

000 001 002 003 004 005 006 007 008 009 010 011 012 013 014 015 016 017 018 019 020 021 022 023 024 025 026 027 028 029 030 031 032 033 034 035 036 037 038 039 040 041 042 043 044 045 046 047 048 049 050 051 052 053 POLYPDB: A CURATED MULTI-CENTER DATASET FOR DEVELOPMENT OF AI ALGORITHMS IN COLONOSCOPY

Anonymous authors

Paper under double-blind review

ABSTRACT

Colonoscopy is the primary method for examination, detection, and removal of polyps. However, challenges such as variations among the endoscopists' skills, bowel quality preparation, and the complex nature of the large intestine contribute to high polyp miss-rate. These missed polyps can develop into cancer later, underscoring the importance of improving the detection methods. To address this gap of lack of publicly available, multi-center large and diverse datasets for developing automatic methods for polyp detection and segmentation, we introduce PolypDB, a large scale publicly available dataset that contains 3934 still polyp images and their corresponding ground truth from real colonoscopy videos. PolypDB comprises images from five modalities: Blue Light Imaging (BLI), Flexible Imaging Color Enhancement (FICE), Linked Color Imaging (LCI), Narrow Band Imaging (NBI), and White Light Imaging (WLI) from three medical centers in Norway, Sweden, and Vietnam. We provide a benchmark on each modality and center, including federated learning settings using popular segmentation and detection benchmarks. PolypDB is public and can be downloaded at <https://osf.io/xxxx/>. More information about the dataset, segmentation, detection, federated learning benchmark and train-test split can be found at <https://github.com/xxxxx/PolypDB>.

1 INTRODUCTION

Colorectal cancer (CRC) represents the third highest cancer incidence and is the second most common cause of cancer-related death worldwide. In 2020, approximately 1.9 million new cases of CRC were detected, causing approximately 935,000 deaths Sung et al. (2021). The relative five-year survival rate for persons younger than 64 years is 68.8% Yabroff et al. (2021). Colonoscopy is the gold standard for detecting CRC and removal of precancerous lesions such as polyps and very early CRCs. However, colonoscopy is an operator-dependent procedure causing a significant variation in polyp detection Hetzel et al. (2010). Smaller polyps, diminutive (≤ 5 mm) or (6 to 9 mm) sized colon polyps are often missed by the endoscopists. The adenoma miss-rate is reported to be 20%–24% Leufkens et al. (2012) and some missed polyps develop into CRC later on called postcolonoscopy CRC or interval cancer Rutter et al. (2018). For a couple of years, computer-aided detection (CADe) systems for polyp detection are commercially available and have shown to increase the adenoma detection rate but the polyps are just marked with a bounding box and do not help the endoscopists to delineate the polyp and confirm complete resection of the polyp, essential to avoid recurrence and potentially post colonoscopy CRC risks.

Precise delineation of polyps may be very helpful, especially for difficult ones, such as sessile serrated lesions (SSL). Accurate polyp segmentation is challenging because (i) polyp changes their characteristics over time during their development stage, (ii) their shape, size, colors, and appearance may be very similar to the surrounding mucosa, (iii) In some cases, there is a mucous covering the polyp acting as *camouflage* that might trick the endoscopists, even with state-of-the-art (SOTA) deep learning algorithms showing false positives, (iv) imaging device introducing artifacts such as blurriness, flares, and lighting conditions that also affect the colonoscopy procedure, for example, objects too close to the camera, under or over scene lighting, low resolution of capsular endoscopes, overexposure, reflection from the bright spot, low contrast areas and (v) the presence of surgical

054
055 **Table 1: An overview of colon polyp datasets with a minimum of 1000 samples.**
056

Dataset	Findings	Size	Availability
Kvasir-SEG Jha et al. (2020)	Polyps	1000 images [†]	open academic
HyperKvasir Borgli et al. (2020)	GI findings and polyps	110,079 images and 374 videos	open academic
Kvasir-Capsule Smedsrød et al. (2021)	GI findings and polyps [◦]	4,741,504 images	open academic
CVC-VideoClinicDB Bernal & Aymeric (2017)	Polyps	11,954 images [†]	by request [•]
ASU-Mayo polyp database Tajbakhsh et al. (2015)	Polyps	18,781 images [†]	by request [•]
BKAI-IGH Ngoc Lan et al. (2021)	Polyps	1000 images [†]	open academic
PolypGen Ali et al. (2023)	Polyps	1531 images [†] and 2000 video frames	open academic
PolypDB (Ours)	Polyps	3934 polyp images from 3 centers	open academic

[†]contains ground truth segmentation masks [◦]Video capsule endoscopy [•]Not available anymore

064 instruments and intestinal residue can also affect accurate polyp segmentation Jha et al. (2021). All
065 these can affect colonoscopy procedures and limit accurate polyp segmentation and detection.

066 Fulfilling the gap between expert and non-expert endoscopists in detecting and diagnosing colon
067 polyps is one of the most critical challenges in colonoscopy Ladabaum et al. (2013); Rees et al.
068 (2017). Most of the DL methods perform reasonably well on the large adenomas (≥ 10 mm),
069 which are easy to segment while overlooking small, diminutive, and even flat large SSLs, the main
070 reason for right-sided post colonoscopy colorectal cancer van Toledo et al. (2022). However, SSLs
071 are challenging to detect and delineate even for experienced endoscopists Van Rijn et al. (2006).
072 Training DL algorithms on multi-center datasets can improve the generalizability and robustness of
073 the network.

074 The main motivation of our work is to develop and publicly release a large-scale, multi-center polyp
075 segmentation and detection dataset to be developed to support computer aided diagnosis (CAD)
076 systems that are robust and generalizable for polyp segmentation and detection methods useful for
077 integration into clinical settings. PolypDB consists of a diverse set of annotated images covering the
078 global representativeness of the population and their annotations useful for performance evaluation
079 and comparison of different Deep learning (DL) based algorithms. Our multi-center dataset consists
080 of data from a variety of sources, imaging modalities (Blue laser imaging (BLI), Flexible spectral
081 Imaging Color Enhancement (FICE), white light imaging (WLI), linked color imaging (LCI)), pop-
082 ulations (Norway, Vietnam, Sweden), acquisition protocols (Fujinon system, Olympus) and imaging
083 conditions captured by a multi-national expert that are better for early polyp diagnosis. Furthermore,
084 we exploit this multi-center dataset and propose developing new benchmarks for polyp detection and
085 segmentation both modality and center-wise. The main contributions of this work are as follows:

- 086 **1. PolypDB** — We present PolypDB, a multi-center, multi-modality polyp segmentation and
087 detection dataset that consists of 3934 polyp images, pixel-precise ground truth and bound-
088 ing box annotations collected from medical centers in Norway, Sweden and Vietnam. The
089 diverse dataset helps the model enhance training and testing under real-world conditions.
- 090 **2. First-ever open access multi-modality dataset** — PolypDB consists of five distinct
091 modalities such as BLI, FICE, LCI, NBI and WLI. This is the first-ever open-access dataset
092 to feature five distinct modalities along with gastroenterologist-verified ground truth.
- 093 **3. Baseline benchmark** — We evaluated PolypDB on each modality using eight segmenta-
094 tion methods, five object detection methods, and six federated learning approaches, estab-
095 lishing a robust baseline benchmark.

097 2 POLYPDB DATASET DETAILS

099 2.1 STUDY DESIGN

101 PolypDB is a collection of colonoscopy examination images from three medical hospitals in Nor-
102 way, Sweden, and Vietnam. Figure 1 presents the example images from different brands Fujifilm,
103 Olympus, Pentax, primarily WLI, and with different types of digital staining such as BLI, FICE,
104 LCI, and NBI, along with their corresponding bounding box ground truth and color coded seg-
105 mentation masks. PolypDB is developed to address the urgent need for early detection and diagnosis
106 of CRC precursors to reduce the incidence of CRC. Although some publicly available datasets exist
107 (Table 1), there is no comprehensive modality-specific dataset to date. Also, multi-center open-
access dataset is limited in the community. The multi-modality and multi-center dataset captures the

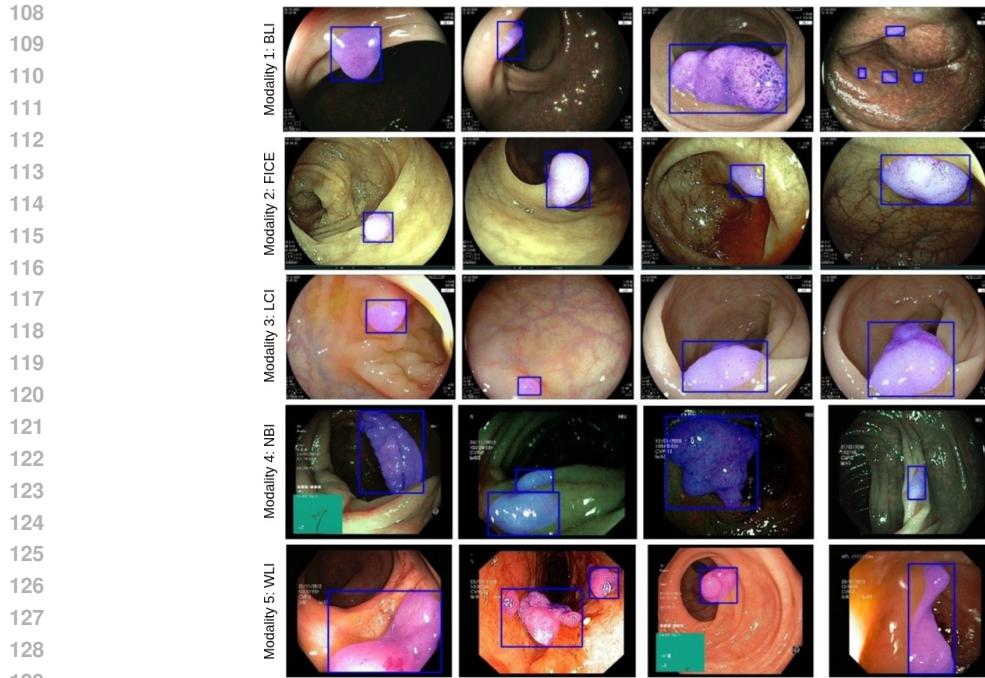


Figure 1: Examples of polyps in BLI, FICE, LCI, NBI, and WLI modalities from the PolypDB dataset, showcasing variations in shape, size, color, and appearance. Each image includes polyp bounding boxes and color-coded segmentation masks to show polyp ground truth.

regional and demographic disparities in CRC incidence rates, enhancing data diversity and broadening population representation. Additionally, having a multi-center dataset allows for the inclusion of different types of equipment and imaging protocols, which can also improve the robustness and generalizability of the CAD system, leading to better patient outcomes.

2.2 DATASET ACQUISITION: INCLUSION AND EXCLUSION CRITERIA OF THE COLONOSCOPY FRAMES

2.2.1 INCLUSION CRITERIA

The inclusion criteria for the polyp frames are as follows: Images with native colorectal polyp(s) in WLI mode and FICE mode, having a minimum resolution of 1280×720 pixels, and polyp's boundary must be clear and well-defined. Additionally, Boston Bowel Preparation Score (BBPS) ≥ 2 and image should be captured in magnification mode.

2.2.2 EXCLUSION CRITERIA

The exclusion criteria ensure that we have high-quality and clinically relevant frames. We excluded frames where a polyp was resected (removed) or transported in a net, those with poor image quality, polyps injected with blue dye and snare around the polyp neck, and resection sites covered in blood, where residual polyps are unclear. Additionally, images were removed if it was unclear if a polyp or stool remnants, those showing normal anatomical structure or images in other image-enhanced modes (BLI, LCI), images in magnification mode. Images with poor quality, such as blurry, shaky, too dark, having a flare or having much liquid (feces, blood) and mucus, were removed. Images with already resected polyps or resection sites, images of polyps with submucosal injection, and images containing endoscopic tools such as caps, injection needles, snares, biopsy forceps, and clips were also excluded.

162

163 Table 2: **Data collection information for each center:** Data acquisition system and patient con-
164 senting information.

165 Centers	166 System info.	167 Ethical approval	168 Patient consenting type
166 xxx, Norway	167 Olympus Evis Exera III, CF 190	168 Exempted [†]	169 Not required
167 yyy, Sweden	168 Olympus Evis Exera III, CF 190	169 Not required [‡]	170 Written informed consent
168 zzz, Vietnam	169 Fujinon system	170 Not required	171 Not required [‡]
169 zzzb, Vietnam	170 Fujinon system	171 Not required [‡]	172 Not required [‡]

170 [†] Approved by the data inspector. No further ethical approval was required as it did not interfere with patient treatment171 [‡] Fully anonymized, no further ethical approval was required

172

173 2.3 DATASET COLLECTION AND CONSTRUCTION

174

175 2.3.1 XXX HOSPITAL, NORWAY (CENTER 1)

176

177 The polyp images were collected and verified by experienced gastroenterologists from xxx hospi-
 178 tal trust in Norway. Some images have been collected from the unlabeled class of HyperKvasir
 179 dataset Borgli et al. (2020). There are 99,417 endoscopic frames in HyperKvasir dataset. We iden-
 180 tified 3000 WLI polyps frames, labeled them and sent them to our gastroenterologists. Out of 3000
 181 images, only 2588 were incorporated into our datasets. Others were excluded based on the exclu-
 182 sion criteria. Additionally, we selected 136 NBI images from the unlabeled HyperKvasir class. We
 183 curated the ground truth for both WLI and NBI, which was verified by a team of expert gastroen-
 184 terologists. By labeling such datasets, we are making use of unlabeled frames, which were never
 185 explored for the development of new tools.

186

187 2.3.2 YYY UNIVERSITY HOSPITAL, SWEDEN (CENTER 2)

188

189 The images were collected and verified by an experienced gastroenterologist (10+ years of experi-
 190 ence) from yyy Medical Hospital in Sweden. Although from their center, we received images from
 191 the entire GI tract, the number of polyp images was relatively limited. Based on exclusion crite-
 192 ria, we selected only 30 WLI polyp images and 10 NBI polyp images from yyy hospital. All these
 193 images were completely anonymized according to GDPR requirements for full anonymization.

194

195 2.3.3 ZZZA MEDICAL UNIVERSITY & INSTITUTE OF ZZZB, HANOI, VIETNAM (CENTER 3)

196

197 The dataset consisted of 1200 endoscopic images with polyps in 4 light modes: WLI, LCI, BLI
 198 and FICE. The data acquisition procedures for both centers are identical, and they examine similar
 199 populations. Therefore, we consider a single center in this study, given that both centers are located
 200 in the same city. Out of a total of 1200 images, 600 images were obtained from zzz, while the
 201 other 600 images were sourced from zzzb. Specifically, zzz consists of 1000 WLI polyp images,
 202 60 LCI, 70 FICE and 70 BLI images. These images were labeled and annotated by three expert
 203 endoscopists with more than 10 years of experience. We provide both bounding box information
 204 and pixel-precise annotation for all images to make the dataset useful for both object detection and
 205 segmentation tasks. We also organized the dataset center-wise and modality-wise so that it could be
 206 useful to facilitate the research towards specific objectives in multiple directions.

207

208

209 2.4 ANNOTATION STRATEGIES AND QUALITY ASSURANCE

210

211

212

213

214

215

216 A team of 8 gastroenterologists (with most of them over 10 years of experience in colonoscopy)
 217 and one experienced senior researcher with a computer science background were involved in the
 218 data annotation, sorting, and the review process of the quality of annotations. The annotations were
 219 performed by a senior research associate who has extensive experience in data curation and develop-
 220 ment using online annotation tool called Labelbox <https://labelbox.com/>. All images were
 221 uploaded to Labelbox, and each frame was labeled considering the region of interest (area covered
 222 by polyp), and the ground truth for each sample was created. Each annotation was cross-verified
 223 by at least two senior gastroenterologists. Furthermore, we assign an independent reviewer (senior
 224 gastroenterologist) to review all 3934 images. All of the images were annotated by one researcher
 225 using the Wacom Cintiq tablet to minimize the heterogeneity in the manual delineation process.

216 During the review, the gastroenterologists marked if the frame represented colon polyps and should
 217 be included in the dataset. After that, they checked if the annotations for each polyp in a frame
 218 were “correct” and clinically acceptable. Finally, the non-polyp images were removed, and annotations
 219 were adjusted for incorrect annotations. For modality-wise organization, we provide “images”,
 220 “corresponding ground truth masks” in the segmentation folder and “images” and “corresponding
 221 bounding box information” in the detection folder for each modality. The images and corresponding
 222 ground truth contain the same filename. For the center-wise data organization, we divide the
 223 dataset into three centers: *xxx*, *yyy*, and *zzz*. Each center has images, segmentation ground truth,
 224 and bounding box information useful for segmentation and polyp detection tasks. All images are
 225 encoded using JPEG compression.
 226

227 2.5 ETHICAL AND PRIVACY ASPECTS OF THE DATA

228 The three medical hospitals involved in the PolypDB acquisition handled either all or at least two of
 229 the given steps, focusing on legal, ethical and privacy aspects of the dataset. Additionally, we believe
 230 releasing these datasets would help in the technological development, for example, the development
 231 of robust CAD system for polyps and there is a high potential benefit compared to the potential
 232 risk. Therefore, we make this dataset public after carefully considering ethical and privacy issues.
 233 Table 2 illustrates the ethical and legal processes fulfilled by each center, along with the endoscopy
 234 equipment and recorders used for the data collection. *1) Informed consent from the patient was*
 235 *obtained when required. Approval from the institution was always obtained. This also included the*
 236 *purpose of the study and how their datasets will be used. 2) Review and approval of the collected*
 237 *data from data inspectorate, institutional review board or local medical ethics committee depending*
 238 *on their country’s regulations. 3) De-identification of the colonoscopy frame prior to the export from*
 239 *the hospitals’ medical records release by following laws and regulations related to data privacy and*
 240 *protection in their nation.*

241 3 EXPERIMENTS AND RESULTS

242 3.1 DATASET AND IMPLEMENTATION DETAILS

243 **Dataset:** The experiments are conducted in two different settings: (i) modality-wise and (ii) center-
 244 wise. For modality-wise settings, we have 3558 WLI polyp images, 146 NBI images, 60 LCI images,
 245 70 BLI, and 70 FICE images. We only experiment with WLI images for center-wise settings because
 246 it is common in all three centers. Although there are 136 NBI polyp images in center 1 and 10 polyp
 247 images in center 2, due to the minimal number of images present in both centers, we exclude them
 248 from the experiment.

249 **Implementation Details:** All experiments were conducted on a single NVIDIA RTX 3090.
 250 Datasets were split into 80% training, 10% validation, and 10% testing. For polyp segmentation,
 251 images were resized to 512×512 and augmented with random rotations, flips, and coarse dropout.
 252 Models were trained for 200 epochs (batch size 12) using Adam ($1e^{-4}$) with binary cross-entropy
 253 + dice loss, early stopping, and *ReduceLROnPlateau*. For polyp detection, images were resized to
 254 640×480 and augmented with flips, rotations, blur, mixup, mosaic, and cutmix. YOLO models
 255 were trained with AdamW ($1e^{-4}$), batch size 16, and uniform hyperparameters. For federated seg-
 256 mentation, models were trained under FedAvg across three centers using AdamW (weight decay
 257 0.05, momentum 0.9), batch size 32, and 100 epochs. The learning rate started at 0.001 with cosine
 258 annealing (decay $\times 0.1$ every 30 epochs), and images were normalized per-center using local mean
 259 and standard deviation.

260 To evaluate the segmentation performance of the dataset, we employed several established segmen-
 261 tation methods.

262 3.1.1 SEGMENTATION RESULTS ON EACH MODALITY

263 Table 3 shows the results of different segmentation methods on each modality of the dataset.

264 **Results on BLI:** In the BLI dataset, DuAT emerged as the top-performing model, achieving the
 265 highest mIoU of 0.6979 and mDSC of 0.8048. DuAT also demonstrated high recall with a score
 266 of 0.9082 and maintained a high precision of 0.7647, resulting in the best F2 score of 0.8501.

270

271 Table 3: Comparison of quantitative results for segmentation on the PolypDB dataset. The highest
272 and second highest scores are shown in **bold** and underline, respectively.

273	Dataset	Method	mIoU	mDSC	Recall	Precision	F2
274	PolypDB (BLI)	U-Net Ronneberger et al. (2015)	0.1822	0.2855	0.6862	0.2180	0.3962
275		DeepLabV3+ Chen et al. (2018)	0.6055	0.7293	0.8462	0.7146	0.7751
276		PraNet Fan et al. (2020)	0.6581	0.7831	<u>0.8876</u>	0.7390	<u>0.8348</u>
277		CaraNet Lou et al. (2022)	0.5853	0.7237	0.6895	0.8052	0.6978
278		TGANet Tomar et al. (2022)	0.5217	0.6520	0.8108	0.6344	0.7076
279		PVT-CASCADE Rahman & Marculescu (2023)	0.6737	<u>0.7873</u>	0.8750	<u>0.7748</u>	0.8205
280		DuAT Tang et al. (2023)	0.6979	0.8048	0.9082	0.7647	0.8501
281	PolypDB (FICE)	SSFormer-L Shi et al. (2022)	0.6750	0.7848	0.8436	0.7708	0.8091
282		U-Net Ronneberger et al. (2015)	0.1384	0.2021	0.5600	0.1425	0.2840
283		DeepLabV3+ Chen et al. (2018)	0.6129	0.6759	0.6653	0.9441	0.6668
284		PraNet Fan et al. (2020)	0.6013	0.6513	0.6559	0.7984	0.6530
285		CaraNet Lou et al. (2022)	0.5694	0.6286	0.6082	<u>0.8135</u>	0.6146
286		TGANet Tomar et al. (2022)	0.5922	0.6898	0.7086	0.7279	0.6960
287		PVT-CASCADE Rahman & Marculescu (2023)	<u>0.7209</u>	<u>0.7799</u>	0.8110	0.7588	<u>0.7971</u>
288	PolypDB (LCI)	DuAT Tang et al. (2023)	0.5589	0.6746	0.9082	0.5867	0.7729
289		SSFormer-L Shi et al. (2022)	0.7607	0.8300	<u>0.8713</u>	0.8013	0.8526
290		U-Net Ronneberger et al. (2015)	0.3513	0.4712	0.5526	0.7644	0.4955
291		DeepLabV3+ Chen et al. (2018)	0.8066	0.8898	0.8694	0.9294	0.8758
292		PraNet Fan et al. (2020)	0.7936	0.8825	0.8890	0.8992	0.8834
293		CaraNet Lou et al. (2022)	0.7600	0.8576	0.8335	0.9190	0.8398
294		TGANet Tomar et al. (2022)	0.8358	0.9061	0.8816	0.9474	0.8899
295	PolypDB (NBI)	PVT-CASCADE Rahman & Marculescu (2023)	0.8344	0.9065	<u>0.9074</u>	0.9205	0.9056
296		DuAT Tang et al. (2023)	<u>0.8551</u>	<u>0.9194</u>	0.9200	0.9247	0.9191
297		SSFormer-L Shi et al. (2022)	0.8567	0.9207	0.9057	0.9466	0.9106
298		U-Net Ronneberger et al. (2015)	0.2161	0.2986	0.6472	0.2622	0.3905
299		DeepLabV3+ Chen et al. (2018)	0.6881	0.7733	0.8279	0.8511	0.7939
300		PraNet Fan et al. (2020)	0.6749	0.7473	0.7816	0.8836	0.7618
301		CaraNet Lou et al. (2022)	0.7249	0.8090	0.8312	<u>0.8781</u>	0.8194
302	PolypDB (WLI)	TGANet Tomar et al. (2022)	0.7317	0.8402	0.8368	0.8645	0.8354
303		PVT-CASCADE Rahman & Marculescu (2023)	0.7769	0.8586	0.9385	0.8320	0.8941
304		DuAT Tang et al. (2023)	0.7494	0.8260	0.8662	0.8741	0.8476
305		SSFormer-L Shi et al. (2022)	0.7608	0.8432	0.9089	0.8462	0.8664
306		U-Net Ronneberger et al. (2015)	0.7452	0.8250	0.8275	0.8936	0.8203
307		DeepLabV3+ Chen et al. (2018)	<u>0.8650</u>	0.9168	0.9183	0.9380	0.9157
308		PraNet Fan et al. (2020)	0.8570	0.9089	0.9046	0.9460	0.9042
309	PolypDB (WLI)	CaraNet Lou et al. (2022)	0.8582	0.9128	0.9149	0.9322	0.9114
310		TGANet Tomar et al. (2022)	0.8536	0.9088	0.9165	0.9284	0.9104
311		PVT-CASCADE Rahman & Marculescu (2023)	<u>0.8731</u>	<u>0.9219</u>	<u>0.9268</u>	0.9372	<u>0.9227</u>
312		DuAT Tang et al. (2023)	0.8695	0.9197	0.9170	0.9437	0.9168
313		SSFormer-L Shi et al. (2022)	0.8821	0.9294	0.9314	<u>0.9438</u>	0.9288

304

305

306

SSFormer-L followed closely with the second-highest mIoU of 0.6750, trailing by 2.29%. Both PVT-CASCADE and SSFormer-L provided close competition in mDSC, scoring 0.7873 and 0.7848, respectively. PraNet secured the second-best scores in recall (0.8876) and F2 (0.8348). Overall, DuAT demonstrated superior performance, showcasing its segmentation capabilities across multiple metrics.

312

Results on FICE: SSFormer-L demonstrated the best results in the FICE modality, achieving the highest mIoU of 0.7607 and mDSC of 0.8300, along with an impressive F2 score of 0.8526. Its recall score of 0.8713 was the second-best, while its precision score of 0.8013 remained competitive. PVT-CASCADE also performed well, with an mIoU of 0.7209 and mDSC of 0.7799. DuAT excelled in recall, achieving the highest score of 0.9082 for this modality, but its lower precision score of 0.5867 impacted its overall performance. Although DeepLabV3+ achieved the highest precision score of 0.9441, it did not lead in other metrics.

313

314

315

316

317

318

Results on LCI: For the LCI dataset, SSFormer-L once again led the performance metrics, achieving an mIoU of 0.8567 and an mDSC of 0.9207. It attained a high precision score of 0.9466 and an impressive F2 score of 0.9106, making it the top choice for LCI segmentation. DuAT also performed exceptionally well, with an mIoU of 0.8551 and mDSC of 0.9194, leading in recall with a score of 0.9200 and delivering a strong precision score of 0.9247. PVT-CASCADE closely followed, showing balanced results across all metrics, particularly in recall (0.9074) and precision (0.9205). While

324 TGANet exhibited a high precision of 0.9474, its slightly lower recall and mIoU scores prevented it
 325 from outperforming SSFormer-L and DuAT.
 326

327 **Results on NBI:** In the NBI dataset, segmentation models exhibited varying performance levels.
 328 PVT-CASCADE, based on PVTv2-B2, demonstrated superior performance with an mIoU of 0.7769,
 329 mDSC of 0.8586, and recall of 0.9385, highlighting its efficacy in polyp identification. Additionally,
 330 it achieved an F2 score of 0.8941, underscoring its dominance in this domain. SSFormer-L followed
 331 with the second-best performance, achieving an mIoU of 0.7608 and mDSC of 0.8432, alongside a
 332 strong recall of 0.9089, which was 2.96% lower than that of PVT-CASCADE. PraNet secured the
 333 highest precision score at 0.8836. The DuAT model also delivered competitive results, particularly
 334 notable in recall (0.8662) and precision (0.8741), although it did not surpass the comprehensive
 335 performance of PVT-CASCADE.

336 **Results on WLI:** The WLI modality results were highly competitive, with SSFormer-L standing
 337 out as the top performer, achieving the best mIoU of 0.8821 and mDSC of 0.9294. SSFormer-L also
 338 led in recall with a score of 0.9314 and secured the second-best precision score of 0.9438, resulting
 339 in an impressive F2 score of 0.9288. PVT-CASCADE followed closely with an mIoU of 0.8731
 340 and mDSC of 0.9219, demonstrating consistent performance with a recall of 0.9268 and precision
 341 of 0.9372. Although the performance gap between SSFormer-L and PVT-CASCADE was minimal,
 342 SSFormer-L's slight edge in multiple metrics made it the best choice for WLI segmentation. The
 343 DuAT model also delivered strong results, with a mIoU of 0.8695 and mDSC of 0.9197, showcasing
 344 competitive recall and precision scores.

345 Table 4: Quantitative detection results with previous methods. The highest and second highest
 346 scores are shown in **bold** and underline, respectively.

Dataset	Method	mAP50	mAP50–95	mAP75	Precision	Recall
PolypDB (BLI)	YOLOv8 Ultralytics (2023)	<u>0.659</u>	<u>0.502</u>	<u>0.559</u>	1.000	0.318
	YOLOv10 Wang et al. (2024a)	0.534	0.416	0.485	0.840	0.500
	YOLOv9 Wang et al. (2024b)	0.688	0.558	0.638	0.846	0.500
	YOLOv7 Wang et al. (2023)	0.398	0.321	0.362	0.818	<u>0.409</u>
	YOLOv5 Jocher (2020)	0.618	0.499	0.534	<u>0.899</u>	0.404
PolypDB (FICE)	YOLOv8 Ultralytics (2023)	0.759	0.667	0.759	<u>0.981</u>	0.625
	YOLOv10 Wang et al. (2024a)	0.887	0.752	0.875	1.000	0.853
	YOLOv9 Wang et al. (2024b)	<u>0.856</u>	<u>0.711</u>	0.737	0.937	<u>0.750</u>
	YOLOv7 Wang et al. (2023)	0.734	0.642	0.734	0.856	<u>0.750</u>
	YOLOv5 Jocher (2020)	0.781	0.674	<u>0.781</u>	0.901	0.625
PolypDB (LCI)	YOLOv8 Ultralytics (2023)	0.833	0.771	0.833	1.000	0.667
	YOLOv10 Wang et al. (2024a)	0.995	<u>0.831</u>	0.995	1.000	<u>0.854</u>
	YOLOv9 Wang et al. (2024b)	0.972	0.878	0.972	<u>0.857</u>	1.000
	YOLOv7 Wang et al. (2023)	0.754	0.581	0.754	0.833	0.833
	YOLOv5 Jocher (2020)	0.833	0.687	0.833	1.000	0.667
PolypDB (NBI)	YOLOv8 Ultralytics (2023)	<u>0.659</u>	<u>0.502</u>	<u>0.559</u>	1.000	0.318
	YOLOv10 Wang et al. (2024a)	0.534	0.416	0.485	0.840	0.500
	YOLOv9 Wang et al. (2024b)	0.688	<u>0.558</u>	0.638	0.846	0.500
	YOLOv7 Wang et al. (2023)	0.398	0.321	0.362	0.818	<u>0.409</u>
	YOLOv5 Jocher (2020)	0.618	0.499	0.534	<u>0.899</u>	0.404
PolypDB (WLI)	YOLOv8 Ultralytics (2023)	<u>0.913</u>	0.766	0.868	0.883	0.880
	YOLOv10 Wang et al. (2024a)	0.555	0.391	0.434	0.603	0.525
	YOLOv9 Wang et al. (2024b)	0.912	<u>0.757</u>	0.836	0.899	0.856
	YOLOv7 Wang et al. (2023)	0.902	0.710	0.807	0.925	<u>0.872</u>
	YOLOv5 Jocher (2020)	0.916	0.766	<u>0.852</u>	<u>0.918</u>	<u>0.872</u>

3.2 DETECTION RESULTS ON EACH MODALITY OF THE DATASET

370 Table 4 illustrates the detection results on the PolypDB.
 371

372 **Results on BLI:** In the BLI dataset, YOLOv9 achieves the highest performance with the best
 373 mAP50, mAP50-95, and mAP75 scores of 0.688, 0.558, and 0.638, respectively. In terms of pre-
 374 cision, YOLOv8 surpasses other methods with a perfect score of 1.0000. However, for recall, both
 375 YOLOv9 and YOLOv10 achieve the same score of 0.5000. These results indicate strong per-
 376 formance in detecting positive cases, but the low recall scores highlight the challenge of improving the
 377 model’s ability to predict positive cases and reduce missed detections in this dataset.

378 **Results on FICE:** The FICE dataset results showed YOLOv10 outperforming other methods with
 379 the best mAP50, mAP50-95, and mAP75 scores of 0.8870, 0.7520, and 0.8750, respectively. Addi-
 380 tionally, YOLOv10 excelled in precision and recall, achieving scores of 1.000 and 0.8530, respec-
 381 tively, making it the most robust model for this modality.

382 **Results on LCI:** In the LCI dataset, YOLOv10 achieved the highest mAP50 and mAP75 scores of
 383 0.9950, although YOLOv9 closely followed with the best mAP50-95 score of 0.8780. YOLOv10
 384 also demonstrated superior performance in precision with a score of 1.000, while YOLOv9 achieved
 385 the best recall score of 1.0000, highlighting its effectiveness in identifying true positive cases.

386 **Results on NBI:** For the NBI dataset, YOLOv9 delivered the best results with a mAP50 score of
 387 0.6880, a mAP50-95 score of 0.5580, and a mAP75 score of 0.638. YOLOv8 achieves the highest
 388 precision score with 1.0000, but the YOLOv10 and YOLOv9 have the highest recall scores, both
 389 achieving a score of 0.5000, showing their balanced performance in this modality. In addition, based
 390 on the dataset characteristics, and the benchmark results, we can assume that this dataset is more
 391 challenging for the detection model to focus on the important feature of the polyp, thus leading to
 392 the redundant features learning, and low recall results.

393 **Results on WLI:** For the WLI dataset, YOLOv5 achieved the highest mAP50 score of 0.9160, while
 394 YOLOv8 and YOLOv5 tied for the best mAP50-95 score of 0.7660. YOLOv8 also achieved the
 395 highest mAP75 score of 0.8680 and demonstrated strong precision with a score of 0.8830. Moreover,
 396 YOLOv8 excelled in the recall, achieving the top score of 0.8800, closely followed by YOLOv5 and
 397 YOLOv7. These results highlight the robustness of the dataset in guiding models to achieve high
 398 performance.

400 3.3 FEDERATED SEGMENTATION RESULTS ON WLI

401 Table 5 in Appendix A.1 presents the federated segmentation results. We apply the FedAvg algo-
 402 rithm McMahan et al. (2017) on three centers.

403 **Average Results:** On an average, SSFormer-L performed best with mIoU of 0.9214 and mDSC of
 404 0.9550. It also achieved the highest precision and F2, with recall being the second best. SSFormer-
 405 L is followed closely by PVT-CASCADE and DuAT, which achieved very similar results. PVT-
 406 CASCADE excelled in the recall (0.9541), whereas DuAT reported the second-best mIoU and
 407 mDSC.

408 **Results on zzz:** Similar to the average results, SSFormer-L attained the best outcomes on center zzz
 409 with mIoU of 0.9426 and mDSC of 0.9696. It also performed superior in precision and secured the
 410 second-highest scores in terms of recall and F2. PVT-CASCADE and DuAT closely matched their
 411 performance, where the former reported the highest recall (0.9757) and F2 (0.9713), and the latter
 412 achieved the second-highest mIoU and mDSC.

413 **Results on yyy:** On the center yyy data, DuAT was ranked as the top-performing model with the
 414 best scores in three metrics, including mIoU (0.9396), mDSC (0.9683) and F2 (0.9578). SSFormer-
 415 L proved to be the second-best performing model. Although DeepLabV3+ and TGANet excelled in
 416 precision and recall, respectively, their comparatively lower performance in other metrics prevented
 417 them from ranking among the best-performing models.

418 **Results on xxx:** Showing consistently superior performance, SSFormer-L achieved the best out-
 419 comes in this case as well, with the highest mIoU, mDSC, precision and F2 of 0.9123, 0.9487,
 420 0.9614, and 0.9439, respectively. The next best results are obtained using PVT-CASCADE, which
 421 are very similar to the DuAT outcomes.

423 4 DISCUSSION

426 The quantitative results across the diverse datasets and modalities in PolypDB highlight the effec-
 427 tiveness of contemporary segmentation models, especially those utilizing advanced backbone archi-
 428 tectures like PVTv2 and MiT-B4. The variation in performance observed across modalities—NBI,
 429 WLI, BLI, FICE, and LCI—emphasizes the complex challenges inherent in polyp segmentation,
 430 where selecting the appropriate model architecture is crucial for attaining superior performance.
 431 Regarding polyp detection, the results from the YOLO family of models are promising, highlighting
 the quality of our dataset in supporting these models. Additionally, benchmark results and visual-

432
 433
 434
 435
 436
 437
 438
 439
 440
 441
 442
 443
 444
 445
 446
 447
 448
 449
 450
 451
 452
 453
 454
 455
 456
 457
 458
 459
 460
 461
 462
 463
 464
 465
 466
 467
 468
 469
 470
 471
 472
 473
 474
 475
 476
 477
 478
 479
 480
 481
 482
 483
 484
 485
 486
 487
 488
 489
 490
 491
 492
 493
 494
 495
 496
 497
 498
 499
 500
 501
 502
 503
 504
 505
 506
 507
 508
 509
 510
 511
 512
 513
 514
 515
 516
 517
 518
 519
 520
 521
 522
 523
 524
 525
 526
 527
 528
 529
 530
 531
 532
 533
 534
 535
 536
 537
 538
 539
 540
 541
 542
 543
 544
 545
 546
 547
 548
 549
 550
 551
 552
 553
 554
 555
 556
 557
 558
 559
 560
 561
 562
 563
 564
 565
 566
 567
 568
 569
 570
 571
 572
 573
 574
 575
 576
 577
 578
 579
 580
 581
 582
 583
 584
 585
 586
 587
 588
 589
 590
 591
 592
 593
 594
 595
 596
 597
 598
 599
 600
 601
 602
 603
 604
 605
 606
 607
 608
 609
 610
 611
 612
 613
 614
 615
 616
 617
 618
 619
 620
 621
 622
 623
 624
 625
 626
 627
 628
 629
 630
 631
 632
 633
 634
 635
 636
 637
 638
 639
 640
 641
 642
 643
 644
 645
 646
 647
 648
 649
 650
 651
 652
 653
 654
 655
 656
 657
 658
 659
 660
 661
 662
 663
 664
 665
 666
 667
 668
 669
 670
 671
 672
 673
 674
 675
 676
 677
 678
 679
 680
 681
 682
 683
 684
 685
 686
 687
 688
 689
 690
 691
 692
 693
 694
 695
 696
 697
 698
 699
 700
 701
 702
 703
 704
 705
 706
 707
 708
 709
 710
 711
 712
 713
 714
 715
 716
 717
 718
 719
 720
 721
 722
 723
 724
 725
 726
 727
 728
 729
 730
 731
 732
 733
 734
 735
 736
 737
 738
 739
 740
 741
 742
 743
 744
 745
 746
 747
 748
 749
 750
 751
 752
 753
 754
 755
 756
 757
 758
 759
 760
 761
 762
 763
 764
 765
 766
 767
 768
 769
 770
 771
 772
 773
 774
 775
 776
 777
 778
 779
 780
 781
 782
 783
 784
 785
 786
 787
 788
 789
 790
 791
 792
 793
 794
 795
 796
 797
 798
 799
 800
 801
 802
 803
 804
 805
 806
 807
 808
 809
 810
 811
 812
 813
 814
 815
 816
 817
 818
 819
 820
 821
 822
 823
 824
 825
 826
 827
 828
 829
 830
 831
 832
 833
 834
 835
 836
 837
 838
 839
 840
 841
 842
 843
 844
 845
 846
 847
 848
 849
 850
 851
 852
 853
 854
 855
 856
 857
 858
 859
 860
 861
 862
 863
 864
 865
 866
 867
 868
 869
 870
 871
 872
 873
 874
 875
 876
 877
 878
 879
 880
 881
 882
 883
 884
 885
 886
 887
 888
 889
 890
 891
 892
 893
 894
 895
 896
 897
 898
 899
 900
 901
 902
 903
 904
 905
 906
 907
 908
 909
 910
 911
 912
 913
 914
 915
 916
 917
 918
 919
 920
 921
 922
 923
 924
 925
 926
 927
 928
 929
 930
 931
 932
 933
 934
 935
 936
 937
 938
 939
 940
 941
 942
 943
 944
 945
 946
 947
 948
 949
 950
 951
 952
 953
 954
 955
 956
 957
 958
 959
 960
 961
 962
 963
 964
 965
 966
 967
 968
 969
 970
 971
 972
 973
 974
 975
 976
 977
 978
 979
 980
 981
 982
 983
 984
 985
 986
 987
 988
 989
 990
 991
 992
 993
 994
 995
 996
 997
 998
 999
 1000
 1001
 1002
 1003
 1004
 1005
 1006
 1007
 1008
 1009
 1010
 1011
 1012
 1013
 1014
 1015
 1016
 1017
 1018
 1019
 1020
 1021
 1022
 1023
 1024
 1025
 1026
 1027
 1028
 1029
 1030
 1031
 1032
 1033
 1034
 1035
 1036
 1037
 1038
 1039
 1040
 1041
 1042
 1043
 1044
 1045
 1046
 1047
 1048
 1049
 1050
 1051
 1052
 1053
 1054
 1055
 1056
 1057
 1058
 1059
 1060
 1061
 1062
 1063
 1064
 1065
 1066
 1067
 1068
 1069
 1070
 1071
 1072
 1073
 1074
 1075
 1076
 1077
 1078
 1079
 1080
 1081
 1082
 1083
 1084
 1085
 1086
 1087
 1088
 1089
 1090
 1091
 1092
 1093
 1094
 1095
 1096
 1097
 1098
 1099
 1100
 1101
 1102
 1103
 1104
 1105
 1106
 1107
 1108
 1109
 1110
 1111
 1112
 1113
 1114
 1115
 1116
 1117
 1118
 1119
 1120
 1121
 1122
 1123
 1124
 1125
 1126
 1127
 1128
 1129
 1130
 1131
 1132
 1133
 1134
 1135
 1136
 1137
 1138
 1139
 1140
 1141
 1142
 1143
 1144
 1145
 1146
 1147
 1148
 1149
 1150
 1151
 1152
 1153
 1154
 1155
 1156
 1157
 1158
 1159
 1160
 1161
 1162
 1163
 1164
 1165
 1166
 1167
 1168
 1169
 1170
 1171
 1172
 1173
 1174
 1175
 1176
 1177
 1178
 1179
 1180
 1181
 1182
 1183
 1184
 1185
 1186
 1187
 1188
 1189
 1190
 1191
 1192
 1193
 1194
 1195
 1196
 1197
 1198
 1199
 1200
 1201
 1202
 1203
 1204
 1205
 1206
 1207
 1208
 1209
 1210
 1211
 1212
 1213
 1214
 1215
 1216
 1217
 1218
 1219
 1220
 1221
 1222
 1223
 1224
 1225
 1226
 1227
 1228
 1229
 1230
 1231
 1232
 1233
 1234
 1235
 1236
 1237
 1238
 1239
 1240
 1241
 1242
 1243
 1244
 1245
 1246
 1247
 1248
 1249
 1250
 1251
 1252
 1253
 1254
 1255
 1256
 1257
 1258
 1259
 1260
 1261
 1262
 1263
 1264
 1265
 1266
 1267
 1268
 1269
 1270
 1271
 1272
 1273
 1274
 1275
 1276
 1277
 1278
 1279
 1280
 1281
 1282
 1283
 1284
 1285
 1286
 1287
 1288
 1289
 1290
 1291
 1292
 1293
 1294
 1295
 1296
 1297
 1298
 1299
 1300
 1301
 1302
 1303
 1304
 1305
 1306
 1307
 1308
 1309
 1310
 1311
 1312
 1313
 1314
 1315
 1316
 1317
 1318
 1319
 1320
 1321
 1322
 1323
 1324
 1325
 1326
 1327
 1328
 1329
 1330
 1331
 1332
 1333
 1334
 1335
 1336
 1337
 1338
 1339
 1340
 1341
 1342
 1343
 1344
 1345
 1346
 1347
 1348
 1349
 1350
 1351
 1352
 1353
 1354
 1355
 1356
 1357
 1358
 1359
 1360
 1361
 1362
 1363
 1364
 1365
 1366
 1367
 1368
 1369
 1370
 1371
 1372
 1373
 1374
 1375
 1376
 1377
 1378
 1379
 1380
 1381
 1382
 1383
 1384
 1385
 1386
 1387
 1388
 1389
 1390
 1391
 1392
 1393
 1394
 1395
 1396
 1397
 1398
 1399
 1400
 1401
 1402
 1403
 1404
 1405
 1406
 1407
 1408
 1409
 1410
 1411
 1412
 1413
 1414
 1415
 1416
 1417
 1418
 1419
 1420
 1421
 1422
 1423
 1424
 1425
 1426
 1427
 1428
 1429
 1430
 1431
 1432
 1433
 1434
 1435
 1436
 1437
 1438
 1439
 1440
 1441
 1442
 1443
 1444
 1445
 1446
 1447
 1448
 1449
 1450
 1451
 1452
 1453
 1454
 1455
 1456
 1457
 1458
 1459
 1460
 1461
 1462
 1463
 1464
 1465
 1466
 1467
 1468
 1469
 1470
 1471
 1472
 1473
 1474
 1475
 1476
 1477
 1478
 1479
 1480
 1481
 1482
 1483
 1484
 1485
 1486
 1487
 1488
 1489
 1490
 1491
 1492
 1493
 1494
 1495
 1496
 1497
 1498
 1499
 1500
 1501
 1502
 1503
 1504
 1505
 1506
 1507
 1508
 1509
 1510
 1511
 1512
 1513
 1514
 1515
 1516
 1517
 1518
 1519
 1520
 1521
 1522
 1523
 1524
 1525
 1526
 1527
 1528
 1529
 1530
 1531
 1532
 1533
 1534
 1535
 1536
 1537
 1538
 1539
 1540
 1541
 1542
 1543
 1544
 1545
 1546
 1547
 1548
 1549
 1550
 1551
 1552
 1553
 1554
 1555
 1556
 1557
 1558
 1559
 1560
 1561
 1562
 1563
 1564
 1565
 1566
 1567
 1568
 1569
 1570
 1571
 1572
 1573
 1574
 1575
 1576
 1577
 1578
 1579
 1580
 1581
 1582
 1583
 1584
 1585
 1586
 1587
 1588
 1589
 1590
 1591
 1592
 1593
 1594
 1595
 1596
 1597
 1598
 1599
 1600
 1601
 1602
 1603
 1604
 1605
 1606
 1607
 1608
 1609
 1610
 1611
 1612
 1613
 1614
 1615
 1616
 1617
 1618
 1619
 1620
 1621
 1622
 1623
 1624
 1625
 1626
 1627
 1628
 1629
 1630
 1631
 1632
 1633
 1634
 1635
 1636
 1637
 1638
 1639
 1640
 1641
 1642
 1643
 1644
 1645
 1646
 1647
 1648
 1649
 1650
 1651
 1652
 1653
 1654
 1655
 1656
 1657
 1658
 1659
 1660
 1661
 1662
 1663
 1664
 1665
 1666
 1667
 1668
 1669
 1670
 1671
 1672
 1673
 1674
 1675
 1676
 1677
 1678
 1679
 1680
 1681
 1682
 1683
 1684
 1685
 1686
 1687
 1688
 1689
 1690
 1691
 1692
 1693
 1694
 1695
 1696
 1697
 1698
 1699
 1700
 1701
 1702
 1703
 1704
 1705
 1706
 1707
 1708
 1709
 1710
 1711
 1712
 1713
 1714
 1715
 1716
 1717
 1718
 1719
 1720
 1721
 1722
 1723
 1724
 1725
 1726
 1727
 1728
 1729
 1730
 1731
 1732
 1733
 1734
 1735
 1736
 1737
 1738
 1739
 1740
 1741
 1742
 1743
 1744
 1745
 1746
 1747
 1748
 1749
 1750
 1751
 1752
 1753
 1754
 1755
 1756
 1757
 1758
 1759
 1760
 1761
 1762
 1763
 1764
 1765
 1766
 1767
 1768
 1769
 1770
 1771
 1772
 1773
 1774
 1775
 1776
 1777
 1778
 1779
 1780
 1781
 1782
 1783
 1784
 1785
 1786
 1787
 1788
 1789
 1790
 1791
 1792
 1793
 1794
 1795
 1796
 1797
 1798
 1799
 1800
 1801
 1802
 1803
 1804
 1805
 1806
 1807
 1808
 1809
 1810
 1811
 1812
 1813
 1814
 1815
 1816
 1817
 1818
 1819
 1820
 1821
 1822
 1823
 1824
 1825
 1826
 1827
 1828
 1829
 1830
 1831
 1832
 1833
 1834
 1835
 1836
 1837
 1838
 1839
 1840
 1841
 1842
 1843
 1844
 1845
 1846
 1847
 1848
 1849
 1850
 1851
 1852
 1853
 1854
 1855
 1856
 1857
 1858
 1859
 1860
 1861
 1862
 1863
 1864
 1865
 1866
 1867
 1868
 1869
 1870
 1871
 1872
 1873
 1874
 1875
 1876
 1877
 1878
 1879
 1880
 1881
 1882
 1883
 1884
 1885
 1886
 1887
 1888
 1889
 1890
 1891
 1892
 1893
 1894
 1895
 1896
 1897
 1898
 1899
 1900
 1901
 1902
 1903
 1904
 1905
 1906
 1907
 1908
 1909
 1910
 1911
 1912
 1913
 1914
 1915
 1916
 1917
 1

486 REFERENCES
487

488 Sharib Ali, Debesh Jha, Noha Ghatwary, Stefano Realdon, Renato Cannizzaro, Osama E Salem,
489 Dominique Lamarque, Christian Daul, Michael A Riegler, Kim V Anonsen, et al. Polypgen: A
490 multi-center polyp detection and segmentation dataset for generalisability assessment. *Scientific
491 Report*, 2023.

492 Jorge Bernal and Histace Aymeric. MICCAI endoscopic vision challenge polyp detection and seg-
493 mentation, 2017.

494 Hanna Borgli, Vajira Thambawita, Pia H Smedsrud, Steven Hicks, Debesh Jha, Sigrun L Eskeland,
495 Kristin Ranheim Randel, Konstantin Pogorelov, Mathias Lux, Duc Tien Dang Nguyen, et al.
496 Hyperkvasir, a comprehensive multi-class image and video dataset for gastrointestinal endoscopy.
497 *Scientific data*, 7(1):1–14, 2020.

498 Liang-Chieh Chen, Yukun Zhu, George Papandreou, Florian Schroff, and Hartwig Adam. Encoder-
499 Decoder with Atrous Separable Convolution for Semantic Image Segmentation. In *Proceedings
500 of the European conference on computer vision (ECCV)*, pp. 801–818, 2018.

501 Deng-Ping Fan, Ge-Peng Ji, Tao Zhou, Geng Chen, Huazhu Fu, Jianbing Shen, and Ling Shao.
502 PraNet: Parallel Reverse Attention Network for Polyp Segmentation. In *Proceedings of the Inter-
503 national conference on medical image computing and computer-assisted intervention (MICCAI)*,
504 pp. 263–273, 2020.

505 Jeremy T Hetzel, Christopher S Huang, Jennifer A Coukos, Kelsey Omstead, Sandra R Cerdá, Shi
506 Yang, Michael J O’brien, and Francis A Farraye. Variation in the detection of serrated polyps in
507 an average risk colorectal cancer screening cohort. *Official journal of the American College of
508 Gastroenterology—ACG*, 105(12):2656–2664, 2010.

509 Debesh Jha, Pia H Smedsrud, Michael A Riegler, Pål Halvorsen, Thomas de Lange, Dag Johansen,
510 and Håvard D Johansen. Kvasir-SEG: A Segmented Polyp Dataset. In *Proceedings of the Inter-
511 national Conference on Multimedia Modeling (MMM)*, pp. 451–462, 2020.

512 Debesh Jha, Pia H Smedsrud, Dag Johansen, Thomas de Lange, Håvard D Johansen, Pål Halvorsen,
513 and Michael A Riegler. A Comprehensive Study on Colorectal Polyp Segmentation With Re-
514 sUNet++, Conditional Random Field and Test-Time augmentation. *IEEE Journal of Biomedical
515 and Health Informatics*, 25(6):2029–2040, 2021.

516 Debesh Jha, Nikhil Kumar Tomar, Vanshali Sharma, and Ulas Bagci. Transnetr: transformer-based
517 residual network for polyp segmentation with multi-center out-of-distribution testing. In *Medical
518 Imaging with Deep Learning*, pp. 1372–1384, 2024.

519 Glenn Jocher. Yolov5 by ultralytics, 2020. URL <https://github.com/ultralytics/yolov5>.

520 Uri Ladabaum, Ann Fioritto, Aya Mitani, Manisha Desai, Jane P Kim, Douglas K Rex, Thomas
521 Imperiale, and Naresh Gunaratnam. Real-time optical biopsy of colon polyps with narrow band
522 imaging in community practice does not yet meet key thresholds for clinical decisions. *Gastroen-
523 terology*, 144(1):81–91, 2013.

524 AM Leufkens, MGH Van Oijen, FP Vleggaar, and PD Siersema. Factors influencing the miss rate
525 of polyps in a back-to-back colonoscopy study. *Endoscopy*, 44(05):470–475, 2012.

526 Ange Lou, Shuyue Guan, Hanseok Ko, and Murray H Loew. Caranet: Context axial reverse attention
527 network for segmentation of small medical objects. In *Medical Imaging 2022: Image Processing*,
528 volume 12032, pp. 81–92, 2022.

529 Brendan McMahan, Eider Moore, Daniel Ramage, Seth Hampson, and Blaise Aguera y Arcas.
530 Communication-efficient learning of deep networks from decentralized data. In *Artificial intelli-
531 gence and statistics*, pp. 1273–1282, 2017.

532 Phan Ngoc Lan, Nguyen Sy An, Dao Viet Hang, Dao Van Long, Tran Quang Trung, Nguyen Thi
533 Thuy, and Dinh Viet Sang. Neounet: Towards accurate colon polyp segmentation and neoplasm
534 detection. In *Proceedings of the International Symposium on Visual Computing*, pp. 15–28, 2021.

540 Md Mostafijur Rahman and Radu Marculescu. Medical image segmentation via cascaded attention
 541 decoding. In *Proceedings of the IEEE/CVF Winter Conference on Applications of Computer*
 542 *Vision*, pp. 6222–6231, 2023.

543

544 Colin J Rees, Praveen T Rajasekhar, Ana Wilson, Helen Close, Matthew D Rutter, Brian P Saun-
 545 ders, James E East, Rebecca Maier, Morgan Moorghen, Usman Muhammad, et al. Narrow band
 546 imaging optical diagnosis of small colorectal polyps in routine clinical practice: the detect inspect
 547 characterise resect and discard 2 (discard 2) study. *Gut*, 66(5):887–895, 2017.

548 Olaf Ronneberger, Philipp Fischer, and Thomas Brox. U-Net: Convolutional Networks for Biomed-
 549 ical Image Segmentation. In *Proceedings of the International Conference on Medical image*
 550 *computing and computer-assisted intervention (MICCAI)*, pp. 234–241, 2015.

551

552 Matthew D Rutter, Iosif Beintaris, Roland Valori, Han Mo Chiu, Douglas A Corley, Miriam Cu-
 553 trecasas, Evelien Dekker, Anna Forsberg, Jola Gore-Booth, Ulrike Haug, et al. World endoscopy
 554 organization consensus statements on post-colonoscopy and post-imaging colorectal cancer. *Gas-
 555 troenterology*, 155(3):909–925, 2018.

556 Wentao Shi, Jing Xu, and Pan Gao. Ssformer: A lightweight transformer for semantic segmenta-
 557 tion. In *Proceedings of the IEEE 24th International Workshop on Multimedia Signal Processing*
 558 (*MMSP*), pp. 1–5, 2022.

559

560 Pia H Smedsrød, Vajira Thambawita, Steven A Hicks, Henrik Gjestang, Oda Olsen Nedrejord, Espen
 561 Næss, Hanna Borgli, Debesh Jha, Tor Jan Derek Berstad, Sigrun L Eskeland, et al. Kvasir-capsule,
 562 a video capsule endoscopy dataset. *Scientific Data*, 8(1):1–10, 2021.

563 Hyuna Sung, Jacques Ferlay, Rebecca L Siegel, Mathieu Laversanne, Isabelle Soerjomataram,
 564 Ahmedin Jemal, and Freddie Bray. Global Cancer Statistics 2020: GLOBOCAN Estimates of
 565 Incidence and Mortality Worldwide for 36 Cancers in 185 Countries. *CA: a cancer journal for*
 566 *clinicians*, 71(3):209–249, 2021.

567 Nima Tajbakhsh, Suryakanth R Gurudu, and Jianming Liang. Automated polyp detection in
 568 colonoscopy videos using shape and context information. *IEEE transactions on medical imaging*,
 569 35(2):630–644, 2015.

570

571 Feilong Tang, Zhongxing Xu, Qiming Huang, Jinfeng Wang, Xianxu Hou, Jionglong Su, and Jingxin
 572 Liu. Duat: Dual-aggregation transformer network for medical image segmentation. In *Proceed-
 573 ings of the Chinese Conference on Pattern Recognition and Computer Vision (PRCV)*, pp. 343–
 574 356, 2023.

575 Nikhil Kumar Tomar, Debesh Jha, Ulas Bagci, and Sharib Ali. TGANet: text-guided attention for
 576 improved polyp segmentation. In *Proceedings of the Medical Image Computing and Computer*
 577 *Assisted Intervention (MICCAI)*, pp. 151–160, 2022.

578

579 Ultralytics. Yolov8 - ultralytics. <https://github.com/ultralytics/ultralytics>,
 580 Accessed: [Date].

581 Jeya Maria Jose Valanarasu and Vishal M Patel. Unext: Mlp-based rapid medical image segmen-
 582 tation network. In *International conference on medical image computing and computer-assisted*
 583 *intervention*, pp. 23–33. Springer, 2022.

584

585 Jeroen C Van Rijn, Johannes B Reitsma, Jaap Stoker, Patrick M Bossuyt, Sander J Van Deventer,
 586 and Evelien Dekker. Polyp miss rate determined by tandem colonoscopy: a systematic review.
 587 *Official journal of the American College of Gastroenterology—ACG*, 101(2):343–350, 2006.

588

589 David EFWM van Toledo, Joep EG IJspeert, Patrick MM Bossuyt, Arne GC Bleijenberg, Monique E
 590 van Leerdam, Manon van der Vlugt, Iris Lansdorp-Vogelaar, Manon CW Spaander, and Evelien
 591 Dekker. Serrated polyp detection and risk of interval post-colonoscopy colorectal cancer: a
 592 population-based study. *The Lancet Gastroenterology & Hepatology*, 7(8):747–754, 2022.

593

Ao Wang, Hui Chen, Lihao Liu, Kai Chen, Zijia Lin, Jungong Han, and Guiguang Ding. Yolov10:
 Real-time end-to-end object detection. *arXiv preprint arXiv:2405.14458*, 2024a.

594
 595 Table 5: Federated Segmentation results on WLI. Weights are aggregated equally. The best scores
 596 are shown in **bold**, whereas the second best score is underlined.

Method	mIoU	mDSC	Recall	Precision	F2
Average					
TransNetR Jha et al. (2024)	0.8771	0.9218	0.9289	0.9400	0.9236
U-Net Ronneberger et al. (2015)	0.6362	0.7349	0.7929	0.7648	0.7562
U-NeXt Valanarasu & Patel (2022)	0.7049	0.7837	0.7977	0.8554	0.7853
DeepLabV3+ Chen et al. (2018)	0.9022	0.9423	0.9426	0.9539	0.9408
PraNet Fan et al. (2020)	0.9048	0.9438	0.9390	<u>0.9593</u>	0.9397
Caranet Lou et al. (2022)	0.8941	0.9362	0.9324	0.9528	0.9325
TGANet Tomar et al. (2022)	0.8837	0.9290	0.9445	0.9299	0.9345
PVT-CASCADE Rahman & Marculescu (2023)	0.9105	0.9477	0.9541	0.9492	<u>0.9504</u>
DuAT Tang et al. (2023)	0.9109	0.9478	0.9485	0.9550	0.9465
SSFormer-L Shi et al. (2022)	0.9214	0.9550	0.9503	0.9642	0.9517
Center: zzz					
TransNetR Jha et al. (2024)	0.9199	0.9524	0.9598	0.9578	0.9561
U-Net Ronneberger et al. (2015)	0.8072	0.8714	0.8788	0.9193	0.8729
U-NeXt Valanarasu & Patel (2022)	0.8018	0.8661	0.8660	0.9087	0.8635
DeepLabV3+ Chen et al. (2018)	0.9358	0.9656	0.9663	0.9678	0.9656
PraNet Fan et al. (2020)	0.9331	0.9640	0.9669	0.9643	0.9654
Caranet Lou et al. (2022)	0.9198	0.9537	0.9613	0.9563	0.9578
TGANet Tomar et al. (2022)	0.9311	0.9629	0.9608	<u>0.9684</u>	0.9612
PVT-CASCADE Rahman & Marculescu (2023)	0.9369	0.9659	0.9757	0.9592	0.9713
DuAT Tang et al. (2023)	0.9397	0.9679	0.9714	0.9661	0.9698
SSFormer-L Shi et al. (2022)	0.9426	0.9696	0.9726	0.9685	0.9711
Center: yy					
TransNetR Jha et al. (2024)	0.8784	0.9308	0.8848	0.9899	0.9020
U-Net Ronneberger et al. (2015)	0.6511	0.7287	0.6607	0.9820	0.6830
U-NeXt Valanarasu & Patel (2022)	0.6711	0.7414	0.7173	0.9449	0.7255
DeepLabV3+ Chen et al. (2018)	0.9159	0.9547	0.9225	0.9916	0.9349
PraNet Fan et al. (2020)	0.8968	0.9428	0.9087	0.9847	0.9216
Caranet Lou et al. (2022)	0.8921	0.9406	0.9100	0.9802	0.9213
TGANet Tomar et al. (2022)	0.8285	0.8959	0.9883	0.8340	0.9461
PVT-CASCADE Rahman & Marculescu (2023)	0.9006	0.9438	0.9148	0.9829	0.9255
DuAT Tang et al. (2023)	0.9396	0.9683	<u>0.9510</u>	0.9869	0.9578
SSFormer-L Shi et al. (2022)	0.9186	<u>0.9555</u>	0.9257	<u>0.9915</u>	0.9370
Center: xxx					
TransNetR Jha et al. (2024)	0.8593	0.9091	0.9173	0.9314	0.9108
U-Net Ronneberger et al. (2015)	0.5683	0.6798	0.7534	0.7074	0.7066
U-NeXt Valanarasu & Patel (2022)	0.6610	0.7465	0.7645	0.8342	0.7486
DeepLabV3+ Chen et al. (2018)	0.8876	0.9323	0.9326	0.9476	0.9302
PraNet Fan et al. (2020)	0.8934	0.9356	0.9282	<u>0.9569</u>	0.9296
Caranet Lou et al. (2022)	0.8834	0.9289	0.9215	0.9499	0.9226
TGANet Tomar et al. (2022)	0.8862	0.9161	0.9385	0.9153	0.9244
PVT-CASCADE Rahman & Marculescu (2023)	0.8990	<u>0.9399</u>	0.9452	0.9442	0.9417
DuAT Tang et al. (2023)	0.8985	0.9391	0.9399	0.9489	0.9372
SSFormer-L Shi et al. (2022)	0.9123	0.9487	<u>0.9416</u>	0.9614	0.9439

611
 612 Chien-Yao Wang, Alexey Bochkovskiy, and Hong-Yuan Mark Liao. Yolov7: Trainable bag-of-
 613 freebies sets new state-of-the-art for real-time object detectors. In *Proceedings of the IEEE/CVF*
 614 conference on computer vision and pattern recognition, pp. 7464–7475, 2023.

615
 616 Chien-Yao Wang, I-Hau Yeh, and Hong-Yuan Mark Liao. Yolov9: Learning what you want to learn
 617 using programmable gradient information. *arXiv preprint arXiv:2402.13616*, 2024b.

618
 619 K Robin Yabroff, Angela Mariotto, Florence Tangka, Jingxuan Zhao, Farhad Islami, Hyuna Sung,
 620 Recinda L Sherman, S Jane Henley, Ahmedin Jemal, and Elizabeth M Ward. Annual Report to
 621 the Nation on the Status of Cancer, Part 2: Patient Economic Burden Associated With Cancer
 622 Care. *JNCI: Journal of the National Cancer Institute*, 113(12):1670–1682, 2021.

636 637 A APPENDIX

638 A.1 IMPACT OF ADVERSARIAL ATTACK ON POLYPDB

639
 640 We introduce results for the adversarial attack problem with the Fast Gradient Sign Method (FGSM)
 641 method to evaluate the robustness of deep learning models on the PolypDB dataset. By introducing
 642 small perturbations to the colonoscopy frames, we aim to expose vulnerabilities in the segmentation
 643 models. These attacks are significant in medical imaging as slight inaccuracies in the segmentation
 644 or detection results can lead to misdiagnosis. Thus, we evaluate the impact of FGSM on the baseline
 645 segmentation models on our PolypDB dataset.

646
 647 Table 5 shows the comparison of the qualitative results for segmentation for FSGM attack on the
 648 PolypDB dataset. From the table, we can observe that models like UNet, DeepLabV3+, DuAT, and

648 TGANet, which performed well on the clean dataset, show substantial drops in evaluation metrics
 649 such as mIoU and DSC under adversarial conditions, demonstrating their susceptibility to pertur-
 650 bations. For example, UNet consistently achieved a low mIoU of 0.0485, 0.0557, 0.1057, 0.1487, and
 651 0.0985, showing its resilience under challenging conditions.

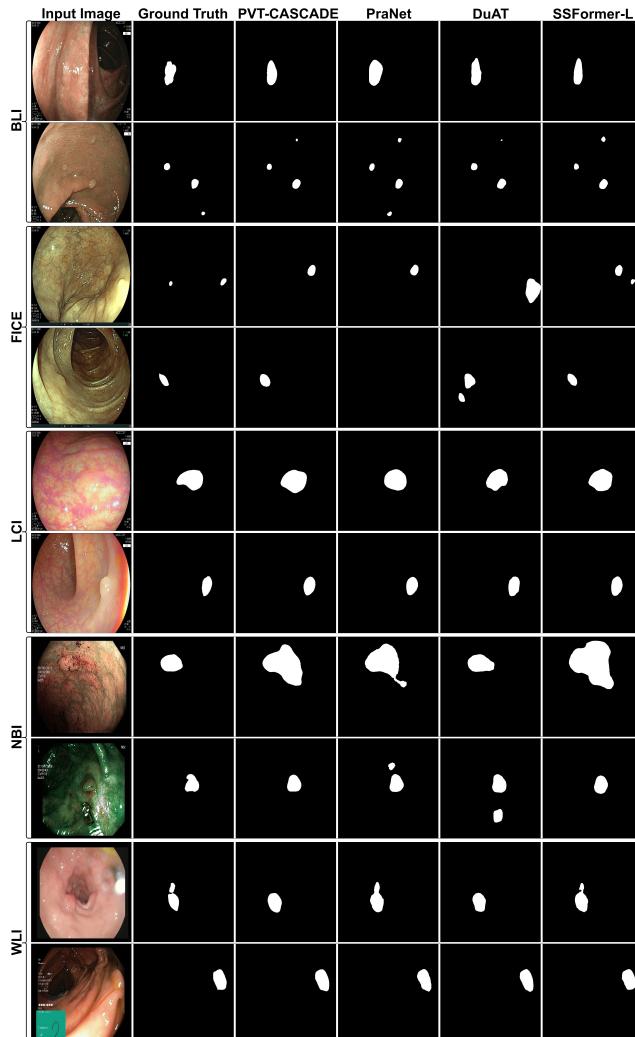
652 However, models such as PVT-CASCADE and SSFormer-L achieve consistently high-performance
 653 metrics, for example, PVT-CASCADE obtained an mIoU of 0.6038 for WLI, 0.5153 for BLI, 0.4159
 654 for FICE and 0.2560 for BLI. Similarly, SSFormer-L obtained a high mIoU of 0.5831 for WLI and
 655 0.5476 for LCI. This underscores the resilience of these models even under challenging conditions.
 656

657 Due to the high image diversity, multi-center nature and high image quality, these models still re-
 658 tained competitive performance. From here, we can conclude that PolypDB is not only a critical
 659 resource for benchmarking and advancing segmentation methodologies but also useful resource for
 660 developing segmentation and detection algorithms that can withstand real-world adversarial chal-
 661 lenges such as adversarial vulnerabilities.

662 A.2 QUALITATIVE RESULTS

664 **Polyp Segmentation:** Figure 2 visualizes our segmented results of different methods on our dataset.

665 **Polyp Detection:** Figure 3 presents the bounding boxes visualization across five different datasets



701 Figure 2: Qualitative results for the different methods across various modalities in the PolypDB
 702 dataset.

702 in all of the modalities of our dataset.
 703

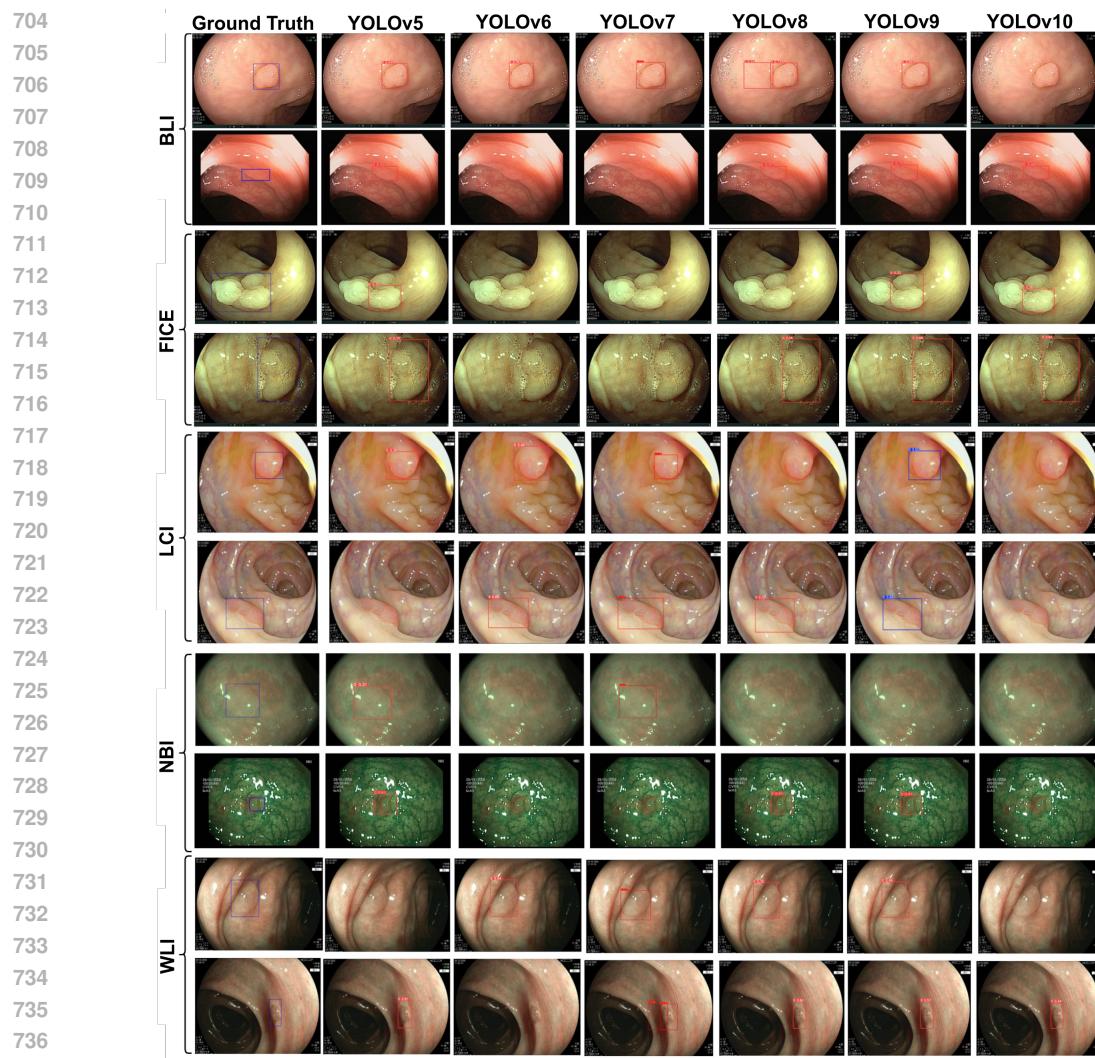


Figure 3: Qualitative results for the detection task on the different modalities in the PolypDB dataset.