
Under review as submission to TMLR

Amortizing Bayesian Posterior Inference in
Tractable Likelihood Models

Anonymous authors
Paper under double-blind review

Abstract

Bayesian inference provides a natural way of incorporating prior beliefs and assigning a
probability measure to the space of hypotheses. However, it is often infeasible in practice as
it requires expensive iterative routines like MCMC to approximate the posterior distribution.
Not only are these methods computationally expensive, but they must also be re-run whenever
new observations are available, making them impractical or of limited use. To alleviate such
difficulties, we amortize the posterior parameter inference for probabilistic models through
permutation invariant architectures. While this paradigm is briefly explored in Simulation
Based Inference (SBI), Neural Processes (NPs) and Gaussian Process (GP) kernel estimation,
a more general treatment of amortized Bayesian inference in known likelihood models has been
largely unexplored. We rely on the reverse-KL based amortized Variational Inference (VI) ap-
proach to train inference systems and compare them with forward-KL based SBI approaches
across different architectural setups. We additionally introduce a simple but strong approach
to further amortize on the number of features in each observation, allowing a single system to
infer variable dimensional parameters. Our thorough experiments demonstrate the effective-
ness of our proposed approach, especially in real-world and model misspecification settings.

1 Introduction

Bayesian analysis of data has become increasingly popular and is widely used in numerous scientific
disciplines. In politics, predictive models based on public polling and other factors play a crucial role in
the discourse around the state of a campaign. Throughout the COVID-19 pandemic, models that estimate
the infectiousness of the virus, the efficacy of public health measures, and the future course of the pandemic
became critical to government planning and the public’s understanding of the pandemic (Cooper et al., 2020).
In cryogenic electron microscopy (cryo-EM), the posterior over an unknown 3D atomic-resolution molecular
structure is explored given the 2D image observations (Glaeser et al., 2021).

While recent years have made such methods more accessible (Bingham et al., 2019; Carpenter et al., 2017;
Štrumbelj et al., 2023), they still remain computationally burdensome. Further, in practical contexts where
new observations are continuously available, the analysis must be re-run every time new data becomes
available, e.g., when new case counts become available, previous measurements are corrected, or when
applied to different geographic regions. As a result practitioners adopt approximations (Welling & Teh, 2011;
Gelfand, 2000; Brooks, 1998), simplify their models (Hoffman et al., 2013; Blei et al., 2017) or reduce the
frequency with which they perform their analyses.

A common thread is that the probabilistic model defining the relationship between its parameters and the
observations is fixed. Poll aggregation models use hierarchical time series models (Athanasopoulos et al.,
2023; Chen et al., 2023), infectious diseases are studied using variants on compartment models (Tang et al.,
2020), and cryo-EM uses a linear image formation model (Glaeser et al., 2021). This makes these applications
ideal candidates for amortized inference (Morris, 2013; Paige & Wood, 2016; Kingma & Welling, 2013;
Rezende et al., 2014; Stuhlmüller et al., 2013).

We propose using neural networks to learn a function that maps an observed dataset directly to the
corresponding posterior distribution without the need for iterative procedures, e.g., Markov chain Monte

1

Under review as submission to TMLR

Carlo (MCMC) sampling (Gelfand, 2000; Hoffman et al., 2014). To efficiently handle permutation invariance
stemming from the iid nature of observations, we rely on efficient set-based architectures like Transformers
and DeepSets (Zaheer et al., 2017; Vaswani et al., 2017; Lee et al., 2019). If learned properly, this mapping
would allow generalization to different datasets zero-shot. We also leverage a simple masking procedure
to amortize posterior estimation over datasets with a variable number of features, thus inching closer towards
a generalist Bayesian learner − as evidenced by its generalization capabilities on real-world tasks zero-shot
through only pre-training on synthetic data.

Generally, real-world datasets do not exactly follow standard models, e.g., while practitioners often rely on
linear models, data rarely follows them exactly. Amortization methods like simulation-based inference (SBI),
in particular neural posterior estimation (SBI-NPE), (Radev et al., 2020; Geffner et al., 2023; Cranmer et al.,
2020) suffer from a gap in the training (simulation) and evaluation (real-world) protocol and thus can be
suboptimal. Even further, they require access to the underlying model parameters generating the datasets
during training and are thus not applicable in many practical settings where the true parameters are unknown.

Our primary motivation is posterior inference as the parametric values themselves are often of interest in
applied statistical practice, e.g., for assessing the success of a pandemic intervention or the impact of a factor
on public opinion polling. However, evaluating approximate posteriors is extremely difficult since the true
posterior is highly intractable to either evaluate or sample from with the exception of MCMC sampling which
only provides asymptotic guarantees. Despite their intractability, Bayesian posteriors have been claimed to
provide better generalization capabilities as they encompass multiple different hypotheses in making predictions.
Following this line of reasoning, we demonstrate the utility of our proposed approach in the closely related
problem of posterior prediction, where the goal is to model future predictions given some observations.

Since SBI-NPE approaches are generally modeled through minimization of forward-KL objective, they suffer
from over-dispersion during Bayesian posterior inference and consequently worse predictive performance.
Instead, we propose a new training objective that can operate solely on datasets without access to the
underlying parameters, allowing for a wider diversity of data to be incorporated during training for better
generalization to real world settings. Our detailed experiments and benchmarking establish the superiority of
our proposed approach as well as their qualitative differences. Our contributions include

• Proposing a general framework for amortizing Bayesian posterior estimation in probabilistic models
and highlighting its superior performance to SBI-NPE.

• Extending amortization in both SBI-NPE and the proposed framework over a variable number of
features in each observation, and not just the number of observations.

• Quantifying benefits of our proposed approach when the true underlying model is unknown (model
misspecification), as well as providing its advantages in generalization to real-world tabular datasets.

• Benchmarking various design choices like architectural backbones through extensive ablations.

2 Background

We first cover some of the important preliminaries as well as approaches already existing in the literature.

Bayesian Inference. Let x ∈ Rd denote the outcome of an experiment observed through a set of
independent and identically (iid) distributed samples D = {x1, ...,xN}. Given these observations, we are
often interested in either quantifying the certainty of or generating potential future observations x∗. Bayesian
Inference provides a natural methodology of quantifying p(x∗|D) by prescribing a space of hypotheses θ ∈ Rk
and a prior belief p(θ) over it. These hypotheses θ define the likelihood of observing a particular outcome,
i.e., p(x|θ). The likelihood and prior are then combined through Bayes rule to define the posterior p(θ|D),
through which the quantity of interest can then be easily expressed as

p(x∗|D) =
∫
θ

p(x∗|θ)p(θ|D)dθ (1)

However, the above expression poses two challenges: (a) the posterior p(θ|D), which is often a quantity of
interest in itself, is not known, and (b) even if known, the integration might be intractable. The intractability

2

Under review as submission to TMLR

of the integration is often resolved through Monte Carlo estimation

p(x∗|D) = Eθ|D [p(x∗|θ)] (2)

≈ 1
M

M∑
m=1

p(x∗|θ(m)) (3)

where θ(m) ∼ p(θ|D). The quantity p(θ|D) can be obtained through an application of Bayes rule

p(θ|D) = p(D|θ) p(θ)
p(D) (4)

= p(θ)
p(D)

N∏
n=1

p(xn|θ) (5)

Given the form of the likelihood and the prior, the above distribution is often difficult to sample from,
especially with the added complexity of the marginal p(D) =

∫
θ

p(D|θ) p(θ) being intractable. Additionally,
the posterior itself is often of interest on its own, especially in cases where θ is interpretable, for example,
if we model the bias of a coin based on multiple tosses. We refer the readers to Bishop & Nasrabadi (2006)
for applications of Bayesian Inference to supervised learning, etc.

Variational Inference. To bypass the intractability of the posterior distribution, or at least the difficulty to
sample from it, VI methods approximate the true posterior p(θ|D) with a variational distribution qφ(θ) and
convert the estimation problem into the following optimization problem

φ∗ = arg min
φ

KL[qφ(·)||p(·|D)] (6)

which is equivalent to optimizing the Evidence Lower-Bound (ELBO) (Gelman et al., 2013)

φ∗ = arg max
φ

Eθ∼qφ(·)

[
log p(D,θ)

qφ(θ)

]
(7)

The above optimization procedure finds a member in the family of variational distributions {qφ}φ that is
closest to the true posterior under the reverse-KL divergence. Once the optimal parameters φ∗ are obtained,
the posterior predictive distribution p(x∗|D) can be approximated as

p(x∗|D) ≈ Eqφ∗ (θ) [p(x∗|θ)] (8)

The family of distributions qφ is chosen such that it is easy to sample from. Typical choices include
independent multivariate Gaussian distribution (mean-field approximation) or normalizing flows (Rezende
& Mohamed, 2015; Papamakarios et al., 2021; Ardizzone et al., 2018-2022).

Amortization. One of the most powerful capabilities of neural networks is their ability to learn and
generalize to a wide variety of domains and settings provided sufficient variability during training. For
example, Variational Autoencoders (VAEs) define a latent-variable model p(x, z) where x represents the
observation and z the latent variable. VI typically relies on solving a separate optimization problem qφ∗

i
(zi)

for each posterior p(zi|xi). The cost of learning separate variational approximations can be amortized
through training of a joint network qφ(z|x), where φ now represents the parameters of a neural network
which takes x explicitly as input. The VI procedure then reduces to optimizing φ, which is shared across all
observations, as opposed to optimizing for separate φ′

is, in the hope that qφ(zi|xi) ≈ qφi
(zi) for any xi. When

modeling using Gaussian distributions, this distinction can be seen as qφ(zi|xi) := N (· ;µφ(xi),Σφ(xi))
while qφi

(zi) := N (· ;µφi
,Σφi

) (note the functional dependencies). In a similar fashion, Garnelo et al. (2018b)
amortize on datasets as explicit inputs, while score-based generative models (Song et al., 2020) amortize on
timesteps. Such models are largely successful owing to the generalization capabilities of neural networks to
new unseen observations as long as the encoder qφ(z|xi) is trained on diverse enough observations x′

is.

Simulation-Based Inference. SBI considers the problem of inferring the parameters of the simulator from
observations. This is often tackled via neural posterior estimation methods (SBI-NPE) where a deep-learning

3

Under review as submission to TMLR

Mean of Gaussian Linear Regression Nonlinear Regression Gaussian Mixture Linear Classification Nonlinear Classification

Figure 1: Amortized Bayesian Posterior Estimation: Illustration of predictions from proposed approach
when trained on a fixed dimensional observation space. Model predictions, true predictions and sample points
are shown in red, black and blue respectively. Additionally for classification, we label sample points with
their ground-truth class, and draw the decision boundary according to the model.

based model is trained to infer the posterior by explicitly conditioning an approximate distribution qφ(θ|D)
on the dataset, and modeling the gap between the distributions through a Forward-KL based optimization

arg min
φ

EDKL [p(θ|D)||qφ(θ|D)] (9)

which often leads to mode averaging behavior that can be problematic in high dimensions. While the above
objective often enjoys applications to tasks without tractable likelihood functions, it can only be used for
training when the dataset D is sampled according to the probabilistic model, and thus cannot utilize off-policy
non-simulated data, hindering generalization to real-world scenarios. Precisely because of this, SBI-NPE has
been leveraged in controlled scenarios like modeling inverse problems with low-dimensional non-differentiable
simulators where the likelihood of an observation is not tractable; but has seen limited applicability in more
general high dimensional estimation problems like the distribution over weights of a Bayesian Neural Networks.

Neural Processes. NPs also leverage amortized VI in training a latent-variable system for modeling
predictive problems. However, unlike our setup, they define an approximate posterior distribution only over
an arbitrary latent space and learn how this latent variable impacts the likelihood through point estimation
of likelihood parameters. In particular, NPs rely on the Variational-EM setup, where they perform point
estimation for the parameters of the likelihood and VI for the latent variable. In contrast, we focus on a
similar setting where we instead do a full VI treatment of the parameters of the likelihood function; which in
some sense means that our latent variables are now parameters of the likelihood model. Thus, our approach
can be seen as a fully Bayesian Inference procedure for likelihood models, whereas NPs can be seen as
latent-variable models which only provide point estimates for the parameters.

Gaussian Process Kernel Estimation. A specific application of our framework is the estimation of the
kernel function for Gaussian Process likelihood models (Liu et al., 2020; Simpson et al., 2021; Bitzer et al.,
2023), which leverages amortized inference for tractable likelihoods defined by GP regression setups. In
contrast, we provide a more general framework for conducting amortized inference, which we test across a
wide variety of domains ranging from supervised to unsupervised learning and from regression to classification
tasks. Thus, our proposed approach provides a framework for parameter estimation through amortized
variational inference and GP kernel estimation along these lines is a specific application of this approach.

In-Context Learning. ICL refers to large pre-trained models having the ability of solving new tasks at
inference based solely on some context examples being provided as prompt. A natural parallel to conditioning
on context examples via prompt in natural language is explicit amortization on observations for general-
purpose tasks (Von Oswald et al., 2023; Müller et al., 2021). In this sense, our approach can be seen as
training a general-purpose in-context learner to perform Bayesian inference, as opposed to direct predictions.

Sampling from Energy. Another line of similar works (Zhang & Chen, 2021; Berner et al., 2022; Vargas
et al., 2023; Akhound-Sadegh et al., 2024; Bengio et al., 2021) look at sampling proportional to a pre-specified
energy function, which in our case can be seen as p(θ|D) ∝ e−E(θ), with E(θ) = − log p(D,θ). However, such
works currently focus on non-amortized setups and we defer exploring amortized diffusion-styled posterior
models as relevant future work.

We refer the readers to Appendix A for a detailed discussion about prior work, as well as its connections and
differences with our proposed mechanism.

4

Under review as submission to TMLR

L2 Loss (↓) Accuracy (↑)

Objective qφ Model Gaussian GMM LR NLR LC NLC

100D 5D 2 cl 100D 1D 25D 100D 2D 25D

Baseline

- Random 301.06±0.35 5.00±0.04 202.6±0.3 65.94±0.91 831.6±8.7 50.0±0.0 50.3±0.6 50.0±0.3

- Optimization 101.24±0.00 0.42±0.00 25.1±0.0 0.36±0.00 104.0±0.1 70.3±0.0 96.9±0.0 77.9±0.0

- Langevin 102.35±0.03 0.45±0.01 23.3±0.7 0.31±0.00 132.4±1.0 65.1±0.4 96.0±0.3 73.2±0.3

- HMC 102.41±0.03 0.48±0.01 18.7±0.2 0.37±0.00 98.1±0.7 62.1±0.2 91.8±0.2 70.4±0.1

Fwd-KL

G
au

ss
ia

n

GRU 102.64±0.01 2.43±0.03 124.8±0.1 49.33±0.95 671.6±10.5 59.7±0.1 59.5±0.4 56.9±0.3

DeepSets 103.22±0.05 2.44±0.04 123.1±1.1 49.86±0.98 684.9±2.6 50.0±0.1 59.4±0.2 56.8±0.2

Transformer 102.78±0.00 2.50±0.03 45.9±1.3 49.68±0.94 680.9±5.8 63.0±0.1 59.6±0.4 57.1±0.4

Fwd-KL
GRU 102.51±0.01 0.47±0.01 60.2±0.9 0.43±0.00 106.0±0.6 63.5±0.3 92.4±0.2 72.5±0.0

DeepSets 102.60±0.04 0.50±0.02 62.8±0.6 0.43±0.00 125.9±0.8 60.9±0.3 92.5±0.1 59.8±0.3

Transformer 102.54±0.03 0.49±0.02 28.7±0.3 0.42±0.01 102.3±1.8 68.2±0.0 92.6±0.4 75.2±0.1

Fwd-KL

Fl
ow

GRU 102.66±0.02 0.67±0.09 119.1±0.2 15.78±0.21 539.0±4.3 59.9±0.2 76.9±0.3 58.3±0.0

DeepSets 103.34±0.03 0.65±0.08 125.7±3.7 15.05±0.12 548.5±3.3 50.1±0.0 72.3±1.8 58.1±0.1

Transformer 102.77±0.02 0.62±0.07 43.3±2.7 16.11±0.31 539.3±4.3 64.3±0.1 77.3±0.2 58.3±0.1

Rev-KL
GRU 102.49±0.01 0.47±0.00 61.3±1.0 0.41±0.01 106.0±0.4 64.7±0.2 93.4±0.1 72.0±0.5

DeepSets 102.67±0.05 0.52±0.01 76.4±2.0 0.40±0.00 128.2±1.5 58.4±0.8 93.3±0.2 60.9±0.2

Transformer 102.53±0.05 0.47±0.01 29.4±1.6 0.39±0.00 102.6±0.9 68.7±0.1 93.6±0.1 75.0±0.5

Table 1: Amortized Bayesian Posterior Estimation. Results for estimating the mean of a Gaussian
(Gaussian), means of a Gaussian mixture model (GMM), (non-)linear regression (NLR/LR) and (non-)linear
binary classification (NLC/LC). We ablate over different architectures and density parameterizations. Our
baselines include the prior (Random), dataset-specific maximum likelihood training (Optimization), Langevin
and Hamiltonian MCMC and Forward-KL based SBI. We use the expected L2 loss and accuracy according
to the posterior predictive as metrics.

3 Method

Given any modeling assumption, we are interested in estimating the posterior distribution over its parameters
conditioned explicitly over observations to allow for a fast and scalable approximation. That is, given a
probabilistic model p(·|θ) with parameters θ, we are interested in approximating the full Bayesian inference
solution over θ. Our goal is to train a system that approximates the posterior distribution p(θ|D) given a
dataset D := {x1,x2, · · · ,xn} ⊆ Rd where xi ∼ p(x|θ). We achieve this by learning an amortized variational
distribution qφ(θ|D) conditioned explicitly on the dataset D. Similar to standard VI approaches, we can
train qφ through the following optimization problem

arg min
φ

KL [qφ(·|D)||p(·|D)] (10)

While this is the case for VI on a single dataset, we are interested in generalizing to a family of datasets χ.
Similar to how a VAE encoder efficiently generalizes to approximate posteriors for new images when trained
across multiple image observations, we amortize over datasets by training over multiple D ∼ χ in the hope of
generalizing to posterior approximations on new datasets. Thus, given a probability measure over the space of
datasets χ, we posit learning of shared parameters φ of the variational distribution across different datasets as

arg min
φ

ED∼χKL [qφ(θ|D)||p(θ|D)] (11)

5

Under review as submission to TMLR

Mean of Gaussian Linear Regression Nonlinear Regression Gaussian Mixture Linear Classification Nonlinear Classification

Figure 2: Variable-Dimension Visualization: Illustration of proposed approach when trained on a variable
observational space but visualized on low-dimensional tasks, with model predictions, ground truth prediction
and data points in red, black and blue respectively. For classification, data points are colored by their
ground-truth labels, and decision boundary corresponds to the model prediction.

which equivalently reduces to maximizing the ELBO:

arg max
φ

ED∼χEθ∼qφ(·|D)

[
log p(D,θ)

qφ(θ|D)

]
(12)

To recap, while VI strategies approach this problem by learning a separate qφ for each D, we instead train a
shared qφ that explicitly takes D as input and, in doing so, possesses the ability to generalize to new datasets
without additional training.

This training paradigm naturally introduces a dependency on the dataset generating distribution χ. Since we
are working with a known probabilistic model, an obvious choice of χ is to treat this probabilistic model as
a black-box simulator, akin to p(n)p(θ)

∏n
i=1 p(xi|θ), samples from which can be obtained using ancestral

sampling. Here, n is the dataset cardinality and p(n) is a distribution over positive integers. Thus, obtaining
at least one dataset-generating distribution is easy given any probabilistic model. However, χ can also
be obtained from other sources, for example, a stream of real-world data, through interventions in the
data-generating process, or through bagging on a large real-world dataset.

Another design choice in the above setup is the parameterization for qφ: we explore a Gaussian distribution
and a normalizing flow parameterization with either a Transformer, GRU or DeepSets architectural backbone
to process D. It is important to note that not all deep learning architectures (eg. GRU) are amenable in this
setting since, given the iid nature of the samples, the posterior is permutation invariant

p(θ|D) = p(θ|ΠD) (13)

for some permutation matrix Π. This constraint should thus be reflected when modeling the approximation.
To satisfy it, for example for a Gaussian distribution, we can define qφ as

qφ(·) = N (·|µφ(D),Σφ(D)) (14)

where µφ and Σφ are modeled using permutation invariant architectures, thus satisfying the desired constraint

qφ(·|D) = qφ(·|ΠD) (15)

Finally, another important design choice in this setup is the prior p(θ). In this work, we assume it to
be known and fixed to N (·; 0, I), which is a common assumption across various problems. Our proposed
amortized VI approach, in contrast to SBI-NPE which relies on Forward KL optimization, relies on the
Reverse KL objective.1 Finally, we defer details regarding the architectural choices to Appendix B.

3.1 Amortizing Variable Feature Dimensions

So far, we have only considered amortization over different datasets for the same underlying likelihood
model. For example, for a 2-dimensional Bayesian linear regression model, the amortized posterior qφ(θ|D)
approximates the true posterior distribution p(θ|D) for arbitrary sets of 2-dimensional observations. It is
important to note that a deep learning-based approach leaves hopes of generalizing to new datasets since
the underlying functional form of the solution remains constant across different datasets, irrespective of
the number of features, and is given by the solution obtained from Equation 4.

1Given the equivalences, we will use amortized VI and Reverse KL interchangeably.

6

Under review as submission to TMLR

L2 Loss (↓) Accuracy (↑)

Objective qφ Model Gaussian GMM LR NLR LC NLC

100D 5D 2 cl 100D 1D 50D 100D 2D 50D

Baseline

- Random 298.24±0.23 4.66±0.03 200.8±0.6 73.01±0.17 1704.3±9.3 50.0±0.1 50.0±0.3 49.9±0.3

- Optimization 100.88±0.00 0.43±0.00 20.1±0.0 0.36±0.00 309.2±0.2 71.2±0.0 96.8±0.0 76.1±0.0

- Langevin 101.92±0.04 0.44±0.00 21.8±1.0 0.31±0.00 N/A 65.5±0.5 96.1±0.0 70.1±0.2

- HMC 102.01±0.01 0.46±0.01 17.8±0.1 0.38±0.01 303.9±2.5 62.6±0.2 91.7±0.2 68.0±0.4

Fwd-KL

G
au

ss
ia

n

GRU 133.22±0.58 2.36±0.02 139.4±1.0 51.45±0.03 1346.5±6.8 57.9±0.2 59.6±0.2 58.6±0.2

DeepSets 129.69±0.74 2.35±0.02 149.8±0.8 51.90±1.54 1357.5±5.3 50.8±0.1 49.9±0.3 49.9±0.3

Transformer 108.98±0.10 2.40±0.02 64.3±3.7 50.81±0.53 1319.9±12.2 62.4±0.0 59.9±0.2 58.8±0.2

Rev-KL
GRU 105.14±0.10 0.46±0.01 62.6±0.1 2.31±0.13 316.3±6.2 63.4±0.2 88.8±0.5 68.4±0.3

DeepSets 105.06±0.21 0.48±0.02 64.1±0.2 0.98±0.12 451.9±2.8 61.3±0.1 91.0±0.5 61.7±0.1

Transformer 104.71±0.12 0.47±0.01 32.0±0.5 0.81±0.02 278.3±1.1 67.7±0.1 90.0±0.2 73.7±0.3

Fwd-KL

Fl
ow

GRU 125.84±1.98 0.60±0.07 138.3±1.0 38.41±0.36 1097.4±9.5 58.0±0.1 61.2±0.8 60.2±0.1

DeepSets 133.23±1.93 0.58±0.03 153.2±0.8 43.31±2.06 1120.0±5.5 50.5±0.1 49.6±0.2 50.1±0.1

Transformer 108.48±0.16 0.59±0.08 63.1±2.0 39.70±0.52 1073.3±1.5 63.6±0.1 60.9±0.3 60.3±0.1

Rev-KL
GRU 105.19±0.03 0.47±0.01 71.3±1.3 2.31±0.41 302.9±5.6 63.4±0.1 90.4±0.7 66.2±0.1

DeepSets 105.09±0.06 0.49±0.01 76.8±1.8 0.83±0.02 454.1±10.2 59.1±0.5 89.1±0.3 62.9±0.1

Transformer 104.91±0.11 0.46±0.00 33.1±0.3 0.99±0.07 274.0±1.3 68.1±0.2 91.1±0.2 72.6±0.1

Table 2: Variable-Dimension Posterior Prediction. Results for estimating the mean of a Gaussian
(Gaussian), means of a Gaussian mixture model (GMM), (non-)linear regression (NLR/LR) and (non-)linear
binary classification (NLC/LC). In this setting, for each task only a single model was trained to solve for
different dimensional problems; e.g. the same model is used to evaluate 1D and 50D nonlinear regression.

We note that the form of the solution remains the same irrespective of whether the underlying problem is a
2- or 100-dimensional Bayesian linear regression problem. Additionally, we can see that a low-dimensional
problem can just be embedded into a high-dimensional space, with the extra features and parameters set to
0, akin to the procedure of masking unnecessary dimensions. This simple but strong insight allows us to
amortize qφ over datasets with varying dimensionalities by embedding them in a higher dimensional space.

3.2 Handling Model Misspecification

Knowledge about the true likelihood model underlying the data-generating scheme is often unknown.
Practitioners thus rely on making a modeling assumption by prescribing a particular likelihood model for
the data and then fitting its parameters to best explain the data. For example, the underlying model of
whether an email is spam or not may be unknown, but one can still assume a linear model to solve this
classification problem. This defines the basis of model misspecification, where there is a mismatch between
the underlying true model and the assumption used.

In contrast to SBI-NPE approaches, our method can efficiently handle model misspecification. This can be
seen from the contrast between Equations 9 and 12, where the former can only be trained when χ is defined
according to the modeling choice while the latter doesn’t put any constraints on χ. Thus, in the presence of
a stream of real-world data, SBI-NPE cannot leverage this data during training because the corresponding
parameters in the assumed likelihood model are not known, while our method can leverage it during training
and can thus lead to more robust predictions on data that is of actual practical significance.

A simple example of this setup is when the true data might be coming from a Gaussian Process, but we
might not know this. To still be able to efficiently make predictions, we can model it with a linear relation.
However, SBI-NPE approaches can only train the amortized posterior for the linear model using linear data,

7

Under review as submission to TMLR

χreal (→)
qφ

Data Linear
MLP GP

Nonlinear Nonlinear

χsim (→) Model NLR LR NLR

Fwd-KL

G
au

ss
ia

n 15.454±0.246 2.216±0.097 14.733±0.513

Rev-KL 0.382±0.003 1.892±0.113 0.155±0.006

+ switched data 0.367±0.006 1.226±0.001 0.066±0.004

Fwd-KL

Fl
ow

7.949±0.419 1.632±0.070 8.557±0.561

Rev-KL 0.347±0.001 1.471±0.016 0.120±0.005

+ switched data 0.346±0.002 1.226±0.004 0.055±0.002

Table 3: Model Misspecification: We see benefits of our proposed approach when the true underlying data
generating process is not known. χreal denotes the real data-generating distribution, χsim the simulated one
according to the (wrongly) assumed model. We train different models on χsim, with switched data denoting
training on χreal. Evaluation is done solely on χreal.

while our method can actually leverage the GP data that we observe. This leads to better generalization to
linear modeling of GP data and can be further leveraged in other model misspecification setups.

4 Experiments

To showcase the wide applicability of our approach, we perform experiments on various well-known
probabilistic models encompassing supervised and unsupervised scenarios. In particular, we look at the
problem of estimating the Bayesian posterior over the (a) mean of a Gaussian distribution (GM), (b) means
of a Gaussian mixture model (GMM), (c) parameters of a (non-)linear regression model (NLR/LR), and
(d) parameters of a (non-)linear classification model (NLC/LC). We refer the readers to Appendix C for
particulars about the probabilistic models, including their likelihoods and priors considered. Throughout our
experiments, we observe superior performance of our proposed approach in terms of predictive performance
metrics, especially in problems with high-dimensional and multi-modal posteriors.

We generally consider two types of baselines: dataset-specific and amortized. For dataset-specific baselines,
we use the prior (Random), perform maximum likelihood estimation using gradient-based optimization
(Optimization) as well as an approximate Bayesian inference procedure through Langevin and Hamiltonian
based MCMC sampling, which also uses the gradient information. Such baselines rely on iterative procedures
and must be run independently for different datasets. For amortized baselines, we consider the SBI-NPE
based forward-KL baseline as outlined in Equation 9. We refer the readers to Appendices F, D, and H for
details about the experiments, metrics, and additional results, respectively.

Zero-Shot Posterior Approximation.

Given a known probabilistic model p(D,θ), we train an amortized inference system qφ(·|D) to approximate
the often intractable posterior over the parameter θ for different datasets with varying cardinality. Figure 1
visualizes the performance of the amortized model on different probabilistic models spanning supervised and
unsupervised learning for low dimensional problems. We see that the proposed approach provides reliable
samples of the parameters for previously unseen datasets, showing that it can indeed generalize.

Next, we empirically evaluate the performance of our proposed approach in more complex, high-dimensional
setups for the same set of probabilistic models. We set the data-generating distribution χ to be according
to the probabilistic model in order to allow comparisons with SBI-NPE, which can only be trained in
this particular setting. Table 1 highlights the performance of our proposed approach in high-dimensional
frameworks, showcasing its superior performance to SBI-NPE benchmarks, as well as comparative to dataset-
specific non-amortized baselines. For multiple high-dimensional problems, we see that the proposed amortized
posterior performs similarly to Optimization and MCMC without being slow and iterative at inference.

Generalizing to Variable Feature Dimensions

8

Under review as submission to TMLR

L2 Loss (↓) Accuracy (↑)

Objective qφ Model LR NLR LC NLC

Baseline - Random 23.52±0.42 209.35±9.92 50.10±0.17 50.84±1.00

Fwd-KL

G
au

ss
ia

n

GRU 8.95±0.47 84.63±3.96 76.34±1.58 60.00±0.98

DeepSets 10.81±0.08 97.51±2.96 68.26±0.31 50.84±0.99

Transformer 9.35±0.99 111.07±6.55 63.97±3.21 60.39±0.53

Rev-KL
GRU 9.78±2.75 17.01±5.16 79.71±1.12 77.19±0.21

DeepSets 9.26±0.10 8.03±0.23 77.40±0.14 72.63±0.14

Transformer 7.30±0.21 8.23±1.26 76.96±1.58 71.33±5.44

Fwd-KL

Fl
ow

GRU 8.28±0.33 52.04±3.39 76.45±1.43 61.10±0.61

DeepSets 12.94±0.41 71.69±2.38 67.99±2.15 49.74±0.76

Transformer 9.64±0.50 84.45±7.88 68.26±3.23 61.65±1.22

Rev-KL
GRU 8.17±0.25 17.35±8.02 66.30±2.81 78.55±1.27

DeepSets 11.05±0.35 8.54±0.49 78.18±0.13 71.69±0.18

Transformer 7.48±0.26 8.80±1.80 72.75±5.73 78.23±0.89

Table 4: Tabular Experiments: Zero-shot performance of the amortized variable-dimensional models
across (non-)linear regression and classification real-world tabular tasks. All the models are trained solely
on simulated data, and evaluated zero-shot on real-world data with varying number of both features and
training (observations that are fed as in-context amortization) observations.

Next, we turn our attention to performing amortization additionally over different datasets with a variable
number of feature dimensions, as highlighted in Section 3.1. To do this, we embed all low-dimensional
problems in a 100-dimensional space by masking the unnecessary dimensions, and then train an amortized
VI system. A key benefit of this approach is that instead of having to train different models for different
dimensional problems, we can rely on a single model that can generalize across all. We visualize samples
from the approximate posterior for low-dimensional problems in Figure 2 and further provide quantitative
predictive metrics for high-dimensional problems in Table 2. Our results highlight that the proposed approach
can generalize quite well to variable dimensional setups without requiring an iterative procedure at inference.

Handling Model Misspecification

As discussed in Section 3 and prior work (Müller et al., 2021; Hollmann et al., 2022), the performance and
use-case of such amortized systems relies heavily on the choice of the data-generating distribution χ. So
far, we only look at cases where χ defines simulations according to the probabilistic model to allow for a
fair comparison with SBI-NPE. This setup, however, implicitly assumes that we know the ground-truth
data-generating process, which is often not the case. A more common scenario is where we do not know
the data-generating process but have access to samples from it defined through χreal. To make predictions
for new query points, we, as statisticians, assume a probabilistic model p(x|θ) to explain the data, which
may be quite far from the true underlying model.

We first note that χreal cannot be used to train a forward KL model (SBI-NPE) and is thus unusable in
this case. To resolve this issue, let χsim denote the data generating distribution obtained from simulations
via the assumed model, which can then be used to train the forward KL model. We compare this setup with
our proposed approach, which can be trained on either χsim or χreal. However, for this setup, we always
perform evaluation on the real data of interest, i.e. χreal.

For our experiments, we pick χreal and χsim by simulation through probabilistic models corresponding
to linear, MLP, and Gaussian Process regression, such that χreal and χsim are never the same. Table 3
showcases experimental results of model misspecification, where we see that the forward KL models suffer a
lot due to mismatch between the training and evaluation data, compounded by the potential overestimation of
variance (mode-averaging) while our proposed method significantly outperforms it. Even further, we see that
the proposed method can be directly trained on χreal (switched data), leading to even better performance
− for eg., when χreal denotes data generated from a Gaussian Process and the probabilistic model assumed

9

Under review as submission to TMLR

0 500 1000 1500 2000 2500
Iterations

5.0

7.5

10.0

12.5

15.0

17.5

20.0

22.5

25.0

Lo
ss

Linear Regression

0 500 1000 1500 2000 2500
Iterations

25
0

25
50
75

100
125
150
175
200 Nonlinear Regression

0 500 1000 1500 2000 2500
Iterations

45

50

55

60

65

70

75

80

Ac
cu

ra
cy

Linear Classification

0 500 1000 1500 2000 2500
Iterations

45

50

55

60

65

70

75

80 Nonlinear Classification

Random Initialization Fwd-KL Initialization Rev-KL Initialization

Figure 3: Tabular Experiments: Initializing parameters from the proposed amortized model leads to good
zero-shot performance and often optimal initialization across (non-)linear regression and classification tasks.
is MLP-based (last column), our proposed approach outperforms forward KL when trained on the same
simulated data from the MLP, and does even better when trained on the GP-based data. We refer the
readers to Appendix F.3 and H.3 for experimental details and additional results on model misspecification.

Applications to Tabular Domains

While we see clear benefits in simulated settings, we next turn our attention to real-world scenarios and
consider a suite of tasks from the OpenML platform for both regression and binary classification by filtering
them out from the OpenML-CTR23 - A curated tabular regression benchmarking suite (Fischer et al., 2023)
for regression and OpenML-CC18 Curated Classification benchmark (Bischl et al., 2019) for classification
problems (details in Appendix G). We end up with 9 regression and 13 classification datasets with varying
number of features and use our amortized inference systems trained on simulated data with variable feature
dimensions to predict the parameters of interest.

After initializing from the inference model, we further train the parameters of the respective probabilistic
models with maximum a-posteriori (map) objective and compare the performance with a corresponding
model initialized from the prior. Even in this extreme case of domain shift, we see in Table 4 that the
amortized model provides good initializations for different real-world tasks zero-shot after training only on
simulated data. Figure 3 also shows that the amortized model surpasses the SBI-NPE baseline in terms
of performance and convergence speed for both linear and nonlinear setups. While Figure 3 only provides
a normalized aggregated performance over all datasets considered for a qφ parameterized as a diagonal
Gaussian, we refer the readers to Appendix H.4 for results on individual datasets with different qφ, as well
as Appendix F.4 for implementation details.

Evaluating Posterior Inference

Symmetric KL Divergence (↓)

qφ Model Gaussian Mean LR

2D 100D 1D 100D

Baseline - Random 44.32 46.78 179.2 186.8

Fwd-KL

G
au

ss
ia

n

GRU 0.018±0.007 0.07±0.00 0.04±0.01 81.8±0.2

DeepSets 0.037±0.015 0.22±0.01 0.06±0.00 82.0±0.4

Transformer 0.030±0.008 0.06±0.00 0.04±0.01 20.6±1.0

Rev-KL
GRU 0.017±0.005 0.08±0.00 0.03±0.00 78.7±1.5

DeepSets 0.029±0.002 0.19±0.01 0.05±0.00 104.5±8.8

Transformer 0.035±0.013 0.05±0.00 0.03±0.00 32.7±1.0

Table 5: Normalized Symmetric KL Divergence. Amor-
tized models approximate the true posterior well in tasks with
tractable posteriors, when compared to the prior .

While comparing with the true posterior
is hard due to its intractability, it is still
available for the problem of estimating the
mean of a Gaussian distribution as well as for
Bayesian Linear Regression. We plot the ker-
nel density estimate of the samples obtained
from the true posterior, the amortized for-
ward, and the reverse KL model in Figure 4
(Right), which shows that both the amorti-
zation setups efficiently capture the true pos-
terior distribution. Further, we quantify the
quality of the approximate posteriors through
a symmetric KL Divergence metric in Table 5,
showing that the amortized model obtains
good approximations but does worsen with
increasing dimensionality, with reverse KL
modeling outperforming SBI-NPE on high
dimensional linear regression.

10

Under review as submission to TMLR

(a) Forward-KL (b) Reverse-KL

0.75 1.00 1.25
x1

1.4

1.2

1.0

0.8

0.6

x 2

(c) Mean of Gaussian

2.00 1.75 1.50
w1

0.8

0.9

1.0

1.1

1.2

1.3

w
2

(d) Linear Regression2.00 1.75 1.50
w1

0.8

0.9

1.0

1.1

1.2

1.3

w
2

True Posterior
Forward-KL
Reverse-KL

Figure 4: Left: Estimation of the means of a GMM, where red and green samples denote the first and second
mean vectors. Unlike in reverse KL, the cluster labels switch in forward KL, highlighting its ability to capture
underlying multi-modality. Right: Kernel density estimation of the true posterior, overlaid with estimates
from forward and reverse KL systems, for different probabilistic models.

For more complex problems, we additionally compute the squared wasserstein metric W2
2 between samples

from the amortized approximate posterior and from multiple chains of Langevin MCMC. Table 6 shows that
reverse KL approaches do slightly better in high-dimensional setups, while for low-dimensional multi-modal
scenarios (eg. GMM), forward KL approaches fare better; highlighting that they suffer less from mode
collapse. However, it is imperative to know that this metric only provides a crude proxy to the quality of the
posterior, since MCMC methods only provide guarantees of true samples asymptotically.

5 Discussion

Having presented a method to amortize posterior estimation for different probabilistic models and the
corresponding empirical evidence, we now highlight some of our key findings.

Posterior Inference. Our results indicate that the proposed amortized Bayesian posterior estimate
generalizes quite well zero-shot to novel tasks without the need for fine-tuning. While we see that in
low-dimensional multi-modal settings, forward KL performs better at capturing multiple modes, it fails to
capture complex posteriors in high dimensions. Our posterior predictive results additionally indicate that
forward KL often performs comparable to random chance (prior) in high-dimensional, multi-modal setups.
In contrast, reverse KL provides reasonable estimates, alluding to its ability to better capture at least a
mode of the posterior and highlights its superiority and usability when modeling predictions.

Architecture Choices. To better understand the architectural inductive biases that lead to better posterior
estimates, we compare permutation invariant architectures like DeepSets and Transformers with non invariant
architecture like GRU. We first note that GRU outperforms DeepSets even though the latter is permutation in-
variant, which can be explained by the fact that the former can still learn invariant structures after seeing a lot of
datasets during training while the latter is restrictive in its invariance due to the choice of aggregation operator,
which we keep as mean in our setting. On the other hand, we see that Transformer outperforms both DeepSets
and GRUs as it does not rely on a fixed aggregation scheme (e.g. sum or mean pooling) while still respecting
the invariant structure of the posterior and learning it in a context-aware fashion. However, we do see that in
some rare cases of OoD generalization, DeepSets and GRUs can still outperform Transformers (Appendix H.3).

Capacity of qφ. Next, we see that increasing the capacity of qφ with normalizing flows only helps marginally
for the reverse KL objective but substantially for the forward KL setup. We hypothesize that given the
mode-seeking tendency of reverse KL, even with the capacity to model different modes, the algorithm seeks
and latches to only a single mode and capturing multiple modes in this setup is challenging, whereas in
forward KL setup without additional capacity the model overestimates the variance a lot.

Forward vs Reverse KL. Our experiments on GMM show that forward KL objective leads to the learning
of a multi-modal distribution while reverse KL only captures one mode (Figure 4, Left). However, in high-
dimensional multi-modal settings like BNNs, the former does not lead to learning of a reasonable distribution
as it attempts to cover all the modes while the latter does not cover multiple modes but better models an
individual mode (Tables 1 and 2; Appendix H.1 and H.2). Furthermore, unlike forward KL, the reverse KL

11

Under review as submission to TMLR

W2
2 (↓)

Objective qφ Model Gaussian GMM LR NLR LC NLC

100D 5D 2 cl 100D 1D 25D 100D 2D 25D

Baseline - Random 13.96±0.00 4.01±0.00 13.53±0.00 11.21±0.00 36.46±0.00 16.72±0.00 14.71±0.00 36.67±0.00

Fwd-KL

G
au

ss
ia

n

GRU 1.37±0.00 2.35±0.01 10.42±0.02 11.10±0.00 36.33±0.01 15.25±0.01 14.67±0.00 36.66±0.00

DeepSets 1.55±0.01 2.35±0.01 10.39±0.03 11.11±0.01 36.41±0.01 16.72±0.00 14.68±0.00 36.66±0.00

Transformer 1.41±0.00 2.40±0.01 5.83±0.09 11.09±0.01 36.32±0.01 14.70±0.01 14.67±0.00 36.66±0.00

Rev-KL
GRU 1.34±0.00 2.98±0.01 7.39±0.03 11.31±0.01 35.92±0.32 12.31±0.01 14.14±0.01 35.16±0.00

DeepSets 1.38±0.02 2.98±0.02 7.58±0.05 11.31±0.02 35.58±0.20 12.93±0.06 14.10±0.01 35.05±0.00

Transformer 1.34±0.01 2.98±0.03 4.84±0.03 11.38±0.01 35.86±0.08 12.84±0.04 14.17±0.02 35.36±0.00

Fwd-KL

Fl
ow

GRU 1.37±0.00 1.71±0.16 10.18±0.04 11.09±0.02 36.35±0.01 15.29±0.02 14.66±0.01 36.66±0.00

DeepSets 1.58±0.01 1.81±0.08 10.48±0.14 11.08±0.01 36.41±0.00 16.72±0.00 14.67±0.01 36.66±0.00

Transformer 1.40±0.01 1.20±0.26 5.64±0.23 11.08±0.00 36.32±0.02 14.66±0.01 14.65±0.01 36.66±0.00

Rev-KL
GRU 1.33±0.00 2.99±0.02 7.48±0.06 11.15±0.04 35.97±0.04 13.51±0.02 14.33±0.01 35.79±0.01

DeepSets 1.41±0.02 2.96±0.01 8.40±0.09 11.15±0.04 36.02±0.09 13.61±0.05 14.32±0.01 35.69±0.01

Transformer 1.33±0.01 3.00±0.04 4.90±0.15 11.21±0.02 36.00±0.17 13.63±0.02 14.37±0.01 35.88±0.02

Table 6: Sample Based Metrics. We compute the squared 2−Wasserstein metric between samples from the
approximate posterior and samples obtained from Langevin MCMC algorithm, over a range of different tasks.

paradigm can be trained without observing θ but does require a known differentiable likelihood. We show an
application of this setting where we don’t have access to the ground-truth model but only to samples from it.

6 Conclusion

We show that Bayesian posterior inference can be amortized for a broad class of probabilistic models and
explore a variety of design decisions associated with it. In particular, we show that reverse KL is effective
for learning the amortization network and has significant benefits when modeling the predictive, especially in
the presence of model misspecification and generalization to out-of-domain real-world setups. It provides an
exciting direction of research which could reduce the load of real-world, complex, and iterative approximations
through quick and cheap inference over a trained amortized network. Even further, we believe that our
approach provides a direction into learning of generalist in-context Bayesian estimator capable of estimating
the posterior for novel datasets zero-shot.

We believe that scaling our approach to more complex probabilistic models as well as leveraging existing
real-world data in the training paradigm can lead to even better amortized posterior estimators. Another
important future work is to combine our approach with diffusion-based (Zhang & Chen, 2021; Vargas
et al., 2023) and other off-policy variational systems (Bengio et al., 2021) for modeling more complex high
dimensional distributions.

Impact Statement

This work studies amortizing variational inference for Bayesian posterior estimation which is a widespread
strategy for performing inference in statistics. It provides a natural way of quantifying uncertainty and
potentially leading to more robust predictions. While we do not foresee any negative impacts of progress in
this area, we encourage caution when applying the methodologies in practice.

12

Under review as submission to TMLR

References
Akhound-Sadegh, T., Rector-Brooks, J., Bose, A. J., Mittal, S., Lemos, P., Liu, C.-H., Sendera, M.,

Ravanbakhsh, S., Gidel, G., Bengio, Y., et al. Iterated denoising energy matching for sampling from
boltzmann densities. arXiv preprint arXiv:2402.06121, 2024.

Ardizzone, L., Bungert, T., Draxler, F., Köthe, U., Kruse, J., Schmier, R., and Sorrenson, P. FrEIA:
Framework for easily invertible architectures, 2018. URL https://github.com/vislearn/FrEIA.

Ardizzone, L., Bungert, T., Draxler, F., Köthe, U., Kruse, J., Schmier, R., and Sorrenson, P. Framework for
Easily Invertible Architectures (FrEIA), 2018-2022. URL https://github.com/vislearn/FrEIA.

Arenz, O., Dahlinger, P., Ye, Z., Volpp, M., and Neumann, G. A unified perspective on natural gradient
variational inference with gaussian mixture models. arXiv preprint arXiv:2209.11533, 2022.

Athanasopoulos, G., Hyndman, R. J., Kourentzes, N., and Panagiotelis, A. Forecast reconciliation: A review.
International Journal of Forecasting, 2023. ISSN 0169-2070. doi: https://doi.org/10.1016/j.ijforecast.2023.
10.010. URL https://www.sciencedirect.com/science/article/pii/S0169207023001097.

Bengio, E., Jain, M., Korablyov, M., Precup, D., and Bengio, Y. Flow network based generative models
for non-iterative diverse candidate generation. Advances in Neural Information Processing Systems, 34:
27381–27394, 2021.

Berner, J., Richter, L., and Ullrich, K. An optimal control perspective on diffusion-based generative modeling.
arXiv preprint arXiv:2211.01364, 2022.

Bingham, E., Chen, J. P., Jankowiak, M., Obermeyer, F., Pradhan, N., Karaletsos, T., Singh, R., Szerlip,
P., Horsfall, P., and Goodman, N. D. Pyro: Deep universal probabilistic programming. The Journal of
Machine Learning Research, 20(1):973–978, 2019.

Bischl, B., Casalicchio, G., Feurer, M., Hutter, F., Lang, M., Mantovani, R. G., van Rijn, J. N., and
Vanschoren, J. Openml benchmarking suites. arXiv:1708.03731v2 [stat.ML], 2019.

Bishop, C. M. and Nasrabadi, N. M. Pattern recognition and machine learning, volume 4. Springer, 2006.

Bitzer, M., Meister, M., and Zimmer, C. Amortized inference for gaussian process hyperparameters of
structured kernels. arXiv preprint arXiv:2306.09819, 2023.

Blei, D. M., Kucukelbir, A., and McAuliffe, J. D. Variational inference: A review for statisticians. Journal of
the American statistical Association, 112(518):859–877, 2017.

Brooks, S. Markov chain monte carlo method and its application. Journal of the royal statistical society:
series D (the Statistician), 47(1):69–100, 1998.

Carpenter, B., Gelman, A., Hoffman, M. D., Lee, D., Goodrich, B., Betancourt, M., Brubaker, M. A., Guo,
J., Li, P., and Riddell, A. Stan: A probabilistic programming language. Journal of statistical software, 76,
2017.

Chauhan, V. K., Zhou, J., Lu, P., Molaei, S., and Clifton, D. A. A brief review of hypernetworks in deep
learning. arXiv preprint arxiv:2306.06955, 2023.

Chen, Y., Garnett, R., and Montgomery, J. M. Polls, context, and time: A dynamic hierarchical bayesian
forecasting model for us senate elections. Political Analysis, 31(1):113–133, 2023. doi: 10.1017/pan.2021.42.

Cooper, I., Mondal, A., and Antonopoulos, C. G. A sir model assumption for the spread of covid-19
in different communities. Chaos, Solitons & Fractals, 139:110057, 2020. ISSN 0960-0779. doi: https:
//doi.org/10.1016/j.chaos.2020.110057. URL https://www.sciencedirect.com/science/article/pii/
S0960077920304549.

13

https://github.com/vislearn/FrEIA
https://github.com/vislearn/FrEIA
https://www.sciencedirect.com/science/article/pii/S0169207023001097
https://www.sciencedirect.com/science/article/pii/S0960077920304549
https://www.sciencedirect.com/science/article/pii/S0960077920304549

Under review as submission to TMLR

Cranmer, K., Brehmer, J., and Louppe, G. The frontier of simulation-based inference. Proceedings of the
National Academy of Sciences, 117(48):30055–30062, May 2020. ISSN 1091-6490. doi: 10.1073/pnas.
1912789117. URL http://dx.doi.org/10.1073/pnas.1912789117.

Dinh, L., Sohl-Dickstein, J., and Bengio, S. Density estimation using real NVP. 5th International Conference
on Learning Representations, ICLR 2017 - Conference Track Proceedings, 2017. URL http://arxiv.org/
abs/1605.08803.

Finn, C., Abbeel, P., and Levine, S. Model-agnostic meta-learning for fast adaptation of deep networks. In
International conference on machine learning, pp. 1126–1135. PMLR, 2017.

Fischer, S. F., Feurer, M., and Bischl, B. OpenML-CTR23 – a curated tabular regression benchmarking suite.
In AutoML Conference 2023 (Workshop), 2023. URL https://openreview.net/forum?id=HebAOoMm94.

Gardner, J., Pleiss, G., Weinberger, K. Q., Bindel, D., and Wilson, A. G. Gpytorch: Blackbox matrix-matrix
gaussian process inference with gpu acceleration. Advances in neural information processing systems, 31,
2018.

Garnelo, M., Rosenbaum, D., Maddison, C., Ramalho, T., Saxton, D., Shanahan, M., Teh, Y. W., Rezende,
D., and Eslami, S. A. Conditional neural processes. In International conference on machine learning, pp.
1704–1713. PMLR, 2018a.

Garnelo, M., Schwarz, J., Rosenbaum, D., Viola, F., Rezende, D. J., Eslami, S., and Teh, Y. W. Neural
processes. arXiv preprint arXiv:1807.01622, 2018b.

Geffner, T., Papamakarios, G., and Mnih, A. Compositional score modeling for simulation-based inference.
2023.

Gelfand, A. E. Gibbs sampling. Journal of the American statistical Association, 95(452):1300–1304, 2000.

Gelman, A., Carlin, J. B., Stern, H. S., Dunson, D. B., Vehtari, A., and Rubin, D. B. Bayesian Data Analysis,
Third Edition. CRC Press, November 2013. ISBN 9781439840955. URL https://play.google.com/
store/books/details?id=ZXL6AQAAQBAJ.

Glaeser, R. M., Nogales, E., and Chiu, W. Single-particle Cryo-EM of Biological Macromolecules. 2053-
2563. IOP Publishing, 2021. ISBN 978-0-7503-3039-8. doi: 10.1088/978-0-7503-3039-8. URL https:
//dx.doi.org/10.1088/978-0-7503-3039-8.

Gordon, J., Bruinsma, W. P., Foong, A. Y., Requeima, J., Dubois, Y., and Turner, R. E. Convolutional
conditional neural processes. arXiv preprint arXiv:1910.13556, 2019.

Grant, E., Finn, C., Levine, S., Darrell, T., and Griffiths, T. Recasting gradient-based meta-learning as
hierarchical bayes. arXiv preprint arXiv:1801.08930, 2018.

Higgins, I., Matthey, L., Pal, A., Burgess, C., Glorot, X., Botvinick, M., Mohamed, S., and Lerchner, A.
beta-VAE: Learning basic visual concepts with a constrained variational framework. In International
Conference on Learning Representations, 2017. URL https://openreview.net/forum?id=Sy2fzU9gl.

Hoffman, M. D., Blei, D. M., Wang, C., and Paisley, J. Stochastic variational inference. Journal of Machine
Learning Research, 2013.

Hoffman, M. D., Gelman, A., et al. The no-u-turn sampler: adaptively setting path lengths in hamiltonian
monte carlo. J. Mach. Learn. Res., 15(1):1593–1623, 2014.

Hollmann, N., Müller, S., Eggensperger, K., and Hutter, F. Tabpfn: A transformer that solves small tabular
classification problems in a second. arXiv preprint arXiv:2207.01848, 2022.

Hospedales, T., Antoniou, A., Micaelli, P., and Storkey, A. Meta-learning in neural networks: A survey. IEEE
Transactions on Pattern Analysis & Machine Intelligence, 44(09):5149–5169, sep 2022. ISSN 1939-3539.
doi: 10.1109/TPAMI.2021.3079209.

14

http://dx.doi.org/10.1073/pnas.1912789117
http://arxiv.org/abs/1605.08803
http://arxiv.org/abs/1605.08803
https://openreview.net/forum?id=HebAOoMm94
https://play.google.com/store/books/details?id=ZXL6AQAAQBAJ
https://play.google.com/store/books/details?id=ZXL6AQAAQBAJ
https://dx.doi.org/10.1088/978-0-7503-3039-8
https://dx.doi.org/10.1088/978-0-7503-3039-8
https://openreview.net/forum?id=Sy2fzU9gl

Under review as submission to TMLR

Kim, H., Mnih, A., Schwarz, J., Garnelo, M., Eslami, A., Rosenbaum, D., Vinyals, O., and Teh, Y. W.
Attentive neural processes. arXiv preprint arXiv:1901.05761, 2019.

Kingma, D. P. and Ba, J. Adam: A method for stochastic optimization. arXiv preprint arXiv:1412.6980,
2014.

Kingma, D. P. and Dhariwal, P. Glow: Generative flow with invertible 1x1 convolutions. Advances in neural
information processing systems, 31, 2018.

Kingma, D. P. and Welling, M. Auto-encoding variational bayes. arXiv preprint arXiv:1312.6114, 2013.

Kingma, D. P., Welling, M., et al. An introduction to variational autoencoders. Foundations and Trends® in
Machine Learning, 12(4):307–392, 2019.

Kobyzev, I., Prince, S. J., and Brubaker, M. A. Normalizing flows: An introduction and review of current
methods. IEEE transactions on pattern analysis and machine intelligence, 43(11):3964–3979, 2020.

Koch, G., Zemel, R., Salakhutdinov, R., et al. Siamese neural networks for one-shot image recognition. In
ICML deep learning workshop, volume 2. Lille, 2015.

Krueger, D., Huang, C.-W., Islam, R., Turner, R., Lacoste, A., and Courville, A. Bayesian hypernetworks.
arXiv preprint arxiv:1710.04759, 2017.

Lee, J., Lee, Y., Kim, J., Kosiorek, A., Choi, S., and Teh, Y. W. Set transformer: A framework for
attention-based permutation-invariant neural networks. In International conference on machine learning,
pp. 3744–3753. PMLR, 2019.

Lin, W., Schmidt, M., and Khan, M. E. Handling the positive-definite constraint in the bayesian learning
rule. In International conference on machine learning, pp. 6116–6126. PMLR, 2020.

Liu, S., Sun, X., Ramadge, P. J., and Adams, R. P. Task-agnostic amortized inference of gaussian process
hyperparameters. Advances in Neural Information Processing Systems, 33:21440–21452, 2020.

Lorch, L., Sussex, S., Rothfuss, J., Krause, A., and Schölkopf, B. Amortized inference for causal structure
learning. Advances in Neural Information Processing Systems, 35:13104–13118, 2022.

Morris, Q. Recognition networks for approximate inference in bn20 networks. arXiv preprint arXiv:1301.2295,
2013.

Müller, S., Hollmann, N., Arango, S. P., Grabocka, J., and Hutter, F. Transformers can do bayesian inference.
arXiv preprint arXiv:2112.10510, 2021.

Paige, B. and Wood, F. Inference networks for sequential monte carlo in graphical models. In International
Conference on Machine Learning, pp. 3040–3049. PMLR, 2016.

Pakman, A., Wang, Y., Mitelut, C., Lee, J., and Paninski, L. Neural clustering processes. In International
Conference on Machine Learning, pp. 7455–7465. PMLR, 2020.

Papamakarios, G., Nalisnick, E., Rezende, D. J., Mohamed, S., and Lakshminarayanan, B. Normalizing flows
for probabilistic modeling and inference. The Journal of Machine Learning Research, 22(1):2617–2680,
2021.

Radev, S. T., Mertens, U. K., Voss, A., Ardizzone, L., and Köthe, U. Bayesflow: Learning complex stochastic
models with invertible neural networks. IEEE transactions on neural networks and learning systems, 33(4):
1452–1466, 2020.

Rezende, D. and Mohamed, S. Variational inference with normalizing flows. In International conference on
machine learning, pp. 1530–1538. PMLR, 2015.

Rezende, D. J., Mohamed, S., and Wierstra, D. Stochastic backpropagation and approximate inference in
deep generative models. In International conference on machine learning, pp. 1278–1286. PMLR, 2014.

15

Under review as submission to TMLR

Simpson, F., Davies, I., Lalchand, V., Vullo, A., Durrande, N., and Rasmussen, C. E. Kernel identification
through transformers. Advances in Neural Information Processing Systems, 34:10483–10495, 2021.

Song, Y., Sohl-Dickstein, J., Kingma, D. P., Kumar, A., Ermon, S., and Poole, B. Score-based generative
modeling through stochastic differential equations. arXiv preprint arXiv:2011.13456, 2020.

Stuhlmüller, A., Taylor, J., and Goodman, N. Learning stochastic inverses. Advances in neural information
processing systems, 26, 2013.

Sun, Z., Ozay, M., and Okatani, T. Hypernetworks with statistical filtering for defending adversarial examples.
arXiv preprint arxiv:1711.01791, 2017.

Sung, F., Yang, Y., Zhang, L., Xiang, T., Torr, P. H., and Hospedales, T. M. Learning to compare: Relation
network for few-shot learning. In Proceedings of the IEEE conference on computer vision and pattern
recognition, pp. 1199–1208, 2018.

Tang, L., Zhou, Y., Wang, L., Purkayastha, S., Zhang, L., He, J., Wang, F., and Song, P. X.-K. A review of
multi-compartment infectious disease models. International Statistical Review, 88(2):462–513, 2020. doi:
https://doi.org/10.1111/insr.12402. URL https://onlinelibrary.wiley.com/doi/abs/10.1111/insr.
12402.

Vargas, F., Grathwohl, W., and Doucet, A. Denoising diffusion samplers. arXiv preprint arXiv:2302.13834,
2023.

Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A. N., Kaiser, Ł., and Polosukhin, I.
Attention is all you need. Advances in neural information processing systems, 30, 2017.

Vinyals, O., Blundell, C., Lillicrap, T., Wierstra, D., et al. Matching networks for one shot learning. Advances
in neural information processing systems, 29, 2016.

Von Oswald, J., Niklasson, E., Randazzo, E., Sacramento, J., Mordvintsev, A., Zhmoginov, A., and
Vladymyrov, M. Transformers learn in-context by gradient descent. In International Conference on
Machine Learning, pp. 35151–35174. PMLR, 2023.

von Oswald, J., Niklasson, E., Schlegel, M., Kobayashi, S., Zucchet, N., Scherrer, N., Miller, N., Sandler,
M., Vladymyrov, M., Pascanu, R., et al. Uncovering mesa-optimization algorithms in transformers. arXiv
preprint arXiv:2309.05858, 2023.

Welling, M. and Teh, Y. W. Bayesian learning via stochastic gradient langevin dynamics. In Proceedings of
the 28th international conference on machine learning (ICML-11), pp. 681–688, 2011.

Zaheer, M., Kottur, S., Ravanbhakhsh, S., Póczos, B., Salakhutdinov, R., and Smola, A. J. Deep sets. In
Advances in Neural Information Processing Systems, volume 2017-December, 2017.

Zhang, Q. and Chen, Y. Path integral sampler: a stochastic control approach for sampling. arXiv preprint
arXiv:2111.15141, 2021.

Štrumbelj, E., Bouchard-Côté, A., Corander, J., Gelman, A., Rue, H., Murray, L., Pesonen, H., Plummer,
M., and Vehtari, A. Past, present, and future of software for bayesian inference, 2023. URL http:
//hdl.handle.net/10754/694575.

16

https://onlinelibrary.wiley.com/doi/abs/10.1111/insr.12402
https://onlinelibrary.wiley.com/doi/abs/10.1111/insr.12402
http://hdl.handle.net/10754/694575
http://hdl.handle.net/10754/694575

Under review as submission to TMLR

Appendix
A Related Work

In this section, we draw parallels of our work to various approaches that have been proposed to tackle the
problem of either providing a good initialization for different tasks, performing implicit optimization to model
predictive distributions for new tasks, or estimating the posterior through a different objective.

A.1 Variational Autoencoders

VAEs (Kingma & Welling, 2013; Rezende et al., 2014; Rezende & Mohamed, 2015; Kingma et al., 2019)
are latent variable models which model observations x conditioned on latent variables z through the joint
distribution pθ(x, z) = pθ(x|z)p(z) where p(z) is generally chosen as N (0, I). Training the model is
done through VI where qφ(z) is obtained by explicit amortization over the data point, that is, qφ(z|x) =
N (µφ(x),Σφ(x)). Training this system on a dataset D is done by similarly optimizing the Evidence
Lower-Bound, which boils down to the following optimization problem

arg max
θ,φ

Ex∼DEz∼q(·|x)

[
log pθ(x, z)

qφ(z|x)

]
(16)

This objective can easily be optimized using gradient-based learning and the reparameterization trick.
While typically, a diagonal Gaussian distribution is considered for qφ, more complex distributions utilizing
normalizing flows can also be used.

A.2 Hypernetworks

Hypernetworks are neural networks that generate weights for another neural network, used in tasks such
as uncertainty quantification, zero-shot learning, etc. We refer for a comprehensive overview to Chauhan
et al. (2023). Based on experiments on predicting the weights of a compact MLP (section 4), our work shows
similarities with studies in this area but also has significant differences. Regarding uncertainty quantification,
hypernetworks are instrumental in creating an ensemble of models by generating multiple weight vectors for
the primary network. Each model within this ensemble possesses distinct parameter configurations, enabling
robust estimation of uncertainty in model predictions. This feature is precious in safety-critical domains
like healthcare, where confidence in predictions is essential. Multiple weight sets can be generated through
techniques like dropout within hypernetworks or sampling from a noise distribution. The latter (Krueger et al.,
2017) is based on a Bayesian framework where weights can be sampled using invertible network architecture,
such as normalizing flows. However, while we amortize posterior inference, the weights sampled from the
hypernetwork are not conditioned on information from the currently observed input data during inference time
but indirectly solely on the dataset available during training, and retraining would need to be done given a new
dataset. Departing from the Bayesian framework, Sun et al. (2017) have shown data-specific discriminative
weight prediction, which aligns well with their specific objective of defending a convolutional neural network
against adversarial attacks. Combining the ability to sample a new set of weights dataset-specifically but
also handling dataset exchangeability, even in the more realistic case of missing information, our work has a
distinctly different focus but also can be seen as an extension to hypernetwork research.

A.3 In-Context Learning

Amortized inference has close links to in-context learning (ICL), which has been gaining popularity, especially
in natural language modeling. Various works show how in-context learning can be seen as performing implicit
optimization based on the context examples, with some constructions showing exact equivalence with gradient
descent in linear regression (Von Oswald et al., 2023; von Oswald et al., 2023). Other works have shown
how such systems can be seen as implicitly modeling the Bayesian posterior predictive distribution (Müller
et al., 2021). In a similar vein, there have been additional works aimed at directly modeling the posterior
predictive distribution by providing the training data as “context" to a Transformer model and training it
based on the maximum log-likelihood principle (Hollmann et al., 2022). While such approaches have been

17

Under review as submission to TMLR

L2 Loss (↓)

Objective qφ Model Gaussian GMM

2D 100D 2D-2cl 2D-5cl 5D-2cl 5D-5cl

Baseline

- Random 5.839±0.015 301.065±0.346 1.887±0.031 0.730±0.004 5.001±0.037 1.670±0.008

- Optimization 1.989±0.000 101.243±0.000 0.169±0.000 0.119±0.001 0.425±0.000 0.308±0.000

- Langevin 2.013±0.004 102.346±0.031 0.173±0.001 0.125±0.001 0.448±0.009 0.352±0.005

- HMC 2.018±0.008 102.413±0.028 0.174±0.001 0.135±0.001 0.479±0.007 0.449±0.002

Fwd-KL

G
au

ss
ia

n

GRU 2.014±0.001 102.641±0.011 0.921±0.013 0.522±0.001 2.430±0.034 1.235±0.011

DeepSets 2.012±0.002 103.215±0.054 0.920±0.019 0.522±0.001 2.436±0.037 1.238±0.009

Transformer 2.013±0.002 102.783±0.005 0.931±0.017 0.522±0.001 2.498±0.026 1.230±0.009

Rev-KL
GRU 2.012±0.001 102.509±0.008 0.183±0.002 0.132±0.002 0.471±0.010 0.413±0.019

DeepSets 2.011±0.001 102.599±0.042 0.186±0.001 0.127±0.002 0.495±0.018 0.409±0.005

Transformer 2.013±0.002 102.540±0.025 0.185±0.004 0.122±0.001 0.489±0.019 0.328±0.002

Fwd-KL

Fl
ow

GRU 2.014±0.001 102.656±0.019 0.186±0.006 0.242±0.005 0.670±0.094 0.563±0.018

DeepSets 2.014±0.001 103.340±0.029 0.185±0.006 0.237±0.008 0.648±0.082 0.583±0.028

Transformer 2.016±0.002 102.774±0.024 0.188±0.012 0.252±0.001 0.621±0.070 0.592±0.019

Rev-KL
GRU 2.013±0.001 102.490±0.012 0.184±0.006 0.130±0.002 0.467±0.003 0.384±0.005

DeepSets 2.011±0.001 102.674±0.046 0.188±0.005 0.131±0.002 0.519±0.008 0.405±0.005

Transformer 2.013±0.001 102.525±0.050 0.187±0.004 0.123±0.001 0.468±0.007 0.326±0.008

Table 7: Fixed-Dimensional. Results for estimating the mean of a Gaussian (Gaussian) and means of a
Gaussian mixture model (GMM) with the expected L2 loss according to the posterior predictive as metric.

seeing tremendous success, they cannot be directly applied to cases where we care about and want to analyze
the solution space as the solution space is only modeled implicitly, and thus, recovering it is not possible. For
example, if our goal is to learn a linear regression model, an ICL model could end up learning a nonlinear
model and would provide no information about the actual parameters used for prediction. As opposed to
this, we obtain parameters explicitly. We thus can answer questions like the relevance of a particular feature
(which corresponds to its weight in the output, and we know the weight vector explicitly). Even further,
many systems grounded in physics and economics only admit a constrained solution space; for example, the
movement of a human arm lies on a particular manifold, or the configuration of molecules and proteins cannot
be arbitrary. Thus, performing predictions through an implicit solution space, which may violate several
constraints, is not ideal. Furthermore, explicitly modeling the solution space and encoding the constraints
present can be done through the prior and the parametric distribution used for modeling.

A.4 Meta Learning

Meta-learning (Hospedales et al., 2022) aims to equip models with the ability to quickly learn from different
tasks or data sets to generalize to new tasks in resource-constrained domains. This attribute is precious in
practical scenarios where obtaining large amounts of task-specific data is impractical or costly. A simple
way of obtaining this is through nonparametric or similarity-based models like k-Nearest Neighbours, where
no training is involved. Thus, new tasks can be solved quickly based on a few examples by computing a
similarity metric with these examples (Koch et al., 2015; Vinyals et al., 2016; Sung et al., 2018). Another way
of achieving this is through optimization-based setups, which use a nested optimization procedure. An inner
step learns individual tasks from a shared initialization, whereas the outer loop computes the gradient of
the whole inner process and moves the initialization in a way that allows for better generalization. Here, by
relying on only a few iterations in the inner loop, the outer loop has the incentive to move the initialization to
a point from which solutions to multiple tasks are reachable (Finn et al., 2017). Given the similarities between

18

Under review as submission to TMLR

L2 Loss (↓) Accuracy (↑)

Objective qφ Model Linear Regression Linear Classification

2D 100D 2D-2cl 2D-5cl 100D-2cl 100D-5cl

Baseline

- Random 4.178±0.018 202.601±0.321 50.498±0.357 19.891±0.028 50.046±0.047 20.054±0.053

- Optimization 0.257±0.000 25.083±0.006 96.982±0.000 93.449±0.002 70.258±0.012 41.338±0.012

- Langevin 0.263±0.002 23.340±0.689 95.034±0.412 88.277±0.290 65.123±0.370 32.544±0.422

- HMC 0.263±0.001 18.659±0.189 92.659±0.344 82.169±0.518 62.145±0.245 29.582±0.371

Fwd-KL

G
au

ss
ia

n

GRU 0.264±0.001 124.823±0.135 81.170±0.389 71.170±0.275 59.740±0.102 23.042±0.246

DeepSets 0.264±0.000 123.133±1.080 81.281±0.278 70.993±0.191 50.047±0.051 20.053±0.045

Transformer 0.264±0.000 45.856±1.331 80.960±0.285 71.484±0.437 62.954±0.062 26.789±0.110

Rev-KL
GRU 0.263±0.000 60.215±0.866 94.258±0.034 87.339±0.023 63.465±0.307 28.270±0.462

DeepSets 0.263±0.000 62.837±0.617 94.285±0.116 87.342±0.021 60.867±0.265 21.339±0.085

Transformer 0.264±0.001 28.735±0.252 94.302±0.054 87.540±0.117 68.185±0.007 32.950±0.284

Fwd-KL

Fl
ow

GRU 0.264±0.001 119.119±0.233 96.305±0.008 88.927±0.200 59.920±0.221 23.025±0.077

DeepSets 0.264±0.001 125.677±3.731 96.191±0.021 88.643±0.102 50.061±0.021 20.021±0.094

Transformer 0.264±0.000 43.272±2.700 96.344±0.059 89.624±0.215 64.349±0.147 26.952±0.203

Rev-KL
GRU 0.263±0.000 61.295±1.008 95.241±0.012 88.429±0.024 64.669±0.207 28.409±1.167

DeepSets 0.263±0.001 76.412±2.038 95.296±0.021 88.464±0.061 58.384±0.812 21.569±0.117

Transformer 0.263±0.000 29.358±1.569 95.339±0.063 88.644±0.047 68.721±0.121 33.107±0.333

Table 8: Fixed-Dimensional. Results for estimating the parameters of linear regression (LR) and classifica-
tion (LC) models with the expected L2 loss and accuracy according to the posterior predictive as metrics.

meta-learning and hierarchical Bayesian inference (Grant et al., 2018), our approach can be considered as a
kind of meta-learning framework; however, the line between meta-learning and Bayesian posterior inference is
quite blurry as any amortized approach for the latter can be seen as a case of the former.

A.5 Neural Processes

A notable approach in meta-learning related to our research is neural processes (NP), which excel in learning
scenarios with few examples. NPs (Garnelo et al., 2018a;b; Kim et al., 2019; Pakman et al., 2020; Gordon
et al., 2019) can be seen as a more flexible and powerful extension of Gaussian processes that leverage a
neural network-based encoder-decoder architecture for learning to model a distribution over functions that
approximate a stochastic process. However, while we are interested in approximating the posterior distribution
over the parameters, NPs are used to approximate the posterior predictive distribution to make predictions
based on observed data. Similar to our setup, NPs rely on amortized VI for obtaining the predictive posterior.
Still, instead of working with a known probabilistic model, they train the probabilistic model primarily for
prediction-based tasks through approaches analogous to variational expectation maximization. Thus, they
cannot provide an explicit posterior over the parameters, but they are suitable for tasks where only predictive
posteriors are essential, such as those in supervised learning. NPs, in their most basic form, accomplish this
by training for the objective:

arg max
θ,φ

ED∼χEz∼qφ(·|D)

[
log pθ(D, z)

qφ(z|D)

]
(17)

where z ∈ Rp is an arbitrary latent variable often uninterpretable, and the parameters of the probabilistic
model θ do not get a Bayesian treatment. In particular, NPs are more suited to modeling datasets of the
form D = {xi,yi}ni=1, where all probabilities in Equation 17 are conditioned on the input x’s, and only the
predictive over y’s is modeled, and pθ is modeled as a Neural Network.

19

Under review as submission to TMLR

L2 Loss (↓)

Objective qφ Model Nonlinear Regression | ReLU

1-layer 2-layers

1D 25D 1D 25D

Baseline

- Random 65.936±0.913 831.595±8.696 1029.407±11.542 12067.691±183.598

- Optimization 0.360±0.001 103.967±0.110 2.370±0.015 1894.574±4.266

- Langevin 0.308±0.000 132.391±0.992 N/A N/A
- HMC 0.374±0.002 98.061±0.730 22.314±0.814 3903.510±5.377

Fwd-KL

G
au

ss
ia

n

GRU 49.332±0.946 671.639±10.494 774.045±7.521 9905.246±214.545

DeepSets 49.864±0.979 684.853±2.581 768.921±8.278 9946.090±109.933

Transformer 49.678±0.940 680.853±5.838 747.221±12.189 9982.609±85.596

Rev-KL
GRU 0.426±0.004 105.976±0.586 1.066±0.069 1796.512±5.805

DeepSets 0.426±0.004 125.853±0.791 1.394±0.108 1892.402±2.793

Transformer 0.417±0.005 102.295±1.825 2.075±0.147 1811.440±115.435

Fwd-KL

Fl
ow

GRU 15.781±0.210 538.962±4.269 614.925±15.494 7564.076±67.160

DeepSets 15.051±0.120 548.535±3.288 622.461±7.043 7618.364±115.946

Transformer 16.109±0.307 539.338±4.336 597.718±8.358 7635.052±109.037

Rev-KL
GRU 0.405±0.010 106.001±0.420 0.988±0.045 1814.649±8.327

DeepSets 0.395±0.004 128.169±1.451 1.215±0.028 1886.698±7.294

Transformer 0.387±0.004 102.610±0.863 2.549±0.058 1791.741±49.585

Table 9: Fixed-Dimensional. Results for estimating the parameters of nonlinear regression models with
ReLU activation function, with the expected L2 loss according to the posterior predictive as metric.

These approaches can be seen as quite related to ICL, where the exchangeable architecture backbone is
switched from DeepSets to Transformers. Similar to ICL, they do not provide control over the solution
space as they aim to model either the posterior predictive or an arbitrary latent space. While this leads to
good predictive performance on various tasks, they cannot be freely applied to problems that pose certain
constraints on the underlying probabilistic model. In such cases, estimating the actual parameters is important
to enforce constraints in the parameter space as well as for interpretability, which we already discussed in the
ICL section.

A.6 Simulation-Based Inference

In the case of simulation-based inference (Cranmer et al., 2020), when the likelihood p(x|θ) is intractable,
BayesFlow (Radev et al., 2020) and similar methods (Lorch et al., 2022) provide a solution framework to
amortize Bayesian inference of parameters in complex models. Starting from the forward KL divergence
between the true and approximate posteriors, the resulting objective is to optimize for parameters of the
approximate posterior distribution that maximize the posterior probability of data-generating parameters θ
given observed data D for all θ and D. Density estimation of the approximate posterior can then be done
using the change-of-variables formula and a conditional invertible neural network that parameterizes the
approximate posterior distribution.

arg min
φ

KL[p(θ|D)||qφ(θ|D)] = arg min
φ={ν,ψ}

E(θ,D)∼p(θ,D) [− log pz(fν(θ; hψ(D))) − log |det Jfν
|] (18)

Since their goal is to learn a global estimator for the probabilistic mapping from D to data generating
θ, the information about the observed dataset is encoded in the output of a summary network hψ. It is
used as conditional input to the normalizing flow fν . Although the likelihood function does not need to be

20

Under review as submission to TMLR

L2 Loss (↓)

Objective qφ Model Nonlinear Regression | TanH

1-layer 2-layers

1D 25D 1D 25D

Baseline

- Random 31.448±0.186 52.644±0.173 52.735±1.122 52.583±0.132

- Optimization 0.366±0.001 13.352±0.005 0.651±0.002 30.176±0.056

- Langevin 0.296±0.003 17.221±0.130 0.363±0.003 28.528±0.115

- HMC 0.398±0.003 12.607±0.192 0.733±0.021 23.571±0.346

Fwd-KL

G
au

ss
ia

n

GRU 31.391±0.161 52.008±0.282 52.725±1.149 51.989±0.139

DeepSets 31.421±0.074 52.137±0.215 52.850±1.192 51.904±0.334

Transformer 31.350±0.219 52.945±0.430 52.693±1.188 52.364±0.164

Rev-KL
GRU 0.415±0.003 15.874±6.958 0.951±0.047 25.907±0.012

DeepSets 0.405±0.004 25.333±0.010 0.912±0.013 25.877±0.002

Transformer 0.412±0.013 11.784±0.949 0.847±0.010 20.405±3.874

Fwd-KL

Fl
ow

GRU 12.415±0.800 52.039±0.065 52.695±0.611 52.576±0.225

DeepSets 31.790±0.163 51.933±0.115 52.903±0.625 52.643±0.239

Transformer 10.392±0.195 52.470±0.364 52.385±0.689 52.646±0.622

Rev-KL
GRU 0.386±0.005 11.401±0.041 0.736±0.009 25.892±0.010

DeepSets 0.374±0.005 25.685±0.004 0.686±0.019 25.885±0.007

Transformer 0.376±0.002 10.486±0.040 0.724±0.026 25.885±0.011

Table 10: Fixed-Dimensional. Results for estimating the parameters of nonlinear regression models with
TanH activation function, with the expected L2 loss according to the posterior predictive as metric.

known, the method requires access to paired observations (x,θ) for training, which is sometimes unavailable.
This approach is equivalent to the Forward KL setup in our experiments when trained with DeepSets and
Normalizing Flows. Current research has also leveraged score-based generative models for SBI which can
condition on a dataset by learning a score model conditional only on single observations (Geffner et al., 2023).

A.7 Amortization in Gaussian Processes

Gaussian Processes (GPs) define a class of probabilistic models that do enjoy tractable likelihood. However,
inference in such systems is slow and sensitive to the choice of kernel function that defines the covariance
matrix. Similar to meta learning and neural processes, current research also focuses on estimating the kernel
function in GPs by leveraging permutation invariant architectures like transformers (Liu et al., 2020; Simpson
et al., 2021; Bitzer et al., 2023). Additionally, often these approaches amortize based on point estimates and
are leveraged when considering GPs for regression problems, and it is not straightforward to extend them
to classification or unsupervised learning. In contrast, our approach is more general and can work for all
problems that define a differentiable likelihood function. Additionally, our approach also approximates the
Bayesian posterior distribution over the parameters of interest, as opposed to point estimates.

A.8 Mode Collapse in Variational Inference

Reverse KL based methods have been widely known to suffer from mode collapse due to the nature of the
optimization objective (Bishop & Nasrabadi, 2006), which implies that even if the approximate distribution
possesses the ability to represent multiple modes, optimization is often sub-optimal and the distribution ends
up covering only a small handful of them. Improving normalizing flow based methods with repulsive terms or
through the lens of natural gradient optimization procedure for a mixture approximate distribution (Arenz

21

Under review as submission to TMLR

Accuracy (↑)

Objective qφ Model Nonlinear Classification | ReLU - 2 class

1-layer 2-layers

2D 25D 2D 25D

Baseline

- Random 50.306±0.590 50.008±0.326 50.394±0.190 49.846±0.635

- Optimization 96.879±0.028 77.896±0.023 96.770±0.062 82.073±0.200

- Langevin 95.971±0.313 73.165±0.282 96.645±0.101 76.541±0.139

- HMC 91.763±0.163 70.395±0.110 91.797±0.048 76.445±0.372

Fwd-KL

G
au

ss
ia

n

GRU 59.518±0.355 56.858±0.319 60.962±0.599 60.063±0.695

DeepSets 59.383±0.244 56.806±0.204 61.090±0.690 59.933±0.599

Transformer 59.588±0.389 57.089±0.376 61.151±0.560 60.041±0.680

Rev-KL
GRU 92.384±0.195 72.455±0.032 86.157±0.066 69.966±0.333

DeepSets 92.488±0.133 59.806±0.315 86.275±0.733 69.550±0.371

Transformer 92.627±0.377 75.178±0.142 86.351±0.217 69.812±0.527

Fwd-KL

Fl
ow

GRU 76.931±0.266 58.338±0.026 62.981±0.452 63.199±0.202

DeepSets 72.313±1.829 58.113±0.126 62.438±0.277 62.884±0.201

Transformer 77.296±0.201 58.344±0.148 63.753±0.155 63.590±0.390

Rev-KL
GRU 93.392±0.073 72.002±0.506 85.712±0.665 71.419±0.200

DeepSets 93.312±0.197 60.943±0.184 85.960±0.896 71.288±0.211

Transformer 93.578±0.093 74.956±0.546 87.138±0.438 71.525±0.159

Table 11: Fixed-Dimensional. Results for estimating the parameters of nonlinear classification models with
ReLU activation function and two classes, with the expected accuracy according to the posterior predictive
as metric.

et al., 2022; Lin et al., 2020) is an important topic of research, and we believe it would be quite an important
future work to experimentally validate if they help in learning multi-modality in amortized posterior inference
problems that are studied in this work.

B Architectures respecting Exchangeability

In this section, we highlight how DeepSets and Transformer models satisfy the dataset exchangeability criteria,
which is essential in modeling the posterior distribution over the parameters of any probabilistic model relying
on iid data.

B.1 DeepSets

DeepSets (Zaheer et al., 2017) operate on arbitrary sets X = {x1, ...xN} ⊂ Rd of fixed dimensionality d by
first mapping each individual element xi ∈ X to some high-dimensional space using a nonlinear transform,
which is parameterized as a multi-layered neural network with parameters φ1

zi = fφ1(xi) (19)

After having obtained this high-dimensional embedding of each element of the set, it applies an aggregation
function a(·), which is a permutation invariant function that maps a set of elements Z = {z1, ...,zN} ∈ Rz to
an element h ∈ Rz,

h = a(Z) (20)

22

Under review as submission to TMLR

Accuracy (↑)

Objective qφ Model Nonlinear Classification | ReLU - 5 class

1-layer 2-layers

2D 25D 2D 25D

Baseline

- Random 19.952±0.119 20.026±0.062 19.832±0.202 19.985±0.091

- Optimization 94.369±0.022 60.589±0.064 93.664±0.025 60.824±0.023

- Langevin 91.286±0.149 50.845±0.366 92.449±0.068 52.216±0.170

- HMC 81.387±0.742 47.408±0.548 81.098±0.246 52.854±0.190

Fwd-KL

G
au

ss
ia

n

GRU 32.597±0.169 29.932±0.142 31.061±0.089 30.187±0.070

DeepSets 32.481±0.090 29.909±0.218 30.923±0.205 19.983±0.089

Transformer 32.977±0.114 30.064±0.134 31.478±0.079 30.307±0.121

Rev-KL
GRU 83.460±0.269 36.688±0.189 71.710±0.375 28.234±0.148

DeepSets 83.734±0.313 34.078±0.066 67.519±1.735 47.585±0.143

Transformer 84.645±0.515 36.850±0.138 74.390±0.280 27.808±0.232

Fwd-KL

Fl
ow

GRU 43.850±0.412 31.926±0.096 33.771±0.400 31.871±0.228

DeepSets 43.620±0.250 31.829±0.126 32.919±0.126 19.950±0.192

Transformer 44.057±0.122 31.789±0.094 34.079±0.224 32.392±0.212

Rev-KL
GRU 84.459±0.194 37.343±0.134 64.309±0.273 48.459±0.542

DeepSets 84.775±0.129 34.917±0.069 67.937±4.341 48.563±0.199

Transformer 85.857±0.096 46.968±0.094 75.005±0.605 48.889±0.380

Table 12: Fixed-Dimensional. Results for estimating the parameters of nonlinear classification models with
ReLU activation function and five classes, with the expected accuracy according to the posterior predictive
as metric.

Thus, the outcome does not change under permutations of Z. Finally, another nonlinear transform, parame-
terized by a multi-layered neural network with parameters φ2, is applied to the outcome h to provide the
final output.

o = gφ2(h) (21)

For our experiments, we then use the vector o to predict the parameters of a parametric family of distributions
(e.g., Gaussian or Flows) using an additional nonlinear neural network. As an example, for the Gaussian case,
we consider the distribution N (·|µ,Σ), where

µ := µφ3(o) and Σ := Σφ4(o) (22)

which makes µ implicitly a function of the original input set X . To understand why the posterior distribution
modeled in this fashion does not change when the inputs are permuted, let us assume that Π is a permutation
over the elements of X . If we look at one of the parameters of the posterior distribution, e.g., µ, we can see
that

µ(ΠX) = µφ3

(
gφ2

(
a

(
{fφ1(xΠ(i))}Ni=1

)))
(23)

= µφ3

(
gφ2

(
a

(
{fφ1(xi)}Ni=1

)))
(24)

= µ(X) (25)

which simply follows from the fact that a(·) is a permutation invariant operation, e.g., sum or mean. We can
also provide similar reasoning for the other parameters (e.g., Σ). This shows that DeepSets can be used to
model the posterior distribution over parameters of interest as it respects the exchangeability criteria (iid
observations) assumptions in the data through its permutation invariant structure.

23

Under review as submission to TMLR

Accuracy (↑)

Objective qφ Model Nonlinear Classification | TanH - 2 class

1-layer 2-layers

2D 25D 2D 25D

Baseline

- Random 50.147±0.603 49.963±0.083 49.942±0.452 49.978±0.113

- Optimization 96.552±0.005 75.228±0.029 94.130±0.018 69.052±0.029

- Langevin 94.778±0.210 68.787±0.258 92.417±0.149 62.722±0.180

- HMC 91.674±0.200 67.415±0.667 88.218±0.202 62.323±0.262

Fwd-KL

G
au

ss
ia

n

GRU 50.151±0.616 49.959±0.087 49.942±0.448 49.987±0.112

DeepSets 50.147±0.601 49.961±0.083 49.939±0.451 49.977±0.110

Transformer 50.146±0.622 49.959±0.082 49.948±0.448 49.970±0.104

Rev-KL
GRU 89.813±0.181 49.969±0.085 49.956±0.442 49.974±0.088

DeepSets 89.558±0.264 49.970±0.100 49.961±0.436 49.986±0.094

Transformer 89.879±0.387 49.978±0.075 79.102±0.155 49.987±0.089

Fwd-KL

Fl
ow

GRU 50.066±0.488 49.835±0.240 49.836±0.328 49.911±0.206

DeepSets 50.078±0.468 49.848±0.242 49.834±0.333 49.910±0.205

Transformer 50.067±0.483 49.827±0.235 49.813±0.331 49.905±0.210

Rev-KL
GRU 90.396±0.126 49.910±0.169 50.018±0.171 50.001±0.076

DeepSets 90.247±0.067 49.901±0.124 50.132±0.162 49.942±0.110

Transformer 90.416±0.311 49.904±0.133 81.729±0.070 49.945±0.203

Table 13: Fixed-Dimensional. Results for estimating the parameters of nonlinear classification models with
TanH activation function and two classes, with the expected accuracy according to the posterior predictive as
metric.

B.2 Transformers

Similarly, we can look at Transformers (Vaswani et al., 2017) as candidates for respecting the exchangeability
conditions in the data. In particular, we consider transformer systems without positional encodings and
consider an additional [CLS] token, denoted by c ∈ Rd, to drive the prediction. If we look at the application
of a layer of transformer model, it can be broken down into two components.

Multi-Head Attention. Given a query vector obtained from c and keys and values coming from our input
set X ⊂ Rd, we can model the update of the context c as

ĉ(X) = Softmax
(
cTWQW

T
KXT

)
XWV (26)

where WQ ∈ Rd×k,WK ∈ Rd×k,WV ∈ Rd×k and X ∈ RN×d denotes a certain ordering of the elements in
X . Further, ĉ is the updated vector after attention, and Softmax is over the rows of X. Here, we see that if
we were to apply a permutation to the elements in X, the outcome would remain the same. In particular

ĉ(ΠX) = Softmax
(
cTWQW

T
KXTΠT

)
ΠXWV (27)

= Softmax
(
cTWQW

T
KXT

)
ΠTΠXWV (28)

= Softmax
(
cTWQW

T
KXT

)
XWV (29)

= ĉ(X) (30)

which follows because Softmax is an equivariant function, i.e., applying Softmax on a permutation of columns
is equivalent to applying Softmax first and then permuting the columns correspondingly. Thus, we see that
the update to the [CLS] token c is permutation invariant. This output is then used independently as input to

24

Under review as submission to TMLR

Accuracy (↑)

Objective qφ Model Nonlinear Classification | TanH - 5 class

1-layer 2-layers

2D 25D 2D 25D

Baseline

- Random 19.745±0.269 20.037±0.075 20.214±0.043 19.864±0.089

- Optimization 92.919±0.011 49.972±0.070 88.156±0.014 39.410±0.043

- Langevin 88.635±0.374 39.758±0.212 84.050±0.138 31.472±0.010

- HMC 81.057±0.277 35.378±0.130 75.305±0.134 29.730±0.670

Fwd-KL

G
au

ss
ia

n

GRU 19.960±0.271 20.235±0.083 20.452±0.059 20.028±0.077

DeepSets 19.807±0.209 20.040±0.072 20.210±0.043 19.861±0.094

Transformer 19.977±0.273 20.241±0.068 20.453±0.062 20.029±0.082

Rev-KL
GRU 77.711±0.014 20.026±0.079 20.213±0.043 19.877±0.092

DeepSets 76.414±0.378 20.038±0.060 20.216±0.027 19.887±0.089

Transformer 79.163±0.183 20.026±0.093 51.408±0.484 19.872±0.083

Fwd-KL

Fl
ow

GRU 32.900±0.115 20.209±0.048 20.105±0.385 20.040±0.037

DeepSets 20.137±0.070 20.000±0.048 19.887±0.392 19.895±0.025

Transformer 30.135±2.459 20.224±0.048 20.104±0.399 20.030±0.039

Rev-KL
GRU 79.329±0.320 20.074±0.033 19.904±0.180 19.864±0.079

DeepSets 20.071±0.302 19.999±0.045 19.872±0.259 19.906±0.051

Transformer 80.064±0.159 20.002±0.032 19.777±0.210 19.911±0.082

Table 14: Fixed-Dimensional. Results for estimating the parameters of nonlinear classification models with
TanH activation function and five classes, with the expected accuracy according to the posterior predictive as
metric.

a multi-layered neural network with residual connections, and the entire process is repeated multiple times
without weight sharing to simulate multiple layers. Since all the individual parts are permutation invariant
w.r.t permutations on X , the entire setup ends up being permutation invariant. Obtaining the parameters of
a parametric family of distribution for posterior estimation then follows the same recipe as DeepSets, with o
replaced by c.

C Probabilistic Models

This section details the various candidate probabilistic models used in our experiments for amortized
computation of Bayesian posteriors over the parameters. Here, we explain the parameters associated with
the probabilistic model over which we want to estimate the posterior and the likelihood and prior that we use
for experimentation.

Mean of Gaussian (GM): As a proof of concept, we consider the simple setup of estimating the posterior
distribution over the mean of a Gaussian distribution p(µ|D) given some observed data. In this case, prior
and likelihood defining the probabilistic model p(x,θ) (with θ being the mean µ) are given by:

p(µ) = N (µ|0, I) (31)
p(x|µ) = N (x|µ,Σ) (32)

and Σ is known beforehand and defined as a unit variance matrix.

25

Under review as submission to TMLR

L2 Loss (↓)

Objective qφ Model Gaussian GMM

2D 100D 2D-2cl 2D-5cl 5D-2cl 5D-5cl

Baseline

- Random 6.297±0.017 298.238±0.228 2.078±0.134 0.626±0.037 4.659±0.034 1.632±0.004

- Optimization 2.020±0.000 100.885±0.000 0.175±0.002 0.121±0.002 0.427±0.000 0.323±0.002

- Langevin 2.036±0.004 101.917±0.042 0.178±0.002 0.123±0.002 0.440±0.002 0.340±0.006

- HMC 2.044±0.008 102.015±0.009 0.189±0.013 0.132±0.004 0.462±0.013 0.423±0.009

Fwd-KL

G
au

ss
ia

n

GRU 2.300±0.105 133.224±0.579 1.119±0.150 0.473±0.012 2.360±0.017 1.208±0.002

DeepSets 2.216±0.017 129.695±0.737 1.113±0.150 0.477±0.013 2.352±0.018 1.210±0.003

Transformer 2.352±0.013 108.977±0.100 1.134±0.153 0.476±0.013 2.399±0.019 1.208±0.004

Rev-KL
GRU 2.047±0.002 105.141±0.102 0.187±0.005 0.147±0.006 0.462±0.011 0.398±0.019

DeepSets 2.049±0.003 105.062±0.212 0.194±0.004 0.145±0.003 0.481±0.021 0.387±0.002

Transformer 2.057±0.004 104.709±0.122 0.195±0.004 0.140±0.003 0.468±0.006 0.335±0.016

Fwd-KL

Fl
ow

GRU 2.358±0.005 125.835±1.983 0.287±0.032 0.212±0.002 0.596±0.068 0.513±0.015

DeepSets 2.053±0.003 133.229±1.933 0.271±0.050 0.202±0.006 0.584±0.030 0.517±0.016

Transformer 2.060±0.005 108.484±0.164 0.344±0.054 0.221±0.006 0.591±0.080 0.533±0.010

Rev-KL
GRU 2.050±0.004 105.187±0.030 0.199±0.014 0.142±0.004 0.466±0.007 0.373±0.004

DeepSets 2.054±0.003 105.095±0.064 0.202±0.007 0.146±0.003 0.494±0.013 0.379±0.003

Transformer 2.049±0.003 104.914±0.113 0.193±0.004 0.138±0.002 0.460±0.003 0.327±0.006

Table 15: Variable-Dimensional. Results for estimating the mean of a Gaussian (Gaussian) and means of
a Gaussian mixture model (GMM) with the expected L2 loss according to the posterior predictive as metric.

Linear Regression (LR): We then look at the problem of estimating the posterior over the weight vector
for Bayesian linear regression given a dataset p(w, b|D), where the underlying model p(D,θ) is given by:

p(w) = N (w|0, I) (33)
p(b) = N (b|0, 1) (34)

p(y|x,w, b) = N
(
y|wTx + b, σ2)

, (35)

and with σ2 = 0.25 known beforehand. Inputs x are generated from p(x) = N (0, I).

Linear Classification (LC): We now consider a setting where the true posterior cannot be obtained
analytically as the likelihood and prior are not conjugate. In this case, we consider the underlying probabilistic
model by:

p(W) = N (W |0, I) (36)

p(y|x,W) = Categorical
(

y
1
τ
Wx

)
, (37)

where τ is the known temperature term which is kept as 0.1 to ensure peaky distributions, and x is being
generated from p(x) = N (0, I).

Nonlinear Regression (NLR): Next, we tackle the more complex problem where the posterior distribution
is multi-modal and obtaining multiple modes or even a single good one is challenging. For this, we consider
the model as a Bayesian Neural Network (BNN) for regression with fixed hyper-parameters like the number of
layers, dimensionality of the hidden layer, etc. Let the BNN denote the function fθ where θ are the network
parameters such that the estimation problem is to approximate p(θ|D). Then, for regression, we specify the

26

Under review as submission to TMLR

L2 Loss (↓) Accuracy (↑)

Objective qφ Model Linear Regression Linear Classification

2D 100D 2D-2cl 2D-5cl 100D-2cl 100D-5cl

Baseline

- Random 4.272±0.068 200.836±0.609 50.125±0.264 20.078±0.065 50.005±0.061 20.033±0.082

- Optimization 0.258±0.000 20.127±0.003 97.301±0.000 91.752±0.000 71.231±0.010 42.345±0.001

- Langevin 0.263±0.002 21.781±0.953 95.441±0.209 86.445±0.496 65.469±0.513 32.668±0.145

- HMC 0.263±0.000 17.774±0.120 92.961±0.228 78.793±0.314 62.602±0.171 30.055±0.506

Fwd-KL

G
au

ss
ia

n

GRU 0.271±0.004 139.396±1.012 79.467±0.711 65.124±0.861 57.872±0.157 22.677±0.081

DeepSets 0.269±0.001 149.784±0.766 80.323±0.429 20.078±0.059 50.767±0.058 20.035±0.081

Transformer 0.279±0.001 64.282±3.711 79.901±0.271 60.984±1.590 62.382±0.029 26.997±0.098

Rev-KL
GRU 0.291±0.013 62.624±0.123 93.367±0.289 82.020±0.127 63.411±0.248 28.655±0.149

DeepSets 0.279±0.004 64.064±0.221 93.977±0.093 83.832±0.106 61.305±0.114 27.877±0.265

Transformer 0.271±0.007 31.984±0.482 94.336±0.210 82.976±0.074 67.676±0.078 33.125±0.051

Fwd-KL

Fl
ow

GRU 0.273±0.001 138.284±1.030 92.078±0.190 75.151±0.274 57.982±0.138 22.430±0.208

DeepSets 0.270±0.002 153.207±0.814 85.950±6.332 20.059±0.233 50.494±0.055 19.976±0.095

Transformer 0.276±0.004 63.102±1.963 94.494±0.368 74.876±0.857 63.559±0.072 27.098±0.147

Rev-KL
GRU 0.276±0.008 71.260±1.265 94.292±0.175 83.622±0.057 63.391±0.133 27.340±0.243

DeepSets 0.274±0.003 76.772±1.836 94.570±0.178 85.059±0.127 59.116±0.491 22.810±0.245

Transformer 0.279±0.013 33.056±0.321 94.793±0.135 84.929±0.027 68.124±0.214 33.251±0.130

Table 16: Variable-Dimensional. Results for estimating the parameters of linear regression (LR) and
classification (LC) models with the expected L2 loss and accuracy according to the posterior predictive as
metrics.

probabilistic model using:

p(θ) = N (θ|0, I) (38)
p(y|x,θ) = N

(
y|fθ(x), σ2)

, (39)

where σ2 = 0.25 is a known quantity and x being generated from p(x) = N (0, I).

Nonlinear Classification (NLC): Like in Nonlinear Regression, we consider BNNs with fixed hyper-
parameters for classification problems with the same estimation task of approximating p(θ|D). In this
formulation, we consider the probabilistic model as:

p(θ) = N (θ|0, I) (40)

p(y|x,θ) = Categorical
(

y
1
τ

fθ(x)
)

(41)

where τ is the known temperature term which is kept as 0.1 to ensure peaky distributions, and x is being
generated from p(x) = N (0, I).

Gaussian Mixture Model (GMM): While we have mostly looked at predictive problems, where the task
is to model some predictive variable y conditioned on some input x, we now look at a well-known probabilistic
model for unsupervised learning, Gaussian Mixture Model (GMM), primarily used to cluster data. Consider
a K-cluster GMM with:

p(µk) = N (µk|0, I) (42)

p(x|µ1:K) =
K∑
k=1

πkN (x|µk,Σk) . (43)

27

Under review as submission to TMLR

L2 Loss (↓)

1-layer 2-layers

Objective qφ Model 1D 50D 1D 50D

Baseline

- Random 73.006±0.171 1704.335±9.330 998.890±16.317 27799.887±165.653

- Optimization 0.359±0.002 309.162±0.204 3.078±0.057 4894.141±4.290

- Langevin 0.308±0.002 N/A N/A N/A
- HMC 0.381±0.005 303.857±2.487 7.999±0.595 12905.846±9.903

Fwd-KL

G
au

ss
ia

n

GRU 51.448±0.029 1346.462±6.833 754.388±32.650 21121.735±112.458

DeepSets 51.901±1.542 1357.462±5.348 767.781±18.262 21110.264±72.613

Transformer 50.813±0.532 1319.868±12.165 753.177±23.023 21037.666±116.929

Rev-KL
GRU 2.308±0.126 316.344±6.189 23.520±3.816 4673.633±98.443

DeepSets 0.977±0.118 451.942±2.785 8.034±0.375 6127.317±190.224

Transformer 0.815±0.024 278.282±1.073 8.300±1.673 4744.375±24.609

Fwd-KL

Fl
ow

GRU 38.407±0.364 1097.410±9.498 664.409±9.590 18372.905±62.019

DeepSets 43.305±2.063 1119.990±5.461 745.412±27.599 20719.466±627.997

Transformer 39.701±0.519 1073.256±1.504 619.631±22.299 16700.463±350.596

Rev-KL
GRU 2.305±0.406 302.918±5.644 13.729±1.445 4832.392±50.014

DeepSets 0.827±0.024 454.141±10.203 5.889±0.135 7589.795±373.293

Transformer 0.985±0.075 274.021±1.333 6.364±0.201 4801.964±59.175

Table 17: Variable-Dimensional. Results for estimating the parameters of nonlinear regression models
with ReLU activation function, with the expected L2 loss according to the posterior predictive as metric.

We assume Σk and πk to be known and set Σk to be an identity matrix and the mixing coefficients to be
equal, πk = 1/K, for all clusters k in our experiments.

D Metrics

In this section, we provide details about the metrics considered for the different tasks. We generally look
at two main metrics for benchmarking performance: L2 loss and Accuracy. For estimating the mean of a
Gaussian distribution, the L2 loss is defined as

GML2 = ED∼χEµ∼qφ(·|D)

[
ND∑
i=1

(xi − µ)2

]
(44)

where D = {xi}ND
i=1. Intuitively, this captures the quality of the estimation of the mean parameter by

measuring how far the observations are from it. Lower value implies better estimation of the mean parameter.
Similarly, for estimating the means of a Gaussian Mixture Model, we rely on a similar metric but we also find
the cluster closest to the observation, which can be defined as

GMML2 = ED∼χEµk∼qφ(·|D)

[
ND∑
i=1

(xi − µMatch(xi,{µ1,...µK}))2

]
(45)

Match(x, {µ1, ...,µK} = arg min
k

(x − µk)2 (46)

28

Under review as submission to TMLR

L2 Loss (↓)

1-layer 2-layers

Objective qφ Model 1D 50D 1D 50D

Baseline

- Random 33.972±0.273 56.891±0.213 50.843±0.270 55.383±0.124

- Optimization 0.330±0.000 23.257±0.029 0.672±0.007 34.900±0.120

- Langevin 0.296±0.003 26.292±0.266 0.356±0.006 36.598±0.354

- HMC 0.404±0.005 19.937±0.259 0.654±0.014 32.884±0.448

Fwd-KL

G
au

ss
ia

n

GRU 34.235±0.240 56.947±0.339 50.493±0.676 55.633±0.396

DeepSets 33.979±0.273 56.900±0.213 50.844±0.284 55.390±0.132

Transformer 33.998±0.499 56.365±0.129 49.940±0.317 55.708±0.149

Rev-KL
GRU 0.813±0.036 18.042±0.084 17.506±10.364 26.729±2.167

DeepSets 0.604±0.015 22.582±2.064 24.819±0.009 28.247±0.006

Transformer 0.896±0.097 16.726±0.724 2.249±0.651 24.442±0.643

Fwd-KL

Fl
ow

GRU 34.989±0.475 56.847±0.289 49.915±0.980 55.505±0.479

DeepSets 34.857±0.278 56.736±0.395 49.594±0.622 55.862±0.498

Transformer 34.878±0.829 55.751±0.409 49.309±0.651 55.475±0.090

Rev-KL
GRU 0.969±0.038 17.454±0.041 24.796±0.028 28.258±0.008

DeepSets 0.729±0.013 22.888±2.610 24.794±0.021 28.253±0.003

Transformer 0.624±0.051 15.971±0.075 3.095±0.010 23.740±0.343

Table 18: Variable-Dimensional. Results for estimating the parameters of nonlinear regression models
with TanH activation function, with the expected L2 loss according to the posterior predictive as metric.

which intuitively captures the distance of observations from the cluster closest to them. Next, we define the
metric for evaluating (non-)linear regression models as

(N−)LRL2 = ED∼χEθ∼qφ(·|D)

[
ND∑
i=1

(yi − Mode [p(yi|xi,θ)])2

]
(47)

Finally, for the (non-)linear classification setups, we define the accuracy metric as

(N−)LCAccuracy = ED∼χEθ∼qφ(·|D)

[
100
ND

×
ND∑
i=1

δ(yi, Mode [p(yi|xi,θ)])
]

(48)

where δ(a, b) = 1 if and only if a = b. Thus this metric captures the accuracy of the posterior predictive
distribution. Another metric that we use to test the quality of the posterior is the symmetric KL divergence,
defined as

Symmetric KL(p(θ||D), qφ(θ|D)) = 1
2KL(p(θ||D)||qφ(θ|D)) + 1

2KL(qφ(θ|D)||p(θ||D)) (49)

E Architecture Details

In this section, we outline the two candidate architectures that we consider for the backbone of our amortized
variational inference model. We discuss the specifics of the architectures and the hyperparameters used for
our experiments.

E.1 Transformer

We use a transformer model (Vaswani et al., 2017) as a permutation invariant architecture by removing
positional encodings from the setup and using multiple layers of the encoder model. We append the set of

29

Under review as submission to TMLR

Accuracy (↑)

1-layer 2-layers

Objective qφ Model 2D 50D 2D 50D

Baseline

- Random 49.951±0.287 49.904±0.281 50.040±0.467 50.044±0.239

- Optimization 96.762±0.034 76.139±0.033 96.810±0.009 78.225±0.129

- Langevin 96.077±0.027 70.142±0.229 96.564±0.113 71.328±0.410

- HMC 91.734±0.152 67.986±0.372 91.336±0.591 71.825±0.507

Fwd-KL

G
au

ss
ia

n

GRU 59.551±0.199 58.637±0.250 60.247±0.645 58.862±0.065

DeepSets 49.946±0.285 49.910±0.282 50.032±0.466 50.040±0.242

Transformer 59.887±0.235 58.826±0.237 60.552±0.398 58.953±0.110

Rev-KL
GRU 88.822±0.471 68.368±0.342 81.884±1.450 67.264±0.138

DeepSets 91.019±0.454 61.732±0.111 82.396±0.471 67.320±0.143

Transformer 89.988±0.197 73.744±0.319 83.399±0.841 67.167±0.028

Fwd-KL

Fl
ow

GRU 61.179±0.833 60.225±0.115 60.400±1.019 59.027±0.212

DeepSets 49.568±0.230 50.130±0.101 50.356±0.773 49.806±0.331

Transformer 60.886±0.252 60.253±0.082 61.694±0.314 60.426±0.203

Rev-KL
GRU 90.363±0.709 66.197±0.118 83.443±0.619 69.053±0.256

DeepSets 89.150±0.338 62.939±0.112 79.889±0.567 69.015±0.147

Transformer 91.065±0.156 72.581±0.117 83.533±0.677 68.933±0.120

Table 19: Variable-Dimensional. Results for estimating the parameters of nonlinear classification models
with ReLU activation function and two classes, with the expected accuracy according to the posterior
predictive as metric.

observations with a [CLS] token before passing it to the model and use its output embedding to predict
the parameters of the variational distribution. Since no positional encodings or causal masking is used in
the whole setup, the final embedding of the [CLS] token becomes invariant to permutations in the set of
observations, thereby leading to permutation invariance in the parameters of qφ.

We use 4 encoder layers with a 256 dimensional attention block and 1024 feed-forward dimensions, with 4
heads in each attention block for our Transformer models to make the number of parameters comparative to
the one of the DeepSets model.

E.2 DeepSets

Another framework that can process set-based input is Deep Sets (Zaheer et al., 2017). In our experiments, we
used an embedding network that encodes the input into representation space, a mean aggregation operation,
which ensures that the representation learned is invariant concerning the set ordering, and a regression
network. The latter’s output is either used to directly parameterize a diagonal Gaussian or as conditional
input to a normalizing flow, representing a summary statistics of the set input.

For DeepSets, we use 4 layers each in the embedding network and the regression network, with a mean
aggregation function, ReLU activation functions, and 627 hidden dimensions to make the number of parameters
comparable to those in the Transformer model.

E.3 RNN

For the recurrent neural network setup, we use the Gated Recurrent Unit (GRU). Similar to the above setups,
we use a 4-layered GRU model with 256 hidden dimensions. While such an architecture is not permutation

30

Under review as submission to TMLR

Accuracy (↑)

1-layer 2-layers

Objective qφ Model 2D 50D 2D 50D

Baseline

- Random 19.847±0.352 20.052±0.066 19.874±0.222 20.028±0.106

- Optimization 94.607±0.011 56.091±0.158 93.873±0.028 60.253±0.053

- Langevin 90.815±0.341 46.072±0.225 91.849±0.088 49.808±0.337

- HMC 81.145±0.303 44.561±0.309 79.559±0.483 50.967±0.436

Fwd-KL

G
au

ss
ia

n

GRU 30.960±0.638 32.164±0.151 31.017±0.397 32.224±0.108

DeepSets 19.846±0.348 20.053±0.063 19.871±0.226 20.032±0.104

Transformer 30.652±0.401 32.208±0.178 31.148±0.429 32.342±0.217

Rev-KL
GRU 72.874±0.113 37.987±0.119 56.999±0.599 29.971±0.248

DeepSets 69.456±0.370 36.712±0.249 55.193±0.538 36.417±9.779

Transformer 73.531±0.391 44.702±0.165 57.724±0.332 30.175±0.177

Fwd-KL

Fl
ow

GRU 33.232±0.607 33.704±0.026 31.937±0.483 32.370±0.284

DeepSets 19.898±0.156 19.950±0.256 20.062±0.347 20.064±0.207

Transformer 32.916±0.194 33.766±0.137 32.374±0.301 33.846±0.486

Rev-KL
GRU 77.997±0.663 38.715±0.153 61.947±0.294 51.962±0.812

DeepSets 68.957±0.551 37.123±0.108 51.145±14.201 42.707±12.882

Transformer 77.867±2.241 44.156±0.485 57.410±0.088 52.077±0.077

Table 20: Fixed-Dimensional. Results for estimating the parameters of nonlinear classification models with
ReLU activation function and five classes, with the expected accuracy according to the posterior predictive
as metric.

invariant, by training on tasks that require such invariance could encourage learning of solution structure
that respects this invariance.

E.4 Normalizing Flows

Assuming a Gaussian posterior distribution as the approximate often leads to poor results as the true posterior
distribution can be far from the Gaussian shape. To allow for more flexible posterior distributions, we use
normalizing flows (Kingma & Dhariwal, 2018; Kobyzev et al., 2020; Papamakarios et al., 2021; Rezende
& Mohamed, 2015) for approximating qφ(θ|D) conditioned on the output of the summary network hψ.
Specifically, let gν : z 7→ θ be a diffeomorphism parameterized by a conditional invertible neural network
(cINN) with network parameters ν such that θ = gν(z; hψ(D)). With the change-of-variables formula it
follows that p(θ) = p(z)

∣∣det ∂
∂z gν(z; hψ(D))

∣∣−1 = p(z)| det Jν(z; hψ(D))|−1, where Jν is the Jacobian matrix
of gν . Further, integration by substitution gives us dθ = | det Jν(z; hψ(D)|dz to rewrite the objective from
eq. 12 as:

arg min
φ

KL[qφ(θ|D)||p(θ|D)] (50)

= arg min
φ

ED∼χEθ∼qφ(θ|D) [log qφ(θ|D) − log p(θ, D)] (51)

= arg min
φ={ψ,ν}

ED∼χEz∼p(z)

[
log qν(z|hψ(D))

|det Jν(z; hψ(D))| − log p(gν(z; hψ(D)), D)
]

(52)

As shown in BayesFlow (Radev et al., 2020), the normalizing flow gν and the summary network hψ can
be trained simultaneously. The AllInOneBlock coupling block architecture of the FrEIA Python package
(Ardizzone et al., 2018), which is very similar to the RNVP style coupling block (Dinh et al., 2017), is used

31

Under review as submission to TMLR

Accuracy (↑)

1-layer 2-layers

Objective qφ Model 2D 50D 2D 50D

Baseline

- Random 50.278±0.337 50.028±0.064 50.188±0.479 49.982±0.084

- Optimization 96.943±0.012 68.086±0.016 94.444±0.024 63.950±0.022

- Langevin 95.143±0.094 61.694±0.340 92.719±0.016 57.447±0.437

- HMC 92.489±0.338 59.963±0.202 87.548±0.094 56.319±0.882

Fwd-KL

G
au

ss
ia

n

GRU 50.274±0.337 50.023±0.060 50.187±0.477 49.992±0.072

DeepSets 50.271±0.334 50.024±0.061 50.188±0.472 49.984±0.077

Transformer 50.273±0.336 50.031±0.066 50.191±0.471 49.994±0.078

Rev-KL
GRU 89.270±0.272 50.014±0.048 50.191±0.463 49.995±0.080

DeepSets 89.788±0.213 50.018±0.061 50.191±0.478 49.977±0.075

Transformer 89.366±0.108 64.926±0.260 50.182±0.469 49.986±0.071

Fwd-KL

Fl
ow

GRU 49.651±0.040 50.119±0.068 49.987±0.015 49.904±0.018

DeepSets 49.639±0.031 50.113±0.065 49.988±0.022 49.910±0.043

Transformer 49.636±0.040 50.115±0.063 49.989±0.017 49.909±0.042

Rev-KL
GRU 49.769±0.141 50.082±0.091 49.915±0.070 50.004±0.084

DeepSets 49.782±0.073 50.080±0.087 49.831±0.152 49.994±0.078

Transformer 63.233±19.243 50.026±0.047 49.869±0.207 50.036±0.056

Table 21: Variable-Dimensional. Results for estimating the parameters of nonlinear classification models
with TanH activation function and two classes, with the expected accuracy according to the posterior
predictive as metric.

as the basis for the cINN. AllInOneBlock combines the most common architectural components, such as
ActNorm, permutation, and affine coupling operations.

For our experiments, 6 coupling blocks define the normalizing flow network, each with a 1 hidden-layered
non-linear feed-forward subnetwork with ReLU non-linearity and 128 hidden dimensions.

F Experimental Details

Unless specified, we obtain a stream of datasets for all our experiments by simply sampling from the assumed
probabilistic model, where the number of observations n is sampled uniformly in the range [64, 128]. For
efficient mini-batching over datasets with different cardinalities, we sample datasets with maximum cardinality
(128) and implement different cardinalities by masking out different numbers of observations for different
datasets whenever required.

To evaluate both our proposed approach and the baselines, we compute an average of the predictive
performances across 25 different posterior samples for each of the 100 fixed test datasets for all our experiments.
That means for our proposed approach, we sample 25 different parameter vectors from the approximate
posterior that we obtain. For MCMC, we rely on 25 MCMC samples, and for optimization, we train 25
different parameter vectors where the randomness comes from initialization. For the optimization baseline,
we perform a quick hyperparameter search over the space {0.01, 003, 0.001, 0.0003, 0.0001, 0.00003} to pick
the best learning rate that works for all of the test datasets and then use it to train for 1000 iterations using
the Adam optimizer (Kingma & Ba, 2014). For the MCMC baseline, we use the open-sourced implementation
of Langevin-based MCMC sampling2 where we leave a chunk of the starting samples as burn-in and then

2https://github.com/alisiahkoohi/Langevin-dynamics

32

https://github.com/alisiahkoohi/Langevin-dynamics

Under review as submission to TMLR

Accuracy (↑)

1-layer 2-layers

Objective qφ Model 2D 50D 2D 50D

Baseline

- Random 20.041±0.136 20.002±0.079 19.914±0.111 19.954±0.005

- Optimization 92.059±0.012 40.722±0.027 88.848±0.005 34.136±0.041

- Langevin 88.357±0.309 30.941±0.097 83.788±0.170 26.538±0.206

- HMC 79.161±0.292 27.508±0.379 74.987±0.130 25.377±0.246

Fwd-KL

G
au

ss
ia

n

GRU 20.264±0.139 20.158±0.056 20.215±0.138 20.093±0.028

DeepSets 20.042±0.133 20.000±0.088 19.916±0.114 19.955±0.007

Transformer 20.240±0.126 20.153±0.070 20.118±0.131 20.089±0.022

Rev-KL
GRU 66.565±7.725 20.011±0.099 19.913±0.125 19.954±0.022

DeepSets 57.294±0.362 20.011±0.091 19.915±0.115 19.959±0.020

Transformer 72.865±1.340 22.185±1.872 19.911±0.124 19.953±0.014

Fwd-KL

Fl
ow

GRU 19.963±0.239 20.176±0.056 19.952±0.189 20.156±0.079

DeepSets 19.757±0.259 20.045±0.071 19.692±0.184 20.019±0.069

Transformer 19.925±0.262 20.185±0.059 19.882±0.175 20.159±0.070

Rev-KL
GRU 67.042±2.230 20.065±0.060 19.707±0.245 19.989±0.101

DeepSets 35.220±10.870 20.000±0.054 19.739±0.216 19.966±0.019

Transformer 72.798±1.049 20.032±0.040 19.752±0.276 20.017±0.037

Table 22: Variable-Dimensional. Results for estimating the parameters of nonlinear classification models
with TanH activation function and five classes, with the expected accuracy according to the posterior predictive
as metric.

start accepting samples after a regular interval (to not make them correlated). The details about the burn-in
time and the regular interval for acceptance are provided in the corresponding experiments’ sections below.

For our proposed approach of amortized inference, we do not consider explicit hyperparameter optimization
and simply use a learning rate of 1e-4 with the Adam optimizer. For all experiments, we used linear scaling
of the KL term in the training objectives as described in (Higgins et al., 2017), which we refer to as warmup.
Furthermore, training details for each experiment can be found below.

F.1 Fixed-Dim

In this section, we provide the experimental details relevant to reproducing the results of Section 4. All the
models are trained with streaming data from the underlying probabilistic model, such that every iteration of
training sees a new set of datasets. Training is done with a batch size of 128, representing the number of
datasets seen during one optimization step. Evaluations are done with 25 samples and we ensure that the
test datasets used for each probabilistic model are the same across all the compared methods, i.e., baselines,
forward KL, and reverse KL. We train the amortized inference model and the forward KL baselines for the
following different probabilistic models:

Mean of Gaussian (GM): We train the amortization models over 20, 000 iterations for both the 2-
dimensional as well as the 100-dimensional setup. We use a linear warmup with 5000 iterations over which
the weight of the KL term in our proposed approach scales linearly from 0 to 1. We use an identity covariance
matrix for the data-generating process, but it can be easily extended to the case of correlated or diagonal
covariance-based Gaussian distributions.

Gaussian Mixture Model (GMM): We train the mixture model setup for 200, 000 iterations with
50, 000 iterations of warmup. We mainly experiment with 2-dimensional and 5-dimensional mixture models,

33

Under review as submission to TMLR

L2 Loss (↓)

Objective qφ Model Linear Model | MLP-TanH Data MLP-TanH Model | Linear Data ← χreal

LR NLR GP LR NLR GP ← χsim

Baseline

- Random - 17.761±0.074 - 17.847±0.355 - -
- Optimization - 1.213±0.000 - 0.360±0.001 - -
- Langevin - 1.218±0.002 - 0.288±0.001 - -
- HMC - 1.216±0.002 - 0.275±0.001 - -

Fwd-KL

G
au

ss
ia

n

GRU 2.415±0.269 - - - 15.632±0.283 -
DeepSets 1.402±0.017 - - - 16.046±0.393 -

Transformer 2.216±0.097 - - - 15.454±0.246 -

Rev-KL
GRU 1.766±0.044 1.216±0.001 4.566±0.199 0.375±0.001 0.386±0.002 0.524±0.019

DeepSets 1.237±0.006 1.216±0.001 3963.694±5602.411 0.365±0.000 0.377±0.003 0.385±0.011

Transformer 1.892±0.113 1.226±0.001 4.313±0.707 0.367±0.006 0.382±0.003 0.458±0.048

Fwd-KL

F
lo

w

GRU 2.180±0.024 - - - 9.800±0.473 -
DeepSets 1.713±0.244 - - - 15.253±0.403 -

Transformer 1.632±0.070 - - - 7.949±0.419 -

Rev-KL
GRU 1.830±0.081 1.214±0.001 5.690±0.196 0.346±0.004 0.349±0.001 0.520±0.015

DeepSets 1.282±0.036 1.218±0.001 11.690±10.602 0.339±0.003 0.344±0.002 0.397±0.026

Transformer 1.471±0.016 1.226±0.004 5.194±0.320 0.346±0.002 0.347±0.001 0.480±0.030

Table 23: Model Misspecification. Results for model misspecification under different training data χsim,
when evaluated under MLP-TanH and Linear Data (χreal), with the underlying model as a linear and
MLP-TanH model respectively.

with 2 and 5 mixture components for each setup. While we do use an identity covariance matrix for the
data-generating process, again, it can be easily extended to other cases.

Linear Regression (LR): The amortization models for this setup are trained for 50, 000 iterations with
12, 500 iterations of warmup. The feature dimensions considered for this task are 1 and 100 dimensions, and
the predictive variance σ2 is assumed to be known and set as 0.25.

Nonlinear Regression (NLR): We train the setup for 100, 000 iterations with 25, 000 iterations consisting
of warmup. The feature dimensionalities considered are 1-dimensional and 25-dimensional, and training is
done with a known predictive variance similar to the LR setup. For the probabilistic model, we consider both
a 1-layered and a 2-layered multi-layer perceptron (MLP) network with 32 hidden units in each, and either a
relu or tanh activation function.

Linear Classification (LC): We experiment with 2-dimensional and 100-dimensional setups with training
done for 50, 000 iterations, out of which 12, 500 are used for warmup. Further, we train for both binary
classification as well as a 5-class classification setup.

Nonlinear Classification (NLC): We experiment with 2-dimensional and 25-dimensional setups with
training done for 100, 000 iterations, out of which 2, 5000 are used for warmup. Further, we train for both
binary classification as well as a 5-class classification setup. For the probabilistic model, we consider both a
1-layered and a 2-layered multi-layer perceptron (MLP) network with 32 hidden units in each, and either a
relu or tanh activation function.

F.2 Variable-Dim

In this section, we provide the experimental details relevant to reproducing the results of Section 4. All the
models are trained with streaming data from the underlying probabilistic model, such that every iteration
of training sees a new set of datasets. Training is done with a batch size of 128, representing the number
of datasets seen during one optimization step. Further, we ensure that the datasets sampled resemble a

34

Under review as submission to TMLR

L2 Loss (↓)

Objective qφ Model Linear Model | GP Data MLP-TanH Model | GP Data ← χreal

LR NLR GP LR NLR GP ← χsim

Baseline

- Random - - 2.681±0.089 - - 16.236±0.381

- Optimization - - 0.263±0.000 - - 0.007±0.000

- Langevin - - 0.266±0.001 - - 0.022±0.001

- HMC - - 0.266±0.000 - - 0.090±0.002

Fwd-KL

G
au

ss
ia

n

GRU 0.268±0.000 - - - 14.077±0.368 -
DeepSets 0.269±0.001 - - - 14.756±0.280 -

Transformer 0.270±0.001 - - - 14.733±0.513 -

Rev-KL
GRU 0.268±0.000 0.269±0.000 0.266±0.000 0.334±0.005 0.157±0.003 0.080±0.003

DeepSets 0.269±0.000 0.269±0.000 0.265±0.000 0.331±0.003 0.146±0.002 0.063±0.000

Transformer 0.269±0.000 0.269±0.000 0.267±0.000 0.310±0.013 0.155±0.006 0.066±0.004

Fwd-KL

F
lo

w

GRU 0.268±0.000 - - - 9.756±0.192 -
DeepSets 0.269±0.001 - - - 14.345±0.628 -

Transformer 0.269±0.000 - - - 8.557±0.561 -

Rev-KL
GRU 0.268±0.000 0.270±0.001 0.266±0.000 0.289±0.011 0.120±0.004 0.059±0.003

DeepSets 0.269±0.000 0.269±0.001 0.266±0.000 0.270±0.008 0.115±0.002 0.059±0.002

Transformer 0.269±0.001 0.270±0.000 0.267±0.000 0.293±0.008 0.120±0.005 0.055±0.002

Table 24: Model Misspecification. Results for model misspecification under different training data
χsim, when evaluated under GP Data (χreal), with the underlying model as a linear and MLP-TanH model
respectively.

uniform distribution over the feature dimensions, ranging from 1-dimensional to the maximal dimensional
setup. Evaluations are done with 25 samples and we ensure that the test datasets used for each probabilistic
model are the same across all the compared methods, i.e., baselines, forward KL, and reverse KL. We train
the amortized inference model and the forward KL baselines for the following different probabilistic models:

Mean of Gaussian (GM): We train the amortization models over 50, 000 iterations using a linear warmup
with 12, 5000 iterations over which the weight of the KL term in our proposed approach scales linearly from 0
to 1. We use an identity covariance matrix for the data-generating process, but it can be easily extended
to the case of correlated or diagonal covariance-based Gaussian distributions. In this setup, we consider a
maximum of 100 feature dimensions.

Gaussian Mixture Model (GMM): We train the mixture model setup for 500, 000 iterations with 125, 000
iterations of warmup. We set the maximal feature dimensions as 5 and experiment with 2 and 5 mixture
components. While we do use an identity covariance matrix for the data-generating process, again, it can be
easily extended to other cases.

Linear Regression (LR): The amortization models for this setup are trained for 100, 000 iterations with
25, 000 iterations of warmup. The maximal feature dimension considered for this task is 100-dimensional, and
the predictive variance σ2 is assumed to be known and set as 0.25.

Nonlinear Regression (NLR): We train the setup for 250, 000 iterations with 62, 500 iterations consisting
of warmup. The maximal feature dimension considered is 100-dimensional, and training is done with a known
predictive variance similar to the LR setup. For the probabilistic model, we consider both a 1-layered and a
2-layered multi-layer perceptron (MLP) network with 32 hidden units in each, and either a relu or tanh
activation function.

Linear Classification (LC): We experiment with a maximal 100-dimensional setup with training done for
100, 000 iterations, out of which 25, 000 are used for warmup. Further, we train for both binary classification
as well as a 5-class classification setup.

35

Under review as submission to TMLR

0 20 40 60 80 100
Dimensionality

20

0

20

40

60

80

100

120
Lo

ss
Linear Regression

0 20 40 60 80 100
Dimensionality

50
55
60
65
70
75
80
85
90
95

100

Ac
cu

ra
cy

Linear Classification

Forward-KL Reverse-KL
Figure 5: Trends of Performance over different Dimensions in Variable Dimensionality Setup:
We see that our proposed reverse KL methodology outperforms the forward KL one.

0 20 40 60 80 100
Dimensionality

20

0

20

40

60

80

100

120

140

Lo
ss

Linear Regression

0 20 40 60 80 100
Dimensionality

50
55
60
65
70
75
80
85
90
95

Ac
cu

ra
cy

Linear Classification

DeepSets Transformer
Figure 6: Trends of Performance over different Dimensions in Variable Dimensionality Setup:
We see that transformer models generalize better to different dimensional inputs than DeepSets.

Nonlinear Classification (NLC): We experiment with a maximal 100-dimensional setup with training
done for 250, 000 iterations, out of which 62, 500 are used for warmup. Further, we train for both binary
classification as well as a 5-class classification setup. For the probabilistic model, we consider both a 1-layered
and a 2-layered multi-layer perceptron (MLP) network with 32 hidden units in each, and either a relu or
tanh activation function.

36

Under review as submission to TMLR

0 20 40 60 80 100
Dimensionality

20

0

20

40

60

80

100
Lo

ss
Linear Regression

0 20 40 60 80 100
Dimensionality

55
60
65
70
75
80
85
90
95

100

Ac
cu

ra
cy

Linear Classification

Gaussian Normalizing Flow
Figure 7: Trends of Performance over different Dimensions in Variable Dimensionality Setup:
We see that normalizing flows leads to similar performances than Gaussian based variational approximation.

F.3 Model Misspecification

In this section, we provide the experimental details relevant to reproducing the results of Section 4. All
models during this experiment are trained with streaming data from the currently used dataset-generating
function χ, such that every iteration of training sees a new batch of datasets. Training is done with a batch
size of 128, representing the number of datasets seen during one optimization step. Evaluation for all models
is done with 10 samples from each dataset-generator used in the respective experimental subsection and we
ensure that the test datasets are the same across all compared methods, i.e., baselines, forward KL, and
reverse KL.

Linear Regression Model: The linear regression amortization models are trained following the training
setting for linear regression fixed dimensionality, that is, 50, 000 training iterations with 12, 500 iterations of
warmup. The feature dimension considered for this task is 1-dimension. The model is trained separately on
datasets from three different generators χ: linear regression, nonlinear regression, and Gaussian processes,
and evaluated after training on test datasets from all of them. For training with datasets from the linear
regression probabilistic model, the predictive variance σ2 is assumed to be known and set as 0.25. The same
variance is used for generating datasets from the nonlinear regression dataset generator with 1 layer, 32
hidden units, and tanh activation function. Lastly, datasets from the Gaussian process-based generator are
sampled similarly, using the GPytorch library Gardner et al. (2018), where datasets are sampled of varying
cardinality, ranging from 64 to 128. We use a zero-mean Gaussian Process (GP) with a unit lengthscale
radial-basis function (RBF) kernel serving as the covariance matrix. Further, we use a very small noise of
σ2 = 1e−6 in the likelihood term of the GP. Forward KL training in this experiment can only be done when
the amortization model and the dataset-generating function are the same: when we train on datasets from
the linear regression-based χ. Table 23 provides a detailed overview of the results.

Nonlinear Regression Models: The nonlinear regression amortization models are trained following the
training setting for nonlinear regression fixed dimensionality, that is, 100, 000 training iterations with 25, 000
iterations of warmup. Here, we consider two single-layer perceptions with 32 hidden units with a tanh
activation function. The feature dimensionality considered is 1 dimension. We consider the same dataset-
generating functions as in the misspecification experiment for a linear regression model above. However, the
activation function used in the nonlinear regression dataset generator matches the activation function of

37

Under review as submission to TMLR

0 500 1000 1500 2000 2500

4

6

8

10

12

Pe
rfo

rm
an

ce

airfoil_self_noise

0 500 1000 1500 2000 2500

4

6

8

10

12

14

16

18

20
concrete_compressive_strength

0 500 1000 1500 2000 2500
0

5

10

15

20

energy_efficiency

0 500 1000 1500 2000 2500

10

12

14

16

18

20

22
solar_flare

0 500 1000 1500 2000 2500

30

40

50

60

Pe
rfo

rm
an

ce

student_performance_por

0 500 1000 1500 2000 2500
Iteration

4

6

8

10

12

14

16

QSAR_fish_toxicity

0 500 1000 1500 2000 2500
Iteration

7.5

10.0

12.5

15.0

17.5

20.0

22.5

25.0

red_wine

0 500 1000 1500 2000 2500
Iteration

2

4

6

8

10

12

14

socmob

0 500 1000 1500 2000 2500
Iteration

0

5

10

15

20

25

30

35

40

Pe
rfo

rm
an

ce

cars

Experiment Name
Prior Initialization
Xavier Initialization
Fwd-KL Initialization
Rev-KL Initialization

Figure 8: Tabular Experiments | Linear Regression with Diagonal Gaussian: For every regression
dataset from the OpenML platform considered, we initialize the parameters of a linear regression-based
probabilistic model with the amortized inference models which were trained with a diagonal Gaussian
assumption. The parameters are then further trained with maximum-a-posteriori (MAP) estimate with
gradient descent. Reverse and Forward KL denote initialization with the correspondingly trained amortized
model. Prior refers to a MAP-based optimization baseline initialized from the prior N (0, I), whereas Xavier
refers to initialization from the Xavier initialization scheme.

the currently trained amortization model. In this case, forward KL training is possible in the two instances
when trained on datasets from the corresponding nonlinear regression probabilistic model. A more detailed
overview of the results can be found in Table 23 and 24.

F.4 Tabular Experiments

For the tabular experiments, we train the amortized inference models for (non-)linear regression (NLR/LR)
as well as (non-)linear classification (NLC/LC) with x ∼ N (0, I) as opposed to x ∼ U(−1, 1) in the dataset
generating process χ, with the rest of the settings the same as maximum-dim experiments. For the nonlinear
setups, we only consider the relu case as it has seen predominant success in deep learning. Further, we only
consider a 1-hidden layer neural network with 32 hidden dimensions in the probabilistic model.

After having trained the amortized inference models, both for forward and reverse KL setups, we evaluate
them on real-world tabular datasets. We first collect a subset of tabular datasets from the OpenML platform
as outlined in Appendix G. Then, for each dataset, we perform a 5-fold cross-validation evaluation where the
dataset is chunked into 5 bins, of which, at any time, 4 are used for training and one for evaluation. This
procedure is repeated five times so that every chunk is used for evaluation once.

38

Under review as submission to TMLR

0 500 1000 1500 2000 2500
2

4

6

8

10

12

Pe
rfo

rm
an

ce

airfoil_self_noise

0 500 1000 1500 2000 2500

4

6

8

10

12

14

16

18

20
concrete_compressive_strength

0 500 1000 1500 2000 2500
0

5

10

15

20

energy_efficiency

0 500 1000 1500 2000 2500

10

12

14

16

18

20

22
solar_flare

0 500 1000 1500 2000 2500

30

40

50

60

Pe
rfo

rm
an

ce

student_performance_por

0 500 1000 1500 2000 2500
Iteration

4

6

8

10

12

14

16

QSAR_fish_toxicity

0 500 1000 1500 2000 2500
Iteration

7.5

10.0

12.5

15.0

17.5

20.0

22.5

25.0

red_wine

0 500 1000 1500 2000 2500
Iteration

2

4

6

8

10

12

14

socmob

0 500 1000 1500 2000 2500
Iteration

5

10

15

20

25

30

35

40

Pe
rfo

rm
an

ce

cars

Experiment Name
Prior Initialization
Xavier Initialization
Fwd-KL Initialization
Rev-KL Initialization

Figure 9: Tabular Experiments | Linear Regression with Normalizing Flow: For every regression
dataset from the OpenML platform considered, we initialize the parameters of a linear regression-based
probabilistic model with the amortized inference models which were trained with a normalizing flow-based
model. The parameters are then further trained with maximum-a-posteriori (MAP) estimate with gradient
descent. Reverse and Forward KL denote initialization with the correspondingly trained amortized model.
Prior refers to a MAP-based optimization baseline initialized from the prior N (0, I), whereas Xavier refers to
initialization from the Xavier initialization scheme.

For each dataset, we normalize the observations and the targets so that they have zero mean and unit
standard deviation. For the classification setups, we only normalize the inputs as the targets are categorical.
For both forward KL and reverse KL amortization models, we initialize the probabilistic model from samples
from the amortized model and then further finetune it via dataset-specific maximum a posteriori optimization.
We repeat this setup over 25 different samples from the inference model. In contrast, for the optimization
baseline, we initialize the probabilistic models’ parameters from N (0, I), which is the prior that we consider,
and then train 25 such models with maximum a posteriori objective using Adam optimizer.

While we see that the amortization models, particularly the reverse KL model, lead to much better initialization
and convergence, it is important to note that the benefits vanish if we initialize using the Xavier-init
initialization scheme. However, we believe that this is not a fair comparison as it means that we are
considering a different prior now, while the amortized models were trained with N (0, I) prior. We defer the
readers to the section below for additional discussion and experimental results.

G OpenML Datasets

For the tabular regression problems, we consider the suite of tasks outlined in OpenML-CTR23 - A curated
tabular regression benchmarking suite (Fischer et al., 2023), from which we further filter out datasets that

39

Under review as submission to TMLR

0 500 1000 1500 2000 2500
0

20

40

60

80

100

Pe
rfo

rm
an

ce

airfoil_self_noise

0 500 1000 1500 2000 2500
0

25

50

75

100

125

150

175
concrete_compressive_strength

0 500 1000 1500 2000 2500

0

25

50

75

100

125

150

175
energy_efficiency

0 500 1000 1500 2000 2500

25

50

75

100

125

150

175

solar_flare

0 500 1000 1500 2000 2500
0

100

200

300

400

500

600

Pe
rfo

rm
an

ce

student_performance_por

0 500 1000 1500 2000 2500
Iteration

0

20

40

60

80

100

120

QSAR_fish_toxicity

0 500 1000 1500 2000 2500
Iteration

0

50

100

150

200

red_wine

0 500 1000 1500 2000 2500
Iteration

0

20

40

60

80

100

socmob

0 500 1000 1500 2000 2500
Iteration

0

50

100

150

200

250

300

350

Pe
rfo

rm
an

ce

cars

Experiment Name
Prior Initialization
Xavier Initialization
Fwd-KL Initialization
Rev-KL Initialization

Figure 10: Tabular Experiments | Nonlinear Regression with Diagonal Gaussian: For every regression
dataset from the OpenML platform considered, we initialize the parameters of a nonlinear regression-based
probabilistic model with the amortized inference models which were trained with a diagonal Gaussian
assumption. The parameters are then further trained with maximum-a-posteriori (MAP) estimate with
gradient descent. Reverse and Forward KL denote initialization with the correspondingly trained amortized
model. Prior refers to a MAP-based optimization baseline initialized from the prior N (0, I), whereas Xavier
refers to initialization from the Xavier initialization scheme.

have more than 2000 examples and 100 features. We also remove datasets with missing information and
NaNs. Similarly, we consider the OpenML-CC18 Curated Classification benchmark (Bischl et al., 2019)
suite of tasks for classification and perform a similar filtering algorithm. We remove datasets with missing
information and NaNs, as well as datasets with more than 2000 examples and 100 features. In addition, we
also exclude datasets that are not made for binary classification. At the end of this filtering mechanism, we
end up with 9 regression and 13 classification problems, and our dataset filtration pipeline is heavily inspired
by Hollmann et al. (2022). We provide the datasets considered for both regression and classification below:

Regression: airfoil_self_noise, concrete_compressive_strength, energy_efficiency, so-
lar_flare, student_performance_por, QSAR_fish_toxicity, red_wine, socmob and cars.

Classification: credit-g, diabetes, tic-tac-toe, pc4, pc3, kc2, pc1, banknote-authentication,
blood-transfusion-service-center, ilpd, qsar-biodeg, wdbc and climate-model-simulation-
crashes.

H Additional Experiments

In this section, we outline the additional experiments we conducted in obtaining Bayesian posteriors for
the different probabilistic models for different hyperparameters and their downstream uses. We provide a
comprehensive account of the results in the relevant sections below.

40

Under review as submission to TMLR

0 500 1000 1500 2000 2500
0

20

40

60

80

100

Pe
rfo

rm
an

ce

airfoil_self_noise

0 500 1000 1500 2000 2500
0

25

50

75

100

125

150

175
concrete_compressive_strength

0 500 1000 1500 2000 2500

0

25

50

75

100

125

150

175
energy_efficiency

0 500 1000 1500 2000 2500

25

50

75

100

125

150

175

solar_flare

0 500 1000 1500 2000 2500
0

100

200

300

400

500

600

Pe
rfo

rm
an

ce

student_performance_por

0 500 1000 1500 2000 2500
Iteration

0

20

40

60

80

100

120

QSAR_fish_toxicity

0 500 1000 1500 2000 2500
Iteration

0

50

100

150

200

red_wine

0 500 1000 1500 2000 2500
Iteration

0

20

40

60

80

100

socmob

0 500 1000 1500 2000 2500
Iteration

0

50

100

150

200

250

300

350

Pe
rfo

rm
an

ce

cars

Experiment Name
Prior Initialization
Xavier Initialization
Fwd-KL Initialization
Rev-KL Initialization

Figure 11: Tabular Experiments | Nonlinear Regression with Normalizing Flow: For every regression
dataset from the OpenML platform considered, we initialize the parameters of a nonlinear regression-based
probabilistic model with the amortized inference models which were trained with a normalizing flow-based
model. The parameters are then further trained with maximum-a-posteriori (MAP) estimate with gradient
descent. Reverse and Forward KL denote initialization with the correspondingly trained amortized model.
Prior refers to a MAP-based optimization baseline initialized from the prior N (0, I), whereas Xavier refers to
initialization from the Xavier initialization scheme.

H.1 Fixed-Dim

While we highlighted the results with the Gaussian mixture model and classification settings with only 2
clusters/classes, we also conducted experiments with an increased number of clusters and classes, making
the problem even more challenging. Tables 7-14 shows that both forward and reverse KL methods perform
reasonably, with forward KL struggling more in challenging scenarios.

Next, we also consider harder tasks based on the Bayesian Neural Network (BNN) paradigm, where we
consider nonlinear regression and classification setups with different activation functions: tanh and relu
for a 1-layered and 2-layered BNN. We provide the results of our experiments in Tables 7-14. The results
indicate that forward KL approaches struggle a lot in such scenarios, often achieving performance comparable
to random chance. On the contrary, we see that reverse KL-based amortization leads to performances often
similar to dataset-specific optimization, thereby showing the superiority of our proposed method.

H.2 Variable-Dim

Our experiments on variable dimensional datasets can be evaluated for arbitrary feature cardinality, of
which we show a few examples in Section 4. In this section, we provide results for additional dimensionality
setups. In particular, we refer the readers to Tables 15-22, which contain experimental results w.r.t different
dimensionalities (e.g. 50D setup), as well as different number of clusters and classes, respectively, for the GMM

41

Under review as submission to TMLR

0 500 1000 1500 2000 2500

50

55

60

65

70

75

Pe
rfo

rm
an

ce

credit-g

0 500 1000 1500 2000 2500

45

50

55

60

65

70

75
diabetes

0 500 1000 1500 2000 2500

47.5

50.0

52.5

55.0

57.5

60.0

62.5

65.0

tic-tac-toe

0 500 1000 1500 2000 2500

50

60

70

80

90
pc4

0 500 1000 1500 2000 2500

50

60

70

80

90

Pe
rfo

rm
an

ce

pc3

0 500 1000 1500 2000 2500

40

50

60

70

80

kc2

0 500 1000 1500 2000 2500

40

50

60

70

80

90

pc1

0 500 1000 1500 2000 2500
40

50

60

70

80

90

100
banknote-authentication

0 500 1000 1500 2000 2500

45

50

55

60

65

70

75

Pe
rfo

rm
an

ce

blood-transfusion-service-center

0 500 1000 1500 2000 2500
Iteration

45

50

55

60

65

70

ilpd

0 500 1000 1500 2000 2500
Iteration

45

50

55

60

65

70

75

80

qsar-biodeg

0 500 1000 1500 2000 2500
Iteration

40

50

60

70

80

90

wdbc

0 500 1000 1500 2000 2500
Iteration

50

60

70

80

90

Pe
rfo

rm
an

ce

climate-model-simulation-crashes

Experiment Name
Prior Initialization
Xavier Initialization
Fwd-KL Initialization
Rev-KL Initialization

Figure 12: Tabular Experiments | Linear Classification with Diagonal Gaussian: For every classifica-
tion dataset from the OpenML platform considered, we initialize the parameters of a linear classification-based
probabilistic model with the amortized inference models which were trained with a diagonal Gaussian
assumption. The parameters are then further trained with maximum-a-posteriori (MAP) estimate with
gradient descent. Reverse and Forward KL denote initialization with the correspondingly trained amortized
model. Prior refers to a MAP-based optimization baseline initialized from the prior N (0, I), whereas Xavier
refers to initialization from the Xavier initialization scheme.

and LC setup. Throughout, we see that amortization leads to reasonable performance, and in particular, we
see forward KL-based amortization starting to struggle in high-dimensional setups.

Again, to make the setup more challenging, we consider the Bayesian Neural Network (BNN) setup where
we consider nonlinear regression and classification with different activation functions: tanh and relu for a
1-layered and 2-layered BNN, but which can now be tested for an arbitrary number of input features. Our
experiments are highlighted in Tables 15-22, for 1- and 2-layered BNN, among others. In such complex
multi-modal and complicated setups, forward KL often performs comparable to random chance and thus
does not lead to any good approximation of the true posterior distribution. On the other hand, our proposed
method indeed leads to good predictive performance, often comparable to dataset-specific optimization
routines.

42

Under review as submission to TMLR

0 500 1000 1500 2000 2500
45

50

55

60

65

70

75

Pe
rfo

rm
an

ce

credit-g

0 500 1000 1500 2000 2500

45

50

55

60

65

70

75

diabetes

0 500 1000 1500 2000 2500

45

50

55

60

65

tic-tac-toe

0 500 1000 1500 2000 2500

50

60

70

80

90
pc4

0 500 1000 1500 2000 2500

50

60

70

80

90

Pe
rfo

rm
an

ce

pc3

0 500 1000 1500 2000 2500
20

30

40

50

60

70

80

kc2

0 500 1000 1500 2000 2500

40

50

60

70

80

90

pc1

0 500 1000 1500 2000 2500
40

50

60

70

80

90

100
banknote-authentication

0 500 1000 1500 2000 2500

45

50

55

60

65

70

75

Pe
rfo

rm
an

ce

blood-transfusion-service-center

0 500 1000 1500 2000 2500
Iteration

45

50

55

60

65

70

ilpd

0 500 1000 1500 2000 2500
Iteration

45

50

55

60

65

70

75

80

qsar-biodeg

0 500 1000 1500 2000 2500
Iteration

40

50

60

70

80

90

wdbc

0 500 1000 1500 2000 2500
Iteration

50

60

70

80

90

Pe
rfo

rm
an

ce

climate-model-simulation-crashes

Experiment Name
Prior Initialization
Xavier Initialization
Fwd-KL Initialization
Rev-KL Initialization

Figure 13: Tabular Experiments | Linear Classification with Normalizing Flow: For every classifica-
tion dataset from the OpenML platform considered, we initialize the parameters of a linear classification-based
probabilistic model with the amortized inference models which were trained with a normalizing flow-based
model. The parameters are then further trained with maximum-a-posteriori (MAP) estimate with gradient
descent. Reverse and Forward KL denote initialization with the correspondingly trained amortized model.
Prior refers to a MAP-based optimization baseline initialized from the prior N (0, I), whereas Xavier refers to
initialization from the Xavier initialization scheme.

H.3 Model Misspecification

As a representative of the results on model misspecification (Section 4), we highlighted training and evaluation
of the amortization models with Transformer backbone on a subset of in-distribution and OoD data-generating
functions (Table 3) to show superiority in generalization of reverse KL trained system vs. forward KL based
ones on OoD data but also to highlight that training a misspecified amortization model on OoD datasets
directly with our approach results in even better posterior predictive performance.

In addition to those experiments, we also conducted a broader range of experiments utilizing DeepSets as the
backbone, various OoD data-generating functions for training and evaluation of the reverse KL system, and
an additional nonlinear regression model with relu activation function. For a comprehensive description

43

Under review as submission to TMLR

0 500 1000 1500 2000 2500

45

50

55

60

65

70

Pe
rfo

rm
an

ce

credit-g

0 500 1000 1500 2000 2500

45

50

55

60

65

70

diabetes

0 500 1000 1500 2000 2500

47.5

50.0

52.5

55.0

57.5

60.0

62.5

65.0

67.5
tic-tac-toe

0 500 1000 1500 2000 2500
40

50

60

70

80

90

pc4

0 500 1000 1500 2000 2500

40

50

60

70

80

90

Pe
rfo

rm
an

ce

pc3

0 500 1000 1500 2000 2500

40

50

60

70

80

kc2

0 500 1000 1500 2000 2500

40

50

60

70

80

90

pc1

0 500 1000 1500 2000 2500
40

50

60

70

80

90

banknote-authentication

0 500 1000 1500 2000 2500
40

45

50

55

60

65

70

75

80

Pe
rfo

rm
an

ce

blood-transfusion-service-center

0 500 1000 1500 2000 2500
Iteration

45

50

55

60

65

70

75
ilpd

0 500 1000 1500 2000 2500
Iteration

45

50

55

60

65

70

75

80

qsar-biodeg

0 500 1000 1500 2000 2500
Iteration

50

60

70

80

90
wdbc

0 500 1000 1500 2000 2500
Iteration

40

50

60

70

80

90

Pe
rfo

rm
an

ce

climate-model-simulation-crashes

Experiment Name
Prior Initialization
Xavier Initialization
Fwd-KL Initialization
Rev-KL Initialization

Figure 14: Tabular Experiments | Nonlinear Classification with Diagonal Gaussian: For every
classification dataset from the OpenML platform considered, we initialize the parameters of a nonlinear
classification-based probabilistic model with the amortized inference models which were trained with a
diagonal Gaussian assumption. The parameters are then further trained with maximum-a-posteriori (MAP)
estimate with gradient descent. Reverse and Forward KL denote initialization with the correspondingly
trained amortized model. Prior refers to a MAP-based optimization baseline initialized from the prior N (0, I),
whereas Xavier refers to initialization from the Xavier initialization scheme.

of these experiments and the complete setup, please refer to Section F.3. We considered two probabilistic
models, including a linear regression model and a nonlinear regression models utilizing the tanh activation
function. The detailed results for each model can be found in Tables 23 and 24.

In all experiments, reverse KL outperforms forward KL trained amortization models in in-distribution
performance and excels in posterior prediction on OoD datasets. Although the significant difference in
posterior prediction performance of forward vs. reverse KL in cases where the underlying model is nonlinear
was already mentioned in previous experiments, here, reverse KL-trained models also excel in evaluations of
posterior prediction for the linear regression model. Although only by a margin, in the case of approximating
the posterior of the simpler linear regression model, a diagonal Gaussian-shaped posterior shows the best
posterior prediction results when evaluated on OoD datasets from the nonlinear regression dataset generating

44

Under review as submission to TMLR

0 500 1000 1500 2000 2500

45

50

55

60

65

70

Pe
rfo

rm
an

ce

credit-g

0 500 1000 1500 2000 2500

45

50

55

60

65

70

diabetes

0 500 1000 1500 2000 2500

47.5

50.0

52.5

55.0

57.5

60.0

62.5

65.0

67.5
tic-tac-toe

0 500 1000 1500 2000 2500
40

50

60

70

80

90

pc4

0 500 1000 1500 2000 2500

40

50

60

70

80

90

Pe
rfo

rm
an

ce

pc3

0 500 1000 1500 2000 2500

40

50

60

70

80

kc2

0 500 1000 1500 2000 2500

40

50

60

70

80

90

pc1

0 500 1000 1500 2000 2500
40

50

60

70

80

90

banknote-authentication

0 500 1000 1500 2000 2500
40

45

50

55

60

65

70

75

80

Pe
rfo

rm
an

ce

blood-transfusion-service-center

0 500 1000 1500 2000 2500
Iteration

45

50

55

60

65

70

75
ilpd

0 500 1000 1500 2000 2500
Iteration

45

50

55

60

65

70

75

80

qsar-biodeg

0 500 1000 1500 2000 2500
Iteration

40

50

60

70

80

90

wdbc

0 500 1000 1500 2000 2500
Iteration

40

50

60

70

80

90

Pe
rfo

rm
an

ce

climate-model-simulation-crashes

Experiment Name
Prior Initialization
Xavier Initialization
Fwd-KL Initialization
Rev-KL Initialization

Figure 15: Tabular Experiments | Nonlinear Classification with Normalizing Flow: For ev-
ery classification dataset from the OpenML platform considered, we initialize the parameters of a linear
classification-based probabilistic model with the amortized inference models which were trained with a
normalizing flow-based model. The parameters are then further trained with maximum-a-posteriori (MAP)
estimate with gradient descent. Reverse and Forward KL denote initialization with the correspondingly
trained amortized model. Prior refers to a MAP-based optimization baseline initialized from the prior N (0, I),
whereas Xavier refers to initialization from the Xavier initialization scheme.

function. In almost all other experiments, the posterior prediction performance could be enhanced when we
used the normalizing flow based posterior. A definitive conclusion cannot be drawn regarding the superiority
of one backbone over the other, i.e. between DeepSets or Transformer. However, amortization models with
DeepSets as the backbone tend towards better generalization regarding OoD datasets.

H.4 Tabular Experiments

As a case of extreme OoD generalization, we test our amortized models trained to handle variable feature
dimensions on the suite of regression and classification problems that we filtered out from the OpenML platform,
as outlined in Appendix G. We consider both linear and nonlinear probabilistic models to tackle the regression

45

Under review as submission to TMLR

and binary classification setups, which lead to predicting the parameters of a linear regression/classification
model and a small nonlinear neural network based on relu activation function. Further, we also perform the
analysis with a diagonal Gaussian assumption and a normalizing flow-based amortization model trained with
both a forward and reverse KL objective. We provide the results on the regression problems in (a) linear
model with diagonal Gaussian assumption (Figure 8), (b) linear model with normalizing flow (Figure 9), (c)
nonlinear model with diagonal Gaussian assumption (Figure 10), and (d) nonlinear model with normalizing
flow (Figure 11). The results of the classification problems are shown in (a) linear model with diagonal
Gaussian assumption (Figure 12), (b) linear model with normalizing flow (Figure 13), (c) nonlinear model
with diagonal Gaussian assumption (Figure 14), and (d) nonlinear model with normalizing flow (Figure 15).
Our experiments indicate that initializing with amortized models leads to better performance and training
than models trained via maximum a-posteriori approach and initialized with the prior, i.e., N (0, I).

We do provide an additional baseline of initializing with Xavier-init initialization, which often leads to faster
convergence; however, as we consider the prior to be a unit normal, this is an unfair baseline as we assume
the weights to be initialized from a different prior. We leave the work of computing Bayesian posteriors with
different priors and testing an amortized Bayesian model with Xavier-init prior for the future.

46

	Introduction
	Background
	Method
	Amortizing Variable Feature Dimensions
	Handling Model Misspecification

	Experiments
	Discussion
	Conclusion
	Related Work
	Variational Autoencoders
	Hypernetworks
	In-Context Learning
	Meta Learning
	Neural Processes
	Simulation-Based Inference
	Amortization in Gaussian Processes
	Mode Collapse in Variational Inference

	Architectures respecting Exchangeability
	DeepSets
	Transformers

	Probabilistic Models
	Metrics
	Architecture Details
	Transformer
	DeepSets
	RNN
	Normalizing Flows

	Experimental Details
	Fixed-Dim
	Variable-Dim
	Model Misspecification
	Tabular Experiments

	OpenML Datasets
	Additional Experiments
	Fixed-Dim
	Variable-Dim
	Model Misspecification
	Tabular Experiments

