
Proceedings of Machine Learning Research vol 120:1–10, 2020

VarNet: Variational Neural Networks for the
Solution of Partial Differential Equations

Reza Khodayi-mehr REZA.KHODAYI.MEHR@DUKE.EDU

Michael M. Zavlanos MICHAEL.ZAVLANOS@DUKE.EDU

Department of Mechanical Engineering and Materials Science, Duke University, Durham, NC 27708, USA.

Abstract
We propose a new model-based unsupervised learning method, called VarNet, for the solution of
partial differential equations (PDEs) using deep neural networks. Particularly, we propose a novel
loss function that relies on the variational (integral) form of PDEs as opposed to their differential
form which is commonly used in the literature. Our loss function is discretization-free, highly
parallelizable, and more effective in capturing the solution of PDEs since it employs lower-order
derivatives and trains over measure non-zero regions of space-time. The models obtained using
VarNet are smooth and do not require interpolation. They are also easily differentiable and can
directly be used for control and optimization of PDEs. Finally, VarNet can straight-forwardly
incorporate parametric PDE models making it a natural tool for model order reduction of PDEs.
Keywords: Neural networks, deep learning, partial differential equations, dynamical systems,
model order reduction, advection-diffusion transport.

1. Introduction

Dynamical systems are typically modeled using differential equations that capture their input-output
behavior. Particularly, for spatiotemporal systems the underlying dynamics are modeled using par-
tial differential equations (PDEs) whose states live in infinite-dimensional spaces. Except for some
special cases, only approximate solutions to such systems can be obtained using discretization-
based numerical methods. These methods typically belong to one of three main categories, namely,
finite difference (FD) methods, finite element (FE) methods, and finite volume (FV) methods; see
Ames (2014). These methods return solutions defined over a set of grid points that sample the
spatiotemporal domain; the solution at any other point can be obtained by interpolating the nearby
nodal values. This local treatment of the solution makes the models obtained from these methods
extremely expressive but also very expensive to store and evaluate.

In this paper we follow a different approach that relies on deep neural networks (NNs) to capture
the solutions of PDEs using trainable parameters that are considerably fewer than the number of
grid points used in discretization-based methods. Using NNs to approximate solutions of PDEs
can be beneficial for the following reasons: (i) their evaluation is extremely fast and thus, unlike
currently available model order reduction (MOR) methods, there is no need to compromise accuracy
for speed, (ii) parallelization of the training is trivial, and (iii) the resulting model is smooth and
differentiable and thus, it can be readily used in PDE-constrained optimization problems, e.g., for
source identification Khodayi-mehr et al. (2019) or control of PDEs Khodayi-mehr and Zavlanos
(2020). The authors in (Yadav et al., 2015, Ch. 04) provide a review of different approaches
for solving PDEs using NNs. One group of approaches utilize NNs to memorize the solution of

c© 2020 R. Khodayi-mehr & M.M. Zavlanos.

VARNET: VARIATIONAL NEURAL NETWORKS FOR PARTIAL DIFFERENTIAL EQUATIONS

PDEs. Particularly, they solve the PDE using a numerical method to obtain labeled training data
and often utilize convolutional NNs (CNNs), being powerful image processing tools, to capture
the numerical solution in a supervised learning way Khoo et al. (2017). For instance, Guo et al.
(2016) propose a fluid dynamics solver that utilizes a CNN to predict the velocity field in steady-
state problems resulting in a stellar speedup of four orders-of-magnitude in computation time. Long
et al. (2017) propose PDE-NET that is capable of identifying partial differential operators as well as
approximating the solution of PDEs. Note that these approaches do not replace numerical methods
but rather rely on them and introduce an extra layer of approximation. There exist another group
of methods called FE-NNs which represent the governing FE equations at the element level using
artifical neurons Xu et al. (2012); Ramuhalli et al. (2005). These approaches scale with the number
of discretization points and are similar in spirit to numerical methods like the FE method.

Most relevant to the approach proposed in this paper is a set of works that also directly train a
NN to approximate the solution of PDEs in an unsupervised learning way. One of the early works
of this kind is proposed by Lagaris et al. (1998) that uses the residual of the differential form of
the PDE to define the required loss function. In order to remove the constraints from the training
problem, the authors only consider simple domains for which the boundary conditions (BCs) can be
manually enforced by a change of variables. Avrutskiy (2017) elaborates more on this technique.
Although these approaches attain comparable accuracy to numerical methods, they are impractical
since in general enforcing the BCs is as difficult as solving the original PDE. Following a different
approach, Rudd (2013) utilizes a constrained back-propagation algorithm to enforce the initial and
boundary conditions during training. In order to avoid solving a constrained training problem,
Shirvany et al. (2009) add the constraints corresponding to BCs to the objective as penalty terms.
Similarly, Sirignano and Spiliopoulos (2017) focus on the solution of PDEs with high dimensions
using a long short-term memory architecture and prove a convergence result for the solution as the
number of trainable parameters of the NN is increased. A similar approach is proposed by Raissi
et al. (2019) that utilizes the physical laws modeled by PDEs as regularizing terms to guide the
learning process, while Zhu et al. (2019) use the PDEs to define energy fields that are minimized
to train CNNs to predict the PDE solutions at discrete sets of points. Alternatively, reinforcement
learning can be used to train NNs that approximate the solutions of PDEs. For instance, Wei et al.
(2018) use the actor-critic algorithm where the PDE residual acts as the critic.

Compared to this literature, the contributions of this paper are as follows: (i) The literature
discussed above uses the PDE residual in its differential form as the loss function which requires
an extremely large number of training points to adequately learn the PDE solution. Instead, we
propose a novel loss function that relies on the variational (integral) form of the PDE. This loss
function contains lower order derivatives so that the solution of the PDE can be estimated more
accurately. Mroeover, it considers segments of space-time as opposed to single points and imposes
fewer smoothness requirements on the solution. (ii) We develop the VARNET library Khodayi-mehr
and Zavlanos (2019a) that uses the proposed deep learning framework to solve PDEs. Using NNs to
approximate solutions of PDEs makes it trivial to solve them parametrically. Consequently, a great
strength of the VARNET library is that it can also be used as a powerful MOR tool. To demonstrate
the capabilities of the VARNET library, we focus on the advection-diffusion (AD) equation although
the presented approach applies to any PDE that can be solved using the FE method. Discretization-
based solutions to the AD-PDE often have stability issues for highly advective problems Hughes and
Wells (2005) which are magnified when the model is reduced. Through simulations we demonstrate
that unlike traditional MOR methods, our approach does not suffer from such instability issues. (iii)

2

VARNET: VARIATIONAL NEURAL NETWORKS FOR PARTIAL DIFFERENTIAL EQUATIONS

We also propose a new way to optimally select the points needed to train the NNs that is informed by
the feedback obtained from the PDE residual. Our optimal sampling method considerably improves
the efficiency of the training and the accuracy of the resulting models. The details of this optimal
sampling method can be found in Khodayi-mehr and Zavlanos (2019b).

2. Problem Definition

2.1. Advection-Diffusion PDE

Let Ω ⊂ Rd denote a domain of interest where d is its dimension and let x ∈ Ω denote a location
in this domain and t ∈ [0, T] denote the time variable. Furthermore, consider a velocity vector
field u : [0, T] × Ω → Rd and its corresponding diffusivity field κ : [0, T] × Ω → R+. Then, the
transport of a quantity of interest c : [0, T]×Ω→ R, e.g., a chemical concentration, in this domain
is described by the advection-diffusion (AD) PDE Hundsdorfer (1996)

ċ = −∇ · (−κ∇c+ u c) + s, (1)

where ċ = ∂c/∂t denotes the time derivative and s : [0, T]× Ω→ R is the source field.
Given an appropriate initial condition (IC) and a set of boundary conditions (BCs), it can be

shown that the AD-PDE (1) is well-posed and has a unique solution Reddy (2013). In this paper,
we use the following IC and BCs:

c(0,x) = g0(x) for x ∈ Ω, (2a)

c(t,x) = gi(t,x) for x ∈ Γi, (2b)

where Γi for i ∈ {1, . . . , nb} denote the boundaries of Ω. Equation (2a) describes the initial state
of the field at time t = 0 whereas equation (2b) prescribes the field value along the boundary Γi as
a time-varying function.

We refer to the parameters that appear in the AD-PDE (1), i.e., the velocity, diffusivity, and
source fields as well as the IC and BCs, as the input data. Any of these fields can depend on
secondary parameters which consequently means that the solution of the AD-PDE will depend on
those secondary parameters. For instance, in source identification problems, a parametric solution
of the AD-PDE is sought as the properties of the source term s(t,x) vary. This parametric solution
is then used to solve a PDE-constrained optimization problem Khodayi-mehr et al. (2019). In
general, secondary parameters can also appear in MOR of PDEs. In the following, we denote
by p ∈ P ⊂ Rm the set of m secondary parameters that the PDE input-data depend on, where P is
the set of feasible values.

2.2. Training Problem

Discretization-based numerical methods, e.g., the FE method, can be used to approximate the solu-
tion of the AD-PDE (1). As discussed earlier, these methods although very expressive, are computa-
tionally demanding to store and evaluate. Furthermore, it is not straightforward to obtain parametric
solutions of PDEs using these methods. Utilizing neural networks (NNs) to solve PDEs, allows us to
directly obtain differentiable parametric solutions of PDEs that are computationally more efficient
to evaluate and require considerably less memory to store.

Let θ ∈ Rn denote the weights and biases of the NN, a total of n trainable parameters. Then the
solution of the AD-PDE can be approximated by the nonlinear output function f(t,x;p,θ) of this

3

VARNET: VARIATIONAL NEURAL NETWORKS FOR PARTIAL DIFFERENTIAL EQUATIONS

NN, where f : [0, T]×Ω→ R maps the spatiotemporal coordinates t and x to the scalar output field
of the PDE, given a value for the secondary parameters p. Note that the input of the NN consists of
the coordinates t and x as well as the parameters p and its dimension is 1+d+m. In the following,
we drop the arguments p and θ whenever they are not explicitly needed.

Problem 1 (Training Problem) Given the PDE input-data and the NN function f(·) with n train-
able parameters, find the optimal value θ∗ ∈ Rn such that

θ∗ = argmin

∫
P

∫
T

∫
Ω
|c(t,x;p,θ)− f(t,x;p,θ)|2 dx dt dp, (3)

where c(·) denotes the true solution of the PDE.

The simplest approach to solve Problem 1 is to use supervised learning to obtain an approximate
solution of the PDE using labeled data collected from numerical methods and a loss function defined
by objective (3). The NN then acts merely as a memory cell and an interpolator to store the solution
more efficiently than storing the values at all grid points. This approach does not alleviate the need
for discretization-based methods but instead relies on them. Alternative methods exist that train
the NN in an unsupervised way. A typical approach is to consider a loss function defined by the
PDE residual obtained when the approximate solution f(·) is substituted in (1). This approach has
two problems. First, for the AD-PDE (1) it requires evaluation of second order derivatives of f(·).
Estimating a function from its higher order derivatives is inefficient since differentiation only retains
slope information and is agnostic to translation. Second, training the differential form of the PDE
amounts to learning a complicated field by only considering values at a limited set of points, i.e., a
measure-zero set, ignoring correlations in space-time. Next, we propose a different approach that
addresses these issues by defining a loss function that relies on the variational form of the PDE.

3. Neural Networks for Solution of PDEs

3.1. Variational Loss Function

The goal of Problem 1 is to learn the parameters θ of the NN so that for all values of p, the function
f(·) approximates the solution of the AD-PDE (1) as well as possible. To capture this, we define a
loss function ` : Rn → R+ based on the variational form of the AD-PDE (1) that reflects how well
the function f(·) approximates the solution of (1). Let v : [0, T]×Ω→ R be an arbitrary compactly
supported test function. Then, the variational form of the AD-PDE is given as

l(c, v) =

∫ T

0

∫
Ω

[∇c · (κ∇v + u v)− c v̇ − s v] dx dt = 0. (4)

This variational form only requires the first-order spatial derivative and also an integration over
a non-zero measure set as opposed to a single point. The test function acts as a weight on the PDE
residual and the idea is that if (4) holds for a reasonable number of test functions v(t,x) with their
compact supports located at different regions in space-time [0, T]×Ω, the function f(·) has to satisfy
the PDE. A very important feature of the test function v(t,x) is that it is compactly supported. This
allows local treatment of the PDE as opposed to considering the whole space-time at once and is
the basis of the FE method Hughes (2012).1

1. See Khodayi-mehr and Zavlanos (2019b) for the explicit form of the test function v(t,x), the derivation of the
variational form, and details on the numerical computation of the variational form (4).

4

VARNET: VARIATIONAL NEURAL NETWORKS FOR PARTIAL DIFFERENTIAL EQUATIONS

Algorithm 1 VarNet Algorithm

Require: Space-time domain [0, T]× Ω and PDE input-data;
Require: Widths of MLP-NN layers and the number of training points nv, n0, nb,i, and np;
Require: Number of training epochs N and weights w in (5);

1: Generate uniform training points over [0, T]× Ω× P;
2: for e = 1 : N do
3: for j = 1 : np do
4: Update trainable parameters θe,j via an optimizer;
5: end for
6: end for

Given the variational form (4), we can now define the desired loss function. Consider a set of nv
test functions vk(t,x) sampling the space-time [0, T]×Ω, a set of n0 points xk ∈ Ω corresponding
to the IC, and sets of nb,i points (tk,xk) ∈ [0, T]× Γi for the enforcement of the BCs. Then, for a
given set of PDE input-data, specified by p, we define the loss function ` : Rn × P → R+ as

`(θ,p) = w1

∑nv

k=1
|l(f, vk)|2 +

w2

n0

∑n0

k=1
|f(0,xk)− g0(xk)|2

+
w3

n̄b

∑nb

i=1

∑nb,i

k=1
|f(tk,xk)− gi(tk,xk)|2 , (5)

where l(f, vk) is defined by (4), w ∈ R3
+ stores the penalty weights corresponding to each term,

and n̄b =
∑nb

i=1 nb,i is the total number of training points for the BCs. Normalizing by n0 and n̄b
makes the weights w in the loss function (5) independent of the number of training points.

Next, consider a set of np points pj ∈ P sampling the space of the secondary parameters. Then,
integrating (5) over the secondary parameters we obtain the total loss function ` : Rn → R+ as

`(θ) =
∑np

j=1
`(θ,pj). (6)

This loss function is lower-bounded by zero. Since this bound is attainable for the exact solution of
the AD-PDE (1), the value of the loss function is an indicator of how well the NN approximates the
solution of the PDE. Training using loss function (6) is an instance of unsupervised learning since
the solution is not learned from labeled data. Instead, the training data here are unlabeled samples
of space-time and the physics captured by the AD-PDE (1) guides learning of the parameters θ. In
that sense, our approach is a model-based method as opposed to a merely statistical method that
automatically extracts features and cannot be easily interpreted.

3.2. VarNet Deep Learning Library

The proposed VARNET Algorithm 1 utilizes the loss function (6) to approximate the solution of
AD-PDEs. It begins by requiring the properties of the spatial domain Ω and the time horizon T as
well as the input data to the AD-PDE. These inputs define an AD-PDE instance that is implemented
in the VARNET library using the ADPDE(domain, diff, vel, source, tInterval, IC,

BCs, MORvar) class where MORvar is an instance of MOR class for parametric problems. Next, the
VARNET Algorithm 1 requires the width of the layers of the multi-layer perceptron (MLP) NN, used
to capture the solution of the AD-PDE, as well as the number of training points nv, n0, nb,i, and np.

5

VARNET: VARIATIONAL NEURAL NETWORKS FOR PARTIAL DIFFERENTIAL EQUATIONS

This information defines the training Problem 1 as an instance of VarNet(layerWidth, discNum,

bDiscNum, tDiscNum) class. Finally, the number of training epochs as well as the penalty
weights in the loss function (5) must be given.

Given the number of training points, in line 1, the algorithm generates a uniform grid over
space-time, its boundaries, and possibly the space of secondary parameters P . The training process
begins in line 2 where in each epoch the algorithm iterates through all training data. The loop over
the samples pj of the secondary parameters is performed in line 3. In line 4, the algorithm performs
the optimization iteration for pj at epoch e, updating the parameters θe,j of the NN for all training
samples of the space-time and a given set of PDE input-data. The training process is performed in
the member function VarNet.train(epochNum, weight, batchNum).

The VARNET library Khodayi-mehr and Zavlanos (2019a) implements Algorithm 1 and con-
tains additional functionalities including data parallelism and extensive tools for report generation
during training and post-processing of the trained NNs. In Khodayi-mehr and Zavlanos (2019b)
we present more details on the implementation of Algorithm 1 and an extensive set of numerical
experiments demonstrating its performance.

4. Numerical Experiments

In this section we study the performance of the VARNET Algorithm 1 for the benchmark problem
presented in Mojtabi and Deville (2015). This problem is defined for T = [0, 2] and Ω = [−1, 1]
with s(t, x) = 0 in (1), g0(t, x) = − sin(πx) in (2a), and gi(t, x) = 0 ∀i ∈ {1, 2} in (2b),
respectively. For highly advective cases with large Peclet numbers,2 a boundary layer is formed
whose prediction requires very fine grids when solved by discretization-based numerical methods.
In the following results, similar to Mojtabi and Deville (2015), we fix the velocity u = 1 and study
the performance of our approach for two diffusivity values κ = 0.1/π and κ = 0.01/π.

We use the ADAM optimization algorithm to train the NNs; see Kingma and Ba (2014). The
VARNET Algorithm 1 is run on a single NVIDIA GEFORCE RTX 2080 TI processor for each
problem instance. In each case, we use a multi-layer perceptron (MLP) to capture the solution
and unless otherwise specified, we use a sigmoid activation function for all neurons. For a given
uniform grid over the space-time, we compute the approximation error as err = ‖f − c‖/‖c‖, where
the vectors f and c stack the outputs of the NN and exact solution at the grid points, respectively.
When the error values are biased against the NN solution, we add an asterisk to the reported value.

4.1. Low Peclet Number

Figure 1 shows the solution, provided by the VARNET Algorithm 1, for κ = 0.1/π overlaid on
the analytical solution. The final error is err = 0.04. We use a single layer MLP with sigmoid

activation, 20 neurons in the layer, nv = 300 × 20, n0 = 20, and nb,i = 300 training points, and
set the weights to w = [1, 10, 10]. Note that the number of temporal training points should be
sufficiently large to ensure that the dimensionless Courant number, defined as C = u∆t/∆x, is
upper-bounded and guarantee the stability of the solution across time Donea and Huerta (2003).
An animation of the approximate solution f(t, x) for the case of κ = 0.1/π is compared to the
analytical solution in Khodayi-mehr and Zavlanos (2019c).

2. Peclet number is a measure of the relative dominance of advection over diffusion and is defined as Pe = u l̂/κ, where
l̂ is a characteristic length of Ω, u is a characteristic velocity, and κ is the average diffusivity of the medium.

6

VARNET: VARIATIONAL NEURAL NETWORKS FOR PARTIAL DIFFERENTIAL EQUATIONS

(a) t = 0.8 (b) t = 1.0 (c) t = 1.6

Figure 1: Snapshots of the NN solution to the AD problem (1) for diffusivity κ = 0.1/π.

Figure 2: Snapshots of the NN solution for
diffusivity κ = 0.01/π overlaid on exact
solution in select points shown by the dots.

Table 1: Error values for diffusivity κ = 0.01/π, calculated for
the set of point values reported in Mojtabi and Deville (2015).

No. n activation nv err*

1 81 tanh 100× 10 0.83

2 81 sigmoid 100× 10 0.49

3 271 sigmoid 800× 150 0.08

4 911 sigmoid 800× 150 0.09

5 911 sigmoid 1000× 200 0.08

As mentioned earlier, one of the important contributions of this paper is the novel loss function
based on the variational form of the AD-PDE. To demonstrate the effectiveness of our loss function,
we solve the case of κ = 0.1/π using the differential form of the PDE as well; see also the discussion
pursuant to Problem 1. Using the same architecture and settings with nv = 1200 × 80, n0 =
80, and nb,i = 1200 training points (equivalent to the number of integration points above), the
final error is err = 0.88. After a set of simulations, the best result corresponding to nv = 3000 ×
1000, n0 = 1000, and nb,i = 3000 and w = [1, 10, 5] has an error of err = 0.50. An animation
of the approximate solution f(t, x) for this case is compared to the analytical solution in Khodayi-
mehr and Zavlanos (2019e). Observe that there is considerable error in capturing the solution and
its BICs when the differential form is used, although the number of training points is much larger.

4.2. High Peclet Number

Next, we consider the case of κ = 0.01/π which corresponds to an order of magnitude higher
Peclet number and is much more challenging to solve. Figure 2 shows the snapshots of the solution
from a MLP with two layers with [10, 20] neurons in the layers amounting to n = 271 trainable
parameters. We train the NN using nv = 800× 150, n0 = 150, and nb,i = 800 training points and
set the weights to w = [1, 10, 10]. Note that for κ = 0.01/π the analytical solution is numerically
unstable and we only compare to a set of point values reported in Mojtabi and Deville (2015). The
final error comparing to these point values is err* = 0.09. This error value is conservative since
it only considers the boundary layer which is the most challenging to approximate, as opposed to
the whole space-time. Discretization-based methods have difficulty capturing the boundary layer at

7

VARNET: VARIATIONAL NEURAL NETWORKS FOR PARTIAL DIFFERENTIAL EQUATIONS

Table 2: Error values for the parametric solution of the AD
problem (1) as a function of diffusivity κ.

No. n nv κ err

1
101 300× 20

0.01/π ≈ 0.0032 0.33*
2 0.005 0.40*
3 0.1/π ≈ 0.03183 0.14

4
921 800× 150

0.01/π 0.09*
5 0.005 0.15*
6 0.1/π 0.00

Figure 3: Parametric solution of the AD
problem (1) as a function of κ at t = 1.5.

x = 1 and require an extremely fine grid and consequently a large model, see Mojtabi and Deville
(2015), whereas our approach can capture the solution with only n = 271 trainable parameters. An
animation of the solution f(t, x) for this case is given in Khodayi-mehr and Zavlanos (2019d).

Table 1 shows the performance of the VARNET Algorithm 1, in solving the AD problem (1) with
diffusivity κ = 0.01/π, for different activation functions and network capacities. Specifically, we
examine three MLP structures with [20], [10, 20], and [10, 20, 30] neurons in the layers. The number
of training points n0 and nb,i for BICs can be deduced from nv and are not reported. Comparing
the first two cases, observe that tanh activation is incapable of capturing the solution. From case 3,
it can be seen that simultaneous increase of the number of trainable parameters n and the number
of training points nv dramatically decreases the error. Note however that increasing n without
increasing nv destabilizes the training process. Finally considering cases 4 and 5, observe that
further increase of the network capacity does not seem to decrease the error. Referring to Figure 2
note that the error values reported in Table 1 effectively capture the error in boundary layer x = 1.
To capture this layer even better, the number of spatial samples and thus, to maintain the Courant
number, the number of temporal samples need to be further increased.

4.3. Model Order Reduction

Finally, we study the performance of the VARNET algorithm 1 for MOR by training NNs that
parametrically solve the AD-PDE (1) as a function of diffusivity for κ ∈ [0.003, 0.033], which
amounts to a range of more than one order of magnitude. We use np = 5 geometric samples
κ ∈ {0.003, 0.0048, 0.0078, 0.0126, 0.0204, 0.033} for training. Table 2 shows the final errors for
diffusivity values other than the ones used for training. For the two smaller values of diffusivity,
the analytical solution is unstable and only the point values reported in Mojtabi and Deville (2015)
are compared which results in biased (larger) error values for these cases. Note that the parametric
solutions with only n = 921 trainable parameters are as good as the ones reported for individual
diffusivity values above, meaning that MOR has no major effect in the solution. This is in contrast
to traditional MOR methods that often introduce large errors. The continuous, parametric repre-
sentation of the solution provides valuable tools for analysis of dynamical systems. For instance,
we can study the sensitivity of the solution of the AD problem (1) to the change of diffusivity κ of
the medium. Figure 3 shows the solution snapshots at t = 1.5 as a function of κ. Note that as κ
decreases, the peak value is better preserved and carried downstream with less diffusion and as a
result, the boundary layer becomes sharper.

8

VARNET: VARIATIONAL NEURAL NETWORKS FOR PARTIAL DIFFERENTIAL EQUATIONS

References

William F Ames. Numerical methods for partial differential equations. Academic press, 2014.

VI Avrutskiy. Neural Networks catching up with finite differences in solving partial differential
equations in higher dimensions. arXiv preprint arXiv:1712.05067, 2017.

Jean Donea and Antonio Huerta. Finite Element methods for flow problems. John Wiley & Sons,
2003.

Xiaoxiao Guo, Wei Li, and Francesco Iorio. Convolutional Neural Networks for steady flow ap-
proximation. In Proceedings of the 22nd ACM SIGKDD International Conference on Knowledge
Discovery and Data Mining, pages 481–490. ACM, 2016.

Thomas JR Hughes. The finite element method: linear static and dynamic finite element analysis.
Courier Corporation, 2012.

Thomas JR Hughes and Garth N Wells. Conservation properties for the Galerkin and stabilised
forms of the advection–diffusion and incompressible Navier–Stokes equations. Computer meth-
ods in applied mechanics and engineering, 194(9-11):1141–1159, 2005.

Willem Hundsdorfer. Numerical solution of advection-diffusion-reaction equations. Centrum voor
Wiskunde en Informatica, 24:30–41, 1996.

Reza Khodayi-mehr and Michael M. Zavlanos. VarNet deep learning library for the solution of
partial differential equations, 2019a. https://github.com/RizaXudayi/VarNet.

Reza Khodayi-mehr and Michael M Zavlanos. VarNet: Variational neural networks
for the solution of partial differential equations. 2019b. [Online]. Available:
https://arxiv.org/pdf/1912.07443.pdf.

Reza Khodayi-mehr and Michael M. Zavlanos. 1D time-dependent Advection-Diffusion PDE - low
Peclet number, 2019c. https://vimeo.com/328756962.

Reza Khodayi-mehr and Michael M. Zavlanos. 1D time-dependent Advection-Diffusion PDE -
high Peclet number, 2019d. https://vimeo.com/328759472.

Reza Khodayi-mehr and Michael M. Zavlanos. 1D time-dependent Advection-Diffusion PDE - low
Peclet number - residual loss function, 2019e. https://vimeo.com/350138714.

Reza Khodayi-mehr and Michael M Zavlanos. Deep learning for robotic mass transport cloaking.
IEEE Transactions on Robotics, 2020. doi: 10.1109/TRO.2020.2980176.

Reza Khodayi-mehr, Wilkins Aquino, and Michael M. Zavlanos. Model-based active source iden-
tification in complex environments. IEEE Transactions on Robotics, 35(3):633–652, 2019. doi:
10.1109/TRO.2019.2894039.

Yuehaw Khoo, Jianfeng Lu, and Lexing Ying. Solving parametric PDE problems with artificial
neural networks. arXiv preprint arXiv:1707.03351, 2017.

9

https://github.com/RizaXudayi/VarNet
https://vimeo.com/328756962
https://vimeo.com/328759472
https://vimeo.com/350138714

VARNET: VARIATIONAL NEURAL NETWORKS FOR PARTIAL DIFFERENTIAL EQUATIONS

Diederik P Kingma and Jimmy Ba. ADAM: A method for stochastic optimization. arXiv preprint
arXiv:1412.6980, 2014.

Isaac E Lagaris, Aristidis Likas, and Dimitrios I Fotiadis. Artificial neural networks for solving
ordinary and partial differential equations. IEEE Transactions on Neural Networks, 9(5):987–
1000, 1998.

Zichao Long, Yiping Lu, Xianzhong Ma, and Bin Dong. PDE-Net: Learning PDEs from data. arXiv
preprint arXiv:1710.09668, 2017.

Abdelkader Mojtabi and Michel O Deville. One-dimensional linear Advection-Diffusion equation:
Analytical and Finite Element solutions. Computers & Fluids, 107:189–195, 2015.

M Raissi, P Perdikaris, and GE Karniadakis. Physics-informed Neural Networks: A deep learn-
ing framework for solving forward and inverse problems involving nonlinear partial differential
equations. Journal of Computational Physics, 378:686–707, 2019.

Pradeep Ramuhalli, Lalita Udpa, and Satish S Udpa. Finite-element neural networks for solving
differential equations. IEEE Transactions on Neural Networks, 16(6):1381–1392, 2005.

B Dayanand Reddy. Introductory functional analysis: with applications to boundary value problems
and finite elements, volume 27. Springer, 2013.

Keith Rudd. Solving Partial Differential Equations Using Artificial Neural Networks. PhD thesis,
Department of Mechanical Engineering and Material Sciences, Duke University, 2013.

Yazdan Shirvany, Mohsen Hayati, and Rostam Moradian. Multilayer perceptron Neural Networks
with novel unsupervised training method for numerical solution of the partial differential equa-
tions. Applied Soft Computing, 9(1):20–29, 2009.

Justin Sirignano and Konstantinos Spiliopoulos. DGM: A deep learning algorithm for solving partial
differential equations. arXiv preprint:1708.07469, 2017.

Shiyin Wei, Xiaowei Jin, and Hui Li. General solutions for nonlinear differential equations: a deep
reinforcement learning approach. arXiv preprint arXiv:1805.07297, 2018.

Chao Xu, Changlong Wang, Fengzhu Ji, and Xichao Yuan. Finite-Element Neural Network-based
solving 3-D differential equations in MFL. IEEE Transactions on Magnetics, 48(12):4747–4756,
2012.

Neha Yadav, Anupam Yadav, and Manoj Kumar. An introduction to neural network methods for
differential equations. Springer, 2015.

Yinhao Zhu, Nicholas Zabaras, Phaedon-Stelios Koutsourelakis, and Paris Perdikaris. Physics-
constrained deep learning for high-dimensional surrogate modeling and uncertainty quantification
without labeled data. arXiv preprint arXiv:1901.06314, 2019.

10

	Introduction
	Problem Definition
	Advection-Diffusion PDE
	Training Problem

	Neural Networks for Solution of PDEs
	Variational Loss Function
	VarNet Deep Learning Library

	Numerical Experiments
	Low Peclet Number
	High Peclet Number
	Model Order Reduction

