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ABSTRACT

Recently, multi-agent reinforcement learning (MARL) has shown its ability in
solving sequential decision-making problems in complicated multi-agent envi-
ronments. However, uncertainties from observations and executions undermine
its performance when MARL methods are deployed in real-world applications.
While crucial for deployment, a systematic robustness evaluation for MARL al-
gorithms is not present. In this work, we utilize Gaussian noise attacks (GNAs) to
examine the robustness of a benchmark MARL algorithm: multi-agent deep de-
terministic policy gradient (MADDPG). To the best of our knowledge, our work
is the first to investigate the robustness of MADDPG to GNAs to observation and
execution information. Our experiments show that GNA has totally different pat-
terns in observation-wise attacks and execution-wise attacks. Furthermore, there
are counter-intuitive insights from the experimental results which could guide re-
searchers in future MARL methods development.

1 INTRODUCTION
Multi-agent reinforcement learning (MARL) has attracted increasing attention in recent years for its
capability of solving real-world sequential decision-making problems which involve the interactions
of multiple agents in a shared environment, for example, in game playing, traffic management, and
robotics (Mnih et al., 2015; Sallab et al., 2017; He et al., 2022). However, uncertainties from obser-
vations and executions may degrade the performance of MARL algorithms and may yield unpleasant
results in real-world scenarios (Tessler et al., 2019; Zhang et al., 2021; Dou et al., 2022a;b). Dif-
ferent sources of uncertainties, including measurement errors, model errors, operation errors, etc.,
need to be considered before algorithm deployments. Thus, to ensure that the MARL algorithms are
reliable, adaptable, trustworthy, and suitable in a wide range of real-world applications, it is essential
to evaluate robustness of MARL algorithms before their deployment (Pang et al., 2021). However,
there is a lack of systematic robustness evaluations for MARL algorithms.

Researchers commonly quantify the robustness of machine learning (ML) methods by testing the
performance of an ML algorithm after addicting Gaussian noise (a statistical noise with a Gaussian
distribution) into the input (Pezzementi et al., 2018; Rauber et al., 2017; Turchetta et al., 2020).
This approach, known as Gaussian noise attack (GNA), provides a universal baseline robustness
evaluation for ML methods. Therefore, in this work, we systematically evaluate the robustness of a
benchmark MARL algorithm (multi-agent deep deterministic policy gradient, i.e., MADDPG (Lowe
et al., 2017)) using GNAs. To the best of our knowledge, our work is the first to investigate the ro-
bustness of the benchmark MARL algorithm to Gaussian noise attacks to observation and execution
information. We find that GNA has totally different patterns in the results of observation-wise at-
tacks and execution-wise attacks. MADDPG’s performance also highly depends on the multi-agent
environment settings: in complicated environments, MADDPG can even achieve better performance
under GNA than without attacks. Other counter-intuitive experimental results also help researchers
to better design robust MARL algorithms (Yu et al., 2021).

2 METHODOLOGY AND EXPERIMENTS
MADDPG is a benchmark MARL algorithm that works very well for both cooperative and compet-
itive environments (Lowe et al., 2017). We train MADDPG policies for agents in MPE (https:
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//github.com/openai/multiagent-particle-envs), a benchmark multi-agent envi-
ronment. There are 8 multi-agent scenarios in MPE: Mutual communication (MC), Cooperative
communication (CC), Cooperative navigation (CN), Physical deception (PD), Encrypted communi-
cation (EC), Keep-away (KA), Predator-prey (PP) and Complicated game (CG). Each scenario is a
multi-agent game that requires multiple agents to collaborate or/and compete. We provide detailed
descriptions of these scenarios in Appendix C. The hyper-parameters we use to train our policies
are provided in Appendix C, table 1. After each step of execution, we collect the reward received
by each agent. By the end of the testing, which lasts for 10000 steps, we use agents’ mean reward
as a metric of the performance of MADDPG. In particular, we set this metric under no noise as our
baseline. In the procedure of Robustness Evaluation, we inject a series of i.i.d. Gaussian noise into
either the observation information (input of the policy) or the execution (output of the policy) when
testing the well-trained MADDPG policies in each scenario. We use N (µ, σ) to denote a Gaussian
noise with mean µ and standard deviation (std) σ. See Appendix D for details of these attacks. To
comprehensively understand the effect of Gaussian noise attack to MADDPG algorithm, we respec-
tively set µ = −3,−2,−1, 0.001, 0.05, 0.1, 0.25, 0.5, 1, 2, 3 and σ = 3, 2, 1, 0.5, 0.25, 0.1.

Robustness to observation-wise GNA: Depending on scenarios, robustness of MADDPG to GNA
are distinct. See Fig. 1 and Fig. 3 for illustration. In scenarios MC, CC, CN, KA, and CG, under
observation-GNA, there is a major decline on the agents’ mean reward compared to the baselines
(the mean reward of MADDPG under no noise). Interestingly, such decline even occurs under
N (0, 0.1), which is supposed to closely resemble the baseline. Also unexpectedly, instead of de-
cline, scenarios PP, EC and PD witness improvement of the agents’ mean reward under GNA with
certain parameters. Due to page limits, more experimental results are in Appendix E.

Figure 1: Agents’ mean rewards under observation-wise GNA with different µ and σ.

Robustness to execution-wise GNA: In scenarios CN, CC, KA, the agents’ mean reward is re-
luctant to the change of GNAs’ mean values and MADDPG is robust to GNAs with small σ, i.e.
the mean reward is below but close to that of the baseline. In scenarios PD, PP and CG, GNAs’ µ
has still limited influences on the agents’ mean reward, but σ plays a key role: although small σ
degrades the performance of agents as expected, large σ even improves the agents’ reward in PD
compared to the baseline; moreover, we observe the inverse effect of σ in PP and CG, that is, the
agents’ reward increases under GNAs with small σ but decreases with large σ. See Fig. 2 and 4 for
illustration. More experimental results are in Appendix E.

Figure 2: Agents’ mean rewards under execution-wise GNA with different µ and σ.

Conclusion and Future Work: Considering that there is limited work regarding robustness eval-
uation for multi-agent reinforcement learning (MARL) methods, we conduct a systematic robust-
ness analysis for a benchmark MARL algorithm with respective to observation and execution un-
certainties, under Gaussian noise attacks. The counter-intuitive phenomena we find in the experi-
ments could help researchers better design robust MARL algorithms. However, as real-world data
noise sometimes follows a non-Gaussian distribution, it would be valuable to see other types of
noise/attacks in robustness evaluation, which is considered as our future work.
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A PRELIMINARY: MARL AND MADDPG

Multi-Agent Reinforcement Learning (MARL) is a rapidly growing subfield of reinforcement learn-
ing (Zhao et al., 2022; Mei et al., 2023b), that focuses on developing algorithms and techniques
for agents to learn how to collaborate and compete with each other (Zhou et al., 2022). MARL is
relevant in many real-world applications such as traffic control (He et al., 2022), and game-playing
(He et al., 2023a), where multiple agents need to coordinate their actions to achieve a common
goal or compete with others. In general, we use a Markov Game to model a MARL problem
(Littman, 1994; Owen, 2013). We use a tuple G := (N , S, {Ai}i∈N , {ri}i∈N , p, γ) to denote a
Markov Game, in which S is the state space, N is a set of N agents, Ai is the action space of
agent i. We define the joint actions space A = A1 × · · · × AN . γ ∈ [0, 1) is the discount-
ing factor. The state transition function p : S × A → ∆(S) is a mapping from the current state
and joint action to ∆(S), where ∆(S) represents the set of all probability distributions over the
joint state space S. ri : S × A → R is the reward function for ith agent. At time t, agent
i chooses its action ait according to a policy πi : S → ∆(Ai). We denote the joint policy as
π = (π1, · · · , πN ). For each agent i, its goal is to maximize its expected sum of discounted re-
wards, i.e. J i(s, π) = E

[∑∞
t=1 γ

t−1rit(st, at)|s1 = s, at ∼ π(·|st)
]
.

Compare with single-agent RL problems, the MARL problem is more difficult to solve. Because
from the perspective of each agent, they are facing a non-stationary environment. To solve this
non-stationary issue, Lowe et al. (2017) proposed a multi-agent deep deterministic policy gradient
(MADDPG) algorithm which adopts the framework of Centralized Training and Decentralized Ex-
ecution (CTDE) and deep deterministic policy gradient (DDPG). DDPG is an Actor-Critic method
and is based on the deterministic policy gradient algorithm (DPG). It uses a parameterized deter-
ministic policy µθ(s) : S → A instead of a stochastic policy πθ(a|s) in the objective function. The
policy gradient has the following format:

∇θJ(θ) = Eτ∼D
[
∇aq

µ(s, a)∇θµθ(s)|a=µθ(s)

]
(1)

CTDE framework enables MADDPG to extend actor-critic policy gradient methods to a multi-agent
version where the critic can use extra information about the policies of other agents to ease training,
while the actor is only augmented with local information. In an N -agent Markov game with a set
of agent policies {µ1, · · · , µN}, the critic Qi(x, a1, ..., aN ) is a centralized action-value function
that inputs all agents’ action and some state information x, outputs the Q-value for agent i. Here
policies and critics are usually approximated by deep neural networks (DNNs). State information x
could consist of the observations of all agents and also could include additional state information if
available. The policy gradient is shown below:

∇θiJ i(θi) = Eτ∼D
[
∇aiqµi (x, a

1, · · · , aN )∇θiµi(oi)|ai=µi(oi)

]
(2)

B RELATED WORK

Since MARL recently achieved prominent performance in many decision-making applications (Dou
et al., 2022c; Liu et al., 2022), researchers proposed many MARL methods, which can be generally
divided into two categories: policy-based methods and value-based methods. Policy-based methods
usually have an actor-critic framework, such as MADDPG (Lowe et al., 2017), COMA (Foerster
& Assael, 2016) and MAAC (Iqbal & Sha, 2019). Value-based methods are usually used to solve
collaborative games by factorizing the value function. For instance, VDN (Sunehag et al., 2018),
QMIX (Rashid & Samvelyan, 2018), ReMIX (Mei et al., 2023a) can decompose the team value
function into agent-wise value functions. Some researchers also adopt the idea of graph, such as
Graph Neural Network (Li & Nabavi, 2023; Li et al., 2021; Xiao et al.; 2021; Chen et al., 2022)
in developing MARL algorithms (Naderializadeh et al., 2020; Hu et al., 2021). However, without
considering uncertainties from the environment, sensing, and execution, the performance of well-
designed methods can be degraded when deployed in the real world (He et al., 2023b; 2020; Miao
et al., 2021; Su et al., 2022; Hu et al., 2022). Adversarial training is empirically shown to improve
agents’ robustness to make the policies experience possible adversarial attacks (Chen et al., 2021).
Pinto et al. (2017) formulate the robust RL problem as a minimax problem (Huang et al., 2023; Wu
et al., 2023; Elmachtoub et al., 2023; Huang et al., 2021) then propose a method to train an agent
in the presence of disturbance and obtain more robust policies. Zhang & Malkawi (2022) train the
RL in real world environment with uncertainty and apply it in smart building control. There are
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also some robust MARL methods proposed to defend state uncertainty (Han et al., 2022; He et al.,
2023a), and model uncertainty (Zhang et al., 2020). However, there is a lack of systematic and
universal robustness evaluation methods and protocols for MARL algorithms.

C MULTI-AGENT ENVIRONMENTS

In this section, we introduce the multi-agent environments (Lowe et al., 2017; Mordatch & Abbeel,
2017) we use in our experiments. By mixed game, we mean a game involving both cooperation and
competition.

Mutual Communication (MC) This is a cooperative game in which there are 2 agents, 3 land-
marks of different colors. Each agent wants to get to their target landmark, which is known only by
the other agent. Reward is collective, so agents have to learn to communicate the goal of the other
agent, and navigate to their landmark. This is the same as the Cooperative Communication scenario
where both agents are simultaneous speakers and listeners.

Cooperative Communication (CC) This is a cooperative game same as Mutual Communication,
except that one agent is the ‘speaker’ that does not move but observes goal of other agent, and the
other agent is the listener who cannot speak, but must navigate to correct landmark.

Cooperative Navigation (CN) This is a cooperative game in which there are 3 agents and 3 land-
marks. Agents are rewarded based on how far any agent is from each landmark. Agents are penalized
if they collide with other agents. So, agents have to learn to cover all the landmarks while avoiding
collisions.

Physical Deception (PD) This is a competitive game in which there are 1 adversary (red), 2 good
agents (green), and 2 landmarks. All agents observe position of landmarks and other agents. One
landmark is the ‘target landmark’ (colored green). Good agents rewarded based on how close one of
them is to the target landmark, but negatively rewarded if the adversary is close to target landmark.
Adversary is rewarded based on how close it is to the target, but it does not know which landmark
is the target landmark. So good agents have to learn to ‘split up’ and cover all landmarks to deceive
the adversary.

Encrypted Communication (EC) This is a mixed game in where there are two good agents (alice
and bob), one adversary (eve). Alice must sent a private message to bob over a public channel. Alice
and bob are rewarded based on how well bob reconstructs the message, but negatively rewarded if
eve can reconstruct the message. Alice and bob have a private key (randomly generated at beginning
of each episode), which they must learn to use to encrypt the message.

Keep-away (KA) This is a competitive game in where there are 1 agent, 1 adversary and 1 land-
mark. Agent is rewarded based on distance to landmark. Adversary is rewarded if it is close to the
landmark, and if the agent is far from the landmark. So the adversary learns to push agent away
from the landmark.

Predator-prey (PP) This is a Predator-prey environment as well as a competitive game. 1 good
agents (green) is faster and wants to avoid being hit by other 3 adversaries (red). Adversaries are
slower and want to hit the good agent. Obstacles (large black circles) block the way.

Complicated Game (CG) This is a mixed game similar to Predator-prey, except (1) there is food
(small blue balls) that the good agents are rewarded for being near, (2) we now have ‘forests’ that
hide agents inside from being seen from outside; (3) there is a ‘leader adversary” that can see the
agents at all times, and can communicate with the other adversaries to help coordinate the chase.

D EXECUTION-WISE ATTACKS AND OBSERVATION-WISE ATTACKS

In the training stage of MADDPG, agents receive rewards for their actions and use deep neural
network to improve their policies. In each iteration, an agent performs these steps in order:
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Table 1: Hyper-parameters
Parameter MADDPG
optimizer Adam
learning rate 0.01
discount factor 0.95
replay buffer size 106

number of hidden layers 2
activation function Relu
number of hidden unites per layer 64
number of samples per minibatch 1024
target network update coefficient τ 0.01
iteration steps 20
episodes in training 10k
time steps in one episode 25

1. Select an action based on the agent’s policy and execute it.
2. Observe the updated state resulting from the action and collect the corresponding reward.
3. Feed all of the information obtained so far, including the action and reward, into a deep

learning algorithm, which updates the agent’s policy.

During the robustness evaluation stage, in each group of experiment, depending on the step being
evaluated, only one type of noise is applied, either to the action execution in step 1 or to the state
observation in step 2 as follows.

1. During step 1, the agent’s action selection is perturbed by adding random noise in the form
of N (µ, σ) to the action parameters before it is executed; in principle, the resulted action
should deviate from the most desirable action over time.

2. In step 2, a noissy state observation is obtained by modifying the parameters of the origi-
nally observed state with N (µ, σ); from the agent’s perspective, this modified state appears
as if it is a different state, potentially leading to sub-optimal evaluations and recalibrations
of the agent’s actions thereafter.

The former is known as execution-wise attack, and the latter is called observation-wise attack. The
injected Gaussian noise N (µ, σ) are always independent and identically distributed (i.i.d.).

E MORE EXPERIMENT RESULTS

More discussions on observation-wise GNA: We study how the parameters µ and σ affect the
results of GNAs. In scenarios MC, CC, CN, KA, PP and CG, the parameters of observation-wise
GNA influence the reward of agents in the following way: when µ is close to zero, the amount of
degrade in agents’ reward is not much related to µ, but if the mean of noise is strongly biased (i.e.
with large absolute value) to either positive or negative, the agents’ reward further degrades, and it
degrades symmetrically. For these scenarios, σ also plays a role in the extent of the degradation, but
there is no clear pattern (e.g., monotonicity). In scenario EC, the effect of µ is no longer symmetric:
the performance of agents has more variation under GNA with µ > 0, and is less sensitive to
negative-mean GNA. In scenario PD, GNA affects the performance of agents in an unexpected way:
the agents perform even better under a strongly biased noise. See Fig. 3 and previous Fig. 1 for
illustration.

More discussions on execution-wise GNA: As for the execution-wise GNA, we also study the
effects of different µ and σ. In scenario PP, when σ of GNA is larger than 1, GNA with a larger σ
leads to a lower reward. However, when σ < 1, GNA with a smaller σ leads to a lower reward. In the
other 7 scenarios, GNA with a larger standard deviation has more power to undermine MADDPG,
i.e. lower rewards.

On the other hand, µ affects agents’ mean rewards on a case by case basis. MADDPG is not ex-
tremely sensitive to the means of GNAs in scenarios CC, CN, PD, PP and KA. Nevertheless, in
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scenario MC, the larger |µ| is, the less reward the MADDPG algorithm can achieve. Remarkably in
scenario EC with σ ≤ 0.25, as µ increases to more positive, agents’ reward increase. In scenario
CG, the value of σ affects the performance of MADDPG dominantly, and the mean of GNA makes
a difference only if σ is small. See Fig. 2 and 4.

On the adversary’s mean rewards under GNA: For the mixed/competitive scenarios where ad-
versary agents exist, we also check how the adversaries’ rewards change under GNAs. See Fig. 5 for
the adversary agents’ mean rewards under observation-wise GNA and Fig. 6 under execution-wise
GNA. First, the observation-wise GNA causes significant decrease in adversary agents’ rewards in
scenarios PD, EC, PP and CG, but in scenario KA, either decrease or increase could happen de-
pending on the parameters of the GNA. Under execution-wise GNA, in scenario PD and PP, the
adversary’s rewards is mostly determined by σ. Particularly, if σ is really small, the rewards are
close to the baseline, if not better. In scenario EC, the adversary’s rewards is decreased with larger
|µ| and larger σ. In scenario KA, a large σ drives adversary agents’ reward sensitive to the change of
µ, contrasted to what is observed in scenario CG, but in both cases, the performance of MADDPG
is worse than the baselines.
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Figure 3: Agents’ mean rewards and variance under observation-wise GNA with different µ and σ.
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Figure 4: Agents’ mean rewards and variance under execution-wise GNA with different µ and σ.
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Figure 5: Adversary agents’ mean rewards and variance under observation-wise GNA with different
µ and σ.
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Figure 6: Adversary agents’ mean rewards and variance under execution-wise GNA with different
µ and σ.

13


