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Abstract

Machine unlearning—the ability to erase the effect of specific training samples
without retraining from scratch—is critical for privacy, regulation, and efficiency.
However, most progress in unlearning has been empirical, with little theoretical
understanding of when and why unlearning works. We tackle this gap by framing
unlearning through the lens of asymptotic linear stability to capture the interaction
between optimization dynamics and data geometry. The key quantity in our
analysis is data coherence - the cross-sample alignment of loss-surface directions
near the optimum. We decompose coherence along three axes: within the retain
set, within the forget set, and between them, and prove tight stability thresholds
that separate convergence from divergence. To further link data properties to
forgettability, we study a two-layer ReLU CNN under a signal-plus-noise model and
show that stronger memorization makes forgetting easier: when the signal-to-noise
ratio (SNR) is lower, cross-sample alignment is weaker, reducing coherence and
making unlearning easier; conversely, high-SNR, highly aligned models resist
unlearning. For empirical verification, we show that Hessian tests and CNN
heatmaps align closely with the predicted boundary, mapping the stability frontier
of gradient-based unlearning as a function of batching, mixing, and data/model
alignment. Our analysis is grounded in random matrix theory tools and provides
the first principled account of the trade-offs between memorization, coherence,
and unlearning.

1 Introduction

Machine unlearning – the ability to erase specific training samples’ influence from a model – is critical
for compliance, privacy, and model maintenance. Practically, retraining an N -sample model from
scratch after removing even one sample incurs prohibitive cost, motivating a flurry of approximate
unlearning methods. (Shen et al., 2024b;a; Hatua et al., 2024; Bourtoule et al., 2020; Cao & Yang,
2015; Golatkar et al., 2020; Ginart et al., 2019; Golatkar et al., 2021; Graves et al., 2020; Sekhari
et al., 2021). However, despite this rapid progress, most unlearning work remains empirical and
ad-hoc. We lack a unifying theoretical framework to predict when and why a given model can be
efficiently unlearned. Notably, even initial theoretical treatments (e.g. from a differential-privacy
viewpoint providing deletion guarantees (Sekhari et al., 2021; Chien et al., 2025)) do not explain the
dynamics of forgetting or the interaction between the forget and retain sets. This gap motivates our
work: we seek a principled understanding of the optimization dynamics of unlearning, grounded in
the geometry of the model’s loss landscape.

Our approach. We frame the unlearning process through the lens of asymptotic linear stability
analysis in optimization. In this work, we analyze the asymptotic behavior of the stability of
an unlearning solution, which fundamentally differs from the fine-tuning perspective (Ding et al.,
2025) typically adopted in unlearning, and show that this stability is what ultimately determines
whether a solution is unlearnable or not. Intuitively, unlike standard training which begins at random
initialization, unlearning starts from a pre-trained model near a local minimum of the loss. We analyze
small perturbation dynamics around that optimum to determine whether a “forgetting update” (e.g.
gradient steps that increase loss on the forget set) will remain confined to a neighborhood of the
original minimum (stable minima, no unlearning) or cause the model to drift off and diverge (unstable
minima, unlearning possible). This linear stability perspective, inspired by prior analyses of SGD
near minima (Ma & Ying, 2021; Dexter et al., 2024), provides a tractable characterization of the
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transition between convergence vs. catastrophic forgetting. The key quantities in our analysis are
a set of data coherence measures that quantify the alignment of loss gradients across samples near
the optimum. We formally decompose coherence along three axes – (i) within the retain set, (ii)
within the forget set, and (iii) between retain and forget sets – and derive stability thresholds in terms
of these coherence values. Our theory thus for the first time links interactions between retain and
forget data to unlearning success: for example, if the gradient directions of forget-set samples are
highly aligned with those of retain-set samples (high retain-forget coherence), the model will resist
unlearning because any parameter change that increases forget-set loss will also significantly hurt
retain-set loss. Conversely, if the forget-set gradients live in a subspace largely independent from
the retain-set (low inter-coherence), we prove the existence of a stable update direction that forgets
the target data while leaving the rest of the model performance intact. These results yield a stability
frontier in terms of data coherence: a boundary in data-geometry space separating regimes where
gradient-based unlearning can succeed from where it fails.

Our framework also yields an intriguing insight into the relationship between training memorization
and subsequent forgettability. Interestingly and perhaps surprisingly, we find that stronger memoriza-
tion can make forgetting easier. In our framework, memorization corresponds to a regime of complex
data where the model fits idiosyncratic details. We formalize this by adapting a two-layer ReLU CNN
signal-plus-noise model from prior work on benign overfitting (Kou et al., 2023). Using random
matrix theory tools, we prove that when the signal-to-noise ratio (SNR) in the data is lower (i.e. the
model has to memorize more spurious noise), the cross-sample alignment of gradients is weaker –
reducing the coherence terms, allowing effective forgetting of those samples. In contrast, a model
trained on high-SNR data (with strongly aligned, dominant features) has very coherent gradients that
push it to the edge of the stability frontier, making it resist unlearning – any attempt to forget one sam-
ple’s influence will strongly perturb many others. We analytically identify this coherence-controlled
stability boundary, and our experimental results confirm the trend: e.g. Hessian eigenvalue tests
and CNN heatmaps of forget vs. retain influence align with the predicted boundary, mapping out
how changes in batch size, mixing of forget/retain data, or network alignment affect the outcome of
unlearning.

Contributions To summarize, our contributions are as follows: (1) We develop the first theoretical
framework for machine unlearning based on linear stability analysis to address what local optimization
dynamics govern unlearning?. We derive precise conditions (in terms of Hessian spectra and data
coherence) under which standard gradient-based unlearning converges/diverges. (2) We address
how do the retain and forget sets interact, quantitatively, in determining stability? Towards this
goal, we introduce novel coherence metrics to quantify the retain–forget interaction, and prove
how each coherence component (retain-retain, forget-forget, retain-forget) influences the stability
of the unlearning process. These results formally characterize the joint role of data geometry
and data distribution in forgetting dynamics. (3) To address how does a model’s propensity to
memorize interact with its ability to forget?, we establish a surprising link between memorization and
forgettability: using a two-layer CNN with controllable noise, we prove that increased memorization
(lower SNR) expands the range of stable unlearning (making forgetting easier), whereas high SNR
(less overfitting) shrinks it (forgetting becomes harder). This is, to our knowledge, the first result
to rigorously connect a model’s generalization/memorization properties to its unlearning behavior.
(4) Our empirical tests measure stability indicators (e.g. sharpness via Hessian eigenvalues) and
unlearning performance under various conditions, and show strong agreement with the theoretical
stability frontier. Taken together, our results provide the first principled account of the trade-offs
between memorization, data coherence, and unlearning in modern ML models.

Related Work Prior works (Wu et al., 2022; 2018; Wu & Su, 2023) utilize the linear stability
framework to understand the relation between converging-diverging boundary and alignment of
noise and loss landscape. Furthermore, Wu et al. (2022); Wu & Su (2023) connect the alignment
properties to the simplicity bias that occurs in generic SGD. Additionally, Ma & Ying (2021)
extend the framework by incorporating higher-order moments of the noise, revealing subtle implicit
regularization effects on parameter evolution. Dexter et al. (2024) introduced the notion of data
coherence, which directly quantifies the alignment of sample-specific gradients in the loss landscape,
offering a fine-grained tool to analyze sample interactions. Compared to alternative theoretical
approaches, such as gradient flow or dynamical system approximations, linear stability has the
distinct advantage of making explicit connections between model architecture, data distribution,
and optimization algorithm. Unlike the standard learning scenario, unlearning requires analyzing
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the interleaving interaction between retain and forget sets, which introduces new dynamics not
present in classical stability analysis. To address these challenges, we introduce new analytical
tools and definitions that generalize coherence to mixed retain–forget settings. In doing so, we not
only provide stability criteria for unlearning but also establish the first formal connection between
memorization and forgetting, thereby broadening the scope of linear stability analysis beyond its
traditional application to standard training.

2 Theory

2.1 Background
Linear stability around minima. Linear stability provides a principled lens for analyzing the
local dynamics of iterative optimization near a critical point (e.g., local minima or saddles) by
linearizing the update map and studying the resulting linear time-varying system to characterize
convergence/divergence behavior of stochastic iterative algorithms for that critical point. This
perspective underlies modern convergence analyses of SGD and its variants and, more recently,
has proved effective for characterizing generalization-relevant phenomena such as rapid escape
from sharp minima (Wu et al., 2018; Dexter et al., 2024). In our context, we consider a loss
L(w) = 1

n

∑n
i=1 ℓi(w) for model parameters w ∈ Rd. Let w∗ be a local minimum. For a small

perturbation δ around w∗, a first-order Taylor expansion gives
∇L(w∗ + δ) ≈ ∇2L(w∗) δ,

since ∇L(w∗) = 0. This linearization suggests that near w∗, the gradient is approximately given by
the Hessian H = ∇2L(w∗) times the perturbation. Since we are only interested in the dyanamics
of the optimizer (rather than its absolute position), without loss of generality we take w∗ = 0 as in
prior works.

Stochastic gradient updates. We are interested in the dynamics of stochastic gradient descent
(SGD) near w∗. A generic SGD update can be written as

wt+1 = wt − η gt,

where η > 0 is the learning rate and gt is the stochastic gradient at step t. In the neighborhood of
w∗, using the linear approximation, we can write gt ≈ Ht wt, where Ht is a random Hessian matrix
(a mini-batch estimate of H). Thus the update becomes

wt+1 = wt − η Ht wt = (I − ηHt)wt . (1)
Here Ht = 1

B

∑
i∈Dt

Hi is the average Hessian over the mini-batch Dt of size B, and Hi =

∇2ℓi(w
∗). By construction H = 1

n

∑n
i=1 Hi. Following Dexter et al. (2024), we model mini-

batch sampling via Bernoulli selection (each data point is included in the batch independently with
probability B/n).

Unlearning update rule. To analyze machine unlearning (where a subset of the training data,
called the forget set, is to be “forgotten” while the remaining data in the retain set is preserved), we
adopt the update rule of Kurmanji et al. (2023). In this scheme, each step performs simultaneous
gradient descent on the retain set and ascent on the forget set. Intuitively, this means we take a
step that decreases loss on retained data while increasing loss on data that should be unlearned.
Many gradient-based unlearning algorithms can be viewed as variants of this approach with different
weighting of these components. We use nf , fr for number of forget and retain samples respectively.
In our linearized framework, the update with forget importance hyper-parameter α ∈ [0, 1] is:

wk+1 = wk − η
[
(1− α)

1

B

∑
i∈Dr,k

Hi wk − α
1

B

∑
i∈Df,k

Hi wk

]
, (2)

where Dr,k and Df,k denote the mini-batch of retain-set and forget-set examples at step k, respec-
tively. This can be rewritten in operator form as

wk+1 = Jk wk, Jk = I − η(1− α)
1

B

∑
i∈Dr,k

Hi + ηα
1

B

∑
i∈Df,k

Hi . (3)

The random linear operator Jk captures the combined effect of the retain and forget gradients at step
k. Note that Jk is itself random due to sampling of a mini-batch from each set.
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A central question in linear stability analysis is whether the iterates remain near the original optimum
or diverge away. To quantify this, we examine the expected squared norm of the parameters after
k steps, E∥wk∥2 = E[wT

k wk]. Starting from an isotropic small perturbation w0 (we assume
w0 ∼ N (0, I) without loss of generality), one can expand wk = Jk−1 · · · J0 w0. This yields

E∥wk∥2 = E[wT
0 (J

T
0 · · · JT

k−1Jk−1 · · · J0)w0] = ETr
(
Jk−1 · · · J0JT

0 · · · JT
k−1

)
, (4)

where we used E[w0w
T
0 ] = I in the final equality. Eq (4) is the key quantity we will analyze to

determine stability: if E∥wk∥2 remains bounded (or decays) as k → ∞, the unlearning process is
stable (convergent) around w∗, whereas if E∥wk∥2 → ∞, the process is unstable (diverges, escaping
w∗).

2.2 Coherence Measures for Unlearning

Coherence in single-dataset SGD. Before introducing our new coherence measures tailored to
unlearning, we briefly review the original notion of Hessian coherence from Dexter et al. (2024)
for standard (single dataset) learning. The coherence quantifies the alignment between per-sample
Hessians in the training set. Intuitively, if all samples induce very aligned curvature directions, SGD
will experience less “randomness” and more stable updates, whereas if each sample’s loss landscape
is oriented differently, the optimization dynamics are more erratic.
Definition 1 (Coherence, single set (Dexter et al., 2024)). Given a collection of positive semidefinite
(PSD) Hessian matrices {Hi : i ∈ [n]} for n training samples, the coherence matrix S ∈ Rn×n is
defined by

Ssingle
ij = ∥H1/2

i H
1/2
j ∥F ,

the Frobenius norm of the product of the square-root Hessians of sample i and j. The associated
coherence measure is

σsingle =
λmax(S

single)

maxi∈[n] λmax(Hi)
,

i.e. the largest eigenvalue of Ssingle normalized by the largest individual sample Hessian eigenvalue.

Intuitively, σsingle close to 1 indicates that the top curvature directions of all samples are closely
aligned (high coherence), whereas a small σsingle indicates disparate or orthogonal curvatures across
samples. Prior work showed that higher coherence σsingle correlates with greater stability of SGD.
In other words, when the loss landscapes of different samples “point” in similar directions, gradient
steps reinforce each other and it is harder for SGD to diverge away from the optimum.

Coherence with retain and forget sets. In an unlearning scenario, we have two disjoint sets of
samples: the retain set Dr (of size nr) and the forget set Df (of size nf ). Coherence within each set
(retain vs. forget) is not sufficient to describe the behavior of the combined ascent-descent dynamics.
We need to also quantify the interaction between the two sets. We therefore introduce a series of
definitions that extend coherence to the multi-set setting.

First, we define a weighted combination of Hessians from a retain-forget pair, which will serve as an
effective “mixing Hessian:”
Definition 2 (Mix-Hessian).

D :=
1

nrnf

∑
r∈Dr,f∈Df

C
1
2
r

C
1
2
r + C

1
2

f

Hr +
C

1
2

f

C
1
2
r + C

1
2

f

Hf =
1

nrnf

∑
rf

Drf , (5)

HereCr = η2(1−α)2 1
nr

( 1
B − 1

nr
), Cf = η2α2 1

nf
( 1
B − 1

nf
), Drf = C

1
2
r

C
1
2
r +C

1
2
f

Hr+
C

1
2
f

C
1
2
r +C

1
2
f

Hf . The

constantsCr andCf reflect the relative contribution of retain vs forget Hessians to the second-moment
dynamics of wk (these arise from the SGD noise analysis in Lemma 2.1 later). The mix-Hessian D
aggregates the pairwise influence of retain and forget sets; it effectively summarizes how the two sets
jointly affect curvature when considered together in the update. Next, analogous to the single-set
case, we define a coherence matrix that captures alignment across pairs of retain/forget examples:
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Definition 3 (Mix-coherence matrix). Construct an index set for all retain–forget pairs: P =
{(r, f) : r ∈ Dr, f ∈ Df} of size |P| = nrnf . The mix-coherence matrix S ∈ R|P|×|P| is defined
entrywise by

S(r,f),(r′,f ′) =
∥∥D1/2

rf D
1/2
r′f ′

∥∥
F
,

for any (r, f), (r′, f ′) ∈ P .

In words, S measures the alignment between every pair of mixed Hessians Drf and Dr′f ′ . Finally,
we define an overall coherence measure for unlearning, generalizing the single-set σ:
Definition 4 (Unlearning Coherence Measure). The unlearning coherence is

σ =
λmax(S)

max(r,f)∈P λmax(Drf )
,

the leading eigenvalue of the mix-coherence matrix S normalized by the largest eigenvalue among
all individual Drf matrices.

This definition reduces to the original coherence measure in the limit where one of the sets is absent
(e.g. nf = 0 or α = 0 yields only a retain set). It simultaneously captures the within-set coherences
and the cross-set coupling. Intuitively, if the retain and forget sets are highly aligned in terms of
curvature directions, the mix-coherence σ will be large. In that case, performing ascent on forget
and descent on retain will tend to cancel out: the update directions from the two sets are similar
but with opposite sign, leading to minimal movement away from w∗. This predicts stability for the
current optimum (i.e. resistance to unlearning). Conversely, if the two sets are incoherent (small σ),
their Hessians push in different directions; the ascent on forget set will not be canceled by descent
on retain, making it easier for the iterates wk to escape the original minimum. In summary, our
multi-set coherence measure σ quantifies how conducive the data geometry is to either divergence
or convergence during unlearning. To our knowledge, this is the first work to explicitly incorporate
multiple data subsets into a stability analysis of optimization.

2.3 Linear Stability Analysis of Unlearning

In the theory section, we study a more fundamental problem regarding whether a set is unlearnable
in asymptotic manner through optimization instead of in a fine-tuning regime. Ding et al. (2025).
We now leverage the above framework to derive conditions under which the unlearning dynamics (2)
will converge or diverge. In our work, A key technical challenge is that, unlike in the single-set case,
the influence of SGD noise cannot be captured by a simple closed-form recursion. This is because
the gradient noise now comes from two interleaved sources (retain and forget sets) with potentially
different magnitudes.

We begin with a lemma that describes the evolution of the second moment E∥wk∥2 in terms of a
recursive sequence of matrices Nk. This lemma generalizes the stability condition from Dexter et al.
(2024) to account for the alternating ascent/descent updates.
Lemma 2.1 (Stability recurrence for unlearning). Consider the unlearning update operator Jk
defined in (3). Define a sequence of PSD matrices {Nk}k≥0 by N0 = I and for k ≥ 1:

Nk = Cf

∑
i∈Df

Hi Nk−1 Hi + Cr

∑
i∈Dr

Hi Nk−1 Hi , (6)

with Cr, Cf as given in Definition 2. Also let Mk = J2k + Nk. (J = I − η(1 − α)HR + ηαHF

where HR and HF ar full Hessian of retain and forget set. See definition 6) Then:

1. (Lower bound) ETr
(
JT
0 · · · JT

k−1Jk−1 · · · J0
)

≥ Tr(Mk). Moreover, if Tr(Nk) → ∞ as
k → ∞, then E∥wk∥2 → ∞ as well.

2. (Upper bound) If at each step Jk is spectrally bounded as (1 − ϵ)I ⪰ J ⪰ −(1 − ϵ)I for
some ϵ ∈ (0, 1) (i.e. all eigenvalues of J lie in [−(1− ϵ), 1− ϵ]), then

ETr
(
JT
0 · · · JT

k−1Jk−1 · · · J0
)

≤
k−1∑
r=0

(
k

r

)
(1− ϵ)2(k−r) Tr(Nr) .

If in addition Tr(Nr) ≤ ϵ for all r, then E∥wk∥2 → 0 as k → ∞ (the unlearning update
converges in mean square).
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Discussion. Part (1) of Lemma 2.1 provides a sufficient condition for divergence: if the “noise
accumulation” matrices Nk (which capture how SGD variance builds up over iterations) have un-
bounded trace, then the model will eventually blow up (escape the optimum). Part (2) gives a
sufficient condition for convergence: if each J is a contraction (spectral norm < 1 by a margin ϵ)
and the accumulated noise remains small, then the model’s parameter norm will vanish (meaning wk

returns to the optimum). These statements generalize classical stability results to the unlearning case.
Importantly, the recursion (6) for Nk does not admit a simple closed form because Nk−1 appears
inside sums over both sets Dr and Df . This coupling between retain and forget sets is what makes
analyzing unlearning challenging. By introducing the coherence measures (Definition 4 and related
definition), we overcome this hurdle: the coherence will allow us to relate Tr(Nk) to data-dependent
quantities like λmax(D) and thereby derive interpretable stability criteria.

Using the coherence framework, we can now state our main stability thresholds. The first result is a
condition under which the unlearning dynamics diverge (fail to stay at the original minimum):
Theorem 2.2 (Divergence criterion for unlearning). Under the setup of Lemma 2.1, the unlearning
process will diverge if the mix-Hessian eigenvalue exceeds a threshold determined by the coherence.
In particular, if

λmax(D) ≥
√
2σ

η
(
(1− α)nf

√
nr

B − 1 + αnr

√
nf

B − 1
) , (7)

then lim
k→∞

E∥wk∥2 = ∞. Equivalently, condition (7) guarantees the unlearning algorithm will
escape the original minima (diverge) due to the stochastic dynamics.

In plain terms, Theorem 2.2 says that if the influence of the forget–retain interaction (measured by
λmax(D)) is sufficiently large relative to the stabilizing effect of coherence σ (and other factors like
batch size B and relative set sizes), then the gradient ascent on the forget set will overpower the
descent on the retain set, leading to instability. The inequality (7) can be viewed as a quantitative
stability limit or “edge of chaos” for unlearning: beyond this point, the original solution w∗ cannot
hold.

Our next theorem establishes a matching lower bound, showing that the above divergence condition
is essentially tight. It guarantees that when λmax(D) is below a certain threshold (of the same order
as in (7)), one can find a scenario where the unlearning process converges, thereby demonstrating
that the threshold cannot be significantly improved in general:
Theorem 2.3 (Convergence condition (matching lower bound)). Suppose λmax(D) and σ satisfy

λmax(D) ≤ 2σ

η C ′
r

(
σ + nf

(
nr

B − 1
)) , (8)

where C ′
r =

√
Cr/(

√
Cr +

√
Cf ) (with Cr, Cf from Definition 2). Then there exists a choice of

PSD Hessians {Hi} for the retain and forget sets such that the unlearning update converges (i.e.
limk→∞ E∥wk∥2 = 0) under those Hessians.

The convergence condition (8) mirrors the divergence condition in its dependence on σ, nr, nf ,
and B. The existence of a construction that achieves convergence when (8) holds indicates that our
divergence criterion in Theorem 2.2 is tight up to constant factors. In summary, Theorems 2.2 and
2.3 together pin down a theoretical threshold curve in the space of data coherence and algorithm
parameters that separates stable (convergent) unlearning from unstable (divergent) unlearning.

Implications for unlearning methods. The above results shed light on why certain unlearning
methods succeed or fail, by interpreting them through the lens of coherence and the weighting
imbalance between retain and forget sets.

We can now interpret some common unlearning strategies:

Naive negative gradient. A straightforward unlearning baseline is to set α = 1 and run gradient
ascent on the forget set alone. Our framework explains why this often fails. If the forget set has
high internal coherence, its gradients align with the curvature at w∗, so ascent follows a single stable
direction and does not escape the minimum due to lack of stability. If the forget and retain sets are
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also highly coherent, the overall coherence stays large even without the retain set. In both cases
divergence is inhibited, matching empirical reports that naive negative-gradient unlearning typically
stagnates or oscillates, hurting retained data while barely reducing forget-set performance (Ding
et al., 2025; Fan et al., 2025; Ding et al., 2025).

Random label perturbation. Another strategy is to add randomness to the forgetting process, for
instance by using mislabeled data or injecting noise into the forget set’s gradients (see, e.g., random
label unlearning). In our terms, this deliberately breaks the coherence of the forget set: if labels
are randomized, the gradients from forget-set samples become effectively uncorrelated, dramatically
lowering the forget-set’s internal σ. This, in turn, allows the model to escape the original minimum
much faster, because the forget-set ascent directions will fluctuate rather than consistently opposing
the retain-set descent. Moreover, randomizing forget labels also reduces the coupling between forget
and retain sets (since the forget-set gradient is now essentially random noise orthogonal to the retain-
set Hessians). Thus, random label methods improve unlearning by driving the coherence measure σ
downward, so the divergence criterion is more easily satisfied. (Graves et al., 2020)

Min-Max (targeted forget) methods. More sophisticated approaches pick a subset of model
weights or directions that are most “responsible” for the forget set’s performance, and then apply
ascent/descent on those components. This can be seen as applying projection matrices PF and PR

to the Hessians Hf , Hr respectively, focusing updates on certain eigen-directions. Such projections
effectively reduce the overlap between forget-set and retain-set update directions (since PFHf and
PRHr act in different subspaces), thereby reducing the cross-coherence between the two sets. In our
framework, this corresponds to a smaller overall σ as well. By isolating the forgetting dynamics,
Min-Max methods thus decrease the ability of the retain set to interfere with forgetting (and vice
versa), making the unlearning process more effective. (Tang & Khanna, 2025; Fan et al., 2024)

2.4 Memorization and Forgetting

So far, our analysis has focused on the role of stochastic gradient noise (from mini-batch sampling).
We now turn to another key factor: the inherent signal vs. noise structure of the data itself. We
ask: if a model has memorized certain training examples (as opposed to learning a shared signal),
does that make it easier or harder to forget those examples? We will show a theoretical connection
between a model’s tendency to memorize (which occurs when data has low signal-to-noise ratio)
and the ease of unlearning. To make this concrete, we consider a specific data model and network,
inspired by the theoretical construction by Kou et al. (2023). The data distribution is designed so
that each example contains a mixture of a common signal and independent noise. This is formalized
as follows:
Definition 5 (Data Setup). Let µ ∈ Rd be a fixed unit-norm signal vector. Each training example
consists of a feature pair x = [x(1); x(2)] ∈ R2d (concatenation of two d-dimensional parts) and a
label y ∈ {−1,+1}. The example is generated by:

1. Sample y as a Rademacher random variable (Pr(y = +1) = Pr(y = −1) = 1
2 ).

2. Sample a noise vector ξ ∼ N (0, σ2Id) in Rd, where σ2 is the noise variance.

3. With equal probability, set either x(1) = y µ and x(2) = ξ, or x(1) = ξ and x(2) = y µ.
In other words, one of the two halves of x carries the signal y µ and the other carries
independent noise.

We then consider a two-layer convolutional neural network (CNN) with ReLU activations operating
on this data.. The network has two sets of convolutional filters (for the positive and negative class)
and outputs a score f(W,x) whose sign determines the predicted label. Specifically, let W (+1)

and W (−1) be the weight matrices for the two classes, each of shape m × d (with m filters). The
network’s output is

f(W,x) =
1

m

m∑
r=1

(
ReLU(⟨w(+1)

r , x(1)⟩) + ReLU(⟨w(+1)
r , x(2)⟩)

)
− 1

m

m∑
r=1

(
ReLU(⟨w(−1)

r , x(1)⟩) + ReLU(⟨w(−1)
r , x(2)⟩)

)
,

(9)
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and the model is trained with logistic loss LS(W ) = 1
n

∑n
i=1 log

(
1 + exp(−yi f(W,xi))

)
. We

focus on the case where the network can fit the training data perfectly (interpolating regime) and
potentially overfits.

In this setting, we can analyze the coherence of the Hessians at the trained solution. The following
result provides an upper bound on the coherence in terms of the signal-to-noise ratio (SNR) of the
data, defined as SNR = ∥µ∥

σ
√
d

(which measures the strength of the common signal relative to noise in
each example):
Theorem 2.4 (Coherence bound in the CNN memorization model). Under the data model of
Definition 5 and the two-layer ReLU CNN defined above, suppose the network is trained to near-zero
training loss. Then with probability at least 1− 8δ (over the random draw of the dataset), the largest
eigenvalue of the coherence matrix S for the retain/forget split satisfies

λmax(S) ≤ O
(
nr nf dσ

2
[
(
√

C ′
r +

√
C ′

f )
2 (SNR)2 + (C ′

r + C ′
f )
])

, (10)

max
rf

λmax(Drf ) ≤ O((C ′
r + C ′

f )(dσ
2(SNR)2 + 1)), (11)

where C ′
r and C ′

f are the normalized retain/forget weight fractions as defined in Theorem 2.3.
Consider division of two quantities and we can find that for small SNR limit and large SNR limit:

lim
SNR→0

λmax(S)
upper

maxrf D
upper
rf

= O(nrnf ) , lim
SNR→∞

λmax(S)
upper

maxrf D
upper
rf

= O(nrnf (1 +
2
√
C ′

rC
′
f

C ′
r + C ′

f

)). (12)

Discussion Theorem 2.4 shows the surprising role of SNR in stability of the optimizer through its
control over the coherence. In particular, if the data has a very low SNR (meaning µ is small relative
to the noise σ), then the network is likely to memorize the noise. In that regime, high-dimensional
random noise vectors are nearly orthogonal to each other, so Hessians for different samples align
poorly. Our bound indicates that coherence measure is larger in large SNR limit compared to
small SNR limit, so a smaller SNR yields a smaller coherence. Consequently, when the model has
memorized (low SNR), the unlearning process becomes easier: the model can move away from the
original fit with less resistance, as formalized by our earlier stability criteria. Conversely, if the
data has high SNR (dominant signal shared across examples), the model will latch onto that signal,
resulting in large coherence, and the unlearning process will be much harder (the model resists
leaving the optimum since all samples agree on the direction).

This gives a rigorous basis for a perhaps counter-intuitive aphorism: the more you memorize, the
easier you forget. In other words, models that rely heavily on idiosyncratic features of individual
data points (memorization) are in fact less stable at those points and can forget them with less effort,
whereas models that have learned a strong global structure (signal) are more stable and resistant to
having a single sample’s influence removed. Our work is the first to formally establish this connection
between memorization (in terms of data geometry) and unlearning. We believe this provides valuable
insight into the trade-offs inherent in machine unlearning.

3 Experiments

3.1 Diverging and converging condition.

Experimental setup. In this section, we simulate experiments to test Theorems 2.2 and 2.3. We fix
nf = nr = 50 and set α = 0.1. Say Q is a hyper-parameter constant. We will set Q to different
values to control various quantities in the experiments. For the retain set, Hessians are defined as
Hi = me1e

T
1 for i ∈ [Q], and Hi = mei−Q+1e

T
i−Q+1 otherwise, with m = 2nr/Q; the forget set

uses the same construction. This ensures λ1(HR) = λ1(HF ) = λ1(D) = 2, controlling sharpness.
We choose η ≤ 1 to avoid divergence from the standard criterion η ≥ 2/λ1, so any escaping behavior
stems solely from stochasticity, consistent with our theorem.

To vary coherence, we change Q and compute (B, σ) pairs by adjusting batch size. For each pair, we
randomly initialize w, run 1000 updates, and record ∥w1000∥. Runs with ∥w1000∥/∥w0∥ ≥ 1000 are
marked as diverging. Each experiment is repeated 10 times, and the majority outcome determines
convergence/divergence.
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(a) Learning rate η = 0.5 (b) Learning rate η = 0.8

Figure 1: Tight upper and lower bounds. Blue = convergence, red = divergence. The dashed line
is the lower bound (Theorem 2.3), the solid line the divergence criterion (Theorem 2.2). Both closely
track the true boundary.

Figure 2: (Left) Training loss. (Middle) Test error. (Right) Forget loss. Memorization and forgetting
regions strongly overlap: the left and middle panels show training loss and test error, while the right
shows forget loss under different combinations of dimension and signal strength.

Bounds on divergence. Figure 1 shows that both our upper and lower bounds predict the divergence
region accurately; the bounds are tighter for batch sizes ≥ 10. The divergence criterion in particular
matches the true boundary, demonstrating that our coherence-based measure captures the essential
optimization dynamics accurately. This highlights coherence as a meaningful lens on unlearning
dynamics, with potential applications beyond our scope.

3.2 Relation between memorization and forgetting.

Experimental setup. We generate data as in Definition 5 along with the 2 layer CNN. The dataset
has 50 training samples without label noise. We set µ = ∥µ∥2[1, 0, . . . , 0] and add Gaussian noise
ξ ∼ N (0, σ2Id) with σ = 1.0. We vary the value of d ∈ [100, 1100] to verify our results with
varying levels of over-parametrization. The CNN has m = 10 filters and is trained by full-batch
gradient descent for 100 epochs at learning rate 0.1, ensuring training loss ≤ 0.1.

We record training loss and test error (on 1000 unseen samples). For unlearning, out of total 50
samples, we use 25 samples to form the forget set and the other 25 to build the retain set. We apply
mini-batch unlearning (batch size 5) using the negative-gradient method with learning rate 0.1 and
α = 0.3 for 90 steps, then record the average forget loss. Each experiment is repeated 20 times and
averaged.

Memorization–forgetting overlap. Figure 2 shows heatmaps over signal strength and dimension.
Memorization is identified where training loss is low but test error high (left, middle). Strikingly,
these regions coincide with high loss on the forget (right), confirming our prediction: memorization
corresponds to low coherence, making solutions unstable and easier to escape, thus making unlearn-
ing easier. This provides strong evidence for our framework and, to our knowledge, is the first work
to connect memorization and forgetting through coherence.
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