hessian and retain Hessian).

HR =
1

nr

∑
r∈Dr

Hr, HF =
1

nr

∑
f∈Df

Hf , (15)

Lemma 5.1. l1-l2 norm inequality: For any x ∈ R, ||x||2 ≤ ||x||1 ≤
√
d||x||2

Lemma 5.2. Binomial coefficient: For all n, k ∈ N such that k ≤ n, the binomial coefficients
satisfy that (

n

k

)
=

(
n− 1

k − 1

)
+

(
n− 1

k

)
. (16)

Lemma 5.3. For any matrix M ∈ Rn×n, ||M ||F ≤ ||M ||S1 ≤
√
n||M ||F , where ||M ||Sp

is p norm
of the spectrum of M, and the inequality is obtain through l1-l2 norm inequality.
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Lemma 5.4. For matrices M1...Mk ∈ Rn×n, Tr[M1...Mk] ≤ ||M1...Mk||S1
(see Bhatia (2013))

Lemma 5.5 (Vershynin (2018)). Consider n random gaussian vectors x1...xn sampled i.i.d from
N(0, σ2Id), there exist a constant C1 such that with probability 1− δ,

n∑
i=1

∥xi∥ ≤ n
√
2σ

Γ((d+ 1)/2)

Γ(d/2)
+

√
nσ2

C1
log(

2

δ
) for n, d large enough. (17)

Lemma 5.6 (Vershynin (2018)). Consider n random gaussian vectors x1...xn sampled i.i.d from
N(0, σ2Id), there exist a constant C1 such that with probability 1− δ,

n∑
i=1

∥xi∥2 ≤ nσ2d+

√
nσ4d

C2
log(

2

δ
) for n, d large enough. (18)

5.8 Proof of lemma 3.1

Lemma 5.7 (Restated). Consider the unlearning update operator Jk defined in (4). Define a
sequence of PSD matrices {Nk}k≥0 by N0 = I and for k ≥ 1:

Nk = Cf

∑
i∈Df

Hi Nk−1 Hi + Cr

∑
i∈Dr

Hi Nk−1 Hi , (19)

with Cr, Cf as given in Definition 2. Also let Mk = J2k +Nk. Then:

1. (Lower bound) ETr
(
JT
0 · · · JT

k−1Jk−1 · · · J0
)

≥ Tr(Mk). Moreover, if Tr(Nk) → ∞ as
k → ∞, then E∥wk∥2 → ∞ as well.

2. (Upper bound) If at each step Jk is spectrally bounded as (1 − ϵ)I ⪰ J ⪰ −(1 − ϵ)I for
some ϵ ∈ (0, 1) (i.e. all eigenvalues of J lie in [−(1− ϵ), 1− ϵ]), then

ETr
(
JT
0 · · · JT

k−1Jk−1 · · · J0
)

≤
k−1∑
r=0

(
k

r

)
(1− ϵ)2(k−r) Tr(Nr) .

If in addition Tr(Nr) ≤ ϵ for all r, then E∥wk∥2 → 0 as k → ∞ (the unlearning update
converges in mean square).

Proof. As we are taking the expectation value over the calculation, we can effectively transform the
Jk into following with random variables involved:

Jk = (I − η(1− α)
1

B

∑
i∈Dr,k

Hi + ηα
1

B

∑
i∈Df,k

Hi) = (I − η(1− α)
1

B

∑
r∈Dr

xrHr + ηα
1

B

∑
i∈Df

xfHf ),

(20)

where xr, xf are the corresponding Bernoulli random variables with probability P (xr = 1) = B
nr

and P (xf = 1) = B
nf

and 0 otherwise.

To initiate the first step in characterize the difference between the unlearning and usually learning
process, we first calculate the E[JT

1 J1] as follows:

E[JT
1 J1] = E[(I − η(1− α)

1

B

∑
r∈Dr

xrHr + ηα
1

B

∑
i∈Df

xfHf )
T (I − η(1− α)

1

B

∑
r∈Dr

xrHr + ηα
1

B

∑
i∈Df

xfHf )]

= E[(I − η(1− α)
1

B

∑
r∈Dr

xrHr)
T (I − η(1− α)

1

B

∑
r∈Dr

xrHr)

+2(I − η(1− α)
1

B

∑
r∈Dr

xrHr)
T (ηα

1

B

∑
i∈Df

xfHf ) + (ηα
1

B

∑
i∈Df

xfHf )
T (ηα

1

B

∑
i∈Df

xfHf )].

(21)
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Here, we separate the above equation into three part and take the expectation accordingly:

E[(I − η(1− α)
1

B

∑
r∈Dr

xrHr)
T (I − η(1− α)

1

B

∑
r∈Dr

xrHr)]

= E[(I − 2η(1− α)
1

B

∑
r∈Dr

xrHr + η2(1− α)2
1

B

2 ∑
r∈Dr

xrHr

∑
r∈Dr

xrHr)],

= I − 2η(1− α)
1

nr

∑
r∈Dr

Hr + E[η2(1− α)2(
1

B
)2

∑
r∈Dr

xrHr

∑
r∈Dr

xrHr],

= I − 2η(1− α)
1

nr

∑
r∈Dr

Hr + E[η2(1− α)2(
1

B
)2

∑
r′∈Dr

∑
r∈Dr

xr′xrHr′Hr],

= I − 2η(1− α)
1

nr

∑
r∈Dr

Hr + η2(1− α)2(
1

nr
)2(

∑
r∈Dr

Hr)
2 + η2(1− α)2

1

nr
(
1

B
− 1

nr
)
∑
r∈Dr

H2
r ,

= I − 2η(1− α)HR + η2(1− α)2H2
R + η2(1− α)2

1

nr
(
1

B
− 1

nr
)
∑
r∈Dr

H2
r ,

= (I − η(1− α)HR)
2 + η2(1− α)2

1

nr
(
1

B
− 1

nr
)
∑
r∈Dr

H2
r .

(22)

The random variables xr are independent to each other but not itself and therefore there exist
one additional terms in the final line. Also, Compared to the original sgd there exists additional
multiplication of the (1− α)2. Next, we move on to the interaction term:

E[2(I − η(1− α)
1

B

∑
r∈Dr

xrHr)
T (ηα

1

B

∑
i∈Df

xfHf )] = 2(I − η(1− α)HR)
T (ηαHF ). (23)

We can directly formulate this as above due to the fact that we assume the sampling process of retain
set and forget set to be independent. Last, the term arising due to the forget set:

E[(ηα
1

B

∑
f∈Df

xfHf )
T (ηα

1

B

∑
f∈Df

xfHf )] = η2α2H2
F + η2α2 1

nf
(
1

B
− 1

nf
)

nf∑
f∈Df

H2
f . (24)

We then integrate the three part and reformulate the Jacobian:

E[JT
1 J1] = (I − η(1− α)HR)(I − η(1− α)HR) + 2(I − η(1− α)HR)

T (ηαHF ) + η2α2H2
F

+ η2α2 1

nf
(
1

B
− 1

nf
)

nf∑
f∈Df

H2
f + η2(1− α)2

1

nr
(
1

B
− 1

nr
)

nr∑
r∈Dr

H2
r ,

= (I − η(1− α)HR + ηαHF )(I − η(1− α)HR + ηαHF )

+ η2α2 1

nf
(
1

B
− 1

nf
)

nf∑
f∈Df

H2
f + η2(1− α)2

1

nr
(
1

B
− 1

nr
)

nr∑
r∈Dr

H2
r ,

= J2 + η2α2 1

nf
(
1

B
− 1

nf
)

nf∑
f∈Df

H2
f + η2(1− α)2

1

nr
(
1

B
− 1

nr
)

nr∑
r∈Dr

H2
r ,

(25)

where we define J = I − η(1− α)HR + ηαHF . During the whole work, we will be analyzing on
these terms to characterize the behavior of unlearning process.
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We use inductive proof for both first and second part of the theory and we begin the proof as following:

First part:

Base case: k = 1

M1 = J2 + Cf

nf∑
f∈Df

H2
f + Cr

nr∑
r∈Dr

H2
r = J2 +N1 ⪯ E[JT

1 J1], (26)

where the left term match the equation 25 and therefore the basis case is set. Now we go further
with inductive step.

Inductive step: k-1

E[JT
k JT

k−1...J
T
1 J1...Jk−1] ⪰ E[JT

k Mk−1Jk],

= E[(I − η(1− α)
1

B

∑
i∈Dr

xrHr + ηα
1

B

∑
f∈Df

xfHf )Mk−1(I − η(1− α)
1

B

∑
i∈Dr

xrHr + ηα
1

B

∑
i∈Df

xfHf )],

= JMk−1J + Cf

nf∑
f∈Df

HfMk−1Hf + Cr

nr∑
r∈Dr

HrMk−1Hr,

= J(J2(k−1) +Nk−1)J + Cf

nf∑
f∈Df

Hf (J
2(k−1) +Nk−1)Hf + Cr

nr∑
r∈Dr

Hr(J
2(k−1) +Nk−1)Hr,

= J2k + Cf

nf∑
f∈Df

HfNk−1Hf + Cr

nr∑
r∈Dr

HrNk−1Hr + JNk−1J + Cf

nf∑
f∈Df

HfJ
2(k−1)Hf + Cr

nr∑
r∈Dr

HrJ
2(k−1)Hr,

= Mk + JNk−1J + Cf

nf∑
f∈Df

HfJ
2(k−1)Hf + Cr

nr∑
r∈Dr

HrJ
2(k−1)Hr,

⪰ Mk.
(27)

The last equality is due to the later three terms are both PSD by assumption as they are symmetric in
terms of left and right half of whole multiplication. As we can lower bound through Mk, diverging
of Nk will lead to Mk and cause the whole product to diverge.

Second part:

Base step: k=1.

E[JT
1 J1] = J2 +N1 ⪯ (1− ϵ)2I +N1 =

1∑
r=0

(
1

r

)
(1− ϵ)2(1−r)Nr. (28)

The J2 is bounded by (1− ϵ)2I due to our assumption. Now, we start with the inductive step
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Inductive step: k-1.

E[JT
k JT

k−1...J
T
1 J1...Jk−1Jk−1] ⪯ E[JT

k (

k−1∑
r=0

(
k − 1

r

)
(1− ϵ)2(k−1−r)Nr)Jk],

= J(

k−1∑
r=0

(
k − 1

r

)
(1− ϵ)2(k−1−r)Nr)J

+ Cf

nf∑
i∈Df

Hi(

k−1∑
r=0

(
k − 1

r

)
(1− ϵ)2(k−1−r)Nr)Hi + Cr

nr∑
i∈Dr

Hi(

k−1∑
r=0

(
k − 1

r

)
(1− ϵ)2(k−1−r)Nr)Hi,

= J(

k−1∑
r=0

(
k − 1

r

)
(1− ϵ)2(k−1−r)Nr)J +

k−1∑
r=0

(
k − 1

r

)
(1− ϵ)2(k−1−r)(Cf

nf∑
i∈Df

HiNrHi + Cr

nr∑
i∈Dr

HiNrHi),

⪯
k−1∑
r=0

(
k − 1

r

)
(1− ϵ)2(k−r)Nr +

k−1∑
r=0

(
k − 1

r

)
(1− ϵ)2(k−1−r)Nr+1,

=

k−1∑
r=0

(
k − 1

r

)
(1− ϵ)2(k−r)Nr +

k−1∑
r=0

(
k − 1

r

)
(1− ϵ)2(k−1−r)Nr+1,

= (1− ϵ)2No +

k−1∑
r=1

(

(
k − 1

r

)
+

(
k − 1

r − 1

)
)Nr +Nk,

= (1− ϵ)2No +

k−1∑
r=1

(
k

r

)
Nr +Nk,

=

k∑
r=0

(
k

r

)
(1− ϵ)2(k−r)Nr.

(29)

The first and second inequality is due to the assumption in induction on previous step and we merge
the coefficient in the last step through lemma 5.2. Finally, if we further have that Tr[Nr] ≤ ϵ ∀r,
then

E[Tr[JT
k JT

k−1...J
T
1 J1...Jk−1Jk−1]],

=

k∑
r=0

(
k

r

)
(1− ϵ)2k−r Tr[Nr],

≤
k∑

r=0

(
k

r

)
(1− ϵ)2(k−r)ϵr,

≤ ((1− ϵ)2 + ϵ)k ≤ (1− ϵ)k,

(30)

which will converge to zero when k → ∞.
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5.9 Proof of theorem 3.2

Theorem 5.8 (Restated). Under the setup of Lemma 3.1, the unlearning process will diverge if the
mix-Hessian eigenvalue exceeds a threshold determined by the coherence. In particular, if

λmax(D) ≥
√
2σ

η
(
(1− α)nf

√
nr

B − 1 + αnr

√
nf

B − 1
) , (31)

then lim
k→∞

E∥wk∥2 = ∞. Equivalently, condition (8) guarantees the unlearning algorithm will
escape the original minima (diverge) due to the stochastic dynamics.

Proof. To simplify the notation, we use the following

Lk ∈ {r, f}k (a string of length k over the alphabet {r, f}),
Lk[i] 7→ the i-th symbol of Lk, 1 ≤ i ≤ k.

(32)

We know that based on part one lemma 3.1, we can lower bound the Nk to lower bound the
E[Tr[JT

k JT
k−1...J

T
1 J1...Jk−1Jk]]. First, We can write the overall sum as follows:

Tr[Nk] =
∑

Lk∈{r,f}k

C
∑k

i=1 1{Lk[i]=r}
r C

∑k
i=1 1{Lk[i]=f}

f (
∑

ak∈DLk[k]

∑
ak−1∈DLk[k−1]

...
∑

a1∈DLk[k]

) Tr[Hak
...Ha1Ha1 ...Hak

],

=
∑

Lk∈{r,f}k

C
∑k

i=1 1{Lk[i]=r}
r C

∑k
i=1 1{Lk[i]=f}

f (
∑

ak∈DLk[k]

∑
ak−1∈DLk[k−1]

...
∑

a1∈DLk[k]

)∥Hak
...Ha1∥2F ,

≥ 1

d

∑
Lk∈{r,f}k

C
∑k

i=1 1{Lk[i]=r}
r C

∑k
i=1 1{Lk[i]=f}

f (
∑

ak∈DLk[k]

∑
ak−1∈DLk[k−1]

...
∑

a1∈DLk[k]

)∥Hak
...Ha1

∥2S1
,

≥ 1

d

∑
Lk∈{r,f}k

C
∑k

i=1 1{Lk[i]=r}
r C

∑k
i=1 1{Lk[i]=f}

f (
∑

ak∈DLk[k]

∑
ak−1∈DLk[k−1]

...
∑

a1∈DLk[k]

) Tr[Hak
...Ha1

]2,

≥ 1

nrnf

1

d

∑
Lk∈{r,f}k

C
∑k

i=1 1{Lk[i]=r}
r C

∑k
i=1 1{Lk[i]=f}

f (
∑

ar∈Dr

∑
af∈Df

) Tr[HaLk[k]
...HaLk[1]

]2,

=
1

nrnf

1

d
(
∑

ar∈Dr

∑
af∈Df

)
∑

Lk∈{r,f}k

C
∑k

i=1 1{Lk[i]=r}
r C

∑k
i=1 1{Lk[i]=f}

f Tr[HaLk[k]
...HaLk[1]

]2,

≥ 1

nrnf

1

d
(
∑

ar∈Dr

∑
af∈Df

)
1

2k
(

∑
Lk∈{r,f}k

Tr[C

∑k
i=1 1{Lk[i]=r}

2
r C

∑k
i=1 1{Lk[i]=f}

2

f HaLk[k]
...HaLk[1]

])2,

=
1

nrnf

1

d
(
∑

ar∈Dr

∑
af∈Df

)
1

2k
(Tr[

∑
Lk∈{r,f}k

C

∑k
i=1 1{Lk[i]=r}

2
r C

∑k
i=1 1{Lk[i]=f}

2

f HaLk[k]
...HaLk[1]

])2,

=
1

nrnf

1

d
(
∑

ar∈Dr

∑
af∈Df

)
1

2k
(C

1
2
r + C

1
2

f )
2k(Tr[(

C
1
2
r

C
1
2
r + C

1
2

f

Har +
C

1
2

f

C
1
2
r + C

1
2

f

Haf
)k])2,

= (
1

nrnf
)2
1

d

1

2k
(C

1
2
r + C

1
2

f )
2k(

∑
ar∈Dr

∑
af∈Df

Tr[(
C

1
2
r

C
1
2
r + C

1
2

f

Har
+

C
1
2

f

C
1
2
r + C

1
2

f

Haf
)k])2.

(33)

For the first and second inequality, we use lemma 5.3 and 5.4. For the third inequality, we reduce
the summation to

∑
ar∈Dr

∑
af∈Df

. As there are terms without Dr or Df involved, we divided the
whole equation by nfnr to ensure inequality. For the forth inequality, we use the lemma 5.1.
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Before we try to connect the relationship between the quantity to the above, we first reindex the
following:

1

nrnf

∑
ar∈Dr,af∈Df

C
1
2
r

C
1
2
r + C

1
2

f

Har +
C

1
2

f

C
1
2
r + C

1
2

f

Haf
=

1

nrnf

∑
rf

Drf = D, (34)

whereDrf = C
1
2
r

C
1
2
r +C

1
2
f

Hr+
C

1
2
f

C
1
2
r +C

1
2
f

Hf and the subscript indicates that summing over corresponding

subset (retain and forget set). Now, we proceed to relate different quantities

Tr[(
1

nrnf

∑
ar∈Dr,af∈Df

C
1
2
r

C
1
2
r + C

1
2

f

Har
+

C
1
2

f

C
1
2
r + C

1
2

f

Haf
)k] = Tr[(

1

nrnf
)k(

∑
rf

Drf )
k],

= Tr[(
1

nrnf
)k

∑
rf1

∑
rf2

...
∑
rfk

Drf1Drf2 ...Drfk−1
Drfk ],

≤ d(
1

nrnf
)k

∑
rf1

∑
rf2

...
∑
rfk

∥D
1
2

rfk
D

1
2

rf1
∥F ∥D

1
2

rf1
D

1
2

rf2
∥F ...∥D

1
2

rfk−1
D

1
2

rfk
∥F ,

= d(
1

nrnf
)k

∑
rf1

∑
rf2

...
∑
rfk

Srfk,rf1Srf1,rf2 ...Srfk−1,rfk ,

= d(
1

nrnf
)k Tr(Sk),

≤ d2(
1

nrnf
)kλ1(S)

k.

(35)

Therefore, we say that

Tr[Dk] ≤ d2(
1

nrnf
)kλ1(S)

k, (36)

and we can have that

(nrnf )
k Tr[Dk]

d2σk
≤ (nrnf )

k Tr[Dk]

d2λ1(S)k
max

i∈Drj∈Df

λ1(
C

1
2
r

C
1
2
r + C

1
2

f

Hi +
C

1
2

f

C
1
2
r + C

1
2

f

Hj)
k,

≤
∑

ar∈Dr

∑
af∈Df

Tr[(
C

1
2
r

C
1
2
r + C

1
2

f

Har
+

C
1
2

f

C
1
2
r + C

1
2

f

Haf
)k].

(37)

Therefore, we can conclude that

Tr[Nk] ≥
1

d

1

nfnr

1

2k
(C

1
2
r + C

1
2

f )
2k(

(nrnf )
k Tr[Dk]

d2σk
)2,

≥ 1

d5
1

nfnr

1

2k
(C

1
2
r + C

1
2

f )
2k (nrnf )

2kλ1(D)2k

σ2k
,

≥ 1

d5
1

nfnr

1

2k
(C

1
2
r + C

1
2

f )
2k (nrnf )

2kλ1(D)2k

σ2k
.

(38)

Lastly, we can see that whether the trace diverge or not depend on those term with power of k.
Therefore, by rearranging and plug in the definition of the coefficient into those terms, we can have
that

λ1(D) ≥
√
2σ

η

(
(1− α)nf (

nr

B
− 1)

1
2 + αnr(

nf

B
− 1)

1
2

)−1

, (39)

which is the condition for diverging behavior
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5.10 Proof of theorem 3.3

Theorem 5.9 ((Restate) Matching lower bound.). Suppose λmax(D) and σ satisfy

λmax(D) ≤ 2σ

η C ′
r

(
σ + nf

(
nr

B − 1
)) , (40)

where C ′
r =

√
Cr/(

√
Cr +

√
Cf ) (with Cr, Cf from Definition 2). Then there exists a choice of

PSD Hessians {Hi} for the retain and forget sets such that the unlearning update converges (i.e.
limk→∞ E∥wk∥2 = 0) under those Hessians.

Proof. We prove by construction in the following manner. We construct the retain set by setting

Hi = m · e1eT1 ∀ i ∈ [ σ
nf

]. (m = (C ′
r)

−1 λ1(D)nr
σ
nf

and C ′
r = C

1
2
r

C
1
2
r +C

1
2
f

and the definition of Cr and

Cf are mentioned in definition 2.) Otherwise, we set the Hessian to be zero matrix. For the forget
set, we set all matrix to be zero matrix.

We first verify that the eigenvalue of mix-Hessian is indeed the assigned value λ1(D).

D =
1

nrnf

∑
rf

C ′
rHr + C ′

fHf =
1

nrnf

∑
rf

C ′
r(C

′
r)

−1λ1(D)nr
σ
nf

e1e
T
1 = λ1(D)e1e

T
1 , (41)

and we have that the construction indeed have the corresponding mix-Hessian eigenvalue.

We know verify that the coherence measure is of the assigned value σ. We first note that the element
of the coherence matrix is:

Srf,r′f ′ =
√

Tr[(C ′
rHr + C ′

fHf )(C ′
rHr′ + C ′

fHf ′)] = C ′
rm =

λ1(D)nr
σ
nf

, ∀r, r′ ∈ [
σ

nf
]. (42)

else it is zero. We know that there is nf · σ
nf

= σ nonzero elements for each row and column. We note
that we will also need to divide the coherence matrix by maxrf Drf = maxrf C

′
rHr + C ′

fHf =
λ1(D)nr

σ
nf

. Finally, each element is 1 after this division, and we can get the eigenvalue of the matrix
to be σ and verify that the construction is valid.

Now, we note that in our construction, we have each step Ji to commute to each other since every
matrix involved is diagonal, so we can focus on one step to calculate the condition that lead to
diverging or converging and since we only intentionally set our matrix to be one dimensional, we
can study behavior on only one axis e1 by plugging in the above as follows:

e1E[J1J1]e1 = e1[I − 2η(1− α)HR + η2(1− α)2H2
r + η2(1− α)2

∑
r

H2
r ]e1,

= 1− 2η(1− α)(C ′
r)

−1λ1(D) + η2(1− α)2(C ′
r)

−2λ1(D)2 +
(C ′

r)
−2

σ
λ1(D)2η2(1− α)2nf (

nr

B
− 1).

(43)

As we want to study the converging behavior, we want the above to be smaller than 1 to have repetitive
multiplication lead to converging.

1− 2η(1− α)(C ′
r)

−1λ1(D) + η2(1− α)2(C ′
r)

−2λ1(D)2 +
(C ′

r)
−2

σ
λ1(D)2η2(1− α)2nf (

nr

B
− 1) ≤ 1,

=⇒ 2 ≥ η(1− α)(C ′
r)

−1λ1(D)(1 +
nf

σ
(
nr

B
− 1)),

=⇒ 2 ≥ η

σ
(1− α)(C ′

r)
−1λ1(D)(σ + nf (

nr

B
− 1)),

=⇒ λ1(D) ≤ 2σ

η
C ′

r

(
(1− α)(σ + nf (

nr

B
− 1))−1

)
.

(44)
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5.11 Proof of theorem 5.11

Theorem 5.10 (Restate). Under the data model of Definition 5 and the two-layer ReLU CNN defined
above, suppose the network is trained to near-zero training loss. Then with probability at least
1 − 8δ (over the random draw of the dataset), the largest eigenvalue of the coherence matrix S for
the retain/forget split satisfies

λmax(S) ≤ O
(
nr nf dσ

2
[
(
√

C ′
r +

√
C ′

f )
2 (SNR)2 + (C ′

r + C ′
f )
])

, (45)

max
rf

λmax(Drf ) ≤ O((C ′
r + C ′

f )(dσ
2(SNR)2 + 1)), (46)

where C ′
r and C ′

f are the normalized retain/forget weight fractions as defined in Theorem 3.3.
Consider division of two quantities and we can find that for small SNR limit and large SNR limit:

lim
SNR→0

λmax(S)
upper

maxrf D
upper
rf

= O(nrnf ) , lim
SNR→∞

λmax(S)
upper

maxrf D
upper
rf

= O(nrnf (1 +
2
√
C ′

rC
′
f

C ′
r + C ′

f

)). (47)

Proof. We first calculate the gradient of one sample respective to one of the wj,r.

∂ℓ(yi · f(W,xi))

∂wj,r
= ℓ′i ·

j

m
· (1{⟨wj,r,yi·µ⟩>0} · µ+ 1{⟨wj,r,ξi⟩>0} · yi · ξi). (48)

There are several index in the above equation (i.e., j and r) which we use to take derivative with
respect to a specific feature weight vector. We will continue to use this notation for future calculation.
Now, we move to calculate the second derivative with respect to two different feature of weights for
data i as follows:

∂2ℓ(yi · f(W,xi))

∂wj,r∂wj′,r′
=

ℓ′′i · jj
′

m2
· (1{⟨wj,r,yi·µ⟩>0} · µ+ 1{⟨wj,r,ξi⟩>0} · yi · ξi)(1{⟨wj′,r′ ,yi·µ⟩>0} · µ+ 1{⟨wj′,r′ ,ξi⟩>0} · yi · ξi)T .

(49)

The above is one block of the Hessian. In the following, we will simplify the notation for indicator
function (derivative of ReLU) to 1j′,r′,yi·µ and 1j′,r′,ξ to ease the heavy notation. To calculate the
coherence matrix, we need to calculate trace of Hessian product for different sample,
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Tr[HiHk] =
∑

j,j′,r,r′

Tr[
∂2ℓ(yi · f(W,xi))

∂wj,r∂wj′,r′

∂2ℓ(yk · f(W,xk))

∂wj′,r′∂wj,r
],

=
ℓ′′i ℓ

′′
k

m4

∑
j,j′,r,r′

(1j,r,yk·µ · µ+ 1j,r,ξk · yk · ξk)T (1j,r,yi·µ · µ+ 1j,r,ξi · yi · ξi)

(1j′,r′,yi·µ · µ+ 1j′,r′,ξi · yi · ξi)T (1j′,r′,yk·µ · µ+ 1j′,r′,ξk · yk · ξk),

=
ℓ′′i ℓ

′′
k

m4

(
(
∑
j,r

1j,r,yk·µ1j,r,yi·µ)∥µ∥2) + (
∑
j,r

1j,r,yk·µ1j,r,ξk)µ
T ξk+

(
∑
j,r

1j,r,yk·µ1j,r,ξi)µ
T ξi + (

∑
j,r

1j,r,ξk1j,r,ξi)ξ
T
k ξi

)
,(

(
∑
j,r

1j′,r′,yk·µ1j′,r′,yi·µ)∥µ∥2) + (
∑
j′,r′

1j′,r′,yk·µ1j′,r′,ξk)µ
T ξk+

(
∑
j′,r′

1j′,r′,yk·µ1j′,r′,ξi)µ
T ξi + (

∑
j′,r′

1j′,r′,ξk1j′,r′,ξi)ξ
T
k ξi

)
,

≤ 4
ℓ′′i ℓ

′′
k

m2
(∥µ∥2 + |µT ξk|+ |µT ξi|+ |ξTi ξk|)2,

≤ 4

m2
(∥µ∥2 + |µT ξk|+ |µT ξi|+ |ξTi ξk|)2.

(50)

We now analyze each term in the coherence matrix.

Sr1f1′ ,r2f2′ =
√

Tr((C ′
rHr1 + C ′

fHf1′ )(C
′
rHr2 + C ′

fHf2′ )),

=
√
Tr[C ′2

r Hr1Hr2 ] + Tr[C ′
rC

′
fHr1Hf2′ ] + Tr[C ′

rC
′
fHf1′Hr2 ] + Tr[C ′2

f Hf1′Hr2′ ],

≤
√
Tr[C ′2

r Hr1Hr2 ] +
√
Tr[C ′

rC
′
fHr1Hf2′ ] +

√
Tr[C ′

rC
′
fHf1′Hr2 ] +

√
Tr[C ′2

f Hf1′Hr2′ ],

(51)

where the C ′
r and C ′

f are respectively the normalized coefficient mentioned in the previous section.

As our goat is to estimate the largest eigenvalue of the coherence matrix and its relation between
different variables in the design. To estimate the largest eigenvalue, we incur ϵ-net that is used
random matrix theory

λ1 = sup
∥x∥=1

⟨x, Sx⟩. (52)

For one vector x, we can write the expression as summation:

⟨x, Sx⟩ =
∑

r1f1′ ,r2f2′

Sr1f1′ ,r2f2′xr1f1′xr2f2′ ,

≤
∑

r1f1′ ,r2f2′

(
√
Tr[C ′2

r Hr1Hr2 ] +
√
Tr[C ′

rC
′
fHr1Hf2′ ] +

√
Tr[C ′

rC
′
fHf1′Hr2 ] +

√
(Tr[C ′2

f Hf1′Hr2′ ])xr1f1′xr2f2′ .

(53)

We can estimate the above through the random matrix theory and upper bound the largest eigenvalue
through the elementwise calculation that we set up and use the tail bound for each random variable to
provide relationship between controlled variable and the resulting largest eigenvalue. We first separate
the discussion into several cases. First case, when we have four different samples r1, r2, f ′

1, f
′
2, we

can have that
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(
√
Tr[C ′2

r Hr1Hr2 ] +
√
Tr[C ′

rC
′
fHr1Hf2′ ] +

√
Tr[C ′

rC
′
fHf1′Hr2 ] +

√
Tr[C ′2

f Hf1′Hr2′ ])xr1f1′xr2f2′ ,

≤ (C ′
r

2

m
(∥µ∥2 + |µT ξr1|+ |µT ξr2|+ |ξTr1ξr2|) +

√
C ′

rC
′
f

2

m
(∥µ∥2 + |µT ξr1|+ |µT ξf2′ |+ |ξTr1ξf2′ |),

+
√
C ′

rC
′
f

2

m
(∥µ∥2 + |µT ξr2|+ |µT ξf1′ |+ |ξTf1′ξr2|) + C ′

f

2

m
(∥µ∥2 + |µT ξf2′ |+ |µT ξf1′ |+ |ξTf1′ξf2′ |))xr1f1′xr2f2′ ,

≤ (
√
C ′

r∥µ∥+
√
C ′

f∥µ∥+
√
C ′

r∥ξr1∥+
√
C ′

f∥ξf1′∥)(
√
C ′

r∥µ∥+
√
C ′

f∥µ∥+
√
C ′

r∥ξr2∥+
√
C ′

f∥ξf2′∥)xr1f1′xr2f2′ .

(54)

Our aiming in the above is to establish relationship between different variables used in the CNN
network. In the above, we can see that we can upper bound the eigenvalue by the cross product of the
vector vrf =

√
C ′

r∥µ∥+
√
C ′

f∥µ∥+
√
C ′

r∥ξr1∥+
√
C ′

f∥ξf1′∥ since the coherence matrix is upper
bound elementwise by the vector. (i.e., λ1(S) ≤ λ1(vv

T ) = ∥vT v∥2) and this turns the estimation
of the eigenvalue into estimation of the magnitude of the vector.

Now, we analyze the vT v,

vT v =
∑
rf

(
√
C ′

r∥µ∥+
√
C ′

f∥µ∥+
√

C ′
r∥ξr1∥+

√
C ′

f∥ξf1′∥)(
√

C ′
r∥µ∥+

√
C ′

f∥µ∥+
√
C ′

r∥ξr1∥+
√
C ′

f∥ξf1′∥),

=
∑
rf

(
√

C ′
r∥µ∥+

√
C ′

f∥µ∥)
2 + 2(

√
C ′

r∥µ∥+
√

C ′
f∥µ∥)(

√
C ′

r∥ξr1∥+
√
C ′

f∥ξf1′∥) + (
√
C ′

r∥ξr1∥+
√

C ′
f∥ξf1′∥)

2,

= nrnf (
√

C ′
r∥µ∥+

√
C ′

f∥µ∥)
2 + 2(

√
C ′

r∥µ∥+
√

C ′
f∥µ∥)

∑
rf

(
√
C ′

r∥ξr1∥+
√
C ′

f∥ξf1′∥)+

∑
rf

(C ′
r∥ξr1∥2 + C ′

f∥ξf1′∥2 +
√
C ′

rC
′
f

′
∥ξr1∥∥ξf1′∥).

(55)

We analyze different terms as follows:

2(
√

C ′
r∥µ∥+

√
C ′

f∥µ∥)
∑
rf

(
√

C ′
r∥ξr1∥+

√
C ′

f∥ξf1′∥) =

2(
√

C ′
r∥µ∥+

√
C ′

f∥µ∥)(nf

∑
r

√
C ′

r∥ξr1∥+ nr

∑
f

√
C ′

f∥ξf1′∥).

(56)

We know that ∥ξr1∥, ∥ξf1′∥ are chi-distribution which is also sub-exponential distribution. We
can utilize the tail bound for summation of the sub-exponential random variables to obtain high
probability bound on the summation. We can have that with probability 2δ,

2(
√
C ′

r∥µ∥+
√
C ′

f∥µ∥)
∑
rf

(
√
C ′

r∥ξr1∥+
√
C ′

f∥ξf1′∥),

≤ 2(
√

C ′
r∥µ∥+

√
C ′

f∥µ∥)(nrnf

√
C ′

rσ
√
d+ nfnr

√
C ′

fσ
√
d+ nf

√
nrσ2

C1
log(

2

δ
) + nr

√
nfσ2

C1
log(

2

δ
)).

(57)

Now, we move to the next chi-square distribution terms C ′
r

∑
∥ξr1∥2, C ′

f

∑
∥ξf ′

1
∥2. By using the

lemma 5.6, we can have that with probability 1− δ,

C ′
r

∑
rf

∥ξr1∥2 ≤ C ′
r(nfnrσ

2d+ nf

√
nrσ4d

C2
log(

2

δ
)). (58)
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and so is the C ′
f

∑
∥ξf ′

1
∥2,

C ′
f

∑
rf

∥ξr1∥2 ≤ C ′
f (nfnrσ

2d+ nr

√
nfσ4d

C2
log(

2

δ
)). (59)

The term
∑

rf

√
C ′

rC
′
f∥ξr1∥∥ξf1′∥ can also be dealt with in the same manner,

√
C ′

rC
′
f

∑
rf

∥ξr1∥∥ξf1′∥ ≤
√
C ′

rC
′
f (
∑
r

∥ξr1∥)(
∑
f

∥ξf1′∥),

≤
√

C ′
rC

′
f (nr

√
2σ

Γ((d+ 1)/2)

Γ(d/2)
+

√
nrσ2

C1
log(

2

δ
))(nf

√
2σ

Γ((d+ 1)/2)

Γ(d/2)
+

√
nfσ2

C1
log(

2

δ
)).

(60)

To simplify the analysis, we only keep terms with magnitude at least nfnr. We will reach that with
probability 1− 6δ

λ1(S) ≤ O
(
nfnr

(
(
√
C ′

r +
√
C ′

f )
2∥µ∥2 + 2

√
2(
√
C ′

r +
√
C ′

f )
2∥µ∥σ(Γ((d+ 1)/2)

Γ(d/2)
)

+ (C ′
r + C ′

f )σ
2d+ 2σ2

√
C ′

rC
′
f (

Γ((d+ 1)/2)

Γ(d/2)
)2
))

.

(61)

To see how signal noise ratio (SNR = ∥µ∥
σ
√
d

) interact with the right hand side, we extract a factor σ2d

from all terms involved:

λ1(S) ≤ O
(
nfnrσ

2d
(
(
√

C ′
r +

√
C ′

f )
2(SNR)2 +

2
√
2√
d
(
√

C ′
r +

√
C ′

f )
2(
Γ((d+ 1)/2)

Γ(d/2)
)(SNR)

+ (C ′
r + C ′

f ) +
2

d

√
C ′

rC
′
f (

Γ((d+ 1)/2)

Γ(d/2)
)2
))

,

≤ O
(
nfnrσ

2d
(
(
√

C ′
r +

√
C ′

f )
2(SNR)2 + (C ′

r + C ′
f )
))

.

(62)

where in the last equation, we omit terms with d in the denominator as it tends to be large when we
consider larger network.

For the second part of the proof, we know that Hi have block structures as follows:

∂2ℓ(yi · f(W,xi))

∂wj,r∂wj′,r′
=

ℓ′′i · jj
′

m2
· (1{⟨wj,r,yi·µ⟩>0} · µ+ 1{⟨wj,r,ξi⟩>0} · yi · ξi)(1{⟨wj′,r′ ,yi·µ⟩>0} · µ+ 1{⟨wj′,r′ ,ξi⟩>0} · yi · ξi)T .

(63)

We can see that the whole Hi matrix can be regarded as outer product of vector vvT where we have
vjr being

vjr =
l′′i j

m
(1{⟨wj,r,yi·µ⟩>0} · µ+ 1{⟨wj,r,ξi⟩>0} · yi · ξi). (64)
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We can immediately know that the eigenvalue of the Hi will be upper bounded by vT v as follows:

λmax(Hi) ≤ vT v =
l′′i
m2

∑
jr

(1{⟨wj,r,yi·µ⟩>0} · µ+ 1{⟨wj,r,ξi⟩>0} · yi · ξi)2,

≤ 2
l′′i
m2

∑
jr

1{⟨wj,r,yi·µ⟩>0}∥µ∥2 + 1{⟨wj,r,ξi⟩>0}∥ξi∥2,

≤ 2
l′′i
m2

∑
jr

∥µ∥2 + ∥ξi∥2,

≤ 2
1

m2

∑
jr

∥µ∥2 + ∥ξi∥2,

= C(∥µ∥2 + ∥ξi∥2),

(65)

where we use C to encompass all constants.

To bound the maxrf λmax(Drf ) = λmax(C
′
rHr + C ′

fHf ), we can use the following:

λmax(Drf ) = λmax(C
′
rHr + C ′

fHf ) ≤ C ′
rλmax(Hr) + C ′

fλmax(Hf ). (66)

Then for any δ ∈ (0, 1), with probability at least 1 − δ, we can upper bound the the Hr with the
following (∥ξi∥ is subexponential):

max
1≤i≤nr

C
(
∥µ∥2 + ∥ξi∥2

)
≤ C

(
∥µ∥2 + σ2

[
d + 2

√
d log

nr

δ
+ 2 log

nr

δ

])
,

≤ O(∥µ∥2 + σ2d).

(67)

Similarly, we can have the bound on Hf which is of same order and jointly we can have that with
probability 1− 8δ

λmax(Drf ) ≤ O((C ′
r + C ′

f )(∥µ∥2 + σ2d)) = O((C ′
r + C ′

f )σ
2d(SNR2 + 1)) (68)

Last is the division and take the limit and we can have the following:

lim
SNR→0

λmax(S)
upper

maxrf D
upper
rf

= O(nrnf ) , lim
SNR→∞

λmax(S)
upper

maxrf D
upper
rf

= O(nrnf (1 +
2
√
C ′

rC
′
f

C ′
r + C ′

f

)). (69)
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