
Under review as submission to TMLR

Amortizing Bayesian Posterior Inference in
Tractable Likelihood Models

Anonymous authors
Paper under double-blind review

Abstract

Bayesian inference provides a natural way of incorporating prior beliefs and assigning a
probability measure to the space of hypotheses. However, it is often infeasible in practice as
it requires expensive iterative routines like MCMC to approximate the posterior distribution.
Not only are these methods computationally expensive, but they must also be re-run whenever
new observations are available, making them impractical or of limited use. To alleviate such
difficulties, we amortize the posterior parameter inference for probabilistic models through per-
mutation invariant architectures. While this paradigm is briefly explored in Simulation Based
Inference (SBI), Neural Processes (NPs) and Gaussian Process (GP) kernel estimation, a more
general treatment of amortized Bayesian inference in known likelihood models has been largely
unexplored. We additionally utilize a simple but strong approach to further amortize on the di-
mensionality of observations, allowing a single system to infer variable dimensional parameters.
In particular, we rely on the reverse-KL based amortized Variational Inference (VI) approach
to train inference systems and compare them with forward-KL based SBI approaches across
different architectural setups. We conduct thorough experiments to demonstrate the effective-
ness of our proposed approach, especially in real-world and model misspecification settings.

1 Introduction

Bayesian analysis of data has become increasingly popular and is widely used in numerous scientific
disciplines. In politics, predictive models based on public polling and other factors play a crucial role in
the discourse around the state of a campaign. Throughout the COVID-19 pandemic, models that estimate
the infectiousness of the virus, the efficacy of public health measures, and the future course of the pandemic
became critical to government planning and the public’s understanding of the pandemic (Cooper et al., 2020).
In cryogenic electron microscopy (cryo-EM), the posterior over an unknown 3D atomic-resolution molecular
structure is explored given the 2D image observations (Glaeser et al., 2021).

While recent years have made such methods more accessible (Bingham et al., 2019; Carpenter et al., 2017;
Štrumbelj et al., 2023), they still remain computationally burdensome. Further, in practical contexts where
new observations are continuously available, the analysis must be re-run every time new data becomes
available, e.g., when new case counts become available, previous measurements are corrected, or when
applied to different geographic regions. As a result practitioners adopt approximations (Welling & Teh, 2011;
Gelfand, 2000; Brooks, 1998), simplify their models (Hoffman et al., 2013; Blei et al., 2017) or reduce the
frequency with which they perform their analyses.

A common thread is that the probabilistic model defining the relationship between its parameters and the
observations is fixed. Poll aggregation models use hierarchical time series models (Athanasopoulos et al.,
2023; Chen et al., 2023), infectious diseases are studied using variants on compartment models (Tang et al.,
2020), and cryo-EM uses a linear image formation model (Glaeser et al., 2021). This makes these applications
ideal candidates for amortized inference (Morris, 2013; Paige & Wood, 2016; Kingma & Welling, 2013;
Rezende et al., 2014; Stuhlmüller et al., 2013).

We propose using neural networks to learn a function that maps an observed dataset directly to the
corresponding posterior distribution without the need for iterative procedures, e.g., Markov chain Monte

1

Under review as submission to TMLR

Carlo (MCMC) sampling (Gelfand, 2000; Hoffman et al., 2014). To efficiently handle permutation invariance
stemming from the iid nature of observations, we rely on efficient set-based architectures like Transformers
and DeepSets (Zaheer et al., 2017; Vaswani et al., 2017; Lee et al., 2019). If learned properly, this mapping
allows generalization to different datasets for the same underlying model. In addition, we also leverage a
simple padding-based procedure to amortize posterior estimation for datasets with a variable number of
features.

Our primary motivation is posterior inference as the parametric values themselves are often of interest in
applied statistical practice, e.g., for assessing the success of a pandemic intervention or the impact of a factor
on public opinion polling. Additionally, we demonstrate the utility of our proposed approach in the closely
related problem of posterior prediction, where the goal is to model future predictions given some observations.

Generally, real-world datasets do not exactly follow standard models, e.g., while practitioners often rely
on linear models, data rarely follows them exactly. As a result, simulation-based inference (SBI) As a result,
simulation-based inference (SBI) styled neural posterior estimation approaches (SBI-NPE) (Radev et al.,
2020; Geffner et al., 2023; Cranmer et al., 2020) which rely on training with datasets and their corresponding
known parameters may struggle to generalize to data of practical use. Instead, we propose a new training
objective that can operate solely on datasets without knowing the underlying parameters, thereby allowing
for a wider diversity of data to be incorporated during training for better generalization to real world settings.
We conduct detailed experiments and benchmarking to establish the superiority of our proposed approach
as well as their qualitative differences. Our contributions include

• Proposing a general framework for amortizing Bayesian posterior estimation in probabilistic models
and highlighting its superior performance to SBI-NPE.

• Extending amortization in both SBI-NPE and the proposed framework over a variable number of
features in each observation, and not just the number of observations.

• Quantifying benefits of our proposed approach when the true underlying model is unknown (model
misspecification), as well as providing its advantages in generalization to real-world tabular datasets.

• Benchmarking various design choices like architectural backbones through extensive ablations.

2 Background

To understand our proposed method of amortizing posterior inference without the need for iterative
refinement strategies, we first cover some of the important preliminaries as well as approaches already
existing in the literature. We also analyze concrete differences between our proposed work and existing prior
work on SBI, NPs, and amortized GP kernel estimation. While they all look at related problems of amortized
posterior estimation, the underlying methodology and goals in each are different from ours, as outlined below.

Bayesian Inference. Let x ∈ Rd denote an experiment observed through a set of independent and
identically (iid) distributed samples D = {x1, ...,xN}. Given these observations, we are often interested in
either quantifying the certainty of or generating potential future observations x∗. Bayesian Inference provides
a natural methodology of quantifying p(x∗|D) by prescribing a space of hypotheses θ ∈ Rk and a prior belief
p(θ) and posterior p(θ|D) over it. These hypotheses θ define the likelihood of observing a particular outcome,
i.e., p(x|θ). The quantity of interest can then be easily expressed through the laws of probability as

p(x∗|D) =
∫
θ

p(x∗|θ)p(θ|D)dθ (1)

However, the above expression poses two challenges: (a) the posterior p(θ|D), which is often a quantity of
interest in itself, is not known, and (b) even if known, the integration might be intractable. The intractability
of the integration is often resolved through Monte Carlo estimation

p(x∗|D) = Eθ|D [p(x∗|θ)] (2)

≈ 1
M

M∑
m=1

p(x∗|θ(m)) (3)

2

Under review as submission to TMLR

where θ(m) ∼ p(θ|D). The quantity p(θ|D) can be obtained through an application of Bayes rule

p(θ|D) = p(D|θ) p(θ)
p(D) (4)

= p(θ)
p(D)

N∏
n=1

p(xn|θ) (5)

Given the form of the likelihood and the prior, the above distribution is often difficult to sample from,
especially with the added complexity of the marginal p(D) =

∫
θ

p(D|θ) p(θ) being intractable. Additionally,
the posterior itself is often of interest on its own, especially in cases where θ is interpretable, for example,
if we model the bias of a coin based on multiple tosses. We refer the readers to Bishop & Nasrabadi (2006)
for applications of Bayesian Inference to supervised learning, etc.

Variational Inference. To bypass the intractability of the posterior distribution, or at least the difficulty to
sample from it, VI methods approximate the true posterior p(θ|D) with a variational distribution qφ(θ) and
convert the estimation problem into the following optimization problem

φ∗ = arg min
φ

KL[qφ(·)||p(·|D)] (6)

which is equivalent to optimizing the Evidence Lower-Bound (ELBO) (Gelman et al., 2013)

φ∗ = arg max
φ

Eθ∼qφ(·)

[
log p(D,θ)

qφ(θ)

]
(7)

The above optimization procedure finds a member of the considered family of variational distributions that is
closest to the true posterior under the reverse-KL divergence. Once the optimal parameters φ∗ are obtained,
the posterior predictive distribution p(x∗|D) can be approximated as

p(x∗|D) ≈ Eqφ∗ (θ) [p(x∗|θ)] (8)

The family of distributions qφ is chosen such that it is easy to sample from. Typical choices include
independent multivariate Gaussian distribution (mean-field approximation) or normalizing flows (Rezende
& Mohamed, 2015; Papamakarios et al., 2021; Ardizzone et al., 2018-2022).

Amortization. One of the most powerful capabilities of neural networks is their ability to learn and
generalize to a wide variety of domains and settings provided sufficient variability during training. For
example, Variational Autoencoders (VAEs) define a latent-variable model p(x, z) where x represents the
observation and z the latent variable. VI typically relies on solving a separate optimization problem qφ∗

i
(zi)

for each posterior p(zi|xi). The cost of learning separate variational approximations can be amortized
through training of a joint network qφ(z|x), where φ now represents the parameters of a neural network
which takes x explicitly as input. The VI procedure then reduces to optimizing φ, which is shared across all
observations, as opposed to optimizing for separate φ′

is, in the hope that qφ(zi|xi) ≈ qφi
(zi) for any xi. When

modeling using Gaussian distributions, this distinction can be seen as qφ(zi|xi) := N (· ;µφ(xi),Σφ(xi))
while qφi(zi) := N (· ;µφi ,Σφi) (note the functional dependencies). In a similar fashion, Garnelo et al. (2018b)
amortize on datasets as explicit inputs, while score-based generative models (Song et al., 2020) amortize on
timesteps. Such models are largely successful owing to the generalization capabilities of neural networks to
new unseen observations as long as the encoder qφ(z|xi) is trained on diverse enough observations x′

is.

Simulation-Based Inference. SBI considers the problem of inferring the parameters of the simulator from
observations. This is often tackled via neural posterior estimation methods (SBI-NPE) where a deep-learning
based model is trained to infer the posterior by explicitly conditioning an approximate distribution qφ(θ|D)
on the dataset, where the gap between the approximate and true posterior is bridged through a Forward-KL
based optimization

arg min
φ

EDKL [p(θ|D)||qφ(θ|D)] (9)

3

Under review as submission to TMLR

which often leads to mode averaging behavior that can be problematic in high dimensions. While the above
objective often enjoys applications to tasks without tractable likelihood functions, it can only be used for
training when the dataset D is sampled according to the probabilistic model, and thus cannot utilize off-policy
non-simulated data, hindering generalization to real-world scenarios. Precisely because of this, SBI-NPE has
been leveraged in controlled scenarios like modeling inverse problems with low-dimensional non-differentiable
simulators where the likelihood of an observation is not tractable; but it has limited applicability in more
general estimation problems like the distribution over weights of a Bayesian Neural Networks.

Neural Processes. NPs also leverage amortized VI in training a latent-variable system for modeling
predictive problems. However, unlike our setup, they define an approximate posterior distribution only over
an arbitrary latent space and learn how this latent variable impacts the likelihood through point estimation
of likelihood parameters. In particular, NPs rely on the Variational-EM setup, where they perform point
estimation for the parameters of the likelihood and VI for the latent variable. In contrast, we focus on a
similar setting where we instead do a full VI treatment of the parameters of the likelihood function; which in
some sense means that our latent variables are now parameters of the likelihood model. Thus, our approach
can be seen as a fully Bayesian Inference procedure for likelihood models, whereas NPs can be seen as
latent-variable models which only provide point estimates for them.

Gaussian Process Kernel Estimation. A specific application of our framework is the estimation of the
kernel function for Gaussian Process likelihood models (Liu et al., 2020; Simpson et al., 2021; Bitzer et al.,
2023), which leverages amortized inference for tractable likelihoods defined by GP regression setups. In
contrast, we provide a more general framework for conducting amortized inference, which we test across a
wide variety of domains ranging from supervised to unsupervised learning and from regression to classification
tasks. Thus, our proposed approach provides a framework for parameter estimation through amortized
variational inference and GP kernel estimation along these lines is a specific application of this approach.

We refer the readers to Appendix A for a detailed discussion about prior work, as well as its connections and
differences with our proposed mechanism.

3 Method

At a high level, given any modeling assumption, we are interested in estimating the posterior distribution over
its parameters conditioned explicitly over observations to allow for a fast and scalable approximation. That
is, given a probabilistic model p(·|θ) with parameters θ, we are interested in amortizing and approximating
the full Bayesian inference solution over θ. Our goal is to train a system that approximates the posterior
distribution p(θ|D) given a dataset D := {x1,x2, · · · ,xn} ⊆ Rd where xi ∼ p(x|θ). We achieve this by
learning an amortized variational distribution qφ(θ|D) conditioned explicitly on the dataset D. Similar to
standard VI approaches, we can train qφ through the following optimization problem

arg min
φ

KL [qφ(·|D)||p(·|D)] (10)

While this is the case for VI on a single dataset, we are interested in generalizing to a family of datasets χ.
Similar to how a VAE encoder efficiently generalizes to approximate posteriors for new images when trained
across multiple image observations, we amortize over datasets by training over multiple D ∼ χ in the hope of
generalizing to posterior approximations in new datasets. Thus, given a probability measure over the space of
datasets χ, we posit learning of shared parameters φ of the variational distribution across different datasets as

arg min
φ

ED∼χKL [qφ(θ|D)||p(θ|D)] (11)

which equivalently reduces to maximizing the ELBO:

arg max
φ

ED∼χEθ∼qφ(·|D)

[
log p(D,θ)

qφ(θ|D)

]
(12)

To recap, given a known likelihood model p(x|θ), with θ denoting its parameters; we are interested in finding
the posterior distribution p(θ|D) for any dataset D. While VI strategies approach this problem by learning
a separate qφ for each D, we instead train a shared qφ that explicitly takes D as input and, in doing so,
possesses the ability to generalize to new datasets without additional training.

4

Under review as submission to TMLR

Mean of Gaussian Linear Regression Nonlinear Regression Gaussian Mixture Linear Classification Nonlinear Classification

Figure 1: Amortized Bayesian Posterior Estimation: Illustration of predictions from proposed approach
when trained on a fixed dimensional observation space. Model predictions, true predictions and sample
points are shown in red, black and blue. Additionally for classification, we label sample points with their
ground-truth class, and draw the decision boundary according to the model.

This training paradigm naturally introduces a dependency on the dataset generating distribution χ. Since we
are working with a known probabilistic model, an obvious choice of χ is to treat this probabilistic model as
a black-box simulator, akin to p(n)p(θ)

∏n
i=1 p(xi|θ), samples from which can be obtained using ancestral

sampling. Here, n is the dataset cardinality and p(n) is a distribution over positive integers. Thus, obtaining
at least one dataset-generating distribution is easy given any probabilistic model. However, χ can also
be obtained from other sources, for example, a stream of real-world data, through interventions in the
data-generating process, or through bagging on a large real-world dataset.

Another design choice in the above setup is the parameterization for qφ: we explore a Gaussian distribution
and a normalizing flow parameterization with either a Transformer or DeepSets architectural backbone to
process D. It is important to note that not all deep learning architectures are amenable in this setting since,
given the iid nature of the samples, the posterior is permutation invariant

p(θ|D) = p(θ|ΠD) (13)

for some permutation matrix Π. This constraint should thus be reflected when modeling the approximation.
To satisfy it, for example for a Gaussian distribution, we can define qφ as

qφ(·) = N (·|µφ(D),Σφ(D)) (14)

where µφ and Σφ are modeled using permutation invariant architectures, thus satisfying the desired constraint

qφ(·|D) = qφ(·|ΠD) (15)

Finally, another important design choice in this setup is the prior p(θ). In this work, we assume it to be
N (·; 0, I). This choice of prior is optimal for our synthetic experiments as the true underlying prior is kept
the same, while for real-world data it is the common assumption to make.

Our proposed amortized VI approach, in contrast to SBI-NPE which relies on Forward KL optimization,
relies on the Reverse KL objective.1 We defer details regarding the architectural choices to Appendix B.

3.1 Amortizing Variable Feature Dimensions

So far, we have only considered amortization over different datasets for the same underlying likelihood
model. For example, for a 2-dimensional Bayesian linear regression model, the amortized posterior qφ(θ|D)
approximates the true posterior distribution p(θ|D) for arbitrary sets of 2-dimensional observations. It is
important to note that a deep learning-based approach leaves hopes of generalizing to new datasets because
the underlying functional form of the solution remains constant across different datasets and is given by the
solution obtained from Equation 4.

We note that the functional form of the ground-truth solution remains the same even with varying dimension-
ality. That is, the form of the solution remains the same irrespective of whether the underlying problem is a
2- or 100-dimensional Bayesian linear regression problem. Additionally, we can see that a low-dimensional
problem can just be embedded into a high-dimensional space, with the extra features and parameters set to
0. This simple but strong insight allows us to amortize qφ over datasets with varying dimensionalities by
embedding them in a higher dimensional space.

1Given the equivalences, we will use amortized VI and Reverse KL interchangeably.

5

Under review as submission to TMLR

L2 Loss (↓) Accuracy (↑)

Objective qφ Model Gaussian Mean GMM LR NLR LC NLC

2D 100D 5D 2 cl 1D 100D 1D 25D 2D 100D 2D 25D

Baseline
- Random 5.834 301.23 5.06 4.056 200 64.5 793 49.8 50.0 50.1 49.8
- Optimization 1.989 101.24 0.42 0.258 22.1 0.31 95.0 96.5 71.2 97.5 80.1
- MCMC 2.085 104.55 0.65 0.285 26.5 N/A 106 94.4 64.6 96.4 73.2

Fwd-KL

G
au

ss
ia

n DeepSets 2.014 103.34 2.42 0.264 127 49.9 682 81.0 50.0 59.5 59.6
Transformer 2.015 102.80 2.44 0.264 46.1 50.7 678 81.0 63.3 59.9 59.8

Rev-KL DeepSets 2.012 102.64 0.48 0.263 64.6 0.42 124 94.1 62.4 91.6 62.6
Transformer 2.013 102.59 0.52 0.264 28.1 0.41 99.2 94.0 68.2 91.7 76.5

Fwd-KL

F
lo

w

DeepSets 2.013 103.34 0.64 0.264 127 15.3 549 96.0 50.1 62.0 61.0
Transformer 2.018 102.73 0.57 0.265 44.8 16.3 530 96.2 64.7 75.7 61.1

Rev-KL DeepSets 2.010 102.67 0.52 0.263 75.7 0.39 125 95.1 58.6 93.1 63.9
Transformer 2.014 102.52 0.47 0.264 30.4 0.38 97.8 95.1 68.9 92.9 75.8

Table 1: Amortized Bayesian Posterior Estimation. Results for estimating the mean of a Gaussian
(Gaussian Mean), means of a Gaussian mixture model (GMM), (non-)linear regression (NLR/LR) and
(non-)linear binary classification (NLC/LC). We ablate over permutation invariant architectures (DeepSets vs
Transformers) and the density parameterizations (Diagonal Gaussian vs Normalizing Flows). Our baselines
include the prior (Random), dataset-specific maximum likelihood training (Optimization), Langevin-based
MCMC and Forward-KL based SBI. We use L2 loss and expected accuracy according to the posterior
predictive as metrics.

3.2 Handling Model Misspecification

Knowledge about the true likelihood model underlying the data-generating scheme is often unknown.
Practitioners thus rely on making a modeling assumption by prescribing a particular likelihood model for
the data and then fitting its parameters to best explain the data. For example, the underlying model of
whether an email is spam or not may be unknown, but one can still assume a linear model to solve this
classification problem. This defines the basis of model misspecification, where there is a mismatch between
the underlying true model and the assumption used.

In contrast to SBI-NPE approaches, our method can efficiently handle model misspecification. This can be
seen from the contrast between Equations 9 and 12, where the former can only be trained when χ is defined
according to the modeling choice while the latter doesn’t put any constraints on χ. Thus, in the presence of
a stream of real-world data, SBI-NPE cannot leverage this data during training because the corresponding
parameters in the assumed likelihood model are not known, while our method can leverage it during training
and can thus lead to more robust predictions on data that is of actual practical significance.

A simple example of this setup is when the true data might be coming from a Gaussian Process, but we
might not know this. To still be able to efficiently make predictions, we can model it with a linear relation.
However, SBI-NPE approaches can only train the amortized posterior for the linear model using linear data,
while our method can actually leverage the GP data that we observe. This leads to better generalization to
linear modeling of GP data and can be further leveraged in other model misspecification setups.

4 Experiments

Our approach relies on the user specifying a probabilistic model that describes their belief about the
data-generating process as well as the parameters of interest. To showcase the wide applicability of our
approach, we perform experimentation on various well-known probabilistic models encompassing supervised
and unsupervised scenarios. In particular, we look at the problem of estimating the Bayesian posterior
over the (a) mean of a Gaussian distribution (GM), (b) means of a Gaussian mixture model (GMM), (c)
parameters of a (non-)linear regression model (NLR/LR), and (d) parameters of a (non-)linear classification
model (NLC/LC). We refer the readers to Appendix C for particulars about the probabilistic models,

6

Under review as submission to TMLR

Mean of Gaussian Linear Regression Nonlinear Regression Gaussian Mixture Linear Classification Nonlinear Classification

Figure 2: Variable-Dimension Visualization: Illustration of proposed approach when trained on a variable
observational space but visualized on low-dimensional tasks, with model predictions, ground truth prediction
and data points in red, black and blue. For classification, data points are colored by their ground-truth labels,
and decision boundary corresponds to the model prediction.

including their likelihoods and the priors considered. Throughout our experiments, we observe superior
performance of our proposed approach in terms of predictive performance metrics (Appendix D), especially
in problems with high-dimensional and multi-modal posteriors.

In all our experiments, we generally consider two types of baselines: dataset-specific and amortized. For
dataset-specific baselines, we use the prior (Random), perform maximum likelihood estimation using
gradient-based optimization (Optimization) as well as an approximate Bayesian inference procedure through
Langevin-based MCMC sampling, which also uses the gradient information (MCMC). Such baselines rely
on iterative procedures and must be run independently for different datasets. For amortized baselines,
we consider the SBI-NPE based forward-KL baseline as outlined in Equation 9. We refer the readers to
Appendices F, D, and H for details about the experiments, metrics, and additional results, respectively.

Zero-Shot Posterior Approximation.

Given a known probabilistic model p(D,θ), we train an amortized inference system qφ(·|D) to approximate
the often intractable posterior over the parameter θ for different datasets with varying cardinality. Figure 1
visualizes the performance of the amortized model on different probabilistic models spanning supervised and
unsupervised learning for low dimensional problems. We see that the proposed approach provides reliable
samples of the parameters for previously unseen datasets, showing that it can indeed generalize.

Next, we empirically evaluate the performance of our proposed approach in more complex, high-dimensional
setups for the same set of probabilistic models. We set the data-generating distribution χ to be according
to the probabilistic model in order to allow comparisons with SBI-NPE, which can only be trained in
this particular setting. Table 1 highlights the performance of our proposed approach in high-dimensional
frameworks, showcases its superior performance to similar SBI-NPE benchmarks, and compares it to dataset-
specific non-amortized baselines. For multiple high-dimensional problems, we see that the proposed amortized
posterior performs similarly to Optimization and MCMC without being iterative at inference.

Generalizing to Variable Feature Dimensions

Next, we turn our attention to performing amortization additionally over different datasets with a variable
number of feature dimensions, as highlighted in Section 3.1. To do this, we embed all low-dimensional
problems in a 100-dimensional space and then train an amortized VI system. A key benefit of this approach
is that instead of having to train different models for different dimensional problems, we can rely on a single
model that can generalize across all. We visualize samples from the approximate posterior for low-dimensional
problems in Figure 2 and further provide quantitative metrics for high-dimensional problems in Table 2. Our
results highlight that the proposed approach can generalize quite well to variable dimensional setups without
requiring an iterative procedure at inference.

Handling Model Misspecification

As discussed in Section 3 and prior work (Müller et al., 2021; Hollmann et al., 2022), the performance and
use-case of such amortized systems relies heavily on the choice of the data-generating distribution χ. So
far, we only look at cases where χ defines simulations according to the probabilistic model to allow for a
fair comparison between SBI-NPE and our proposed method. This setup, however, implicitly assumes that
we know the ground-truth data-generating process, which is often not the case. A more common scenario
is where we do not know the data-generating process but have access to samples from it defined through

7

Under review as submission to TMLR

L2 Loss (↓) Accuracy (↑)

qφ Model GM GMM LR NLR LC NLC

2D 100D 5D 2 cl 1D 100D 1D 50D 2D 100D 2D 50D

Baseline
- Random 6.300 298.7 4.68 4.380 202 59 1609 50.0 49.9 50.1 49.9
- Optimization 2.020 100.8 0.42 0.257 20.9 0.3 289.4 97.1 71.9 96.4 74.9
- MCMC 2.213 108.4 0.76 0.418 32.9 N/A 300.3 94.0 63.7 96.2 67.1

Fwd-KL

G
au

ss
ia

n DeepSets 2.218 130.2 2.36 0.269 152 45 1333 81.0 50.6 49.8 50.0
Transformer 2.369 108.8 2.39 0.276 65.1 45 1310 80.1 62.3 58.6 58.8

Rev-KL DeepSets 2.050 104.9 0.48 0.278 66.9 0.7 449.6 94.0 61.5 89.6 61.4
Transformer 2.059 104.7 0.47 0.271 33.3 0.6 282.7 94.2 67.8 89.1 73.0

Fwd-KL

F
lo

w

DeepSets 2.055 130.9 0.56 0.271 157 36 1103 94.9 50.3 50.1 49.7
Transformer 2.072 108.5 0.53 0.274 62.3 33 1066 92.2 63.6 60.2 60.0

Rev-KL DeepSets 2.058 105.2 0.50 0.275 78.3 0.7 480.3 94.9 59.1 88.9 62.6
Transformer 2.051 104.8 0.46 0.268 33.2 0.8 257.2 95.0 68.2 89.8 71.9

Table 2: Variable-Dimension Posterior Prediction. Results for estimating the mean of a Gaussian
(Gaussian Mean), means of a Gaussian mixture model (GMM), (non-)linear regression (NLR/LR) and
(non-)linear binary classification (NLC/LC). In this setting, for each task only a single model was trained to
solve for different dimensional problems.

χreal. To make predictions for new query points, we, as statisticians, assume a probabilistic model p(x|θ)
to explain the data, which may be quite far from the true underlying model.

χreal (→)
qφ

Data Linear MLP GP
Nonlinear Nonlinear

χsim (→) Model NLR LR NLR

Fwd-KL

G
au

ss
ia

n 15.254 5.089 14.867
Rev-KL 0.380 2.431 0.153

+ switched data 0.369 1.477 0.072

Fwd-KL

F
lo

w

7.575 1.964 8.355
Rev-KL 0.345 1.945 0.113

+ switched data 0.346 1.480 0.060

Table 3: Model Misspecification: We see benefits of
our proposed approach when the true underlying data
generating process is not known. χreal denotes the real
data-generating distribution, χsim the simulated one ac-
cording to the (wrongly) assumed model. We train differ-
ent models on χsim, with switched data denoting training
on χreal. Evaluation is done solely on χreal.

We first note that χreal cannot be used to train
a forward KL (SBI-NPE) model and is thus un-
usable in this case. To resolve this issue, let χsim
denote the data generating distribution obtained
from simulations via the assumed model, which
can then be used to train the forward KL model.
We compare this SBI-NPE setup with our pro-
posed approach, either trained on χsim or χreal
but always evaluated on χreal since it is the family
of distributions of interest to us.

We consider χreal and χsim to be data-generating
processes, each simulated according to the proba-
bilistic models corresponding to linear, MLP, and
Gaussian Process regression such that χreal and
χsim are never the same. Table 3 showcases the
experimental results of model misspecification,
where we see that the forward KL models suffer
a lot due to mismatch between the training and
evaluation data, compounded by the potential
overestimation of variance (mode-averaging) while our proposed method significantly outperforms it. Even
further, we see that the proposed method can be directly trained on χreal, leading to even better performance.
For example, when χreal denotes data generated from a Gaussian Process and the probabilistic model
assumed is MLP-based, our proposed approach outperforms forward KL and does even better when trained
on the GP-based data as opposed to simulations from the MLP. We refer the readers to Appendix F.3
and H.3 for experimental details and additional results on model misspecification.

Applications to Tabular Domains

While we see clear benefits in simulated settings, we next turn our attention to real-world scenarios. We
consider a suite of tasks from the OpenML platform for both regression and binary classification and filter

8

Under review as submission to TMLR

0 500 1000 1500 2000 2500
Iterations

5.0

7.5

10.0

12.5

15.0

17.5

20.0

22.5

25.0

Lo
ss

Linear Regression

0 500 1000 1500 2000 2500
Iterations

25
0

25
50
75

100
125
150
175
200
225 Nonlinear Regression

0 500 1000 1500 2000 2500
Iterations

45

50

55

60

65

70

75

80

Ac
cu

ra
cy

Linear Classification

0 500 1000 1500 2000 2500
Iterations

45

50

55

60

65

70

75 Nonlinear Classification

Random Initialization Forward-KL Initialization Reverse-KL Initialization
Figure 3: Tabular Experiments: Initializing parameters from the amortized model, especially Reverse KL,
leads to good zero-shot performance across (non-)linear regression and classification. These benefits persist
over the course of optimization.
out tasks from the OpenML-CTR23 - A curated tabular regression benchmarking suite (Fischer et al., 2023)
for regression and OpenML-CC18 Curated Classification benchmark (Bischl et al., 2019) for classification
problems (details in Appendix G). We end up with 9 regression and 13 classification datasets with varying
number of features and use the amortized inference systems trained on simulated data with variable feature
dimensions to predict the parameters of interest.

L2 Loss (↓) Accuracy (↑)

qφ Model LR NLR LC NLC

Baseline - Random 23.16 206.86 49.78 50.27

Fwd-KL

G
au

ss
ia

n DeepSets 10.86 93.77 67.29 50.31
Transformer 9.90 104.15 63.06 55.05

Rev-KL DeepSets 9.21 8.88 77.51 54.41
Transformer 8.63 12.08 74.07 54.88

Fwd-KL

F
lo

w

DeepSets 13.21 70.57 66.83 49.58
Transformer 9.07 80.18 64.49 55.18

Rev-KL DeepSets 11.18 9.28 78.19 52.31
Transformer 7.36 8.27 73.75 53.16

Table 4: Tabular Experiments: Zero-shot perfor-
mance of the amortized variable-dimensional models
across (non-)linear regression and classification real-
world tabular tasks.

After initializing from the inference model, we fur-
ther train the parameters of the respective proba-
bilistic models with maximum a-posteriori objective
and compare the performance with a corresponding
model initialized from the prior. Even in this extreme
case of domain shift, we see in Table 4 that the amor-
tized model provides good initializations for different
real-world tasks zero-shot after training. Figure 3
also shows that the amortized model surpasses the
SBI-NPE baseline in terms of performance and con-
vergence speed for both linear and nonlinear setups.
While Figure 3 only provides a normalized aggre-
gated performance over all datasets considered for
a qφ parameterized as a diagonal Gaussian, we refer
the readers to Appendix H.4 for results on individual
datasets with different qφ, as well as Appendix F.4
for implementation details.

5 Discussion

Symmetric KL Divergence (↓)

qφ Model Gaussian Mean LR

2D 100D 1D 100D

Baseline - Random 44.32 46.78 182.4 184.8

Fwd-KL

G
au

ss
ia

n DeepSets 0.032 0.253 0.044 83.8
Transformer 0.031 0.068 0.041 20.7

Rev-KL
DeepSets 0.037 0.215 0.039 92.2

Transformer 0.027 0.062 0.040 33.5

Table 5: Normalized Symmetric KL Divergence.
Amortized models approximate the true posterior well
in tasks with tractable posteriors, when compared to
the prior (Random).

Having presented a method to amortize posterior
estimation for different probabilistic models and the
corresponding empirical evidence, we now highlight
some of our key findings.

Posterior Inference. While comparing with the
true posterior is hard due to its intractability, it
is still available for the problem of estimating the
mean of a Gaussian distribution as well as for
Bayesian Linear Regression. We plot the kernel
density estimate of the samples obtained from the
true posterior, the amortized forward, and the
reverse KL model in Figure 4 (Right), which shows
that both the amortization setups efficiently capture
the true posterior distribution. Further, we quantify
the quality of the approximate posteriors through a

9

Under review as submission to TMLR

(a) Forward-KL (b) Reverse-KL

0.75 1.00 1.25
x1

1.4

1.2

1.0

0.8

0.6

x 2

(c) Mean of Gaussian

2.00 1.75 1.50
w1

0.8

0.9

1.0

1.1

1.2

1.3

w
2

(d) Linear Regression2.00 1.75 1.50
w1

0.8

0.9

1.0

1.1

1.2

1.3

w
2

True Posterior
Forward-KL
Reverse-KL

Figure 4: Left: Estimation of the means of a GMM, where red and green samples denote the first and second
mean vectors. Unlike in reverse KL, the cluster labels switch in forward KL, highlighting its ability to capture
underlying multi-modality. Right: Kernel density estimation of the true posterior, overlaid with estimates
from forward and reverse KL systems, for different probabilistic models.

symmetric KL Divergence metric in Table 5, showing
that the amortized model obtains good approximations but does worsen with increasing dimensionality.
Additionally, our posterior predictive results show that forward KL often performs comparable to random
chance (prior) in high-dimensional, multi-modal setups (Appendix H.1). In contrast, reverse KL provides
reasonable estimates, alluding to its ability to better capture at least a mode of the posterior.

Design Choices. We consistently see that Transformers outperform DeepSets as the permutation-invariant
backbone, potentially because they do not rely on a fixed aggregation scheme (sum or mean pooling) but
instead learn it in a context-aware manner. However, we do see that in some rare cases of OoD generalization,
DeepSets can outperform Transformers (Appendix H.3).

Next, we see that increasing the capacity of qφ with normalizing flows only helps marginally for the reverse
KL objective but substantially for the forward KL setup. We hypothesize that given the mode-seeking
tendency of reverse KL, even with the capacity to model different modes, the algorithm seeks and latches
to only a single mode and capturing multiple modes in this setup is challenging, whereas in forward KL
setup without additional capacity the model overestimates the variance a lot.

Forward vs Reverse KL. Our experiments on GMM show that forward KL objective leads to the learning
of a multi-modal distribution while reverse KL only captures one mode (Figure 4, Left). However, in high-
dimensional multi-modal settings like BNNs, the former does not lead to learning of a reasonable distribution
as it attempts to cover all the modes while the latter does not cover multiple modes but better models an
individual mode (Tables 1 and 8; Appendix H.1 and H.2). Furthermore, unlike forward KL, the reverse KL
paradigm can be trained without observing θ but does require a known differentiable likelihood. We show an
application of this setting where we don’t have access to the ground-truth model but only to samples from it.

6 Conclusion

We show that Bayesian posterior inference can be amortized for a broad class of probabilistic models and
explore a variety of design decisions. In particular, we show that reverse KL is effective for learning the
amortization network and has significant benefits in the presence of model misspecification and generalization
to out-of-domain real-world setups. It provides an exciting direction of research which could reduce the
load of real-world, complex, and iterative approximations through quick and cheap inference over a trained
amortized network. We believe that scaling our approach to more complex probabilistic models, and
combining with diffusion-based variational systems (Zhang & Chen, 2021; Berner et al., 2022; Vargas et al.,
2023) would be important directions for future work.

Impact Statement

This work studies amortizing variational inference for Bayesian posterior estimation which is a widespread
strategy for performing inference in statistics. It provides a natural way of quantifying uncertainty and
potentially leading to more robust predictions. While we do not foresee any negative impacts of progress in
this area, we encourage caution when applying the methodologies in practice.

10

Under review as submission to TMLR

References
Ardizzone, L., Bungert, T., Draxler, F., Köthe, U., Kruse, J., Schmier, R., and Sorrenson, P. FrEIA:

Framework for easily invertible architectures, 2018. URL https://github.com/vislearn/FrEIA.

Ardizzone, L., Bungert, T., Draxler, F., Köthe, U., Kruse, J., Schmier, R., and Sorrenson, P. Framework for
Easily Invertible Architectures (FrEIA), 2018-2022. URL https://github.com/vislearn/FrEIA.

Arenz, O., Dahlinger, P., Ye, Z., Volpp, M., and Neumann, G. A unified perspective on natural gradient
variational inference with gaussian mixture models. arXiv preprint arXiv:2209.11533, 2022.

Athanasopoulos, G., Hyndman, R. J., Kourentzes, N., and Panagiotelis, A. Forecast reconciliation: A review.
International Journal of Forecasting, 2023. ISSN 0169-2070. doi: https://doi.org/10.1016/j.ijforecast.2023.
10.010. URL https://www.sciencedirect.com/science/article/pii/S0169207023001097.

Berner, J., Richter, L., and Ullrich, K. An optimal control perspective on diffusion-based generative modeling.
arXiv preprint arXiv:2211.01364, 2022.

Bingham, E., Chen, J. P., Jankowiak, M., Obermeyer, F., Pradhan, N., Karaletsos, T., Singh, R., Szerlip,
P., Horsfall, P., and Goodman, N. D. Pyro: Deep universal probabilistic programming. The Journal of
Machine Learning Research, 20(1):973–978, 2019.

Bischl, B., Casalicchio, G., Feurer, M., Hutter, F., Lang, M., Mantovani, R. G., van Rijn, J. N., and
Vanschoren, J. Openml benchmarking suites. arXiv:1708.03731v2 [stat.ML], 2019.

Bishop, C. M. and Nasrabadi, N. M. Pattern recognition and machine learning, volume 4. Springer, 2006.

Bitzer, M., Meister, M., and Zimmer, C. Amortized inference for gaussian process hyperparameters of
structured kernels. arXiv preprint arXiv:2306.09819, 2023.

Blei, D. M., Kucukelbir, A., and McAuliffe, J. D. Variational inference: A review for statisticians. Journal of
the American statistical Association, 112(518):859–877, 2017.

Brooks, S. Markov chain monte carlo method and its application. Journal of the royal statistical society:
series D (the Statistician), 47(1):69–100, 1998.

Carpenter, B., Gelman, A., Hoffman, M. D., Lee, D., Goodrich, B., Betancourt, M., Brubaker, M. A., Guo,
J., Li, P., and Riddell, A. Stan: A probabilistic programming language. Journal of statistical software, 76,
2017.

Chauhan, V. K., Zhou, J., Lu, P., Molaei, S., and Clifton, D. A. A brief review of hypernetworks in deep
learning. arXiv preprint arxiv:2306.06955, 2023.

Chen, Y., Garnett, R., and Montgomery, J. M. Polls, context, and time: A dynamic hierarchical bayesian
forecasting model for us senate elections. Political Analysis, 31(1):113–133, 2023. doi: 10.1017/pan.2021.42.

Cooper, I., Mondal, A., and Antonopoulos, C. G. A sir model assumption for the spread of covid-19
in different communities. Chaos, Solitons & Fractals, 139:110057, 2020. ISSN 0960-0779. doi: https:
//doi.org/10.1016/j.chaos.2020.110057. URL https://www.sciencedirect.com/science/article/pii/
S0960077920304549.

Cranmer, K., Brehmer, J., and Louppe, G. The frontier of simulation-based inference. Proceedings of the
National Academy of Sciences, 117(48):30055–30062, May 2020. ISSN 1091-6490. doi: 10.1073/pnas.
1912789117. URL http://dx.doi.org/10.1073/pnas.1912789117.

Dinh, L., Sohl-Dickstein, J., and Bengio, S. Density estimation using real NVP. 5th International Conference
on Learning Representations, ICLR 2017 - Conference Track Proceedings, 2017. URL http://arxiv.org/
abs/1605.08803.

Finn, C., Abbeel, P., and Levine, S. Model-agnostic meta-learning for fast adaptation of deep networks. In
International conference on machine learning, pp. 1126–1135. PMLR, 2017.

11

https://github.com/vislearn/FrEIA
https://github.com/vislearn/FrEIA
https://www.sciencedirect.com/science/article/pii/S0169207023001097
https://www.sciencedirect.com/science/article/pii/S0960077920304549
https://www.sciencedirect.com/science/article/pii/S0960077920304549
http://dx.doi.org/10.1073/pnas.1912789117
http://arxiv.org/abs/1605.08803
http://arxiv.org/abs/1605.08803

Under review as submission to TMLR

Fischer, S. F., Feurer, M., and Bischl, B. OpenML-CTR23 – a curated tabular regression benchmarking suite.
In AutoML Conference 2023 (Workshop), 2023. URL https://openreview.net/forum?id=HebAOoMm94.

Gardner, J., Pleiss, G., Weinberger, K. Q., Bindel, D., and Wilson, A. G. Gpytorch: Blackbox matrix-matrix
gaussian process inference with gpu acceleration. Advances in neural information processing systems, 31,
2018.

Garnelo, M., Rosenbaum, D., Maddison, C., Ramalho, T., Saxton, D., Shanahan, M., Teh, Y. W., Rezende,
D., and Eslami, S. A. Conditional neural processes. In International conference on machine learning, pp.
1704–1713. PMLR, 2018a.

Garnelo, M., Schwarz, J., Rosenbaum, D., Viola, F., Rezende, D. J., Eslami, S., and Teh, Y. W. Neural
processes. arXiv preprint arXiv:1807.01622, 2018b.

Geffner, T., Papamakarios, G., and Mnih, A. Compositional score modeling for simulation-based inference.
2023.

Gelfand, A. E. Gibbs sampling. Journal of the American statistical Association, 95(452):1300–1304, 2000.

Gelman, A., Carlin, J. B., Stern, H. S., Dunson, D. B., Vehtari, A., and Rubin, D. B. Bayesian Data Analysis,
Third Edition. CRC Press, November 2013. ISBN 9781439840955. URL https://play.google.com/
store/books/details?id=ZXL6AQAAQBAJ.

Glaeser, R. M., Nogales, E., and Chiu, W. Single-particle Cryo-EM of Biological Macromolecules. 2053-
2563. IOP Publishing, 2021. ISBN 978-0-7503-3039-8. doi: 10.1088/978-0-7503-3039-8. URL https:
//dx.doi.org/10.1088/978-0-7503-3039-8.

Gordon, J., Bruinsma, W. P., Foong, A. Y., Requeima, J., Dubois, Y., and Turner, R. E. Convolutional
conditional neural processes. arXiv preprint arXiv:1910.13556, 2019.

Grant, E., Finn, C., Levine, S., Darrell, T., and Griffiths, T. Recasting gradient-based meta-learning as
hierarchical bayes. arXiv preprint arXiv:1801.08930, 2018.

Higgins, I., Matthey, L., Pal, A., Burgess, C., Glorot, X., Botvinick, M., Mohamed, S., and Lerchner, A.
beta-VAE: Learning basic visual concepts with a constrained variational framework. In International
Conference on Learning Representations, 2017. URL https://openreview.net/forum?id=Sy2fzU9gl.

Hoffman, M. D., Blei, D. M., Wang, C., and Paisley, J. Stochastic variational inference. Journal of Machine
Learning Research, 2013.

Hoffman, M. D., Gelman, A., et al. The no-u-turn sampler: adaptively setting path lengths in hamiltonian
monte carlo. J. Mach. Learn. Res., 15(1):1593–1623, 2014.

Hollmann, N., Müller, S., Eggensperger, K., and Hutter, F. Tabpfn: A transformer that solves small tabular
classification problems in a second. arXiv preprint arXiv:2207.01848, 2022.

Hospedales, T., Antoniou, A., Micaelli, P., and Storkey, A. Meta-learning in neural networks: A survey. IEEE
Transactions on Pattern Analysis & Machine Intelligence, 44(09):5149–5169, sep 2022. ISSN 1939-3539.
doi: 10.1109/TPAMI.2021.3079209.

Kim, H., Mnih, A., Schwarz, J., Garnelo, M., Eslami, A., Rosenbaum, D., Vinyals, O., and Teh, Y. W.
Attentive neural processes. arXiv preprint arXiv:1901.05761, 2019.

Kingma, D. P. and Ba, J. Adam: A method for stochastic optimization. arXiv preprint arXiv:1412.6980,
2014.

Kingma, D. P. and Dhariwal, P. Glow: Generative flow with invertible 1x1 convolutions. Advances in neural
information processing systems, 31, 2018.

Kingma, D. P. and Welling, M. Auto-encoding variational bayes. arXiv preprint arXiv:1312.6114, 2013.

12

https://openreview.net/forum?id=HebAOoMm94
https://play.google.com/store/books/details?id=ZXL6AQAAQBAJ
https://play.google.com/store/books/details?id=ZXL6AQAAQBAJ
https://dx.doi.org/10.1088/978-0-7503-3039-8
https://dx.doi.org/10.1088/978-0-7503-3039-8
https://openreview.net/forum?id=Sy2fzU9gl

Under review as submission to TMLR

Kingma, D. P., Welling, M., et al. An introduction to variational autoencoders. Foundations and Trends® in
Machine Learning, 12(4):307–392, 2019.

Kobyzev, I., Prince, S. J., and Brubaker, M. A. Normalizing flows: An introduction and review of current
methods. IEEE transactions on pattern analysis and machine intelligence, 43(11):3964–3979, 2020.

Koch, G., Zemel, R., Salakhutdinov, R., et al. Siamese neural networks for one-shot image recognition. In
ICML deep learning workshop, volume 2. Lille, 2015.

Krueger, D., Huang, C.-W., Islam, R., Turner, R., Lacoste, A., and Courville, A. Bayesian hypernetworks.
arXiv preprint arxiv:1710.04759, 2017.

Lee, J., Lee, Y., Kim, J., Kosiorek, A., Choi, S., and Teh, Y. W. Set transformer: A framework for
attention-based permutation-invariant neural networks. In International conference on machine learning,
pp. 3744–3753. PMLR, 2019.

Lin, W., Schmidt, M., and Khan, M. E. Handling the positive-definite constraint in the bayesian learning
rule. In International conference on machine learning, pp. 6116–6126. PMLR, 2020.

Liu, S., Sun, X., Ramadge, P. J., and Adams, R. P. Task-agnostic amortized inference of gaussian process
hyperparameters. Advances in Neural Information Processing Systems, 33:21440–21452, 2020.

Lorch, L., Sussex, S., Rothfuss, J., Krause, A., and Schölkopf, B. Amortized inference for causal structure
learning. Advances in Neural Information Processing Systems, 35:13104–13118, 2022.

Morris, Q. Recognition networks for approximate inference in bn20 networks. arXiv preprint arXiv:1301.2295,
2013.

Müller, S., Hollmann, N., Arango, S. P., Grabocka, J., and Hutter, F. Transformers can do bayesian inference.
arXiv preprint arXiv:2112.10510, 2021.

Paige, B. and Wood, F. Inference networks for sequential monte carlo in graphical models. In International
Conference on Machine Learning, pp. 3040–3049. PMLR, 2016.

Pakman, A., Wang, Y., Mitelut, C., Lee, J., and Paninski, L. Neural clustering processes. In International
Conference on Machine Learning, pp. 7455–7465. PMLR, 2020.

Papamakarios, G., Nalisnick, E., Rezende, D. J., Mohamed, S., and Lakshminarayanan, B. Normalizing flows
for probabilistic modeling and inference. The Journal of Machine Learning Research, 22(1):2617–2680,
2021.

Radev, S. T., Mertens, U. K., Voss, A., Ardizzone, L., and Köthe, U. Bayesflow: Learning complex stochastic
models with invertible neural networks. IEEE transactions on neural networks and learning systems, 33(4):
1452–1466, 2020.

Rezende, D. and Mohamed, S. Variational inference with normalizing flows. In International conference on
machine learning, pp. 1530–1538. PMLR, 2015.

Rezende, D. J., Mohamed, S., and Wierstra, D. Stochastic backpropagation and approximate inference in
deep generative models. In International conference on machine learning, pp. 1278–1286. PMLR, 2014.

Simpson, F., Davies, I., Lalchand, V., Vullo, A., Durrande, N., and Rasmussen, C. E. Kernel identification
through transformers. Advances in Neural Information Processing Systems, 34:10483–10495, 2021.

Song, Y., Sohl-Dickstein, J., Kingma, D. P., Kumar, A., Ermon, S., and Poole, B. Score-based generative
modeling through stochastic differential equations. arXiv preprint arXiv:2011.13456, 2020.

Stuhlmüller, A., Taylor, J., and Goodman, N. Learning stochastic inverses. Advances in neural information
processing systems, 26, 2013.

13

Under review as submission to TMLR

Sun, Z., Ozay, M., and Okatani, T. Hypernetworks with statistical filtering for defending adversarial examples.
arXiv preprint arxiv:1711.01791, 2017.

Sung, F., Yang, Y., Zhang, L., Xiang, T., Torr, P. H., and Hospedales, T. M. Learning to compare: Relation
network for few-shot learning. In Proceedings of the IEEE conference on computer vision and pattern
recognition, pp. 1199–1208, 2018.

Tang, L., Zhou, Y., Wang, L., Purkayastha, S., Zhang, L., He, J., Wang, F., and Song, P. X.-K. A review of
multi-compartment infectious disease models. International Statistical Review, 88(2):462–513, 2020. doi:
https://doi.org/10.1111/insr.12402. URL https://onlinelibrary.wiley.com/doi/abs/10.1111/insr.
12402.

Vargas, F., Grathwohl, W., and Doucet, A. Denoising diffusion samplers. arXiv preprint arXiv:2302.13834,
2023.

Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A. N., Kaiser, Ł., and Polosukhin, I.
Attention is all you need. Advances in neural information processing systems, 30, 2017.

Vinyals, O., Blundell, C., Lillicrap, T., Wierstra, D., et al. Matching networks for one shot learning. Advances
in neural information processing systems, 29, 2016.

Von Oswald, J., Niklasson, E., Randazzo, E., Sacramento, J., Mordvintsev, A., Zhmoginov, A., and
Vladymyrov, M. Transformers learn in-context by gradient descent. In International Conference on
Machine Learning, pp. 35151–35174. PMLR, 2023.

von Oswald, J., Niklasson, E., Schlegel, M., Kobayashi, S., Zucchet, N., Scherrer, N., Miller, N., Sandler,
M., Vladymyrov, M., Pascanu, R., et al. Uncovering mesa-optimization algorithms in transformers. arXiv
preprint arXiv:2309.05858, 2023.

Welling, M. and Teh, Y. W. Bayesian learning via stochastic gradient langevin dynamics. In Proceedings of
the 28th international conference on machine learning (ICML-11), pp. 681–688, 2011.

Zaheer, M., Kottur, S., Ravanbhakhsh, S., Póczos, B., Salakhutdinov, R., and Smola, A. J. Deep sets. In
Advances in Neural Information Processing Systems, volume 2017-December, 2017.

Zhang, Q. and Chen, Y. Path integral sampler: a stochastic control approach for sampling. arXiv preprint
arXiv:2111.15141, 2021.

Štrumbelj, E., Bouchard-Côté, A., Corander, J., Gelman, A., Rue, H., Murray, L., Pesonen, H., Plummer,
M., and Vehtari, A. Past, present, and future of software for bayesian inference, 2023. URL http:
//hdl.handle.net/10754/694575.

14

https://onlinelibrary.wiley.com/doi/abs/10.1111/insr.12402
https://onlinelibrary.wiley.com/doi/abs/10.1111/insr.12402
http://hdl.handle.net/10754/694575
http://hdl.handle.net/10754/694575

Under review as submission to TMLR

Appendix
A Related Work

In this section, we draw parallels of our work to various approaches that have been proposed to tackle the
problem of either providing a good initialization for different tasks, performing implicit optimization to model
predictive distributions for new tasks, or estimating the posterior through a different objective.

A.1 Variational Autoencoders

VAEs (Kingma & Welling, 2013; Rezende et al., 2014; Rezende & Mohamed, 2015; Kingma et al., 2019)
are latent variable models which model observations x conditioned on latent variables z through the joint
distribution pθ(x, z) = pθ(x|z)p(z) where p(z) is generally chosen as N (0, I). Training the model is
done through VI where qφ(z) is obtained by explicit amortization over the data point, that is, qφ(z|x) =
N (µφ(x),Σφ(x)). Training this system on a dataset D is done by similarly optimizing the Evidence
Lower-Bound, which boils down to the following optimization problem

arg max
θ,φ

Ex∼DEz∼q(·|x)

[
log pθ(x, z)

qφ(z|x)

]
(16)

This objective can easily be optimized using gradient-based learning and the reparameterization trick.
While typically, a diagonal Gaussian distribution is considered for qφ, more complex distributions utilizing
normalizing flows can also be used.

A.2 Hypernetworks

Hypernetworks are neural networks that generate weights for another neural network, used in tasks such
as uncertainty quantification, zero-shot learning, etc. We refer for a comprehensive overview to Chauhan
et al. (2023). Based on experiments on predicting the weights of a compact MLP (section 4), our work shows
similarities with studies in this area but also has significant differences. Regarding uncertainty quantification,
hypernetworks are instrumental in creating an ensemble of models by generating multiple weight vectors for
the primary network. Each model within this ensemble possesses distinct parameter configurations, enabling
robust estimation of uncertainty in model predictions. This feature is precious in safety-critical domains
like healthcare, where confidence in predictions is essential. Multiple weight sets can be generated through
techniques like dropout within hypernetworks or sampling from a noise distribution. The latter (Krueger et al.,
2017) is based on a Bayesian framework where weights can be sampled using invertible network architecture,
such as normalizing flows. However, while we amortize posterior inference, the weights sampled from the
hypernetwork are not conditioned on information from the currently observed input data during inference time
but indirectly solely on the dataset available during training, and retraining would need to be done given a new
dataset. Departing from the Bayesian framework, Sun et al. (2017) have shown data-specific discriminative
weight prediction, which aligns well with their specific objective of defending a convolutional neural network
against adversarial attacks. Combining the ability to sample a new set of weights dataset-specifically but
also handling dataset exchangeability, even in the more realistic case of missing information, our work has a
distinctly different focus but also can be seen as an extension to hypernetwork research.

A.3 In-Context Learning

Amortized inference has close links to in-context learning (ICL), which has been gaining popularity, especially
in natural language modeling. Various works show how in-context learning can be seen as performing implicit
optimization based on the context examples, with some constructions showing exact equivalence with gradient
descent in linear regression (Von Oswald et al., 2023; von Oswald et al., 2023). Other works have shown
how such systems can be seen as implicitly modeling the Bayesian posterior predictive distribution (Müller
et al., 2021). In a similar vein, there have been additional works aimed at directly modeling the posterior
predictive distribution by providing the training data as “context" to a Transformer model and training it
based on the maximum log-likelihood principle (Hollmann et al., 2022). While such approaches have been

15

Under review as submission to TMLR

seeing tremendous success, they cannot be directly applied to cases where we care about and want to analyze
the solution space as the solution space is only modeled implicitly, and thus, recovering it is not possible. For
example, if our goal is to learn a linear regression model, an ICL model could end up learning a nonlinear
model and would provide no information about the actual parameters used for prediction. As opposed to
this, we obtain parameters explicitly. We thus can answer questions like the relevance of a particular feature
(which corresponds to its weight in the output, and we know the weight vector explicitly). Even further,
many systems grounded in physics and economics only admit a constrained solution space; for example, the
movement of a human arm lies on a particular manifold, or the configuration of molecules and proteins cannot
be arbitrary. Thus, performing predictions through an implicit solution space, which may violate several
constraints, is not ideal. Furthermore, explicitly modeling the solution space and encoding the constraints
present can be done through the prior and the parametric distribution used for modeling.

A.4 Meta Learning

Meta-learning (Hospedales et al., 2022) aims to equip models with the ability to quickly learn from different
tasks or data sets to generalize to new tasks in resource-constrained domains. This attribute is precious in
practical scenarios where obtaining large amounts of task-specific data is impractical or costly. A simple
way of obtaining this is through nonparametric or similarity-based models like k-Nearest Neighbours, where
no training is involved. Thus, new tasks can be solved quickly based on a few examples by computing a
similarity metric with these examples (Koch et al., 2015; Vinyals et al., 2016; Sung et al., 2018). Another way
of achieving this is through optimization-based setups, which use a nested optimization procedure. An inner
step learns individual tasks from a shared initialization, whereas the outer loop computes the gradient of
the whole inner process and moves the initialization in a way that allows for better generalization. Here, by
relying on only a few iterations in the inner loop, the outer loop has the incentive to move the initialization to
a point from which solutions to multiple tasks are reachable (Finn et al., 2017). Given the similarities between
meta-learning and hierarchical Bayesian inference (Grant et al., 2018), our approach can be considered as a
kind of meta-learning framework; however, the line between meta-learning and Bayesian posterior inference is
quite blurry as any amortized approach for the latter can be seen as a case of the former.

A.5 Neural Processes

A notable approach in meta-learning related to our research is neural processes (NP), which excel in learning
scenarios with few examples. NPs (Garnelo et al., 2018a;b; Kim et al., 2019; Pakman et al., 2020; Gordon
et al., 2019) can be seen as a more flexible and powerful extension of Gaussian processes that leverage a
neural network-based encoder-decoder architecture for learning to model a distribution over functions that
approximate a stochastic process. However, while we are interested in approximating the posterior distribution
over the parameters, NPs are used to approximate the posterior predictive distribution to make predictions
based on observed data. Similar to our setup, NPs rely on amortized VI for obtaining the predictive posterior.
Still, instead of working with a known probabilistic model, they train the probabilistic model primarily for
prediction-based tasks through approaches analogous to variational expectation maximization. Thus, they
cannot provide an explicit posterior over the parameters, but they are suitable for tasks where only predictive
posteriors are essential, such as those in supervised learning. NPs, in their most basic form, accomplish this
by training for the objective:

arg max
θ,φ

ED∼χEz∼qφ(·|D)

[
log pθ(D, z)

qφ(z|D)

]
(17)

where z ∈ Rp is an arbitrary latent variable often uninterpretable, and the parameters of the probabilistic
model θ do not get a Bayesian treatment. In particular, NPs are more suited to modeling datasets of the
form D = {xi,yi}ni=1, where all probabilities in Equation 17 are conditioned on the input x’s, and only the
predictive over y’s is modeled, and pθ is modeled as a Neural Network.

These approaches can be seen as quite related to ICL, where the exchangeable architecture backbone is
switched from DeepSets to Transformers. Similar to ICL, they do not provide control over the solution
space as they aim to model either the posterior predictive or an arbitrary latent space. While this leads to

16

Under review as submission to TMLR

good predictive performance on various tasks, they cannot be freely applied to problems that pose certain
constraints on the underlying probabilistic model. In such cases, estimating the actual parameters is important
to enforce constraints in the parameter space as well as for interpretability, which we already discussed in the
ICL section.

A.6 Simulation-Based Inference

In the case of simulation-based inference (Cranmer et al., 2020), when the likelihood p(x|θ) is intractable,
BayesFlow (Radev et al., 2020) and similar methods (Lorch et al., 2022) provide a solution framework to
amortize Bayesian inference of parameters in complex models. Starting from the forward KL divergence
between the true and approximate posteriors, the resulting objective is to optimize for parameters of the
approximate posterior distribution that maximize the posterior probability of data-generating parameters θ
given observed data D for all θ and D. Density estimation of the approximate posterior can then be done
using the change-of-variables formula and a conditional invertible neural network that parameterizes the
approximate posterior distribution.

arg min
φ

KL[p(θ|D)||qφ(θ|D)] = arg min
φ={ν,ψ}

E(θ,D)∼p(θ,D) [− log pz(fν(θ; hψ(D))) − log |det Jfν
|] (18)

Since their goal is to learn a global estimator for the probabilistic mapping from D to data generating
θ, the information about the observed dataset is encoded in the output of a summary network hψ. It is
used as conditional input to the normalizing flow fν . Although the likelihood function does not need to be
known, the method requires access to paired observations (x,θ) for training, which is sometimes unavailable.
This approach is equivalent to the Forward KL setup in our experiments when trained with DeepSets and
Normalizing Flows. Current research has also leveraged score-based generative models for SBI which can
condition on a dataset by learning a score model conditional only on single observations (Geffner et al., 2023).

A.7 Amortization in Gaussian Processes

Gaussian Processes (GPs) define a class of probabilistic models that do enjoy tractable likelihood. However,
inference in such systems is slow and sensitive to the choice of kernel function that defines the covariance
matrix. Similar to meta learning and neural processes, current research also focuses on estimating the kernel
function in GPs by leveraging permutation invariant architectures like transformers (Liu et al., 2020; Simpson
et al., 2021; Bitzer et al., 2023). Additionally, often these approaches amortize based on point estimates and
are leveraged when considering GPs for regression problems, and it is not straightforward to extend them
to classification or unsupervised learning. In contrast, our approach is more general and can work for all
problems that define a differentiable likelihood function. Additionally, our approach also approximates the
Bayesian posterior distribution over the parameters of interest, as opposed to point estimates.

A.8 Mode Collapse in Variational Inference

Reverse KL based methods have been widely known to suffer from mode collapse due to the nature of the
optimization objective (Bishop & Nasrabadi, 2006), which implies that even if the approximate distribution
possesses the ability to represent multiple modes, optimization is often sub-optimal and the distribution ends
up covering only a small handful of them. Improving normalizing flow based methods with repulsive terms or
through the lens of natural gradient optimization procedure for a mixture approximate distribution (Arenz
et al., 2022; Lin et al., 2020) is an important topic of research, and we believe it would be quite an important
future work to experimentally validate if they help in learning multi-modality in amortized posterior inference
problems that are studied in this work.

B Architectures respecting Exchangeability

In this section, we highlight how DeepSets and Transformer models satisfy the dataset exchangeability criteria,
which is essential in modeling the posterior distribution over the parameters of any probabilistic model relying
on iid data.

17

Under review as submission to TMLR

B.1 DeepSets

DeepSets (Zaheer et al., 2017) operate on arbitrary sets X = {x1, ...xN} ⊂ Rd of fixed dimensionality d by
first mapping each individual element xi ∈ X to some high-dimensional space using a nonlinear transform,
which is parameterized as a multi-layered neural network with parameters φ1

zi = fφ1(xi) (19)

After having obtained this high-dimensional embedding of each element of the set, it applies an aggregation
function a(·), which is a permutation invariant function that maps a set of elements Z = {z1, ...,zN} ∈ Rz to
an element h ∈ Rz,

h = a(Z) (20)

Thus, the outcome does not change under permutations of Z. Finally, another nonlinear transform, parame-
terized by a multi-layered neural network with parameters φ2, is applied to the outcome h to provide the
final output.

o = gφ2(h) (21)

For our experiments, we then use the vector o to predict the parameters of a parametric family of distributions
(e.g., Gaussian or Flows) using an additional nonlinear neural network. As an example, for the Gaussian case,
we consider the distribution N (·|µ,Σ), where

µ := µφ3(o) and Σ := Σφ4(o) (22)

which makes µ implicitly a function of the original input set X . To understand why the posterior distribution
modeled in this fashion does not change when the inputs are permuted, let us assume that Π is a permutation
over the elements of X . If we look at one of the parameters of the posterior distribution, e.g., µ, we can see
that

µ(ΠX) = µφ3

(
gφ2

(
a

(
{fφ1(xΠ(i))}Ni=1

)))
(23)

= µφ3

(
gφ2

(
a

(
{fφ1(xi)}Ni=1

)))
(24)

= µ(X) (25)

which simply follows from the fact that a(·) is a permutation invariant operation, e.g., sum or mean. We can
also provide similar reasoning for the other parameters (e.g., Σ). This shows that DeepSets can be used to
model the posterior distribution over parameters of interest as it respects the exchangeability criteria (iid
observations) assumptions in the data through its permutation invariant structure.

B.2 Transformers

Similarly, we can look at Transformers (Vaswani et al., 2017) as candidates for respecting the exchangeability
conditions in the data. In particular, we consider transformer systems without positional encodings and
consider an additional [CLS] token, denoted by c ∈ Rd, to drive the prediction. If we look at the application
of a layer of transformer model, it can be broken down into two components.

Multi-Head Attention. Given a query vector obtained from c and keys and values coming from our input
set X ⊂ Rd, we can model the update of the context c as

ĉ(X) = Softmax
(
cTWQW

T
KXT

)
XWV (26)

where WQ ∈ Rd×k,WK ∈ Rd×k,WV ∈ Rd×k and X ∈ RN×d denotes a certain ordering of the elements in
X . Further, ĉ is the updated vector after attention, and Softmax is over the rows of X. Here, we see that if
we were to apply a permutation to the elements in X, the outcome would remain the same. In particular

ĉ(ΠX) = Softmax
(
cTWQW

T
KXTΠT

)
ΠXWV (27)

= Softmax
(
cTWQW

T
KXT

)
ΠTΠXWV (28)

= Softmax
(
cTWQW

T
KXT

)
XWV (29)

= ĉ(X) (30)

18

Under review as submission to TMLR

which follows because Softmax is an equivariant function, i.e., applying Softmax on a permutation of columns
is equivalent to applying Softmax first and then permuting the columns correspondingly. Thus, we see that
the update to the [CLS] token c is permutation invariant. This output is then used independently as input to
a multi-layered neural network with residual connections, and the entire process is repeated multiple times
without weight sharing to simulate multiple layers. Since all the individual parts are permutation invariant
w.r.t permutations on X , the entire setup ends up being permutation invariant. Obtaining the parameters of
a parametric family of distribution for posterior estimation then follows the same recipe as DeepSets, with o
replaced by c.

C Probabilistic Models

This section details the various candidate probabilistic models used in our experiments for amortized
computation of Bayesian posteriors over the parameters. Here, we explain the parameters associated with
the probabilistic model over which we want to estimate the posterior and the likelihood and prior that we use
for experimentation.

Mean of Gaussian (GM): As a proof of concept, we consider the simple setup of estimating the posterior
distribution over the mean of a Gaussian distribution p(µ|D) given some observed data. In this case, prior
and likelihood defining the probabilistic model p(x,θ) (with θ being the mean µ) are given by:

p(µ) = N (µ|0, I) (31)
p(x|µ) = N (x|µ,Σ) (32)

and Σ is known beforehand and defined as a unit variance matrix.

Linear Regression (LR): We then look at the problem of estimating the posterior over the weight vector
for Bayesian linear regression given a dataset p(w, b|D), where the underlying model p(D,θ) is given by:

p(w) = N (w|0, I) (33)
p(b) = N (b|0, 1) (34)

p(y|x,w, b) = N
(
y|wTx + b, σ2)

, (35)

and with σ2 = 0.25 known beforehand. Inputs x are generated from p(x) = N (0, I).

Linear Classification (LC): We now consider a setting where the true posterior cannot be obtained
analytically as the likelihood and prior are not conjugate. In this case, we consider the underlying probabilistic
model by:

p(W) = N (W |0, I) (36)

p(y|x,W) = Categorical
(

y
1
τ
Wx

)
, (37)

where τ is the known temperature term which is kept as 0.1 to ensure peaky distributions, and x is being
generated from p(x) = N (0, I).

Nonlinear Regression (NLR): Next, we tackle the more complex problem where the posterior distribution
is multi-modal and obtaining multiple modes or even a single good one is challenging. For this, we consider
the model as a Bayesian Neural Network (BNN) for regression with fixed hyper-parameters like the number of
layers, dimensionality of the hidden layer, etc. Let the BNN denote the function fθ where θ are the network
parameters such that the estimation problem is to approximate p(θ|D). Then, for regression, we specify the
probabilistic model using:

p(θ) = N (θ|0, I) (38)
p(y|x,θ) = N

(
y|fθ(x), σ2)

, (39)

where σ2 = 0.25 is a known quantity and x being generated from p(x) = N (0, I).

19

Under review as submission to TMLR

Nonlinear Classification (NLC): Like in Nonlinear Regression, we consider BNNs with fixed hyper-
parameters for classification problems with the same estimation task of approximating p(θ|D). In this
formulation, we consider the probabilistic model as:

p(θ) = N (θ|0, I) (40)

p(y|x,θ) = Categorical
(

y
1
τ

fθ(x)
)

(41)

where τ is the known temperature term which is kept as 0.1 to ensure peaky distributions, and x is being
generated from p(x) = N (0, I).

Gaussian Mixture Model (GMM): While we have mostly looked at predictive problems, where the task
is to model some predictive variable y conditioned on some input x, we now look at a well-known probabilistic
model for unsupervised learning, Gaussian Mixture Model (GMM), primarily used to cluster data. Consider
a K-cluster GMM with:

p(µk) = N (µk|0, I) (42)

p(x|µ1:K) =
K∑
k=1

πkN (x|µk,Σk) . (43)

We assume Σk and πk to be known and set Σk to be an identity matrix and the mixing coefficients to be
equal, πk = 1/K, for all clusters k in our experiments.

D Metrics

In this section, we provide details about the metrics considered for the different tasks. We generally look
at two main metrics for benchmarking performance: L2 loss and Accuracy. For estimating the mean of a
Gaussian distribution, the L2 loss is defined as

GML2 = ED∼χEµ∼qφ(·|D)

[
ND∑
i=1

(xi − µ)2

]
(44)

where D = {xi}ND
i=1. Intuitively, this captures the quality of the estimation of the mean parameter by

measuring how far the observations are from it. Lower value implies better estimation of the mean parameter.
Similarly, for estimating the means of a Gaussian Mixture Model, we rely on a similar metric but we also find
the cluster closest to the observation, which can be defined as

GMML2 = ED∼χEµk∼qφ(·|D)

[
ND∑
i=1

(xi − µMatch(xi,{µ1,...µK}))2

]
(45)

Match(x, {µ1, ...,µK} = arg min
k

(x − µk)2 (46)

which intuitively captures the distance of observations from the cluster closest to them. Next, we define the
metric for evaluating (non-)linear regression models as

(N−)LRL2 = ED∼χEθ∼qφ(·|D)

[
ND∑
i=1

(yi − Mode [p(yi|xi,θ)])2

]
(47)

Finally, for the (non-)linear classification setups, we define the accuracy metric as

(N−)LCAccuracy = ED∼χEθ∼qφ(·|D)

[
100
ND

×
ND∑
i=1

δ(yi, Mode [p(yi|xi,θ)])
]

(48)

20

Under review as submission to TMLR

where δ(a, b) = 1 if and only if a = b. Thus this metric captures the accuracy of the posterior predictive
distribution. Another metric that we use to test the quality of the posterior is the symmetric KL divergence,
defined as

Symmetric KL(p(θ||D), qφ(θ|D)) = 1
2KL(p(θ||D)||qφ(θ|D)) + 1

2KL(qφ(θ|D)||p(θ||D)) (49)

Additionally, another metric in the predictive space that we use is the expected negative conditional log
likelihood (CNLL), which is defined as

CNLL = −Eqφ(·|D) [log p(D|θ)] (50)

E Architecture Details

In this section, we outline the two candidate architectures that we consider for the backbone of our amortized
variational inference model. We discuss the specifics of the architectures and the hyperparameters used for
our experiments.

E.1 Transformer

We use a transformer model (Vaswani et al., 2017) as a permutation invariant architecture by removing
positional encodings from the setup and using multiple layers of the encoder model. We append the set of
observations with a [CLS] token before passing it to the model and use its output embedding to predict
the parameters of the variational distribution. Since no positional encodings or causal masking is used in
the whole setup, the final embedding of the [CLS] token becomes invariant to permutations in the set of
observations, thereby leading to permutation invariance in the parameters of qφ.

We use 4 encoder layers with a 256 dimensional attention block and 1024 feed-forward dimensions, with 4
heads in each attention block for our Transformer models to make the number of parameters comparative to
the one of the DeepSets model.

E.2 DeepSets

Another framework that can process set-based input is Deep Sets (Zaheer et al., 2017). In our experiments, we
used an embedding network that encodes the input into representation space, a mean aggregation operation,
which ensures that the representation learned is invariant concerning the set ordering, and a regression
network. The latter’s output is either used to directly parameterize a diagonal Gaussian or as conditional
input to a normalizing flow, representing a summary statistics of the set input.

For DeepSets, we use 4 layers each in the embedding network and the regression network, with a mean
aggregation function, ReLU activation functions, and 627 hidden dimensions to make the number of parameters
comparable to those in the Transformer model.

E.3 Normalizing Flows

Assuming a Gaussian posterior distribution as the approximate often leads to poor results as the true posterior
distribution can be far from the Gaussian shape. To allow for more flexible posterior distributions, we use
normalizing flows (Kingma & Dhariwal, 2018; Kobyzev et al., 2020; Papamakarios et al., 2021; Rezende
& Mohamed, 2015) for approximating qφ(θ|D) conditioned on the output of the summary network hψ.
Specifically, let gν : z 7→ θ be a diffeomorphism parameterized by a conditional invertible neural network
(cINN) with network parameters ν such that θ = gν(z; hψ(D)). With the change-of-variables formula it
follows that p(θ) = p(z)

∣∣det ∂
∂z gν(z; hψ(D))

∣∣−1 = p(z)| det Jν(z; hψ(D))|−1, where Jν is the Jacobian matrix
of gν . Further, integration by substitution gives us dθ = | det Jν(z; hψ(D)|dz to rewrite the objective from

21

Under review as submission to TMLR

eq. 12 as:

arg min
φ

KL[qφ(θ|D)||p(θ|D)] (51)

= arg min
φ

ED∼χEθ∼qφ(θ|D) [log qφ(θ|D) − log p(θ, D)] (52)

= arg min
φ={ψ,ν}

ED∼χEz∼p(z)

[
log qν(z|hψ(D))

|det Jν(z; hψ(D))| − log p(gν(z; hψ(D)), D)
]

(53)

As shown in BayesFlow (Radev et al., 2020), the normalizing flow gν and the summary network hψ can
be trained simultaneously. The AllInOneBlock coupling block architecture of the FrEIA Python package
(Ardizzone et al., 2018), which is very similar to the RNVP style coupling block (Dinh et al., 2017), is used
as the basis for the cINN. AllInOneBlock combines the most common architectural components, such as
ActNorm, permutation, and affine coupling operations.

For our experiments, 6 coupling blocks define the normalizing flow network, each with a 1 hidden-layered
non-linear feed-forward subnetwork with ReLU non-linearity and 128 hidden dimensions.

F Experimental Details

Unless specified, we obtain a stream of datasets for all our experiments by simply sampling from the assumed
probabilistic model, where the number of observations n is sampled uniformly in the range [64, 128]. For
efficient mini-batching over datasets with different cardinalities, we sample datasets with maximum cardinality
(128) and implement different cardinalities by masking out different numbers of observations for different
datasets whenever required.

To evaluate both our proposed approach and the baselines, we compute an average of the predictive
performances across 25 different posterior samples for each of the 100 fixed test datasets for all our experiments.
That means for our proposed approach, we sample 25 different parameter vectors from the approximate
posterior that we obtain. For MCMC, we rely on 25 MCMC samples, and for optimization, we train 25
different parameter vectors where the randomness comes from initialization. For the optimization baseline,
we perform a quick hyperparameter search over the space {0.01, 003, 0.001, 0.0003, 0.0001, 0.00003} to pick
the best learning rate that works for all of the test datasets and then use it to train for 1000 iterations using
the Adam optimizer (Kingma & Ba, 2014). For the MCMC baseline, we use the open-sourced implementation
of Langevin-based MCMC sampling2 where we leave a chunk of the starting samples as burn-in and then
start accepting samples after a regular interval (to not make them correlated). The details about the burn-in
time and the regular interval for acceptance are provided in the corresponding experiments’ sections below.

For our proposed approach of amortized inference, we do not consider explicit hyperparameter optimization
and simply use a learning rate of 1e-4 with the Adam optimizer. For all experiments, we used linear scaling
of the KL term in the training objectives as described in (Higgins et al., 2017), which we refer to as warmup.
Furthermore, training details for each experiment can be found below.

F.1 Fixed-Dim

In this section, we provide the experimental details relevant to reproducing the results of Section 4. All the
models are trained with streaming data from the underlying probabilistic model, such that every iteration of
training sees a new set of datasets. Training is done with a batch size of 128, representing the number of
datasets seen during one optimization step. Evaluations are done with 25 samples and we ensure that the
test datasets used for each probabilistic model are the same across all the compared methods, i.e., baselines,
forward KL, and reverse KL. We train the amortized inference model and the forward KL baselines for the
following different probabilistic models:

Mean of Gaussian (GM): We train the amortization models over 20, 000 iterations for both the 2-
dimensional as well as the 100-dimensional setup. We use a linear warmup with 5000 iterations over which

2https://github.com/alisiahkoohi/Langevin-dynamics

22

https://github.com/alisiahkoohi/Langevin-dynamics

Under review as submission to TMLR

the weight of the KL term in our proposed approach scales linearly from 0 to 1. We use an identity covariance
matrix for the data-generating process, but it can be easily extended to the case of correlated or diagonal
covariance-based Gaussian distributions.

Gaussian Mixture Model (GMM): We train the mixture model setup for 200, 000 iterations with
50, 000 iterations of warmup. We mainly experiment with 2-dimensional and 5-dimensional mixture models,
with 2 and 5 mixture components for each setup. While we do use an identity covariance matrix for the
data-generating process, again, it can be easily extended to other cases.

Linear Regression (LR): The amortization models for this setup are trained for 50, 000 iterations with
12, 500 iterations of warmup. The feature dimensions considered for this task are 1 and 100 dimensions, and
the predictive variance σ2 is assumed to be known and set as 0.25.

Nonlinear Regression (NLR): We train the setup for 100, 000 iterations with 25, 000 iterations consisting
of warmup. The feature dimensionalities considered are 1-dimensional and 25-dimensional, and training is
done with a known predictive variance similar to the LR setup. For the probabilistic model, we consider both
a 1-layered and a 2-layered multi-layer perceptron (MLP) network with 32 hidden units in each, and either a
relu or tanh activation function.

Linear Classification (LC): We experiment with 2-dimensional and 100-dimensional setups with training
done for 50, 000 iterations, out of which 12, 500 are used for warmup. Further, we train for both binary
classification as well as a 5-class classification setup.

Nonlinear Classification (NLC): We experiment with 2-dimensional and 25-dimensional setups with
training done for 100, 000 iterations, out of which 2, 5000 are used for warmup. Further, we train for both
binary classification as well as a 5-class classification setup. For the probabilistic model, we consider both a
1-layered and a 2-layered multi-layer perceptron (MLP) network with 32 hidden units in each, and either a
relu or tanh activation function.

F.2 Variable-Dim

In this section, we provide the experimental details relevant to reproducing the results of Section 4. All the
models are trained with streaming data from the underlying probabilistic model, such that every iteration
of training sees a new set of datasets. Training is done with a batch size of 128, representing the number
of datasets seen during one optimization step. Further, we ensure that the datasets sampled resemble a
uniform distribution over the feature dimensions, ranging from 1-dimensional to the maximal dimensional
setup. Evaluations are done with 25 samples and we ensure that the test datasets used for each probabilistic
model are the same across all the compared methods, i.e., baselines, forward KL, and reverse KL. We train
the amortized inference model and the forward KL baselines for the following different probabilistic models:

Mean of Gaussian (GM): We train the amortization models over 50, 000 iterations using a linear warmup
with 12, 5000 iterations over which the weight of the KL term in our proposed approach scales linearly from 0
to 1. We use an identity covariance matrix for the data-generating process, but it can be easily extended
to the case of correlated or diagonal covariance-based Gaussian distributions. In this setup, we consider a
maximum of 100 feature dimensions.

Gaussian Mixture Model (GMM): We train the mixture model setup for 500, 000 iterations with 125, 000
iterations of warmup. We set the maximal feature dimensions as 5 and experiment with 2 and 5 mixture
components. While we do use an identity covariance matrix for the data-generating process, again, it can be
easily extended to other cases.

Linear Regression (LR): The amortization models for this setup are trained for 100, 000 iterations with
25, 000 iterations of warmup. The maximal feature dimension considered for this task is 100-dimensional, and
the predictive variance σ2 is assumed to be known and set as 0.25.

Nonlinear Regression (NLR): We train the setup for 250, 000 iterations with 62, 500 iterations consisting
of warmup. The maximal feature dimension considered is 100-dimensional, and training is done with a known
predictive variance similar to the LR setup. For the probabilistic model, we consider both a 1-layered and a

23

Under review as submission to TMLR

2-layered multi-layer perceptron (MLP) network with 32 hidden units in each, and either a relu or tanh
activation function.

Linear Classification (LC): We experiment with a maximal 100-dimensional setup with training done for
100, 000 iterations, out of which 25, 000 are used for warmup. Further, we train for both binary classification
as well as a 5-class classification setup.

Nonlinear Classification (NLC): We experiment with a maximal 100-dimensional setup with training
done for 250, 000 iterations, out of which 62, 500 are used for warmup. Further, we train for both binary
classification as well as a 5-class classification setup. For the probabilistic model, we consider both a 1-layered
and a 2-layered multi-layer perceptron (MLP) network with 32 hidden units in each, and either a relu or
tanh activation function.

F.3 Model Misspecification

In this section, we provide the experimental details relevant to reproducing the results of Section 4. All
models during this experiment are trained with streaming data from the currently used dataset-generating
function χ, such that every iteration of training sees a new batch of datasets. Training is done with a batch
size of 128, representing the number of datasets seen during one optimization step. Evaluation for all models
is done with 10 samples from each dataset-generator used in the respective experimental subsection and we
ensure that the test datasets are the same across all compared methods, i.e., baselines, forward KL, and
reverse KL.

Linear Regression Model: The linear regression amortization models are trained following the training
setting for linear regression fixed dimensionality, that is, 50, 000 training iterations with 12, 500 iterations of
warmup. The feature dimension considered for this task is 1-dimension. The model is trained separately on
datasets from three different generators χ: linear regression, nonlinear regression, and Gaussian processes,
and evaluated after training on test datasets from all of them. For training with datasets from the linear
regression probabilistic model, the predictive variance σ2 is assumed to be known and set as 0.25. The same
variance is used for generating datasets from the nonlinear regression dataset generator with 1 layer, 32
hidden units, and tanh activation function. Lastly, datasets from the Gaussian process-based generator are
sampled similarly, using the GPytorch library Gardner et al. (2018), where datasets are sampled of varying
cardinality, ranging from 64 to 128. We use a zero-mean Gaussian Process (GP) with a unit lengthscale
radial-basis function (RBF) kernel serving as the covariance matrix. Further, we use a very small noise of
σ2 = 1e−6 in the likelihood term of the GP. Forward KL training in this experiment can only be done when
the amortization model and the dataset-generating function are the same: when we train on datasets from
the linear regression-based χ. Table 15 provides a detailed overview of the results.

Nonlinear Regression Models: The nonlinear regression amortization models are trained following the
training setting for nonlinear regression fixed dimensionality, that is, 100, 000 training iterations with 25, 000
iterations of warmup. Here, we consider two single-layer perceptions with 32 hidden units and either a relu
or tanh activation function. The feature dimensionality considered is 1 dimension. We consider the same
three dataset-generating functions as in the misspecification experiment for a linear regression model above.
However, the activation function used in the nonlinear regression dataset generator matches the activation
function of the currently trained amortization model. In this case, forward KL training is possible in the
two instances when trained on datasets from the corresponding nonlinear regression probabilistic model. A
more detailed overview of the results can be found in Table 16 for the tanh and in Table 17 for the relu
activation function-based probabilistic models respectively.

F.4 Tabular Experiments

For the tabular experiments, we train the amortized inference models for (non-)linear regression (NLR/LR)
as well as (non-)linear classification (NLC/LC) with x ∼ N (0, I) as opposed to x ∼ U(−1, 1) in the dataset
generating process χ, with the rest of the settings the same as maximum-dim experiments. For the nonlinear
setups, we only consider the relu case as it has seen predominant success in deep learning. Further, we only
consider a 1-hidden layer neural network with 32 hidden dimensions in the probabilistic model.

24

Under review as submission to TMLR

After having trained the amortized inference models, both for forward and reverse KL setups, we evaluate
them on real-world tabular datasets. We first collect a subset of tabular datasets from the OpenML platform
as outlined in Appendix G. Then, for each dataset, we perform a 5-fold cross-validation evaluation where the
dataset is chunked into 5 bins, of which, at any time, 4 are used for training and one for evaluation. This
procedure is repeated five times so that every chunk is used for evaluation once.

For each dataset, we normalize the observations and the targets so that they have zero mean and unit
standard deviation. For the classification setups, we only normalize the inputs as the targets are categorical.
For both forward KL and reverse KL amortization models, we initialize the probabilistic model from samples
from the amortized model and then further finetune it via dataset-specific maximum a posteriori optimization.
We repeat this setup over 25 different samples from the inference model. In contrast, for the optimization
baseline, we initialize the probabilistic models’ parameters from N (0, I), which is the prior that we consider,
and then train 25 such models with maximum a posteriori objective using Adam optimizer.

While we see that the amortization models, particularly the reverse KL model, lead to much better initialization
and convergence, it is important to note that the benefits vanish if we initialize using the Xavier-init
initialization scheme. However, we believe that this is not a fair comparison as it means that we are
considering a different prior now, while the amortized models were trained with N (0, I) prior. We defer the
readers to the section below for additional discussion and experimental results.

G OpenML Datasets

For the tabular regression problems, we consider the suite of tasks outlined in OpenML-CTR23 - A curated
tabular regression benchmarking suite (Fischer et al., 2023), from which we further filter out datasets that
have more than 2000 examples and 100 features. We also remove datasets with missing information and
NaNs. Similarly, we consider the OpenML-CC18 Curated Classification benchmark (Bischl et al., 2019)
suite of tasks for classification and perform a similar filtering algorithm. We remove datasets with missing
information and NaNs, as well as datasets with more than 2000 examples and 100 features. In addition, we
also exclude datasets that are not made for binary classification. At the end of this filtering mechanism, we
end up with 9 regression and 13 classification problems, and our dataset filtration pipeline is heavily inspired
by Hollmann et al. (2022). We provide the datasets considered for both regression and classification below:

Regression: airfoil_self_noise, concrete_compressive_strength, energy_efficiency, so-
lar_flare, student_performance_por, QSAR_fish_toxicity, red_wine, socmob and cars.

Classification: credit-g, diabetes, tic-tac-toe, pc4, pc3, kc2, pc1, banknote-authentication,
blood-transfusion-service-center, ilpd, qsar-biodeg, wdbc and climate-model-simulation-
crashes.

H Additional Experiments

In this section, we outline the additional experiments we conducted in obtaining Bayesian posteriors for
the different probabilistic models for different hyperparameters and their downstream uses. We provide a
comprehensive account of the results in the relevant sections below.

H.1 Fixed-Dim

While we highlighted the results with the Gaussian mixture model and classification settings with only 2
clusters/classes, we also conducted experiments with an increased number of clusters and classes, making
the problem even more challenging. Table 9 shows that both forward and reverse KL methods perform
reasonably, with forward KL struggling more in challenging scenarios.

Next, we also consider harder tasks based on the Bayesian Neural Network (BNN) paradigm, where we consider
nonlinear regression and classification setups with different activation functions: tanh and relu for a 1-layered
and 2-layered BNN. We provide the results of our experiments in Tables 10 and 11 respectively. The results
indicate that forward KL approaches struggle a lot in such scenarios, often achieving performance comparable

25

Under review as submission to TMLR

to random chance. On the contrary, we see that reverse KL-based amortization leads to performances often
similar to dataset-specific optimization, thereby showing the superiority of our proposed method.

H.2 Variable-Dim

Our experiments on variable dimensional datasets can be evaluated for arbitrary feature cardinality, of
which we show a few examples in Section 4. In this section, we provide results for additional dimensionality
setups. In particular, we refer the readers to Table 12, which contains experimental results w.r.t different
dimensionalities (e.g. 50D setup), as well as different number of clusters and classes, respectively, for the GMM
and LC setup. Throughout, we see that amortization leads to reasonable performance, and in particular, we
see forward KL-based amortization starting to struggle in high-dimensional setups.

Again, to make the setup more challenging, we consider the Bayesian Neural Network (BNN) setup where
we consider nonlinear regression and classification with different activation functions: tanh and relu for a
1-layered and 2-layered BNN, but which can now be tested for an arbitrary number of input features. Our
experiments are highlighted in Tables 13 and 14, for 1- and 2-layered BNN, respectively. In such complex
multi-modal and complicated setups, forward KL often performs comparable to random chance and thus
does not lead to any good approximation of the true posterior distribution. On the other hand, our proposed
method indeed leads to good predictive performance, often comparable to dataset-specific optimization
routines.

H.3 Model Misspecification

As a representative of the results on model misspecification (Section 4), we highlighted training and evaluation
of the amortization models with Transformer backbone on a subset of in-distribution and OoD data-generating
functions (Table 3) to show superiority in generalization of reverse KL trained system vs. forward KL based
ones on OoD data but also to highlight that training a misspecified amortization model on OoD datasets
directly with our approach results in even better posterior predictive performance.

In addition to those experiments, we also conducted a broader range of experiments utilizing DeepSets as the
backbone, various OoD data-generating functions for training and evaluation of the reverse KL system, and
an additional nonlinear regression model with relu activation function. For a comprehensive description of
these experiments and the complete setup, please refer to Section F.3. We considered three probabilistic
models, including a linear regression model and two nonlinear regression models utilizing the tanh or relu
activation function. The detailed results for each model can be found in Tables 15, 16, and 17, respectively.

In all experiments, reverse KL outperforms forward KL trained amortization models in in-distribution
performance and excels in posterior prediction on OoD datasets. Although the significant difference in
posterior prediction performance of forward vs. reverse KL in cases where the underlying model is nonlinear
was already mentioned in previous experiments, here, reverse KL-trained models also excel in evaluations of
posterior prediction for the linear regression model. Although only by a margin, in the case of approximating
the posterior of the simpler linear regression model, a diagonal Gaussian-shaped posterior shows the best
posterior prediction results when evaluated on OoD datasets from the nonlinear regression dataset generating
function. In almost all other experiments, the posterior prediction performance could be enhanced when we
used the normalizing flow based posterior. A definitive conclusion cannot be drawn regarding the superiority
of one backbone over the other, i.e. between DeepSets or Transformer. However, amortization models with
DeepSets as the backbone tend towards better generalization regarding OoD datasets.

H.4 Tabular Experiments

As a case of extreme OoD generalization, we test our amortized models trained to handle variable feature
dimensions on the suite of regression and classification problems that we filtered out from the OpenML platform,
as outlined in Appendix G. We consider both linear and nonlinear probabilistic models to tackle the regression
and binary classification setups, which lead to predicting the parameters of a linear regression/classification
model and a small nonlinear neural network based on relu activation function. Further, we also perform the
analysis with a diagonal Gaussian assumption and a normalizing flow-based amortization model trained with

26

Under review as submission to TMLR

both a forward and reverse KL objective. We provide the results on the regression problems in (a) linear
model with diagonal Gaussian assumption (Figure 8), (b) linear model with normalizing flow (Figure 9), (c)
nonlinear model with diagonal Gaussian assumption (Figure 10), and (d) nonlinear model with normalizing
flow (Figure 11). The results of the classification problems are shown in (a) linear model with diagonal
Gaussian assumption (Figure 12), (b) linear model with normalizing flow (Figure 13), (c) nonlinear model
with diagonal Gaussian assumption (Figure 14), and (d) nonlinear model with normalizing flow (Figure 15).
Our experiments indicate that initializing with amortized models leads to better performance and training
than models trained via maximum a-posteriori approach and initialized with the prior, i.e., N (0, I).

We do provide an additional baseline of initializing with Xavier-init initialization, which often leads to faster
convergence; however, as we consider the prior to be a unit normal, this is an unfair baseline as we assume
the weights to be initialized from a different prior. We leave the work of computing Bayesian posteriors with
different priors and testing an amortized Bayesian model with Xavier-init prior for the future.

27

Under review as submission to TMLR

L2 Loss (↓) Accuracy (↑)

Objective Model Gaussian Mean GMM LR NLR LC NLC

qφ 2D 100D 5D 2 cl 1D 100D 1D 25D 2D 100D 2D 25D

Baseline
- Random 5.834±0.0 301.23±0.5 5.06±0.1 4.056±0.0 200±0.2 64.5±1.6 793±7.4 49.8±0.9 50.0±0.2 50.1±0.6 49.8±0.3

- Optimization 1.989±0.0 101.24±0.0 0.42±0.0 0.258±0.0 22.1±0.0 0.31±0.0 95.0±0.1 96.5±0.0 71.2±0.0 97.5±0.0 80.1±0.0

- MCMC 2.085±0.1 104.55±1.3 0.65±0.1 0.285±0.0 26.5±0.2 N/A 106±0.8 94.4±0.2 64.6±0.3 96.4±0.2 73.2±0.1

Fwd-KL

G
au

ss
ia

n DeepSets 2.014±0.0 103.34±0.0 2.42±0.0 0.264±0.0 127±0.3 49.9±1.0 682±4.6 81.0±0.6 50.0±0.1 59.5±0.1 59.6±0.2

Transformer 2.015±0.0 102.80±0.0 2.44±0.0 0.264±0.0 46.1±3.5 50.7±1.3 678±6.6 81.0±0.5 63.3±0.1 59.9±0.2 59.8±0.2

Rev-KL DeepSets 2.012±0.0 102.64±0.0 0.48±0.0 0.263±0.0 64.6±0.7 0.42±0.0 124±1.4 94.1±0.0 62.4±0.2 91.6±0.1 62.6±0.3

Transformer 2.013±0.0 102.59±0.0 0.52±0.0 0.264±0.0 28.1±0.6 0.41±0.0 99.2±2.2 94.0±0.2 68.2±0.1 91.7±0.3 76.5±0.0

Fwd-KL

F
lo

w

DeepSets 2.013±0.0 103.34±0.1 0.64±0.0 0.264±0.0 127±0.6 15.3±0.3 549±3.5 96.0±0.0 50.1±0.0 62.0±0.1 61.0±0.2

Transformer 2.018±0.0 102.73±0.0 0.57±0.1 0.265±0.0 44.8±1.2 16.3±0.3 530±2.5 96.2±0.0 64.7±0.1 75.7±0.2 61.1±0.1

Rev-KL DeepSets 2.010±0.0 102.67±0.0 0.52±0.0 0.263±0.0 75.7±1.3 0.39±0.0 125±1.2 95.1±0.0 58.6±1.8 93.1±0.0 63.9±0.1

Transformer 2.014±0.0 102.52±0.0 0.47±0.0 0.264±0.0 30.4±1.9 0.38±0.0 97.8±0.4 95.1±0.0 68.9±0.1 92.9±0.2 75.8±0.8

Table 6: Amortized Bayesian Posterior Estimation. Results for estimating the mean of a Gaussian
(Gaussian Mean), means of a Gaussian mixture model (GMM), (non-)linear regression (NLR/LR) and
(non-)linear binary classification (NLC/LC). We ablate over permutation invariant architectures (DeepSets vs
Transformers) and the density parameterizations (Diagonal Gaussian vs Normalizing Flows). Our baselines
include the prior (Random), dataset-specific maximum likelihood training (Optimization), Langevin-based
MCMC and Forward-KL based SBI. We use L2 loss and expected accuracy according to the posterior
predictive as metrics.

28

Under review as submission to TMLR

CNLL (↓)
qφ Model GM GMM LR NLR LC NLC

2D 100D 5D 2 cl 1D 100D 1D 25D 2D 100D 2D 25D

Baseline
- Random 438.5 22581.0 3580.9 787.1 37580.6 11728.3 146909.0 110.1 532.4 263.8 1026.0
- Optimization 264.5 13295.9 193.6 69.4 3559.6 80.4 17296.9 9.0 135.6 8.4 75.5
- MCMC 268.4 13449.6 303.4 74.4 4418.8 N/A 19584.5 14.4 521.4 154.4 1086.0

Fwd-KL

G
au

ss
ia

n DeepSets 265.6 13395.0 1582.5 70.5 23509.0 9387.1 126926.9 38.8 532.0 212.1 833.3
Transformer 265.7 13367.1 1598.6 70.5 7992.2 9522.5 126154.0 38.8 345.7 209.9 828.7

Rev-KL
DeepSets 265.5 13361.7 228.8 70.4 11952.9 100.9 22969.9 14.1 265.2 24.8 98.0

Transformer 265.5 13357.2 247.5 70.5 4953.0 99.5 18269.8 14.1 262.7 24.0 181.7

Fwd-KL

Fl
ow

DeepSets 265.6 13394.4 1035.0 70.4 23866.4 2936.3 102857.3 24.0 532.0 179.3 690.5
Transformer 265.8 13363.9 593.4 70.6 7847.3 3111.4 99517.2 23.6 292.8 96.1 684.9

Rev-KL
DeepSets 265.5 13362.7 252.4 70.3 14057.6 95.0 23235.3 13.2 171.4 18.2 76.0

Transformer 265.7 13354.3 223.4 70.5 5401.1 92.8 18029.3 13.2 206.2 18.4 107.0

Table 7: Fixed-Dimension Posterior Prediction: Experimental results for posterior inference on fixed
dimensional datasets evaluated on estimating the (a) mean of a Gaussian (GM), (b) means of Gaussian mixture
model (GMM), (c) parameters for (non-)linear regression (NLR/LR), and (d) parameters for (non-)linear
classification (NLC/LC). We consider different backbone architectures and parametric distributions qφ, and
use dataset-specific Bayesian and point estimates as baselines. CNLL refers to the negative of the expected
conditional log likelihood.

29

Under review as submission to TMLR

CNLL (↓)
qφ Model GM GMM LR NLR LC NLC

100D 5D 2 cl 1D 100D 1D 50D 2D 100D 2D 50D

Baseline
- Random 23096.4 3442.7 838.2 38841.6 11534.6 306025.4 110.8 544.4 271.3 1476.6
- Optimization 13630.0 200.4 69.2 3449.5 84.5 53915.7 8.4 135.3 9.9 96.6
- MCMC 13984.2 362.5 98.7 5981.6 N/A 56126.0 18.5 376.0 35.0 1951.4

Fwd-KL

G
au

ss
ia

n DeepSets 15025.4 1536.5 71.4 29346.1 8341.6 257704.2 39.3 538.0 272.1 1479.8
Transformer 14013.0 1560.1 72.6 12039.8 8294.7 252765.5 41.2 369.1 218.7 1235.1

Rev-KL
DeepSets 13825.3 236.8 72.9 12697.4 160.2 85724.3 14.5 275.2 31.1 101.7

Transformer 13809.8 227.4 71.7 6130.9 145.7 53075.4 14.0 276.8 32.7 291.4

Fwd-KL

Fl
ow

DeepSets 15064.4 723.8 71.6 30237.0 7063.0 212380.1 24.3 537.4 270.6 1497.8
Transformer 13986.4 265.7 72.2 11416.0 6455.1 204521.5 25.4 318.5 189.9 1027.9

Rev-KL
DeepSets 13836.0 244.9 72.4 14961.8 165.1 91362.3 13.5 187.5 31.4 79.7

Transformer 13815.5 221.6 71.0 6100.9 172.7 47972.8 13.0 222.3 28.4 143.6

Table 8: Variable-Dimension Posterior Prediction: Experimental results for posterior inference on
variable dimensional datasets evaluated on estimating the (a) mean of a Gaussian (GM), (b) means of Gaussian
mixture model (GMM), (c) parameters for (non-)linear regression (NLR/LR), and (d) parameters for (non-
)linear classification (NLC/LC). We consider different backbone architectures and parametric distributions
qφ, and use dataset-specific Bayesian and point estimates as baselines. CNLL refers to the negative of the
expected conditional log likelihood.

30

Under review as submission to TMLR

0 20 40 60 80 100
Dimensionality

5
0
5

10
15
20
25
30
35
40
45

Lo
ss

Linear Regression

0 20 40 60 80 100
Dimensionality

55

60

65

70

75

80

85

90

95

Ac
cu

ra
cy

Linear Classification

Forward-KL Reverse-KL
Figure 5: Trends of Performance over different Dimensions in Variable Dimensionality Setup:
We see that our proposed reverse KL methodology outperforms the forward KL one.

0 20 40 60 80 100
Dimensionality

10

0

10

20

30

40

50

Lo
ss

Linear Regression

0 20 40 60 80 100
Dimensionality

50

55

60

65

70

75

80

85

90

Ac
cu

ra
cy

Linear Classification

DeepSets Transformer
Figure 6: Trends of Performance over different Dimensions in Variable Dimensionality Setup:
We see that transformer models generalize better to different dimensional inputs than DeepSets.

31

Under review as submission to TMLR

0 20 40 60 80 100
Dimensionality

5

0

5

10

15

20

25

30

35

Lo
ss

Linear Regression

0 20 40 60 80 100
Dimensionality

55

60

65

70

75

80

85

90

95
Ac

cu
ra

cy

Linear Classification

Gaussian Normalizing Flow
Figure 7: Trends of Performance over different Dimensions in Variable Dimensionality Setup:
We see that normalizing flows leads to similar performances than Gaussian based variational approximation.

32

Under review as submission to TMLR

L2 Loss (↓) Accuracy (↑)
qφ Model GMM LC

2D-2cl 2D-5cl 5D-5cl 2D-5cl 100D-5cl

Baseline
- Random 1.88 0.72 5.06 20.28 20.03
- Optimization 0.17 0.12 0.43 92.04 42.31
- MCMC 0.20 0.13 0.65 85.18 31.73

Fwd-KL

G
au

ss
ia

n DeepSets 0.91 0.53 2.42 70.96 19.94
Transformer 0.92 0.53 2.44 71.00 26.82

Rev-KL
DeepSets 0.19 0.13 0.49 86.94 21.60

Transformer 0.20 0.12 0.52 87.05 32.62

Fwd-KL

Fl
ow

DeepSets 0.23 0.22 0.65 88.12 20.02
Transformer 0.23 0.25 0.57 88.95 27.05

Rev-KL
DeepSets 0.19 0.13 0.52 88.09 21.05

Transformer 0.19 0.12 0.48 88.21 33.20

Table 9: Fixed-Dim Posterior Prediction: Experimental results for posterior inference on fixed dimensional
datasets evaluated on estimating the (a) means of Gaussian mixture model (GMM), and (b) parameters for
linear classification (LC) for additional probabilistic model setups (eg. multi-class). We consider different
backbone architectures and parametric distributions qφ, and use dataset-specific Bayesian and point estimates
as baselines. L2 Loss and Accuracy refer to the expected posterior-predictive L2 loss and accuracy respectively.
Here, cl refers to the number of clusters for GMM and number of classes for LC.

33

Under review as submission to TMLR

L2 Loss (↓) Accuracy (↑)
Setup qφ Model NLR NLC

1D 25D 2D-2cl 2D-5cl 25D-2cl 25D-5cl

ta
nh

Baseline
- Random 34.48 53.62 50.09 20.03 49.96 20.09
- Optimization 0.28 12.02 97.21 93.41 75.67 49.41
- MCMC 0.30 16.25 95.80 89.48 65.08 34.77

Fwd-KL

G
au

ss
ia

n DeepSets 34.74 53.38 50.14 19.86 50.12 19.99
Transformer 34.75 53.48 50.14 20.06 50.12 20.13

Rev-KL
DeepSets 0.41 25.99 90.05 19.84 50.11 20.00

Transformer 0.41 10.89 89.43 78.03 50.13 20.01

Fwd-KL

Fl
ow

DeepSets 33.30 53.35 49.88 20.23 50.03 20.04
Transformer 10.60 53.58 49.87 20.41 50.02 20.17

Rev-KL
DeepSets 0.38 26.53 89.97 49.00 49.99 19.98

Transformer 0.38 10.89 90.56 81.79 49.95 20.02

re
lu

Baseline
- Random 64.52 793.13 50.08 20.00 49.82 19.94
- Optimization 0.32 95.08 97.49 95.66 80.06 59.39
- MCMC N/A 106.90 96.37 93.07 73.23 45.98

Fwd-KL

G
au

ss
ia

n DeepSets 50.00 682.23 59.52 31.48 59.57 29.50
Transformer 50.73 678.11 59.91 32.16 59.76 29.78

Rev-KL
DeepSets 0.43 124.46 91.59 85.61 62.57 32.99

Transformer 0.42 99.28 91.68 85.36 76.46 47.72

Fwd-KL

Fl
ow

DeepSets 15.31 549.13 61.98 33.55 60.98 30.78
Transformer 16.37 530.95 75.68 38.42 61.12 30.94

Rev-KL
DeepSets 0.39 125.90 93.13 86.93 63.87 33.31

Transformer 0.39 97.83 92.92 86.50 75.75 49.38

Table 10: Fixed-Dim Posterior Prediction: Experimental results for posterior inference on fixed
dimensional datasets evaluated on estimating the parameters of nonlinear regression (NLR) and classification
(NLC) setups, with 1 layered MLP with different activation functions in the probabilistic model. We also
consider a multi-class classification setup. We consider different backbone architectures and parametric
distributions qφ, and use dataset-specific Bayesian and point estimates as baselines. L2 Loss and Accuracy
refer to the expected posterior-predictive L2 loss and accuracy respectively. Here, cl refers to the number
classes.

34

Under review as submission to TMLR

L2 Loss (↓) Accuracy (↑)
Setup qφ Model NLR NLC

1D 25D 2D-2cl 2D-5cl 25D-2cl 25D-5cl

ta
nh

Baseline
- Random 52.72 55.16 50.16 19.83 50.02 20.00
- Optimization 0.56 30.22 96.76 89.99 69.51 40.43
- MCMC 0.39 32.41 94.23 81.42 53.16 24.49

Fwd-KL

G
au

ss
ia

n DeepSets 53.83 56.02 50.07 19.95 49.91 19.93
Transformer 53.89 56.82 50.07 20.18 49.91 20.09

Rev-KL
DeepSets 0.89 27.98 50.04 19.99 49.91 19.97

Transformer 0.87 25.17 61.64 19.99 49.92 19.95

Fwd-KL

Fl
ow

DeepSets 52.46 55.85 50.47 19.79 49.93 20.06
Transformer 52.44 55.84 50.45 20.04 49.94 20.19

Rev-KL
DeepSets 0.68 27.97 50.67 19.72 49.99 20.06

Transformer 0.70 27.97 86.37 19.78 50.00 20.02

re
lu

Baseline
- Random 1082.06 13301.74 49.68 20.18 49.74 20.08
- Optimization 2.01 1858.40 98.01 96.81 80.30 61.30
- MCMC N/A N/A 88.39 52.78 66.16 35.49

Fwd-KL

G
au

ss
ia

n DeepSets 821.57 10877.36 60.77 31.66 58.35 19.88
Transformer 786.67 10845.96 61.21 32.12 58.28 30.17

Rev-KL
DeepSets 1.38 2048.08 74.11 49.53 66.41 46.12

Transformer 2.36 1976.32 87.77 76.33 66.35 30.01

Fwd-KL

Fl
ow

DeepSets 676.46 8236.22 62.90 33.21 60.28 20.12
Transformer 646.60 8075.57 63.71 34.11 61.45 32.70

Rev-KL
DeepSets 1.32 2040.10 74.98 61.65 68.06 47.05

Transformer 2.92 1987.58 92.31 76.03 68.41 45.96

Table 11: Fixed-Dim Posterior Prediction: Experimental results for posterior inference on fixed
dimensional datasets evaluated on estimating the parameters of nonlinear regression (NLR) and classification
(NLC) setups, with 2 layered MLP with different activation functions in the probabilistic model. We also
consider a multi-class classification setup. We consider different backbone architectures and parametric
distributions qφ, and use dataset-specific Bayesian and point estimates as baselines. L2 Loss and Accuracy
refer to the expected posterior-predictive L2 loss and accuracy respectively. Here, cl refers to the number
classes.

35

Under review as submission to TMLR

L2 Loss (↓) Accuracy (↑)
qφ Model GM GMM LR LC

50D 2D-2cl 2D-5cl 5D-5cl 50D 2D-5cl 50D-2cl 50D-5cl 100D-5cl

Baseline
- Random 153.45 2.24 0.66 1.63 102.04 19.97 50.02 20.02 19.96
- Optimization 50.51 0.18 0.12 0.33 0.76 92.22 79.74 52.17 42.58
- MCMC 55.13 0.34 0.18 0.49 8.10 82.39 71.30 38.01 31.15

Fwd-KL

G
au

ss
ia

n DeepSets 52.04 1.30 0.49 1.21 39.63 20.00 51.77 19.95 19.99
Transformer 51.49 1.31 0.49 1.21 2.71 63.39 69.86 40.38 26.90

Rev-KL
DeepSets 51.25 0.21 0.14 0.39 20.64 85.50 69.81 36.22 27.16

Transformer 51.15 0.20 0.13 0.32 2.99 84.39 75.66 45.66 32.75

Fwd-KL

Fl
ow

DeepSets 52.25 0.33 0.20 0.50 40.15 20.00 51.18 19.92 20.00
Transformer 51.45 0.40 0.25 0.55 2.30 75.73 74.19 41.56 27.09

Rev-KL
DeepSets 51.25 0.21 0.14 0.38 20.46 86.43 69.68 25.75 22.37

Transformer 51.17 0.20 0.13 0.33 2.44 86.37 76.71 46.06 32.98

Table 12: Variable-Dim Posterior Prediction: Experimental results for posterior inference on variable
dimensional datasets evaluated on estimating the (a) mean of a Gaussian distribution, (b) means of Gaussian
mixture model (GMM), (c) parameters for linear regression (LR), and (d) parameters for linear classification
(LC) for additional probabilistic model setups (eg. multi-class). We consider different backbone architectures
and parametric distributions qφ, and use dataset-specific bayesian and point estimates as baselines. L2 Loss
and Accuracy refer to the expected posterior-predictive L2 loss and accuracy respectively. Here, cl refers to
the number of clusters for GMM and number of classes for LC.

36

Under review as submission to TMLR

L2 Loss (↓) Accuracy (↑)
Setup qφ Model NLR NLC

1D 50D 100D 2D-2cl 2D-5cl 50D-2cl 50D-5cl 100D-2cl 100D-5cl

ta
nh

Baseline
- Random 30.54 56.37 59.04 49.72 19.88 49.98 20.03 50.02 20.01
- Optimization 0.28 22.47 36.97 97.73 93.60 69.55 40.32 63.73 34.64
- MCMC 0.30 21.49 30.29 96.66 88.47 57.55 26.16 53.98 23.54

Fwd-KL

G
au

ss
ia

n DeepSets 30.98 56.31 58.84 49.71 20.06 49.93 19.93 50.02 20.04
Transformer 30.90 55.50 58.94 49.71 20.27 49.93 20.03 50.02 20.13

Rev-KL
DeepSets 0.57 22.28 29.06 90.99 28.41 49.93 19.93 50.02 20.04

Transformer 0.71 16.16 49.23 91.00 74.59 64.53 19.92 54.80 20.05

Fwd-KL

Fl
ow

DeepSets 30.32 56.24 58.66 49.89 19.71 49.91 20.02 49.95 20.02
Transformer 29.87 55.41 58.70 49.90 19.88 49.91 20.12 49.94 20.10

Rev-KL
DeepSets 0.61 24.06 31.29 91.68 19.83 50.10 20.05 50.05 20.04

Transformer 0.57 16.52 32.67 92.22 19.74 63.33 20.11 50.02 20.04

re
lu

Baseline
- Random 59.56 1609.93 3235.73 50.13 19.86 49.90 20.04 50.01 19.97
- Optimization 0.35 289.49 861.93 96.36 95.88 74.89 52.71 70.05 46.43
- MCMC N/A 300.32 811.02 96.24 92.73 67.09 38.72 63.37 34.06

Fwd-KL

G
au

ss
ia

n DeepSets 45.24 1333.61 2744.30 49.81 20.27 50.02 19.97 50.13 20.07
Transformer 45.12 1310.54 2739.36 58.59 32.76 58.78 29.66 57.87 28.81

Rev-KL
DeepSets 0.76 449.68 1116.67 89.56 49.64 61.36 33.05 60.31 31.88

Transformer 0.67 282.74 818.49 89.11 53.73 73.02 34.60 67.95 32.82

Fwd-KL

Fl
ow

DeepSets 36.60 1103.04 2246.73 50.08 20.09 49.74 20.13 49.87 19.95
Transformer 33.60 1066.24 2205.13 60.15 32.71 59.95 31.18 59.05 29.89

Rev-KL
DeepSets 0.78 480.36 1224.96 88.86 50.07 62.56 33.54 61.32 32.29

Transformer 0.82 257.30 874.53 89.79 71.56 71.93 38.71 65.65 33.28

Table 13: Variable-Dim Posterior Prediction: Experimental results for posterior inference on variable
dimensional datasets evaluated on estimating the parameters of nonlinear regression (NLR) and classification
(NLC) setups, with 1 layered MLP with different activation functions in the probabilistic model. We also
consider a multi-class classification setup. We consider different backbone architectures and parametric
distributions qφ, and use dataset-specific Bayesian and point estimates as baselines. L2 Loss and Accuracy
refer to the expected posterior-predictive L2 loss and accuracy respectively. Here, cl refers to the number of
classes.

37

Under review as submission to TMLR

L2 Loss (↓) Accuracy (↑)
Setup qφ Model NLR NLC

1D 50D 100D 2D-2cl 2D-5cl 50D-2cl 50D-5cl 100D-2cl 100D-5cl

ta
nh

Baseline
- Random 48.54 53.94 54.73 50.16 20.19 49.95 20.00 49.92 19.86
- Optimization 0.62 36.23 47.52 96.72 90.13 63.03 34.73 60.55 29.76
- MCMC 0.41 39.04 44.14 92.85 69.53 50.37 21.15 50.31 20.94

Fwd-KL

G
au

ss
ia

n DeepSets 48.98 53.43 54.53 49.72 20.06 50.05 19.98 50.00 19.96
Transformer 48.78 53.16 54.53 49.72 20.28 50.05 20.12 50.00 20.04

Rev-KL
DeepSets 23.28 26.70 27.36 49.68 20.06 50.04 19.98 50.01 19.97

Transformer 2.34 23.08 42.81 49.69 20.07 50.04 19.97 49.99 19.96

Fwd-KL

Fl
ow

DeepSets 48.75 53.77 54.66 49.75 19.99 50.03 19.92 49.88 20.09
Transformer 48.06 53.38 54.39 49.75 20.21 50.04 20.08 49.88 20.16

Rev-KL
DeepSets 23.27 26.71 27.36 49.84 20.07 50.02 19.96 49.94 20.00

Transformer 3.07 22.54 46.77 49.56 20.00 50.02 19.95 49.97 20.02

re
lu

Baseline
- Random 1021.41 26069.28 51949.46 50.03 20.29 50.01 20.01 50.10 19.92
- Optimization 1.81 4762.79 12508.07 98.20 97.31 79.06 58.43 77.30 56.16
- MCMC N/A N/A N/A 67.62 27.30 62.35 29.78 64.10 32.49

Fwd-KL

G
au

ss
ia

n DeepSets 782.52 20746.84 39559.89 50.20 20.26 50.21 20.25 49.82 19.84
Transformer 806.08 20461.45 39517.84 59.96 33.22 60.09 31.45 59.91 31.73

Rev-KL
DeepSets 7.93 6024.49 13894.65 79.88 60.92 68.38 46.87 68.24 51.03

Transformer 8.41 4788.45 12953.82 82.76 59.47 68.37 28.80 68.21 26.79

Fwd-KL

Fl
ow

DeepSets 741.81 20098.74 39025.35 49.72 20.28 50.28 20.00 49.89 20.09
Transformer 634.92 17089.49 33259.73 61.76 34.75 61.93 32.48 61.87 33.44

Rev-KL
DeepSets 5.13 7227.68 15336.46 74.27 62.05 70.05 46.90 69.77 50.85

Transformer 7.62 4818.14 13531.90 81.32 69.07 70.19 47.82 69.90 51.16

Table 14: Variable-Dim Posterior Prediction: Experimental results for posterior inference on variable
dimensional datasets evaluated on estimating the parameters of nonlinear regression (NLR) and classification
(NLC) setups, with 2 layered MLP with different activation functions in the probabilistic model. We also
consider a multi-class classification setup. We consider different backbone architectures and parametric
distributions qφ, and use dataset-specific Bayesian and point estimates as baselines. L2 Loss and Accuracy
refer to the expected posterior-predictive L2 loss and accuracy respectively. Here, cl refers to the number of
classes.

38

Under review as submission to TMLR

LR NLR GP ← χsim

qφ Model LR NLR GP LR NLR GP LR NLR GP ← χreal

Baseline
- Random 4.094 20.394 2.659 4.094 20.394 2.659 4.094 20.394 2.659
- Optimization 0.258 1.511 0.262 0.258 1.511 0.262 0.258 1.511 0.262
- MCMC 0.285 4.864 0.271 0.285 4.864 0.271 0.285 4.864 0.271

Fwd-KL

G
au

ss
ia

n DeepSets 0.265 1.853 0.267 - - - - - -
Transformer 0.265 5.089 0.268 - - - - - -

Rev-KL
DeepSets 0.264 1.643 0.267 0.264 1.472 0.267 0.262 2.246 0.264

Transformer 0.264 2.431 0.267 0.264 1.477 0.266 0.264 8.572 0.265

Fwd-KL

Fl
ow

DeepSets 0.264 1.760 0.267 - - - - - -
Transformer 0.265 1.964 0.268 - - - - - -

Rev-KL
DeepSets 0.264 1.600 0.267 0.264 1.472 0.267 0.262 2.973 0.264

Transformer 0.265 1.945 0.267 0.265 1.480 0.268 0.264 7.561 0.264

Table 15: Model Misspecification LR Model: Posterior predictive performance with L2 loss metric for
the linear regression model. The top row highlights the data used to train the model (LR: Linear Regression,
NLR: Nonlinear Regression (tanh), GP: Gaussian Process Regression), and the second row highlights the
data used for evaluation. We note that a forward KL method can only be trained on data simulated from the
assumed probabilistic model and thus cannot be trained on nonlinear data if the assumed probabilistic model
is linear.

39

Under review as submission to TMLR

LR NLR GP ← χsim

qφ Model LR NLR GP LR NLR GP LR NLR GP ← χreal

Baseline
- Random 17.805 34.321 16.339 17.805 34.321 16.339 17.805 34.321 16.339
- Optimization 0.270 0.273 0.012 0.270 0.273 0.012 0.270 0.273 0.012
- MCMC 0.290 0.295 0.043 0.290 0.295 0.043 0.290 0.295 0.043

Fwd-KL

G
au

ss
ia

n DeepSets - - - 15.739 33.859 14.677 - - -
Transformer - - - 15.254 33.791 14.867 - - -

Rev-KL
DeepSets 0.364 2.900 0.334 0.375 0.394 0.148 0.371 4.286 0.068

Transformer 0.369 1.752 0.313 0.380 0.394 0.153 0.490 3.332 0.072

Fwd-KL

Fl
ow

DeepSets - - - 15.228 30.254 14.418 - - -
Transformer - - - 7.575 10.065 8.355 - - -

Rev-KL
DeepSets 0.342 1.571 0.285 0.348 0.371 0.119 0.370 3.290 0.067

Transformer 0.346 1.682 0.287 0.345 0.369 0.113 0.468 5.749 0.060

Table 16: Model Misspecification NLR (tanh) Model: Posterior predictive performance with L2 loss
metric for the nonlinear regression model with tanh activation function. The top row highlights the data
used to train the model (LR: Linear Regression, NLR: Nonlinear Regression (tanh), GP: Gaussian Process
Regression), and the second row highlights the data used for evaluation. We note that a forward KL method
can only be trained on data simulated from the assumed probabilistic model and thus cannot be trained on
linear or GP data if the assumed probabilistic model is a single-layered nonlinear MLP.

40

Under review as submission to TMLR

LR NLR GP ← χsim

qφ Model LR NLR GP LR NLR GP LR NLR GP ← χreal

Baseline
- Random 34.178 68.280 32.611 34.178 68.280 32.611 34.178 68.280 32.611
- Optimization 0.284 0.321 0.027 0.284 0.321 0.027 0.284 0.321 0.027
- MCMC N/A N/A N/A N/A N/A N/A N/A N/A N/A

Fwd-KL

G
au

ss
ia

n DeepSets - - - 26.267 50.692 26.322 - - -
Transformer - - - 25.236 51.781 25.150 - - -

Rev-KL
DeepSets 0.329 2190.208 0.303 0.339 0.430 0.164 0.353 N/A 0.074

Transformer 0.336 6.607 0.287 0.336 0.421 0.152 0.474 17.762 0.069

Fwd-KL

Fl
ow

DeepSets - - - 9.788 14.704 10.257 - - -
Transformer - - - 9.823 15.840 10.420 - - -

Rev-KL
DeepSets 0.320 7.142 0.271 0.326 0.397 0.124 0.341 27107.141 0.056

Transformer 0.323 4.877 0.264 0.330 0.383 0.122 0.461 16.243 0.053

Table 17: Model Misspecification NLR (relu) Model: Posterior predictive performance with L2 loss
metric for the nonlinear regression model with ReLU activation function. The top row highlights the data
used to train the model (LR: Linear Regression, NLR: Nonlinear Regression (relu), GP: Gaussian Process
Regression), and the second row highlights the data used for evaluation. We note that a forward KL method
can only be trained on data simulated from the assumed probabilistic model and thus cannot be trained on
linear or GP data if the assumed probabilistic model is a single-layered nonlinear MLP.

41

Under review as submission to TMLR

0 500 1000 1500 2000 2500

4

6

8

10

12

Lo
ss

airfoil_self_noise

0 500 1000 1500 2000 2500

4

6

8

10

12

14

16

18
concrete_compressive_strength

0 500 1000 1500 2000 2500

10

0

10

20

30

energy_efficiency

0 500 1000 1500 2000 2500

10

12

14

16

18

20

Lo
ss

solar_flare

0 500 1000 1500 2000 2500

25

30

35

40

45

50

55

60

student_performance_por

0 500 1000 1500 2000 2500

4

6

8

10

12

14
QSAR_fish_toxicity

0 500 1000 1500 2000 2500
Iteration

8

10

12

14

16

18

20

22

24

Lo
ss

red_wine

0 500 1000 1500 2000 2500
Iteration

2

4

6

8

10

12
socmob

0 500 1000 1500 2000 2500
Iteration

5

10

15

20

25

30

35

cars

Method
xavier-Initialization
Normal Initialization
Forward-KL Initialization
Reverse-KL Initialization

Figure 8: Tabular Experiments | Linear Regression with Diagonal Gaussian: For every regression
dataset from the OpenML platform considered, we initialize the parameters of a linear regression-based
probabilistic model with the amortized inference models which were trained with a diagonal Gaussian
assumption. The parameters are then further trained with maximum-a-posteriori (MAP) estimate with
gradient descent. Reverse and Forward KL denote initialization with the correspondingly trained amortized
model. Optimization refers to a MAP-based optimization baseline initialized from the prior N (0, I), whereas
Xavier-Optimization refers to initialization from the Xavier initialization scheme.

42

Under review as submission to TMLR

0 500 1000 1500 2000 2500
2

4

6

8

10

12

Lo
ss

airfoil_self_noise

0 500 1000 1500 2000 2500

4

6

8

10

12

14

16

18
concrete_compressive_strength

0 500 1000 1500 2000 2500
0.0

2.5

5.0

7.5

10.0

12.5

15.0

17.5

energy_efficiency

0 500 1000 1500 2000 2500

10

12

14

16

18

20

Lo
ss

solar_flare

0 500 1000 1500 2000 2500

25

30

35

40

45

50

55

60

student_performance_por

0 500 1000 1500 2000 2500

4

6

8

10

12

14
QSAR_fish_toxicity

0 500 1000 1500 2000 2500
Iteration

5.0

7.5

10.0

12.5

15.0

17.5

20.0

22.5

Lo
ss

red_wine

0 500 1000 1500 2000 2500
Iteration

2

4

6

8

10

12
socmob

0 500 1000 1500 2000 2500
Iteration

5

10

15

20

25

30

35

cars

Method
xavier-Initialization
Normal Initialization
Forward-KL Initialization
Reverse-KL Initialization

Figure 9: Tabular Experiments | Linear Regression with Normalizing Flow: For every regression
dataset from the OpenML platform considered, we initialize the parameters of a linear regression-based
probabilistic model with the amortized inference models which were trained with a normalizing flow-based
model. The parameters are then further trained with maximum-a-posteriori (MAP) estimate with gradient
descent. Reverse and Forward KL denote initialization with the correspondingly trained amortized model.
Optimization refers to a MAP-based optimization baseline initialized from the prior N (0, I), whereas Xavier-
Optimization refers to initialization from the Xavier initialization scheme.

43

Under review as submission to TMLR

0 500 1000 1500 2000 2500
0

20

40

60

80

100

120

Lo
ss

airfoil_self_noise

0 500 1000 1500 2000 2500
0

20

40

60

80

100

120

140

160
concrete_compressive_strength

0 500 1000 1500 2000 2500
0

25

50

75

100

125

150

energy_efficiency

0 500 1000 1500 2000 2500

25

50

75

100

125

150

175

Lo
ss

solar_flare

0 500 1000 1500 2000 2500
0

100

200

300

400

500

student_performance_por

0 500 1000 1500 2000 2500
0

20

40

60

80

100

120

QSAR_fish_toxicity

0 500 1000 1500 2000 2500
Iteration

0

50

100

150

200

Lo
ss

red_wine

0 500 1000 1500 2000 2500
Iteration

0

20

40

60

80

100

120 socmob

0 500 1000 1500 2000 2500
Iteration

0

50

100

150

200

250

300

cars

Method
xavier-Initialization
Normal Initialization
Forward-KL Initialization
Reverse-KL Initialization

Figure 10: Tabular Experiments | Nonlinear Regression with Diagonal Gaussian: For every regression
dataset from the OpenML platform considered, we initialize the parameters of a nonlinear regression-based
probabilistic model with the amortized inference models which were trained with a diagonal Gaussian
assumption. The parameters are then further trained with maximum-a-posteriori (MAP) estimate with
gradient descent. Reverse and Forward KL denote initialization with the correspondingly trained amortized
model. Optimization refers to a MAP-based optimization baseline initialized from the prior N (0, I), whereas
Xavier-Optimization refers to initialization from the Xavier initialization scheme.

44

Under review as submission to TMLR

0 500 1000 1500 2000 2500
0

20

40

60

80

100

120

Lo
ss

airfoil_self_noise

0 500 1000 1500 2000 2500
0

20

40

60

80

100

120

140

160
concrete_compressive_strength

0 500 1000 1500 2000 2500
0

25

50

75

100

125

150

energy_efficiency

0 500 1000 1500 2000 2500
0

25

50

75

100

125

150

175

Lo
ss

solar_flare

0 500 1000 1500 2000 2500
0

100

200

300

400

500

student_performance_por

0 500 1000 1500 2000 2500
0

20

40

60

80

100

120

QSAR_fish_toxicity

0 500 1000 1500 2000 2500
Iteration

0

50

100

150

200

Lo
ss

red_wine

0 500 1000 1500 2000 2500
Iteration

0

20

40

60

80

100

120 socmob

0 500 1000 1500 2000 2500
Iteration

0

50

100

150

200

250

300

cars

Method
xavier-Initialization
Normal Initialization
Forward-KL Initialization
Reverse-KL Initialization

Figure 11: Tabular Experiments | Nonlinear Regression with Normalizing Flow: For every regression
dataset from the OpenML platform considered, we initialize the parameters of a nonlinear regression-based
probabilistic model with the amortized inference models which were trained with a normalizing flow-based
model. The parameters are then further trained with maximum-a-posteriori (MAP) estimate with gradient
descent. Reverse and Forward KL denote initialization with the correspondingly trained amortized model.
Optimization refers to a MAP-based optimization baseline initialized from the prior N (0, I), whereas Xavier-
Optimization refers to initialization from the Xavier initialization scheme.

45

Under review as submission to TMLR

0 500 1000 1500 2000 2500

50

55

60

65

70

75

Ac
cu

ra
cy

credit-g

0 500 1000 1500 2000 2500

50

55

60

65

70

75

diabetes

0 500 1000 1500 2000 2500

50.0

52.5

55.0

57.5

60.0

62.5

65.0

tic-tac-toe

0 500 1000 1500 2000 2500

50

60

70

80

90

Ac
cu

ra
cy

pc4

0 500 1000 1500 2000 2500

50

60

70

80

90
pc3

0 500 1000 1500 2000 2500

30

40

50

60

70

80

90
kc2

0 500 1000 1500 2000 2500

40

50

60

70

80

90

100

Ac
cu

ra
cy

pc1

0 500 1000 1500 2000 2500

50

60

70

80

90

banknote-authentication

0 500 1000 1500 2000 2500

50

55

60

65

70

75

blood-transfusion-service-center

0 500 1000 1500 2000 2500

50

55

60

65

70

Ac
cu

ra
cy

ilpd

0 500 1000 1500 2000 2500
Iteration

50

55

60

65

70

75

80

qsar-biodeg

0 500 1000 1500 2000 2500
Iteration

50

60

70

80

90

100

110
wdbc

0 500 1000 1500 2000 2500
Iteration

50

60

70

80

90

Ac
cu

ra
cy

climate-model-simulation-crashes

Method
xavier-Initialization
Normal Initialization
Forward-KL Initialization
Reverse-KL Initialization

Figure 12: Tabular Experiments | Linear Classification with Diagonal Gaussian: For every classifica-
tion dataset from the OpenML platform considered, we initialize the parameters of a linear classification-based
probabilistic model with the amortized inference models which were trained with a diagonal Gaussian
assumption. The parameters are then further trained with maximum-a-posteriori (MAP) estimate with
gradient descent. Reverse and Forward KL denote initialization with the correspondingly trained amortized
model. Optimization refers to a MAP-based optimization baseline initialized from the prior N (0, I), whereas
Xavier-Optimization refers to initialization from the Xavier initialization scheme.

46

Under review as submission to TMLR

0 500 1000 1500 2000 2500

50

55

60

65

70

75

Ac
cu

ra
cy

credit-g

0 500 1000 1500 2000 2500

50

55

60

65

70

75

diabetes

0 500 1000 1500 2000 2500

50

52

54

56

58

60

62

64

66
tic-tac-toe

0 500 1000 1500 2000 2500

50

55

60

65

70

75

80

85

90

Ac
cu

ra
cy

pc4

0 500 1000 1500 2000 2500
40

50

60

70

80

90

pc3

0 500 1000 1500 2000 2500
30

40

50

60

70

80

90
kc2

0 500 1000 1500 2000 2500

40

50

60

70

80

90

100

Ac
cu

ra
cy

pc1

0 500 1000 1500 2000 2500

50

60

70

80

90

100 banknote-authentication

0 500 1000 1500 2000 2500

50

55

60

65

70

75

blood-transfusion-service-center

0 500 1000 1500 2000 2500

50

55

60

65

70

Ac
cu

ra
cy

ilpd

0 500 1000 1500 2000 2500
Iteration

50

55

60

65

70

75

80
qsar-biodeg

0 500 1000 1500 2000 2500
Iteration

40

50

60

70

80

90

100

110

wdbc

0 500 1000 1500 2000 2500
Iteration

50

60

70

80

90

Ac
cu

ra
cy

climate-model-simulation-crashes

Method
xavier-Initialization
Normal Initialization
Forward-KL Initialization
Reverse-KL Initialization

Figure 13: Tabular Experiments | Linear Classification with Normalizing Flow: For every classifica-
tion dataset from the OpenML platform considered, we initialize the parameters of a linear classification-based
probabilistic model with the amortized inference models which were trained with a normalizing flow-based
model. The parameters are then further trained with maximum-a-posteriori (MAP) estimate with gradient
descent. Reverse and Forward KL denote initialization with the correspondingly trained amortized model.
Optimization refers to a MAP-based optimization baseline initialized from the prior N (0, I), whereas Xavier-
Optimization refers to initialization from the Xavier initialization scheme.

47

Under review as submission to TMLR

0 500 1000 1500 2000 2500

50

55

60

65

70

Ac
cu

ra
cy

credit-g

0 500 1000 1500 2000 2500
47.5

50.0

52.5

55.0

57.5

60.0

62.5

65.0
diabetes

0 500 1000 1500 2000 2500

50.0

52.5

55.0

57.5

60.0

62.5

65.0

tic-tac-toe

0 500 1000 1500 2000 2500

50

55

60

65

70

75

80

85

Ac
cu

ra
cy

pc4

0 500 1000 1500 2000 2500

50

60

70

80

90
pc3

0 500 1000 1500 2000 2500
45

50

55

60

65

70

75

80
kc2

0 500 1000 1500 2000 2500

50

60

70

80

90

Ac
cu

ra
cy

pc1

0 500 1000 1500 2000 2500

48

50

52

54

56
banknote-authentication

0 500 1000 1500 2000 2500

50

55

60

65

70

75

blood-transfusion-service-center

0 500 1000 1500 2000 2500

50

55

60

65

70

Ac
cu

ra
cy

ilpd

0 500 1000 1500 2000 2500
Iteration

50.0

52.5

55.0

57.5

60.0

62.5

65.0

qsar-biodeg

0 500 1000 1500 2000 2500
Iteration

48

50

52

54

56

58

60

62

wdbc

0 500 1000 1500 2000 2500
Iteration

50

60

70

80

90

Ac
cu

ra
cy

climate-model-simulation-crashes

Method
xavier-Initialization
Normal Initialization
Forward-KL Initialization
Reverse-KL Initialization

Figure 14: Tabular Experiments | Nonlinear Classification with Diagonal Gaussian: For every
classification dataset from the OpenML platform considered, we initialize the parameters of a nonlinear
classification-based probabilistic model with the amortized inference models which were trained with a
diagonal Gaussian assumption. The parameters are then further trained with maximum-a-posteriori (MAP)
estimate with gradient descent. Reverse and Forward KL denote initialization with the correspondingly
trained amortized model. Optimization refers to a MAP-based optimization baseline initialized from the
prior N (0, I), whereas Xavier-Optimization refers to initialization from the Xavier initialization scheme.

48

Under review as submission to TMLR

0 500 1000 1500 2000 2500

50

55

60

65

70

Ac
cu

ra
cy

credit-g

0 500 1000 1500 2000 2500
47.5

50.0

52.5

55.0

57.5

60.0

62.5

65.0
diabetes

0 500 1000 1500 2000 2500

50.0

52.5

55.0

57.5

60.0

62.5

65.0

tic-tac-toe

0 500 1000 1500 2000 2500

50

55

60

65

70

75

80

85

Ac
cu

ra
cy

pc4

0 500 1000 1500 2000 2500

50

60

70

80

90
pc3

0 500 1000 1500 2000 2500
45

50

55

60

65

70

75

80
kc2

0 500 1000 1500 2000 2500

50

60

70

80

90

Ac
cu

ra
cy

pc1

0 500 1000 1500 2000 2500

46

48

50

52

54

56
banknote-authentication

0 500 1000 1500 2000 2500

50

55

60

65

70

75

blood-transfusion-service-center

0 500 1000 1500 2000 2500

50

55

60

65

70

Ac
cu

ra
cy

ilpd

0 500 1000 1500 2000 2500
Iteration

50.0

52.5

55.0

57.5

60.0

62.5

65.0

qsar-biodeg

0 500 1000 1500 2000 2500
Iteration

48

50

52

54

56

58

60

62

wdbc

0 500 1000 1500 2000 2500
Iteration

50

60

70

80

90

Ac
cu

ra
cy

climate-model-simulation-crashes

Method
xavier-Initialization
Normal Initialization
Forward-KL Initialization
Reverse-KL Initialization

Figure 15: Tabular Experiments | Linear Classification with Normalizing Flow: For every classifica-
tion dataset from the OpenML platform considered, we initialize the parameters of a linear classification-based
probabilistic model with the amortized inference models which were trained with a normalizing flow-based
model. The parameters are then further trained with maximum-a-posteriori (MAP) estimate with gradient
descent. Reverse and Forward KL denote initialization with the correspondingly trained amortized model.
Optimization refers to a MAP-based optimization baseline initialized from the prior N (0, I), whereas Xavier-
Optimization refers to initialization from the Xavier initialization scheme.

49

	Introduction
	Background
	Method
	Amortizing Variable Feature Dimensions
	Handling Model Misspecification

	Experiments
	Discussion
	Conclusion
	Related Work
	Variational Autoencoders
	Hypernetworks
	In-Context Learning
	Meta Learning
	Neural Processes
	Simulation-Based Inference
	Amortization in Gaussian Processes
	Mode Collapse in Variational Inference

	Architectures respecting Exchangeability
	DeepSets
	Transformers

	Probabilistic Models
	Metrics
	Architecture Details
	Transformer
	DeepSets
	Normalizing Flows

	Experimental Details
	Fixed-Dim
	Variable-Dim
	Model Misspecification
	Tabular Experiments

	OpenML Datasets
	Additional Experiments
	Fixed-Dim
	Variable-Dim
	Model Misspecification
	Tabular Experiments

