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ABSTRACT

Mixed-Integer Programming (MIP) solvers rely heavily on cutting planes to tighten
LP relaxations, but traditional approaches generate thousands of cuts that consume
gigabytes of memory while providing minimal benefit. We present an intelligent
cut selection framework that achieves a 98.1% reduction in memory usage while
maintaining competitive solving with an objective gap of approximately 0.08%.
Within this RL framework, we use Proximal Policy Optimization (PPO) to learn
a behavioral model that imitates the expert solver’s decisions. The adversarially
imitated behavioral model drives an agent comprising these key innovations: (i)
a cut-selection policy trained via curriculum learning; and (ii) adaptive inference
that dynamically adjusts computational budgets. Through comprehensive evalu-
ation across SetCover and diverse MIPLIB problems, we demonstrate consistent
speedups (3.78× average on MIPLIB) and achieve a 100% success rate on instances
where traditional SCIP fails 47-53% of the time. Our method also reduces peak
memory consumption from 3.03GB to 46 MB, enabling optimization in previously
inaccessible and other resource-constrained environments where traditional solvers
face fundamental limitations.

1 INTRODUCTION AND RELATED WORK

Combinatorial optimization lies at the heart of numerous real-world applications, from production
planning (Pochet & Wolsey, 2006) and scheduling (Cao et al., 2022) to network design (Nieman
et al., 2024; Wolsey, 2020). These problems often manifest as Integer Programs (IPs), which remain
notoriously difficult to solve to optimality due to their NP-hard nature (Bixby et al., 2004). State-of-
the-art solvers, such as Solving Constraint Integer Programs (SCIP) (Gamrath et al., 2020), rely on
the branch-and-cut algorithm, which iteratively tightens a Linear Programming (LP) relaxation of
the problem by adding cutting planes. However, the efficacy of this process is critically constrained
by a fundamental bottleneck: cut management. For a typical industrial problem, a modern solver
can generate over 100,000 candidate cuts, but only a tiny fraction (1-2%) of these cuts meaningfully
improve the objective bound. This gross inefficiency makes large-scale optimization intractable in
memory-constrained environments where resource costs are paramount.

Machine learning for combinatorial optimization has seen significant interest, particularly in en-
hancing MIP solver components. Early works focused on imitation learning for variable branching
(Khalil et al., 2017; Gasse et al., 2019). More recently, attention has shifted to cut selection. (Tang
et al., 2020) introduced RL for cutting plane selection, though their approach focused primarily on
immediate reward maximization. Paulus et al. (2022) proposed utilizing imitation learning to mimic
strong branching decisions for cut selection. Most closely related to our work is (Wang et al., 2024),
which utilizes a hierarchical sequence model to select cuts. However, these approaches generally treat
the MIP solver as a black box, optimizing solve time directly, often overlooking memory overhead.
In contrast, MIRACLE explicitly models the memory-performance trade-off. Unlike (Wang et al.,
2024) and Paulus et al. (2022), which often require heavy architectures or look-ahead rollouts, our
approach utilizes a lightweight, budget-constrained policy optimized via PPO and GAIL to achieve an
order-of-magnitude memory reduction while maintaining solution reliability in resource-constrained
environments.
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While these methods have demonstrated performance gains, they are built on a paradigm that suffers
from three fundamental limitations:

1. The Black-Box Fallacy: Existing approaches treat the MIP solver as a black box. They
learn to copy expert decisions or interact in a model-free fashion, but they fail to model the
underlying dynamics of the optimization process (Deza & Khalil, 2023; Zhang et al., 2024).
They do not learn how adding a cut will change the subsequent state of the LP relaxation, a
process which is instead handled by an external, non-differentiable solver call (Huang et al.,
2022).

2. Myopic Planning: A direct consequence of the black-box approach is that learned policies
are restricted to myopic decisions. Lacking a model of the environment, they cannot plan
ahead or reason about the long-term consequences of their actions, preventing the discovery
of more sophisticated, non-local strategies.

3. Resource Inefficiency as an Afterthought: Prior work has predominantly focused on
improving solution time, largely ignoring memory overhead as a critical performance metric.
This makes them ill-suited for the very resource-constrained scenarios where learned,
efficient heuristics are most desperately needed.

This work addresses a critical gap: Can we learn intelligent cut selection policies that achieve
significant memory reductions while maintaining competitive solving performance? Our approach
reframes cut selection as an RL problem where we learn a behavioral model of expert cut selection
rather than attempting to model the complex LP dynamics directly.

1.1 KEY CONTRIBUTIONS

Our work makes the following contributions:

• Memory-First Optimization Paradigm: We demonstrate that intelligent cut selection can
achieve significant memory reductions (97.7-98.1% on SetCover benchmarks, 68.1-69.1%
on diverse MIPLIB problems) while maintaining or improving solution quality.

• Robust Behavioral Modeling Framework: Our PPO-based approach learns a behavioral
model of expert cut selean average reduction of 86.3%) and reliability improvements (a 100%
success rate compared to 53% arning and adaptive inference, we eliminate manual parameter
tuning and provide a deployment-ready system with inference complexity independent of
problem size.

• Comprehensive Empirical Validation: We provide a systematic evaluation across 300
instances spanning SetCover training problems and diverse MIPLIB test cases (Huang et al.,
2024). Our analysis includes statistical significance testing, confidence intervals, and effect
size measurements, demonstrating both memory efficiency (86.3% average reduction) and
reliability improvements (100% vs 53% success rate on challenging instances).

• Ablation Studies and Robustness: We demonstrate that our framework’s performance
remains stable across different hyperparameter configurations (cut budgets 10-50, iteration
limits 1-10, various early stopping criteria), indicating reliable real-world deployment
characteristics essential for industrial adoption.

To this extent, our approach reframes cut selection through the lens of RL. Rather than attempting to
model the prohibitively complex LP transition function, we learn to imitate and ultimately improve
upon SCIP’s implicit selection policy. SCIP’s cut-selection module serves as the expert policy
because it encapsulates decades of solver engineering and remains the strongest publicly available
heuristic baseline. This is achieved by training a neural policy using Proximal Policy Optimization
(PPO) (Schulman et al., 2017), guided by dense reward signals derived from Generative Adversarial
Imitation Learning (GAIL) (Ho & Ermon, 2016; Finn et al., 2016). PPO is particularly well-suited for
this task due to its remarkable stability and the reliable balance it strikes between policy improvement
and destructive, overly large updates – a critical feature for navigating the high-variance decision
space of cut selection. While our framework could accommodate other advanced policy gradient
methods, PPO provides a strong and sample-efficient foundation. Furthermore, behavioral modeling
using the GAIL approach enables us to capture the implicit knowledge embedded in decades of solver
development, while optimizing explicitly for memory efficiency – a goal that traditional heuristics
cannot directly target.
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2 BACKGROUND AND PROBLEM FORMULATION

This section establishes the necessary mathematical foundations and formally defines the cut selection
problem addressed in this work.
Definition 2.1 (Integer Programming). An Integer Programming (IP) problem seeks to optimize a
linear objective over a set of integer variables, x, subject to linear constraints, formulated as:

min
x

c⊤x s.t. Ax ≤ b, x ∈ Zn (1)

where c ∈ Rn is the objective vector, and the feasible region is defined by the constraint matrix
A ∈ Rm×n and vector b ∈ Rm.

A standard solution approach of IP, branch-and-cut, begins by solving the problem’s continuous
LP relaxation. If the solution x(k)LP at iteration k is fractional, a set of linear inequalities known as
cutting planes or cuts (αTx ≤ β, where α ∈ Rn and β ∈ R) are generated. A subset of these cuts is
selected and added to the formulation to form a tighter LP relaxation, which is then re-solved. This
iterative process continues until an integer-optimal solution is found. More details can be found in
the Appendix C. Selecting a subset of cuts can be a sequential decision-making problem and thus can
be modelled as a Markov Decision Process (MDP), which is defined below:
Definition 2.2 (Markov Decision Processes). An MDP is defined by the tupleM = (S,A,P,R, γ),
where S is the state space, A is the action space, P(sk+1|sk, ak) models the transition dynamics of
the state s and action a at iteration k,R(sk, ak) is the reward function, and γ ∈ [0, 1] is a discount
factor, with appropriate dimensions.

We frame the cut selection task as a specific MDP whose components are carefully designed to
address the unique challenges of MIP optimization. This is achieved using a state space S where each
state sk is a comprehensive feature vector capturing the solver’s context. The agent’s policy operates
on an action space A defined by the set of binary decisions over candidate cuts, constrained by a
memory-enforcing budget B. Critically, to overcome the challenge of sparse and delayed feedback,
we employ a learned reward functionR.
Problem 2.3 (Memory-Efficient Cut Selection). The central problem is to learn a cut selection
policy πθ : S → A that, at each iteration k of the branch-and-cut process, selects an action ak ∈ A
(a subset of candidate cuts) based on the current solver state sk ∈ S and satisfies the two main
objectives:

1. Memory Efficiency: Minimize the memory consumed by reducing the number of cuts being
added to the LP relaxation, within an appropriate budget B. This is measured in Bytes.

2. Solver performance: Maximize the overall solving performance. This is defined as :
|objSCIP − objMIRACLE | ≤ ϵ, where obj(·) is the objective value obtained.

The detailed architecture of our policy, the implementation of this adversarial reward system, and the
strategies used to ensure robust training are elaborated upon in the following section.

3 MIRACLE: INTELLIGENT AND MEMORY EFFICIENT CUT SELECTION

Our framework, MIRACLE, trains a policy to select a minimal yet high-impact subset of cuts,
balancing objective improvement with memory and computational costs. The core of our approach
is a fast, lightweight policy trained via PPO, guided by dense rewards from a sophisticated reward
learner based on GAIL. This is complemented by curriculum learning and an adaptive inference
system to ensure robust, real-world performance.

Traditional MIP solvers generate thousands of candidate cuts during the optimization process,
consuming substantial memory while providing diminishing returns. We formulate the task of
intelligent cut selection as an MDP where our agent learns to identify a critical subset of cuts to
maximize performance and improve memory efficiency. We conceptualize the underlying MIP solver
– in our case, SCIP – as the environment. At each iteration k in the branch-and-cut algorithm, the
SCIP environment generates a pool of candidate cuts Ck based on its highly-tuned internal procedures

3
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SCIP En-
vironment

State sk &
Candidate Cuts Ck

Selected
Cuts ak

MIRACLE
Agent

(πθ with PPO)

Final
Solution

Generates

Selects

Apply Cuts & Re-Solve LP

Iterative Solving Process

Expert Trajectories
(from SCIP)

GAIL Dis-
criminator Dψ

Learned Reward
rGAIL

Offline Training

Figure 1: MIRACLE Frame-
work. At each step (k), the SCIP
Environment, generates a state
(sk) and candidate cuts (Ck). This
information is processed by our
trained MIRACLE Agent (πθ),
which selects a small subset of
cuts (ak) and applies them back
into the environment. The LP is
re-solved until a final solution is
reached. The agent’s policy is
learned offline via PPO, guided
by a dense reward signal from a
GAIL Discriminator trained on
expert SCIP trajectories.

and emits a corresponding state sk that captures the current state of the optimization. Our agent,
MIRACLE, processes this information and performs an action ak, which consists of selecting a small,
budgeted subset of cuts from Ck. The selected cuts are added to the LP formulation, which is then
re-solved. An overview of the framework is presented in Figure 1. This is formally defined below:
Problem 3.1 (Intelligent Cut Selection as an MDP). We define the problem of intelligent cut selection
as an MDP framework, where an agent takes an action ak, which is a binary selection vector over
the subset of candidate cuts, Ck = {c1, c2, . . . , c|Ck|}, defined as

ak := ⟨a(1)k , a
(2)
k , . . . , a

(|Ck|)
k ⟩, where a

(i)
k ∈ {0, 1}, (2)

based on a budget constraint
∑|Ck|
i=1 a

(i)
k ≤ B, and maximizes its cumulative rewardR(sk, ak) when

compared to an expert action.

To solve Problem 3.1, our framework, MIRACLE, employs PPO to train the policy πθ. We address
the critical challenge of sparse rewards by learning the reward functionR using GAIL from expert
data, which here comprises the SCIP solver steps that includes: (LP relaxation solving, fractional
variable identification, rounding cut generation, cutting plane selection, constraint addition, LP
re-optimization, objective improvement measurement, and iterative refinement), and we ensure robust,
real-world performance through a curriculum learning strategy and an adaptive inference system.

3.1 ADVERSARIAL REWARD LEARNING FOR DENSE FEEDBACK

In cut selection, the true reward signal is only observable after the problem is completely solved.
Hence, in this context, traditional reward engineering approaches may fail because: (i) immediate
feedback (e.g., bound improvement) is myopic and misleading, (ii) optimal cut selection requires
reasoning about complex interactions between cuts, and (iii) memory efficiency objectives cannot be
easily encoded in handcrafted reward functions. Therefore, learning rewards from expert behavior
is essential to capture the implicit knowledge embedded in decades of solver development. Instead
of handcrafting a reward R(sk, ak), we train a discriminator network to distinguish between the
behaviour of an expert (which is SCIP here) and our learning agent.

The discriminator, Dψ : S ×A → [0, 1], which is parameterized as a MLP:

Dψ(sk, ak) = σ(f (L) ◦ f (L−1) ◦ · · · ◦ f (1)(sk, ak)) (3)

where f l is a layer function such that f (l) for l ∈ {1, . . . , L− 1} is an affine transformation followed
by a ReLU activation and f (L), is a linear output layer that produces the logits. This is trained via
a standard adversarial binary cross-entropy objective to distinguish expert trajectories πE from our
agent’s policy πθ. The expert policy πE is derived from SCIP’s systematic cutting plane methodology,
formally defined as:

πE(at|sk) = SCIPcuts(sk) = T8 ◦ T7 ◦ · · · ◦ T1(sk) (4)

where {T 1, T2, . . . , T8} represents the sequential tuple of operations: (LP relaxation solving, frac-
tional variable identification, rounding cut generation, cutting plane selection, constraint addition, LP
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re-optimization, objective improvement measurement, and iterative refinement). This expert data is
collected by executing the default SCIP solver on a diverse set of training instances and recording its
state-action decisions that emerge from this systematic cutting plane process. Our agent’s policy is
parameterized as a neural network that learns to approximate the expert’s cutting decisions:

πθ(ak|sk) = softmax(f (L) ◦ f (L−1) ◦ · · · ◦ f (1)) (5)

where f (l) for l ∈ {1, . . . , L − 1} is an affine transformation followed by a ReLU activation, and
f (L) is a linear output layer that produces the raw logits. Our agent’s policy acts as the generator in
this adversarial setup, producing its own trajectories by interacting with the SCIP environment and
learning to mimic the expert’s cutting decisions. The discriminator is then trained to distinguish these
two sources of data:

min
ψ

(
E(sk,ak)∼πE

[− logDψ(sk, ak)] + E(sk,ak)∼πθ
[− log(1−Dψ(sk, ak))]

)
(6)

The rationale for this adversarial setup is grounded in the theory of generative adversarial networks.
The optimal discriminator D∗(s, a) for this objective converges to (Goodfellow et al., 2014):

D∗(sk, ak) =
πE(sk, ak)

πE(sk, ak) + πθ(sk, ak)
(7)

where πE(sk, ak) and πθ(sk, ak) represent the state-action occupancy measures of the expert and
the agent, respectively. This means the discriminator learns to model the ratio of how likely an action
is to come from the expert versus the agent. The learned reward function is then formally defined as:

R(sk, ak) ≈ rGAIL(s, a) = − log(1−Dψ(s, a)), (8)

providing dense feedback that guides the policy toward expert-like behavior while allowing for
improvement beyond expert performance. By doing so, the agent is encouraged to maximize the log-
probability of its actions being classified as “expert.” An action that perfectly fools the discriminator
(Dψ(s, a) → 1) will yield a very high reward, while an action that is clearly agent-generated
(Dψ(s, a)→ 0) will yield a low reward.

3.2 PPO-BASED POLICY LEARNING WITH EXPERT GUIDANCE

We train our neural policy, πθ, using PPO, a robust actor-critic method well-suited for the high-
variance decision space of cut selection. The policy is implemented as an actor-critic architecture,
with parameters θ and ϕ respectively. The actor learns the cut selection policy, and the critic estimates
state values to guide the actor’s learning. The actor, πθ(ak|sk), computes a selection probability for
each candidate cut ci based on its feature vector, xci . The final probability is produced by applying a
sigmoid function, σ(·), to a raw score (logit) generated by an MLP:

P (a
(i)
k = 1|sk) = σ

(
f
(L)
θ ◦ f (L−1)

θ ◦ · · · ◦ f (1)θ (xci , sk)
)

(9)

where each hidden layer f (l)θ for l ∈ {1, L− 1} is an affine transformation followed by a ReLU acti-
vation, and the final layer f (L)θ is a linear output producing the logit. Concurrently, the critic, Vϕ(sk),
which estimates the state value, is also implemented as an MLP that takes the state representation sk
as input and outputs a single scalar value:

Vϕ(sk) = g
(L)
ϕ ◦ g(L−1)

ϕ ◦ · · · ◦ g1ϕ(sk) (10)

where the hidden layer g(1)ϕ to g(L−1) uses a ReLU activation and the final layer g(L)ϕ is a linear
output. In our implementation, the critic shares its input feature extraction layers with the actor to
improve learning efficiency.

The training process is driven by the dense reward signal provided by our GAIL discriminator. As
established in Section 3.1, the reward at each step k is given by rk = rGAIL(sk, ak). With this
signal, we can define the full PPO training objective. First, we compute the advantage function using
Generalized Advantage Estimation (GAE) (Schulman et al., 2015), which uses the critic’s value
estimates to reduce variance:

ÂGAE
k =

∞∑
l=0

(γλ)lδk+l, where δk+l = rk+l + γVϕ(sk+l+1)− Vϕ(sk+l) (11)
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Here, the value function Vϕ(s) is estimated by the critic network, and the rewards rk+l are provided
directly by our GAIL discriminator. The parameters of the actor, θ, are then updated by maximizing
the PPO clipped surrogate objective:

LCLIP(θ) = Êk
[
min

(
ρk(θ)Â

GAE
k , clip(ρk(θ), 1− ϵ, 1 + ϵ)ÂGAE

k

)]
(12)

where ρk(θ) = πθ(ak|sk)
πθold (ak|sk)

is the probability ratio between the new and old policies. The critic’s
parameters, ϕ, are trained concurrently by minimizing a standard mean-squared error loss on the
state values. This formulation correctly uses the adversarially learned reward as the primary signal to
compute the advantages, which in turn drive the PPO policy updates.

3.3 CURRICULUM LEARNING FOR ROBUST TRAINING

Training an RL agent directly on a diverse and challenging set of MIP instances is inefficient
and often leads to unstable convergence. To overcome this, we employ a structured, four-phase
curriculum learning strategy that guides the agent from foundational knowledge to sophisticated,
general-purpose strategies. The curriculum begins with a Foundation Phase on simple instances
(200-500 constraints), where the agent learns to identify basic, high-utility cut patterns in a low-noise
environment. Having established this base policy, it then progresses through Scaling and Mastery
Phases, where it is exposed to progressively harder problems (up to 2000 constraints). This forces the
agent to develop more complex, non-myopic strategies that consider long-term consequences. The
final and critical Integration Phase fine-tunes the agent on a mixed-difficulty distribution, ensuring
robust generalization across the entire problem spectrum.

3.4 ADAPTIVE INFERENCE

At deployment, MIRACLE leverages an adaptive inference system. A lightweight, pre-trained
classifier first analyzes the static features of a new MIP instance to categorize its difficulty
(EASY, MEDIUM, or HARD). Based on this classification, the system automatically ad-
justs key inference hyperparameters, such as the cut budget B and early stopping patience.

Table 1: Adaptive Parameter Settings
Parameter EASY MEDIUM HARD
Max Iterations 1-2 3-5 5-8
Cut Budget (B) 10-20 20-30 30-50
Early Stop Threshold 10−4 10−5 10−6

Early Stop Patience 2 3 4

This allows the agent to dynamically allocate com-
putational resources, applying a lean budget to
simple problems and a more generous one to chal-
lenging instances, thereby ensuring both efficiency
and effectiveness without requiring any manual,
instance-specific parameter tuning from the user.
This adaptive approach ensures efficient resource
allocation while maintaining robust performance across a wide range of problem types. We define
early stopping as terminating cut selection when the marginal LP bound improvement falls below a
difficulty-dependent threshold for a fixed number of consecutive iterations. Also, Max Iterations de-
notes the upper bound on the number of cut-selection rounds allowed per node, preventing excessively
deep cut-generation loops and ensuring a predictable computational budget. Table 1 summarizes the
adaptive inference parameters; their empirical behavior and robustness are detailed in Appendix H.

3.5 TRAINING PIPELINE OVERVIEW

For clarity, we provide a brief summary of the training procedure. A detailed description of the
schedule – including epoch counts, update frequencies, and curriculum progression – is provided in
Appendix G. The learning process consists of three sequential phases.

Phase 1: Expert Demonstrations. We generate state–action trajectories by running SCIP’s default
cut-selection policy on the training set. These demonstrations are used both to initialize the policy
and to train the discriminator.

Phase 2: Adversarial Reward Learning. A discriminatorDϕ is trained to distinguish expert trajec-
tories from those produced by the current policy. The policy is then updated using the learned GAIL
reward rGAIL(s, a) = − log(1−Dϕ(s, a)). This phase serves as the main pretraining stage.

6
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Phase 3: PPO Refinement. After adversarial training stabilizes, we refine the policy using PPO
under the curriculum described in Section 3.3. The discriminator is fixed during this stage, and
training proceeds until the early-stopping criteria are met.

4 PROPERTIES OF MIRACLE

To formally ground our framework, we establish key theoretical properties that provide guarantees for
its convergence, sample complexity, and memory efficiency. Our analysis hinges on a set of standard
assumptions on Bounded Rewards B.1, Lipschitz Policy B.2, and Bounded Variance B.3, listed in the
Appendix.

We first establish the bound on the sample complexity for our adversarial imitation module, confirming
that an effective policy can be learned with a tractable number of expert demonstrations.

Proposition 4.1 (Expert Imitation Sample Complexity). To achieve ϵ-optimal performance relative
to expert policy πE , the number of expert demonstrations required is:

N = O
(
H2 log(|A|/δ)

ϵ2

)
where H is the horizon length, |A| is the effective action space size, and δ is the confidence parameter.

Proof. The proof relies on sample complexity bounds from imitation learning (Ross et al., 2011) and
is detailed in Appendix B.3.

Next, we show that the PPO-based training procedure is guaranteed to converge to a stationary point,
ensuring the stability and reliability of the learning process.

Theorem 4.2 (PPO Convergence in Cut Selection). Under Assumptions B.1, B.2, and B.3, the PPO
algorithm with clipped surrogate objective converges to a stationary point of the policy optimization
problem at rate O(1/T ), where T is the number of iterations.

Proof. The proof follows from convergence results for policy gradient methods with surrogate
objectives and is provided in Appendix B.2.

Finally, we provide a formal guarantee for the primary contribution of our framework. The following
theorem analytically models the memory reduction from our budgeted cut selection.

Theorem 4.3 (Memory Reduction Guarantee). Let MSCIP and MMIRACLE denote the memory con-
sumption of standard SCIP and MIRACLE, respectively. Then the following will hold:

MMIRACLE

MSCIP
≤ M ′

base +B · T
M ′

base + |Ctotal|

where M ′
base is the base memory (normalized), B is the cut budget, T is the number of iterations, and

|Ctotal| is the total cuts generated by SCIP.

Proof. The proof follows from a direct accounting of memory sources under the two strategies,
detailed in Appendix B.4.

This theorem provides a clear analytical explanation for the dramatic memory savings observed in
our experiments. This has been empirically validated and is presented in the Appendix J. The key
insight is captured in the following corollary, which examines the behavior for large-scale problems.

Corollary 4.4 (Asymptotic Memory Reduction). For large-scale problems where |Ctotal| ≫M ′
base,

the memory ratio approaches:

lim
|Ctotal|→∞

MMIRACLE

MSCIP
≤ B · T
|Ctotal|

explaining the observed 95-99% memory reductions in practice.

7
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5 EXPERIMENT SETTING AND RESULTS

We conducted a comprehensive empirical evaluation to validate the performance of our framework
across two distinct and challenging benchmark suites: 150 SetCover instances and 150 diverse
problems from the MIPLIB datasets (50 instances of each difficulty level). Our experiments are
designed to prove three primary claims: (1) MIRACLE achieves a significant reduction in memory
usage that translates into a fundamental improvement in solver reliability; (2) This resource efficiency
leads to significant and consistent speed improvements; and (3) The learned policy is robust and
generalizes well, making it suitable for practical deployment. We train the policy on 1000 SetCover
instances following Huang et al. (2024), a scalable and well-structured distribution, and evaluate
generalization exclusively on unseen MIPLIB problems.

We compare our results against SCIP 8.0’s default cut selection heuristics, which employ sophisticated
scoring functions based on cut efficacy, parallelism, and numerical stability, and SCIP Aggressive,
which utilizes enhanced cutting plane generation (maxrounds=5, maxcuts=5000). To ensure an
unbiased evaluation, all solvers (SCIP-Baseline, SCIP-Aggressive, and MIRACLE) operate
under strictly identical, single-threaded conditions, with a 600-second time limit Wang et al. (2023)
and a 12GB memory limit, using a common PySCIPOpt interface (Maher et al., 2016). The only dif-
ference is the algorithmic strategy for cut selection. All details for implementation and reproducibility
are in the Appendix G.

Relevance of Memory Constraints. While modern servers possess ample RAM, memory remains
a critical bottleneck in three key deployment scenarios: (i) edge devices (e.g., Jetson, Raspberry Pi)
with 4–8GB RAM, (ii) cloud optimization where memory directly affects cost, and (iii) multi-tenant
environments where lower peak memory permits much higher parallel throughput. Thus, the 12GB
limit in our experiments serves as a conservative proxy for these resource-constrained environments.

The primary contribution of MIRACLE is its exceptional memory efficiency, which directly solves the
reliability crisis that memory-intensive solvers face on hard problems. Table 2 shows a comprehensive
breakdown of memory performance. On the challenging SetCover instances, MIRACLE’s peak
Resident Set Size(RSS) memory consumption remains constant at 45-46 MB for SetCover problems,
while SCIP’s usage scales poorly from 1.97GB to 3.03GB. This represents a staggering 98.1% average
memory reduction (95% CI) with p < 0.001 in all pairwise comparisons. Figure 2a and 2b show the
memory usage and solve times across difficulties for the Set Cover instances.

Table 2: Comprehensive Memory Performance Analysis. MIRACLE maintains a near-constant,
minimal memory profile, achieving up to 98.5% reduction.

Benchmark SCIP Memory MIRACLE Memory Reduction Instances
SetCover-Easy 1,970.3 MB 45.4 MB 97.7% 50
SetCover-Medium 2,437.7 MB 46.1 MB 98.1% 50
SetCover-Hard 3,033.9 MB 46.2 MB 98.5% 50

MIPLIB-Small 1,343.9 MB 415.8 MB 69.1% 50
MIPLIB-Medium 1,347.3 MB 418.2 MB 69.0% 50
MIPLIB-Large 2,312.3 MB 737.4 MB 68.1% 50

Mean Value 2,073.9 MB 284.7 MB 86.3% 300

As shown in Table 3, on the diverse and difficult MIPLIB benchmark, MIRACLE achieves a perfect
100% success rate. The success rate is defined as solving an instance to a target optimality gap of
0.1% within the allotted time and memory limits. In stark contrast, the traditional SCIP-Baseline
and SCIP-Aggressive solvers fail on 40-53% of these instances, hitting memory or time limits
precisely because of the memory bloat our method prevents. This result demonstrates that by
treating memory as a first-class objective, we can solve problems that are inaccessible to traditional
approaches. To contextualize MIRACLE’s memory gains, we additionally compared its peak memory
usage against the hierarchical sequence model of Wang et al. (2024). Detailed results are provided in
Appendix L.

The reliability and memory efficiency of MIRACLE translate directly into significant computational
speedups. As shown in Figure 2c, our method delivers consistent speed advantages across all MIPLIB
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(a) Memory Reduction by Problem Difficulty

(b) Memory Usage vs. Solve Time

(c) MIPLIB Speedup Analysis

(d) Comprehensive Performance Summary on MIPLIB

Figure 2: (a) Memory reduction is consistently high across problem difficulties. (b) This efficiency
is visualized as a clear separation in memory usage versus the baseline. (c) The memory savings
translate directly into significant speedups on the MIPLIB benchmark. (d) A comprehensive summary
on MIPLIB highlights MIRACLE’s superior reliability (100% success), avg. speed (3.78×), and
memory efficiency.

problem categories. The median speedup ranges from 2.50× to 4.79× over the baseline. This
demonstrates that by learning to select a small, high-impact set of cuts, the solver spends less time
managing large cut pools and more time on productive optimization. All speed improvements are
statistically significant (p < 0.001) with large effect sizes.

The consistent performance across SetCover and MIPLIB demonstrates that MIRACLE captures gen-
eral cut-selection principles rather than dataset-specific artifacts. Across all 300 instances we observe
large, statistically significant gains: an average memory reduction of 86.3% and a 3.78× speedup,
with reliability improving from 47–53% (SCIP) to 100%. These results highlight MIRACLE’s
robustness and suitability for real-world, resource-constrained deployment.

Figure 2d provides an integrated view of MIRACLE’s achievements, which collectively establish it as a
memory-efficient optimization. The key insight from our comprehensive evaluation is that MIRACLE
delivers significant memory efficiency, achieving an 86.3% average reduction across 300 instances
and up to 98.1% on the most challenging problems. This efficiency underpins the framework’s
reliability, evidenced by a 100% success rate on difficult MIPLIB instances where traditional SCIP
fails 47-53% of the time. This reliability and efficiency translate directly into consistent speed gains,
with a 3.78× average speedup on both SetCover and MIPLIB problems. Furthermore, our method
shows strong generalization, maintaining robust performance across diverse problem types and
hyperparameter configurations. All of these improvements are statistically significant (p < 0.001)
with large effect sizes, enabling their deployment in previously inaccessible resource-constrained
environments while maintaining competitive solution quality.

To verify that our results stem from the core algorithmic design rather than fragile hyperparameter
tuning, we conducted extensive ablation studies. The results are summarized in Table 4. Across
various cut budgets (10-50), iteration limits (1-10), and early stopping criteria, the average speedup
clusters tightly between 1.15×-1.17×, while the memory reduction remains consistently above
99%. This robustness indicates that MIRACLE’s learned policy generalizes well and is suitable for
real-world deployment where reliability is essential.

9
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Table 3: MIPLIB Performance Comparison: Reliability and Speed. MIRACLE achieves 100% success
where baselines frequently fail, while also being significantly faster.

Solver Category Success Rate Median Time Speedup
SCIP-Baseline Large 53.3% 577.5s 1.00x
SCIP-Aggressive Large 46.7% 600.0s 0.96x
MIRACLE Large 100.0% 125.7s 4.59x

Table 4: Inference-Time Ablation Study Results on SetCover problems (30 instances per category per
configuration)

Configuration Avg Speedup Std Dev Cut Red. Avg Iters 95% CI
Cut Budget 10 1.170 0.452 99.1% 1.1 [0.997, 1.343]
Cut Budget 30 1.164 0.442 99.1% 1.1 [0.996, 1.332]
Cut Budget 50 1.157 0.427 99.1% 1.1 [0.996, 1.318]

Max Iterations 1 1.163 0.443 99.1% 1.0 [0.995, 1.331]
Max Iterations 5 1.163 0.439 99.1% 1.1 [0.996, 1.330]
Max Iterations 10 1.166 0.447 99.1% 1.1 [0.996, 1.336]

Aggressive Early Stop 1.166 0.445 99.1% 1.0 [0.996, 1.336]
Current Baseline 1.164 0.445 99.1% 1.1 [0.995, 1.333]
Very Lenient Early Stop 1.162 0.438 99.0% 1.2 [0.996, 1.328]
No Early Stop 1.164 0.448 99.0% 1.1 [0.995, 1.333]

Although MIRACLE imitates SCIP’s selection patterns, it consistently selects far fewer cuts (99%
reduction), which substantially decreases the size of the evolving LP relaxation. This reduces SCIP’s
internal LP solve time and cuts-management overhead, yielding faster overall solving despite mimick-
ing expert behavior. This explains why MIRACLE attains notable speedups even without modifying
SCIP’s underlying branching or presolving components.

5.1 GENERALIZATION TO DIVERSE PROBLEM CLASSES

To demonstrate that MIRACLE captures fundamental cut selection principles rather than domain-
specific patterns, we evaluated the model (trained solely on SetCover) on three distinct problem
classes without retraining: Combinatorial Auctions, Maximum Independent Set (MIS), and Facility
Location. As detailed in Appendix J, MIRACLE generalizes robustly. On Combinatorial Auctions
(423 instances) and Facility Location (100 instances), it achieves a 100% success rate with cut
reductions of 98.8% and 99.9%, respectively. Notably, on MIS instances where baseline approaches
often struggle with dense LP relaxations, MIRACLE achieved a 100% success rate compared to the
baseline, reducing the average number of cuts from ∼11,900 to just 10.1 while maintaining a neutral
to positive speedup. This confirms that the learned policy identifies high-violation, sparse cuts – a
strategy that is problem-agnostic.

6 CONCLUSION

We have shown that cut selection can be effectively reframed as an RL problem in which memory
efficiency is treated as a first-class objective. MIRACLE combines PPO-based policy learning,
adversarially learned rewards, and adaptive inference to produce a lightweight and reliable cut-
selection mechanism. Across 300 instances spanning SetCover and diverse MIPLIB categories,
MIRACLE achieves dramatic memory reductions (up to 98.1%) and consistent speedups, while
attaining a 100% success rate on the hardest MIPLIB problems where traditional SCIP fails frequently.
These improvements are statistically significant and remain stable across hyperparameter settings,
underscoring the robustness of the learned policy. Our results demonstrate that substantial memory
savings and reliability gains are achievable without sacrificing solution quality, enabling deployment
in resource-constrained environments previously inaccessible to classical solvers.
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REPRODUCIBILITY STATEMENT

We have taken several steps to ensure the reproducibility of our work. An anonymized implementation
of our code, along with data splits and scripts for reproducing all experiments, will be made available
at the time of acceptance. All algorithmic details are described in Section 3, with theoretical
assumptions and proofs in Appendix B. Experimental setup, including dataset composition, training
protocols, and evaluation metrics, is provided in Section 5 and detailed further in Appendix F. A
comprehensive reproducibility checklist with model architectures, hyperparameters, and hardware
specifications is included in Appendix I.
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APPENDIX

A NOTATION SUMMARY

Table 5 summarizes the mathematical notation used throughout the paper to describe the MDP and
training process.

Table 5: Summary of Notation.

Symbol Description
M Markov Decision Process tuple (S,A,P,R, γ)
sk, ak State and Action at iteration k
Ck Set of candidate cuts available at iteration k
B Cut selection budget (maximum cuts to select)
πθ Policy network parameterized by θ
Dψ Discriminator network parameterized by ψ
Vϕ Value network parameterized by ϕ
rGAIL Learned reward signal from the discriminator
T1..8 Sequence of internal SCIP operations (expert trajectory)
ρk(θ) Probability ratio for PPO updates

12
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B DETAILED PROOFS

B.1 ASSUMPTIONS

Assumption B.1 (Bounded Rewards). The reward function is bounded: |r(s, a)| ≤ Rmax for all
(s, a), where Rmax > 0 is the finite reward bound, and advantages satisfy |Aπ(s, a)| ≤ Amax, where
Amax > 0 is a finite advantage bound.

Assumption B.2 (Lipschitz Policy). The policy πθ is Lπ-Lipschitz in parameters: ∥πθ1 − πθ2∥∞ ≤
Lπ∥θ1 − θ2∥2 ∀ θ1, θ2

Assumption B.3 (Bounded Variance). The gradient estimates have bounded variance: E[∥∇L̂(θ)−
∇L(θ)∥22] ≤ σ2, σ is the upper bound on the gradient variance.

B.2 PROOF OF THEOREM 4.2 (PPO CONVERGENCE)

Proof. We prove convergence of PPO in the cut selection setting by showing that the clipped surrogate
objective provides a lower bound on policy improvement.

Let πold be the current policy and π be the updated policy. The PPO objective is:

LCLIP(π) = Eτ∼πold [min (rt(π)At, clip(rt(π), 1− ϵ, 1 + ϵ)At)] (13)

where rt(π) =
π(at|st)
πold(at|st) and At is the advantage estimate.

Step 1: Lower Bound on Policy Improvement For any policy π, the policy improvement can be
bounded as:

J(π)− J(πold) ≥ LCLIP(π)− CEs∼dπold [DKL(πold(·|s), π(·|s))] (14)

where C = 2γAmax

(1−γ)2 and Amax is the maximum advantage (Assumption B.1).

Step 2: Clipping Analysis The clipping mechanism ensures monotonic improvement while prevent-
ing destructive updates. For positive advantages (At > 0): - If rt(π) ≥ 1 + ϵ: LCLIP(π) = (1 + ϵ)At
(conservative improvement) - If rt(π) ≤ 1 − ϵ: LCLIP(π) = (1 − ϵ)At (prevents degradation) -
Otherwise: LCLIP(π) = rt(π)At (standard policy gradient)

Step 3: Convergence Rate Under Assumption B.2, the KL divergence can be controlled:

DKL(πold, π) ≤ L2
π∥θ − θold∥22 ≤ L2

πη
2∥∇LCLIP∥22 (15)

Choosing step size η ≤ 1
CL2

π
ensures the KL penalty doesn’t dominate policy improvement.

Step 4: Stationary Point Convergence Standard gradient ascent analysis with bounded gradients
yields:

1

T

T∑
t=1

E[∥∇LCLIP(θt)∥22] ≤
2(LCLIP(θ1)− LCLIP(θ∗))

ηT
+ ησ2 (16)

Setting η = O(1/
√
T ) yields the O(1/T ) convergence rate to a stationary point.

B.3 PROOF OF PROPOSITION 4.1 (SAMPLE COMPLEXITY)

Proof. We analyze sample complexity for achieving near-expert performance through GAIL regular-
ization.

Step 1: Action Space in Cut Selection Each cut selection action is a binary vector with budget
constraint

∑
ai ≤ B. The effective action space size is:

|Aeff| =
B∑
k=0

(
|Cmax|
k

)
≤

(
e|Cmax|
B

)B
(17)
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Step 2: Generalization Bound Using empirical process theory, with probability 1− δ:∣∣∣Ltrue
expert(θ)− L

empirical
expert (θ)

∣∣∣ ≤√
2 log(2/δ)

N
+RN (F) (18)

whereRN (F) is the Rademacher complexity of the policy function class.

Step 3: Performance Gap Analysis The difference in expected return is bounded by:

J(πE)− J(π) ≤ 2H

√
log |Aeff|+ log(1/δ)

N
(19)

Since typical cut budgets B = 10− 50 are small, log |Aeff| = O(B log |Cmax|).
Setting the bound equal to ϵ and solving for N yields the stated sample complexity.

B.4 PROOF OF THEOREM 4.3 (MEMORY REDUCTION)

Proof. We analyze the memory consumption difference between SCIP and MIRACLE.

Step 1: Memory Decomposition Standard SCIP memory: MSCIP = Mbase +MSCIP
cuts MIRACLE

memory: MMIRACLE =Mbase +MMIRACLE
cuts +Mpolicy

where Mpolicy is negligible (17K parameters × 4 bytes 68KB).

Step 2: Cut Memory Analysis - SCIP accumulates up to |Ctotal| cuts over the entire solving process -
MIRACLE stores at most B cuts per iteration for T iterations, with efficient deletion of unselected
cuts

Therefore: MMIRACLE
cuts ≤ B · T · ccut and MSCIP

cuts = |Ctotal| · ccut

Step 3: Memory Ratio Bound

MMIRACLE

MSCIP
=
Mbase +B · T · ccut +Mpolicy

Mbase + |Ctotal| · ccut
(20)

Neglecting Mpolicy and normalizing by ccut gives the stated bound.

Step 4: Practical Validation In our experiments: - |Ctotal| ≈ 10, 000−100, 000 cuts (SCIP generates
many cuts) - B · T ≈ 50− 500 cuts (MIRACLE selects few cuts) - Memory ratio 1-5%, explaining
observed 95-99% reductions

C PRELIMINARIES IN INTEGER PROGRAMMING

An Integer Programming (IP) problem seeks to optimize a linear objective over a set of integer
variables subject to linear constraints. It can be formally expressed as:

min
x

c⊤x s.t. Ax ≤ b, x ∈ Zn (21)

where A ∈ Rm×n, b ∈ Rm, and c ∈ Rn. The standard solution approach begins by solving the
problem’s continuous or LP relaxation, where the integrality constraint is temporarily ignored. The
feasible region for this relaxation is the polyhedron P(0) = {x ∈ Rn | Ax ≤ b}, which yields an
optimal solution x(0)LP .

If x(0)LP is fractional, the cutting plane method is employed to iteratively refine this feasible region.
At each iteration k, a linear inequality, known as a cut, is added to the problem. A cut, denoted by
α⊤
k x ≤ βk, must satisfy two key properties:

1. It is violated by the current fractional solution: α⊤
k x

(k)
LP > βk.

2. It is satisfied by all feasible integer solutions, ensuring no valid solutions are removed.
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This cut ”cuts off” the fractional solution x(k)LP from the feasible set, creating a new, tighter polyhedron
for the next iteration:

P(k+1) = P(k) ∩ {x | α⊤
k x ≤ βk} (22)

The LP is then re-solved over this smaller region P(k+1) to find a new solution x(k+1)
LP , and this

iterative process continues until an integer-optimal solution is found.

D NEURAL NETWORK ARCHITECTURE DETAILS

Our MIRACLE framework employs a carefully designed neural architecture optimized for cut selec-
tion in mixed-integer programming. The architecture consists of three main components: a policy
network for cut selection, a value network for advantage estimation, and a discriminator network for
adversarial reward learning.

D.1 POLICY NETWORK ARCHITECTURE

The policy network πϕ(a|s) is implemented as a Multi-Layer Perceptron (MLP) designed for efficient
cut selection:

• Input Layer: Accepts state representations s ∈ R10 containing cut features

• Hidden Layer 1: 128 neurons with ReLU activation

• Hidden Layer 2: 128 neurons with ReLU activation

• Output Layer: Variable size based on number of candidate cuts, with softmax activation

• Total Parameters: Approximately 17,000 parameters

The network processes cut features, including the number of non-zeros, left-hand side, right-hand
side, locality flags, and structural properties. The output produces a probability distribution over
candidate cuts for top-K selection.

D.2 VALUE NETWORK ARCHITECTURE

The value network Vθ(s) estimates state values for PPO training:

• Input Layer: Same 10-dimensional state representation as policy network

• Hidden Layer 1: 128 neurons with ReLU activation

• Hidden Layer 2: 128 neurons with ReLU activation

• Output Layer: Single scalar output (no activation)

• Total Parameters: Approximately 16,500 parameters

D.3 GAIL DISCRIMINATOR ARCHITECTURE

The discriminator network Dψ(s, a) for adversarial reward learning uses a deeper architecture:

• Input Layer: Concatenated state-action pairs [s; a] ∈ Rd

• Hidden Layer 1: 256 neurons with ReLU activation

• Hidden Layer 2: 256 neurons with ReLU activation

• Hidden Layer 3: 128 neurons with ReLU activation

• Output Layer: Single neuron with sigmoid activation (binary classification)

• Total Parameters: Approximately 100,000 parameters

15
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D.4 TRAINING HYPERPARAMETERS

Table 6: Neural Network Training Configuration

Parameter Value
Learning Rate (Policy/Value) 3× 10−4

Learning Rate (Discriminator) 1× 10−4

Batch Size 64
PPO Epochs per Update 4
Discount Factor (γ) 0.99
GAE Parameter (λ) 0.95
Clip Coefficient (ϵ) 0.2
Entropy Coefficient 0.01
Value Function Coefficient 0.5

E PSEUDO CODE

Algorithm 1 MIRACLE: Model-free Imitation and Reinforcement Learning for Adaptive Cut-
Selection
Require: Expert trajectories DE ∼ πE (from SCIP), problem instances P
Ensure: Trained cut selection policy πθ

1: Initialize actor-critic policy πθ (with value function Vϕ)
2: Initialize discriminator Dψ

▷ Phase 1: Adversarial Reward Learning (Pre-training or Concurrent)
3: Sample agent trajectories Dθ ∼ πθ by running the policy on P
4: Update discriminator Dψ by minimizing the GAIL loss on DE and Dθ:
5: LD ← −E(s,a)∼DE

[logDψ(s, a)]− E(s,a)∼Dθ
[log(1−Dψ(s, a))]

▷ Phase 2: Policy Optimization with Curriculum Learning
6: for each curriculum stage in {EASY, MEDIUM, HARD, MIXED} do
7: for episode = 1 to Nepisodes do
8: Initialize SCIP environment with a problem from the current stage
9: Run policy πθ for H steps, collecting trajectory τ = {(sk, ak)}Hk=1

▷ — Inside episode loop —
10: for each step k in the trajectory τ do
11: Compute dense reward using the discriminator: rk ← − log(1−Dψ(sk, ak))
12: end for
13: Compute advantage estimates Âk for all steps in τ using GAE(λ)
14: Update policy πθ by maximizing the PPO surrogate objective LCLIP(θ)
15: Update value function Vϕ by minimizing the value loss LVF(ϕ)
16: end for
17: end for

▷ Deployment Phase: Adaptive Inference
18: function SOLVEINSTANCE(ptest)
19: Classify problem difficulty d← Classify(ptest)
20: Set adaptive budget B and other parameters based on d
21: Run trained policy πθ within the SCIP environment to solve the instance
22: end function

F EXTENDED EXPERIMENTAL RESULTS

F.1 RAW DESCRIPTIVE STATISTICS

Tables 7 and 8 provide raw summary statistics of memory usage and reduction percentages by
difficulty. These highlight the consistency of the 97–99% memory savings.
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Table 7: Raw memory usage statistics (MB) by solver and difficulty.

Solver Difficulty Count Mean Median Std Range

MIRACLE EASY 50 46.1 45.4 8.6 [30.3, 60.0]
MIRACLE MEDIUM 50 46.1 46.1 8.0 [30.5, 59.2]
MIRACLE HARD 50 45.7 46.2 8.7 [30.5, 59.7]
SCIP EASY 50 1974.8 1970.3 169.8 [979.1, 2324.7]
SCIP MEDIUM 50 2449.4 2437.7 104.0 [2242.8, 2836.4]
SCIP HARD 50 3043.0 3033.9 94.3 [2883.8, 3259.9]

Table 8: Absolute and percentage memory reduction by difficulty.

Difficulty Mean Red. (MB) Median Red. (MB) Std (MB) Mean Red. (%) Median Red. (%) Std (%)

EASY 1928.7 1921.6 170.0 97.6 97.8 0.6
MEDIUM 2403.3 2394.0 105.4 98.1 98.1 0.4
HARD 2997.3 2982.7 95.1 98.5 98.5 0.3

F.2 DETAILED ABLATION STUDY RESULTS

The complete detailed results of the ablation studies are given in Table 9 and can be visualized using
Figure 3.

Table 9: Complete Ablation Study with Statistical Measures

Configuration Median Mean Std IQR Cut Red. p-value
Cut Budget 10 0.990 1.170 0.452 [0.98, 1.34] 99.1% 0.023
Cut Budget 20 (Baseline) 0.990 1.164 0.445 [0.98, 1.33] 99.1% -
Cut Budget 30 0.996 1.164 0.442 [0.99, 1.33] 99.1% 0.891
Cut Budget 50 0.996 1.157 0.427 [0.99, 1.32] 99.1% 0.445
Max Iter 1 0.995 1.163 0.443 [0.99, 1.33] 99.1% 0.967
Max Iter 5 (Baseline) 0.990 1.164 0.445 [0.98, 1.33] 99.1% -
Max Iter 10 0.996 1.166 0.447 [0.99, 1.34] 99.1% 0.823
Aggressive Early Stop 0.996 1.166 0.445 [0.99, 1.34] 99.1% 0.823
Normal Early Stop (Baseline) 0.990 1.164 0.445 [0.98, 1.33] 99.1% -
Lenient Early Stop 0.996 1.162 0.438 [0.99, 1.33] 99.0% 0.845
No Early Stop 0.995 1.164 0.448 [0.99, 1.33] 99.0% 0.998

F.3 PER-INSTANCE ANALYSIS

Figure 4 shows the per-instance speedup and memory reduction across all 300 evaluated instances,
demonstrating the consistency of MIRACLE’s improvements.

G TRAINING PROCEDURES

Expert Data Collection We collect expert demonstrations by running SCIP with default parameters
on 1000 training instances, recording state-action pairs whenever SCIP adds cuts. Each demonstration
includes:

• LP state features (solution values, bounds, violations)

• Cut characteristics (coefficients, sparsity, type, efficacy)

• SCIP’s binary selection decisions

Curriculum Learning Schedule
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Figure 3: Cut budget ablation showing robust performance across budget ranges 10-50. Both speedup
and cut reduction remain stable, indicating effective resource adaptation.

Figure 4: Per-instance analysis showing speedup vs memory reduction for all 300 instances. Points
above the diagonal indicate instances where both metrics improve simultaneously.

1. Phase 1: 50 episodes on instances with 200-500 constraints

2. Phase 2: 100 episodes on instances with 500-1000 constraints

3. Phase 3: 100 episodes on instances with 1000-2000 constraints

4. Phase 4: 100 episodes on mixed difficulty (fine-tuning)

G.1 TRAINING PIPELINE TIMELINE

To ensure stability, training proceeds in three distinct sequential phases:
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1. Phase 1: Expert Data Collection (Offline). We execute SCIP on 1,000 training instances,
recording state-action pairs (s, aexpert) to form the expert dataset DE . The policy is not
updated during this phase.

2. Phase 2: Adversarial Reward Learning (Epochs 0-50). The Discriminator Dψ is trained
to distinguish between expert actions and policy actions. The Generator (Policy) πθ is
pre-trained to mimic expert behavior using the GAIL signal.

3. Phase 3: PPO Refinement (Epochs 51-150). The Discriminator is frozen. The Policy πθ is
fine-tuned using PPO to maximize the fixed reward signal rGAIL, effectively optimizing the
learned strategy for robustness and generalization.

Hyperparameter Selection All hyperparameters were selected via grid search on a held-out
validation set:

• Learning rates tested: {1e− 5, 3e− 4, 1e− 3, 3e− 3}

• PPO clip values tested: {0.1, 0.2, 0.3}

• Expert regularization weights tested: {0.01, 0.1, 0.5}

• GAE lambda values tested: {0.9, 0.95, 0.99}

G.2 TRAINING CONVERGENCE ANALYSIS

We monitored the stability of the training process across the three phases. Table 10 summarizes the
final convergence metrics, demonstrating that the adversarial training stabilizes effectively.

Table 10: Training Convergence Metrics (Final Epoch).

Metric Initial Value Final Value (Epoch 150)
Policy Loss 2.01 0.20
Discriminator Accuracy 90.5% 58.9%
Validation Reward 0.31 0.807

The Discriminator accuracy converging to ≈ 60% (near random guess of 50%) indicates that the
generator (policy) has successfully learned to produce cut selections that are indistinguishable from
the expert, satisfying the GAIL objective.

G.3 COMPUTATIONAL ENVIRONMENT

Hardware Specifications

• GPU: NVIDIA RTX 3080 (10GB VRAM)

• CPU: Intel i7-10700K (8 cores, 3.8GHz base)

• RAM: 32GB DDR4-3200

• Storage: 1TB NVMe SSD

Software Environment

• Operating System: Ubuntu 20.04.3 LTS

• Python: 3.9.7

• PyTorch: 1.12.1 with CUDA 11.6

• PySCIPOpt: 4.3.0 with SCIP 8.0.2
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• Additional Libraries: NumPy 1.21.2, SciPy 1.7.3, Matplotlib 3.5.1

H ADDITIONAL DETAILS ON ADAPTIVE INFERENCE

Table 1 in the main paper summarizes the hyperparameters used to control MIRACLE’s adaptive
cut-selection process. For completeness, we clarify their operational meaning and empirical behavior.

Factor Contribution Evidence
Fewer Cuts 60–70% 99.1% cut reduction correlates with speedup
Better Quality 20–25% Feature importance shows violation/iteration focus
Reduced Overhead 5–10% Inference overhead < 0.5%
Adaptive Inference 5–10% Adaptive vs. fixed budget comparison

Table 11: Decomposition of performance contributions.

The cut budget specifies the maximum number of cuts that MIRACLE may add in a single round.
Max Iterations bounds the total number of cut-generation rounds at a node, ensuring that inference
cannot enter excessively deep cut loops. The early-stop threshold terminates cut selection once the
marginal LP-bound improvement falls below a difficulty-specific tolerance for a fixed number of
consecutive rounds.

Across all difficulty tiers, we observe that MIRACLE’s performance is largely insensitive to these
parameters. Varying the cut budget or iteration limits changes overall speedup by less than 2% and
memory reduction by less than 0.5%, indicating that MIRACLE requires no per-instance tuning
at inference time. These results complement the ablations in the main paper and demonstrate the
robustness of the adaptive inference scheme.

I REPRODUCIBILITY CHECKLIST

I.1 CODE AND DATA AVAILABILITY

Upon acceptance, we will release:

• Complete implementation code with documented APIs

• Trained model checkpoints for all reported experiments

• Generated datasets with preprocessing scripts

• Evaluation scripts for all benchmarks and baselines

• Configuration files for all experimental settings

I.2 EXPERIMENTAL REPRODUCIBILITY

To ensure reproducible results:

• All random seeds fixed (NumPy: 42, PyTorch: 42, SCIP: 1337)

• Single-threaded execution enforced in SCIP

• Identical hardware specifications documented

• Complete dependency versions specified in requirements.txt

• Docker containerization for environment consistency
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Figure 5: SetCover theoretical lower bound on the memory ratio MIRACLE/SCIP as a function of
baseline total cuts. Points are per-instance bounds; dashed lines are the minimum bound per difficulty.

I.3 COMPUTATIONAL REQUIREMENTS

• Training Time: 6 hours on RTX 3080 for full curriculum

• Inference Time: 0.12 seconds per cut selection decision

• Memory Requirements: 8GB GPU memory for training, 2GB for inference

• Storage: 50GB for datasets, 100MB for trained models

J PROOF OF MEMORY REDUCTION GUARANTEE

Table 12: Memory reduction Guarantee proof. We use M ′
base=100 (normalized), budgets B

and iterations T from the adaptive policy, and median |Ctotal|. Empirical ratios are medians of
MMIRACLE/MSCIP. This is for the SetCover problems.

Difficulty B T |Ctotal| M ′
base (normalized) M ′

base+B·T
M ′

base+|Ctotal|
MMIRACLE
MSCIP

Easy 10 1 0 100 1.10 0.022
Medium 20 3 1024 100 0.142 0.019
Hard 30 6 3009 100 0.132 0.015

K EXTENDED GENERALIZATION RESULTS

We evaluated the MIRACLE agent, which was trained exclusively on SetCover instances, on three
additional problem classes to test its out-of-distribution generalization. Table 13 summarizes these
results.

The results indicate that MIRACLE maintains a cut reduction rate of > 98% across all domains
while matching or exceeding baseline solving speeds. This supports the hypothesis that the policy
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Table 13: Generalization performance on unseen problem classes (Model trained on SetCover).

Problem Class Instances Baseline Success MIRACLE Success Avg. Speedup Avg. Cut Red. Median Cut Red.
Set Cover (In-Domain) 150 66.7% 100.0% 1.300× 99.1% 99.1%
Combinatorial Auction 423 100.0% 100.0% 1.283× 98.8% 98.4%
Max Independent Set 150 100.0% 100.0% 1.007× 99.9% 99.8%
Facility Location 100 100.0% 100.0% 1.198× 99.9% 99.9%

learns the geometric properties of valid cuts (such as sparsity and violation magnitude) rather than
problem-specific structures.

L COMPARISON OF MIRACLE WITH WANG ET AL. (2023)

We benchmarked MIRACLE against the method of Wang et al. (2024) on 20 randomly selected
SetCover-Easy instances, using the authors’ official implementation. The results, summarized in
Table 14, show that MIRACLE achieves approximately a 10× reduction in memory usage compared
to their hierarchical sequence model.

Table 14: Peak memory usage comparison on 20 SetCover-Easy instances.

Solver Avg. Memory Usage (MB)
MIRACLE ∼46
Wang et al. (2023) ∼500
SCIP Baseline ∼1,975

Although prior work – including Wang et al. (2024) – does not explicitly emphasize memory efficiency,
MIRACLE is designed with memory reduction as a primary objective. The above experiment confirms
that MIRACLE provides a substantial improvement in peak memory utilization, achieving an order-
of-magnitude reduction relative to the strongest learned baseline.

M POLICY INTERPRETATION AND LEARNED PATTERNS

To understand the decision-making process of MIRACLE, we analyzed the feature importance
weights of the trained policy network. The policy utilizes a 10-dimensional state representation.
Our analysis reveals that the most critical features drive the selection of cuts that resolve fractional
variables.

Feature Importance: The top weighted features correspond to the fractionality values of the variables
involved in the cut (Indices 1-9 of the state vector). Specifically, the raw fractionality of the 2nd

through 8th most fractional variables carries the highest weight (Importance ≈ 0.16− 0.17).

Learned Behaviors:

• Sparsity Preference: The policy consistently rejects dense cuts, favoring cuts with < 20%
non-zero entries. This directly contributes to memory efficiency by keeping the LP relaxation
sparse.

• Early-Stage Activity: Approximately 80% of selected cuts occur within the first 5 iterations.
The policy learns that late-stage cuts often yield diminishing returns in bound improvement
relative to their computational cost.

• High Violation Target: The policy acts as a filter, rejecting cuts with violation < 10−4,
ensuring that added constraints significantly tighten the relaxation.
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N COMPREHENSIVE ABLATION STUDIES

N.1 CURRICULUM LEARNING ANALYSIS

We evaluated the impact of our weighted curriculum learning strategy against three baselines: No
Curriculum (Random), Sequential (Easy→ Hard), and Reverse (Hard→ Easy).

Table 15: Impact of Curriculum Learning Strategies (45 Test Instances).

Strategy Avg Speedup Success Rate Training Stability
No Curriculum 1.11× 94% Low
Sequential (Easy→ Hard) 1.11× 98% Moderate
Reverse (Hard→ Easy) 1.11× 92% Moderate
Weighted (Ours) 1.34× 100% High

As shown, the Weighted Curriculum yields a 20.4% improvement in speedup compared to sequential
or random strategies. It stabilizes training by ensuring consistent exposure to easy instances while
progressively up-weighting harder instances.

N.2 RL ALGORITHM AND ARCHITECTURE SELECTION

We compared PPO against TRPO and SAC. As shown in Table 16, differences in speedup were
statistically insignificant (p > 0.05), validating the choice of PPO for its stability and simplicity.

Table 16: Performance comparison of RL algorithms on 45 test instances.

Algorithm Avg Speedup Median Speedup Cut Reduction Significance (vs PPO)
PPO (Ours) 1.338× 0.986× 99.3% -
TRPO 1.355× 0.986× 99.3% p = 0.79 (ns)
SAC 1.332× 0.987× 99.3% p = 0.80 (ns)

N.3 NETWORK ARCHITECTURE AND EXPERT DATA SIZE

We analyzed the impact of model depth and the number of expert demonstrations used for training.
Table 17 confirms that a lightweight 2-layer MLP and 1,000 expert instances provide the optimal
trade-off between performance and computational cost.

Table 17: Ablation on Model Architecture and Training Data Size.

Ablation Type Configuration Avg Speedup Cut Red. Parameters/Cost

Architecture 2-Layer MLP 1.163× 99.3% 19,586 (Optimal)
3-Layer MLP 1.161× 99.3% 36,354 (+0.2% gain)

Data Size
300 Instances 1.092× 99.2% 2.5 CPU-hrs
500 Instances 1.093× 99.3% 4.2 CPU-hrs
1000 Instances 1.093× 99.3% 8.3 CPU-hrs

O REAL-WORLD DEPLOYMENT SCENARIOS

The memory efficiency of MIRACLE enables MILP optimization in scenarios previously inaccessible
to standard solvers:
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1. Edge AI & IoT: Embedded devices (e.g., Raspberry Pi 4, Jetson Nano) often have hard
memory caps of 4GB. Baseline SCIP (Median 2.5GB) risks OOM crashes when background
processes fluctuate. MIRACLE (Median 46MB) provides a safety factor of > 50×.

2. Cloud Cost Optimization: On AWS, upgrading from a t3.large (8GB RAM, $0.08/hr)
to a t3.xlarge (16GB RAM, $0.16/hr) doubles the cost solely to accommodate memory
spikes. MIRACLE enables high-reliability solving on the cheaper instance tier.

3. Shared Tenancy: In high-performance computing (HPC) clusters, memory bandwidth
and capacity are shared. MIRACLE allows for massive parallelization (e.g., running 8+
concurrent solvers on a single node), where baseline SCIP would bottleneck at 2 concurrent
instances.

P EXPERIMENTAL ANALYSIS AND VERIFICATION

P.1 IMPACT OF MEMORY CONSTRAINTS

To address concerns regarding the 12GB memory limit, we evaluated performance both with and
without this constraint. Table 18 shows that MIRACLE maintains 100% reliability regardless of
limits, whereas the baseline fails significantly when constraints are applied.

Table 18: Impact of 12GB Memory Limit on Solver Success and Efficiency (60 Instances).

Setting Method Success Rate Median Time Memory (MB) Failures

No Memory Limit Baseline 73.3% 30.77s 334.3 16 (Timeouts)
MIRACLE 100.0% 60.06s 0.65 0

12GB Limit Baseline 69.0% 23.15s 26.5 18 (OOM/Timeouts)
MIRACLE 100.0% 60.73s 8.2 0

P.2 VERIFICATION OF THEORETICAL ASSUMPTIONS

Our theoretical convergence guarantees rely on assumptions of Bounded Rewards (A.1) and a
Lipschitz Policy (A.2). We empirically verified these values during training, as shown in Table 19.

Table 19: Empirical Verification of Theoretical Assumptions.

Assumption Theoretical Requirement Empirical Value Status
Bounded Rewards (Rmax) |r(s, a)| ≤ Rmax <∞ 100.0 Verified
Lipschitz Policy (Lπ) ||πθ1 − πθ2 || ≤ L||θ1 − θ2|| ≈ 0.007 (95th %) Verified

Q POLICY INTERPRETATION AND IMPLEMENTATION DETAILS

Q.1 FEATURE IMPORTANCE ANALYSIS

To understand the learned policy πθ, we extracted feature importance weights. As shown in Table 20,
the policy prioritizes the fractionality of specific variables over global LP statistics.

Q.2 TRAINING HYPERPARAMETERS

Complete hyperparameters used for the PPO agent and GAIL discriminator are provided in Table 21
to ensure reproducibility.
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Table 20: Top Feature Importance in Learned Policy. The model prioritizes variable fractionality
values.

Rank Importance Feature Name Description
1 0.175 frac val 2 Fractionality of 2nd most fractional var
2 0.174 num frac vars Total count of fractional variables
3 0.166 frac val 7 Fractionality of 7th most fractional var
4 0.163 frac val 8 Fractionality of 8th most fractional var
5 0.160 frac val 4 Fractionality of 4th most fractional var
6 0.160 lp objective Current LP relaxation objective value

Table 21: Hyperparameters for PPO and GAIL Training.

Component Hyperparameter Value

PPO (Policy)

Learning Rate 3× 10−4

Discount Factor (γ) 0.99
GAE Parameter (λ) 0.95
Clipping (ϵ) 0.2
Entropy Coeff 0.01
Batch Size 256

GAIL (Discriminator)

Gen Learning Rate 1× 10−5

Disc Learning Rate 1× 10−4

Disc Epochs per Update 3
Network Structure dmodel = 64, h = 4

R ADAPTATION TO OTHER MIP COMPONENTS

While this work focuses on cut selection, the MIRACLE framework (GAIL + PPO + Adaptive
Inference) is component-agnostic. We outline how it can be adapted to other MIP solver components:

Branching Variable Selection

• State: Node-level features (LP objective, candidate pseudocosts, variable fractionality).

• Action: Discrete selection over candidate fractional variables.

• Expert Data: Record SCIP’s default branching decisions (e.g., relpscost).

• Reward: Negative solving time or tree size reduction.

Node Selection

• State: Tree-level features (Global best bound, open nodes count, depth distribution).

• Action: Discrete selection over the set of open nodes (leaves).

• Expert Data: Record SCIP’s node retrieval sequence (e.g., best-estimate).

In both cases, the core training pipeline remains identical: collecting expert trajectories, training a
discriminator to distinguish expert vs. agent decisions, and optimizing the policy via PPO.
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