

000 001 002 003 004 005 006 007 008 009 010 011 012 013 014 015 016 017 018 019 020 021 022 023 024 025 026 027 028 029 030 031 032 033 034 035 036 037 038 039 040 041 042 043 044 045 046 047 048 049 050 051 052 053 WHY SOME MODELS RESIST UNLEARNING: A LINEAR STABILITY PERSPECTIVE

Anonymous authors

Paper under double-blind review

ABSTRACT

Machine unlearning—the ability to erase the effect of specific training samples without retraining from scratch—is critical for privacy, regulation, and efficiency. However, most progress in unlearning has been empirical, with little theoretical understanding of when and why unlearning works. We tackle this gap by framing unlearning through the lens of asymptotic linear stability to capture the interaction between optimization dynamics and data geometry. The key quantity in our analysis is data coherence - the cross-sample alignment of loss-surface directions near the optimum. We decompose coherence along three axes: within the retain set, within the forget set, and between them, and prove tight stability thresholds that separate convergence from divergence. To further link data properties to forgetability, we study a two-layer ReLU CNN under a signal-plus-noise model and show that stronger memorization makes forgetting easier: when the signal-to-noise ratio (SNR) is lower, cross-sample alignment is weaker, reducing coherence and making unlearning easier; conversely, high-SNR, highly aligned models resist unlearning. For empirical verification, we show that Hessian tests and CNN heatmaps align closely with the predicted boundary, mapping the stability frontier of gradient-based unlearning as a function of batching, mixing, and data/model alignment. Our analysis is grounded in random matrix theory tools and provides the first principled account of the trade-offs between memorization, coherence, and unlearning.

1 INTRODUCTION

Machine unlearning – the ability to erase specific training samples’ influence from a model – is critical for compliance, privacy, and model maintenance. Practically, retraining an N -sample model from scratch after removing even one sample incurs prohibitive cost, motivating a flurry of approximate unlearning methods. (Shen et al., 2024b;a; Hatua et al., 2024; Bourtoule et al., 2020; Cao & Yang, 2015; Golatkar et al., 2020; Ginart et al., 2019; Golatkar et al., 2021; Graves et al., 2020; Sekhari et al., 2021). However, despite this rapid progress, most unlearning work remains empirical and ad-hoc. We lack a unifying theoretical framework to predict when and why a given model can be efficiently unlearned. Notably, even initial theoretical treatments (e.g. from a differential-privacy viewpoint providing deletion guarantees (Sekhari et al., 2021; Chien et al., 2025)) do not explain the dynamics of forgetting or the interaction between the forget and retain sets. This gap motivates our work: we seek a principled understanding of the optimization dynamics of unlearning, grounded in the geometry of the model’s loss landscape.

Our approach. We frame the unlearning process through the lens of asymptotic linear stability analysis in optimization. In this work, we analyze the asymptotic behavior of the stability of an unlearning solution, which fundamentally differs from the fine-tuning perspective (Ding et al., 2025) typically adopted in unlearning, and show that this stability is what ultimately determines whether a solution is unlearnable or not. Intuitively, unlike standard training which begins at random initialization, unlearning starts from a pre-trained model near a local minimum of the loss. We analyze small perturbation dynamics around that optimum to determine whether a “forgetting update” (e.g. gradient steps that increase loss on the forget set) will remain confined to a neighborhood of the original minimum (stable minima, no unlearning) or cause the model to drift off and diverge (unstable minima, unlearning possible). This linear stability perspective, inspired by prior analyses of SGD near minima (Ma & Ying, 2021; Dexter et al., 2024), provides a tractable characterization of the

054 transition between convergence vs. catastrophic forgetting. The key quantities in our analysis are
 055 a set of data coherence measures that quantify the alignment of loss gradients across samples near
 056 the optimum. We formally decompose coherence along three axes – (i) within the retain set, (ii)
 057 within the forget set, and (iii) between retain and forget sets – and derive stability thresholds in terms
 058 of these coherence values. Our theory thus for the first time links interactions between retain and
 059 forget data to unlearning success: for example, if the gradient directions of forget-set samples are
 060 highly aligned with those of retain-set samples (high retain-forget coherence), the model will resist
 061 unlearning because any parameter change that increases forget-set loss will also significantly hurt
 062 retain-set loss. Conversely, if the forget-set gradients live in a subspace largely independent from
 063 the retain-set (low inter-coherence), we prove the existence of a stable update direction that forgets
 064 the target data while leaving the rest of the model performance intact. These results yield a stability
 065 frontier in terms of data coherence: a boundary in data-geometry space separating regimes where
 066 gradient-based unlearning can succeed from where it fails.

067 Our framework also yields an intriguing insight into the relationship between training memorization
 068 and subsequent forgetability. Interestingly and perhaps surprisingly, we find that stronger memorization
 069 can make forgetting easier. In our framework, memorization corresponds to a regime of complex
 070 data where the model fits idiosyncratic details. We formalize this by adapting a two-layer ReLU CNN
 071 signal-plus-noise model from prior work on benign overfitting (Kou et al., 2023). Using random
 072 matrix theory tools, we prove that when the signal-to-noise ratio (SNR) in the data is lower (i.e. the
 073 model has to memorize more spurious noise), the cross-sample alignment of gradients is weaker –
 074 reducing the coherence terms, allowing effective forgetting of those samples. In contrast, a model
 075 trained on high-SNR data (with strongly aligned, dominant features) has very coherent gradients that
 076 push it to the edge of the stability frontier, making it resist unlearning – any attempt to forget one sam-
 077 ple’s influence will strongly perturb many others. We analytically identify this coherence-controlled
 078 stability boundary, and our experimental results confirm the trend: e.g. Hessian eigenvalue tests
 079 and CNN heatmaps of forget vs. retain influence align with the predicted boundary, mapping out
 080 how changes in batch size, mixing of forget/retain data, or network alignment affect the outcome of
 081 unlearning.

082 **Contributions** To summarize, our contributions are as follows: (1) We develop the first theoretical
 083 framework for machine unlearning based on linear stability analysis to address *what local optimization*
 084 *dynamics govern unlearning?*. We derive precise conditions (in terms of Hessian spectra and data
 085 coherence) under which standard gradient-based unlearning converges/diverges. (2) We address
 086 *how do the retain and forget sets interact, quantitatively, in determining stability?* Towards this
 087 goal, we introduce novel coherence metrics to quantify the retain–forget interaction, and prove
 088 how each coherence component (retain-retain, forget-forget, retain-forget) influences the stability
 089 of the unlearning process. These results formally characterize the joint role of data geometry
 090 and data distribution in forgetting dynamics. (3) To address *how does a model’s propensity to*
 091 *memorize interact with its ability to forget?*, we establish a surprising link between memorization and
 092 forgetability: using a two-layer CNN with controllable noise, we prove that increased memorization
 093 (lower SNR) expands the range of stable unlearning (making forgetting easier), whereas high SNR
 094 (less overfitting) shrinks it (more resistant to forgetting). This is, to our knowledge, the first result
 095 to rigorously connect a model’s generalization/memorization properties to its unlearning behavior.
 096 (4) Our empirical tests measure stability indicators (e.g. sharpness via Hessian eigenvalues) and
 097 unlearning performance under various conditions, and show strong agreement with the theoretical
 098 stability frontier. Taken together, our results provide the first principled account of the trade-offs
 099 between memorization, data coherence, and unlearning in modern ML models.

2 RELATED WORK

101 **Linear stability** Prior works (Wu et al., 2022; 2018; Wu & Su, 2023) utilize the linear stability
 102 framework to understand the relation between converging-diverging boundary and alignment of
 103 noise and loss landscape. Furthermore, Wu et al. (2022); Wu & Su (2023) connect the alignment
 104 properties to the simplicity bias that occurs in generic SGD. Additionally, Ma & Ying (2021)
 105 extend the framework by incorporating higher-order moments of the noise, revealing subtle implicit
 106 regularization effects on parameter evolution. Dexter et al. (2024) introduced the notion of data
 107 coherence, which directly quantifies the alignment of sample-specific gradients in the loss landscape,
 108 offering a fine-grained tool to analyze sample interactions. Compared to alternative theoretical

108 approaches, such as gradient flow or dynamical system approximations, linear stability has the
 109 distinct advantage of making explicit connections between model architecture, data distribution,
 110 and optimization algorithm. Unlike the standard learning scenario, unlearning requires analyzing
 111 the interleaving interaction between retain and forget sets, which introduces new dynamics not
 112 present in classical stability analysis. To address these challenges, we introduce new analytical
 113 tools and definitions that generalize coherence to mixed retain–forget settings. In doing so, we not
 114 only provide stability criteria for unlearning but also establish the first formal connection between
 115 memorization and forgetting, thereby broadening the scope of linear stability analysis beyond its
 116 traditional application to standard training.

117 **Theoretical works on Unlearning.** A number of foundational studies analyze machine unlearning
 118 by examining the optimization trajectory and its deviation from the original training dynamics.
 119 For example, Golatkar et al. (2020) model unlearning under a quadratic loss and characterize the
 120 drift in optimization trajectories by comparing the original and unlearned weights in the infinite-
 121 time limit. Ding et al. (2025) study approximate unlearning in linear models via weight-space
 122 distances, using the loss difference between the fine-tuned and unlearned models as the central
 123 metric. The recent work (Mavrothalassitis et al., 2025) analyzes linear logistic regression and
 124 expresses forgetting through closed-form weight difference between the original optimum and the
 125 unlearned solution. Thudi et al. (2022) unroll the SGD recursion to study unlearning dynamics
 126 through linearized gradient-flow approximation, and define unlearning directly in weight space,
 127 linking it to membership inference vulnerability. For further discussion, please see Appendix 5.4
 128 and Appendix 5.1. Our work builds upon this prior theoretical foundation but departs conceptually:
 129 rather than characterizing forgetting via distance between solutions, we introduce a stability-based
 130 perspective grounded in optimization dynamics. By analyzing asymptotic linear stability of the
 131 unlearning update operator, we show how interactions between the retain and forget sets—mediated
 132 through curvature and data coherence—govern whether the optimizer will remain near the original
 133 minimum or diverge away, thereby determining whether unlearning is feasible.

3 THEORY

3.1 BACKGROUND

137 **Linear stability around minima.** Linear stability provides a principled lens for analyzing the
 138 local dynamics of iterative optimization near a critical point (e.g., local minima or saddles) by
 139 linearizing the update map and studying the resulting linear time-varying system to characterize
 140 convergence/divergence behavior of stochastic iterative algorithms for that critical point. This
 141 perspective underlies modern convergence analyses of SGD and its variants and, more recently,
 142 has proved effective for characterizing generalization-relevant phenomena such as rapid escape
 143 from sharp minima (Wu et al., 2018; Dexter et al., 2024). In our context, we consider a loss
 144 $L(w) = \frac{1}{n} \sum_{i=1}^n \ell_i(w)$ for model parameters $w \in \mathbb{R}^d$. Let w^* be a local minimum. For a small
 145 perturbation δ around w^* , a first-order Taylor expansion gives

$$146 \nabla L(w^* + \delta) \approx \nabla^2 L(w^*) \delta,$$

147 since $\nabla L(w^*) = 0$. This linearization suggests that near w^* , the gradient is approximately given
 148 by the Hessian $H = \nabla^2 L(w^*)$ times the perturbation. Since we are only interested in the dynamics
 149 of the optimizer (rather than its absolute position), without loss of generality we take $w^* = 0$ as in
 150 prior works. For more discussion regarding assumption used in our work, please refer appendix 5.2.

151 **Stochastic gradient updates.** We are interested in the dynamics of stochastic gradient descent
 152 (SGD) near w^* . A generic SGD update can be written as

$$153 w_{t+1} = w_t - \eta g_t,$$

154 where $\eta > 0$ is the learning rate and g_t is the stochastic gradient at step t . In the neighborhood of
 155 w^* , using the linear approximation, we can write $g_t \approx H_t w_t$, where H_t is a random Hessian matrix
 156 (a mini-batch estimate of H). Thus the update becomes

$$157 w_{t+1} = w_t - \eta H_t w_t = (I - \eta H_t) w_t. \quad (1)$$

158 Here $H_t = \frac{1}{B} \sum_{i \in D_t} H_i$ is the average Hessian over the mini-batch D_t of size B , and $H_i =$
 159 $\nabla^2 \ell_i(w^*)$. By construction $H = \frac{1}{n} \sum_{i=1}^n H_i$. Following Dexter et al. (2024), we model mini-
 160 batch sampling via Bernoulli selection (each data point is included in the batch independently with
 161 probability B/n).

162 **Sample wise gradient.** In the above equation, we assume that sample wise gradient at w^* to be zero
 163 i.e.,

$$\begin{aligned} 164 \quad \nabla l_i(w) &= \nabla l_i(w^*) + H_i(w - w^*) \\ 165 \quad &= H_i(w - w^*). \end{aligned} \quad (2)$$

167 This means that all gradients are results from curvatures. This assumption follows the standard
 168 linear interpolating regime used in prior works such as (Dexter et al., 2024; Wu & Su, 2023) and
 169 verified through empirical and theoretical studies (Tang et al., 2023; Chizat & Bach, 2020). In this
 170 regime, the local dynamics are dominated by the Hessian curvature to align with our focus. For more
 171 discussion regarding assumption used and limitation in our work, please refer appendix 5.2.
 172

173 **Unlearning update rule.** To analyze machine unlearning (where a subset of the training data,
 174 called the *forget set*, is to be “forgotten” while the remaining data in the *retain set* is preserved), we
 175 adopt the update rule of Kurmanji et al. (2023). In this scheme, each step performs simultaneous
 176 gradient descent on the retain set and ascent on the forget set. Intuitively, this means we take a
 177 step that decreases loss on retained data while increasing loss on data that should be unlearned.
 178 Many gradient-based unlearning algorithms can be viewed as variants of this approach with different
 179 weighting of these components. We use n_f, f_r for number of forget and retain samples respectively.
 180 In our linearized framework, the update with forget importance hyper-parameter $\alpha \in [0, 1]$ is:

$$180 \quad w_{k+1} = w_k - \eta \left[(1 - \alpha) \frac{1}{B} \sum_{i \in D_{r,k}} H_i w_k - \alpha \frac{1}{B} \sum_{i \in D_{f,k}} H_i w_k \right], \quad (3)$$

182 where $D_{r,k}$ and $D_{f,k}$ denote the mini-batch of retain-set and forget-set examples at step k , respec-
 183 tively. This can be rewritten in operator form as

$$184 \quad w_{k+1} = J_k w_k, \quad J_k = I - \eta(1 - \alpha) \frac{1}{B} \sum_{i \in D_{r,k}} H_i + \eta\alpha \frac{1}{B} \sum_{i \in D_{f,k}} H_i. \quad (4)$$

187 The random linear operator J_k captures the combined effect of the retain and forget gradients at step
 188 k . Note that J_k is itself random due to sampling of a mini-batch from each set.

189 A central question in linear stability analysis is whether the iterates remain near the original optimum
 190 or diverge away. To quantify this, we examine the expected squared norm of the parameters after
 191 k steps, $\mathbb{E}\|w_k\|^2 = \mathbb{E}[w_k^T w_k]$. Starting from an isotropic small perturbation w_0 (we assume
 192 $w_0 \sim \mathcal{N}(0, I)$ without loss of generality), one can expand $w_k = J_{k-1} \cdots J_0 w_0$. This yields

$$193 \quad \mathbb{E}\|w_k\|^2 = \mathbb{E}[w_0^T (J_0^T \cdots J_{k-1}^T J_{k-1} \cdots J_0) w_0] = \mathbb{E} \text{Tr}(J_{k-1} \cdots J_0 J_0^T \cdots J_{k-1}^T), \quad (5)$$

194 where we used $\mathbb{E}[w_0 w_0^T] = I$ in the final equality. Eq (5) is the key quantity we will analyze to
 195 determine stability: if $\mathbb{E}\|w_k\|^2$ remains bounded (or decays) as $k \rightarrow \infty$, the unlearning process is
 196 *stable* (convergent) around w^* , whereas if $\mathbb{E}\|w_k\|^2 \rightarrow \infty$, the process is *unstable* (diverges, escaping
 197 w^*). For more discussion regarding the assumptions used in our work, please refer Appendix 5.2,
 198 and for more discussion regarding divergence and unlearning, please refer to Appendix 5.4.

200 3.2 COHERENCE MEASURES FOR UNLEARNING

201 **Coherence in single-dataset SGD.** Before introducing our new coherence measures tailored to
 202 unlearning, we briefly review the original notion of *Hessian coherence* from Dexter et al. (2024)
 203 for standard (single dataset) learning. The coherence quantifies the alignment between per-sample
 204 Hessians in the training set. Intuitively, if all samples induce very aligned curvature directions, SGD
 205 will experience less “randomness” and more stable updates, whereas if each sample’s loss landscape
 206 is oriented differently, the optimization dynamics are more erratic.

207 **Definition 1** (Coherence, single set (Dexter et al., 2024)). *Given a collection of positive semidefinite
 208 (PSD) Hessian matrices $\{H_i : i \in [n]\}$ for n training samples, the coherence matrix $S \in \mathbb{R}^{n \times n}$ is
 209 defined by*

$$210 \quad S_{ij}^{\text{single}} = \|H_i^{1/2} H_j^{1/2}\|_F,$$

211 *the Frobenius norm of the product of the square-root Hessians of sample i and j . The associated
 212 coherence measure is*

$$213 \quad \sigma^{\text{single}} = \frac{\lambda_{\max}(S^{\text{single}})}{\max_{i \in [n]} \lambda_{\max}(H_i)},$$

214 *i.e. the largest eigenvalue of S^{single} normalized by the largest individual sample Hessian eigenvalue.*

216 Intuitively, σ^{single} close to 1 indicates that the top curvature directions of all samples are closely
 217 aligned (high coherence), whereas a small σ^{single} indicates disparate or orthogonal curvatures across
 218 samples. Prior work showed that higher coherence σ^{single} correlates with greater stability of SGD.
 219 In other words, when the loss landscapes of different samples “point” in similar directions, gradient
 220 steps reinforce each other and it is more resistant for SGD to diverge away from the optimum. **For**
 221 **discussion about the practical feasibility of calculation for coherence matrix, please refer to Appendix**
 222 **5.5.**

223

224 **Coherence with retain and forget sets.** In an unlearning scenario, we have two disjoint sets of
 225 samples: the retain set D_r (of size n_r) and the forget set D_f (of size n_f). Coherence within each set
 226 (retain vs. forget) is not sufficient to describe the behavior of the combined ascent-descent dynamics.
 227 We need to also quantify the interaction *between* the two sets. We therefore introduce a series of
 228 definitions that extend coherence to the multi-set setting.

229

230 First, we define a weighted combination of Hessians from a retain-forget pair, which will serve as an
 231 effective “mixing Hessian:”

232 **Definition 2** (Mix-Hessian).

233

$$234 D := \frac{1}{n_r n_f} \sum_{r \in D_r, f \in D_f} \frac{C_r^{\frac{1}{2}}}{C_r^{\frac{1}{2}} + C_f^{\frac{1}{2}}} H_r + \frac{C_f^{\frac{1}{2}}}{C_r^{\frac{1}{2}} + C_f^{\frac{1}{2}}} H_f = \frac{1}{n_r n_f} \sum_{rf} D_{rf}, \quad (6)$$

235

236

237 Here $C_r = \eta^2(1-\alpha)^2 \frac{1}{n_r} (\frac{1}{B} - \frac{1}{n_r})$, $C_f = \eta^2\alpha^2 \frac{1}{n_f} (\frac{1}{B} - \frac{1}{n_f})$, $D_{rf} = \frac{C_r^{\frac{1}{2}}}{C_r^{\frac{1}{2}} + C_f^{\frac{1}{2}}} H_r + \frac{C_f^{\frac{1}{2}}}{C_r^{\frac{1}{2}} + C_f^{\frac{1}{2}}} H_f$. The
 238 constants C_r and C_f reflect the relative contribution of retain vs forget Hessians to the second-moment
 239 dynamics of w_k (these arise from the SGD noise analysis in Lemma 3.1 later). The mix-Hessian D
 240 aggregates the pairwise influence of retain and forget sets; it effectively summarizes how the two sets
 241 jointly affect curvature when considered together in the update. Next, analogous to the single-set
 242 case, we define a coherence matrix that captures alignment across *pairs* of retain/forget examples:

243

244 **Definition 3** (Mix-coherence matrix). *Construct an index set for all retain-forget pairs: $\mathcal{P} = \{(r, f) : r \in D_r, f \in D_f\}$ of size $|\mathcal{P}| = n_r n_f$. The mix-coherence matrix $S \in \mathbb{R}^{|\mathcal{P}| \times |\mathcal{P}|}$ is defined*
 245 *entrywise by*

$$246 S_{(r,f),(r',f')} = \|D_{rf}^{1/2} D_{r'f'}^{1/2}\|_F,$$

247

248 for any $(r, f), (r', f') \in \mathcal{P}$.

249

250

251 In words, S measures the alignment between every pair of mixed Hessians D_{rf} and $D_{r'f'}$. Finally,
 252 we define an overall coherence measure for unlearning, generalizing the single-set σ :

253

254 **Definition 4** (Unlearning Coherence Measure). *The unlearning coherence is*

255

$$256 \sigma = \frac{\lambda_{\max}(S)}{\max_{(r,f) \in \mathcal{P}} \lambda_{\max}(D_{rf})},$$

257

258

259 the leading eigenvalue of the mix-coherence matrix S normalized by the largest eigenvalue among
 260 all individual D_{rf} matrices.

261

262

263 This definition reduces to the original coherence measure in the limit where one of the sets is absent
 264 (e.g. $n_f = 0$ or $\alpha = 0$ yields only a retain set). It simultaneously captures the within-set coherence
 265 and the cross-set coupling. Intuitively, if the retain and forget sets are highly *aligned* in terms of
 266 curvature directions, the mix-coherence σ will be large. In that case, performing ascent on forget
 267 and descent on retain will tend to cancel out: the update directions from the two sets are similar
 268 but with opposite sign, leading to minimal movement away from w^* . This predicts stability for the
 269 current optimum (i.e. resistance to unlearning). Conversely, if the two sets are incoherent (small σ),
 270 their Hessians push in different directions; the ascent on forget set will not be canceled by descent
 271 on retain, making it easier for the iterates w_k to escape the original minimum. In summary, our
 272 multi-set coherence measure σ quantifies how conducive the data geometry is to either divergence
 273 or convergence during unlearning. To our knowledge, this is the first work to explicitly incorporate
 274 multiple data subsets into a stability analysis of optimization.

270 3.3 LINEAR STABILITY ANALYSIS OF UNLEARNING
271

272 In the theory section, we study a more fundamental problem regarding whether a set is unlearnable
273 in asymptotic manner through optimization instead of in a fine-tuning regime. We now leverage the
274 above framework to derive conditions under which the unlearning dynamics (3) will converge or
275 diverge. In our work, A key technical challenge is that, unlike in the single-set case, the influence
276 of SGD noise cannot be captured by a simple closed-form recursion. This is because the gradient
277 noise now comes from two interleaved sources (retain and forget sets) with potentially different
278 magnitudes.

279 We begin with a lemma that describes the evolution of the second moment $\mathbb{E}\|w_k\|^2$ in terms of a
280 recursive sequence of matrices N_k . This lemma generalizes the stability condition from Dexter et al.
281 (2024) to account for the alternating ascent/descent updates.

282 **Lemma 3.1** (Stability recurrence for unlearning). *Consider the unlearning update operator J_k
283 defined in (4). Define a sequence of PSD matrices $\{N_k\}_{k \geq 0}$ by $N_0 = I$ and for $k \geq 1$:*

$$284 \quad N_k = C_f \sum_{i \in D_f} H_i N_{k-1} H_i + C_r \sum_{i \in D_r} H_i N_{k-1} H_i, \quad (7)$$

287 with C_r, C_f as given in Definition 2. Also let $M_k = J^{2k} + N_k$. ($J = I - \eta(1 - \alpha)H_R + \eta\alpha H_F$
288 where H_R and H_F are full Hessian of retain and forget set. See definition 6) Then:

- 290 1. **(Lower bound)** $\mathbb{E} \text{Tr}(J_0^T \cdots J_{k-1}^T J_{k-1} \cdots J_0) \geq \text{Tr}(M_k)$. Moreover, if $\text{Tr}(N_k) \rightarrow \infty$ as
291 $k \rightarrow \infty$, then $\mathbb{E}\|w_k\|^2 \rightarrow \infty$ as well.
- 292 2. **(Upper bound)** If at each step J_k is spectrally bounded as $(1 - \epsilon)I \succeq J \succeq -(1 - \epsilon)I$ for
293 some $\epsilon \in (0, 1)$ (i.e. all eigenvalues of J lie in $[-(1 - \epsilon), 1 - \epsilon]$), then

$$295 \quad \mathbb{E} \text{Tr}(J_0^T \cdots J_{k-1}^T J_{k-1} \cdots J_0) \leq \sum_{r=0}^{k-1} \binom{k}{r} (1 - \epsilon)^{2(k-r)} \text{Tr}(N_r).$$

298 If in addition $\text{Tr}(N_r) \leq \epsilon$ for all r , then $\mathbb{E}\|w_k\|^2 \rightarrow 0$ as $k \rightarrow \infty$ (the unlearning update
299 converges in mean square).

300 *Discussion.* Part (1) of Lemma 3.1 provides a sufficient condition for divergence: if the ‘‘noise
301 accumulation’’ matrices N_k (which capture how SGD variance builds up over iterations) have un-
302 bounded trace, then the model will eventually blow up (escape the optimum). Part (2) gives a
303 sufficient condition for convergence: if each J is a contraction (spectral norm < 1 by a margin ϵ)
304 and the accumulated noise remains small, then the model’s parameter norm will vanish (meaning w_k
305 returns to the optimum). These statements generalize classical stability results to the unlearning case.
306 Importantly, the recursion (7) for N_k does not admit a simple closed form because N_{k-1} appears
307 inside sums over both sets D_r and D_f . This coupling between retain and forget sets is what makes
308 analyzing unlearning challenging. By introducing the coherence measures (Definition 4 and related
309 definition), we overcome this hurdle: the coherence will allow us to relate $\text{Tr}(N_k)$ to data-dependent
310 quantities like $\lambda_{\max}(D)$ and thereby derive interpretable stability criteria.

311 Using the coherence framework, we can now state our main stability thresholds. The first result is a
312 condition under which the unlearning dynamics *diverge* (fail to stay at the original minimum):

313 **Theorem 3.2** (Divergence criterion for unlearning). *Under the setup of Lemma 3.1, the unlearning
314 process will diverge if the mix-Hessian eigenvalue exceeds a threshold determined by the coherence.
315 In particular, if*

$$316 \quad \lambda_{\max}(D) \geq \frac{\sqrt{2}\sigma}{\eta \left((1 - \alpha) n_f \sqrt{\frac{n_r}{B} - 1} + \alpha n_r \sqrt{\frac{n_f}{B} - 1} \right)}, \quad (8)$$

320 then $\lim_{k \rightarrow \infty} \mathbb{E}\|w_k\|^2 = \infty$. Equivalently, condition (8) guarantees the unlearning algorithm will
321 escape the original minima (diverge) due to the stochastic dynamics.

323 In plain terms, Theorem 3.2 says that if the influence of the forget–retain interaction (measured by
324 $\lambda_{\max}(D)$) is sufficiently large relative to the stabilizing effect of coherence σ (and other factors like

batch size B and relative set sizes), then the gradient ascent on the forget set will overpower the descent on the retain set, leading to instability. The inequality (8) can be viewed as a quantitative stability limit or “edge of chaos” for unlearning: beyond this point, the original solution w^* cannot hold.

Our next theorem establishes a matching lower bound, showing that the above divergence condition is essentially tight. It guarantees that when $\lambda_{\max}(D)$ is below a certain threshold (of the same order as in (8)), one can find a scenario where the unlearning process converges, thereby demonstrating that the threshold cannot be significantly improved in general:

Theorem 3.3 (Convergence condition (matching lower bound)). *Suppose $\lambda_{\max}(D)$ and σ satisfy*

$$\lambda_{\max}(D) \leq \frac{2\sigma}{\eta C'_r (\sigma + n_f (\frac{n_r}{B} - 1))}, \quad (9)$$

where $C'_r = \sqrt{C_r}/(\sqrt{C_r} + \sqrt{C_f})$ (with C_r, C_f from Definition 2). Then there exists a choice of PSD Hessians $\{H_i\}$ for the retain and forget sets such that the unlearning update converges (i.e. $\lim_{k \rightarrow \infty} \mathbb{E}\|w_k\|^2 = 0$) under those Hessians.

The convergence condition (9) mirrors the divergence condition in its dependence on σ, n_r, n_f , and B . The existence of a construction that achieves convergence when (9) holds indicates that our divergence criterion in Theorem 3.2 is tight up to constant factors. In summary, Theorems 3.2 and 3.3 together pin down a theoretical threshold curve in the space of data coherence and algorithm parameters that separates stable (convergent) unlearning from unstable (divergent) unlearning. We can now interpret some common unlearning strategies:

Naive negative gradient. A straightforward unlearning baseline is to set $\alpha = 1$ and run gradient ascent on the forget set alone. Our framework explains why this often fails. If the forget set has high internal coherence, its gradients align with the curvature at w^* , so ascent follows a single stable direction and does not escape the minimum due to lack of stochasticity. Without rendering of stochasticity, the small learning rate can give slow diverging behavior. If the forget and retain sets are also highly coherent, the overall coherence stays large even without the retain set. In both cases divergence is inhibited or slowed down, matching empirical reports that naive negative-gradient unlearning typically stagnates or oscillates, hurting retained data while barely reducing forget-set performance (Ding et al., 2025; Fan et al., 2025; Ding et al., 2025).

Random label perturbation. Another strategy is to add randomness to the forgetting process, for instance by using mislabeled data or injecting noise into the forget set’s gradients (see, e.g., random label unlearning). In our terms, this deliberately *breaks the coherence* of the forget set: if labels are randomized, the gradients from forget-set samples become effectively uncorrelated, dramatically lowering the forget-set’s internal σ . This, in turn, allows the model to escape the original minimum much faster. Moreover, randomizing forget labels also reduces the coupling between forget and retain sets (since the forget-set gradient is now essentially random noise orthogonal to the retain-set Hessians). Thus, random label methods improve unlearning by driving the coherence measure σ downward, so the divergence criterion is more easily satisfied. (Graves et al., 2020)

Min-Max (targeted forget) methods. More sophisticated approaches pick a subset of model weights or directions that are most “responsible” for the forget set’s performance, and then apply ascent/descent on those components. This can be seen as applying projection matrices P_F and P_R to the Hessians H_f, H_r respectively, focusing updates on certain eigen-directions. Such projections effectively reduce the overlap between forget-set and retain-set update directions (since $P_F H_f$ and $P_R H_r$ act in different subspaces), thereby reducing the cross-coherence between the two sets. In our framework, this corresponds to a smaller overall σ as well. By isolating the forgetting dynamics, Min-Max methods thus decrease the ability of the retain set to interfere with forgetting (and vice versa), making the unlearning process more effective. (Tang & Khanna, 2025; Fan et al., 2024)

3.4 MEMORIZATION AND FORGETTING

So far, our analysis has focused on the role of stochastic gradient noise (from mini-batch sampling). We now turn to another key factor: the inherent *signal vs. noise* structure of the data itself. We ask: if a model has *memorized* certain training examples (as opposed to learning a shared signal), does that make it easier or more resistant to forget those examples? We will show a theoretical connection

378 between a model’s tendency to memorize (which occurs when data has low signal-to-noise ratio) and
 379 the ease of unlearning. Our work aims to identify the memorization resulting from highly orthogonal
 380 component (noise, outlier features) and its relationship to forgetting (see Appendix 5.6 for further
 381 discussion.) To make this concrete, we consider a specific data model and network, inspired by the
 382 theoretical construction by Kou et al. (2023). The data distribution is designed so that each example
 383 contains a mixture of a common signal and independent noise. This is formalized as follows:

384 **Definition 5** (Data Setup). *Let $\mu \in \mathbb{R}^d$ be a fixed unit-norm signal vector. Each training example
 385 consists of a feature pair $x = [x^{(1)}; x^{(2)}] \in \mathbb{R}^{2d}$ (concatenation of two d -dimensional parts) and a
 386 label $y \in \{-1, +1\}$. The example is generated by:*

- 388 1. *Sample y as a Rademacher random variable ($\Pr(y = +1) = \Pr(y = -1) = \frac{1}{2}$).*
- 389 2. *Sample a noise vector $\xi \sim \mathcal{N}(0, \sigma^2 I_d)$ in \mathbb{R}^d , where σ^2 is the noise variance.*
- 391 3. *With equal probability, set either $x^{(1)} = y \mu$ and $x^{(2)} = \xi$, or $x^{(1)} = \xi$ and $x^{(2)} = y \mu$.
 392 In other words, one of the two halves of x carries the signal $y \mu$ and the other carries
 393 independent noise.*

394 We then consider a two-layer convolutional neural network (CNN) with ReLU activations operating
 395 on this data.. The network has two sets of convolutional filters (for the positive and negative class)
 396 and outputs a score $f(W, x)$ whose sign determines the predicted label. Specifically, let $W^{(+1)}$
 397 and $W^{(-1)}$ be the weight matrices for the two classes, each of shape $m \times d$ (with m filters). The
 398 network’s output is
 399

$$400 \quad f(W, x) = \frac{1}{m} \sum_{r=1}^m \left(\text{ReLU}(\langle w_r^{(+1)}, x^{(1)} \rangle) + \text{ReLU}(\langle w_r^{(+1)}, x^{(2)} \rangle) \right) \\ 401 \quad - \frac{1}{m} \sum_{r=1}^m \left(\text{ReLU}(\langle w_r^{(-1)}, x^{(1)} \rangle) + \text{ReLU}(\langle w_r^{(-1)}, x^{(2)} \rangle) \right), \quad (10)$$

402 and the model is trained with logistic loss $L_S(W) = \frac{1}{n} \sum_{i=1}^n \log(1 + \exp(-y_i f(W, x_i)))$. We
 403 focus on the case where the network can fit the training data perfectly (interpolating regime) and
 404 potentially overfits.

405 In this setting, we can analyze the coherence of the Hessians at the trained solution. The following
 406 result provides an upper bound on the coherence in terms of the *signal-to-noise ratio* (SNR) of the
 407 data, defined as $\text{SNR} = \frac{\|\mu\|}{\sigma\sqrt{d}}$ (which measures the strength of the common signal relative to noise in
 408 each example):

409 **Theorem 3.4** (Coherence bound in the CNN memorization model). *Under the data model of
 410 Definition 5 and the two-layer ReLU CNN defined above, suppose the network is trained to near-zero
 411 training loss. Then with probability at least $1 - 8\delta$ (over the random draw of the dataset), the largest
 412 eigenvalue of the coherence matrix S for the retain/forget split satisfies*

$$413 \quad \lambda_{\max}(S) \leq \mathcal{O}\left(n_r n_f d \sigma^2 \left[(\sqrt{C'_r} + \sqrt{C'_f})^2 (\text{SNR})^2 + (C'_r + C'_f) \right]\right), \quad (11)$$

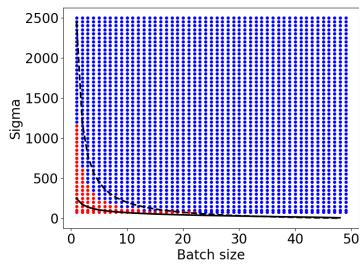
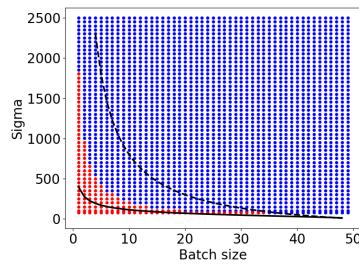
$$414 \quad \max_{rf} \lambda_{\max}(D_{rf}) \leq \mathcal{O}((C'_r + C'_f)(d\sigma^2(\text{SNR})^2 + 1)), \quad (12)$$

415 where C'_r and C'_f are the normalized retain/forget weight fractions as defined in Theorem 3.3.
 416 Consider division of two quantities and we can find that for small SNR limit and large SNR limit:

$$417 \quad \lim_{\text{SNR} \rightarrow 0} \frac{\lambda_{\max}(S)^{\text{upper}}}{\max_{rf} D_{rf}^{\text{upper}}} = \mathcal{O}(n_r n_f), \quad \lim_{\text{SNR} \rightarrow \infty} \frac{\lambda_{\max}(S)^{\text{upper}}}{\max_{rf} D_{rf}^{\text{upper}}} = \mathcal{O}(n_r n_f \left(1 + \frac{2\sqrt{C'_r C'_f}}{C'_r + C'_f}\right)). \quad (13)$$

418 **Discussion** Theorem 3.4 shows the surprising role of SNR in stability of the optimizer through its
 419 control over the coherence. In particular, if the data has a very low SNR (meaning μ is small relative
 420 to the noise σ), then the network is likely to memorize the noise. In that regime, high-dimensional
 421 random noise vectors are nearly orthogonal to each other, so Hessians for different samples align
 422 poorly. Our bound indicates that coherence measure is larger in large SNR limit compared to

432
 433
 434
 435
 436
 437
 438
 439
 440

(a) Learning rate $\eta = 0.5$ (b) Learning rate $\eta = 0.8$

442
 443 **Figure 1: Tight upper and lower bounds.** Blue = convergence, red = divergence. The dashed line
 444 is the lower bound (Theorem 3.3), the solid line the divergence criterion (Theorem 3.2). Both closely
 445 track the true boundary.

446
 447 small SNR limit, so a smaller SNR yields a smaller coherence. Consequently, when the model has
 448 memorized (low SNR), the unlearning process becomes easier: the model can move away from the
 449 original fit with less resistance, as formalized by our earlier stability criteria. Conversely, if the
 450 data has high SNR (dominant signal shared across examples), the model will latch onto that signal,
 451 resulting in large coherence, and the the model resists leaving the optimum since all samples agree
 452 on the direction.

453 This gives a rigorous basis for a perhaps counter-intuitive aphorism: *the more you memorize, the
 454 easier you forget*. In other words, models that rely heavily on idiosyncratic features of individual
 455 data points (memorization) are in fact less stable at those points and can forget them with less effort,
 456 whereas models that have learned a strong global structure (signal) are more stable and resistant to
 457 having a single sample’s influence removed. Our work is the first to formally establish this connection
 458 between memorization (in terms of data geometry) and unlearning. We believe this provides valuable
 459 insight into the trade-offs inherent in machine unlearning.

4 EXPERIMENTS

4.1 DIVERGING AND CONVERGING CONDITION.

465 **Experimental setup.** In this section, we simulate experiments to test Theorems 3.2 and 3.3. We fix
 466 $n_f = n_r = 50$ and set $\alpha = 0.1$. Say Q is a hyper-parameter constant. We will set Q to different
 467 values to control various quantities in the experiments. For the retain set, Hessians are defined as
 468 $H_i = m e_1 e_1^T$ for $i \in [Q]$, and $H_i = m e_{i-Q+1} e_{i-Q+1}^T$ otherwise, with $m = 2n_r/Q$; the forget set
 469 uses the same construction. This ensures $\lambda_1(H_R) = \lambda_1(H_F) = \lambda_1(D) = 2$, controlling sharpness.
 470 We choose $\eta \leq 1$ to avoid divergence from the standard criterion $\eta \geq 2/\lambda_1$, so any escaping behavior
 471 stems solely from stochasticity, consistent with our theorem.

472 To vary coherence, we change Q and compute (B, σ) pairs by adjusting batch size. For each pair, we
 473 randomly initialize w , run 1000 updates, and record $\|w_{1000}\|$. Runs with $\|w_{1000}\|/\|w_0\| \geq 1000$ are
 474 marked as diverging. Each experiment is repeated 10 times, and the majority outcome determines
 475 convergence/divergence.

476 **Bounds on divergence.** Figure 1 shows that both our upper and lower bounds predict the divergence
 477 region accurately; the bounds are tighter for batch sizes ≥ 10 . The divergence criterion in particular
 478 matches the true boundary, demonstrating that our coherence-based measure captures the essential
 479 optimization dynamics accurately. This highlights coherence as a meaningful lens on unlearning
 480 dynamics, with potential applications beyond our scope. [Please see appendix 5.3 for further details.](#)

4.2 RELATION BETWEEN MEMORIZATION AND FORGETTING.

484 **Experimental setup.** We generate data as in Definition 5 along with the 2 layer CNN. The dataset
 485 has 50 training samples without label noise. We set $\mu = \|\mu\|_2 [1, 0, \dots, 0]$ and add Gaussian noise
 $\xi \sim \mathcal{N}(0, \sigma^2 I_d)$ with $\sigma = 1.0$. [To control the SNR in our experiments, we vary the signal strength to](#)

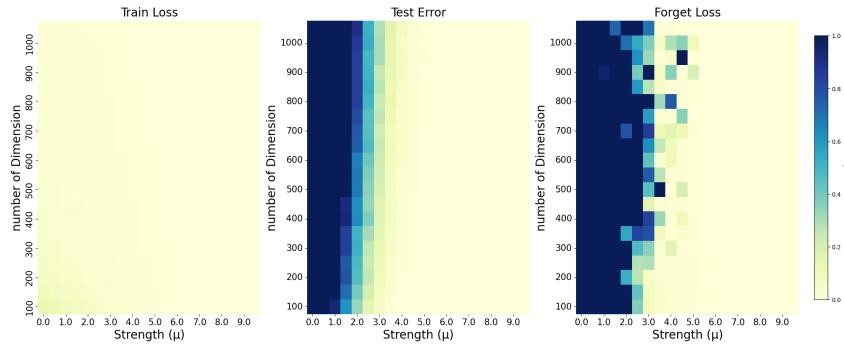


Figure 2: **(Left)** Training loss. **(Middle)** Test error. **(Right)** Forget loss. Memorization and forgetting regions strongly overlap as indicated by the overlap blue region.

achieve different level of SNR while fixing the noise magnitude. We vary the value of $d \in [100, 1100]$ to verify our results with varying levels of over-parametrization. The CNN has $m = 10$ filters and is trained by full-batch gradient descent for 100 epochs at learning rate 0.1, ensuring training loss ≤ 0.1 .

We record training loss and test error (on 1000 unseen samples). For unlearning, out of total 50 samples, we use 25 samples to form the forget set and the other 25 to build the retain set. We apply mini-batch unlearning (batch size 5) using the negative-gradient method with learning rate 0.1 and $\alpha = 0.3$ for 90 steps, then record the average forget loss. Each experiment is repeated 20 times and averaged.

Memorization-forgetting overlap. Figure 2 shows heatmaps over signal strength and dimension. Memorization is identified where training loss is low but test error high (left, middle). Strikingly, these regions coincide with high loss on the forget (right), confirming our prediction: memorization corresponds to low coherence, making solutions unstable and easier to escape, thus making unlearning easier. This provides strong evidence for our framework and, to our knowledge, is the first work to connect memorization and forgetting through coherence. [For more detailed discussion regarding the setup and its corresponding purpose, please refer appendix 5.3.](#)

Larger scale and real world data. To validate our results on real world scenarios, we conduct additional experiments on a more realistic setting: CIFAR-10 with a ResNet-18 model. We first train the model to convergence (100 percent training accuracy). We then perform unlearning steps as stated in eq 3. We use step size as 0.01 with forget set being 10 percent of the training set. We set α or weighting between forget set and training set is set to 0.3. We record the loss on the forget set for the first 500 steps at interval of 50 steps. To probe the relationship between memorization and unlearning predicted by our theory, we inject Gaussian noise of varying variance (0.1, 0.3, 0.5) into the inputs. Higher noise variance produces stronger memorization, since the network overfits the idiosyncratic noise patterns. As shown in Table 1 and predicted by our coherence framework, models with higher memorization (larger variance) exhibit *faster loss increase on the forget set* during unlearning.

Step	Var = 0.1	Var = 0.3	Var = 0.5
0	0.0016 ± 0.0005	0.0019 ± 0.0004	0.0016 ± 0.0004
50	0.0024 ± 0.0014	0.0016 ± 0.0003	0.0700 ± 0.0730
100	0.0694 ± 0.0858	0.0428 ± 0.0539	0.0715 ± 0.0667
150	0.0477 ± 0.0508	0.0356 ± 0.0401	0.1575 ± 0.1692
200	0.0722 ± 0.0762	0.1582 ± 0.1744	0.6279 ± 0.5556
250	0.1758 ± 0.2054	0.1671 ± 0.1508	1.1366 ± 0.6084
300	0.3888 ± 0.4347	0.5626 ± 0.5598	1.4868 ± 0.9849
350	0.6515 ± 0.7707	0.8544 ± 0.7993	2.4464 ± 1.5124
400	1.4362 ± 1.5605	2.3895 ± 1.2796	5.5148 ± 1.8706
450	2.5029 ± 2.3457	2.9324 ± 1.2882	5.5811 ± 1.8397

Table 1: Forget-set loss (mean \pm std) during unlearning across noise levels.

540 REFERENCES
541

542 Atish Agarwala and Yann N. Dauphin. Sam operates far from home: eigenvalue regularization as a
543 dynamical phenomenon, 2023. URL <https://arxiv.org/abs/2302.08692>.

544 Arseniy Andreyev and Pierfrancesco Beneventano. Edge of stochastic stability: Revisiting the edge
545 of stability for sgd, 2025. URL <https://arxiv.org/abs/2412.20553>.

546 Idan Attias, Gintare Karolina Dziugaite, Mahdi Haghifam, Roi Livni, and Daniel M. Roy. Information
547 complexity of stochastic convex optimization: Applications to generalization and memorization,
548 2024. URL <https://arxiv.org/abs/2402.09327>.

549 Rajendra Bhatia. *Matrix analysis*, volume 169. Springer Science & Business Media, 2013.

550 Stella Biderman, USVSN Sai Prashanth, Lintang Sutawika, Hailey Schoelkopf, Quentin Anthony,
551 Shivanshu Purohit, and Edward Raff. Emergent and predictable memorization in large language
552 models, 2023. URL <https://arxiv.org/abs/2304.11158>.

553 Lucas Bourtoule, Varun Chandrasekaran, Christopher A. Choquette-Choo, Hengrui Jia, Adelin
554 Travers, Baiwu Zhang, David Lie, and Nicolas Papernot. Machine unlearning, 2020. URL
555 <https://arxiv.org/abs/1912.03817>.

556 Yinzheng Cao and Junfeng Yang. Towards making systems forget with machine unlearning.
557 2015 IEEE Symposium on Security and Privacy, pp. 463–480, 2015. URL <https://api.semanticscholar.org/CorpusID:5945696>.

558 Nicholas Carlini, Úlfar Erlingsson, and Nicolas Papernot. Distribution density, tails, and outliers
559 in machine learning: Metrics and applications, 2019. URL <https://arxiv.org/abs/1910.13427>.

560 Wei-Kai Chang and Rajiv Khanna. A unified stability analysis of sam vs sgd: Role of data coherence
561 and emergence of simplicity bias, 2025. URL <https://arxiv.org/abs/2511.17378>.

562 Eli Chien, Haoyu Wang, Ziang Chen, and Pan Li. Langevin unlearning: A new perspective of noisy
563 gradient descent for machine unlearning, 2025. URL <https://arxiv.org/abs/2401.10371>.

564 Lenaic Chizat and Francis Bach. Implicit bias of gradient descent for wide two-layer neural networks
565 trained with the logistic loss, 2020. URL <https://arxiv.org/abs/2002.04486>.

566 Gregory Dexter, Borja Ocejo, Sathiya Keerthi, Aman Gupta, Ayan Acharya, and Rajiv Khanna.
567 A precise characterization of sgd stability using loss surface geometry, 2024. URL <https://arxiv.org/abs/2401.12332>.

568 Meng Ding, Rohan Sharma, Changyou Chen, Jinhui Xu, and Kaiyi Ji. Understanding fine-tuning
569 in approximate unlearning: A theoretical perspective, 2025. URL <https://arxiv.org/abs/2410.03833>.

570 Chongyu Fan, Jiancheng Liu, Yihua Zhang, Eric Wong, Dennis Wei, and Sijia Liu. Salun: Em-
571 powering machine unlearning via gradient-based weight saliency in both image classification and
572 generation, 2024. URL <https://arxiv.org/abs/2310.12508>.

573 Xindi Fan, Jing Wu, Mingyi Zhou, Pengwei Liang, and Dinh Phung. Imu: Influence-guided machine
574 unlearning, 2025. URL <https://arxiv.org/abs/2508.01620>.

575 Vitaly Feldman. Does learning require memorization? a short tale about a long tail, 2021. URL
576 <https://arxiv.org/abs/1906.05271>.

577 Pierre Foret, Ariel Kleiner, Hossein Mobahi, and Behnam Neyshabur. Sharpness-aware minimization
578 for efficiently improving generalization, 2021. URL <https://arxiv.org/abs/2010.01412>.

579 Behrooz Ghorbani, Shankar Krishnan, and Ying Xiao. An investigation into neural net optimization
580 via hessian eigenvalue density, 2019. URL <https://arxiv.org/abs/1901.10159>.

581 Antonio Ginart, Melody Y. Guan, Gregory Valiant, and James Zou. Making ai forget you: Data
582 deletion in machine learning, 2019. URL <https://arxiv.org/abs/1907.05012>.

594 Aditya Golatkar, Alessandro Achille, and Stefano Soatto. Eternal sunshine of the spotless net:
 595 Selective forgetting in deep networks, 2020. URL <https://arxiv.org/abs/1911.04933>.
 596

597 Aditya Golatkar, Alessandro Achille, Avinash Ravichandran, Marzia Polito, and Stefano Soatto.
 598 Mixed-privacy forgetting in deep networks, 2021. URL <https://arxiv.org/abs/2012.13431>.
 599

600 Laura Graves, Vineel Nagisetty, and Vijay Ganesh. Amnesiac machine learning, 2020. URL
 601 <https://arxiv.org/abs/2010.10981>.
 602

603 Amartya Hatua, Trung T. Nguyen, Filip Cano, and Andrew H. Sung. Machine unlearning using
 604 forgetting neural networks, 2024. URL <https://arxiv.org/abs/2410.22374>.
 605

606 Zachary Izzo, Mary Anne Smart, Kamalika Chaudhuri, and James Zou. Approximate data deletion
 607 from machine learning models, 2021. URL <https://arxiv.org/abs/2002.10077>.
 608

609 Yiwen Kou, Zixiang Chen, Yuanzhou Chen, and Quanquan Gu. Benign overfitting for two-layer relu
 610 convolutional neural networks, 2023. URL <https://arxiv.org/abs/2303.04145>.
 611

612 Meghdad Kurmanji, Peter Triantafillou, Jamie Hayes, and Eleni Triantafillou. Towards unbounded
 613 machine unlearning, 2023. URL <https://arxiv.org/abs/2302.09880>.
 614

615 Sungyoon Lee and Cheongjae Jang. A new characterization of the edge of stability based on a sharp-
 616 ness measure aware of batch gradient distribution. In *The Eleventh International Conference on
 617 Learning Representations*, 2023. URL <https://openreview.net/forum?id=bH-kCY6LdKg>.
 618

619 Hao Li, Zheng Xu, Gavin Taylor, Christoph Studer, and Tom Goldstein. Visualizing the loss landscape
 620 of neural nets, 2018. URL <https://arxiv.org/abs/1712.09913>.
 621

622 Hao Li, Di Huang, Ziyu Wang, and Amir M. Rahmani. Skewed memorization in large language mod-
 623 els: Quantification and decomposition, 2025. URL <https://arxiv.org/abs/2502.01187>.
 624

625 Chao Ma and Lexing Ying. On linear stability of sgd and input-smoothness of neural networks,
 626 2021. URL <https://arxiv.org/abs/2105.13462>.
 627

628 James Martens and Roger Grosse. Optimizing neural networks with kronecker-factored approximate
 629 curvature, 2020. URL <https://arxiv.org/abs/1503.05671>.
 630

631 Ioannis Mavrothalassitis, Pol Puigdemont, Noam Itzhak Levi, and Volkan Cevher. Ascent fails to
 632 forget, 2025. URL <https://arxiv.org/abs/2509.26427>.
 633

634 Roman Novak, Lechao Xiao, Jiri Hron, Jaehoon Lee, Alexander A. Alemi, Jascha Sohl-Dickstein,
 635 and Samuel S. Schoenholz. Neural tangents: Fast and easy infinite neural networks in python,
 636 2019. URL <https://arxiv.org/abs/1912.02803>.
 637

638 USVSN Sai Prashanth, Alvin Deng, Kyle O'Brien, Jyothir S V, Mohammad Aflah Khan, Jaydeep
 639 Borkar, Christopher A. Choquette-Choo, Jacob Ray Fuehne, Stella Biderman, Tracy Ke, Katherine
 640 Lee, and Naomi Saphra. Recite, reconstruct, recollect: Memorization in lms as a multifaceted
 641 phenomenon, 2025. URL <https://arxiv.org/abs/2406.17746>.
 642

643 Ayush Sekhari, Jayadev Acharya, Gautam Kamath, and Ananda Theertha Suresh. Remember what
 644 you want to forget: Algorithms for machine unlearning, 2021. URL <https://arxiv.org/abs/2103.03279>.
 645

646 Shaofei Shen, Chenhao Zhang, Alina Bialkowski, Weitong Chen, and Miao Xu. Camu: Disentangling
 647 causal effects in deep model unlearning, 2024a. URL <https://arxiv.org/abs/2401.17504>.
 648

649 Shaofei Shen, Chenhao Zhang, Yawen Zhao, Alina Bialkowski, Weitong Tony Chen, and Miao
 650 Xu. Label-agnostic forgetting: A supervision-free unlearning in deep models, 2024b. URL
 651 <https://arxiv.org/abs/2404.00506>.
 652

653 Sidak Pal Singh and Dan Alistarh. Woodfisher: Efficient second-order approximation for neural
 654 network compression, 2020. URL <https://arxiv.org/abs/2004.14340>.
 655

656 Haoran Tang and Rajiv Khanna. Sharpness-aware machine unlearning, 2025. URL <https://arxiv.org/abs/2506.13715>.
 657

648 Qiaoyue Tang, Frederick Shpilevskiy, and Mathias Lécuyer. Dp-adambc: Your dp-adam is actually
649 dp-sgd (unless you apply bias correction), 2023. URL <https://arxiv.org/abs/2312.14334>.
650

651 Anvith Thudi, Gabriel Deza, Varun Chandrasekaran, and Nicolas Papernot. Unrolling sgd: Under-
652 standing factors influencing machine unlearning, 2022. URL <https://arxiv.org/abs/2109.13398>.
653

654 Roman Vershynin. *High-Dimensional Probability: An Introduction with Applications in Data*
655 *Science*. Cambridge Series in Statistical and Probabilistic Mathematics. Cambridge University
656 Press, 2018.

657 Alexander Warnecke, Lukas Pirch, Christian Wressnegger, and Konrad Rieck. Machine unlearning
658 of features and labels, 2023. URL <https://arxiv.org/abs/2108.11577>.
659

660 Kaiyue Wen, Zhiyuan Li, and Tengyu Ma. Sharpness minimization algorithms do not only minimize
661 sharpness to achieve better generalization, 2023. URL <https://arxiv.org/abs/2307.11007>.
662

663 Lei Wu and Weijie J. Su. The implicit regularization of dynamical stability in stochastic gradient
664 descent, 2023. URL <https://arxiv.org/abs/2305.17490>.
665

666 Lei Wu, Chao Ma, et al. How sgd selects the global minima in over-parameterized learning: A
667 dynamical stability perspective. *Advances in Neural Information Processing Systems*, 31, 2018.
668

669 Lei Wu, Mingze Wang, and Weijie Su. The alignment property of sgd noise and how it helps select
670 flat minima: A stability analysis, 2022. URL <https://arxiv.org/abs/2207.02628>.
671

672 Zhewei Yao, Amir Gholami, Kurt Keutzer, and Michael Mahoney. Pyhessian: Neural networks
673 through the lens of the hessian, 2020. URL <https://arxiv.org/abs/1912.07145>.
674

675

676

677

678

679

680

681

682

683

684

685

686

687

688

689

690

691

692

693

694

695

696

697

698

699

700

701

702
703

5 APPENDIX

704
705

5.1 ADDITIONAL RELATED WORKS

706
707 **Machine unlearning and memorization.** Many unlearning methods are proposed to effectively
708 erase information of selected samples. Several basic but well-known methods such as random
709 labeling of forget set (Graves et al., 2020) and explicit gradient ascent on the forget set (Warnecke
710 et al., 2023) lay foundation for current unlearning methods. More recent works extend on those
711 works to improve overall performance of unlearning. For example, SCRUB (Kurmanji et al., 2023)
712 simultaneously perform gradient ascent on forget set and gradient descent in the retain set to better
713 preserve performance of retain during unlearning. Influence based (Izzo et al., 2021) unlearning
714 propose idea that takes into account of the Hessian information of datasets to perform update of the
715 model weights. Saliency Unlearning (Fan et al., 2024) identity weights that react strongly to forget
716 set through magnitude of gradient and perform unlearning only on those weight to achieve better
717 performance. There are several theoretical studies about unlearning through the lens of the differential
718 privacy and provide performance guarantee. For example, Langevin Unlearning Chien et al. (2025)
719 study unlearning with privacy guarantee through projected noisy gradient descent. Sekhari et al.
720 (2021) studies unlearning problem and provide performance guarantee and the corresponding sample
721 complexity. There are also works discussing relationship between memorization and generalization.
722 Attias et al. (2024) discuss the fundamental trade-off between generalization and memorization under
723 information theory framework. Carlini et al. (2019) discuss different metrics for identifying sample
724 of different type (memorized, prototypical and so on). Feldman (2021) provide theoretical and
725 experimental analysis saying the memorization is necessary to achieve optimal performance. There
726 are also several works studying memorization with different tasks and model architectures (Biderman
727 et al. (2023); Li et al. (2025); Prashanth et al. (2025)).728
729

5.2 DISCUSSION ABOUT ASSUMPTIONS

730
731 **Linearized dynamics and quadratic approximation:** In this section, we provide a consolidated
732 and detailed discussion for why this modeling choice is (1) standard, (2) empirically grounded, and
733 (3) necessary for theoretical progress in unlearning.734
735 First, the local quadratic approximation is a well-established and widely validated modeling frame-
736 work in the theory of deep learning. A large body of recent work successfully explains diverse
737 optimization behaviors using this approximation, including the Edge-of-Stability phenomenon (An-
738 dreyev & Beneventano, 2025; Lee & Jang, 2023), implicit bias and generalization (Wu & Su, 2023;
739 Wu et al., 2022), eigenvalue dynamics and curvature structures (Agarwala & Dauphin, 2023), and
740 stability versus divergence of SGD (Dexter et al., 2024; Chang & Khanna, 2025). While the ap-
741 proximation does impose limitations as (all theoretical frameworks do) it also provides meaningful
742 insights into real-world systems that alternative approaches currently cannot offer. The success of
743 these works illustrates that quadratic modeling is both theoretically fruitful and empirically relevant.
744 Use of the same approximation follows this tradition and enables us to reveal new connections
745 between the forget set and retain set via their geometric interactions.746
747 Second, multiple empirical studies show that the loss landscape near well-trained minima is smooth
748 and locally well-approximated by a quadratic form (Li et al., 2018; Singh & Alistarh, 2020; Ghorbani
749 et al., 2019). This has been repeatedly observed across architectures, datasets, and training regimes.
750 Importantly, unlearning is a fine-tuning procedure that begins from an already-converged minimum,
751 precisely the region where such local approximations are the most accurate. Thus, the theoretical
752 foundation is not only supported by prior empirical evidence but is also particularly appropriate for
753 modeling unlearning dynamics.754
755 Third, a key question is: why do we need approximations at all in theoretical unlearning? Existing
756 theoretical works on machine unlearning also rely on simplified or linearized systems in order to
757 obtain analyzable results. For example, Golatkar et al. (2020) study unlearning under a quadratic
758 model and analyze the drift of optimization trajectories which is exactly the type of measure we
759 employ. Ding et al. (2025) use linear feature-weight dot product models and weight-space distances
760 to characterize approximate unlearning. The recent work (Mavrothalassis et al., 2025) operates
761 in linear logistic regression, enabling closed-form solutions and a theoretical characterization of

756 forgetting difficulty. Thudi et al. (2022) analyze unlearning by unrolling the SGD recursion, which
 757 again relies on linearization of the gradient dynamics.
 758

759 One commonality across all these theoretical frameworks is that they require simplifying assumptions
 760 to make the problem analyzable. Our quadratic approximation fits within this established method-
 761 ology. Although no single abstraction captures the full complexity of deep networks, each sheds
 762 light on a different aspect of the phenomenon. Our framework contributes by offering a principled
 763 geometric description of how the retain and forget sets interact through curvature and coherence,
 764 revealing a new mechanistic explanation for when gradient-based unlearning becomes difficult or
 765 feasible.

766 **Sample wise gradient** This assumption used in our work required that sample wise gradient at w^*
 767 to be zero i.e.,
 768

$$\begin{aligned}\nabla l_i(w) &= \nabla l_i(w^*) + H_i(w - w^*) \\ &= H_i(w - w^*)\end{aligned}\tag{14}$$

771
 772 This means that all gradients around the optimum strictly depend on curvatures. This aligns with
 773 the focus of our work which is to study how curvatures influence the optimization behavior. This
 774 assumption follows the standard linear interpolating regime used in prior works such as (Dexter
 775 et al., 2024; Wu & Su, 2023) widely observed in overparameterized networks, where training loss
 776 and sample-wise losses approach zero near convergence. Empirical and theoretical studies (Tang
 777 et al., 2023; Chizat & Bach, 2020) have shown that modern neural networks can fit all training labels
 778 exactly, implying that the close-to-zero loss results from vanishing per-sample gradients rather than
 779 balanced large gradients. In this regime, the local dynamics are dominated by the Hessian curvature,
 780 making the linear approximation around minima both standard and justified.
 781

782 5.3 MORE DISCUSSION ABOUT THE EXPERIMENTS

783 Below we clarify the design and purpose of our experiments and will add the discussion into
 784 the updated version of our work. The experiments serve two distinct goals: (1) verifying the
 785 theoretical divergence criterion and matching lower bound under a controlled synthetic setting, and
 786 (2) empirically testing the predicted link between memorization and forgetting using a two-layer
 787 CNN.
 788

789 **Synthetic verification.** We construct sample-wise Hessians such that the overall dataset Hessian is
 790 constrained by $2 / \eta$, ensuring that any divergence behavior arises purely from stochasticity and data
 791 geometry. We vary the sample-wise Hessian coherence while maintaining the same global sharpness,
 792 then run training under different learning rates. Divergence is detected when the weight norm grows
 793 $1000\times$ larger than initialization (repeated over five runs). As shown in Fig. 1, the empirically
 794 observed divergence boundary (red/blue transition) aligns closely with both our theoretical criterion
 795 and the matching lower bound, confirming that the theory precisely predicts optimization stability.
 796

797 **Memorization-forgetting test.** For the second part, we want to verify the whether or not stronger
 798 memorization will lead to stronger forgetting or unlearning as our theory indicates that when model
 799 memorize the data, it will map the data to space where it is orthogonal to the main dataset in terms of
 800 loss curvatures and give low coherence measure. This low coherence measure will therefore lead to
 801 easier forgetting process as predicted by our theory. To control memorization strength, we generate
 802 datasets with varying signal-to-noise ratio (SNR). Low-SNR data force the model to memorize noise
 803 (learn orthogonal noise directions in the loss curvature space) yielding low coherence. After training,
 804 we apply our unlearning procedure and track forget losses. The training loss indicates that all models
 805 properly learn the data and converge. The testing loss is to demonstrate whether or not the model
 806 memorize the data. This is due to the fact that the when the model perform well in train but bad in
 807 the testing, it indicate there exist memorization. We therefore can observe that small SNR regime
 808 show strong memorization. Lastly, the forget loss indicate that whether or not we can escape the
 809 current minima and perform successful unlearning. Our results show that it is consistence with our
 810 theoretical prediction. The regime of memorization will also give stronger forgetting results aligning
 811 with our coherence measure.

810 5.4 DISCUSSION ABOUT DIVERGENCE AND UNLEARNING.
811812 In this section, we discuss how the divergence and unlearning are related under different scopes of
813 unlearning and how is this relationship being explored in prior works. Further more, we want to
814 answer why the loss or distance based metric is still valuable and remain one stander for unlearning
815 problem.816 First, divergence and distance is widely used unlearning metrics in many prior works. while
817 there is currently no single universal definition of unlearning across domains: some applications
818 emphasize privacy (MIA resistance), others focus on confusion removal, bias removal, safety, or
819 utility preservation. Despite this diversity, loss and distance based metrics remain among the most
820 commonly used evaluation tools, and our work is consistent with this long line of literature. Our
821 use of the metric is consistent with many established works that continue to evaluate unlearning
822 effectiveness using forget-set loss or accuracy. Examples include unlearning accuracy (Fan et al.,
823 2024), forgetting error (Kurmanji et al., 2023), forget performance (Kurmanji et al., 2023), forgetting
824 loss (Graves et al., 2020; Golatkar et al., 2020) and distance-based measures (Thudi et al., 2022).
825 They are also work characterizing the distance between solutions resulting from different algorithms
826 (Mavrothalassitis et al., 2025). These metrics are still used because they capture the effect of
827 removing the forget set and they correlate strongly with practical privacy risks (e.g., MIA success).
828 In this sense, analyzing divergence or distance quantities that govern how the model leaves the old
829 solution is aligned with standard practice.
830831 Second, why divergence is theoretically meaningful and aligns with prior unlearning theory? Several
832 foundational works analyze unlearning by studying optimization trajectory and its reaction to different
833 component involved in unlearning. For example, Golatkar et al. (2020) study unlearning through
834 analyzing drift of optimization trajectories built on quadratic loss and determine the weight difference
835 at infinity time limit. Ding et al. (2025) use linear models and weight-space distances to characterize
836 approximate unlearning. Specifically, they use loss as criterion to quantify the difference brought
837 by unlearning process. The recent work (Mavrothalassitis et al., 2025) operates in linear logistic
838 regression, by studying closed solution based on the logistic loss, they describe the unlearning
839 process through the weight difference between original one and the unlearned one. Thudi et al.
840 (2022)analyze unlearning by unrolling the SGD recursion, which again relies on linearization of the
841 gradient dynamics. Also their definition of unlearning error directly use the difference in weight
842 space and connect the MIA attack to this theoretically defined quantity.
843844 5.5 FEASIBILITY OF COMPUTING DATA COHERENCE
845846 A practical concern raised by reviewers is that the theory’s “central metric relies on per-sample
847 Hessians or Gram matrices,” which are expensive or infeasible to compute on modern large models.
848 This is a valid point. Exact per-sample Hessians in a deep network can be enormous but it is not a
849 fatal flaw of the approach. There is strong precedent in ML theory where initially intractable quan-
850 tities inspired new insights and eventually yielded practical approximations. The Fisher Information
851 Matrix (FIM) and the full Hessian of a network are classic examples: early theoretical research
852 treated them as important objects despite their size, and this spurred the development of methods to
853 approximate or constrain them(Martens & Grosse, 2020; Yao et al., 2020). Natural gradient methods
854 and second-order optimizers like K-FAC (Kronecker-Factored Approximate Curvature)(Martens &
855 Grosse, 2020) explicitly approximate the Fisher/Hessian to achieve near-optimal descent directions.
856 In fact, Sharpness-Aware Minimization (SAM)(Foret et al., 2021) (a recent regularizer that improves
857 generalization) was inspired by the idea of penalizing the Hessian’s largest eigenvalues (i.e. mini-
858 mizing sharpness). SAM doesn’t compute the full Hessian; it uses a clever first-order approximation
859 (perturbing weights to measure curvature indirectly), yet it stemmed from the principle that the Hes-
860 sian spectrum matters. Likewise, the Neural Tangent Kernel was originally an $N \times N$ Gram matrix
861 over data points which is seemingly impractical beyond toy datasets, but it led to kernel proxies and
862 inspired practical diagnostics. For instance, researchers developed ways to estimate the NTK(Novak
863 et al., 2019) or related Gram matrices for subsets of data to monitor training dynamics, and used the
864 constant-NTK theory to justify why wide networks behave more predictably.865 In our case, Hessian alignment/coherence is introduced as a conceptual tool to understand unlearning.
866 While we indeed computed it in a small controlled CNN to validate the theory, this is akin to how many
867 theoretical analyses proceed: first verify on a “toy” setup where the exact metrics can be computed for

864 clarity, then later work on scaling it up. It's worth noting that many large-scale theoretical studies have
 865 found ways to approximate Hessian-based measures. For example, Ghorbani et al. (2019) developed
 866 numerical linear algebra techniques to estimate the entire Hessian eigenvalue density for ImageNet-
 867 scale networks. They used random matrix sketching and power-iteration methods to produce the
 868 Hessian spectrum efficiently, a feat that seemed impossible a few years prior. This underscores that
 869 what's "infeasible" with brute force can become feasible with algorithmic ingenuity. The history of
 870 deep learning research shows that what starts as "only explanatory" can become actionable. The
 871 NTK was once purely theoretical, yet now practitioners talk about "NTK conditioning" and use
 872 kernel analogies to choose architectures. Likewise, we anticipate that coherence measures could
 873 inspire new diagnostics (perhaps a coherence score computed on a small held-out batch as a proxy)
 874 or new training procedures (e.g. encourage decorrelation between forget and retain gradients). In
 875 our submission, we acknowledged that directly computing per-sample Hessians for a giant model
 876 is impractical today, but we intentionally validated our theory in a setting where we could compute
 877 them exactly, thus establishing a clear ground truth. This is a valuable first step. Moving forward, our
 878 framework can guide research into scalable approximations: perhaps using low-rank factorization
 879 of the Hessian, or computing block-wise coherence (layer-wise, or between specific neural units) as
 880 a cheaper metric. Thus, we confidently defend the use of linear stability and local linearization in
 881 our analysis: it is a principled approach grounded in prior successes in deep learning theory, and it
 882 offers a powerful explanatory framework for understanding when models will – or won't – let go of
 883 what they have learned.

884 5.6 MORE DISCUSSION ABOUT MEMORIZATION AND FORGETTING.

885 Our definition of memorization is grounded in the observation that, to minimize training loss, models
 886 often overfit to highly orthogonal components of the data and the directions that are uncorrelated
 887 with the main signal. This view aligns with our coherence-based analysis: in our signal-plus-noise
 888 experiments, noise components are orthogonal in expectation, and the theory predicts that such
 889 directions are easily forgotten once ascent begins.

890 Similar notions have been explored in recent work. Wen et al. (2023) show that memorized examples
 891 correspond to orthogonal activation patterns within the network, which translate into orthogonal
 892 Hessian directions, while Yu et al. (2024) study memorization in highly orthogonal subspaces. These
 893 results support our geometric interpretation that memorization arises from localized, low-coherence
 894 modes.

895 The type of memorization captured by our coherence framework (fitting orthogonal directions or
 896 outlier features) is one of the most fundamental and widely studied forms of memorization in
 897 modern deep learning. It is closely connected to optimization stability, generalization behavior,
 898 and ultimately forgetting. We agree that verbatim sequence memorization in large language models
 899 may involve additional mechanisms; however, the underlying causes of such memorization remain an
 900 open research question with no corresponding theoretical formulation and/or studies to the best of our
 901 knowledge yet. Because our work focuses on the optimization geometry governing gradient-based
 902 learning, extending coherence-based analysis to sequential or long-context memorization in LLMs
 903 represents an exciting future direction.

904 5.7 LEMMAS AND PROOFS

905 **Definition 6** (Full forget Hessian and retain Hessian).

$$906 H_R = \frac{1}{n_r} \sum_{r \in D_r} H_r, \quad H_F = \frac{1}{n_r} \sum_{f \in D_f} H_f, \quad (15)$$

907 **Lemma 5.1.** *l_1 - l_2 norm inequality: For any $x \in \mathbb{R}$, $\|x\|_2 \leq \|x\|_1 \leq \sqrt{d}\|x\|_2$*

908 **Lemma 5.2. Binomial coefficient:** For all $n, k \in \mathbb{N}$ such that $k \leq n$, the binomial coefficients
 909 satisfy that

$$910 \binom{n}{k} = \binom{n-1}{k-1} + \binom{n-1}{k}. \quad (16)$$

911 **Lemma 5.3.** For any matrix $M \in \mathbb{R}^{n \times n}$, $\|M\|_F \leq \|M\|_{S_1} \leq \sqrt{n}\|M\|_F$, where $\|M\|_{S_p}$ is p norm
 912 of the spectrum of M , and the inequality is obtain through l_1 - l_2 norm inequality.

Lemma 5.4. For matrices $M_1 \dots M_k \in \mathbb{R}^{n \times n}$, $\text{Tr}[M_1 \dots M_k] \leq \|M_1 \dots M_k\|_{S_1}$ (see Bhatia (2013))

Lemma 5.5 (Vershynin (2018)). Consider n random gaussian vectors $x_1 \dots x_n$ sampled i.i.d from $N(0, \sigma^2 I_d)$, there exist a constant C_1 such that with probability $1 - \delta$,

$$\sum_{i=1}^n \|x_i\| \leq n\sqrt{2}\sigma \frac{\Gamma((d+1)/2)}{\Gamma(d/2)} + \sqrt{\frac{n\sigma^2}{C_1} \log(\frac{2}{\delta})} \quad \text{for } n, d \text{ large enough.} \quad (17)$$

Lemma 5.6 (Vershynin (2018)). Consider n random gaussian vectors $x_1 \dots x_n$ sampled i.i.d from $N(0, \sigma^2 I_d)$, there exist a constant C_1 such that with probability $1 - \delta$,

$$\sum_{i=1}^n \|x_i\|^2 \leq n\sigma^2 d + \sqrt{\frac{n\sigma^4 d}{C_2} \log\left(\frac{2}{\delta}\right)} \quad \text{for } n, d \text{ large enough.} \quad (18)$$

5.8 PROOF OF LEMMA 3.1

Lemma 5.7 (Restated). Consider the unlearning update operator J_k defined in (4). Define a sequence of PSD matrices $\{N_k\}_{k \geq 0}$ by $N_0 = I$ and for $k \geq 1$:

$$N_k = C_f \sum_{i \in D_f} H_i N_{k-1} H_i + C_r \sum_{i \in D_r} H_i N_{k-1} H_i, \quad (19)$$

with C_r, C_f as given in Definition 2. Also let $M_k = J^{2k} + N_k$. Then:

1. **(Lower bound)** $\mathbb{E} \operatorname{Tr}(J_0^T \cdots J_{k-1}^T J_{k-1} \cdots J_0) \geq \operatorname{Tr}(M_k)$. Moreover, if $\operatorname{Tr}(N_k) \rightarrow \infty$ as $k \rightarrow \infty$, then $\mathbb{E} \|w_k\|^2 \rightarrow \infty$ as well.
2. **(Upper bound)** If at each step J_k is spectrally bounded as $(1 - \epsilon)I \succeq J \succeq -(1 - \epsilon)I$ for some $\epsilon \in (0, 1)$ (i.e. all eigenvalues of J lie in $[-(1 - \epsilon), 1 - \epsilon]$), then

$$\mathbb{E} \operatorname{Tr}(J_0^T \cdots J_{k-1}^T J_{k-1} \cdots J_0) \leq \sum_{r=0}^{k-1} \binom{k}{r} (1-\epsilon)^{2(k-r)} \operatorname{Tr}(N_r).$$

If in addition $\text{Tr}(N_r) \leq \epsilon$ for all r , then $\mathbb{E}\|w_k\|^2 \rightarrow 0$ as $k \rightarrow \infty$ (the unlearning update converges in mean square).

Proof. As we are taking the expectation value over the calculation, we can effectively transform the J_k into following with random variables involved:

$$J_k = (I - \eta(1-\alpha)\frac{1}{B} \sum_{i \in D_{r,k}} H_i + \eta\alpha\frac{1}{B} \sum_{i \in D_{f,k}} H_i) = (I - \eta(1-\alpha)\frac{1}{B} \sum_{r \in D_r} x_r H_r + \eta\alpha\frac{1}{B} \sum_{f \in D_f} x_f H_f), \quad (20)$$

where x_r, x_f are the corresponding Bernoulli random variables with probability $P(x_r = 1) = \frac{B}{n_r}$ and $P(x_f = 1) = \frac{B}{n_f}$ and 0 otherwise.

To initiate the first step in characterize the difference between the unlearning and usually learning process, we first calculate the $E[J_1^T J_1]$ as follows:

$$\begin{aligned}
E[J_1^T J_1] &= E[(I - \eta(1 - \alpha) \frac{1}{B} \sum_{r \in D_r} x_r H_r + \eta \alpha \frac{1}{B} \sum_{i \in D_f} x_f H_f)^T (I - \eta(1 - \alpha) \frac{1}{B} \sum_{r \in D_r} x_r H_r + \eta \alpha \frac{1}{B} \sum_{i \in D_f} x_f H_f)] \\
&= E[(I - \eta(1 - \alpha) \frac{1}{B} \sum_{r \in D_r} x_r H_r)^T (I - \eta(1 - \alpha) \frac{1}{B} \sum_{r \in D_r} x_r H_r) \\
&\quad + 2(I - \eta(1 - \alpha) \frac{1}{B} \sum_{r \in D_r} x_r H_r)^T (\eta \alpha \frac{1}{B} \sum_{i \in D_f} x_f H_f) + (\eta \alpha \frac{1}{B} \sum_{i \in D_f} x_f H_f)^T (\eta \alpha \frac{1}{B} \sum_{i \in D_f} x_f H_f)]. \tag{21}
\end{aligned}$$

972 Here, we separate the above equation into three part and take the expectation accordingly:
 973
 974

$$\begin{aligned}
 975 \quad & E[(I - \eta(1 - \alpha) \frac{1}{B} \sum_{r \in D_r} x_r H_r)^T (I - \eta(1 - \alpha) \frac{1}{B} \sum_{r \in D_r} x_r H_r)] \\
 976 \quad &= E[(I - 2\eta(1 - \alpha) \frac{1}{B} \sum_{r \in D_r} x_r H_r + \eta^2(1 - \alpha)^2 \frac{1}{B}^2 \sum_{r \in D_r} x_r H_r \sum_{r \in D_r} x_r H_r)], \\
 977 \quad &= I - 2\eta(1 - \alpha) \frac{1}{n_r} \sum_{r \in D_r} H_r + E[\eta^2(1 - \alpha)^2 (\frac{1}{B})^2 \sum_{r \in D_r} x_r H_r \sum_{r \in D_r} x_r H_r], \\
 978 \quad &= I - 2\eta(1 - \alpha) \frac{1}{n_r} \sum_{r \in D_r} H_r + E[\eta^2(1 - \alpha)^2 (\frac{1}{B})^2 \sum_{r' \in D_r} \sum_{r \in D_r} x_{r'} x_r H_{r'} H_r], \\
 979 \quad &= I - 2\eta(1 - \alpha) \frac{1}{n_r} \sum_{r \in D_r} H_r + \eta^2(1 - \alpha)^2 (\frac{1}{n_r})^2 (\sum_{r \in D_r} H_r)^2 + \eta^2(1 - \alpha)^2 \frac{1}{n_r} (\frac{1}{B} - \frac{1}{n_r}) \sum_{r \in D_r} H_r^2, \\
 980 \quad &= I - 2\eta(1 - \alpha) H_R + \eta^2(1 - \alpha)^2 H_R^2 + \eta^2(1 - \alpha)^2 \frac{1}{n_r} (\frac{1}{B} - \frac{1}{n_r}) \sum_{r \in D_r} H_r^2, \\
 981 \quad &= (I - \eta(1 - \alpha) H_R)^2 + \eta^2(1 - \alpha)^2 \frac{1}{n_r} (\frac{1}{B} - \frac{1}{n_r}) \sum_{r \in D_r} H_r^2. \\
 982 \quad & \\
 983 \quad & \\
 984 \quad & \\
 985 \quad & \\
 986 \quad & \\
 987 \quad & \\
 988 \quad & \\
 989 \quad & \\
 990 \quad & \\
 991 \quad & \\
 992 \quad & \\
 993 \quad & \\
 994 \quad & \\
 995 \quad & \\
 996 \quad & \\
 997 \quad & \\
 998 \quad & \\
 999 \quad & \\
1000 \quad & \\
1001 \quad & \\
1002 \quad & \\
1003 \quad & \\
1004 \quad & \\
1005 \quad & \\
1006 \quad & \\
1007 \quad & \\
1008 \quad & \\
1009 \quad & \\
1010 \quad & \\
1011 \quad & \\
1012 \quad & \\
1013 \quad & \\
1014 \quad & \\
1015 \quad & \\
1016 \quad & \\
1017 \quad & \\
1018 \quad & \\
1019 \quad & \\
1020 \quad & \\
1021 \quad & \\
1022 \quad & \\
1023 \quad & \\
1024 \quad & \\
1025 \quad &
 \end{aligned} \tag{22}$$

The random variables x_r are independent to each other but not itself and therefore there exist one additional terms in the final line. Also, Compared to the original sgd there exists additional multiplication of the $(1 - \alpha)^2$. Next, we move on to the interaction term:

$$E[2(I - \eta(1 - \alpha) \frac{1}{B} \sum_{r \in D_r} x_r H_r)^T (\eta \alpha \frac{1}{B} \sum_{f \in D_f} x_f H_f)] = 2(I - \eta(1 - \alpha) H_R)^T (\eta \alpha H_F). \tag{23}$$

We can directly formulate this as above due to the fact that we assume the sampling process of retain set and forget set to be independent. Last, the term arising due to the forget set:

$$E[(\eta \alpha \frac{1}{B} \sum_{f \in D_f} x_f H_f)^T (\eta \alpha \frac{1}{B} \sum_{f \in D_f} x_f H_f)] = \eta^2 \alpha^2 H_F^2 + \eta^2 \alpha^2 \frac{1}{n_f} (\frac{1}{B} - \frac{1}{n_f}) \sum_{f \in D_f} H_f^2. \tag{24}$$

We then integrate the three part and reformulate the Jacobian:

$$\begin{aligned}
 1011 \quad & E[J_1^T J_1] = (I - \eta(1 - \alpha) H_R)(I - \eta(1 - \alpha) H_R) + 2(I - \eta(1 - \alpha) H_R)^T (\eta \alpha H_F) + \eta^2 \alpha^2 H_F^2 \\
 1012 \quad & + \eta^2 \alpha^2 \frac{1}{n_f} (\frac{1}{B} - \frac{1}{n_f}) \sum_{f \in D_f} H_f^2 + \eta^2(1 - \alpha)^2 \frac{1}{n_r} (\frac{1}{B} - \frac{1}{n_r}) \sum_{r \in D_r} H_r^2, \\
 1013 \quad & = (I - \eta(1 - \alpha) H_R + \eta \alpha H_F)(I - \eta(1 - \alpha) H_R + \eta \alpha H_F) \\
 1014 \quad & + \eta^2 \alpha^2 \frac{1}{n_f} (\frac{1}{B} - \frac{1}{n_f}) \sum_{f \in D_f} H_f^2 + \eta^2(1 - \alpha)^2 \frac{1}{n_r} (\frac{1}{B} - \frac{1}{n_r}) \sum_{r \in D_r} H_r^2, \\
 1015 \quad & = J^2 + \eta^2 \alpha^2 \frac{1}{n_f} (\frac{1}{B} - \frac{1}{n_f}) \sum_{f \in D_f} H_f^2 + \eta^2(1 - \alpha)^2 \frac{1}{n_r} (\frac{1}{B} - \frac{1}{n_r}) \sum_{r \in D_r} H_r^2, \\
 1016 \quad & \\
 1017 \quad & \\
 1018 \quad & \\
 1019 \quad & \\
 1020 \quad & \\
 1021 \quad & \\
 1022 \quad & \\
 1023 \quad & \\
 1024 \quad & \\
 1025 \quad &
 \end{aligned} \tag{25}$$

where we define $J = I - \eta(1 - \alpha) H_R + \eta \alpha H_F$. During the whole work, we will be analyzing on these terms to characterize the behavior of unlearning process.

1026 We use inductive proof for both first and second part of the theory and we begin the proof as following:
 1027

1028 **First part:**

1029 **Base case: $k = 1$**

$$1033 \quad 1034 \quad M_1 = J^2 + C_f \sum_{f \in D_f}^{n_f} H_f^2 + C_r \sum_{r \in D_r}^{n_r} H_r^2 = J^2 + N_1 \preceq E[J_1^T J_1], \quad (26)$$

1038 where the left term match the equation 25 and therefore the basis case is set. Now we go further
 1039 with inductive step.
 1040

1041 **Inductive step: $k-1$**

$$1046 \quad E[J_k^T J_{k-1}^T \dots J_1^T J_1 \dots J_{k-1}] \succeq E[J_k^T M_{k-1} J_k],$$

$$1047 \quad = E[(I - \eta(1 - \alpha) \frac{1}{B} \sum_{i \in D_r} x_r H_r + \eta\alpha \frac{1}{B} \sum_{f \in D_f} x_f H_f) M_{k-1} (I - \eta(1 - \alpha) \frac{1}{B} \sum_{i \in D_r} x_r H_r + \eta\alpha \frac{1}{B} \sum_{f \in D_f} x_f H_f)],$$

$$1050 \quad = J M_{k-1} J + C_f \sum_{f \in D_f}^{n_f} H_f M_{k-1} H_f + C_r \sum_{r \in D_r}^{n_r} H_r M_{k-1} H_r,$$

$$1053 \quad = J(J^{2(k-1)} + N_{k-1})J + C_f \sum_{f \in D_f}^{n_f} H_f (J^{2(k-1)} + N_{k-1})H_f + C_r \sum_{r \in D_r}^{n_r} H_r (J^{2(k-1)} + N_{k-1})H_r,$$

$$1056 \quad = J^{2k} + C_f \sum_{f \in D_f}^{n_f} H_f N_{k-1} H_f + C_r \sum_{r \in D_r}^{n_r} H_r N_{k-1} H_r + J N_{k-1} J + C_f \sum_{f \in D_f}^{n_f} H_f J^{2(k-1)} H_f + C_r \sum_{r \in D_r}^{n_r} H_r J^{2(k-1)} H_r,$$

$$1059 \quad = M_k + J N_{k-1} J + C_f \sum_{f \in D_f}^{n_f} H_f J^{2(k-1)} H_f + C_r \sum_{r \in D_r}^{n_r} H_r J^{2(k-1)} H_r,$$

$$1062 \quad \succeq M_k.$$

(27)

1066 The last equality is due to the later three terms are both PSD by assumption as they are symmetric in
 1067 terms of left and right half of whole multiplication. As we can lower bound through M_k , diverging
 1068 of N_k will lead to M_k and cause the whole product to diverge.
 1069

1070 **Second part:**

1071 **Base step: $k=1$.**

$$1074 \quad 1075 \quad E[J_1^T J_1] = J^2 + N_1 \preceq (1 - \epsilon)^2 I + N_1 = \sum_{r=0}^1 \binom{1}{r} (1 - \epsilon)^{2(1-r)} N_r. \quad (28)$$

1078 The J^2 is bounded by $(1 - \epsilon)^2 I$ due to our assumption. Now, we start with the inductive step
 1079

1080 **Inductive step: k-1.**
1081

$$\begin{aligned}
1082 \quad E[J_k^T J_{k-1}^T \dots J_1^T J_1 \dots J_{k-1} J_{k-1}] &\preceq E[J_k^T \left(\sum_{r=0}^{k-1} \binom{k-1}{r} (1-\epsilon)^{2(k-1-r)} N_r\right) J_k], \\
1083 \\
1084 \quad &= J \left(\sum_{r=0}^{k-1} \binom{k-1}{r} (1-\epsilon)^{2(k-1-r)} N_r\right) J \\
1085 \\
1086 \quad &+ C_f \sum_{i \in D_f}^{n_f} H_i \left(\sum_{r=0}^{k-1} \binom{k-1}{r} (1-\epsilon)^{2(k-1-r)} N_r\right) H_i + C_r \sum_{i \in D_r}^{n_r} H_i \left(\sum_{r=0}^{k-1} \binom{k-1}{r} (1-\epsilon)^{2(k-1-r)} N_r\right) H_i, \\
1087 \\
1088 \quad &= J \left(\sum_{r=0}^{k-1} \binom{k-1}{r} (1-\epsilon)^{2(k-1-r)} N_r\right) J + \sum_{r=0}^{k-1} \binom{k-1}{r} (1-\epsilon)^{2(k-1-r)} (C_f \sum_{i \in D_f}^{n_f} H_i N_r H_i + C_r \sum_{i \in D_r}^{n_r} H_i N_r H_i), \\
1089 \\
1090 \quad &\preceq \sum_{r=0}^{k-1} \binom{k-1}{r} (1-\epsilon)^{2(k-r)} N_r + \sum_{r=0}^{k-1} \binom{k-1}{r} (1-\epsilon)^{2(k-1-r)} N_{r+1}, \\
1091 \\
1092 \quad &= \sum_{r=0}^{k-1} \binom{k-1}{r} (1-\epsilon)^{2(k-r)} N_r + \sum_{r=0}^{k-1} \binom{k-1}{r} (1-\epsilon)^{2(k-1-r)} N_{r+1}, \\
1093 \\
1094 \quad &= (1-\epsilon)^2 N_o + \sum_{r=1}^{k-1} \left(\binom{k-1}{r} + \binom{k-1}{r-1} \right) N_r + N_k, \\
1095 \\
1096 \quad &= (1-\epsilon)^2 N_o + \sum_{r=1}^{k-1} \binom{k}{r} N_r + N_k, \\
1097 \\
1098 \quad &= \sum_{r=0}^k \binom{k}{r} (1-\epsilon)^{2(k-r)} N_r.
\end{aligned}
\tag{29}$$

□

1111
1112 The first and second inequality is due to the assumption in induction on previous step and we merge
1113 the coefficient in the last step through lemma 5.2. Finally, if we further have that $\text{Tr}[N_r] \leq \epsilon \forall r$,
1114 then

$$\begin{aligned}
1115 \quad &E[\text{Tr}[J_k^T J_{k-1}^T \dots J_1^T J_1 \dots J_{k-1} J_{k-1}]], \\
1116 \\
1117 \quad &= \sum_{r=0}^k \binom{k}{r} (1-\epsilon)^{2k-r} \text{Tr}[N_r], \\
1118 \\
1119 \quad &\leq \sum_{r=0}^k \binom{k}{r} (1-\epsilon)^{2(k-r)} \epsilon^r, \\
1120 \\
1121 \quad &\leq ((1-\epsilon)^2 + \epsilon)^k \leq (1-\epsilon)^k,
\end{aligned}
\tag{30}$$

1122 which will converge to zero when $k \rightarrow \infty$.
1123

1124
1125
1126
1127
1128
1129
1130
1131
1132
1133

1134 5.9 PROOF OF THEOREM 3.2
11351136 **Theorem 5.8** (Restated). *Under the setup of Lemma 3.1, the unlearning process will diverge if the
1137 mix-Hessian eigenvalue exceeds a threshold determined by the coherence. In particular, if*

1138
1139
$$\lambda_{\max}(D) \geq \frac{\sqrt{2}\sigma}{\eta \left((1-\alpha) n_f \sqrt{\frac{n_r}{B} - 1} + \alpha n_r \sqrt{\frac{n_f}{B} - 1} \right)}, \quad (31)$$

1140
1141

1142 then $\lim_{k \rightarrow \infty} \mathbb{E} \|w_k\|^2 = \infty$. Equivalently, condition (8) guarantees the unlearning algorithm will
1143 escape the original minima (diverge) due to the stochastic dynamics.
11441145
1146 *Proof.* To simplify the notation, we use the following
1147

1148
1149
$$\begin{aligned} L_k &\in \{r, f\}^k \text{ (a string of length } k \text{ over the alphabet } \{r, f\}), \\ 1150 L_k[i] &\mapsto \text{the } i\text{-th symbol of } L_k, \quad 1 \leq i \leq k. \end{aligned} \quad (32)$$

1151

1152 We know that based on part one lemma 3.1, we can lower bound the N_k to lower bound the
1153 $E[\text{Tr}[J_k^T J_{k-1}^T \dots J_1^T J_1 \dots J_{k-1} J_k]]$. First, We can write the overall sum as follows:
1154

1155
$$\begin{aligned} \text{Tr}[N_k] &= \sum_{L_k \in \{r, f\}^k} C_r^{\sum_{i=1}^k \mathbf{1}\{L_k[i]=r\}} C_f^{\sum_{i=1}^k \mathbf{1}\{L_k[i]=f\}} \left(\sum_{a_k \in D_{L_k[k]}} \sum_{a_{k-1} \in D_{L_k[k-1]}} \dots \sum_{a_1 \in D_{L_k[1]}} \right) \text{Tr}[H_{a_k} \dots H_{a_1} H_{a_1} \dots H_{a_k}], \\ 1156 &= \sum_{L_k \in \{r, f\}^k} C_r^{\sum_{i=1}^k \mathbf{1}\{L_k[i]=r\}} C_f^{\sum_{i=1}^k \mathbf{1}\{L_k[i]=f\}} \left(\sum_{a_k \in D_{L_k[k]}} \sum_{a_{k-1} \in D_{L_k[k-1]}} \dots \sum_{a_1 \in D_{L_k[1]}} \right) \|H_{a_k} \dots H_{a_1}\|_F^2, \\ 1157 &\geq \frac{1}{d} \sum_{L_k \in \{r, f\}^k} C_r^{\sum_{i=1}^k \mathbf{1}\{L_k[i]=r\}} C_f^{\sum_{i=1}^k \mathbf{1}\{L_k[i]=f\}} \left(\sum_{a_k \in D_{L_k[k]}} \sum_{a_{k-1} \in D_{L_k[k-1]}} \dots \sum_{a_1 \in D_{L_k[1]}} \right) \|H_{a_k} \dots H_{a_1}\|_{\mathcal{S}_1}^2, \\ 1158 &\geq \frac{1}{d} \sum_{L_k \in \{r, f\}^k} C_r^{\sum_{i=1}^k \mathbf{1}\{L_k[i]=r\}} C_f^{\sum_{i=1}^k \mathbf{1}\{L_k[i]=f\}} \left(\sum_{a_k \in D_{L_k[k]}} \sum_{a_{k-1} \in D_{L_k[k-1]}} \dots \sum_{a_1 \in D_{L_k[1]}} \right) \text{Tr}[H_{a_k} \dots H_{a_1}]^2, \\ 1159 &\geq \frac{1}{n_r n_f} \frac{1}{d} \sum_{L_k \in \{r, f\}^k} C_r^{\sum_{i=1}^k \mathbf{1}\{L_k[i]=r\}} C_f^{\sum_{i=1}^k \mathbf{1}\{L_k[i]=f\}} \left(\sum_{a_r \in D_r} \sum_{a_f \in D_f} \right) \text{Tr}[H_{a_{L_k[k]}} \dots H_{a_{L_k[1]}}]^2, \\ 1160 &= \frac{1}{n_r n_f} \frac{1}{d} \left(\sum_{a_r \in D_r} \sum_{a_f \in D_f} \right) \sum_{L_k \in \{r, f\}^k} C_r^{\sum_{i=1}^k \mathbf{1}\{L_k[i]=r\}} C_f^{\sum_{i=1}^k \mathbf{1}\{L_k[i]=f\}} \text{Tr}[H_{a_{L_k[k]}} \dots H_{a_{L_k[1]}}]^2, \\ 1161 &\geq \frac{1}{n_r n_f} \frac{1}{d} \left(\sum_{a_r \in D_r} \sum_{a_f \in D_f} \right) \frac{1}{2^k} \left(\sum_{L_k \in \{r, f\}^k} \text{Tr}[C_r^{\frac{\sum_{i=1}^k \mathbf{1}\{L_k[i]=r\}}{2}} C_f^{\frac{\sum_{i=1}^k \mathbf{1}\{L_k[i]=f\}}{2}} H_{a_{L_k[k]}} \dots H_{a_{L_k[1]}}] \right)^2, \\ 1162 &= \frac{1}{n_r n_f} \frac{1}{d} \left(\sum_{a_r \in D_r} \sum_{a_f \in D_f} \right) \frac{1}{2^k} (\text{Tr}[\sum_{L_k \in \{r, f\}^k} C_r^{\frac{\sum_{i=1}^k \mathbf{1}\{L_k[i]=r\}}{2}} C_f^{\frac{\sum_{i=1}^k \mathbf{1}\{L_k[i]=f\}}{2}} H_{a_{L_k[k]}} \dots H_{a_{L_k[1]}}])^2, \\ 1163 &= \frac{1}{n_r n_f} \frac{1}{d} \left(\sum_{a_r \in D_r} \sum_{a_f \in D_f} \right) \frac{1}{2^k} (C_r^{\frac{1}{2}} + C_f^{\frac{1}{2}})^{2k} (\text{Tr}[(\frac{C_r^{\frac{1}{2}}}{C_r^{\frac{1}{2}} + C_f^{\frac{1}{2}}} H_{a_r} + \frac{C_f^{\frac{1}{2}}}{C_r^{\frac{1}{2}} + C_f^{\frac{1}{2}}} H_{a_f})^k])^2, \\ 1164 &= (\frac{1}{n_r n_f})^2 \frac{1}{d} \frac{1}{2^k} (C_r^{\frac{1}{2}} + C_f^{\frac{1}{2}})^{2k} (\sum_{a_r \in D_r} \sum_{a_f \in D_f} \text{Tr}[(\frac{C_r^{\frac{1}{2}}}{C_r^{\frac{1}{2}} + C_f^{\frac{1}{2}}} H_{a_r} + \frac{C_f^{\frac{1}{2}}}{C_r^{\frac{1}{2}} + C_f^{\frac{1}{2}}} H_{a_f})^k])^2. \end{aligned} \quad (33)$$

1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185

1186 For the first and second inequality, we use lemma 5.3 and 5.4. For the third inequality, we reduce
1187 the summation to $\sum_{a_r \in D_r} \sum_{a_f \in D_f}$. As there are terms without D_r or D_f involved, we divided the
1188 whole equation by $n_f n_r$ to ensure inequality. For the forth inequality, we use the lemma 5.1.
1189

1188 Before we try to connect the relationship between the quantity to the above, we first reindex the
 1189 following:
 1190

$$1191 \frac{1}{n_r n_f} \sum_{a_r \in D_r, a_f \in D_f} \frac{C_r^{\frac{1}{2}}}{C_r^{\frac{1}{2}} + C_f^{\frac{1}{2}}} H_{a_r} + \frac{C_f^{\frac{1}{2}}}{C_r^{\frac{1}{2}} + C_f^{\frac{1}{2}}} H_{a_f} = \frac{1}{n_r n_f} \sum_{rf} D_{rf} = D, \quad (34)$$

1194 where $D_{rf} = \frac{C_r^{\frac{1}{2}}}{C_r^{\frac{1}{2}} + C_f^{\frac{1}{2}}} H_r + \frac{C_f^{\frac{1}{2}}}{C_r^{\frac{1}{2}} + C_f^{\frac{1}{2}}} H_f$ and the subscript indicates that summing over corresponding
 1195 subset (retain and forget set). Now, we proceed to relate different quantities
 1196

$$\begin{aligned} 1198 \text{Tr}\left[\left(\frac{1}{n_r n_f} \sum_{a_r \in D_r, a_f \in D_f} \frac{C_r^{\frac{1}{2}}}{C_r^{\frac{1}{2}} + C_f^{\frac{1}{2}}} H_{a_r} + \frac{C_f^{\frac{1}{2}}}{C_r^{\frac{1}{2}} + C_f^{\frac{1}{2}}} H_{a_f}\right)^k\right] &= \text{Tr}\left[\left(\frac{1}{n_r n_f}\right)^k \left(\sum_{rf} D_{rf}\right)^k\right], \\ 1200 &= \text{Tr}\left[\left(\frac{1}{n_r n_f}\right)^k \sum_{rf_1} \sum_{rf_2} \dots \sum_{rf_k} D_{rf_1} D_{rf_2} \dots D_{rf_{k-1}} D_{rf_k}\right], \\ 1201 &\leq d \left(\frac{1}{n_r n_f}\right)^k \sum_{rf_1} \sum_{rf_2} \dots \sum_{rf_k} \|D_{rf_k}^{\frac{1}{2}} D_{rf_1}^{\frac{1}{2}}\|_F \|D_{rf_1}^{\frac{1}{2}} D_{rf_2}^{\frac{1}{2}}\|_F \dots \|D_{rf_{k-1}}^{\frac{1}{2}} D_{rf_k}^{\frac{1}{2}}\|_F, \\ 1202 &= d \left(\frac{1}{n_r n_f}\right)^k \sum_{rf_1} \sum_{rf_2} \dots \sum_{rf_k} S_{rf_k, rf_1} S_{rf_1, rf_2} \dots S_{rf_{k-1}, rf_k}, \\ 1203 &= d \left(\frac{1}{n_r n_f}\right)^k \text{Tr}(S^k), \\ 1204 &\leq d^2 \left(\frac{1}{n_r n_f}\right)^k \lambda_1(S)^k. \end{aligned} \quad (35)$$

1213 Therefore, we say that
 1214

$$1215 \text{Tr}[D^k] \leq d^2 \left(\frac{1}{n_r n_f}\right)^k \lambda_1(S)^k, \quad (36)$$

1217 and we can have that
 1218

$$\begin{aligned} 1219 \frac{(n_r n_f)^k \text{Tr}[D^k]}{d^2 \sigma^k} &\leq \frac{(n_r n_f)^k \text{Tr}[D^k]}{d^2 \lambda_1(S)^k} \max_{i \in D_r, j \in D_f} \lambda_1\left(\frac{C_r^{\frac{1}{2}}}{C_r^{\frac{1}{2}} + C_f^{\frac{1}{2}}} H_i + \frac{C_f^{\frac{1}{2}}}{C_r^{\frac{1}{2}} + C_f^{\frac{1}{2}}} H_j\right)^k, \\ 1220 &\leq \sum_{a_r \in D_r} \sum_{a_f \in D_f} \text{Tr}\left[\left(\frac{C_r^{\frac{1}{2}}}{C_r^{\frac{1}{2}} + C_f^{\frac{1}{2}}} H_{a_r} + \frac{C_f^{\frac{1}{2}}}{C_r^{\frac{1}{2}} + C_f^{\frac{1}{2}}} H_{a_f}\right)^k\right]. \end{aligned} \quad (37)$$

1225 Therefore, we can conclude that
 1226

$$\begin{aligned} 1227 \text{Tr}[N_k] &\geq \frac{1}{d} \frac{1}{n_f n_r} \frac{1}{2^k} (C_r^{\frac{1}{2}} + C_f^{\frac{1}{2}})^{2k} \left(\frac{(n_r n_f)^k \text{Tr}[D^k]}{d^2 \sigma^k}\right)^2, \\ 1228 &\geq \frac{1}{d^5} \frac{1}{n_f n_r} \frac{1}{2^k} (C_r^{\frac{1}{2}} + C_f^{\frac{1}{2}})^{2k} \frac{(n_r n_f)^{2k} \lambda_1(D)^{2k}}{\sigma^{2k}}, \\ 1229 &\geq \frac{1}{d^5} \frac{1}{n_f n_r} \frac{1}{2^k} (C_r^{\frac{1}{2}} + C_f^{\frac{1}{2}})^{2k} \frac{(n_r n_f)^{2k} \lambda_1(D)^{2k}}{\sigma^{2k}}. \end{aligned} \quad (38)$$

1234 Lastly, we can see that whether the trace diverge or not depend on those term with power of k .
 1235 Therefore, by rearranging and plug in the definition of the coefficient into those terms, we can have
 1236 that
 1237

$$1238 \lambda_1(D) \geq \frac{\sqrt{2}\sigma}{\eta} \left((1 - \alpha)n_f \left(\frac{n_r}{B} - 1\right)^{\frac{1}{2}} + \alpha n_r \left(\frac{n_f}{B} - 1\right)^{\frac{1}{2}}\right)^{-1}, \quad (39)$$

1241 which is the condition for diverging behavior \square

1242 5.10 PROOF OF THEOREM 3.3
12431244 **Theorem 5.9** (Restate) Matching lower bound.). Suppose $\lambda_{\max}(D)$ and σ satisfy
1245

1246
$$\lambda_{\max}(D) \leq \frac{2\sigma}{\eta C'_r (\sigma + n_f (\frac{n_r}{B} - 1))}, \quad (40)$$

1247

1248 where $C'_r = \sqrt{C_r}/(\sqrt{C_r} + \sqrt{C_f})$ (with C_r, C_f from Definition 2). Then there exists a choice of
1249 PSD Hessians $\{H_i\}$ for the retain and forget sets such that the unlearning update converges (i.e.
1250 $\lim_{k \rightarrow \infty} \mathbb{E}\|w_k\|^2 = 0$) under those Hessians.
12511252 *Proof.* We prove by construction in the following manner. We construct the retain set by setting
1253

1254
$$H_i = m \cdot e_1 e_1^T \quad \forall i \in [\frac{\sigma}{n_f}]. \quad (m = (C'_r)^{-1} \frac{\lambda_1(D)n_r}{\frac{\sigma}{n_f}} \text{ and } C'_r = \frac{C_r^{\frac{1}{2}}}{C_r^{\frac{1}{2}} + C_f^{\frac{1}{2}}})$$

1255 and the definition of C_r and C_f are mentioned in definition 2.) Otherwise, we set the Hessian to be zero matrix. For the forget
1256 set, we set all matrix to be zero matrix.
1257

We first verify that the eigenvalue of mix-Hessian is indeed the assigned value $\lambda_1(D)$.
1258

1259
$$D = \frac{1}{n_r n_f} \sum_{rf} C'_r H_r + C'_f H_f = \frac{1}{n_r n_f} \sum_{rf} C'_r (C'_r)^{-1} \frac{\lambda_1(D)n_r}{\frac{\sigma}{n_f}} e_1 e_1^T = \lambda_1(D) e_1 e_1^T, \quad (41)$$

1260

1261 and we have that the construction indeed have the corresponding mix-Hessian eigenvalue.
12621263 We know verify that the coherence measure is of the assigned value σ . We first note that the element
1264 of the coherence matrix is:
1265

1266
$$S_{rf, r'f'} = \sqrt{\text{Tr}[(C'_r H_r + C'_f H_f)(C'_r H_{r'} + C'_f H_{f'})]} = C'_r m = \frac{\lambda_1(D)n_r}{\frac{\sigma}{n_f}}, \quad \forall r, r' \in [\frac{\sigma}{n_f}]. \quad (42)$$

1267

1268 else it is zero. We know that there is $n_f \cdot \frac{\sigma}{n_f} = \sigma$ nonzero elements for each row and column. We note
1269 that we will also need to divide the coherence matrix by $\max_{rf} D_{rf} = \max_{rf} C'_r H_r + C'_f H_f =$
1270 $\frac{\lambda_1(D)n_r}{\frac{\sigma}{n_f}}$. Finally, each element is 1 after this division, and we can get the eigenvalue of the matrix
1271 to be σ and verify that the construction is valid.
12721273 Now, we note that in our construction, we have each step J_i to commute to each other since every
1274 matrix involved is diagonal, so we can focus on one step to calculate the condition that lead to
1275 diverging or converging and since we only intentionally set our matrix to be one dimensional, we
1276 can study behavior on only one axis e_1 by plugging in the above as follows:
1277

1278
$$e_1 E[J_1 J_1] e_1 = e_1 [I - 2\eta(1 - \alpha)H_R + \eta^2(1 - \alpha)^2 H_r^2 + \eta^2(1 - \alpha)^2 \sum_r H_r^2] e_1,$$

1279
1280
$$= 1 - 2\eta(1 - \alpha)(C'_r)^{-1} \lambda_1(D) + \eta^2(1 - \alpha)^2 (C'_r)^{-2} \lambda_1(D)^2 + \frac{(C'_r)^{-2}}{\sigma} \lambda_1(D)^2 \eta^2 (1 - \alpha)^2 n_f (\frac{n_r}{B} - 1). \quad (43)$$

1281

1282 As we want to study the converging behavior, we want the above to be smaller than 1 to have repetitive
1283 multiplication lead to converging.
1284

1285
$$1 - 2\eta(1 - \alpha)(C'_r)^{-1} \lambda_1(D) + \eta^2(1 - \alpha)^2 (C'_r)^{-2} \lambda_1(D)^2 + \frac{(C'_r)^{-2}}{\sigma} \lambda_1(D)^2 \eta^2 (1 - \alpha)^2 n_f (\frac{n_r}{B} - 1) \leq 1,$$

1286
1287
$$\Rightarrow 2 \geq \eta(1 - \alpha)(C'_r)^{-1} \lambda_1(D) (1 + \frac{n_f}{\sigma} (\frac{n_r}{B} - 1)),$$

1288
1289
$$\Rightarrow 2 \geq \frac{\eta}{\sigma} (1 - \alpha)(C'_r)^{-1} \lambda_1(D) (\sigma + n_f (\frac{n_r}{B} - 1)),$$

1290
1291
$$\Rightarrow \lambda_1(D) \leq \frac{2\sigma}{\eta} C'_r \left((1 - \alpha)(\sigma + n_f (\frac{n_r}{B} - 1))^{-1} \right). \quad (44)$$

1292
1293
1294
1295

1296

□

1297

1298

1299

1300 5.11 PROOF OF THEOREM 5.11

1301

1302 **Theorem 5.10 (Restate).** *Under the data model of Definition 5 and the two-layer ReLU CNN defined*
 1303 *above, suppose the network is trained to near-zero training loss. Then with probability at least*
 1304 *$1 - 8\delta$ (over the random draw of the dataset), the largest eigenvalue of the coherence matrix S for*
 1305 *the retain/forget split satisfies*

1306

1307

1308

$$\lambda_{\max}(S) \leq \mathcal{O}\left(n_r n_f d\sigma^2 \left[(\sqrt{C'_r} + \sqrt{C'_f})^2 (\text{SNR})^2 + (C'_r + C'_f) \right]\right), \quad (45)$$

1309

1310

1311

1312

1313

$$\max_{rf} \lambda_{\max}(D_{rf}) \leq \mathcal{O}((C'_r + C'_f)(d\sigma^2(\text{SNR})^2 + 1)), \quad (46)$$

1314

1315

1316 where C'_r and C'_f are the normalized retain/forget weight fractions as defined in Theorem 3.3.
 1317 Consider division of two quantities and we can find that for small SNR limit and large SNR limit:

1318

1319

1320

$$\lim_{\text{SNR} \rightarrow 0} \frac{\lambda_{\max}(S)^{\text{upper}}}{\max_{rf} D_{rf}^{\text{upper}}} = \mathcal{O}(n_r n_f), \quad \lim_{\text{SNR} \rightarrow \infty} \frac{\lambda_{\max}(S)^{\text{upper}}}{\max_{rf} D_{rf}^{\text{upper}}} = \mathcal{O}(n_r n_f \left(1 + \frac{2\sqrt{C'_r C'_f}}{C'_r + C'_f}\right)). \quad (47)$$

1321

1322

1323

1324

1325

1326

1327

1328 *Proof.* We first calculate the gradient of one sample respective to one of the $w_{j,r}$.

1329

1330

1331

1332

1333

$$\frac{\partial \ell(y_i \cdot f(W, x_i))}{\partial w_{j,r}} = \ell'_i \cdot \frac{j}{m} \cdot (\mathbf{1}_{\{\langle w_{j,r}, y_i \cdot \mu \rangle > 0\}} \cdot \mu + \mathbf{1}_{\{\langle w_{j,r}, \xi_i \rangle > 0\}} \cdot y_i \cdot \xi_i). \quad (48)$$

1334

1335

1336 There are several index in the above equation (i.e., j and r) which we use to take derivative with
 1337 respect to a specific feature weight vector. We will continue to use this notation for future calculation.
 1338 Now, we move to calculate the second derivative with respect to two different feature of weights for
 1339 data i as follows:

1340

1341

1342

1343

1344

1345

1346

1347

$$\begin{aligned} \frac{\partial^2 \ell(y_i \cdot f(W, x_i))}{\partial w_{j,r} \partial w_{j',r'}} &= \\ \ell''_i \cdot \frac{jj'}{m^2} \cdot (\mathbf{1}_{\{\langle w_{j,r}, y_i \cdot \mu \rangle > 0\}} \cdot \mu + \mathbf{1}_{\{\langle w_{j,r}, \xi_i \rangle > 0\}} \cdot y_i \cdot \xi_i) & \cdot (\mathbf{1}_{\{\langle w_{j',r'}, y_i \cdot \mu \rangle > 0\}} \cdot \mu + \mathbf{1}_{\{\langle w_{j',r'}, \xi_i \rangle > 0\}} \cdot y_i \cdot \xi_i)^T. \end{aligned} \quad (49)$$

1348

1349

The above is one block of the Hessian. In the following, we will simplify the notation for indicator
 function (derivative of ReLU) to $\mathbf{1}_{j',r',y_i \cdot \mu}$ and $\mathbf{1}_{j',r',\xi_i}$ to ease the heavy notation. To calculate the
 coherence matrix, we need to calculate trace of Hessian product for different sample,

$$\begin{aligned}
& \text{Tr}[H_i H_k] = \sum_{j,j',r,r'} \text{Tr}\left[\frac{\partial^2 \ell(y_i \cdot f(W, x_i))}{\partial w_{j,r} \partial w_{j',r'}} \frac{\partial^2 \ell(y_k \cdot f(W, x_k))}{\partial w_{j',r'} \partial w_{j,r}}\right], \\
& = \frac{\ell''_i \ell''_k}{m^4} \sum_{j,j',r,r'} (\mathbf{1}_{j,r,y_k \cdot \mu} \cdot \mu + \mathbf{1}_{j,r,\xi_k} \cdot y_k \cdot \xi_k)^T (\mathbf{1}_{j,r,y_i \cdot \mu} \cdot \mu + \mathbf{1}_{j,r,\xi_i} \cdot y_i \cdot \xi_i) \\
& \quad (\mathbf{1}_{j',r',y_i \cdot \mu} \cdot \mu + \mathbf{1}_{j',r',\xi_i} \cdot y_i \cdot \xi_i)^T (\mathbf{1}_{j',r',y_k \cdot \mu} \cdot \mu + \mathbf{1}_{j',r',\xi_k} \cdot y_k \cdot \xi_k), \\
& = \frac{\ell''_i \ell''_k}{m^4} \left(\left(\sum_{j,r} \mathbf{1}_{j,r,y_k \cdot \mu} \mathbf{1}_{j,r,y_i \cdot \mu} \right) \|\mu\|^2 + \left(\sum_{j,r} \mathbf{1}_{j,r,y_k \cdot \mu} \mathbf{1}_{j,r,\xi_k} \right) \mu^T \xi_k + \right. \\
& \quad \left(\sum_{j,r} \mathbf{1}_{j,r,y_k \cdot \mu} \mathbf{1}_{j,r,\xi_i} \right) \mu^T \xi_i + \left(\sum_{j,r} \mathbf{1}_{j,r,\xi_k} \mathbf{1}_{j,r,\xi_i} \right) \xi_k^T \xi_i \right), \\
& \quad \left(\left(\sum_{j,r} \mathbf{1}_{j',r',y_k \cdot \mu} \mathbf{1}_{j',r',y_i \cdot \mu} \right) \|\mu\|^2 + \left(\sum_{j',r'} \mathbf{1}_{j',r',y_k \cdot \mu} \mathbf{1}_{j',r',\xi_k} \right) \mu^T \xi_k + \right. \\
& \quad \left(\sum_{j',r'} \mathbf{1}_{j',r',y_k \cdot \mu} \mathbf{1}_{j',r',\xi_i} \right) \mu^T \xi_i + \left(\sum_{j',r'} \mathbf{1}_{j',r',\xi_k} \mathbf{1}_{j',r',\xi_i} \right) \xi_k^T \xi_i \right), \\
& \leq 4 \frac{\ell''_i \ell''_k}{m^2} (\|\mu\|^2 + |\mu^T \xi_k| + |\mu^T \xi_i| + |\xi_i^T \xi_k|)^2, \\
& \leq \frac{4}{m^2} (\|\mu\|^2 + |\mu^T \xi_k| + |\mu^T \xi_i| + |\xi_i^T \xi_k|)^2.
\end{aligned} \tag{50}$$

We now analyze each term in the coherence matrix.

where the C'_r and C'_f are respectively the normalized coefficient mentioned in the previous section.

As our goal is to estimate the largest eigenvalue of the coherence matrix and its relation between different variables in the design. To estimate the largest eigenvalue, we incur ϵ -net that is used random matrix theory

$$\lambda_1 = \sup_{\|x\|=1} \langle x, Sx \rangle. \quad (52)$$

For one vector x , we can write the expression as summation:

$$\begin{aligned}
1394 \quad & \langle x, Sx \rangle = \sum_{r_1 f_1', r_2 f_2'} S_{r_1 f_1', r_2 f_2'} x_{r_1 f_1'} x_{r_2 f_2'}, \\
1395 \quad & \leq \sum_{r_1 f_1', r_2 f_2'} (\sqrt{\text{Tr}[C_r'^2 H_{r_1} H_{r_2}]} + \sqrt{\text{Tr}[C_r' C_f' H_{r_1} H_{f_2'}]} + \sqrt{\text{Tr}[C_r' C_f' H_{f_1'} H_{r_2}]} + \sqrt{(\text{Tr}[C_f'^2 H_{f_1'} H_{r_2'}])}) x_{r_1 f_1'} x_{r_2 f_2'}.
\end{aligned} \tag{53}$$

We can estimate the above through the random matrix theory and upper bound the largest eigenvalue through the elementwise calculation that we set up and use the tail bound for each random variable to provide relationship between controlled variable and the resulting largest eigenvalue. We first separate the discussion into several cases. First case, when we have four different samples r_1, r_2, f'_1, f'_2 , we can have that

$$\begin{aligned}
& (\sqrt{\text{Tr}[C'_r{}^2 H_{r_1} H_{r_2}]} + \sqrt{\text{Tr}[C'_r C'_f H_{r_1} H_{f_2'}]} + \sqrt{\text{Tr}[C'_r C'_f H_{f_1} H_{r_2}]} + \sqrt{\text{Tr}[C'_f{}^2 H_{f_1} H_{r_2'}]}) x_{r_1 f_1} x_{r_2 f_2}, \\
& \leq (C'_r \frac{2}{m} (\|\boldsymbol{\mu}\|^2 + |\boldsymbol{\mu}^T \xi_{r1}| + |\boldsymbol{\mu}^T \xi_{r2}| + |\xi_{r1}^T \xi_{r2}|) + \sqrt{C'_r C'_f} \frac{2}{m} (\|\boldsymbol{\mu}\|^2 + |\boldsymbol{\mu}^T \xi_{r1}| + |\boldsymbol{\mu}^T \xi_{f2'}| + |\xi_{r1}^T \xi_{f2'}|), \\
& + \sqrt{C'_r C'_f} \frac{2}{m} (\|\boldsymbol{\mu}\|^2 + |\boldsymbol{\mu}^T \xi_{r2}| + |\boldsymbol{\mu}^T \xi_{f1'}| + |\xi_{f1'}^T \xi_{r2}|) + C'_f \frac{2}{m} (\|\boldsymbol{\mu}\|^2 + |\boldsymbol{\mu}^T \xi_{f2'}| + |\boldsymbol{\mu}^T \xi_{f1'}| + |\xi_{f1'}^T \xi_{f2'}|)) x_{r_1 f_1} x_{r_2 f_2}, \\
& \leq (\sqrt{C'_r} \|\boldsymbol{\mu}\| + \sqrt{C'_f} \|\boldsymbol{\mu}\| + \sqrt{C'_r} \|\xi_{r1}\| + \sqrt{C'_f} \|\xi_{f1'}\|) (\sqrt{C'_r} \|\boldsymbol{\mu}\| + \sqrt{C'_f} \|\boldsymbol{\mu}\| + \sqrt{C'_r} \|\xi_{r2}\| + \sqrt{C'_f} \|\xi_{f2'}\|) x_{r_1 f_1} x_{r_2 f_2}. \tag{54}
\end{aligned}$$

Our aim in the above is to establish relationship between different variables used in the CNN network. In the above, we can see that we can upper bound the eigenvalue by the cross product of the vector $v_{rf} = \sqrt{C'_r} \|\boldsymbol{\mu}\| + \sqrt{C'_f} \|\boldsymbol{\mu}\| + \sqrt{C'_r} \|\xi_{r1}\| + \sqrt{C'_f} \|\xi_{f1'}\|$ since the coherence matrix is upper bound elementwise by the vector. (i.e., $\lambda_1(S) \leq \lambda_1(vv^T) = \|v^T v\|^2$) and this turns the estimation of the eigenvalue into estimation of the magnitude of the vector.

Now, we analyze the $v^T v$,

$$\begin{aligned}
v^T v &= \sum_{rf} (\sqrt{C'_r} \|\boldsymbol{\mu}\| + \sqrt{C'_f} \|\boldsymbol{\mu}\| + \sqrt{C'_r} \|\xi_{r1}\| + \sqrt{C'_f} \|\xi_{f1'}\|) (\sqrt{C'_r} \|\boldsymbol{\mu}\| + \sqrt{C'_f} \|\boldsymbol{\mu}\| + \sqrt{C'_r} \|\xi_{r1}\| + \sqrt{C'_f} \|\xi_{f1'}\|), \\
&= \sum_{rf} (\sqrt{C'_r} \|\boldsymbol{\mu}\| + \sqrt{C'_f} \|\boldsymbol{\mu}\|)^2 + 2(\sqrt{C'_r} \|\boldsymbol{\mu}\| + \sqrt{C'_f} \|\boldsymbol{\mu}\|) (\sqrt{C'_r} \|\xi_{r1}\| + \sqrt{C'_f} \|\xi_{f1'}\|) + (\sqrt{C'_r} \|\xi_{r1}\| + \sqrt{C'_f} \|\xi_{f1'}\|)^2, \\
&= n_r n_f (\sqrt{C'_r} \|\boldsymbol{\mu}\| + \sqrt{C'_f} \|\boldsymbol{\mu}\|)^2 + 2(\sqrt{C'_r} \|\boldsymbol{\mu}\| + \sqrt{C'_f} \|\boldsymbol{\mu}\|) \sum_{rf} (\sqrt{C'_r} \|\xi_{r1}\| + \sqrt{C'_f} \|\xi_{f1'}\|) + \\
&\quad \sum_{rf} (C'_r \|\xi_{r1}\|^2 + C'_f \|\xi_{f1'}\|^2 + \sqrt{C'_r C'_f} \|\xi_{r1}\| \|\xi_{f1'}\|). \tag{55}
\end{aligned}$$

We analyze different terms as follows:

$$\begin{aligned}
2(\sqrt{C'_r} \|\boldsymbol{\mu}\| + \sqrt{C'_f} \|\boldsymbol{\mu}\|) \sum_{rf} (\sqrt{C'_r} \|\xi_{r1}\| + \sqrt{C'_f} \|\xi_{f1'}\|) &= \\
2(\sqrt{C'_r} \|\boldsymbol{\mu}\| + \sqrt{C'_f} \|\boldsymbol{\mu}\|) (n_f \sum_r \sqrt{C'_r} \|\xi_{r1}\| + n_r \sum_f \sqrt{C'_f} \|\xi_{f1'}\|). \tag{56}
\end{aligned}$$

We know that $\|\xi_{r1}\|, \|\xi_{f1'}\|$ are chi-distribution which is also sub-exponential distribution. We can utilize the tail bound for summation of the sub-exponential random variables to obtain high probability bound on the summation. We can have that with probability 2δ ,

$$\begin{aligned}
2(\sqrt{C'_r} \|\boldsymbol{\mu}\| + \sqrt{C'_f} \|\boldsymbol{\mu}\|) \sum_{rf} (\sqrt{C'_r} \|\xi_{r1}\| + \sqrt{C'_f} \|\xi_{f1'}\|), \\
\leq 2(\sqrt{C'_r} \|\boldsymbol{\mu}\| + \sqrt{C'_f} \|\boldsymbol{\mu}\|) (n_r n_f \sqrt{C'_r} \sigma \sqrt{d} + n_f n_r \sqrt{C'_f} \sigma \sqrt{d} + n_f \sqrt{\frac{n_r \sigma^2}{C_1} \log(\frac{2}{\delta})} + n_r \sqrt{\frac{n_f \sigma^2}{C_1} \log(\frac{2}{\delta})}). \tag{57}
\end{aligned}$$

Now, we move to the next chi-square distribution terms $C'_r \sum \|\xi_{r1}\|^2, C'_f \sum \|\xi_{f1'}\|^2$. By using the lemma 5.6, we can have that with probability $1 - \delta$,

$$C'_r \sum_{rf} \|\xi_{r1}\|^2 \leq C'_r (n_f n_r \sigma^2 d + n_f \sqrt{\frac{n_r \sigma^4 d}{C_2} \log(\frac{2}{\delta})}). \tag{58}$$

1458 and so is the $C'_f \sum \|\xi_{f'_1}\|^2$,
 1459
 1460

$$1461 \quad 1462 \quad C'_f \sum_{rf} \|\xi_{r1}\|^2 \leq C'_f (n_f n_r \sigma^2 d + n_r \sqrt{\frac{n_f \sigma^4 d}{C_2} \log(\frac{2}{\delta})}). \quad (59)$$

1463
 1464
 1465 The term $\sum_{rf} \sqrt{C'_r C'_f} \|\xi_{r1}\| \|\xi_{f1'}\|$ can also be dealt with in the same manner,
 1466
 1467

$$1468 \quad 1469 \quad \sqrt{C'_r C'_f} \sum_{rf} \|\xi_{r1}\| \|\xi_{f1'}\| \leq \sqrt{C'_r C'_f} (\sum_r \|\xi_{r1}\|) (\sum_f \|\xi_{f1'}\|),$$

$$1470 \quad 1471 \quad \leq \sqrt{C'_r C'_f} (n_r \sqrt{2} \sigma \frac{\Gamma((d+1)/2)}{\Gamma(d/2)} + \sqrt{\frac{n_r \sigma^2}{C_1} \log(\frac{2}{\delta})}) (n_f \sqrt{2} \sigma \frac{\Gamma((d+1)/2)}{\Gamma(d/2)} + \sqrt{\frac{n_f \sigma^2}{C_1} \log(\frac{2}{\delta})}). \quad (60)$$

1472 To simplify the analysis, we only keep terms with magnitude at least $n_f n_r$. We will reach that with
 1473 probability $1 - 6\delta$
 1474

$$1475 \quad 1476 \quad \lambda_1(S) \leq \mathcal{O} \left(n_f n_r ((\sqrt{C'_r} + \sqrt{C'_f})^2 \|\mu\|^2 + 2\sqrt{2} (\sqrt{C'_r} + \sqrt{C'_f})^2 \|\mu\| \sigma (\frac{\Gamma((d+1)/2)}{\Gamma(d/2)}) \right. \\ 1477 \quad 1478 \quad \left. + (C'_r + C'_f) \sigma^2 d + 2\sigma^2 \sqrt{C'_r C'_f} (\frac{\Gamma((d+1)/2)}{\Gamma(d/2)})^2) \right). \quad (61)$$

1479 To see how signal noise ratio ($\text{SNR} = \frac{\|\mu\|}{\sigma \sqrt{d}}$) interact with the right hand side, we extract a factor $\sigma^2 d$
 1480 from all terms involved:
 1481

$$1482 \quad 1483 \quad \lambda_1(S) \leq \mathcal{O} \left(n_f n_r \sigma^2 d ((\sqrt{C'_r} + \sqrt{C'_f})^2 (\text{SNR})^2 + \frac{2\sqrt{2}}{\sqrt{d}} (\sqrt{C'_r} + \sqrt{C'_f})^2 (\frac{\Gamma((d+1)/2)}{\Gamma(d/2)}) (\text{SNR}) \right. \\ 1484 \quad 1485 \quad \left. + (C'_r + C'_f) + \frac{2}{d} \sqrt{C'_r C'_f} (\frac{\Gamma((d+1)/2)}{\Gamma(d/2)})^2) \right), \\ 1486 \quad 1487 \quad \leq \mathcal{O} \left(n_f n_r \sigma^2 d ((\sqrt{C'_r} + \sqrt{C'_f})^2 (\text{SNR})^2 + (C'_r + C'_f)) \right). \quad (62)$$

1488 where in the last equation, we omit terms with d in the denominator as it tends to be large when we
 1489 consider larger network.
 1490

1500 For the second part of the proof, we know that H_i have block structures as follows:
 1501

$$1502 \quad 1503 \quad \frac{\partial^2 \ell(y_i \cdot f(W, x_i))}{\partial w_{j,r} \partial w_{j',r'}} = \\ 1504 \quad 1505 \quad \ell''_i \cdot \frac{jj'}{m^2} \cdot (\mathbf{1}_{\{\langle w_{j,r}, y_i \cdot \mu \rangle > 0\}} \cdot \mu + \mathbf{1}_{\{\langle w_{j,r}, \xi_i \rangle > 0\}} \cdot y_i \cdot \xi_i) (\mathbf{1}_{\{\langle w_{j',r'}, y_i \cdot \mu \rangle > 0\}} \cdot \mu + \mathbf{1}_{\{\langle w_{j',r'}, \xi_i \rangle > 0\}} \cdot y_i \cdot \xi_i)^T. \quad (63)$$

1506 We can see that the whole H_i matrix can be regarded as outer product of vector vv^T where we have
 1507 v_{jr} being
 1508

$$1509 \quad 1510 \quad v_{jr} = \frac{l''_i j}{m} (\mathbf{1}_{\{\langle w_{j,r}, y_i \cdot \mu \rangle > 0\}} \cdot \mu + \mathbf{1}_{\{\langle w_{j,r}, \xi_i \rangle > 0\}} \cdot y_i \cdot \xi_i). \quad (64)$$

1512 We can immediately know that the eigenvalue of the H_i will be upper bounded by $v^T v$ as follows:
 1513

$$\begin{aligned}
 1514 \lambda_{\max}(H_i) &\leq v^T v = \frac{l_i''}{m^2} \sum_{jr} (\mathbf{1}_{\{\langle w_{j,r}, y_i \cdot \mu \rangle > 0\}} \cdot \mu + \mathbf{1}_{\{\langle w_{j,r}, \xi_i \rangle > 0\}} \cdot y_i \cdot \xi_i)^2, \\
 1515 &\leq 2 \frac{l_i''}{m^2} \sum_{jr} \mathbf{1}_{\{\langle w_{j,r}, y_i \cdot \mu \rangle > 0\}} \|\mu\|^2 + \mathbf{1}_{\{\langle w_{j,r}, \xi_i \rangle > 0\}} \|\xi_i\|^2, \\
 1516 &\leq 2 \frac{l_i''}{m^2} \sum_{jr} \|\mu\|^2 + \|\xi_i\|^2, \\
 1517 &\leq 2 \frac{1}{m^2} \sum_{jr} \|\mu\|^2 + \|\xi_i\|^2, \\
 1518 &= C(\|\mu\|^2 + \|\xi_i\|^2),
 \end{aligned} \tag{65}$$

1519 where we use C to encompass all constants.
 1520

1521 To bound the $\max_{rf} \lambda_{\max}(D_{rf}) = \lambda_{\max}(C'_r H_r + C'_f H_f)$, we can use the following:
 1522

$$\lambda_{\max}(D_{rf}) = \lambda_{\max}(C'_r H_r + C'_f H_f) \leq C'_r \lambda_{\max}(H_r) + C'_f \lambda_{\max}(H_f). \tag{66}$$

1523 Then for any $\delta \in (0, 1)$, with probability at least $1 - \delta$, we can upper bound the the H_r with the
 1524 following ($\|\xi_i\|$ is subexponential):
 1525

$$\begin{aligned}
 1526 \max_{1 \leq i \leq n_r} C(\|\mu\|^2 + \|\xi_i\|^2) &\leq C \left(\|\mu\|^2 + \sigma^2 \left[d + 2\sqrt{d \log \frac{n_r}{\delta}} + 2 \log \frac{n_r}{\delta} \right] \right), \\
 1527 &\leq \mathcal{O}(\|\mu\|^2 + \sigma^2 d).
 \end{aligned} \tag{67}$$

1528 Similarly, we can have the bound on H_f which is of same order and jointly we can have that with
 1529 probability $1 - 8\delta$
 1530

$$\lambda_{\max}(D_{rf}) \leq \mathcal{O}((C'_r + C'_f)(\|\mu\|^2 + \sigma^2 d)) = \mathcal{O}((C'_r + C'_f)\sigma^2 d(\text{SNR}^2 + 1)) \tag{68}$$

1531 Last is the division and take the limit and we can have the following:
 1532

$$\lim_{\text{SNR} \rightarrow 0} \frac{\lambda_{\max}(S)^{\text{upper}}}{\max_{rf} D_{rf}^{\text{upper}}} = \mathcal{O}(n_r n_f), \quad \lim_{\text{SNR} \rightarrow \infty} \frac{\lambda_{\max}(S)^{\text{upper}}}{\max_{rf} D_{rf}^{\text{upper}}} = \mathcal{O}(n_r n_f \left(1 + \frac{2\sqrt{C'_r C'_f}}{C'_r + C'_f}\right)). \tag{69}$$

1533 \square
 1534