
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2026

SAC FLOW: SAMPLE-EFFICIENT REINFORCEMENT
LEARNING OF FLOW-BASED POLICIES VIA VELOCITY-
REPARAMETERIZED SEQUENTIAL MODELING

Anonymous authors
Paper under double-blind review

Figure 1: An Overview of SAC Flow. The multi-step sampling process of flow-based policies
frequently causes exploding gradients during off-policy RL updates. Our key insight is to treat the
flow-based policy as a sequential model, for which we first demonstrate an algebraic equivalence to
an RNN. We then reparameterize the flow’s velocity network using modern sequential architectures
(e.g., GRU, Transformer). Our approach stabilizes off-policy RL training and achieves state-of-the-
art performance.

ABSTRACT

Training expressive flow-based policies with off-policy reinforcement learning is
notoriously unstable due to gradient pathologies in the multi-step action sampling
process. We trace this instability to a fundamental connection: the flow rollout is
algebraically equivalent to a residual recurrent computation, making it susceptible
to the same vanishing and exploding gradients as RNNs. To address this, we repa-
rameterize the velocity network using principles from modern sequential models,
introducing two stable architectures: Flow-G, which incorporates a gated velocity,
and Flow-T, which utilizes a decoded velocity. We then develop a practical SAC-
based algorithm, enabled by a noise-augmented rollout, that facilitates direct end-
to-end training of these policies. Our approach supports both from-scratch and
offline-to-online learning and achieves state-of-the-art performance on continuous
control and robotic manipulation benchmarks, eliminating the need for common
workarounds like policy distillation or surrogate objectives. Anonymized code is
available at https://anonymous.4open.science/r/SAC-FLOW.

.

1 INTRODUCTION

Flow-based policies have shown strong potential on challenging continuous-control tasks, including
robot manipulation, due to their ability to represent rich, multimodal action distributions (Black
et al., 2024; Lipman et al., 2022; Jiang et al., 2025). Early successes predominantly arose in imitation
learning, where a flow-based policy is trained to reproduce expert behavior from static datasets

1

https://anonymous.4open.science/r/SAC-FLOW

054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2026

(Luo et al., 2025; Tarasov et al., 2025). However, pure behavior cloning is fundamentally limited:
dataset coverage is often sparse and of mixed quality (Kim et al., 2024; Garcia et al., 2025), and
the lack of environment interaction prevents exploration, making it difficult to exceed demonstrator
performance on hard tasks (Belkhale et al., 2023; Zare et al., 2024).

A natural next step is to train flow-based policies with reinforcement learning. On-policy variants of
PPO adapted to flows have demonstrated strong returns, yet they remain sample-inefficient (Schul-
man et al., 2017; Zhang et al., 2025). Off-policy methods promise much higher data efficiency and
early integrations with flow-based policies on MuJoCo and DeepMind Control show encouraging
results (Todorov et al., 2012; Tunyasuvunakool et al., 2020; Lv et al., 2025; Park et al., 2025). How-
ever, these successes typically come with design compromises that leave a central issue unresolved.
Either the update relies on surrogate objectives that avoid differentiating through the rollout of the
original flow, or the flow is distilled into a simpler one-step actor that can be optimized with standard
off-policy losses. Both strategies reduce gradient stress but decouple optimization from the expres-
sive generator and tend to blunt the benefits of multimodal flow-based policies (Park et al., 2025; Lv
et al., 2025).

We propose a different viewpoint: treat the flow-based policy as a sequential model. Concretely,
we show that the Euler integration used to generate actions in the flow-based policy is algebraically
identical to the recurrent computation of a residual RNN. This observation explains the instability
observed with off-policy training: the same vanishing or exploding gradients known to affect RNNs
also afflict the flow rollout. Building on this link, we reparameterize the vanilla velocity network
with the cell of modern sequential models that are designed to stabilize deep recurrent computa-
tions. We introduce two such novel designs of the flow-based policy: Flow-G, which incorporates a
GRU-style gated velocity to regulate gradient flow across rollout steps, and Flow-T, which utilizes a
Transformer-style decoded velocity to refine the action-time token via state-only cross-attention and
a residual feed-forward network.

Our main contributions are summarized as follows:

• A sequential model perspective for stable flow-based policies. We formalize the K-step
flow rollout as a residual RNN computation, providing a clear theoretical explanation for
the gradient pathologies that cause instability in off-policy training. This insight allows
us to reparameterize the velocity network with modern sequential architectures, leading to
two novel, stable designs: Flow-G (GRU-gated) and Flow-T (Transformer-decoded). Our
approach resolves critical gradient pathologies, enabling direct end-to-end optimization and
eliminating the need for surrogate objectives or policy distillation.

• A practical and sample-efficient SAC framework for flow policies. We develop SAC
Flow, a robust off-policy algorithm built upon our stabilized architectures. By introducing a
noise-augmented rollout, we enable tractable likelihood computation for the SAC objective,
a key technical hurdle. This approach yields two robust training procedures: (i) a stable
from-scratch trainer for dense-reward tasks and (ii) a unified offline-to-online pipeline for
sparse-reward tasks.

• Extensive experimental evaluation. We demonstrate the effectiveness of SAC Flow
across multiple benchmarks. In from-scratch training on challenging MuJoCo tasks, our
approach delivers performance gains of up to 130% over strong baselines. Furthermore, in
complex offline-to-online manipulation tasks on OGBench, it achieves up to a 60% higher
success rate. These results empirically validate the superior sample efficiency of our direct
off-policy training approach, with ablation studies further confirming the robustness of our
designs.

2 PRELIMINARIES

2.1 REINFORCEMENT LEARNING

We consider policy optimization in an infinite-horizon Markov decision process ⟨S,A, p, r, ρ⟩ with
continuous state and action spaces. The transition function p : S × A × S → [0,∞) specifies the
transition probability density, and rewards are rh = r(sh, ah) ∈ [rmin, rmax], where ah is sampled

2

108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2026

from the policy π(·|sh). The objective of reinforcement learning is to learn an optimal policy π∗

that maximizes the expected cumulative reward, π∗ = argmaxπ Eπ
[∑∞

h=0 γ
hrh
]
.

2.2 SOFT ACTOR-CRITIC ALGORITHM

To encourage policies to maintain stochasticity and explore more effectively, the standard objective
is augmented with an entropy term, Ĵ(π) = Eπ[

∑∞
h=0 γ

h(rh + αH)], where H(π(· | sh)) =
−Ea∼π(·|sh) [log π(a | s)] denotes the state-conditional policy entropy. In this setting, the Soft
Actor-Critic algorithm (Haarnoja et al., 2018) is introduced to optimize this objective. The tar-
get Ĵ(π) is typically approximated with the soft Q-function Qψ(sh, ah), which is updated through
the TD loss:

L(ψ) =
[
Qψ (sh, ah)− (rh + γQψ̄ (sh+1, ah+1)− α log πθ (ah+1 | sh+1))

]2
, (1)

where ah+1 ∼ πθ (· | sh+1), (sh, ah, sh+1, rh) are sampled from the replay buffer, and ψ̄ is a
delayed copy of ψ through which gradients do not flow for stability. To maximize the soft Q-
function Qψ(sh, ah), the policy πθ is updated through

L(θ) = α log πθ
(
aθh | sh

)
−Qψ

(
sh, a

θ
h

)
, aθh ∼ πθ (· | sh) . (2)

Here, aθh highlights a reparameterized action sample that allows gradients to propagate from the
policy to the action, in contrast to the TD update, where the action is detached.

2.3 FLOW-BASED POLICY IN REINFORCEMENT LEARNING

Gaussian policies are the standard choice in continuous-control RL (Yang et al., 2021; Ziesche &
Rozo, 2024), yet a single unimodal Gaussian cannot capture inherently multimodal action distri-
butions. This limitation is especially harmful in long-horizon robotic control, as such tasks often
benefit from policies that output temporally extended actions (i.e., “action chunking”) (Li et al.,
2025). The distribution over these action sequences is often inherently multimodal, which a uni-
modal Gaussian fails to represent. Diffusion policies alleviate this by modeling arbitrary normal-
izable distributions and have achieved state-of-the-art results on manipulation benchmarks (Bekris
et al., 2025; Wang et al., 2022; Ren et al., 2024), but their iterative denoising makes both training and
inference expensive. Recently, flow-based policies have emerged as a simpler alternative: trained
with flow-matching objectives, they offer easier training and faster inference while often matching
or exceeding diffusion quality (Lipman et al., 2022; Park et al., 2025; Zhang et al., 2025).

A flow-based policy transports a simple, state-conditioned base p0(· | s) over the action space
A = Rd to a target policy p1(· | s) via a time-indexed map ϱ : [0, 1]×A×S → A, with At :=
ϱt(A0 | s) for t ∈ [0, 1], where A0∼ p0(· | s) and A1∼ p1(· | s). The trajectory satisfies the ODE
d
dtϱt(A0 | s) = v(t, ϱt(A0 | s), s), where v is a learnable velocity field. We adopt Rectified Flow
(Liu et al., 2022), which uses the straight path At = (1 − t)A0 + tA1 and the standard Gaussian
base p0(· | s) = N (0, Id). In this case v(t, At, s) = d

dtAt = A1 − A0, yielding the flow-matching
objective

θ̂ = argmin
θ

EA0∼N (0,Id), (A1=a,s)∼D,
t∼Unif[0,1]

[∥∥A1 −A0 − vθ(t, (1− t)A0 + tA1, s)
∥∥2
2

]
, (3)

where D denotes the dataset of state–action pairs. In inference, the learned field is integrated nu-
merically with flow rollout to obtain:

Ati+1
= Ati +∆ti vθ(ti, Ati , s), 0 = t0 < · · · < tK = 1, (4)

where ∆ti = ti+1 − ti. The resulting distribution over A1 induced by A0 ∼N (0, Id) is denoted
µθ(· | s) and serves as the stochastic policy a = A1 ∼ πθ(· | s).
Flow-based policies can be trained offline from demonstrations using Equ. (3), and they can also
be optimized with RL. On-policy methods (e.g., PPO-style training tailored to flows (Zhang et al.,
2025; Ren et al., 2024; Psenka et al., 2024)) attain strong performance on challenging robotics tasks
but remain sample-inefficient. Off-policy methods (e.g., SAC, TD3) are highly sample-efficient
(Mambelli et al., 2024), yet directly backpropagating through the K-step action sampling is often
unstable, especially for large K (Park et al., 2025). To mitigate this, prior work either distills a

3

162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2026

flow-based policy into a simpler actor trained with standard off-policy losses (Park et al., 2025) or
proposes surrogate off-policy objectives that train the velocity field without differentiating through
the full flow rollout (Lv et al., 2025).

We take a different route. We recast the flow rollout as a sequential model and redesign the velocity
parameterization accordingly. We introduce Flow-G, which uses a GRU-style gated velocity, and
Flow-T, which uses a Transformer-style decoded velocity. These parameterizations stabilize the K-
step backpropagating and allow direct off-policy training of the flow-based policy. We instantiate
the framework with SAC, and the same formulation applies to other off-policy algorithms.

3 FROM FLOW ROLLOUT TO SEQUENTIAL MODELS

Figure 2: An illustration of gradient norms during training. By conceptualizing a flow-based model
as an RNN, the most basic sequential models, we observe that it still suffers from the exploding
gradients during training. This motivates our work to model the flow-based model as advanced
sequential architectures, such as a GRU or a Transformer. These models can be updated with stable
gradients during the backpropagation process.

In this section, we reveal a key insight: flow-based policies are fundamentally sequential models.
As conceptually illustrated in Fig. 2, standard flow rollouts exhibit gradient instabilities analogous
to vanilla RNNs, while modern sequential architectures offer more stable gradient flow, motivating
our velocity network designs.

Flow-based policy as RNN (Fig. 3a). Treat the intermediate action Ati as the hidden state and
(ti, s) as the input. Then Equ. (4) is a residual RNN step (Goel et al., 2017):

Ati+1
= Ati + fθ(ti, Ati , s), with fθ(·) = ∆ti vθ(·), (5)

where fθ(·) denotes the RNN cell. Consequently, training a flow-based policy with off-policy losses
backpropagates through a deep recurrent stack of K updates in RNN, which is prone to gradient
explosion and vanishing (Bengio et al., 1994; Pascanu et al., 2013). This explains the instability
observed when naively applying off-policy reinforcement learning to standard flow-based policies.

Flow-based policy as GRU (Flow-G, Fig. 3b). To improve gradient stability, we endow the
velocity with a GRU-style update gate. Let gi = Sig

(
zθ(ti, Ati , s)

)
and let v̂θ be a candidate

network. Define
Ati+1 = Ati + ∆ti

(
gi ⊙ (v̂θ(ti, Ati , s)−Ati)

)
, (6)

where ⊙ denotes elementwise multiplication and Sig(·) is the logistic sigmoid. Equ. (6) is exactly
a flow sampling step with gated velocity vθ = gi ⊙ (v̂θ −Ati), which mirrors the structure of the
update in a GRU cell but expressed in the velocity parameterization used by the flow rollout. The
gate network gi adaptively interpolates between keeping the current intermediate action and forming
a new one.

Flow-based policy as Transformer (Flow-T, Fig. 3c). We parameterize the velocity function vθ
using a Transformer architecture conditioned on the environment state s. To maintain the Markov
property of the flow, we depart from a traditional causal, autoregressive formulation. Instead, the
model first computes independent embeddings for the current action-time token Ati and a single,
global embedding for the state s:

ΦAi = EA
(
ϕt(ti), Ati

)
, ΦS = ES

(
ϕs(s)

)
, (7)

4

216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2026

(a) Flow-based Policy as
RNN

(b) Flow-based Policy as GRU (c) Flow-based Policy as
Transformer

Figure 3: Velocity network parameterizations for the flow-based policy, shown in the view of se-
quential models. (a) RNN Cell: It represents the standard flow-based policy where the velocity vθ
is the direct output of a neural network. This simple formulation is prone to gradient instability. (b)
GRU Cell: The velocity is computed using a GRU-style gated mechanism. A gate gi adaptively
controls the update strength from a candidate network v̂i, which stabilizes gradient flow. (c) De-
coder: The velocity is modeled using a Transformer decoder, where the action-time token Ati is
refined through L layers of state-conditioned cross-attention to produce a decoded velocity.

where EA and ES are linear projections. Within the Decoder layers, a diagonal mask is applied to
the self-attention mechanism, effectively reducing it to a position-wise transformation that processes
each token ΦAi independently, without mixing information across the time steps i. The crucial step
for context integration is a dedicated cross-attention module, where each action token ΦAi

queries
the shared state embedding ΦS . A stack of L pre-norm residual blocks refines the action tokens:

Y
(l)
i = Φ

(l−1)
Ai

+Crossl
(
LN(Φ

(l−1)
Ai

), context = LN(ΦS)
)
, Φ

(l)
Ai

= Y
(l)
i +FFNl

(
LN(Y

(l)
i)
)
, (8)

for layers l = 1, . . . , L, where Φ
(0)
Ai

:= ΦAi
. Each block is completed by a feed-forward network,

and the final representation is projected to the velocity space:

Ati+1
= Ati + ∆tiWo

(
LN(Φ

(L)
Ai

)
)
, (9)

where Wo is a linear projection and vθ(ti, Ati , s) = Wo

(
LN(Φ

(L)
Ai

)
)

is the decoded velocity in
Flow-T. Each velocity evaluation therefore executes L layers that refine the current action token
ΦAi based on the global state context from ΦS , not on a causal history of other tokens. This state-
conditioned refinement of the entire trajectory maintains the fundamental Markov property of flow-
based policy while enabling stable integration with off-policy learning algorithms.

Takeaway for off-policy reinforcement learning. Equ. (5) establishes that a standard flow rollout
is a residual recurrent computation. Introducing a gate network leads to Flow-G in Equ. (6), which
improves gradient stability. Replacing the velocity with the normalized residual block in Equ. (9)
yields Flow-T. This architecture provides well-conditioned depth and, crucially, aggregates context
with the well-established Transformer architectures.

The core technical motivation is to stabilize the recurrent computation in Equ. (5), which suffers
from the exploding/vanishing gradient problem due to unstable Jacobian products during backprop-
agation. Our Flow-G and Flow-T designs directly mitigate this via stabilizing mechanisms. A
detailed mathematical analysis of this instability and our solution is provided in Appendix B.

These parameterizations serve as drop-in replacements for vθ in Equ. (4) without altering the sur-
rounding algorithm. As a result, they enable direct and stable off-policy training with methods such
as SAC, remove the need for auxiliary distillation actors and surrogate objectives, and keep flow
rollout efficient at test time.

5

270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2026

4 TRAINING FLOW-BASED POLICY VIA SAC

With gradient stability achieved through our sequential parameterizations (Flow-G and Flow-T), we
can now train flow-based policies directly with off-policy reinforcement learning. The key technical
challenge is computing policy likelihoods for the K-step rollout in Equ. (4)—a requirement for the
entropy-regularized objective in SAC. We solve this through a principled noise-augmented rollout
that preserves the final action distribution while enabling tractable per-step likelihood computation.

Likelihood via a noise-augmented rollout. SAC requires explicit policy likelihoods for entropy
regularization, but the deterministic K-step rollout in Equ. (4) yields intractable densities. We
address this by making the rollout stochastic while preserving the marginal of the final action, which
induces a product of per-step Gaussian transitions and a tractable joint path density pc(A | s) over
intermediate actions A = (At0 , . . . , AtK). The construction details are deferred to Appendix A;
here we use the resulting log pc(A | s) as a drop-in entropy term.

From-scratch training. With tractable likelihoods established, the SAC losses become straight-
forward. Given a critic Qψ and a flow-based policy πθ (with Flow-G or Flow-T as vθ), we optimize:

Lactor(θ) = α log pc(Aθ | sh) − Qψ
(
sh, a

θ
h

)
, Aθ ∼ πθ(· | sh), aθh = tanh(AθtK), (10)

Lcritic(ψ) =
[
Qψ(sh, ah)−

(
rh + γ Qψ̄(sh+1, ah+1)− α log pc(Ah+1 | sh+1)

)]2
, (11)

where (sh, ah, rh, sh+1) comes from the replay buffer, Ah+1, ah+1 ∼ πθ(· | sh+1), and ψ̄ is a
delayed copy.

Offline-to-online training. For sparse-reward tasks where expert demonstrations are available, we
modify the actor loss to include a proximity regularizer:

Loactor(θ) = α log pc(Aθ | sh) − Qψ(sh, a
θ
h) + β ∥aθh − ah∥22, (sh, ah) ∼ B. (12)

This approach begins with flow-matching pretraining on expert data via Equ. (3), then transitions
to online learning while maintaining proximity to the replay buffer. The complete procedures are
summarized in Algos. 1 and 2.

Algorithm 1 SAC Flow (from scratch)

1: Initialize critic Qψ , target Qψ̄ , flow-based policy πθ with Flow-G or Flow-T; replay buffer B.
2: for each update do
3: Interact with the environment using πθ; push (st, at, rt, st+1) to B.
4: Sample {(sh, ah, rh, sh+1)}Nh=1 ∼ B.
5: Actor: draw aθh by a K-step noisy rollout; minimize Equ. (10).
6: Critic: minimize Equ. (11); update target by an exponential moving average.
7: end for

Algorithm 2 SAC Flow (offline-to-online)

1: Initialize Qψ , Qψ̄ , πθ; set B ← Dexpert.
2: for ℓ = 1 to Loff + Lon do
3: if ℓ > Loff then
4: Interact with the environment using πθ; append to B.
5: end if
6: Sample {(sh, ah, rh, sh+1)}Nh=1 ∼ B.
7: Actor: minimize Equ. (12) with aθh from the noisy rollout.
8: Critic: minimize Equ. (11); update the target network.
9: if ℓ ≤ Loff then

10: Flow-matching pretraining via Equ. (3).
11: end if
12: end for

For clarity, we refer to our methods as SAC Flow-G and SAC Flow-T, corresponding to training
with Flow-G and Flow-T via SAC, respectively. Both terms apply to both from-scratch and offline-
to-online training variants.

6

324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2026

(a) Hopper-v4 (b) Walker2D-v4 (c) HalfCheetah-v4

(d) Ant-v4 (e) Humanoid-v4 (f) HumanoidStandup-v4

Figure 4: From-scratch training performance. Our SAC Flow-T and SAC Flow-G achieve compara-
ble or better performance accross all tasks except Humanoid (Fig. (a)-(f)), demonstrating significant
sample efficiency and convergence stability.

5 EXPERIMENT

We conduct extensive experiments on locomotion and manipulation benchmarks to validate our
approach. The evaluation encompasses: (1) experimental setup and baseline comparisons for from-
scratch and offline-to-online training, (2) performance benchmarking of SAC Flow-G and SAC
Flow-T against recent methods, and (3) ablation studies analyzing the effectiveness of our design
components. All results are averaged over 5 random seeds and use the 95% confidence interval.

5.1 SETTINGS

5.1.1 ENVIRONMENTS AND OFFLINE DATASETS

We evaluate our method on three benchmarks for locomotion and robotic manipulation: Mu-
JoCo (Todorov et al., 2012; Brockman et al., 2016), OGBench (Park et al., 2024), and
Robomimic (Mandlekar et al., 2021). MuJoCo tasks, which feature dense rewards, are used to
evaluate from-scratch learning performance. Then we conduct offline-to-online experiments on OG-
Bench and Robomimic, using their respective official offline datasets1.

5.1.2 BASELINES

For the from-scratch training, we compare SAC-Flow against five baselines. (1) Q-score matching
(QSM) (Psenka et al., 2024) directly optimizes the diffusion policy’s score function using the gra-
dient of the Q-function. (2) DIME (Celik et al., 2025) is a representative max-entropy RL method
for diffusion policy, addressing the challenge of entropy calculation. (3) FlowRL (Lv et al., 2025)
is the state-of-the-art (SOTA) method, which trains a flow-based policy by directly maximizing the
Q-value, regularized by a Wasserstein-2 constraint. Finally we apply two classical RL algorithms:
(4) SAC (Haarnoja et al., 2018) and (5) PPO (Schulman et al., 2017), with Gaussian policies as
fundamental from-scratch baselines.

1OGBench: https://github.com/seohongpark/ogbench, Robomimic: https:
//robomimic.github.io/docs/datasets/robomimic_v0.1.html

7

https://github.com/seohongpark/ogbench
https://robomimic.github.io/docs/datasets/robomimic_v0.1.html
https://robomimic.github.io/docs/datasets/robomimic_v0.1.html

378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2026

(a) Cube-Double-Task (b) Cube-Triple-Task (c) Cube-Quadruple-Task (d) Robomimic

Figure 5: Aggregated offline-to-online performance on OGBench and Robomimic benchmarks.
Each curve shows the mean success rate averaged across multiple task instances within a domain.
Specifically, the OGBench results for Cube-Double, Triple, and Quadruple (a-c) are each aggre-
gated over five distinct single-task environments. The Robomimic result (d) is aggregated across
the Lift, Can, and Square tasks.

To evaluate the offline-to-online capability, we select three baselines, including on-policy and off-
policy methods. (1) ReinFlow (Zhang et al., 2025) solves the difficulty of calculating log probability
through multi-step flow inference, enabling on-policy PPO update for flow-based policy. It should
be noted that ReinFlow is only tested in Robomimic due to a lack of official implementation for its
use in OGBench. (2) Flow Q-Learning (FQL) (Park et al., 2025) uses SAC-style update to achieve
high data-efficient RL tuning. FQL uses a one-step policy to estimate the flow model, avoiding the
instability of backpropagation through time. And its successor, (3) Q-chunking FQL (QC-FQL)
(Li et al., 2025), extends FQL to handle action chunking by operating in temporally extended action
spaces.

Among all experiments, the sampling steps of flow-based policies are set to 4, and the denoising
steps of diffusion policies are set to 16. More details of the experimental setting are described in
Appendix D and Appendix E.

5.2 MAIN RESULTS

Fig. 4 illustrates the results for from-scratch training. Our methods, SAC Flow-G and SAC Flow-T,
achieve superior or comparable performance across most MuJoCo tasks, with the exception of Hu-
manoid. Although DIME and FlowRL generally converge faster than other baselines, our methods
consistently surpass FlowRL, benefiting from direct optimization of the SAC objective. Further-
more, SAC Flow outperforms DIME in Hopper (Fig. 15a), Walker (Fig. 15b), and HumanoidStandup
(Fig. 4f), while achieving comparable results in HalfCheetah (Fig. 15c) and Ant (Fig. 15d). More-
over, with the expressive parameterization of flow-based policy, our method achieves much higher
final performance in challenging tasks, demonstrating up to a 130% improvement over the baseline
(Fig. 4f), and remains convergence stability in simple tasks (Fig. 15a, 15b, and 15c). For reference,
we include the on-policy baseline, PPO, to highlight the superior sample efficiency of off-policy
algorithms. Finally, we find that all from-scratch methods struggle in tasks with large exploration
spaces and sparse rewards, such as Robomimic-Can and OGBench-cube (see Appendix F.1, Fig. 14),
underscoring the necessity of an offline-to-online training setting.

Fig. 5 shows the offline-to-online training performance in sparse reward tasks. All methods are
trained on 1M offline updates followed by 1M online steps. In the challenging OGBench environ-
ments, including cube-triple and cube-quadruple, our proposed methods, particularly SAC Flow-T,
achieve rapid convergence and attain a state-of-the-art overall success rate. In the Robomimic envi-
ronment, however, SAC Flow-T and SAC Flow-G only yield results comparable to QC-FQL. This
is primarily because the training is strictly regularized with a large β value (Equ. (12)). As a result,
the learning capacity of the flow model is severely limited, causing its performance to be similar
to that of the one-step policy in QC-FQL. We further compare the on-policy baseline, Reinflow,
in Robomimic. Leveraging the high data efficiency of off-policy learning, our SAC Flow-G and
SAC Flow-T outperform Reinflow under 1M online steps. The additional results are available in
Appendix F.

8

432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2026

5.3 ABLATION STUDY

(a) Ant-v4 (b) Ant-Step 0 (c) Ant-Step 1 (d) Ant-Step 2 (e) Ant-Step 3

(f) Walker2d-v4 (g) Walker2d-Step 0 (h) Walker2d-Step 1 (i) Walker2d-Step 2 (j) Walker2d-Step 3

(k) Hopper-v4 (l) Hopper-Step 0 (m) Hopper-Step 1 (n) Hopper-Step 2 (o) Hopper-Step 3

(q) Ant-v4 - Ratio (r) Walker2d-v4 - Ratio (s) Hopper-v4 - Ratio

Figure 6: Ablation study on velocity network parameterizations. Our SAC Flow-T and SAC Flow-
G significantly reduce the gradient exploding and enable stable training. The first column (a, f, k)
displays the episodic return for the environments. The subsequent four columns illustrate the gra-
dient norms for steps 0 through 3 of the flow sampling process, respectively. The bottom row (q–s)
visualizes the gradient norm ratio (Naive / Flow-G), revealing that across all tasks, the Naive gra-
dient norm explodes to approximately tenfold the stable magnitude around the time of performance
collapse (105 steps).

Ablation study on velocity network parameterizations. We begin by analyzing the gradient dy-
namics of our proposed architectures, SAC Flow-G and SAC Flow-T. We benchmark these against a
Naive SAC Flow baseline that utilizes a standard MLP velocity parameterization without sequential
modeling. As illustrated in the first three rows of Fig. 6, the naive baseline exhibits severe gradient
pathologies, characterized by erratic norm oscillations along the backpropagation path (specifically
from sampling step k = 3 back to k = 0). In contrast, our methods maintain well-conditioned
gradient norms across the entire rollout. This instability in the Naive SAC Flow directly precipitates
performance degradation, as evidenced by its failure to learn in the Ant, Walker2d, and Hopper.
(Figs. 6a, 6f, and 6k).

To provide a unified explanation despite the varying absolute gradient scales across tasks (e.g.,
gradients in Ant are naturally larger than in Walker2d), we further analyze the relative stability by
computing the gradient norm ratio (Naive SAC Flow / SAC Flow-G), shown in the bottom row of

9

486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2026

Fig. 6 (q–s). This metric reveals a striking consistency: across all distinct tasks, the gradient norm
of the Naive baseline escalates to approximately tenfold that of the stable SAC Flow-G. Crucially,
this 10-fold relative explosion typically peaks around 105 steps, which aligns perfectly with the
inflection point where the Naive baseline’s performance stagnates and begins to deteriorate. These
empirical results conclusively validate that the standard flow rollout suffers from severe relative
gradient instability, and our sequential reparameterizations effectively mitigate this issue to enable
stable training.

Ablation study on flow sampling steps. Fig. 7 shows the performance of SAC FLow-T and SAC
Flow-G under sampling stepsK = 4, 7, 10. A larger number of sampling steps can further challenge
the stability of gradient backpropagation. The experiments show that our approach, especially SAC
Flow-T, is robust to the number of sampling steps.

(a) Ant-v4 (b) Cube-Double-Task4

Figure 7: Ablation study on flow sampling steps. Our SAC Flow-G and SAC Flow-T are robust to
the number of sampling steps.

6 CONCLUSION

In this paper, we introduce SAC Flow, a sample-efficient and high-performance off-policy RL al-
gorithm for flow-based policies. SAC Flow addresses the issue of gradient instability in training
flow-based policies by treating the flow-based model as a sequential model and reparameterizing its
velocity network as a GRU or a Transformer. We evaluate the performance of SAC Flow in both
from-scratch and offline-to-online training settings. SAC Flow demonstrates rapid convergence and
achieves state-of-the-art performance across multiple locomotion and manipulation tasks.

Looking forward, we will validate SAC Flow on real robots and explore lighter sequential param-
eterizations with structure-aware updates, while studying sim-to-real robustness, tighter stability
guarantees, and risk-aware objectives for reliable deployment.

10

540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2026

ETHICS STATEMENT

We adhere to the ICLR Code of Ethics. Our research introduces foundational RL algorithms evalu-
ated exclusively on public benchmarks and datasets. This work does not involve human subjects or
sensitive data and presents no foreseeable direct ethical concerns.

REPRODUCIBILITY STATEMENT

To ensure reproducibility, additional implementation details, hyperparameters, and experimental
results are provided in the Appendix. All experiments leverage public benchmarks and datasets.
The anonymous code is available at https://anonymous.4open.science/r/SAC-FLOW

REFERENCES

Rishabh Agarwal, Max Schwarzer, Pablo Samuel Castro, Aaron C Courville, and Marc Bellemare.
Deep reinforcement learning at the edge of the statistical precipice. Advances in neural informa-
tion processing systems, 34:29304–29320, 2021.

Lars Ankile, Anthony Simeonov, Idan Shenfeld, Marcel Torne, and Pulkit Agrawal. From imitation
to refinement-residual rl for precise assembly. In 2025 IEEE International Conference on Robotics
and Automation, pp. 01–08, 2025.

Kostas Bekris, Kris Hauser, Sylvia Herbert, Jingjin Yu, Cheng Chi, Zhenjia Xu, Siyuan Feng, Eric
Cousineau, Yilun Du, Benjamin Burchfiel, Russ Tedrake, and Shuran Song. Diffusion policy:
Visuomotor policy learning via action diffusion. The International Journal of Robotics Research,
44(10–11):1684–1704, 2025.

Suneel Belkhale, Yuchen Cui, and Dorsa Sadigh. Data quality in imitation learning. Advances in
Neural Information Processing Systems, 36:80375–80395, 2023.

Yoshua Bengio, Patrice Simard, and Paolo Frasconi. Learning long-term dependencies with gradient
descent is difficult. IEEE transactions on neural networks, 5(2):157–166, 1994.

Kevin Black, Noah Brown, Danny Driess, Adnan Esmail, Michael Equi, Chelsea Finn, Niccolo
Fusai, Lachy Groom, Karol Hausman, Brian Ichter, et al. π0: A vision-language-action flow
model for general robot contro. ArXiv Preprint, 2024.

Greg Brockman, Vicki Cheung, Ludwig Pettersson, Jonas Schneider, John Schulman, Jie Tang, and
Wojciech Zaremba. Openai gym. ArXiv Preprint, 2016.

Onur Celik, Zechu Li, Denis Blessing, Ge Li, Daniel Palenicek, Jan Peters, Georgia Chalvatzaki,
and Gerhard Neumann. Dime: Diffusion-based maximum entropy reinforcement learning. ArXiv
Preprint, 2025.

Shutong Ding, Ke Hu, Zhenhao Zhang, Kan Ren, Weinan Zhang, Jingyi Yu, Jingya Wang, and
Ye Shi. Diffusion-based reinforcement learning via q-weighted variational policy optimization.
Advances in Neural Information Processing Systems, 37:53945–53968, 2024.

Xiaoyi Dong, Jian Cheng, and Xi Sheryl Zhang. Maximum entropy reinforcement learning with
diffusion policy. ArXiv Preprint, 2025.

Scott Fujimoto, Herke Hoof, and David Meger. Addressing function approximation error in actor-
critic methods. In International conference on machine learning, pp. 1587–1596. PMLR, 2018.

Ricardo Garcia, Shizhe Chen, and Cordelia Schmid. Towards generalizable vision-language robotic
manipulation: A benchmark and llm-guided 3d policy. In 2025 IEEE International Conference
on Robotics and Automation (ICRA), pp. 8996–9002, 2025.

Hardik Goel, Igor Melnyk, and Arindam Banerjee. R2n2: Residual recurrent neural networks for
multivariate time series forecasting. ArXiv Preprint, 2017.

11

https://anonymous.4open.science/r/SAC-FLOW

594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2026

Tuomas Haarnoja, Aurick Zhou, Kristian Hartikainen, George Tucker, Sehoon Ha, Jie Tan, Vikash
Kumar, Henry Zhu, Abhishek Gupta, Pieter Abbeel, et al. Soft actor-critic algorithms and appli-
cations. ArXiv Preprint, 2018.

Sepp Hochreiter and Jürgen Schmidhuber. Long short-term memory. Neural computation, 9(8):
1735–1780, 1997.

Peter Holderrieth and Ezra Erives. An introduction to flow matching and diffusion models. ArXiv
Preprint, 2025.

Shengyi Huang, Rousslan Fernand Julien Dossa, Chang Ye, Jeff Braga, Dipam Chakraborty, Ki-
nal Mehta, and JoÃĢo GM AraÃšjo. Cleanrl: High-quality single-file implementations of deep
reinforcement learning algorithms. Journal of Machine Learning Research, 23(274):1–18, 2022.

Sunshine Jiang, Xiaolin Fang, Nicholas Roy, Tomás Lozano-Pérez, Leslie Pack Kaelbling, and Sid-
dharth Ancha. Streaming flow policy: Simplifying diffusion / flow-matching policies by treating
action trajectories as flow trajectories. ArXiv Preprint, 2025.

Yeseung Kim, Dohyun Kim, Jieun Choi, Jisang Park, Nayoung Oh, and Daehyung Park. A survey
on integration of large language models with intelligent robots. Intelligent Service Robotics, 17
(5):1091–1107, 2024.

Qiyang Li, Zhiyuan Zhou, and Sergey Levine. Reinforcement learning with action chunking. ArXiv
Preprint, 2025.

Steven Li, Rickmer Krohn, Tao Chen, Anurag Ajay, Pulkit Agrawal, and Georgia Chalvatzaki.
Learning multimodal behaviors from scratch with diffusion policy gradient. Advances in Neu-
ral Information Processing Systems, 37:38456–38479, 2024.

Yaron Lipman, Ricky TQ Chen, Heli Ben-Hamu, Maximilian Nickel, and Matt Le. Flow matching
for generative modeling. ArXiv Preprint, 2022.

Xingchao Liu, Chengyue Gong, and Qiang Liu. Flow straight and fast: Learning to generate and
transfer data with rectified flow. ArXiv Preprint, 2022.

Hao Luo, Yicheng Feng, Wanpeng Zhang, Sipeng Zheng, Ye Wang, Haoqi Yuan, Jiazheng Liu,
Chaoyi Xu, Qin Jin, and Zongqing Lu. Being-h0: vision-language-action pretraining from large-
scale human videos. ArXiv Preprint, 2025.

Lei Lv, Yunfei Li, Yu Luo, Fuchun Sun, Tao Kong, Jiafeng Xu, and Xiao Ma. Flow-based policy for
online reinforcement learning. ArXiv Preprint, 2025.

Davide Mambelli, Stephan Bongers, Onno Zoeter, Matthijs TJ Spaan, and Frans A Oliehoek. When
do off-policy and on-policy policy gradient methods align? ArXiv Preprint, 2024.

Ajay Mandlekar, Danfei Xu, Josiah Wong, Soroush Nasiriany, Chen Wang, Rohun Kulkarni, Li Fei-
Fei, Silvio Savarese, Yuke Zhu, and Roberto Martı́n-Martı́n. What matters in learning from offline
human demonstrations for robot manipulation. ArXiv Preprint, 2021.

Max Sobol Mark, Tian Gao, Georgia Gabriela Sampaio, Mohan Kumar Srirama, Archit Sharma,
Chelsea Finn, and Aviral Kumar. Policy agnostic rl: Offline rl and online rl fine-tuning of any
class and backbone. ArXiv Preprint, 2024.

Seohong Park, Kevin Frans, Benjamin Eysenbach, and Sergey Levine. Ogbench: Benchmarking
offline goal-conditioned rl. ArXiv Preprint, 2024.

Seohong Park, Qiyang Li, and Sergey Levine. Flow q-learning. ArXiv Preprint, 2025.

Razvan Pascanu, Tomas Mikolov, and Yoshua Bengio. On the difficulty of training recurrent neural
networks. In International conference on machine learning, pp. 1310–1318. Pmlr, 2013.

Michael Psenka, Alejandro Escontrela, Pieter Abbeel, and Yi Ma. Learning a diffusion model
policy from rewards via q-score matching. In International Conference on Machine Learning,
pp. 41163–41182. PMLR, 2024.

12

648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2026

Allen Z Ren, Justin Lidard, Lars L Ankile, Anthony Simeonov, Pulkit Agrawal, Anirudha Majum-
dar, Benjamin Burchfiel, Hongkai Dai, and Max Simchowitz. Diffusion policy policy optimiza-
tion. ArXiv Preprint, 2024.

John Schulman, Filip Wolski, Prafulla Dhariwal, Alec Radford, and Oleg Klimov. Proximal policy
optimization algorithms. ArXiv Preprint, 2017.

Denis Tarasov, Alexander Nikulin, Ilya Zisman, Albina Klepach, Nikita Lyubaykin, Andrei Pol-
ubarov, Alexander Derevyagin, and Vladislav Kurenkov. Nina: Normalizing flows in action.
training vla models with normalizing flows. ArXiv Preprint, 2025.

Emanuel Todorov, Tom Erez, and Yuval Tassa. Mujoco: A physics engine for model-based control.
In 2012 IEEE/RSJ international conference on intelligent robots and systems, pp. 5026–5033,
2012.

Saran Tunyasuvunakool, Alistair Muldal, Yotam Doron, Siqi Liu, Steven Bohez, Josh Merel, Tom
Erez, Timothy Lillicrap, Nicolas Heess, and Yuval Tassa. dm control: Software and tasks for
continuous control. Software Impacts, 6:100022, 2020.

Zhendong Wang, Jonathan J Hunt, and Mingyuan Zhou. Diffusion policies as an expressive policy
class for offline reinforcement learning. ArXiv Preprint, 2022.

Qisong Yang, Thiago D Simão, Simon H Tindemans, and Matthijs TJ Spaan. Wcsac: Worst-case soft
actor critic for safety-constrained reinforcement learning. In Proceedings of the AAAI Conference
on Artificial Intelligence, pp. 10639–10646, 2021.

Shu-Ang Yu, Feng Gao, Yi Wu, Chao Yu, and Yu Wang. D3p: Dynamic denoising diffusion policy
via reinforcement learning. ArXiv Preprint, 2025.

Maryam Zare, Parham M Kebria, Abbas Khosravi, and Saeid Nahavandi. A survey of imitation
learning: Algorithms, recent developments, and challenges. IEEE Transactions on Cybernetics,
2024.

Tonghe Zhang, Chao Yu, Sichang Su, and Yu Wang. Reinflow: Fine-tuning flow matching policy
with online reinforcement learning. ArXiv Preprint, 2025.

Hanna Ziesche and Leonel Rozo. Wasserstein gradient flows for optimizing gaussian mixture poli-
cies. Advances in Neural Information Processing Systems, 36, 2024.

13

702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2026

A THE DERIVATION OF SAC LOSS IN THE FLOW-BASED POLICY

This appendix consolidates and expands our derivations for training SAC on a K-step flow roll-
out, including the likelihood construction via a noise-augmented rollout, the joint path density, the
pathwise score expansion, gradients for actor/critic, the temperature update, and practical notes for
implementation.

A.1 NOISE-AUGMENTED ROLLOUT AND DRIFT CORRECTION

We start from the deterministic K-step Euler rollout in Equ. (4):

Ati+1 = Ati +∆ti vθ(ti, Ati , s), 0 = t0 < · · · < tK = 1.

For likelihood-based training, we convert it into a stochastic rollout that leaves the final marginal
invariant by adding isotropic Gaussian noise with a compensating drift (Holderrieth & Erives, 2025):

Ati+1
= Ati + bθ(ti, Ati , s)∆ti + σθ

√
∆ti εi, εi ∼ N (0, Id). (13)

A convenient drift that matches rectified-flow families is

bθ(ti, Ati , s) =

(
1− ti + ti σ

2
θ

2

1− ti

)
vθ(ti, Ati , s)−

(
ti σ

2
θ

2(1− ti) ti

)
Ati , (14)

with bθ(0, ·, ·) = vθ(0, ·, ·). Intuitively, the first factor inflates the learned velocity to counteract
diffusion, and the second term contracts towards the straight path so that the terminal law remains
unchanged. The detailed proof can be found on pages 28–35 in (Holderrieth & Erives, 2025).

Per-step transition. Under Equ. (13), the conditional Ati+1
| Ati , s is Gaussian:

ηθ
(
Ati+1 | Ati , s; ∆ti

)
= N

(
Ati + bθ(ti, Ati , s)∆ti, σ

2
θ ∆ti Id

)
.

We denote At0 ∼ N (0, Id) as the base. The final action is a = tanh(AtK).

A.2 JOINT PATH DENSITY AND SQUASHING JACOBIAN

Let A = (At0 , . . . , AtK). The joint density factorizes as

pc(A | s) = ζ(At0)

K−1∏
i=0

ηθ
(
Ati+1 | Ati , s; ∆ti

)
· ∥ detJ (a)∥−1, a = tanh(AtK), (15)

where ζ is the standard Gaussian base density for At0 , ηθ(·) is the per-step transition in Section A.1,
and J (a) is the Jacobian of the element-wise tanh squashing. The marginal policy density follows
by integrating out the intermediate pre-activations:

πθ(a | s) =
∫
· · ·
∫
pc
(
At0 , . . . , AtK−1

, AtK = tanh−1(a) | s
)
dAt0 · · · dAtK−1

. (16)

For element-wise tanh, ∥ detJ (a)∥ =∏d
j=1(1− a2j)−1.

A.3 PATHWISE EXPANSION OF THE MARGINAL SCORE

We derive the gradient of Ea[log πθ(a | s)]. Using Equ. (15):

∇θEa[log πθ(a | s)] = ∇θEA [log πθ(a | s)]

= ∇θEA
[
log

(∫
· · ·
∫
pc(At0 , . . . , AtK−1

, AtK = tanh−1(a) | s) dAt0 · · · dAtK−1

)]
. (17)

14

756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2026

Expanding the inner gradient yields

∇θ log πθ(a | s) =
1

πθ(a | s)
∇θ
∫
· · ·
∫
ζ(At0)

[
K−1∏
i=0

ηθ
(
Ati+1

| Ati , s; ∆ti
)]
∥ detJ (a)∥−1 dAt0:K−1

=
1

πθ(a | s)

∫
· · ·
∫
ζ(At0)

[
K−1∏
i=0

ηθ
(
Ati+1 | Ati , s; ∆ti

)]

·
K−1∑
i=0

∇θ log ηθ
(
Ati+1 | Ati , s; ∆ti

)
∥ detJ (a)∥−1 dAt0:K−1. (18)

Therefore,

∇θEa[log πθ(a | s)] = EA

[
K−1∑
i=0

∇θ log ηθ
(
Ati+1 | Ati , s; ∆ti

)]
, (19)

where the Jacobian term does not contribute because it is independent of θ. Since ηθ is Gaussian
with mean mi = Ati + bθ∆ti and covariance Σi = σ2

θ∆tiI , each term is closed form:

∇θ log ηθ =
1

σ2
θ∆ti

(
Ati+1 −mi

)⊤ ∂mi

∂θ
− d

σθ

∂σθ
∂θ

+ higher-order terms if σθ depends on θ.

A.4 GRADIENTS OF THE SAC LOSSES UNDER THE JOINT PATH FACTORIZATION

Critic update. The target-matching loss is

L(ψ) =
[
Qψ(sh, ah)−

(
rh + γQψ̄(sh+1, ah+1)− α log πθ(ah | sh)

)]2
, (20)

where ah+1 ∼ πθ(· | sh+1). Using the joint-path form,

∇ψL(ψ) = 2
(
Qψ(sh, ah)−

(
rh + γQψ̄(sh+1, ah+1)− α log pc(A | s)

))
∇ψQψ(sh, ah), (21)

where no gradients flow through Qψ̄ . Replacing the marginal log πθ by log pc only changes a base-
line and has a negligible effect on learning behavior.

Actor update. The actor loss is

L(θ) = α log πθ(a
θ
h | sh)−Qψ(sh, aθh), (22)

with aθh = tanh(AθtK). Its gradient uses the pathwise form:

∇θL(θ) = α

K−1∑
i=0

∇θ log ηθ
(
Aθti+1

| Aθti , sh; ∆ti
)
−∇θQψ(sh, aθh), (23)

where the Q-term differentiates through aθh.

A.5 PATH-REGULARIZED SOFT CRITIC

This section explains how the joint and marginal densities relate and why the resulting critic can be
naturally interpreted as a path-regularized variant of maximum-entropy RL.

A.5.1 EXACT DECOMPOSITION OF THE ENTROPY TERM

For any (s, a) with a = tanh(AtK), the joint path-density admits the factorization

pc(A | s) = πθ(a | s) rθ(A | a, s), (24)

where rθ(A | a, s) is the conditional distribution of the latent path given the final action:

rθ(A | a, s) =
pc(A | s)
πθ(a | s)

,

∫
rθ(A | a, s)dAt0:K−1 = 1. (25)

15

810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2026

Taking logarithms and averaging under rθ(· | a, s) yields the identity

Erθ(A|a,s)
[
log pc(A | s)

]
= log πθ(a | s) + h(rθ(· | a, s)) , (26)

where
h(rθ(· | a, s)) = −Erθ(A|a,s)[log rθ(A | a, s)] (27)

is the differential entropy of the conditional path distribution.

Equation equation 26 shows that the expected surrogate penalty− log pc(A | s) differs from the true
negative entropy − log πθ(a | s) by exactly the path-entropy term h(rθ):

Erθ [− log pc(A | s)] = − log πθ(a | s) + h(rθ(· | a, s)). (28)

Identity equation 28 reveals that using the surrogate − log pc(A | s) in the critic corresponds to
augmenting the original maximum-entropy objective with an additional path-entropy term:

Jours = E
[∑

t

rt + α log πθ(at | st) + αh(rθ(· | at, st))
]
. (29)

The extra entropy term encourages the conditional path distribution rθ(· | a, s) to be diffuse rather
than sharply concentrated. This induces a regularizing effect on the critic: actions whose flow
rollouts exhibit high variability (large h(rθ)) receive an additional penalty through the surrogate.
Empirically, this produces a more conservative soft Q-function and mitigates the well-known over-
estimation issues encountered in off-policy training.

A.5.2 WHY THIS IS ACCEPTABLE FOR OFF-POLICY FLOW TRAINING

It is important to emphasize that the purpose of our method is not to exactly replicate the original
SAC critic. Instead, our goal is to stabilize off-policy RL in the presence of multi-step flow roll-
outs, whose training is notoriously brittle due to compounding gradients and sensitivity to density-
evaluation errors. The path-regularized critic trades a small, well-understood bias for substantially
improved numerical stability. This trade-off is common and often desirable in deep RL, where exact
Bellman equations are rarely satisfied under function approximation.

Moreover, the actor update in our method remains an exact policy gradient for the original
maximum-entropy objective, thanks to the pathwise score expansion shown in Appendix A.3. The
bias introduced by the critic therefore does not alter the policy objective being optimized; it only
affects the value-based shaping signal used during training.

Finally, we note that the proposed flow-based policy construction (i.e., Flow-G and Flow-T) is not
specific to SAC. Methods such as TD3 rely solely on Q-function targets and do not require evaluat-
ing log policy densities. In these settings, our flow policy can be used without any entropy-related
complications. The critic design described above is only needed for maximum-entropy algorithms;
other off-policy methods can directly adopt the same flow-based actor with no additional adjust-
ments.

A.6 TEMPERATURE UPDATE (LEARNED α)

When learning α to match a target entropy H̄:

L(α) = Esh,aθh∼πθ(·|sh)
[
−α

(
log πθ(a

θ
h | sh) + H̄

)]
. (30)

The gradient is
∇αL(α) = −Esh,aθh

[
log πθ(a

θ
h | sh) + H̄

]
. (31)

Using the joint-path surrogate yields

∇αL(α) = −E
[
K−1∑
i=0

log ηθ

(
Aθti+1

| Aθti , sh; ∆ti
)
− log ∥ detJ (aθh)∥+ H̄

]
, (32)

and we set H̄ = 0 unless otherwise noted.

16

864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

Under review as a conference paper at ICLR 2026

A.7 PRACTICAL NOTES AND IMPLEMENTATION DETAILS

Rollout length and noise. Use smallK (e.g., 4) to control backprop depth and latency. Fix σθ (e.g.,
0.10) or learn a lightweight state head; fixed schedules simplify tuning.

Squashing and Jacobian. Always squash AtK 7→ a = tanh(AtK) and include the exact Jacobian
in log pc of Equ. (15) to keep the entropy term correct.

Targets and normalization. Maintain a delayed targetQψ̄ with EMA. Pre-normalization in Flow-T
and a mild positive gate bias in Flow-G improve early stability.

Gradient flow. Flow-G gates the residual change to damp gradient amplification; Flow-T uses
pre-norm residual blocks. Both act as drop-in vθ inside Equ. (4).

Offline-to-online. In the regularized actor loss of the main text (Equ. (12)), choose β large early to
stay on-replay, then anneal as online data grows. Flow-matching pretraining via Equ. (3) is optional
but helpful for sparse rewards.

Efficiency. The entropy term scales linearly in K and action dimension d because it decomposes
into per-step Gaussian factors.

Reproducibility. We evaluate log pc and its gradient with a single noisy rollout per update; addi-
tional variance reduction is possible but not required in our settings.

B DETAILED ANALYSIS OF GRADIENT STABILITY

This section provides a more formal mathematical justification for the gradient pathologies in stan-
dard flow-based policies (when viewed as RNNs), as discussed in Section 3, and elaborates on how
our Flow-G and Flow-T architectures address these issues.

B.1 THE VANISHING/EXPLODING GRADIENT PROBLEM IN STANDARD FLOW ROLLOUTS

As established in Equation (5), the standard K-step flow rollout Ati+1
= Ati +∆ti vθ(ti, Ati , s) is

algebraically equivalent to a residual RNN, where Ati is the hidden state and fθ(·) = ∆ti vθ(·) is
the RNN cell.

In off-policy RL, the actor loss L(θ) is a function of the final action AtK (e.g., L(θ) =
−Qψ(sh, tanh(AθtK)) from Equation (10)). To update the parameters θ of the velocity network
vθ, the gradient must be backpropagated through time (BPTT) from AtK back to At0 .

Let us analyze the gradient flow. The gradient of the loss L with respect to an intermediate state Ati
is:

∇Ati
L = (∇AtK

L) ·
K−1∏
j=i

∂Atj+1

∂Atj

where
∂Atj+1

∂Atj
is the Jacobian matrix of the transition:

∂Atj+1

∂Atj
=

∂

∂Atj

(
Atj + fθ(tj , Atj , s)

)
= I +

∂fθ(tj , Atj , s)

∂Atj

Substituting this back, the gradient propagation over K steps becomes a long product of these Jaco-
bians:

∇At0
L = (∇AtK

L) ·
K−1∏
i=0

(
I +

∂fθ(ti, Ati , s)

∂Ati

)
(33)

This is the core problem. As identified in the seminal work on LSTM (Hochreiter & Schmidhuber,
1997), this long product of matrices is exponentially unstable. The error signal∇AtK

L is repeatedly
multiplied by the Jacobians of the state transition.

• Exploding Gradients: If the singular values of these Jacobians are persistently greater
than 1, the norm of the gradient will grow exponentially, leading to unstable training, as
seen in our Naive baseline in Fig. 6.

17

918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971

Under review as a conference paper at ICLR 2026

• Vanishing Gradients: Conversely, if the singular values are persistently less than 1, the
norm of the gradient will shrink exponentially, preventing the error signal from AtK from
reaching the parameters that influenced At0 , At1 , etc. This makes learning long-term de-
pendencies impossible.

This ”gradient pathology” is the fundamental technical challenge that makes direct off-policy train-
ing of standard flow-based policies notoriously unstable.

B.2 FLOW-G AND FLOW-T AS GRADIENT STABILIZERS

To address the instability of Equation (33), the objective is to design an architecture fθ such that
the product of Jacobians remains well-conditioned, with singular values centered around 1.0. Our
Flow-G and Flow-T designs are explicitly motivated by architectures from the sequence-modeling
literature (LSTMs, GRUs, and Transformers) that were invented to solve this exact problem.

The LSTM Precedent: The key innovation of LSTM (Hochreiter & Schmidhuber, 1997) was the
Constant Error Carousel (CEC). LSTM introduced the multiplicative gates (input, forget, output),
which are then trained to learn when to allow error signals into this stable ”carousel” and when to
use the information stored within it.

Our Flow-G (GRU) and Flow-T (Transformer) architectures achieve a similar outcome through re-
lated, albeit more complex, mechanisms.

Flow-G (GRU-gated): The Flow-G velocity (Equation 6) is vθ = gi ⊙ (v̂θ − Ati). The rollout
step becomes:

Ati+1 = Ati +∆ti
(
gi ⊙ (v̂θ(ti, Ati , s)−Ati)

)
Rewriting this per-dimension (with g(d)i being the d-th dimension of the gate):

A
(d)
ti+1

=
(
1−∆tig

(d)
i

)
A

(d)
ti +∆tig

(d)
i v̂

(d)
θ (·)

This is precisely the update form of a Gated Recurrent Unit (GRU). The Jacobian of this transition
(ignoring terms from ∂gi/∂Ati and ∂v̂θ/∂Ati for clarity) is approximately:

∂Ati+1

∂Ati
≈ I − diag(∆ti gi)

The crucial insight is that the gate gi ∈ [0, 1] is a learnable parameter. If the network needs to
preserve information (and its gradient) across many steps, it can learn to set gi → 0 for those steps.
When gi → 0, the Jacobian

∂Ati+1

∂Ati
→ I . This mimics the CEC, allowing the gradient to flow

unimpeded. Flow-G thus learns to dynamically regulate its own gradient stability, just as a GRU or
LSTM does.

Flow-T (Transformer-decoded): The Flow-T architecture (Equations 8-9) achieves stability not
through explicit gating, but through its architectural design, which is standard in modern Transform-
ers. The Jacobian is

∂Ati+1

∂Ati
= I+∆ti

∂vθ
∂Ati

. Stability hinges on ensuring the Jacobian of the velocity

network, ∂vθ
∂Ati

, is well-behaved.

Flow-T accomplishes this via two key components:

1. Pre-Layer Normalization (Pre-LN): As shown in Equation (8), all inputs to the Cross-
Attention and FFN sub-layers are passed through Layer Normalization (LN(·)). Pre-LN
ensures the inputs to each layer are normalized, which has been shown to bound the mag-
nitude of activations and their gradients, leading to a much more stable and ”well-behaved”
loss landscape.

2. Residual Connections: The outputs of the Cross-Attention and FFN blocks are added to
their inputs. This residual stream, ubiquitous in modern deep learning, provides a clean
identity path for gradients to flow backward, bypassing the complex computations of the
sub-layers.

18

972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025

Under review as a conference paper at ICLR 2026

This combination of Pre-LN and residual connections is a cornerstone of modern Transformer ar-
chitectures precisely because it stabilizes gradients in very deep networks. It ensures the spectral
norm of the velocity Jacobian, || ∂vθ∂Ati

||, remains controlled. This achieves the same goal as the

CEC: it keeps the overall step Jacobian
∂Ati+1

∂Ati
close to the identity matrix, preventing the product

in Equation (33) from exploding or vanishing.

A Necessary Caveat: We must emphasize that unlike the original LSTM’s Jocobian ∂ct
∂ct−1

, which

provides a provable guarantee of ∂ct
∂ct−1

= I (in its simplest form), a similar exact proof for Flow-G
and Flow-T is intractable. The non-linear complexity of the candidate networks (v̂θ), the gates (gi
which also depend on Ati), and the multi-layer, multi-head attention blocks (in Flow-T) makes a
closed-form analysis of the full Jacobian product (Equation 33) infeasible.

However, our designs are not arbitrary. By importing these specific architectural motifs—which
were explicitly engineered in the sequence-modeling literature to solve the vanishing/exploding gra-
dient problem—we create a strong inductive bias towards gradient stability. Our architectures effec-
tively approximate a constant-norm gradient path, which is what enables stable end-to-end off-policy
optimization, as our empirical results in Figure 6 and our ablation studies robustly confirm.

C EXTENDED RELATED WORK

We evaluate our approach against several state-of-the-art methods, categorized into two groups based
on their training paradigm. From-scratch algorithms initialize randomly and learn entirely through
environment interaction, while offline-to-online methods first pre-train on expert demonstrations
before transitioning to online reinforcement learning.

C.1 FROM-SCRATCH TRAINING METHODS

The integration of generative models into reinforcement learning has emerged as a prominent re-
search direction, with particular focus on training policies parameterized by diffusion and flow-based
models. This line of work addresses the limitations of traditional unimodal policy representations
by leveraging the expressive power of generative models to capture complex, multimodal action
distributions.

Early efforts in this domain primarily concentrated on diffusion-based policies. Q-Score Match-
ing (QSM) (Psenka et al., 2024) pioneered this direction by establishing a theoretical connection
between score functions and Q-value gradients, enabling direct policy optimization through score
matching objectives. Building upon this foundation, several advanced methods have been pro-
posed: QVPO (Ding et al., 2024) introduces Q-weighted variational policy optimization for im-
proved sample efficiency; DDiffPG (Li et al., 2024) extends policy gradient methods to diffusion
models; MaxEntDP (Dong et al., 2025) incorporates maximum entropy principles; and DIME (Ce-
lik et al., 2025) reformulates diffusion policy training through KL divergence minimization between
denoising chains and exponentiated critic targets.

More recently, attention has shifted toward flow-based policies, which offer computational advan-
tages over diffusion models through deterministic ODE integration. FlowRL (Lv et al., 2025) rep-
resents the current state-of-the-art in this category, proposing Wasserstein-2 regularized policy opti-
mization that constrains the learned policy to remain within proximity of optimal behaviors identi-
fied in the replay buffer.

For our experimental evaluation, we select DIME and FlowRL as primary benchmarks for diffusion
and flow-based approaches, respectively, based on their reported performance improvements over
earlier methods such as QVPO and QSM. We additionally include QSM in our comparison as it
established many of the foundational concepts underlying subsequent developments in this field.
Meanwhile, classical RL training methods for Gaussian policy, including PPO (Schulman et al.,
2017) and SAC (Haarnoja et al., 2018).

FlowRL (Lv et al., 2025). This approach directly optimizes flow-based policies using off-policy
RL with Wasserstein regularization. The critic Qψ(s, a) follows standard SAC updates, minimizing

19

1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079

Under review as a conference paper at ICLR 2026

the temporal difference error:

LQ(ψ) = E(s,a,r,s′)∼D

[
(Qψ(s, a)− (r + γEa′∼πθ

[Qψ(s
′, a′)]))

2
]
. (34)

The key innovation lies in the actor update, which formulates policy optimization as a constrained
problem that maximizes Q-values while regularizing the velocity field vθ using a Wasserstein-2
distance constraint. In practice, this is solved using a Lagrangian relaxation:

Lπ(θ) = Es,a∼D,a′∼πθ

t∼U(0,1)

[
f(Qπβ∗ (s, a)−Qψ(s, a′))∥vθ(s,At, t)− (a− a0)∥2

]
, (35)

where f(·) is a non-negative weighting function,At = (1−t)a0+ta represents the flow interpolation
path, and πβ∗ denotes the optimal behavior policy derived from the replay buffer. The constraint
adaptively regularizes the policy toward high-performing behaviors when Qπβ∗ > Qψ , effectively
aligning the flow optimization with value-based policy improvement.

DIME (Celik et al., 2025). This method treats diffusion policies as exponential family distribu-
tions and optimizes them via KL divergence minimization. The critic update remains standard:

LQ(ψ) =
1

2
E
[
(Qψ(st, at)−Qtarget(st, at))

2
]
. (36)

The actor update is more sophisticated, defining a target marginal through the exponentiated critic
π̄0(a|s) = exp(Qψ(s, a))/Zψ(s) and minimizing the KL divergence between the denoising chain
and this target:

L(θ) = Eπθ

[
log πθ(aN |s)−Qψ(s, a0) +

N∑
n=1

log
πθ(an−1|an, s)
π̄(an|an−1, s)

]
. (37)

QSM (Q-Score Matching) (Psenka et al., 2024) This approach leverages score matching to align
the policy’s score function with the action gradient of the Q-function, providing a principled connec-
tion between value-based and score-based learning. The critic follows a double Q-learning update
with target networks for stability:

LQ(θ) = E(st,at,rt+1,st+1)∼B

[(
Qθ(st, at)−

(
rt+1 + γ min

i=1,2
Qθ′i(st+1, at+1)

))2
]
, (38)

where Qθ′i denotes the target networks. The actor update represents the core innovation, training a
score function Ψϕ(st, at) to match the scaled action gradient of the Q-function:

Lπ(ϕ) = E(st,at)∼B

[
∥Ψϕ(st, at)− α∇aQθ(st, at)∥2

]
, (39)

where α controls the alignment strength. This formulation enables the policy to naturally follow
the Q-function’s action gradients, providing implicit policy improvement without explicit action
sampling.

C.2 OFFLINE-TO-ONLINE TRAINING METHODS

While from-scratch training is viable for many reinforcement learning tasks, it often struggles with
sample efficiency in complex environments, particularly those with dense rewards. To address this
limitation, the offline-to-online paradigm has become a prominent approach. This strategy involves
two stages: first, pre-training a policy on an offline dataset of expert behaviors, and second, fine-
tuning this policy through online interaction with the environment.

This paradigm was initially explored with diffusion-based policies, leading to the development of
methods such as DPPO (Ren et al., 2024), D3P (Yu et al., 2025), Resip (Ankile et al., 2025), and PA-
RL (Mark et al., 2024). More recently, research has extended this approach to flow-based policies,
which are the focus of our work.

Within the flow-policy literature, methods can be categorized by their online fine-tuning algorithm.
For on-policy fine-tuning, ReinFlow (Zhang et al., 2025) stands out by successfully adapting a pre-
trained flow-based policy using the PPO algorithm. For off-policy fine-tuning, FQL (Park et al.,

20

1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133

Under review as a conference paper at ICLR 2026

2025) and its successor QC-FQL (Li et al., 2025) are state-of-the-art. However, a crucial character-
istic of these off-policy methods is their reliance on an auxiliary, distilled policy for online updates;
they do not directly fine-tune the original flow model. Instead, they distill knowledge from the
pre-trained flow-based policy into a simpler, unimodal policy that is more amenable to traditional
off-policy RL.

For our experiments, we select ReinFlow, FQL, and QC-FQL as benchmarks. Our evaluation pri-
marily concentrates on the off-policy methods to demonstrate the effectiveness of our proposed
direct fine-tuning approach for flow-based policies.

QC-FQL (Li et al., 2025) This approach employs a three-network architecture: a criticQθ, a one-
step noise-conditioned policy µψ , and a behavior flow-based policy fξ. The method extends FQL
to handle action chunking by operating in temporally extended action spaces. The critic processes
action sequences and is updated via:

LQ(θk) =

(
Qθk(st, at, . . . , at+h−1)− rht −

1

K

K∑
k′=1

Qθ̄k′ (st+h, at+h, . . . , at+2h−1)

)2

, (40)

where rht represents the cumulative discounted reward over the action chunk horizon. The one-step
policy is trained to maximize Q-values while maintaining proximity to the behavior policy outputs:

Lπ(ψ) = −Qθ(st, µψ(st, zt)) + α
∥∥∥µψ(st, zt)− [aξt · · · aξt+h−1]∥∥∥2

2
. (41)

FQL (Park et al., 2025). This method represents a simplified version of QC-FQL with unit action
chunks (h = 1). The critic follows standard Bellman updates while the actor combines value max-
imization with distillation regularization. The actor loss explicitly balances Q-value optimization
against behavioral constraints:

Lπ(ω) = Es∼D,aπ∼µω
[−Qϕ(s, aπ)] + αEs∼D,z∼N (0,I)

[
∥µω(s, z)− µθ(s, z)∥22

]
, (42)

where µθ represents a pre-trained behavioral clone used for regularization.

ReinFlow (Zhang et al., 2025) This approach augments flow-based policies with noise injection
networks to enable efficient likelihood computation during policy gradient updates. Following a
warm-up phase for critic training, the method jointly optimizes the flow-based policy πθ and noise
injection network σθ′ through:

Lπ(θ, θ
′) = E

[
−Aθold(s, a)

K−1∑
k=0

log πθ(ak+1|ak, s) + α ·R(a, s; θ, θold)

]
, (43)

where Aθold(s, a) denotes advantage estimates and R(·) provides regularization to prevent excessive
deviation from the previous policy.

Key Distinctions. Unlike these baseline approaches, our method enables direct training the flow-
based policy via SAC (off-policy methods) without requiring auxiliary distillation actors, surrogate
objectives, or complex multi-network architectures. The Flow-G and Flow-T parameterizations
provide gradient stability while maintaining the expressive power of the original flow-based policy
throughout training.

D EXPERIMENTAL DOMAIN

To comprehensively evaluate our method, we conduct experiments across a diverse suite of simu-
lated environments. We utilize the classic MuJoCo benchmark (Todorov et al., 2012) for standard
from-scratch reinforcement learning. To assess performance in the more challenging offline-to-
online setting, particularly with sparse rewards, we employ complex manipulation tasks from OG-
Bench (Park et al., 2024) and human-demonstration-based tasks from Robomimic (Mandlekar et al.,
2021). Visualizations of these environments are presented in Fig. 8.

21

1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187

Under review as a conference paper at ICLR 2026

(a) Ant (b) Humanoid (c) HalfCheetah (d) cube-double

(e) cube-triple (f) cube-quadruple (g) can (h) square

Figure 8: Visualizations of the diverse simulation environments used for evaluation. Subfigures
(a-c) show the MuJoCo locomotion tasks. Subfigures (d-f) depict the complex, sparse-reward ma-
nipulation tasks from OGBench. Subfigures (g-h) illustrate the demonstration-based tasks from
Robomimic. This selection provides a comprehensive testbed for evaluating both from-scratch
learning and offline-to-online fine-tuning.

D.1 MUJOCO ENVIRONMENTS

We evaluate our method on six standard continuous control tasks from the MuJoCo physics sim-
ulation benchmark (Todorov et al., 2012): Hopper-v4, Walker2d-v4, HalfCheetah-v4,
Ant-v4, Humanoid-v4, and HumanoidStandup-v4. These environments feature simulated
robots with varying degrees of complexity, where the primary objective is to learn a locomotion
policy that maximizes forward velocity without falling. They serve as a standard measure of perfor-
mance for from-scratch RL algorithms.

D.2 OGBENCH ENVIRONMENTS

From OGBench (Park et al., 2024), we select four challenging manipulation do-
mains using their publicly available single-task versions. The selected domains include
cube-double/triple/quadruple tasks. In the cube tasks, an agent must control a
UR-5 arm to place multiple objects in target locations, receiving a reward of −nwrong, where nwrong
is the number of incorrectly placed cubes. The cube-triple and cube-quadruple tasks are particularly
difficult to solve from offline data alone, providing a rigorous testbed for the sample efficiency of
offline-to-online algorithms. In the offline phase, we use the official 100M-size dataset2.

D.3 ROBOMIMIC ENVIRONMENTS

We use three robotic manipulation tasks from the Robomimic benchmark (Mandlekar et al., 2021),
utilizing the multi-human datasets which contain 300 successful demonstration trajectories per task.
The tasks are selected to represent a range of difficulties: Lift, a simple pick-and-place task in-
volving a cube; Can, an intermediate task requiring placing a can into a bin; and Square, the most
challenging task, which requires the precise insertion of a square nut onto a peg. We use the official
Multi-Human (MH) dataset, containing 300 mixed trajectories per task, for offline pre-training.

2https://github.com/seohongpark/ogbench?tab=readme-ov-file

22

https://github.com/seohongpark/ogbench?tab=readme-ov-file

1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241

Under review as a conference paper at ICLR 2026

Table 1: Details of the experimental environments. The tasks span classic continuous control with
dense rewards (MuJoCo), complex manipulation with sparse rewards (OGBench), and challenging
imitation-based tasks also framed with sparse rewards (Robomimic). This selection provides a com-
prehensive benchmark with diverse state spaces, action dimensions, and reward structures. We use
the same dataset configuration in (Li et al., 2025).

Tasks Reward Type Dataset Size Episode Length Action Dimension
MuJoCo

Hopper-v4 Dense / 1000 3
Walker2d-v4 Dense / 1000 6
HalfCheetah-v4 Dense / 1000 6
Ant-v4 Dense / 1000 8
Humanoid-v4 Dense / 1000 17
HumanoidStandup-v4 Dense / 1000 17

OGBench

cube-double Sparse 1M 500 5
cube-triple Sparse 3M 1000 5
cube-quadruple-100M Sparse 100M 1000 5

Robomimic

lift Sparse 31,127 500 7
can Sparse 62,756 500 7
square Sparse 80,731 500 7

E IMPLEMENTATION DETAILS FOR EXPERIMENTS

In this section, we introduce the implementation details of the hyperparameter setting and network
structures. We first begin with the from-scratch training:

E.1 FROM-SCRATCH TRAINING SETTING

In from-scratch training, we develop our algorithm based on CleanRL (Huang et al., 2022), which
is a widely used benchmark codebase, where we also use the same implementation of PPO, SAC in
it. The hyperparameters for SAC, PPO, and DIME are available in Tab. 2, 3, and 4. For FlowRL ,
we use the official implementation except for unifying the parameter quantity. We run 5 seeds for
all experiments and all plots use a 95% confidenceinterval.

Table 2: Common Hyperparameters for SAC Algorithms

Parameter Value
Optimizer Adam

(b1 = 0.5 for Flow-based approaches)
Batch size (M) 512
Replay buffer size 1× 106

Discount factor (γ) 0.99
Policy learning rate 3× 10−4

Critic learning rate 1× 10−3

Target network update rate (τ) 0.005 for SAC
1.0 for Flow, Flow-G, Flow-T

Learning starts 50,000
Entropy coefficient (α) 0.2 (initial value)
Target entropy −dim(A) for SAC, 0 for Flow, Flow-G, Flow-T
Automatic entropy tuning True
Number of online environment steps 1× 106

23

1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295

Under review as a conference paper at ICLR 2026

Table 3: Hyperparameters for PPO

Parameter Value
Optimizer Adam
Parallel envs 32
Discount factor (γ) 0.99
GAE lambda 0.95
Learning rate 6× 10−4

Num steps 1024
Num minibatches 1
Update epochs 10
Max grad norm 10.0
Clip coefficient (ϵ) 0.2
Entropy coefficient 0.01
Total Timesteps 1 ×107

Table 4: Hyperparameters for DIME

Parameter Value
Discount factor (γ) 0.99
Target network update rate (τ) 1.0
Policy tau 1.0
UTD 1
Policy delay 3
Batch size 512
Critic v min -1600
Critic v max 1600
Actor lr 3× 10−4

Critic lr 3× 10−4

Entropy coefficient (α) 1.0 (init)
Target entropy 6.0
Total Timesteps 1 ×106

Architectures of the velocity network in flow-based policies (Figs. 9–11). We detail the network
parameterizations for the velocity field vθ used inside the flow rollout in Equ. (4). Across all variants,
the policy starts from a state-conditioned base At0 ∼N (0, Id), performs K Euler updates Ati+1

=
Ati +∆ti vθ(ti, Ati , s), and then applies tanh squashing to obtain the final action a = tanh(AtK).
During training, we optionally pair vθ with a log-standard-deviation head to define the per-step
Gaussian transition factors used by our noisy/likelihood-friendly rollout.

st

x0∼N (0, I)

t

[st; xt; t] Shared MLPDense 256 → ReLU ×2

Mean Head µ(·)

Log-Std Head log σ(·)

Velocity ut Euler Stepµt+1

ϵ∼N (0, I)

+ tanh(·) atInputs

Flow Field Integration Output

Iterative Loop

Flow Policy (Classic Network)

Figure 9: The flow-based policy designed with classic networks. The velocity is modeled with an
arbitrary network; here, we use an MLP as the representative. The whole flow rollout corresponds
to the recurrent computation of the residual RNN.

Fig. 9: Classic (MLP) velocity network. The baseline flow-based policy instantiates vθ with
a feed-forward network that is conditioned on the current intermediate action Ati , the environ-
ment state s, and the normalized time index ti. Concretely, the input token is the concatenation
[s; Ati ; ti], followed by a shared MLP trunk and two small heads: (i) a mean head µθ(·) that
produces the deterministic velocity

vθ(ti, Ati , s) = µθ
(
[s;Ati ; ti]

)
,

and (ii) a log-standard-deviation head log σθ(·) that parameterizes the per-step transition variance
when we use the noisy rollout for likelihood-based training. Plugging this vθ into Equ. (4) yields the
standard residual update Ati+1 = Ati + ∆ti µθ([s;Ati ; ti]). Algebraically, this is a residual RNN
step with residual function fθ(·) = ∆ti µθ(·), matching our sequence-model view in Equ. (5).

Fig. 10: Gated velocity (Flow-G). To stabilize gradients across the K sampling steps, we replace
the plain MLP velocity with a GRU-style gated update. Let fz (gate network) and fh (candidate
network) be two MLPs taking [s;Ati ; ti] as input. Define the update gate and the candidate as

gi = σ(fz([s;Ati ; ti])) , v̂θ = ϕ(fh([s;Ati ; ti])) ,

where σ(·) is the logistic sigmoid and ϕ(·) is a bounded activation (e.g., tanh). The gated velocity
is then

vθ(ti, Ati , s) = gi ⊙
(
v̂θ −Ati

)
,

24

1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349

Under review as a conference paper at ICLR 2026

st

x0 ∼ N (0, I)

t

[st; xt; t]

Gate Networkfz(·)

Candidate Networkfh(·)

σ

tanh

Gated Velocity vt

log σ Network

Euler Step µt+1

ϵ ∼ N (0, I)

+ tanh(·) at

Inputs Flow Field Integration Output

Iterative Loop

Flow Policy as GRU

Figure 10: The flow-based policy designed with Gated velocity. The velocity is modeled with both
the gate network and the candidate network. The whole flow rollout corresponds to the recurrent
computation of GRU.

which, when inserted into Equ. (4), yields the GRU-like residual step

Ati+1
= Ati + ∆ti

(
gi ⊙ (v̂θ −Ati)

)
,

exactly as in Equ. (6). Intuitively, gi interpolates between “keeping” the current intermediate action
(gi≈0) and “rewriting” it by the candidate proposal (gi≈1). As in Fig. 9, we also include a log σθ(·)
head for the per-step Gaussian factors used by the noisy rollout.

st

x0∼N (0, I)

t

Obs Enc (MLP) Memory

Act Proj

TE(t)

+ Input Emb
Dec L1

CA/FFN+LN

Dec L2
CA/FFN+LN

Dec L3
CA/FFN+LN

Dec L4
CA/FFN+LN

Decoded Velocity µ

log σ

Euler Step

ϵ∼N (0, I)

+ tanh(·) at

Inputs
Transformer (Decoder Layer × N)

Integration OutputFlow Field

Iterative Loop

Flow Policy as Transformer

Figure 11: A schematic .

Fig. 11: Transformer-decoder velocity (Flow-T). Here we implement vθ with a Transformer-
style, pre-norm residual block that conditions on the state through cross-attention. We first form
separate embeddings for the action-time token and the state:

ΦAi
= EA

(
ϕt(ti), Ati

)
, ΦS = ES

(
ϕs(s)

)
,

as in Equ. (7), where EA, ES are linear projections and ϕt, ϕs are positional/feature encoders. We
stackL (L = 4 in this figure) pre-norm decoder blocks. In each layer l=1, . . . , L, the action token is
refined by a state-only cross-attention and a feed-forward network (no token-to-token mixing across
time positions):

Y
(l)
i = Φ

(l−1)
Ai

+ Crossl

(
LN
(
Φ

(l−1)
Ai

)
, context = LN(ΦS)

)
, Φ

(l)
Ai

= Y
(l)
i + FFNl

(
LN(Y

(l)
i)
)
,

as Equ. (8). Finally, the decoded token is projected to the velocity space

vθ(ti, Ati , s) = Wo

(
LN(Φ

(L)
Ai

)
)
,

and the rollout step follows Equ. (4):

Ati+1
= Ati + ∆tiWo

(
LN(Φ

(L)
Ai

)
)
,

which matches Equ. (9). As in the other variants, a parallel log σθ(·) head provides per-step vari-
ances for the Gaussian transition factors.

Takeaway: mapping to sequential models. Under our sequence-model perspective, the classic
MLP velocity in Fig. 9 realizes a residual RNN step in Equ. (5), the gated velocity in Fig. 10 realizes
a GRU-style residual update in Equ. (6), and the decoded velocity in Fig. 11 realizes a Transformer
Decoder refinement in Equ. (7)–(9). All three are drop-in parameterizations of vθ inside the same
flow rollout in Equ. (4), differing only in how they regulate and condition information flow across
rollout steps.

25

1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403

Under review as a conference paper at ICLR 2026

Table 5: Actor (velocity) architectures inside theK-step flow rolloutAti+1
= Ati+∆t vθ(ti, Ati , s).

All variants apply tanh squashing with Jacobian correction. Notation: da:=|A|, Transformer d=64,
heads nH=4, layers nL=2.

Aspect Classic (MLP) Flow-G (GRU-gated) Flow-T (Transformer-decoder)

Conditioning input [s; Ati
; ti] [s; Ati

; time emb(ti)]

Ati
token + time emb

state s as memory

Backbone / blocks
MLP 256→256

ReLU

Gate: 128→da (swish)
Cand: 128→da (swish)

Decoder×nL=2

self-only SA, cross-attn(s), FFN 4d, LN

Velocity form

vθ=µθ([s;Ati
; ti])

(µθ∈Rda)

gi=σ(fz), v̂=50 tanh(fh)

vθ=gi ⊙ (v̂−Ati
)

zi=Wo(LN(Φ
(L)
Ai

))

vθ=zi

Log-std clamp
tanh to
[−5, 2]

tanh to
[−5, 2]

tanh to
[−5, 2]

Action sampling stepsK 4 4 4

Notable inits / dims –
Gate head init: W=0, b=5.0

hidden 128

d=64, nH=4, nL=2

obs-enc 32
silu−−−→64

Per-step update

A←A+ v∆t

A←N (A, σ2) Same as Classic Same as Classic

E.2 OFFLINE-TO-ONLINE TRAINING SETTING

The network design in offline-to-online training is similar to the from-scratch training. Recall the
actor loss:

L(θ) = α log pc(Aθ | sh)−Qψ
(
sh, a

θ
h

)
+ β ∥aθh − ah∥2, (ah, sh) ∼ B.

It is observed that the setting of hyper-parameter β highly influences the training, where the regu-
larization decides whether the optimized policy stays close to or not to the policy in the buffer. We
basically adopt the same setting of β as (Li et al., 2025), where we detail in the Table 6:

Table 6: A comparison of the regularization parameter β across different environments and algo-
rithms. The notation a/b specifies the value of the regularization parameter β for the offline learning
phase (a) and the subsequent online learning phase (b). For instance, 10000/1000 indicates that
β = 10000 is used for offline training and β = 1000 for online training.

Environments FQL QC-FQL Flow-G Flow-T
scene-sparse-* 300 300 300 300
cube-double-* 300 300 300 300
cube-triple-* 300 100 100 100
cube-quadruple-100M-* 300 100 100 100
lift 10000 10000 10000/1000 10000/1000
can 10000 10000 10000/1000 10000/1000
square 10000 10000 10000/1000 10000/1000

Table 7 summarizes the actor-side architectures and hyperparameters for our offline-to-online vari-
ants. We adopt action chunking (horizonH), which has been shown to be effective on complex tasks
(Li et al., 2025). The parameter counts of Flow-G and Flow-T are less than or comparable to that of
QC-FQL. We also use fewer denoising/sampling steps K than QC-FQL to improve efficiency with-
out degrading training quality. For stability, we set the SAC target entropy to 0 and employ a fixed
sampling noise level—contrary to our from-scratch setting, where a separate network adaptively
tunes the noise schedule.

Sampling Steps Justification. We justify our choice of sampling steps (K = 4 for our flow poli-
cies, K = 16 for diffusion baselines) based on two factors. First, this reflects the inherent efficiency
of the models, as flow-based models (especially Rectified Flow) generally require significantly fewer
integration steps than diffusion models require for denoising. Second, and most importantly, we

26

1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457

Under review as a conference paper at ICLR 2026

Table 7: Offline-to-online settings and actor-specific hyperparameters.

Aspect QC-FQL Flow-G Flow-T

Actor backbone
MLP (512×4)
GELU, no LN

MLP (512×4) + gate
(h=256, swish)

Decoder nL=2, d=128

nH=4, FFN 4d

Velocity form vθ(s, a, t) by MLP
v=z ⊙ (50 tanh(v̂)− a)

z=σ(fz)
v from decoder head

(self+cross attn)

Flow / steps
Action sampling steps

K=10

Action sampling steps
K=4

Action sampling steps
K=4

Sampling noise std deterministic 0.10 0.10

SAC entropy (α) N/A (no SAC)

autotune (init 0.2),

αlr=3×10−4, H̄=0

autotune (init 0.2),

αlr=3×10−4, H̄=0

Action range
tanh squash

(deterministic)
tanh + Jacobian

(for log-prob)
tanh + Jacobian

(for log-prob)

Gate init / dims —
gate head: W=0, b=5.0

hidden 256 —

Transformer dims — — d=128, nH=4, nL=2

Actor hidden dims (512, 512, 512, 512) (512, 512, 512, 512)

(used only in enc./FFN;
decoder per row above)

Action chunking True True True

Opt / LR / WD Adam, 3×10−4 Adam, 3×10−4 Adam, 3×10−4

Batch / γ / τ 256 / 0.99 / 0.005 256 / 0.99 / 0.005 256 / 0.99 / 0.005

adopted these values to ensure a fair and direct comparison with the key baseline papers. Our use
of 4 sampling steps for SAC Flow-G and SAC Flow-T follows the established setting in the Rein-
Flow (Zhang et al., 2025) baseline. Similarly, our use of 16 denoising steps for the diffusion-based
baselines (e.g., DIME) matches the hyperparameter used in the DIME (Celik et al., 2025) paper.

F MORE EXPERIMENT RESULTS

In this section, we show more tested experiments.

F.1 ADDITIONAL FROM-SCRATCH RESULTS

PPO As shown in Tab. 3, we use stabler parameter (num minibatch=1), making PPO’s data ef-
ficiency a little lower. We report PPO’s training curve over a larger number of steps in Fig. 12.
The results show that the final performance of our PPO implementation is comparable to or exceeds
other open sources results.

SAC To ensure a fair and rigorous comparison in our main results, we intentionally applied a
unified set of hyperparameters for each method across all tasks. Consequently, SAC to exhibit
poor performance on Ant-v4 under this unified settings. In this section, we conduct additional
experiments under task-specific hyper-parameters in Tab. 8. Fig. 13 shows that with task-specific
hyperparameters, SAC baseline can indeed converge to 4700 return on Ant-v4.

Results on Tasks with Sparse Rewards We finally test on Robomimic-Can and OGBench-cube.
Fig. 14 shows that all methods struggle on these two hard-exploration, sparse-reward tasks without
pretrain, highlighting the necessity of offline-to-online training.

Additional evaluation Fig. 15 shows the interquartile mean (IQM) with a 95% stratified bootstrap
confidence interval as suggested by Agarwal et al. (2021).

We also report the probability-of-improvement Agarwal et al. (2021) in Fig. 16. Specifically, the
probability of improvement metric estimates the likelihood that our algorithm X outperforms a
baseline Y on a randomly selected task, formalized as P (X > Y). Consistent with the method-

27

1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511

Under review as a conference paper at ICLR 2026

(a) Hopper (b) Walker2d (c) HalfCheetah

(d) Ant (e) Humanoid (f) HumanoidStandup

Figure 12: Training curve of PPO over a larger number of steps.

Table 8: Task-specific Hyperparameters for SAC Ant-v4

Parameter Value
Optimizer Adam
Batch size (M) 1024
Replay buffer size 1× 106

Discount factor (γ) 0.99
Policy learning rate 2× 10−4

Critic learning rate 5× 10−4

Target network update rate (τ) 0.001
Learning starts 50,000
Entropy coefficient (α) 0.2 (initial value)
Target entropy −dim(A)
Automatic entropy tuning True
Number of online environment steps 1× 106

Figure 13: Training curves of SAC in
Ant-v4. For the Ant task, SAC re-
quires careful hyperparameter tuning to
achieve stable convergence.

28

1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565

Under review as a conference paper at ICLR 2026

(a) Robomimic-Can (b) Cube-Double-Task2

Figure 14: From-scratch training results on Robomimic-Can and OGBench-cube. All methods
struggle on the hard-exploration, sparse-reward tasks without pretrain, highlighting the necessity of
offline-to-online training.

(a) Hopper-v4 (b) Walker2D-v4 (c) HalfCheetah-v4

(d) Ant-v4 (e) Humanoid-v4 (f) HumanoidStandup-v4

Figure 15: From-scratch training results on Mujoco (IQM return).

ology of Agarwal et al. (2021), we compute point estimates and 95% confidence intervals using
stratified bootstrapping with 200 resamples across all tasks and seeds. This approach provides a ro-
bust pairwise comparison that mitigates the skewing effects of outlier performances often observed
in aggregate metrics.

F.2 ADDITIONAL OFFLINE-TO-ONLINE RESULTS

Fig. 17 abd Fig. 18 shows complete offline-to-online training performance in OGBench and
Robomimic.

Additional evaluation Fig. 19 shows the interquartile mean (IQM) with a 95% stratified boot-
strap confidence interval as suggested by Agarwal et al. (2021). We also report the probability-of-
improvement in Fig. 20.

29

1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619

Under review as a conference paper at ICLR 2026

(a) Flow-T against baselines (b) Flow-G against baselines

Figure 16: Probability-of-improvement in Mujoco benchmark. Each row shows the probability of
improvement, with 95% bootstrap CIs, that the algorithm X on the top outperforms algorithm Y on
the left, given that X was claimed to be better than Y.

F.3 ADDITIONAL ABLATION STUDY

We further analyze the sensitivity to the specifics of the GRU and transformer. In main results, we
set the default transformer parameter of Flow-T as layer=2, head=4, d model=96. Fig. 21 shows our
SAC Flow-T is robust to these three specifics of transformer.

For Flow-G, we analyze its sensitivity to gate network’s width. We set the default gate width to 512.
Fig. 22 shows that SAC Flow-G maintains stable convergence with gate width = 256. However,
insufficient capacity in the gate network leads to performance degradation (gate width=64).

F.4 FLOW-T/G CAN BE USED IN OTHER OFF-POLICY RL ALGORITHMS

SAC flow stabilizes gradients during BPTT to ensure stable off-policy RL training, functioning
independently of specific algorithms. We further extended our evaluation to TD3 Fujimoto et al.
(2018). Fig. 23 demonstrates that our Flow-T/G architecture remains effective with TD3. In contrast,
directly fine-tuning the flow using TD3 results in failure to converge or sub-optimal performance.

F.5 PERFORMANCE ANALYSIS: DECOUPLING ARCHITECTURE FROM ALGORITHM

To further investigate the source of our performance gains and explicitly disentangle the contribution
of our architectural design (Flow-T) from the algorithmic objective, we conducted an additional
ablation study comparing our method against DIME (Celik et al., 2025) under identical architectural
conditions.

DIME Flow-T Implementation. Standard DIME optimizes a variational lower bound involving a
forward process prior and a reverse path loss. To test whether these specific algorithmic components
are the drivers of performance, we implemented DIME Flow-T. This variant retains the full DIME
objective functions—including the injection of the prior gradient and the reverse path likelihood
ratio—but replaces the standard backbone with our proposed Flow-T velocity parameterization.

Results and Discussion. We compared SAC Flow-T (our proposed method) against the new
DIME Flow-T variant. The results are illustrated in Figure 24. We observe two key findings:

30

1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673

Under review as a conference paper at ICLR 2026

(a) Cube-Quadruple-
Task1

(b) Cube-Quadruple-
Task2

(c) Cube-Quadruple-
Task3

(d) Cube-Quadruple-
Task4

(e) Cube-Quadruple-
Task5

(f) Cube-Triple-
Task1

(g) Cube-Triple-
Task2

(h) Cube-Triple-
Task3

(i) Cube-Triple-
Task4

(j) Cube-Triple-
Task5

(k) Cube-Double-
Task1

(l) Cube-Double-
Task2

(m) Cube-Double-
Task3

(n) Cube-Double-
Task4

(o) Cube-Double-
Task5

Figure 17: Complete offline-to-online training performance in OGBench. This figure illustrates the
comprehensive training performance across all tasks. All methods are trained on 1M offline updates
followed by 1M online interaction steps. Our methods, SAC Flow-T and SAC Flow-G, achieve
competitive—often superior—performance across the evaluated benchmarks.

(a) Robomimic-Lift (b) Robomimic-Can (c) Robomimic-Square

Figure 18: Complete offline-to-online training performance in Robomimic.

• Architecture enhances DIME: DIME Flow-T significantly outperforms the original DIME
baseline (as shown in main results). This confirms that our Flow-T architecture provides
substantial benefits in gradient stability and expressivity, regardless of the underlying RL
objective.

• SAC Simplicity prevails: Crucially, as shown in Figure 24, SAC Flow-T consistently
matches or outperforms DIME Flow-T (e.g., in HumanoidStandup). This suggests that
the additional algorithmic complexity of DIME does not yield marginal gains once the
velocity network is properly stabilized by Flow-T.

These results, combined with the successful application of Flow-T to TD3 (Section 5), demonstrate
that the primary bottleneck in off-policy flow training is gradient instability in the rollout, which our

31

1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727

Under review as a conference paper at ICLR 2026

(a) Cube-Double-Task (b) Cube-Triple-Task (c) Cube-Quadruple-Task (d) Robomimic

Figure 19: Aggregated offline-to-online performance on OGBench and Robomimic benchmarks
(IQM).

(a) SAC Flow-G (b) SAC Flow-T
Figure 20: Probability-of-improvement for offline-to-online setting on OGBench benchmarks.

Flow-T architecture effectively resolves. Once stabilized, the standard SAC objective is sufficient to
achieve state-of-the-art performance.

G LLM USAGE DISCLOSURE

We used a large language model solely for writing polish. Its assistance was limited to grammar and
style edits, wording suggestions for titles/abstract/captions, consistency of terminology, and minor
LaTeX phrasing (e.g., figure/table captions and cross-reference text).

32

1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781

Under review as a conference paper at ICLR 2026

Figure 21: Ablation study on specifics of SAC Flow-T. Our SAC Flow-T are robust to the specifics
of the transformers.

Figure 22: Ablation study on specifics of SAC Flow-G. SAC Flow-G maintains stable convergence
with reduced gate widths. However, there exists degradation in final performance when the gate
width is extremely small (64).

(a) Hopper-v4 (b) Walker-v4 (c) HumanoidStandup-v4

Figure 23: Evaluate our Flow-T/G architecture on TD3.

33

1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835

Under review as a conference paper at ICLR 2026

(a) Hopper-v4 (b) Walker-v4 (c) HumanoidStandup-v4

Figure 24: Evaluate our Flow-T architecture on DIME loss.

34

	Introduction
	Preliminaries
	Reinforcement Learning
	Soft Actor-Critic algorithm
	Flow-based Policy in Reinforcement Learning

	From Flow Rollout to sequential models
	Training Flow-based Policy via SAC
	Experiment
	Settings
	Environments and Offline Datasets
	Baselines

	Main results
	Ablation Study

	Conclusion
	The derivation of SAC loss in the flow-based policy
	Noise-augmented rollout and drift correction
	Joint path density and squashing Jacobian
	Pathwise expansion of the marginal score
	Gradients of the SAC losses under the joint path factorization
	Path-Regularized Soft Critic
	Exact decomposition of the entropy term
	Why this is acceptable for off-policy flow training

	Temperature update (learned)
	Practical notes and implementation details

	Detailed Analysis of Gradient Stability
	The Vanishing/Exploding Gradient Problem in Standard Flow Rollouts
	Flow-G and Flow-T as Gradient Stabilizers

	Extended Related Work
	From-scratch Training Methods
	Offline-to-Online Training Methods

	Experimental Domain
	MuJoCo Environments
	OGBench Environments
	Robomimic Environments

	Implementation Details for Experiments
	From-Scratch training setting
	Offline-to-online training setting

	More Experiment Results
	Additional From-Scratch Results
	Additional Offline-to-Online Results
	Additional Ablation Study
	Flow-T/G can be used in other off-policy RL algorithms
	Performance Analysis: Decoupling Architecture from Algorithm

	LLM Usage Disclosure

