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Abstract

Large language models (LLMs) have become the go-to choice for code
generation tasks, with an exponential increase in the training, development,
and usage of LLMs specifically for code generation. To evaluate the ability
of LLMs on code, both academic and industry practitioners rely on popular
handcrafted benchmarks. However, prior benchmarks contain only a
very limited set of problems, both in quantity and variety. Further, due to
popularity and age, many benchmarks are prone to data leakage where
example solutions can be readily found on the web and thus potentially
in training data. Such limitations inevitably lead us to inquire: Is the
leaderboard performance on existing benchmarks reliable and comprehensive enough
to measure the program synthesis ability of LLMs? To address this, we introduce

EVOEVAL– a program synthesis benchmark suite created by evolving
existing benchmarks into different targeted domains for a comprehensive
evaluation of LLM coding abilities. Our study on 57 LLMs shows that
compared to the high performance obtained on standard benchmarks like
HUMANEVAL, there is a significant drop in performance (on average 38.1%)
when using EVOEVAL. Additionally, the decrease in performance can range
from 19.6% to 47.7%, leading to drastic ranking changes amongst LLMs
and showing potential overfitting of existing benchmarks. Furthermore, we
showcase various insights including the brittleness of instruction-following
models when encountering rewording or subtle changes as well as the
importance of learning problem composition and decomposition. EVOEVAL
not only provides comprehensive benchmarks, but can be used to further
evolve arbitrary problems to keep up with advances and the ever-changing
landscape of LLMs for code. We have open-sourced our benchmarks, tools,
and all LLM-generated code at https://github.com/evo-eval/evoeval.

1 Introduction

Program synthesis (Gulwani et al., 2017) is regarded as the holy-grail in the field of computer
science. Recently, large language models (LLMs) have become the default choice for pro-
gram synthesis due to its code reasoning capabilities acquired through training on code
repositories. Popular LLMs like GPT-4 (OpenAI, 2023), Claude-3.5 (Anthropic, 2024b), and
Gemini (Team et al., 2023) have shown tremendous success in aiding developers on a wide
range of coding tasks (Chen et al., 2021; Xia & Zhang, 2023; Deng et al., 2023b). Furthermore,
researchers and practitioners have designed code LLMs (e.g., DeepSeek Coder (Guo et al.,
2024), CodeLlama (Rozière et al., 2023), and StarCoder (Li et al., 2023)) using a variety of train-
ing methods designed specifically for the code domain to improve LLM code understanding.

Coding benchmarks like HUMANEVAL (Chen et al., 2021) and MBPP (Austin et al.,
2021) have been handcrafted to evaluate the program synthesis task of turning natural
language descriptions (e.g., docstrings) into code snippets. These code benchmarks measure
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def create_alias(name: str) Ҏɬ str:
""" For a given name, create an alias 
following these rules: If the name 
includes a vowel, replace it with the 
next vowel in the cycle. If the name 
includes a consonant, replace it with the 
next consonant in alphabetical order"""

def vowels_count(s, l=None):
"""Write a function vowels_count which 
takes a string representing a word and an 
optional list of custom vowels as input.
ҎҎɷ """
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def vowels_count(s):
"""ҎҎɷ end of the given word. 
Only count the lowercase vowels.""" def check_vowel(s):

    ҎҎʕ helper function ҎҎʕ
    ҎҎɷ
def frequency_count(s):
"""Given a string s, count the frequency 
of each vowel in the string. Return the 
results as a dictionary. """

def bf(planet1, planet2)
""" return a tuple containing all 
planets whose orbits are located 
between the orbit of planet1 and 
the orbit of planet2, sorted by 
the proximity to the sun. """
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def planet_vowel_count(planet1, planet2):
""" Write a function that takes two 
planet names planet1 and planet2. Return 
an integer representing the number of 
vowels in the names of the planets whose 
orbits are located between the orbit of 
planet1 and the orbit of planet2, sorted 
by the proximity to the sun. """

combi
ne co

ncept
s 

toget
her

problem that use 

auxiliary methods

Difficult Problem

Creative Problem

Subtle Problem

Combine Problem

Tool Use Problem

1

2

3

4

5

HumanEval
Problem

def vowels_count(s):
""" Write a function vowels_count which 
takes a string representing a word as 
input and returns the number of vowels 
in the string. Vowels in this case are 
'a', 'e', 'i', 'o', 'u'. 
Here, 'y' is also a vowel, but only when 
it is at the end of the given word. """

Figure 1: Exemplar problems generated in EVOEVAL starting from a HUMANEVAL problem.

functional correctness by evaluating LLM-generated solutions against a set of limited
predefined tests. Recent work (Liu et al., 2023) has further included augmented tests to
rigorously evaluate the functional correctness of LLM generated code. However, apart from
test inadequacy, existing popular code synthesis benchmarks have the following limitations:

• Limited amount and variety of problems. Code benchmarks are mainly constructed by
human annotators manually. Due to the high manual effort required, they only contain a
limited amount of problems (e.g., only 164 problems in HUMANEVAL). Such a low amount
of problems is not sufficient to fully measure the complete spectrum of program synthesis
capability of LLMs. Additionally, prior benchmarks include mostly self-contained prob-
lems that lack variety in both types and domains, where the final evaluation output only
shows the percentage of problems solved. While they provide a baseline overview of the
coding abilities, LLM builders and users cannot gain deeper insights to exactly which
problem types or coding scenarios the particular LLM may excel in or struggle with.

• Prone to data leakage and training dataset composition. Popular benchmarks like HU-
MANEVAL and MBPP were released almost 4 years ago, with example solutions available
in third-party open-source repositories. In fact, recent work (Riddell et al., 2024) has
shown that there is substantial overlap between benchmark solutions and open-source
training corpuses. Furthermore, the problems within these benchmarks are often simple
derivatives of common coding problems. While recent LLMs have been climbing the
leaderboard by achieving higher pass@1 scores (often with minimal difference between
the next best model), it is unclear whether high scores achieved by LLMs are truly due to
their learned coding capability or instead obtained via memorizing benchmark solutions.

As more LLMs are being constructed, trained, and used especially for code, the insufficient
evaluation benchmarks raise a critical question: Is leaderboard performance on existing
benchmarks reliable and comprehensive enough to measure the program synthesis ability of LLMs?

Our work. To address the limitation of existing benchmarks, we introduce EVOEVAL –
a set of program synthesis benchmarks created by evolving existing problems. The key idea
behind EVOEVAL is to use LLMs to automatically transform existing problems into targeted
domains, enabling more comprehensive evaluations. Unlike prior benchmark construction
approaches, which either obtain problems from open-source repositories (posing data
leakage risks) or require manual construction (resulting in high manual effort and limited
diversity), EVOEVAL leverages LLMs with targeted transformations to synthesize new
coding problems. Specifically, we design five such transformations: Difficult, Creative, Subtle,
Combine, and Tool Use. We then prompt GPT-4 to independently transform any existing
problem in previous benchmarks into a new problem within the targeted domain.

Figure 1 shows a concrete example of EVOEVAL starting with an initial problem in HU-
MANEVAL– vowels count to count the number of vowels. 1 We first observe the transforma-
tion to a more difficult problem by asking GPT-4 to add additional requirements. This new
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problem contains a separate custom vowel list that makes the overall program logic more
complex. 2 We can craft a more creative problem of create alias that still uses concepts like
vowels and consonants but involves a much more innovative and unusual problem descrip-
tion. 3 We can also make subtle changes to the problem where we only count the lowercase
vowels to test if the LLM is simply memorizing the benchmark. 4 We can additionally com-
bine concepts from multiple problems together. In the example, we use another problem bf

to create a new problem that returns the vowels in each planet sorted based on the orbiting
order. 5 Furthermore, we can test LLMs’ ability to utilize helper functions (commonplace in
real-world code repositories) to solve more complex problems. Again, we reuse the concepts
of vowels from the initial problem. However, instead of directly solving the problem, the
LLM can use the provided check vowel helper function to simplify the solution.

Together, these transformed benchmarks are designed to introduce more challenging
problems and assess different aspects of LLMs’ code understanding and synthesis
abilities. In EVOEVAL, we additionally use GPT-4 to generate the ground truth solution
to each problem as well as rigorous test cases to evaluate the functional correctness of
LLM-synthesized code. Finally, we manually check each generated problem and ground
truth to ensure problem clarity and correctness. EVOEVAL serves as a way to further evolve
existing benchmarks into more complex and well-suited problems for evaluation in order to
keep up with the ever-growing LLM research. Our work makes the following contributions:

• Benchmarks: We present EVOEVAL– a set of program synthesis benchmarks created by
evolving HUMANEVAL problems. EVOEVAL includes 828 problems across 7 benchmarks,
equipped with ground truth solutions and test cases to evaluate functional correctness.

• Approach: We propose a complete pipeline to generate new coding problems for
benchmarking by evolving existing problems through targeted transformations via LLMs.
Furthermore, our pipeline reduces manual checking effort by automatically refining
problem inconsistencies, generating ground truth, and producing test cases.

• Study: We conduct a comprehensive study on 57 LLMs. We found that compared to the
high performance on prior benchmarks, LLMs significantly drop in accuracy (average
38.1%) on EVOEVAL. Additionally, this drop is not uniform across LLMs (from 19.6%
to 47.7%), leading to drastic ranking changes. We further demonstrate that certain LLMs
cannot keep up their high performance when evaluated on more challenging tasks or
problems in different domains, highlighting the possibility of overfitting to existing
benchmarks. Moreover, we observe that instruction-following LLMs are sensitive to
rephrasing or subtle changes in the problem description. They also struggle with utilizing
already provided auxiliary functions. We further demonstrate that current LLMs fail
to effectively compose multiple general coding concepts to solve more complex variants,
or address subproblems decomposed from problems they previously solved.

2 Approach

Targeted problem transformation. We first prompt a powerful LLM to evolve an existing
problem into a new one using a transformation prompt. Each transformation prompt
aims to transform the existing problem in a specific manner. We define two different
transformation types: semantic-altering – changes the semantic meaning of the problem and
semantic-preserving – modifies the description while keeping the same semantic meaning.

Problem refinement & ground truth generation. The initial evolved problem produced by
the LLM may include inconsistencies like incorrect examples. For coding benchmarks, such
mistakes can lead to inaccurate evaluation. As such, we introduce a refinement pipeline
to iteratively rephrase and refine the problem as needed. We first query the LLM to obtain
a possible solution and test inputs for the initial problem. We then evaluate the test inputs
on the solution to derive the expected outputs. Next, we instruct the LLM to refine the
problem by adding or fixing the example test cases in the docstring using the computed
test inputs/outputs, and then regenerate a solution. We then check if the new solution
on the test inputs produces the same outputs as the previous solution. The intuition is
that since the refined problem should only include minimal changes, the solution output
should then remain the same in the absence of any inconsistencies. As such, if we observe
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differences between the two solution outputs, we ask the LLM to further revise and fix any
inconsistencies and repeat the process. If both solutions agree on outputs, we return the
new problem description, solution, and test cases for functional evaluation.

Manual examination & test augmentation. For each transformed problem, we carefully ex-
amine and adjust any final faults to ensure each problem and ground truth are correctly spec-
ified and implemented. We further generate additional tests using an LLM-based test aug-
mentation technique (Liu et al., 2023). Finally, we produce EVOEVAL, a comprehensive code
synthesis benchmark suite containing diverse problems to evaluate LLM coding capability
across various domains. Details like transformation prompts are presented in Appendix D.

3 EVOEVAL Benchmarks & Evaluation Methodology

EVOEVAL uses HUMANEVAL problems as seeds and GPT-4 as the foundation LM to produce
828 problems across 7 different benchmarks (5 semantic-altering and 2 semantic-preserving).
For the semantic-altering benchmarks, we generate 100 problems each using different seed
problems from HUMANEVAL. For the semantic-preserving benchmarks, we transform all 164
problems in HUMANEVAL as we reuse the original ground truths, requiring less validation.

• DIFFICULT: Increase complexity by adding constraints, replacing commonly used re-
quirements to less common ones, or introducing additional steps to the original problem.

• CREATIVE: Produce a more creative problem using stories or narratives.
• SUBTLE: Make a subtle change such as inverting or replacing a requirement.
• COMBINE: Combine two problems by using concepts from both problems.
• TOOL USE: Produce a main problem and helper functions. Each helper function is fully

implemented and provides hints or useful functionality for solving the main problem.
• VERBOSE: Reword the original docstring to be more verbose with descriptive language
• CONCISE: Reword the original docstring to be more concise using concise language.

Evaluation setup: Each LLM generated sample is executed against the test cases and
evaluated using differential testing (McKeeman, 1998) – comparing against the ground
truth results to measure functional correctness. We focus on greedy decoding and denote
this as pass@1.

Models: We evaluate 57 LLMs (Appendix C), including both proprietary and open-source
models. Further, we classify the LLMs as either base or instruction-following and discuss
the effect of model variants.

Input format: To produce the code solution using each LLM, we provide a specific input
prompt: For base LLMs, we let the LLM autocomplete the solution given the function
header and docstring. For instruction-following LLMs, we use the recommended instruction
and ask the LLM to generate a complete solution for the problem.

4 Results

4.1 LLM Synthesis & Evaluation on EVOEVAL

EVOEVAL produces more complex and challenging benchmarks for program synthesis.
Table 1 shows the pass@1 performance along with the ranking of LLMs on each of the
semantic-altering EVOEVAL benchmarks with the average pass@1 and ranking on all
benchmarks in the last columns1. First, compared to the success rate on HUMANEVAL,
when evaluated on EVOEVAL, all LLMs consistently perform worse. For example, the
state-of-the-art GPT-4o, GPT-4 and Claude-3.5 models solve close to 85% of all HUMANEVAL
problems but fall almost below 55% pass@1 when evaluated on the DIFFICULT problems.
On average, across all benchmarks, the performance of LLMs decreased by 38.1%
(DIFFICULT: 56.6%, CREATIVE: 48.2%, SUBTLE: 5.0%, COMBINE: 74.7%, and TOOL USE: 6.1%).
Additionally, this drop is not uniform across all LLMs and can range from 19.6% to 47.7%.

1We evaluated all 57 LLMs, however, we omitted some LLMs in Table 1 for space reasons.
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Table 1: pass@1 and ranking results (* indicates tie) on the semantically-altering EVOEVAL
and HUMANEVAL benchmarks (including HUMANEVAL+ scores in the parenthesis).
denotes instruction-following LLMs.

Size HUMANEVAL DIFFICULT CREATIVE SUBTLE COMBINE TOOL USE EVOEVAL

pass@1 rank pass@1 rank pass@1 rank pass@1 rank pass@1 rank pass@1 rank pass@1 rank

GPT-4o NA 86.0 (81.7) 1 51.0 5 64.0 2 80.0 4 51.0 *3 72.0 1 67.3 2

GPT-4-Turbo NA 83.5 (80.5) *2 50.0 *6 61.0 3 82.0 *1 45.0 5 69.0 *3 65.1 4

GPT-4 NA 82.3 (76.2) *6 52.0 *2 66.0 1 76.0 6 53.0 2 68.0 *6 66.2 3

GPT-3.5-Turbo NA 76.8 (69.5) *9 33.0 *19 42.0 *13 70.0 *9 33.0 9 64.0 *10 53.1 12

Claude-3.5 NA 83.5 (78.0) *2 56.0 1 60.0 4 82.0 *1 57.0 1 68.0 *6 67.8 1

Claude-3 NA 82.3 (75.0) *6 50.0 *6 53.0 7 81.0 3 42.0 7 69.0 *3 62.9 7

Claude-3-haiku NA 74.4 (66.5) *13 40.0 *12 47.0 *11 65.0 *16 25.0 *12 61.0 *16 52.1 13

Claude-2 NA 66.5 (62.2) *24 29.0 23 42.0 *13 64.0 *19 19.0 20 57.0 *22 46.2 21

Gemini-1.5-pro NA 83.5 (76.8) *2 52.0 *2 55.0 *5 78.0 5 43.0 6 69.0 *3 63.4 6

Gemini-1.0-pro NA 62.2 (56.7) 27 37.0 *16 40.0 18 53.0 *27 23.0 *15 57.0 *22 45.4 23

PaLM-2 NA 40.2 (36.6) 44 18.0 *38 22.0 39 36.0 *48 3.0 *45 46.0 *35 27.5 43

DS Coder-v2-Inst 236b 82.9 (78.7) 5 52.0 *2 55.0 *5 75.0 7 51.0 *3 70.0 2 64.3 5

DS Coder-Inst
33b 78.0 (73.2) 8 47.0 9 47.0 *11 67.0 *11 31.0 *10 66.0 8 56.0 8
6.7b 74.4 (69.5) *13 40.0 *12 37.0 *19 61.0 *23 18.0 *21 51.0 30 46.9 20
1.3b 63.4 (60.4) 26 20.0 *36 25.0 *31 53.0 *27 9.0 *34 39.0 *47 34.9 30

DS Coder
33b 50.6 (42.7) 32 26.0 26 23.0 *36 47.0 *32 11.0 *31 63.0 *13 36.8 29
6.7b 45.1 (38.4) *37 21.0 *32 24.0 *33 47.0 *32 5.0 *41 55.0 *25 32.9 35
1.3b 29.9 (26.2) 51 6.0 *54 19.0 *41 27.0 55 0.0 57 40.0 46 20.3 51

DS Coder-1.5-Inst 7b 68.9 (63.4) *21 37.0 *16 37.0 *19 66.0 *14 24.0 14 60.0 *18 48.8 16

DS Coder-1.5 7b 42.1 (34.8) *41 21.0 *32 34.0 *23 43.0 *37 4.0 *43 54.0 *27 33.0 34

Llama -3.1-Inst 70b 75.0 (68.9) *11 42.0 10 49.0 9 73.0 8 34.0 8 62.0 15 55.8 9

Llama -3-Inst 70b 73.8 (71.3) *15 41.0 11 52.0 8 70.0 *9 31.0 *10 64.0 *10 55.3 10

CodeLlama-Inst

70b 66.5 (59.8) *24 31.0 22 41.0 *16 65.0 *16 18.0 *21 65.0 9 47.7 18
34b 51.8 (43.9) 31 22.0 *30 27.0 29 43.0 *37 9.0 *34 47.0 *33 33.3 33
13b 48.8 (42.7) 35 21.0 *32 25.0 *31 46.0 35 8.0 *37 54.0 *27 33.8 32
7b 43.3 (39.0) 39 14.0 44 18.0 *43 40.0 *43 8.0 *37 44.0 *39 27.9 42

CodeLlama

70b 60.4 (52.4) 29 25.0 27 29.0 *26 49.0 *29 14.0 *27 63.0 *13 40.1 28
34b 52.4 (43.3) 30 15.0 43 24.0 *33 47.0 *32 11.0 *31 44.0 *39 32.2 36
13b 42.7 (36.6) 40 18.0 *38 24.0 *33 38.0 *45 6.0 40 48.0 *31 29.4 39
7b 39.6 (36.6) 45 10.0 *48 15.0 47 42.0 40 3.0 *45 44.0 *39 25.6 44

WizardCoder 34b 61.6 (54.3) 28 24.0 28 32.0 25 55.0 26 17.0 *24 55.0 *25 40.8 26

WizardCoder-1.1 33b 73.8 (69.5) *15 48.0 8 48.0 10 66.0 *14 20.0 19 64.0 *10 53.3 11

XwinCoder 34b 68.9 (62.2) *21 33.0 *19 42.0 *13 67.0 *11 15.0 26 60.0 *18 47.7 19

Phind-CodeLlama-2 34b 70.7 (66.5) 19 22.0 *30 35.0 22 63.0 21 25.0 *12 58.0 21 45.6 22

Code Millenials 34b 73.2 (69.5) 17 35.0 18 41.0 *16 65.0 *16 17.0 *24 56.0 24 47.9 17

Speechless-CL 34b 75.0 (69.5) *11 38.0 15 37.0 *19 64.0 *19 23.0 *15 59.0 20 49.3 15

Magicoder-s-DS 6.7b 76.8 (70.7) *9 40.0 *12 34.0 *23 67.0 *11 21.0 *17 61.0 *16 50.0 14

Magicoder-s-CL 7b 70.1 (65.9) 20 27.0 25 26.0 30 58.0 25 11.0 *31 52.0 29 40.7 27

StarCoder2
15b 45.1 (36.0) *37 16.0 *41 19.0 *41 41.0 *41 5.0 *41 48.0 *31 29.0 41
7b 34.8 (31.1) *46 12.0 *45 17.0 45 38.0 *45 2.0 *51 46.0 *35 25.0 46
3b 31.1 (26.2) 50 8.0 *51 14.0 *48 31.0 *50 2.0 *51 35.0 51 20.2 52

StarCoder 15b 34.8 (30.5) *46 12.0 *45 11.0 53 37.0 47 2.0 *51 44.0 *39 23.5 47

Mixtral-Inst 8x7b 42.1 (38.4) *41 21.0 *32 18.0 *43 41.0 *41 9.0 *34 45.0 *37 29.3 40

OpenChat 7b 71.3 (66.5) 18 33.0 *19 29.0 *26 62.0 22 14.0 *27 43.0 44 42.1 24

Gemma-Inst 7b 28.0 (23.2) *54 6.0 *54 10.0 *54 29.0 54 2.0 *51 31.0 53 17.7 54

Gemma 7b 31.7 (25.0) 49 12.0 *45 13.0 *50 40.0 *43 2.0 *51 39.0 *47 23.0 48
2b 22.0 (17.1) 57 2.0 57 6.0 57 24.0 57 2.0 *51 21.0 56 12.8 57

Phi-2 2.7b 50.0 (45.1) *33 18.0 *38 23.0 *36 49.0 *29 14.0 *27 37.0 50 31.8 38

Qwen-1.5
72b 67.1 (61.6) 23 28.0 24 28.0 28 61.0 *23 21.0 *17 47.0 *33 42.0 25
14b 50.0 (45.7) *33 20.0 *36 23.0 *36 48.0 31 18.0 *21 44.0 *39 33.8 31
7b 42.1 (37.8) *41 16.0 *41 13.0 *50 43.0 *37 7.0 39 32.0 52 25.5 45
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Figure 2: HUMANEVAL+ vs EVOEVAL pass@1. Red identity line shows equivalent perfor-
mance. We cluster the LLMs into: purple region – aligned performance on HUMANEVAL vs.
EVOEVAL and blue region – over performance on HUMANEVAL vs. EVOEVAL.

LLMs struggle on EVOEVAL benchmarks compare to the high performance achieved on
HUMANEVAL. One surprising finding comes from SUBTLE, where the average performance
of LLMs drops by 22.5% on the same 100 problems2, even though only small changes are
made to the original problems and the difficulty remains roughly the same. Appendix E Fig-
ure 21 presents an example problem and failing solution. Furthermore, we can also identify
LLMs which struggle heavily on specific types of problems compared to their relative perfor-
mance on HUMANEVAL. Figure 2 shows a scatter plot of HUMANEVAL+ vs. EVOEVAL scores.
As we saw before, the significant portions of the models tend to be worse on EVOEVAL than
HUMANEVAL (i.e., purple shaded region). However, there are LLMs that have a much higher
HUMANEVAL score compared to their performance on EVOEVAL (i.e., blue shaded region).
This implies potential data leakage of popular benchmarks where LLM performances are ar-
tificially inflated but do not translate to more difficult or other program synthesis problems.

Significant ranking changes of LLMs on EVOEVAL. Compared to HUMANEVAL where
top models all perform similarly, we observe drastic differences in ranking changes on
EVOEVAL. We observe that while the relative difference between the top 10 models on
HUMANEVAL is around 10%, the difference on EVOEVAL on average is over 20%. Due to
such saturation, existing benchmarks may not reliably rank the program synthesis ability
of each model. For example, while Claude-3.5 and GPT-4-Turbo are tied for second on
HUMANEVAL, they both excel at different types of problems: Claude-3.5 performs best on
difficult and combine problems, while GPT-4-Turbo is better with tool use and creative
tasks. Furthermore, while GPT-4o achieves the top HUMANEVAL and HUMANEVAL+ score,
it falls off compared to the base GPT-4 variant where it is worse on DIFFICULT, CREATIVE
and COMBINE problems. Such evaluation cannot be gained through naively reporting
existing coding benchmark performance. Overall, by evolving the original benchmark
into more difficult and diverse problems of different types, EVOEVAL can provide a more
holistic evaluation and ranking of the coding ability of LLMs.
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Figure 3: Radar graph

EVOEVAL can be used to comprehensively compare multiple mod-
els. In Figure 3, while both WizardCoder-1.1 and Phind-CodeLlama-
2 have similar HUMANEVAL scores, they perform drastically dif-
ferently across EVOEVAL benchmarks. WizardCoder-1.1 is better
on DIFFICULT and CREATIVE while Phind-CodeLlama-2 is better
on COMBINE problems. This can be explained through the train-
ing dataset used in each LLM: WizardCoder-1.1 uses an evolv-
ing dataset by generating more complex problems whereas Phind-
CodeLlama-2 is fine-tuned on high quality programming problems
that seems to boost the ability to solve programs which combines
multiple programming concepts. Different from just reporting a
singular pass@k score, EVOEVAL also allows a detailed analysis

2Note that SUBTLE only contains 100 problems, and the pass@1 score on these 100 seed HUMANEVAL
problems is higher compared to the full 164 problems. Therefore, this back-to-back performance drop is
much higher than the performance drop from full HUMANEVAL to SUBTLE (5.0%) mentioned above.
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Figure 4: HUMANEVAL pass@1 with relative decrease or increase on VERBOSE and CONCISE.

Table 2: Results on COMBINE and COMBINE-NAIVE. HUMANEVAL is categorized into
pass both, one and none, depending on the success on the two parent problems used for
combination. COMBINE (Solved) and COMBINE-NAIVE (Solved) then show the distribution
of solved problems that came from the previous categories. Composition Percentage is the %
of pass both problems the LLM can still solve when combined.

Size HUMANEVAL COMBINE (Solved) Composition
Percentage

pass both pass one pass none pass both pass one pass none

GPT-4o NA 80 20 0 49 2 0 61.2%
GPT-4-Turbo NA 79 19 2 38 6 1 48.1%
GPT-4 NA 93 7 0 50 3 0 53.8%
GPT-3.5-Turbo NA 65 34 1 24 9 0 36.9%
Claude-3.5 NA 81 18 1 49 8 0 60.5%
Claude-3 NA 81 19 0 35 7 0 43.2%
Gemini-1.5-pro NA 86 13 1 40 3 0 46.5%
DS Coder-v2-Inst 236b 83 16 1 47 4 0 56.6%

HUMANEVAL COMBINE-NAIVE (Solved)

GPT-4o NA 881 185 8 589 50 0 66.9%
GPT-4-Turbo NA 863 195 16 407 61 3 47.2%
GPT-4 NA 1018 55 1 768 7 0 75.4%
GPT-3.5-Turbo NA 799 261 14 474 79 1 59.3%
Claude-3.5 NA 861 203 10 710 93 1 82.5%
Claude-3 NA 796 268 10 359 96 1 45.1%
Gemini-1.5-pro NA 788 267 19 595 148 6 75.5%
DS Coder-v2-Inst 236b 805 252 17 598 95 5 74.3%

across different dimensions of coding capability to identify particular domains or types of
coding questions an LLM struggles with or excels in.

Instruction-following LLMs are sensitive to subtle changes or rephrasing in problem
docstrings. Figure 4 shows the HUMANEVAL score (bar) and the relative performance drop
or improvement (arrows) on VERBOSE and CONCISE. We observe that almost all instruction-
following LLMs drop in performance (average 3.4% and 4.0% decrease on VERBOSE and
CONCISE respectively) when evaluated on the two semantic-preserving dataset compared
to the original HUMANEVAL. This is drastically different from the base variants, where we
even observe performance improvements (average 0.5% and 2.1% increase on VERBOSE and
CONCISE respectively). VERBOSE and CONCISE do not change the semantic meaning of the
original problem; they simply reword it in either a more verbose or concise manner. Prior
work Deng et al. (2023a) has shown that by rephrasing the original problem description, one
can further boost LLM performance, and we observe the similar phenomenon here mostly
only for non-instruction-following models. Additionally, even on SUBTLE, where only small
changes are applied, on average, instruction-following LLMs drops by 7.4% whereas base
models only decrease by less than 1%. These findings across LLM types show that while
instruction-tuned LLMs are expected to align better with detailed instructions, they fail to
distinguish between these rephrasing or subtle changes in docstring, indicating potential
memorization or contamination of prior evaluation benchmarks.

4.2 Problem Composition & Decomposition

Composing problems. The ability to compose different known concepts to solve new
problems is known as compositional generalization (Keysers et al., 2020). This skill is essential
for code synthesis, especially for complex problems in real-world programs. However,
measuring compositional generalization in LLM presents a fundamental challenge since
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Table 3: Results on DECOMPOSE. HUMANEVAL shows the pass/fail breakdown of the 50
seed HUMANEVAL problems. DECOMPOSE is categorized into pass both, one and none, based
on if the LLM can solve both subproblems. Decomp. % and Recomp. % are the % of originally
passing and failing problems for which the LLM can solve both subproblems respectively.

Size HUMANEVAL
DECOMPOSE Decomp.

%
Recomp.

%HUMANEVAL pass HUMANEVAL fail

pass fail pass both pass one pass none pass both pass one pass none

GPT-4o NA 41 9 26 14 1 5 4 0 63.4% 55.6%
GPT-4-Turbo NA 39 11 29 9 1 4 6 1 74.4% 36.4%
GPT-4 NA 47 3 37 10 0 0 3 0 78.7% 0.0%
GPT-3.5-Turbo NA 33 17 19 13 1 11 4 2 57.6% 64.7%
Claude-3.5 NA 38 12 25 9 4 3 9 0 65.8% 25.0%
Claude-3 NA 39 11 26 11 2 6 5 0 66.7% 54.5%
Gemini-1.5-pro NA 41 9 27 13 1 5 3 1 65.9% 55.6%
DS Coder-v2-Inst 236b 38 12 31 7 0 6 6 0 81.6% 50.0%

it requires controlling the relationship between training and test distributions (Shi et al.,
2024). While it is not easy to control the pre-training data of LLMs, we have more control in
the testing phase. Hence, we focus on program concepts that have been demonstrated to
fall within the capabilities of an LLM, and explore whether this proficiency extends to the
combination of program concepts. As such, we start by taking a deeper look at the COMBINE
problems evolved from combining previous HUMANEVAL problems.

First half of Table 2 shows the COMBINE dataset results of the top LLMs. We observe that
almost all problems solved came from the pass both category, which is intuitive as we do
not expect LLMs to solve a problem composed of subproblems that it cannot already solve.
However, the composition percentage is quite low, as only a few LLMs are able to achieve
greater than half. This demonstrates that while state-of-the-art LLMs can achieve a high
pass rate on simple programming tasks, they still struggle with composing these known
concepts to address more complex problems.

def add(x: int, y: int):
    """add two numbers x and y"""

def digits(n):
    """Given a positive integer n, 
    return the product of the odd digits.
    Return 0 if all digits are even."""

def add_digits(x: int, y: int):
    """First, add two numbers x and y

    Next, given the resulting 
    positive integer n, 
    return the product of the odd digits.
    Return 0 if all digits are even."""

Problem C

Problem B

Problem A

Figure 5: COMBINE-NAIVE problem

Composing problems naively. Since COMBINE prob-
lems are not guaranteed to contain no additional new
concepts, we build a simplified dataset for sequential
composition. Let A and B be two separate problems
with x as input(s) for A, we aim to create a new prob-
lem C with the same inputs where the solution can be
written as B(A(x)). To accomplish this, the new prob-
lem combines docstrings for A and B sequentially.
However, simple concatenation of docstringsleads to
unclear descriptions. As such, for each problem in
HUMANEVAL, we manually create two separate vari-
ants based on which order the problem may come
in the new docstring. Figure 5 shows an example of
how naive combination problem is constructed with
the manual sequential instruction highlighted in red.
Using these modified problem docstrings, we build a sequential combination dataset –
COMBINE-NAIVE, containing 1074 problems by randomly combining problems filtering for
input output matching (i.e., the type of A(x) should equal to the type of y in B(y)).

The latter half of Table 2 shows the results on COMBINE-NAIVE following the same setup as
COMBINE. We observe that while the composition percentage on the naive dataset improves
significantly compared to the evolved COMBINE dataset, it still fails to reach near perfection,
with the best LLM being able to only solve ∼80% of prior pass both problems. While existing
LLM training or inference paradigms for code focus on obtaining high quality datasets
boosted with instruction-tuning, our result shows that existing LLMs still struggle with the
concept of problem composition to tackle more complex problems.

Decomposing problems. We also evaluate problem decomposition – decomposing larger
problems into multiple subproblems. We start by selecting 50 HUMANEVAL problems and
then follow our approach in Section 2 to decompose each original problem into two smaller
subproblems, creating 100 problems in our DECOMPOSE benchmark. Table 3 shows the
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Figure 6: pass@1 from TOOL USE-MAIN ONLY (darker bar) to TOOL USE (lighter bar).
results of selected LLMs on DECOMPOSE. We first observe that similar to the composition
percentage in the COMBINE and COMBINE-NAIVE problems, LLMs do not achieve a high
decomposition percentage. Since current LLMs are trained to recover seen outputs in their
training data, and when used for program synthesis, they cannot generalize the concepts
from training data. This is demonstrated by not being able to solve smaller subproblems
obtained from solved more difficult parent problems. Conversely, LLMs can sometimes
solve both subproblems even when the parent problem is not solved (i.e., recomposition
percentage), showing room for improvement with techniques like planning (Jiang et al.,
2023b) and least-to-most prompting (Zhou et al., 2022).

4.3 Tool Use Problems

We analyze the TOOL USE benchmark, which contains helper functions. We further con-
struct the TOOL USE-MAIN ONLY benchmark, which contains the same set of problem as
TOOL USE, except that the input to the LLM does not include any helpers. We observe that
compared to without any helper functions (average 29.8%), LLMs on average improve by
80.1% when provided with helper functions. This is expected as helper functions reduce the
work required to solve the more complex problem. However, this improvement is not uni-
form: the average improvement when given the auxiliary functions for instruction-following
models is only 59.2% compared to the base LLMs’ improvement of 122.0%.

In Figure 6, we observe that without the helpers, the instruction-following models signif-
icantly outperform their base LLMs. However, once the helpers are provided, this gap is
drastically decreased, with cases even where the base models outperform their instruction-
following counterparts. As real-world coding involves understanding, using, and then
reusing existing functions across different places in the repository, being able to success-
fully leverage auxiliary methods is key. Current instruction-following LLMs are generally
fine-tuned with data consisting of self-contained code snippets without the interaction and
learning of function usages. This is further exacerbated by prior benchmarks, which mostly
use self-contained functions, thus cannot test the tool-using capability of LLMs.

5 Related Work

Large language models for code. Starting with the general development of LLMs for general
purpose tasks, developers have applied LLMs to perform code-related tasks by further
training LLMs using code snippets from open-source repositories. Such LLMs include
CODEX (Chen et al., 2021), CodeT5 (Wang et al., 2021), CodeGen (Nijkamp et al., 2023),
InCoder (Fried et al., 2023), CodeLlama (Rozière et al., 2023), StarCoder (Li et al., 2023;
Lozhkov et al., 2024), DeepSeek Coder (Guo et al., 2024), etc. More recently, researchers
have applied instruction-tuning methods to train code-specific LLMs that are well-versed in
following instructions. Examples of such LLMs include CodeLlama-Inst (Rozière et al., 2023)
and DeepSeek Coder-Instruct (Guo et al., 2024). WizardCoder (Luo et al., 2023) instruction-
tunes the model using Evol-Instruct to create more complex instructions. Magicoder (Wei
et al., 2023) develops OSS-Instruct by synthesizing high quality instruction data from open-
source code snippets. OpenCodeInterpreter (Zheng et al., 2024) leverages execution feedback
for instruction-tuning in order to better support multi-turn code generation and refinement.

Program synthesis benchmarking. HUMANEVAL (Chen et al., 2021) and MBPP (Austin et al.,
2021) are two of the most widely-used handcrafted code generation benchmarks complete
with test cases. Building on these popular benchmarks, additional variants have been
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crafted including: EVALPLUS (Liu et al., 2023) which improves the two benchmarks with
more complete test cases; HUMANEVAL-X (Zheng et al., 2023) which extends HUMANEVAL
to C++, JavaScript and Go; MultiPL-E (Cassano et al., 2023) which further extends both
HUMANEVAL and MBPP to 18 languages. Similarly, other benchmarks have been developed
for specific domains: DS-1000 (Lai et al., 2023) and Arcade (Yin et al., 2022) for data science
APIs; CodeContests (Li et al., 2022), APPS (Hendrycks et al., 2021), and LiveCodeBench (Jain
et al., 2024) for programming contests, and SWE-Bench (Jimenez et al., 2024) for software
engineering tasks. Different from prior benchmarks which require handcraft problems from
scratch – high manual effort or scrape open-source repositories or coding contest websites
– leading to unavoidable data leakage, EVOEVAL directly uses LLMs to evolve existing
benchmark problems to create new complex evaluation problems. Furthermore, contrasting
with the narrow scope of prior benchmarks (often focusing on a single type or problem,
i.e., coding contests), EVOEVAL utilizes targeted transformation to evolve problems into
different domains, allowing for a more holistic evaluation of program synthesis using LLMs.

6 Conclusion

We present EVOEVAL– a set of program synthesis benchmarks created by evolving existing
problems into different target domains for a holistic and comprehensive evaluation of LLM
program synthesis ability. Our results on 57 LLMs show drastic drops in performance
(average 38.1%) when evaluated on EVOEVAL. Additionally, we observe significant ranking
differences compared to prior leaderboards, indicating potential dataset overfitting on
existing benchmarks. We provide additional insights, including the brittleness of instruction-
following LLMs as well as the limited compositional generalization abilities of LLMs.
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A Reproducibility Statement

We provide the detailed setup and steps to reproduce our results in the README file of our
supplementary material. Furthermore, we have prepared a public repository, package,
and dataset release to support open-source usage (these are not linked here to preserve
anonymity). Here we describe our computation setup and estimated runtime to reproduce
the full experimental result of EVOEVAL.

Compute. We perform all our evaluation on an Ubuntu 22.04 linux machine with 96 cores
(192 threads), 512GB RAM, 8 NVIDIA RTX A6000 GPUs with 50GB VRAM each. For LLMs
that can only be accessible via endpoints, we use the provided commercial endpoints and
do not require local GPU resources for those models.

Time. Due to the cost of running LLMs, to completely regenerate all 57 LLMs’ solutions for
all benchmarks we estimate it will take several days depending on available GPU resource.
However, we provided the raw LLM samples generated by us in the supplementary material.
To perform evaluation on the LLM samples and regenerate our reported results, we estimate
it will take around 1 hour to complete.

B EVOEVAL Benchmarks

Table 4: EVOEVAL and HUMANEVAL benchmark statistics. Note: the number in bracket
shows the number of testcases in the augmented HUMANEVAL+ benchmarks, in EVOEVAL,
they are directly reused in SUBTLE, VERBOSE and CONCISE due the similarity.

original semantic-altering semantic-preserving

HUMANEVAL DIFFICULT CREATIVE SUBTLE COMBINE TOOL USE VERBOSE CONCISE

# of problems 164 100 100 100 100 100 164 164
Avg. problem len. 450.6 749.4 982.1 406.8 860.4 1224.6 450.6 450.6
Avg. # test cases 9.6 (764.1) 49.8 43.1 10.3 (745.4) 51.8 51.3 9.6 (764.1) 9.6 (764.1)

humaneval
creative
tool_using

(a) CREATIVE & TOOL USE

humaneval
subtle
difficult
combine

(b) SUBTLE,DIFFICULT,COMBINE

humaneval
verbose
concise

(c) VERBOSE & CONCISE

Figure 7: 2 dimensional t-SNE visualization of EVOEVAL benchmarks.

Problems in EVOEVAL consist mainly of self-contained functions, except for TOOL USE that
includes helper functions specifically designed to test the tool using capability of LLMs.
Each problem uses a docstring to illustrate the problem specification, along with test cases
and ground truth to evaluate the functional correctness. Table 4 shows the statistics of
the benchmarks in EVOEVAL. In total, EVOEVAL includes 828 problems across 7 different
datasets (5 semantic-altering and 2 semantic-preserving).

Figure 7 shows the embedding visualization using t-SNE (Hinton & Roweis, 2002) by
projecting high-dimension representation of the problems docstrings in both EVOEVAL and
HUMANEVAL into the 2D plane. We produce this embedding using text-embedding-3-large

model from OpenAI with t-SNE perplexity=50 and iter=1000. First, we see that CREATIVE
and TOOL USE drastically change the embedding distribution compared to the original
dataset. The arrow in Figure 7a shows one example of the shift in distribution from the
original problem to a creative one. Next, we see that SUBTLE, DIFFICULT and COMBINE
largely retain the same distribution as the original problems. This is due to the high parity
across these problem descriptions where SUBTLE only applies subtle changes and DIFFICULT
adds additional complex constraints while keeping the main problem descriptions largely
the same. Specifically, for COMBINE, we can see from an example arrow in Figure 7b, the
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new combined problem shifts the embedding for both of the original problems. Finally,
we observe that for VERBOSE and CONCISE, the embeddings almost perfectly match the
original problem, reflecting their semantic-preserving nature. In Appendix E, we present
example problems for each benchmark in EVOEVAL.

B.1 Potential Bias in Performance

Using GPT-4 to transform the original HUMANEVAL problems into new domains may intro-
duce potential biases. For instance, LLMs trained on data generated by GPT-4 might unfairly
benefit from our benchmark, as their training data could be similar to the transformed
problems. We note here that we manually examine all problems transformed by GPT-4
(including each ground truth solution) and adjust any faults or incorrect solutions, as such,
the problem descriptions are not all purely generated by GPT-4. Moreover, our method of
evolving existing problems to new domains is similar to existing instruction-tuning methods
(e.g., Evo-Instruct (Luo et al., 2023)), which may also favor these LLMs trained with similar
evolved datasets. Another potential bias also comes from the usage of GPT-4, as it might
create problems that reflect its own bias or patterns, resulting in a lack of diversity. In future
work, we hope to apply additional state-of-the-art LLMs to perform our transformation to
improve problem diversity.

C Evaluation LLMs

C.1 Evaluated LLMs

Table 5 and 6 shows the overview of the 57 LLMs we evaluated in our work. For any LLMs
that provide their open-source weights, we directly obtain them from HuggingFace model
hub (HuggingFace)3. For any close-sourced LLMs, we directly access their model endpoints
using their providers.

C.2 Detailed Evaluation Setup

LLM generation. As mentioned in Section 3, we report the pass@1 score for each LLM on
our dataset generated using greedy decoding (i.e., sampling with temperature = 0). For each
LLM, we provide a specific input prompt depending on the model type. For base LLMs
(i.e., not instruction-following variants), we use only the function headers as input. For
instruction-following, we make the best effort to follow examples provided by each model
maker on the exact instruction and format to use at the time of writing. Specifically, for
instruction-following LLMs, we ask the model to return the code snippet wrapped by code
blocks (i.e., ```). Figure 8 shows an example input for GPT-4 on a CREATIVE problem.

Furthermore, we also provide a custom sanitization script adopted from EVALPLUS (Liu
et al., 2023) which parses the raw LLM outputs for code block parsing (e.g., removing ```
indicators for instruction-following models) and end-of-string identifiers (e.g., removing
tokens like </s>). Each model generated output is passed into the sanitization script and the
evaluation occurs on the sanitized outputs.

Oracle. To evaluate the functional correctness of each LLM synthesized solution, we use
differential testing by comparing the model output with the ground truth output on a set of
test inputs. We build our evaluation framework on top of the EVALPLUS evaluation script
used for HUMANEVAL and HUMANEVAL+ benchmark which evaluates multiple problems
and solutions in parallel for efficiency. For each test case, we perform exact matching or check
if the output is within an absolute difference threshold of 10−6 if the output is a floating point
type. We additionally implement our evaluation script by recursively checking the type and
performing the appropriate comparison (e.g., dictionary outputs are first length checked
for equivalence and then matching is done for each value and key). Furthermore, we also
implement custom oracles for specific problems where there could be multiple solutions or

3For certain LLMs, we may use the vLLM inference library for more efficient generation
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Table 5: Detailed overview of evaluated models. Model ID indicates either the API endpoint
name or huggingface model name used for the particular model. Available Weights indicate
whether the model is evaluated by accessing a close-sourced API endpoint or ran locally
with provided weights. Note: denotes instruction-following LLMs

Size Model ID Available Weights

GPT-4o (OpenAI, 2024) NA gpt-4o-2024-05-13 ✗

GPT-4-Turbo (OpenAI, 2023) NA gpt-4-0125-preview ✗

GPT-4 (OpenAI, 2023) NA gpt-4-0613 ✗

GPT-3.5-Turbo (OpenAI, 2022) NA gpt-3.5-turbo-0125 ✗

Claude-3.5 (Anthropic, 2024b) NA claude-3-5-sonnet-20240620 ✗

Claude-3 (Anthropic, 2024a) NA claude-3-opus-20240229 ✗

Claude-3-haiku (Anthropic, 2024a) NA claude-3-haiku-20240307 ✗

Claude-2 (Anthropic, 2023) NA claude-2.1 ✗

Gemini-1.5-pro (Google, 2024) NA gemini-1.5-pro ✗

Gemini (Team et al., 2023) NA gemini-1.0-pro ✗

PaLM-2 (Anil et al., 2023) NA text-bison-001 ✗

DS Coder-v2-Inst (Zhu et al., 2024) 236b DeepSeek-Coder-V2-0724 ✗

DS Coder-Inst (Guo et al., 2024)
33b deepseek-ai/deepseek-coder-33b-instruct ✓
6.7b deepseek-ai/deepseek-coder-6.7b-instruct ✓
1.3b deepseek-ai/deepseek-coder-1.3b-instruct ✓

DS Coder (Guo et al., 2024)
33b deepseek-ai/deepseek-coder-33b-base ✓
6.7b deepseek-ai/deepseek-coder-6.7b-base ✓
1.3b deepseek-ai/deepseek-coder-1.3b-base ✓

DS Coder-1.5-Inst. (Guo et al., 2024) 7b deepseek-ai/deepseek-coder-7b-instruct-v1.5 ✓

DS Coder-1.5 (Guo et al., 2024) 7b deepseek-ai/deepseek-coder-7b-base-v1.5 ✓

Llama -3.1-Inst (Meta, 2024) 70b meta-llama/Meta-Llama-3.1-70B-Instruct ✓

Llama -3-Inst (Dubey et al., 2024) 70b meta-llama/Meta-Llama-3-70B-Instruct ✓

CodeLlama-Inst (Rozière et al., 2023)

70b codellama/CodeLlama-70b-Instruct-hf ✓
34b codellama/CodeLlama-34b-Instruct-hf ✓
13b codellama/CodeLlama-13b-Instruct-hf ✓
7b codellama/CodeLlama-7b-Instruct-hf ✓

CodeLlama (Rozière et al., 2023)

70b codellama/CodeLlama-70b-Python-hf ✓
34b codellama/CodeLlama-34b-Python-hf ✓
13b codellama/CodeLlama-13b-Python-hf ✓
7b codellama/CodeLlama-7b-Python-hf ✓

WizardCoder (Luo et al., 2023) 34b WizardLM/WizardCoder-Python-34B-V1.0 ✓

WizardCoder-1.1 (Luo et al., 2023) 33b WizardLM/WizardCoder-33B-V1.1 ✓

XwinCoder (Team, 2023) 34b Xwin-LM/XwinCoder-34B ✓

Phind-CodeLlama-2 (phind team, 2023) 34b Phind/Phind-CodeLlama-34B-v2 ✓

Code Millenials (BudEcosystem) 34b budecosystem/code-millenials-34b ✓

Speechless-CL (Su) 34b uukuguy/speechless-codellama-34b-v2.0 ✓

Magicoder-s-DS (Wei et al., 2023) 6.7b ise-uiuc/Magicoder-S-DS-6.7B ✓

Magicoder-s-CL (Wei et al., 2023) 7b ise-uiuc/Magicoder-S-CL-7B ✓

StarCoder2 (Lozhkov et al., 2024)
15b bigcode/starcoder2-15b ✓
7b bigcode/starcoder2-7b ✓
3b bigcode/starcoder2-3b ✓

StarCoder (Li et al., 2023) 15b bigcode/starcoder ✓

Mixtral-Inst (Mistral AI team, 2023) 8x7b mistralai/Mixtral-8x7B-Instruct-v0.1 ✓

Mistral-Inst-v02 (Jiang et al., 2023a) 7b mistralai/Mistral-7B-Instruct-v0.2 ✓

Mistral-Inst (Jiang et al., 2023a) 7b mistralai/Mistral-7B-Instruct-v0.1 ✓

Mistral (Jiang et al., 2023a) 7b mistralai/Mistral-7B-v0.1 ✓

OpenChat (Wang et al., 2023) 7b openchat/openchat-3.5-0106 ✓

stable-code (Pinnaparaju et al.) 3b stabilityai/stable-code-3b ✓

Gemma-Inst. (Team et al., 2024) 7b google/gemma-7b-it ✓

Gemma (Team et al., 2024) 7b google/gemma-7b ✓
2b google/gemma-2b ✓
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Table 6: Detailed overview of evaluated models continued. Model ID indicates either the
API endpoint name or huggingface model name used for the particular model. Available
Weights indicate whether the model is evaluated by accessing a close-sourced API endpoint
or ran locally with provided weights. Note: denotes instruction-following LLMs

Size Model ID Available Weights

Phi-2 (Microsoft Research, 2023) 2.7b microsoft/phi-2 ✓

Qwen-1.5 (Bai et al., 2023b)
72b Qwen/Qwen1.5-72B-Chat ✓
14b Qwen/Qwen1.5-14B-Chat ✓
7b Qwen/Qwen1.5-7B-Chat ✓

Qwen (Bai et al., 2023a) 14b Qwen/Qwen-14B-Chat ✓
7b Qwen/Qwen-7B-Chat ✓

Please complete the following code snippet.
```
def transform_canvas(canvas: str) -> str:

"""
You have an canvas containing either ’#’ (representing a wall), ’-’ (
↪→ representing

an empty space), or ’P’ (representing the point at which a painter starts). The
↪→ painter

can move horizontally on the canvas and paints all empty spaces he encounters
with ’*’ without crossing or hitting the walls.

The task is to return an updated canvas with all the accessible spaces painted,
keeping wall configuration and unaccessible spaces same. If the canvas contains
↪→ no painter ’P’,

return the canvas as it is. If there are more than one ’P’ or the number of
↪→ painted space divides the empty spaces evenly, return ’Invalid canvas’.

Examples:

>>> transform_canvas(’P----#-----#-----#-----’)
’P****#-----#-----#-----’

>>> transform_canvas(’--#-P#-----#-----#--#--’)
’Invalid canvas’

>>> transform_canvas(’-----#--P--#-----#-----’)
’-----#**P**#-----#-----’

>>> transform_canvas(’-----#-----#--P---#P----’)
’Invalid canvas’
"""

```

Figure 8: Example input prompt for GPT-4
simple tolerance or exact matching cannot fully guarantee correctness. Additionally, we also
use timeout as another evaluation method. Our setting again follows EVALPLUS default
setup where the timeout per problem is defined as T = max(Tmax, f × tgt) with default
values of Tmax =1000ms, f =4 and tgt defined as the measured ground truth solution time
to produce the correct output. All timeout related factors can be adjusted to account for
variance on different underlying machine and hardware.

D Transformation Prompts

Here we provide the exact targeted transformation prompts used to evolve existing bench-
mark problems. Figure 9, 10, 11, 12, 13, 14, 15, and 16 show the prompt for DIFFICULT,
CREATIVE, SUBTLE, COMBINE, TOOL USE, VERBOSE, CONCISE and DECOMPOSE respec-
tively.
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Here is an example coding problem:
```
{problem}
```

Please increase the difficulty of the given coding problem

You can increase the difficulty using the following method:
- Add new constraints and requirements to the original problem, adding

↪→ approximately 10 additional words.
- Replace a commonly used requirement in the programming task with a less common and

↪→ more specific one.
- Add more reasoning steps.

Return the new problem in the same format as the example problem (i.e., ```function
↪→ header + docstring```)

Figure 9: Prompt for DIFFICULT

Here is an example coding problem:
```
{problem}
```

Please generate a more creative coding problem.
You should avoid common programming concepts and instead focus on creating a

↪→ problem that is interesting and fun to solve.
Return the new problem in the same format as the example problem (i.e., ```function

↪→ header + docstring```)

Figure 10: Prompt for CREATIVE

Please add a subtle and simple change to the given problem.

You can change the problem using, but not limited to, the following methods:

Add one new requirement to the original problem, such as "Return the list in
↪→ ascending order", "Return the list in ascending alphabetical order" and "
↪→ Return unique elements only".

Invert one requirement of the original problem; for instance, reverse the
↪→ instruction "from shortest to longest" to "from longest to shortest",
↪→ reverse "maximum" to "minimum", or reverse "the first" to "the last".

Replace one requirement with another similar but different one; for example, if the
↪→ original problem requires the values to be sorted, change it to keeping the
↪→ original order.

Replace constants; for instance, replace zero with one.

Please only apply a minor change, ensuring that the new problem remains logical.
↪→ Return the new problem in the same format as the original problem (```...
↪→ ```)

Below is the question:
```
{problem}
```

Figure 11: Prompt for SUBTLE
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Here are two example problems:

Example problem 1:
```
{problem_1}
```
Example problem 2:
```
{problem_2}
```

Please create a new problem that combines problem 1 with problem 2 in a logical way.
↪→ The new problem should seamlessly integrate the concepts from the two
↪→ previous examples into a novel context, and require a solution that
↪→ exercises the understanding of the concepts from both problems. It does not
↪→ need to take all the inputs from both problems.

An incorrect way would be for the new problem to simply return the answers of the
↪→ two problems separately. Another incorrect method would be to pass all
↪→ inputs from both problems but some of them are not used to compute the
↪→ output.

Return the new problem in the same format as the example problems in ```...```. Keep
↪→ the docstring concise, and ensure the problem remains simple and clear.

Figure 12: Prompt for COMBINE

Here is an example coding problem:
```
{problem}
```

Please come up with a new problem which uses helper functions to solve the problem.

The new problem should contain the following:
first: one or more helper functions
second: the main problem description consist of the function header and docstring

The main problem description should not refer to the helper function(s) in any way.

The helper function(s) should implement simple parsing or checking logic.

To solve the main problem, one should also use additional complex logic than just
↪→ calling the helper function(s).

Avoid problems on simple math concepts such as prime, palindrome, anagrams,
↪→ factorial

Avoid concepts like emails, string or parsing-based problems

Please return the full implementation of the helper function(s) and the main
↪→ problem description (not the implementation) in the same format as the
↪→ example problem (```...```)

Figure 13: Prompt for TOOL USE

Figure 17 and 18 show the refinement and I/O extraction/fixing prompt used in EVOEVAL.
The refinement prompt is used to refine the original generated problem when inconsistency
is detected (see Section 2). The extraction prompt is used to initially obtain a set of testcases
from the problem docstring used for self-consistency evaluation. We further use an I/O
fixing prompt (also in Figure 18) to fix any examples in the docstring which do not contain
the right output (as computed by the ground truth generated by GPT-4).
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Below is a coding problem

```
{problem}
```

Make the docstring more verbose and detailed but preserve the semantic meaning
Ensure the function name, input argument names, and example input/output are the

↪→ same
Return the transformed problem in the same format as the original problem (i.e.,

↪→ function header + docstring)

Figure 14: Prompt for VERBOSE

Below is a coding problem

```
{problem}
```

Make the docstring shorter and more concise but preserve the semantic meaning
Ensure the function name, input argument names, and example input/output are the

↪→ same
Return the transformed problem in the same format as the original problem (i.e.,

↪→ function header + docstring)

Figure 15: Prompt for VERBOSE

Below is a complex coding problem
```
{problem}
```

Please decompose the above into 2 smaller sub problems
Return the two modified problems in the same format as the initial problem (i.e.,

↪→ ```function header + docstring```)

Figure 16: Prompt for DECOMPOSE

Below is a coding problem
```
{problem}
```

Ensure logical coherence in the given problem.
Improve the docstring’s clarity and conciseness.
Fix missing or helpful imports.
Include example input/output if absent.
Return the modified problem in the same format as the example problem (i.e.,

↪→ ```function header + docstring```)

Figure 17: Refinement prompt
E Example Problems in EVOEVAL

Here we demonstrate a few example problems across the benchmarks in EVOEVAL and
corresponding GPT-4 solution which cannot solve the problem. Figure 19, 20, 21, 22, 23,
24, and 25 show such example for the EVOEVAL DIFFICULT, CREATIVE, SUBTLE, COMBINE,
TOOL USE, VERBOSE and CONCISE respectively.
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Here is a function header with docstring:
```
{problem}
```
Please extract the example raw input argument and expected output from the

↪→ docstring.
If there are no example input and output please provide new ones.
Return each pair of input and output as assertions in this format:
```
assert {function_name}({{the_first_input_example}} == {{the_first_output_example

↪→ }}
assert {function_name}({{the_second_input_example}} == {{

↪→ the_second_output_example}}
...
```

Here is a problem with docstring:
```
{problem}
```
Some example inputs and outputs in the docstring may be wrong. Please correct them

↪→ according to the provided correct assertions below, and ensure that the
↪→ correct example inputs and outputs ```

{assertions}
```
Return the revised problem in the same format as the original problem (i.e., ```any

↪→ helper functions + function header + docstring```).

Figure 18: Input extraction and fixing prompts

def common(l1: list, l2: list, n: int):
"""
Return the n longest strings, sorted by increasing length that are common in two
↪→ lists.

However, in the case of a tie, prioritize the string that appears first in list1.
↪→

>>> common(["apple", "banana", "cherry", "date", "elderberry"], ["banana", "
↪→ date", "fig", "grape", "elderberry"], 3)

["banana", "date", "elderberry"]
>>> common(["cat", "dog", "elephant", "fox", "goat"], ["dog", "fox", "cat", "
↪→ horse", "iguana", "goat"], 3)

["cat", "dog", "goat"]
>>> common(["hello", "goodbye", "yes", "no", "maybe", "absolutely", "never"], ["
↪→ no", "maybe", "absolutely", "always", "sometimes"], 1)

["absolutely"]
"""
common_strings = [string for string in l1 if string in l2]
common_strings.sort(key=len) # does not adjust for tie sorting scenario.
return common_strings[-n:]

Figure 19: GPT-4 failing solution on problem EVOEVAL/58 in DIFFICULT
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def crossword_validator(grid: list, words: list):
"""
Consider a 2D grid representing a square crossword puzzle. Each cell of the grid
↪→ contains a single character.

Determine if all the words from a provided list of words can be found in the grid.
↪→

Words can be found left-to-right (in a row), right-to-left (in a row),
top-to-bottom down (in a column), and bottom-to-top (in a column).

We assume that words are only found in contiguous cells and words do not ’wrap’
↪→ around the grid.

Note: the grid is a square (N x N) and all words are lowercase.

Parameters:
grid: list of list of char - where each char is a lowercase letter.
words: list of str - where each str is a lowercase word.

Returns:
boolean - return True all words are found in the grid, False otherwise.

>>> crossword_validator([[’c’, ’a’, ’t’], [’d’, ’o’, ’g’], [’d’, ’o’, ’p’]], [’
↪→ cat’, ’dog’, ’pop’])

False
>>> crossword_validator([[’c’, ’a’, ’t’], [’d’, ’o’, ’g’], [’d’, ’o’, ’p’]], [’
↪→ cdd’, ’dog’, ’pod’])

True
"""

n = len(grid)
for word in words:

found = False
for i in range(n):

# does not correctly check if a word can be found as a sublist of column/
↪→ grid

if ’’.join(grid[i]) == word or ’’.join(grid[i][::-1]) == word:
found = True
break

if ’’.join([grid[j][i] for j in range(n)]) == word or ’’.join([grid[j][i]
↪→ for j in range(n)][::-1]) == word:

found = True
break

if not found:
return False

return True

Figure 20: GPT-4 failing solution on problem EVOEVAL/21 in CREATIVE
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def vowels_count(s):
"""Write a function vowels_count which takes a string representing
a word as input and returns the number of vowels in the string.
Vowels in this case are ’a’, ’e’, ’i’, ’o’, ’u’. Here, ’y’ is also a
vowel, but only when it is at the end of the given word.
Only count the lowercase vowels.

Example:
>>> vowels_count("abcde")
2
>>> vowels_count("YACED")
0
"""
vowels = ’aeiou’
count = 0
for char in s:

if char in vowels:
count += 1

# miss empty string case leading to crash
if s[-1] == ’y’:

count += 1
return count

Figure 21: GPT-4 failing solution on problem EVOEVAL/64 in SUBTLE
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def grade_with_same_chars(grades: list, s0: str, s1: str):
"""
A teacher has a special grading system where she assigns her students letter
↪→ grades

based on their GPA according to the following table:

GPA | Letter grade
4.0 A+

> 3.7 A
> 3.3 A-
> 3.0 B+
> 2.7 B
> 2.3 B-
> 2.0 C+
> 1.7 C
> 1.3 C-
> 1.0 D+
> 0.7 D
> 0.0 D-
0.0 E

However, this year she adds an extra condition: the students can only receive a
↪→ grade

if their name (s0) and the course title (s1) have the same characters. The
↪→ function

receives a list of GPAs and two strings (s0 and s1) and returns a list of grades
for the students that pass the condition, or an empty list if no student passes.

Example:
grade_with_same_chars([4.0, 3, 1.7, 2, 3.5], ’abcd’, ’dcba’) ==> [’A+’, ’B’, ’C
↪→ -’, ’C’, ’A-’]

grade_with_same_chars([4.0, 3, 1.7, 2, 3.5], ’aaabcd’, ’dddcba’) ==> [’A+’, ’B’,
↪→ ’C-’, ’C’, ’A-’]

grade_with_same_chars([4.0, 3, 1.7, 2, 3.5], ’abcd’, ’dcbae’) ==> []
"""
# does not correctly check characters are same
if sorted(s0) != sorted(s1):

return []
grading_system = {4.0: ’A+’, 3.7: ’A’, 3.3: ’A-’, 3.0: ’B+’, 2.7: ’B’, 2.3: ’B-’,
↪→ 2.0: ’C+’, 1.7: ’C’, 1.3: ’C-’, 1.0: ’D+’, 0.7: ’D’, 0.0: ’D-’, 0.0: ’E’}

grades_assigned = []
for gpa in grades:

for key in sorted(grading_system.keys(), reverse=True):
if gpa >= key:

grades_assigned.append(grading_system[key])
break

return grades_assigned

Figure 22: GPT-4 failing solution on problem EVOEVAL/28 in COMBINE
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def is_valid_passport(passport: str) -> bool:
"""
Checks whether a given string is a valid passport number.
A valid passport number is defined as having exactly 9 alphanumeric characters.

>>> is_valid_passport(’P12345678’)
True
>>> is_valid_passport(’P123456789’)
False
>>> is_valid_passport(’P12345G78’)
False
"""

if len(passport) != 9:
return False

if not passport.isalnum():
return False

return True

from typing import List, Tuple

def process_passport_data(data: str) -> List[Tuple[str, str]]:
"""
Parse a string containing passport data and return a list of tuples.
Each tuple contains the passport number and the name of the passport holder.
The passport data string is in the format of ’PassportNumber:Name’
separated by lines.

Only process valid passport data. A valid passport number is defined as having
↪→ exactly 9 alphanumeric characters.

>>> process_passport_data(’P12345678:John Doe\nX12345678:Jane Doe’)
[(’P12345678’, ’John Doe’)]
>>> process_passport_data(’P12345678:John Doe\nA123456789:Jane Doe’)
[(’P12345678’, ’John Doe’)]
"""
valid_passports = []
lines = data.split(’\n’)
for line in lines:

(passport, name) = line.split(’:’) # directly splits without checking for
↪→ validity

if is_valid_passport(passport):
valid_passports.append((passport, name))

return valid_passports

Figure 23: GPT-4 failing solution on problem EVOEVAL/23 in TOOL USE
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def starts_one_ends(n):
"""
This function, given a user-provided positive integer ’n’, calculates and
↪→ returns the total count of n-digit positive integers where 1 appears either
↪→ at the start or the end of the number.

For instance, if the input is 2, the function will count all the two-digit
↪→ numbers that either start or end with 1, like 10, 11, 21, 31, ..., 91, and
↪→ 12, 13, ..., 19.

It is important to note that this function only accepts positive integers. If a
↪→ non-integer or non-positive integer is provided, the function may not
↪→ behave as expected.

Args:
n : int

A positive integer that represents the number of digits in the numbers to be
↪→ counted.

Returns:
int

The count of the numbers of n-digit positive integers that start or end with
↪→ 1.

Examples:
The function can be called in the following way:

starts_one_ends(2)
This example call would return the count of two-digit numbers where 1 appears at
↪→ the start or at the end.

"""
if n == 1:

return 1
else:

# incorrectly adds 2 to the final answer
return 18 * 10 ** (n - 2) + 2

Figure 24: GPT-4 failing solution on problem HUMANEVAL/83 in VERBOSE

def circular_shift(x, shift):
"""Performs a circular right shift on the digits of x as per shift value and
↪→ returns the result in string format.

Returns reversed digits if shift exceeds number of digits.

>>> circular_shift(12, 1)
"21"
>>> circular_shift(12, 2)
"12"
"""
x = str(x)
# does not check shift exceeds string length and return reversed digits
shift = shift len(x)return x[-shift:] + x[:-shift]

Figure 25: GPT-4 failing solution on problem HUMANEVAL/65 in CONCISE

27


	Introduction
	Approach
	EvoEval Benchmarks & Evaluation Methodology
	Results
	LLM Synthesis & Evaluation on EvoEval
	Problem Composition & Decomposition
	Tool Use Problems

	Related Work
	Conclusion
	Acknowledgment
	Reproducibility Statement
	EvoEval Benchmarks
	Potential Bias in Performance

	Evaluation LLMs
	Evaluated LLMs
	Detailed Evaluation Setup

	Transformation Prompts
	Example Problems in EvoEval

