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Abstract—Providing an execution time certificate is a press-
ing requirement when deploying model predictive control (MPC)
in real-time embedded systems such as microcontrollers. Real-
time MPC requires that its worst-case (maximum) execution time
must be theoretically guaranteed to be smaller than the sam-
pling time in a closed-loop. This technical note considers input-
constrained MPC problems and exploits the structure of the
resulting box-constrained QPs. Then, we propose a cost-free and
data-independent initialization strategy, which enables us, for the
first time, to remove the initialization assumption of feasible full-
Newton interior-point algorithms. We prove that the number of
iterations of our proposed algorithm is only dimension-dependent
(data-independent), simple-calculated, and exact (not worst-case)

with the value
⌈
log(2n

ε )/−2 log(
√
2n√

2n+
√
2−1

)

⌉
+ 1, where n de-

notes the problem dimension and ε denotes the constant stop-
ping tolerance. These features enable our algorithm to trivially
certify the execution time of nonlinear MPC (via online linearized
schemes) or adaptive MPC problems. The execution-time-certified
capability of our algorithm is theoretically and numerically vali-
dated through an open-loop unstable AFTI-16 example.

Index Terms—Cost-free initialization strategy, execution time
certificate, interior-point method, model predictive control.

I. INTRODUCTION

Model predictive control (MPC) generally requires solving an online
quadratic programming (QP) problem at each sampling time in a real-
time closed-loop. Deploying real-time MPC on embedded production
platforms such as microcontrollers, has to meet a key requirement,
called an execution time certificate, which is that the execution time of
the adopted QP algorithm must be theoretically guaranteed to be less
than the given sampling time.

This execution time certificate has garnered increasing attention
within recent years and is still an active research area [1], [2], [3],
[4], [5], [6], [7], [8], [9]. All these works are based on the assumption
that the adopted computation platform performs a fixed number of
floating-point operations ([flops]) in constant time,

execution time =
total [flops] required by the algorithm
average [flops] processed per second

[s]

where one flop is defined to be one multiplication, subtraction, addition,
or division of two floating-point numbers, then, the execution time can
be derived by analyzing the total worst-case [flops] which is equivalent
to analyzing the worst-case number of iterations if each iteration takes
invariant [flops]. This technical note also follows this assumption to
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certify the execution time of input-constrained MPC problems by
analyzing the number of iterations.

Currently, most MPC algorithms obtain the average and worst-case
execution time by performing thousands of closed-loop experiments
and then statistically analyzing all execution times. This approach
is heuristic and lacks a theoretical certificate. More importantly, this
heuristic approach cannot build an explicit and exact relationship be-
tween the execution time and the MPC settings such as the length of
prediction horizons. Consequently, choosing the appropriate sampling
time and embedded processor type for a given MPC setting relies on
heavy calibration work [10].

Furthermore, most existing works [11], [12], [13], [14], [15] use the
statistical average execution time to claim that their proposed algorithm
is fast, but in fact, the worst-case execution time matters a lot more than
average execution time. This is not only because the certified worst-case
execution time (not the average execution time), is used to choose the
sampling time, but also because only when the worst-case execution
time (not the average execution time) is small, MPC can be applied to
fast dynamic systems.

In MPC applications, online optimization problems have time-
changing problem data (but the problem dimension is time-invariant) in
closed-loop as the feedback state, the set-point reference signal, or even
the model, are all time-changing (such as in online linearized nonlinear
MPC and adaptive MPC). Simply put, the number of iterations depends
on the convergence speed of an optimization algorithm and the distance
between the initial point and the optimal point, both of which are depen-
dent on the data of optimization problems. Therefore, time-changing
problem data poses a big challenge in obtaining the execution time
certificate of real-time MPC. This article aims to develop an optimiza-
tion algorithm that has only dimension-dependent (data-independent),
simple-calculated, and exact number of iterations, then enabling the
certification of the execution time of linear MPC, nonlinear MPC (via
online linearized scheme), and adaptive MPC problems.

A. Related Work

In [1], the input-constrained linear MPC problem, resulting in a
box-constrained QP (Box-QP) problem, is considered and solved by
Nesterov’s fast gradient method. They derived a conservative iteration
complexity bound which is not only very computationally complicated
but also dependent on the problem data. In [2] and [3], the general
linear MPC problem with input and state constraints is considered
and then transformed into the dual problems, which are solved by the
accelerated gradient projection methods. And their worst-case iteration
complexity is also dependent on the problem data like the Hessian
matrix of the dual problem. Their data-dependent iteration complexity
result cannot guarantee the time-invariant number of iterations in online
linearization-based MPC problems, such as real-time iteration (RTI)
based nonlinear MPC [16].

In addition to the above first-order method, another popular class
of optimization methods is the active-set method. Although active-set
methods often run fast in small/medium-scale problems but could have
an exponential number of iterations in the worst-case [17]. In [4], [5],
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[6], [7], [8], they use active-set methods to solve general linear MPC
problems and provide the certification procedure of the worst-case
number of iterations. However, their certification procedure relies on the
computationally complicated and expensive (thus offline) worst-case
partial enumeration technique. This also happens in the work [9] which
only considers input-constrained MPC problems. The authors in [9]
proposed an N -step algorithm (the worst-case iteration complexity
is the problem dimension N ) if the modified N-step vector is given.
However, the modified N-step vector is found by solving a linear
programming problem.

To summarize, all current execution time certificate works of MPC
are either data-dependent (like the first-order methods [1], [2], [3]), or
rely on computationally complicated and expensive techniques (like the
active-set methods [4], [5], [6], [7], [8], [9]), making them unsuitable
for nonlinear MPC (via online linearized schemes) and adaptive MPC
problems. Therefore, to the best of the authors’ knowledge, no works
extend these algorithms [1], [2], [3], [4], [5], [6], [7], [8], [9] to certify
the execution time of nonlinear MPC problems.

To address the applicability limits of the above first-order and
active-set methods, this article turns to interior-point methods (IPM).
IPMs have been exploited in MPC applications, as seen in works such
as [18], [19], which primarily focus on how to improve the average
computational efficiency in practice, but lacks execution time certificate
in theory. For example, the Mehrotra predictor-corrector IPMs [20])
have been the basis for most interior-point software such as [19] due to
their practical fast convergence speed. However, Mehrotra predictor-
corrector IPMs are heuristic and may diverge on some examples [21,
see p. 411], [22], without theoretical global convergence proof.

IPMs are well-known for their theoretically certified polynomial
time complexity [23], but no work has adopted IPM to certify the
execution time of real-time MPC problems because of the “irony of
IPM,” a puzzling gap between practical and theoretical computational
efficiency [24]. In practice, heuristic Mehrotra predictor-corrector IPMs
often take less than < 50 iterations (behaving O(log(n)) iteration
complexity). In theory, the best worst-case iteration complexity of
IPMs isO(

√
n), where n denotes the problem dimension. Specifically,

according to whether the initial point is strictly feasible or not, IPMs
can be divided into infeasible IPMs and feasible IPMs, and the best
worst-case iteration complexity of infeasible IPMs and feasible IPMs
are certified O(n) and O(

√
n) [23], [25], respectively. Feasible IPMs

are preferable to infeasible IPMs in providing a faster execution time
certificate for real-time MPC problems.

However, feasible IPMs are rarely used in practical applications,
let alone MPC applications because they have an unrealistic assump-
tion that the initial point is strictly feasible and located in a narrow-
centered neighborhood. For example, existing works on feasible IPMs
for general LPs [26], convex QPs [27], [28], and monotone linear
complementarity problems [29] all rely on this assumption. Removing
this assumption, namely finding this specified initial point for feasible
IPMs, requires solving another linear program (LP), which not only
significantly increases the computational cost, but more importantly
introduces another challenge: certifying the execution time of the LP
itself. Therefore, feasible IPMs are never used to certify the execution
time of real-time MPC.

B. Contribution

This technical note for the first time develops a tailored and
practical feasible IPM algorithm to certify the execution time of
input-constrained MPC problems, to enjoy the current best theoretical
O(
√
n) iteration complexity. Our novel contributions are fourfold:

1) Removes the assumption of previous works that the initial point is
strictly feasible and located in a narrow neighborhood of the central
path. By only considering input-constrained MPC problems, we
then exploit the structure of the resulting box-constrained QP (Box-
QP) and for the first time innovatively propose a cost-free and
data-independent initialization strategy.

2) Very simple to implement our proposed feasible IPM algorithm,
which adopts full-Newton step thus without a line search procedure.

3) Only dimension-dependent (data-independent), simple-calculated,
and exact (not worst-case or maximum) number of iterations,⎡

⎢⎢⎢
log( 2n

ε
)

−2 log(
√
2n√

2n+
√
2−1 )

⎤
⎥⎥⎥+ 1

is achieved by our proposed algorithm, where n denotes the prob-
lem dimension of Box-QP and ε denotes the constant specify-
ing the stopping accuracy (e.g., 1× 10−6). Thanks to being only
dimension-dependent and having exact computational complexity,
our optimization algorithm is direct, in the same manner as direct
methods for solving linear equations Ax = b (Cholesky decom-
position or QR decomposition) which also have only dimension-
dependent (data-independent) and exact computational complex-
ity. To the best of the author’s knowledge, a direct optimization
algorithm is reported for the first time.

4) A simple-calculated execution-time certificate is provided by our
proposed algorithm.

C. Notation

Rn denotes the space of n-dimensional real vectors, Rn
++ is

the set of all positive vectors of Rn, and N+ is the set of pos-
itive integers. For a vector z ∈ Rn, ‖z‖ =√z21 + z22 + · · ·+ z2n,
‖z‖1 =

∑n
i=1 |zi|, ‖z‖∞ = maxi |zi|, diag(z) : Rn → Rn×n maps

a vector z to its corresponding diagonal matrix, and z2 =
(z21 , z

2
2 , . . . , z

2
n)
�. Given two vectors z, y ∈ Rn

++, their Hadamard
product is zy = (z1y1, z2y2, . . . , znyn)

�, ( z
y
) = ( z1

y1
, z2
y2
, . . . , zn

yn
)�,√

z = (
√
z1,
√
z2, . . . ,

√
zn)

� and z−1 = (z−11 , z−12 , . . . , z−1n )�. The
vector of all ones is denoted by e = (1, . . . , 1)�. �x	 maps x to the
least integer greater than or equal to x. For z, y ∈ Rn, let col(z, y) =
[z�, y�]�.

II. INPUT-CONSTRAINED MPC

In a closed-loop input-constrained MPC setting, at each sampling
time t, a parametric Box-QP,

min
y

1

2
y�Q(t)y + y�d(t)

s.t. l(t) ≤ y ≤ u(t) (1)

needs to be solved within each sampling interval where y ∈ Rn denotes
the optimization variables. The problem data, including the symmetric
positive definite Q(t) ∈ Rn×n, the vector d(t) ∈ Rn, and the lower
and upper bounds l(t), u(t) ∈ Rn (bounded and l(t) < u(t)), may be
time-varying.

We assume that the above Box-QP formulation guarantees the
stability of input-constrained MPC by choosing the positive definite
terminal penalty matrix and the horizon length appropriately, ensuring
the fulfillment of sufficient stability criteria, as discussed in [1].

Applying the coordinate transformation,

z = 2diag(u(t)− l(t))−1y − 2 diag(u(t)− l(t))−1l − e
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results in an equivalent Box-QP with scaled box constraints,

z∗ = arg min
z

1

2
z�Hz + z�h (2a)

s.t. − e ≤ z ≤ e (2b)

where H = diag(u(t)− l(t))Q(t) diag(u(t)− l(t)) and
h = diag(u(t)− l(t))Q(t)(u(t)− l(t) + 2d(t)). The optimal
solution y∗ of the original input-constrained MPC (1) can be recovered
by

y∗ =
1

2
diag(u(t)− l(t))z∗ + 1

2
(u(t) + l(t)). (3)

In the below sections, the scaled box-QP (2) is used to derive and
analyze the proposed algorithm.

III. FEASIBLE FULL-NEWTON IPM

According to [30, Ch 5], the Karush–Kuhn–Tucker (KKT) condition
of the scaled box-QP (2) is the nonlinear equations,

Hz + h+ γ − θ = 0 (4a)

z + φ− e = 0 (4b)

z − ψ + e = 0 (4c)

γφ = 0 (4d)

θψ = 0 (4e)

(γ, θ, φ, ψ) ≥ 0 (4f)

where γ and θ denote the Lagrangian variable of the lower bound and
upper bound, respectively, and φ and ψ denote the slack variable of the
lower bound and upper bound, respectively.

Primal-dual IPMs use Newton’s method to determine the search
direction for solving these nonlinear equations. Newton’s method in-
volves linearizing (4) around the current iterate and then solving a
system of linear equations that results from this process. The solution to
these equations provides the search direction (Δz,Δγ,Δθ,Δφ,Δψ).
A full-Newton step often violates the bound (γ, θ, φ, ψ) ≥ 0 so the next
iterate (z, γ, θ, φ, ψ) + α(Δz,Δγ,Δθ,Δφ,Δψ) with a line search
parameter α ∈ (0, 1] is used to ensure not exceeding the bound. The
straightforward application of Newton’s method frequently results in
small steps (α 1) before reaching the limit, which hinders significant
progress toward finding a solution.

A popular IPM is the path-following approach. This involves in-
troducing a positive parameter τ to replace (4d) and (4e) with the
equations

γφ = τ2e (5a)

θψ = τ2e. (5b)

It has been shown that there exists one unique solution
(zτ , γτ , θτ , φτ , ψτ ) and the path τ → (zτ , γτ , θτ , φτ , ψτ ) is called
the central path [23]. As τ approaching 0, (zτ , γτ , θτ , φτ , ψτ ) goes
to a solution of (4). Simply put, primal-dual path-following methods
apply Newton’s method to (5) and explicitly restrict the iterates to a
neighborhood of the central path, which is an arc of strictly feasible
points. The primal-dual feasible set F and strictly feasible set F0 are
defined as

F = {(z, γ, θ, φ, ψ)|(4a)−(4c), (γ, θ, φ, ψ) ≥ 0}
F0 = {(z, γ, θ, φ, ψ)|(4a)−(4c), (γ, θ, φ, ψ) > 0}.

Thanks to the structure of the KKT condition (4), we are able to propose
a novel cost-free initialization strategy for feasible path-following IPM
with application to input-constrained MPC.

A. Strictly Feasible Initial Point

To obtain the best result of theoretical worst-case complexity, a good
strictly feasible initial point is necessary.

Remark 1: For h = 0, the optimal solution of Problem 2 is z∗ = 0.
For h �= 0, first scale the objective (2a) as

min
z

1

2
z�
(

2λ

‖h‖∞H
)
z + z�

(
2λ

‖h‖∞ h
)

which does not affect the optimal solution and the scalar λ ∈ (0, 1).
Denoting H̃ = 1

‖h‖∞H and h̃ = 1
‖h‖∞ h, we have that ‖h̃‖∞ = 1. Then

(4a) is replaced by

2λH̃z + 2λh̃+ γ − θ = 0.

the initialization strategy to solve Problem 2 is

z0 = 0, γ0 = 1− λh̃, θ0 = 1 + λh̃, φ0 = e, ψ0 = e. (6)

This set of values is in F0.

B. Algorithm Description

To simplify the presentation, two vectors v = col(γ, θ) ∈ R2n and
s = col(φ,ψ) ∈ R2n are introduced. Equations (5a) and (5b) are re-
placed by

vs = τ2e

which is then replaced by

ϕ(vs) = ϕ(τ2e) (7)

where the function ϕ : Rn
+ → Rn

+, is differentiable on Rn
++ such that

ϕ(w) > 0 and ϕ′(w) > 0 for all w > 0.
Remark 2: The classical path-following method is recovered for

ϕ(w) = w. Here we consider ϕ(w) =
√
w, then ϕ′(w) = 1

2
√
w

.
Equation (7) is then linearized as

sϕ′(vs)Δv + vϕ′(vs)Δs = ϕ(τ2e)− ϕ(vs). (8)

Suppose that (z, v, s) ∈ F0 and, according to Remark 2, a direction
(Δz,Δv,Δs) can thus be obtained by solving the system of linear
equations

2λH̃Δz +ΩΔv = 0 (9a)

ΩTΔz +Δs = 0 (9b)√
s

v
Δv +

√
v

s
Δs = 2(τe−√vs) (9c)

where Ω = [I,−I] ∈ Rn×2n. By letting

Δγ =
γ

φ
Δz + 2

(√
γ

φ
τe− γ

)
(10a)

Δθ = − θ
ψ
Δz + 2

(√
θ

ψ
τe− θ

)
(10b)

Δφ = −Δz (10c)

Δψ = Δz (10d)
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Algorithm 1: A Direct Optimization Algorithm for Input-
Constrained MPC (1).

if ‖h‖∞ = 0, return y∗ = 1
2
(u(t) + l(t));

otherwise,
Let λ = 1√

n+1
, cache 2λH̃ = 2λ

‖h‖∞H , h̃ = 1
‖h‖∞ h. and

(z, γ, θ, φ, ψ) are initialized from (6), η =
√
2−1√

2n+
√
2−1 and

τ = 1
1−η , and given a stopping tolerance ε, thus the required

exact number of iterations N =

⌈
log( 2n

ε )

−2 log(
√
2n√

2n+
√
2−1 )

⌉
+ 1.

for k = 1, 2, . . . ,N do
1. τ ← (1− η)τ ;
2. solve (11) for Δz by using Cholesky decomposition;
3. calculate (Δγ,Δθ,Δφ,Δψ) from (10);
4. z ← z +Δz, γ ← γ +Δγ, θ ← θ +Δθ, φ← φ+Δφ,
ψ ← ψ +Δψ;

end
return y∗ = 1

2
diag(u(t)− l(t))z + 1

2
(u(t) + l(t)).

Equation (9) can be reduced into a more compacted system of linear
equations, (

2λH̃ + diag

(
γ

φ

)
+ diag

(
θ

ψ

))
Δz |

= 2

(√
θ

ψ
τe−

√
γ

φ
τe+ γ − θ

)
. (11)

The proposed feasible full-Newton path-following interior-point algo-
rithm is summarized on Algorithm 1. In the next section, we prove
that Algorithm 1 converges to the optimal solution of Problem 2 in

N =

⌈
log( 2n

ε )

−2 log(
√
2n√

2n+
√
2−1 )

⌉
+ 1 iterations.

C. Convergence and Worst-Case Analysis

To simplify the presentation, introduce

dv :=

√
s

v
Δv, ds :=

√
v

s
Δs

for which dvds = ΔvΔs and d�vds = Δv�Δs. Equations (9a) and
(9b) imply that

Δv�Δs = Δv�(−Ω�Δz) = (−ΩΔv)�Δz = Δz�(2λH̃)Δz.

The positive definiteness of 2λH̃ implies that Δz�(2λH̃)Δz ≥ 0 for
any vector Δz, thus d�vds ≥ 0. Then introduce

p := dv + ds, q := dv − ds.
Then (p2 − q2)/4 = dvds and (‖p‖2 − ‖q‖2)/4 = d�vds ≥ 0, and

‖q‖ ≤ ‖p‖. (12)

Now introduce β :=
√
vs; then (9c) implies that

p = 2(τe−√vs) = 2(τe− β). (13)

With the definition of the proximity measure

ξ(β, τ) =
‖τe− β‖

τ
=
‖p‖
2τ

(14)

next we prove that, for small enough proximity measure the full-Newton
step will not violate the bound (4f). That is, the full-Newton step is
strictly feasible.

Lemma 1: Let ξ := ξ(β, τ) < 1. Then the full-Newton step is
strictly feasible, that is, v+ = v +Δv > 0 and s+ = s+Δs > 0.

Proof: For each 0 ≤ α ≤ 1, let v+(α) = v + αΔv and s+(α) =
s+ αΔs. Then

v+(α)s+(α) = vs+ α(vΔs+ sΔv) + α2ΔvΔs

= vs+ αβ(dv + ds) + α2dvds

= β2 + αβp+ α2

(
p2

4
− q2

4

)

= (1− α)β2 + α(β2 + βp) + α2

(
p2

4
− q2

4

)
.

From (13) we have β + p
2
= τe, and β2 + βp = τ2e− p2

4
; then

v+(α)s+(α) = (1− α)β2 + α

(
τ2e− p2

4
+ α(

p2

4
− q2

4
)

)
. (15)

Thus, the inequality v+(α)s+(α) > 0 holds if∥∥∥∥(1− α)p24 + α
q2

4

∥∥∥∥
∞
< τ2.

Using (12) and (14), if ξ < 1, then∥∥∥∥(1− α)p24 + α
q2

4

∥∥∥∥
∞
≤ (1− α)

∥∥∥∥p24
∥∥∥∥
∞
+ α

∥∥∥∥q24
∥∥∥∥
∞

≤ (1− α)‖p‖
2

4
+ α
‖q‖2
4
≤ ‖p‖

2

4

= ξ2τ2 < τ2.

Hence, for any 0 ≤ α ≤ 1, we have v+(α)s+(α) > 0. As a result, the
linear functions of α, v+(α), and s+(α), do not change sign on the
interval [0,1]. For α = 0, we have v+(0) = v > 0 and s+(0) = s > 0
thus v(1) > 0 and s(1) > 0. This completes the lemma. �

Next is to prove there exists an upper bound for the duality gap after
a full-Newton step.

Lemma 2: After a full-Newton step, let v+ = v +Δv and s+ =
s+Δs, then the duality gap satisfies

v�+s+ ≤ (2n)τ2.

Proof: Suppose ξ < 1 so from Lemma 1 we obtain that v+ > 0 and
s+ > 0. Now substituting α = 1 into (15) gives

v+s+ = β2
+ = τ2e− q2

4

so we have

v�+s+ = e�(v+s+) = (2n)τ2 − e�(q2)
4

= (2n)τ2 − ‖q‖
2

4
≤ (2n)τ2. (16)

This completes the lemma. �
Thus, the duality gap will converge to the given stopping criteria if

(2n)τ2 converges to the given stopping criteria. In the below lemma,
we investigate how the proximity measure ξ(β+, τ+) changes after a
full-Newton step and an update of τ .

Lemma 3: Suppose that ξ = ξ(β, τ) < 1 and τ+ = (1− η)τ where
0 < η < 1. Then

ξ+ = ξ(β+, τ+) ≤ ξ2

1 +
√

1− ξ2 +
η
√
2n

1− η .
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Furthermore, if ξ ≤ 1√
2

and η =
√
2−1√

2n+
√
2−1 then ξ+ ≤ 1√

2
.

Proof: Let τ+ = (1− η)τ , then

ξ+ = ξ(β+, τ+) =
‖τ+e− β+‖

τ+

=
‖(1− η)τe− (1− η)β+ − ηβ+‖

(1− η)τ

≤ ‖τe− β+‖
τ

+
η

1− η
‖β+‖
τ

. (17)

Equation (16) implies that

‖β+‖
τ
≤
√
2n

and

min(β2
+) = min (τ2e− q2

4
) = τ2 − ‖q

2‖∞
4

≥ τ2 − ‖q‖
2

4
≥ τ2 − ‖p‖

2

4

= τ2(1− ξ2)
which yields

min(β+) ≥ τ
√

1− ξ2. (18)

Furthermore, from (12), (16), (18) and the Cauchy–Schwarz inequality,

‖τe− β+‖
τ

=
1

τ

∥∥∥∥τ2e− β2
+

τe+ β+

∥∥∥∥ ≤ 1

τ

‖τ2e− β2
+‖

min(τe+ β+)

=
1

τ

‖τ2e− β2
+‖

τ +min(β+)
≤ ‖τ2e− β2

+‖
τ2(1 +

√
1− ξ2)

=
‖q2‖

4τ2(1 +
√

1− ξ2) ≤
‖q‖2

4τ2(1 +
√

1− ξ2)

≤ ‖p‖2
4τ2(1 +

√
1− ξ2) =

ξ2

1 +
√

1− ξ2
thus, based on (17), we have

ξ+ = ξ(β+, τ+) ≤ ξ2

1 +
√

1− ξ2 +
η
√
2n

1− η .

This proves the first part of the lemma. Now let η =
√
2−1√

2n+
√
2−1 , and if

ξ ≤ 1√
2

, we deduce ξ2

1+
√

1−ξ2
≤ 2−√2

2
. Thus,

ξ+ ≤ 2−√2
2

+

√
2−1√

2n+
√
2−1

1−
√
2−1√

2n+
√
2−1

√
2n =

1√
2
.

The proof of the lemma is complete. �
Lemma 4: The value of ξ(β, τ) before the first iteration is denoted

as ξ0 = ξ(β0, (1− η)τ0). If (1− η)τ0 = 1, λ = 1√
n+1

, then ξ0 ≤ 1√
2

and ξ(β,w) ≤ 1√
2

is always satisfied.

Proof: The equality (1− η)τ0 = 1 implies that

ξ0 =
‖(1− η)τ0e− β0‖

(1− η)τ0 = ‖e− β0‖

=

√∑n

i=1

(
1−

√
1− λh̃i

)2
+

(
1−

√
1 + λh̃i

)2

=

√
2n+ 2n− 2

∑n

i=1

√
1− λh̃i +

√
1 + λh̃i.

Denote mi =
√

1− λh̃i +
√

1 + λh̃i; then

m2
i = 1− λh̃i + 1 + λh̃i + 2

√
1− λ2h̃2

i = 2 + 2

√
1− λ2h̃2

i .

Since ‖h̃‖∞ = 1, m2
i ≥ 2 + 2

√
1− λ2, that is, mi ≥√

2 + 2
√
1− λ2. Also implied is

ξ0 =

√
4n− 2

∑n

i=1
mi ≤

√
4n− 2n

√
2 + 2

√
1− λ2

thus the inequality ξ0 ≤ 1√
2

holds if

4n− 2n

√
2 + 2

√
1− λ2 ≤ 1

2

� 2− 1

4n
≤
√

2 + 2
√
1− λ2

� 2 + 2
√
1− λ2 ≥

(
2− 1

4n

)2

�
√
1− λ2 ≥ 1− 1

2n
+

1

32n2

� λ2 ≤ 1−
(
1− 1

2n
+

1

32n2

)2

=
1

n
− 5

16n2
+

1

32n3
− 1

1024n4
.

For λ = 1√
n+1

; this inequality holds if

1

n+ 1
≤ 1

n
− 5

16n2
+

1

32n3
− 1

1024n4
∀n ∈ N+

� 1

n

(
1

n+ 1
− 5

16n
+

1

32n2
− 1

1024n3

)
≥ 0 ∀n ∈ N+

� n3

n+ 1
≥ 5

16
n2 − 1

32
n+

1

1024
∀n ∈ N+

� n3 ≥
(

5

16
n2 − 1

32
n+

1

1024

)
(n+ 1) ∀n ∈ N+

� n3 ≥ 5

16
n3 +

9

32
n2 − 31

1024
n+

1

1024
∀n ∈ N+

� 11

16
n3 − 9

32
n2 +

31

1024
n− 1

1024
≥ 0 ∀n ∈ N+

� n2

32
(22n− 9) +

1

1024
(31n− 1) ≥ 0 ∀n ∈ N+

Obviously, the last inequality holds, thus the first part of the lemma is
proved.

From Lemma 3 if ξ0 ≤ 1√
2

is satisfied then ξ(β, τ) ≤ 1√
2

is always
satisfied through the iterations. The proof of the lemma is complete. �

Remark 3: From Lemma 4, the assumption of Lemmas 1 and 3,
namely ξ(β, τ) < 1, is satisfied.

Lemma 5: Given v0 = col(γ0, θ0) and s0 = col(φ0, ψ0) from (6),
they are strictly feasible. Let vk, sk be the kth iterates of v, s, then the
inequalities v�ksk ≤ ε is satisfied for

k ≥
⌈

log( 2n(τ0)2

ε
)

−2 log(1− η)

⌉
. (19)

Proof: Let τk be the kth iterate of τ , so τk = (1− η)kτ0. Applying
Lemma 2 gives that

v�k s
k ≤ 2nτ2k = 2n(1− η)2k(τ0)2.
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Hence v�k sk ≤ ε holds if

2n(1− η)2k(τ0)2 ≤ ε.
Taking logarithms gives that

2k log(1− η) + log(2n(τ0)2) ≤ log ε (20)

which holds if

k ≥
⌈

log( 2n(τ0)2

ε
)

−2 log(1− η)

⌉
.

The proof is complete. �
Theorem 1: Let η =

√
2−1√

2n+
√
2−1 and τ0 = 1

1−η , Algorithm 1 re-
quires at most

Nmax =

⎡
⎢⎢⎢

log( 2n
ε
)

−2 log(
√
2n√

2n+
√
2−1 )

⎤
⎥⎥⎥+ 1 (21)

iterations, which gives that v�s ≤ ε.
Proof: By Lemmas 2–5, letη =

√
2−1√

2n+
√
2−1 , and τ0 = 1

1−η to satisfy

(1− η)τ0 = 1. Thus, Algorithm 1 requires at most

Nmax =

⌈
log( 2n

ε
)

−2 log(1− η) +
2 log(τ0)

−2 log(1− η)
⌉

=

⌈
log( 2n

ε
)

−2 log(1− η)
⌉
+ 1

=

⎡
⎢⎢⎢

log( 2n
ε
)

−2 log(
√
2n√

2n+
√
2−1 )

⎤
⎥⎥⎥+ 1

iterations. The proof is complete. �
Unlike other methods whose iteration complexity analysis is conser-

vative (its actual number of iterations is smaller than the maximum num-
ber of iterations, resulting in oversized control computing estimates),
the worst-case computation analysis of our proposed Algorithm 1 is
exact and deterministic.

D. Worst-Case Analysis is Deterministic

The worst-case iteration complexity analysis is based on the rela-
tionship between the duality gap v�s and (2n)τ2, as shown in (16). In
fact, the two are nearly equal to each other in the proposed algorithm
framework, which indicates that the worst-case iteration analysis is
deterministic with no conservativeness.

Theorem 2: Let η =
√
2−1√

2n+
√
2−1 and τ0 = 1

1−η , Algorithm 1 exactly
requires

N =

⎡
⎢⎢⎢

log( 2n
ε
)

−2 log(
√
2n√

2n+
√
2−1 )

⎤
⎥⎥⎥+ 1 (22)

iterations, the resulting vectors have v�s ≤ ε.
Proof: Equations (14) and (16) and ξ ≤ 1√

2
give that

0 ≤ ‖q‖
2

4
≤ ‖p‖

2

4
= ξ2τ2 =

ξ2

2n
(2nτ2) ≤ 1

4n
(2nτ2)

that is, (
1− 1

4n

)
2nτ2k ≤ v�k sk ≤ 2nτ2k .

The larger the value of n, the tighter the bounds on v�k sk. The duality
gap v�k sk has nearly equal decreasing behavior with τk; the number of

iterations would be exact instead of worst-case. To prove it, consider
the (k − 1)th iteration,(

1− 1

4n

)
2nτ2k−1 ≤ v�k−1sk−1 ≤ 2nτ2k−1.

If 2nτ2k ≤ (1− 1
4n

)2nτ2k−1, then the duality gap will reach the conver-
gence criterion no earlier than and no later than 2nτ2k . That is, we need
to prove that

(1− η)2 ≤ 1− 1

4n
∀n = 1, 2, . . .

Substituting η =
√
2−1√

2n+
√
2−1 into the above, we need to prove that

(
√
2− 1)2

(
√
2n+

√
2− 1)2

− 2(
√
2− 1)√

2n+
√
2− 1

+
1

4n
≤ 0 ∀n = 1, 2, . . .

which is equal to

−(4− 2
√
2)
√
n(n− 1)− (8

√
2− 10)n(

√
n− 1)

−(3− 2
√
2)(n3/2 − 1)− (19− 12

√
2)n3/2 ≤ 0

which obviously always holds for n = 1, 2, . . ..
From (20), let η =

√
2−1√

2n+
√
2−1 and τ0 = 1

1−η ; the required exact
number of iterations is

N =

⎡
⎢⎢⎢

log( 2n
ε
)

−2 log(
√
2n√

2n+
√
2−1 )

⎤
⎥⎥⎥+ 1.

�

E. Execution-Time Certificate

Since our proposed Algorithm 1 is a full-Newton IPM algorithm
without a line search procedure, each step of Algorithm 1 involves a
clear and countable number of floating-point operations ([flops]). Our
proposed Algorithm 1 has an exact number of iterations which is only
dimension-dependent (data-independent), thus we can summarize the
total [flops] required by Algorithm 1 as follows.

Theorem 3: In Algorithm 1, the initialization requires (n) + (3) +
(1 + n2) + (n) + (5n) + (5) + (2) [flops], Step 1 requires 2 [flops],
Step 2 requires ( 1

3
n3 + 1

2
n2 + 1

6
n) + 2n2 + 11n [flops], Step 3 re-

quires 6n [flops], Step 4 requires 5n [flops]. Thus, Algorithm 1 totally
requires n2 + 7n+ 11 +N ( 1

3
n3 + 5

2
n2 + 133

6
n+ 2) [flops].

Then, based on the assumption that the adopted computation plat-
form performs a fixed [flops] in constant time,

execution time =
total [flops] required by the algorithm
average [flops] processed per second

[s].

Thus, by Theorem 3, Algorithm 1 can provide an execution-time cer-
tificate, which is only dimension-dependent (data-independent) making
it competent for the execution-time certification of time-varying MPC
problems (with possible time-varying costs or dynamics, such as RTI-
based nonlinear MPC [16]).

IV. NUMERICAL EXAMPLE

In this section, Algorithm 1 is implemented in MATLAB2023a
via a C-mex interface, and the closed-loop simulation is performed
on a contemporary MacBook Pro with 2.7 GHz 4-core Intel Core i7
processors and 16 GB RAM. We test Algorithm 1 on an open-loop
unstable AFTI-16 aircraft application. The aim is to validate whether
the practical number of iterations is the same with the theoretical⌈

log( 2n
ε )

−2 log(
√
2n√

2n+
√
2−1 )

⌉
+ 1, and whether the certified execution-time is
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TABLE I
THEORETICAL AND PRACTICAL COMPUTATION PERFORMANCE OF
DIFFERENT PREDICTION HORIZON (T = 5, 10, 15, 20) SETTINGS

smaller than the adopted sampling time. The open-loop unstable lin-
earized AFTI-16 aircraft model reported in [31] is

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

ẋ =

⎡
⎢⎢⎣
−0.0151 −60.5651 0 −32.174
−0.0001 −1.3411 0.9929 0
0.00018 43.2541 −0.86939 0

0 0 1 0

⎤
⎥⎥⎦x

+

⎡
⎢⎢⎣
−2.516 −13.136
−0.1689 −0.2514
−17.251 −1.5766

0 0

⎤
⎥⎥⎦u

y =

[
0 1 0 0
0 0 0 1

]
x.

We choose the sampling time asΔt = 0.05 s, then the model is sampled
using zero-order hold every Δt = 0.05 s. The input constraints are
|ui| ≤ 25◦, i = 1, 2. The control goal is to make the pitch angle y2
track a reference signal r2. The cost matrices Wy = diag([10,10]),
Wu = 0, and WΔu = diag([0.1, 0.1]) are used in the MPC design.
We investigate our proposed Algorithm 1 among different prediction
horizon settings, T = 5, 10, 15, 20, which results in different problem
dimensions n = 10, 20, 30, 40 as the dimension of control inputs is 2.
We adopt the stopping convergence criteria ε = 10−6. By Theorem 2,

the derived theoretical number of iterations is

⌈
log( 2n

ε )

−2 log(
√
2n√

2n+
√
2−1 )

⌉
+ 1,

that is, [96, 139, 173, 202] for different prediction horizon set-
tings. By Theorem 3, before closed-loop simulations, we can exactly
calculate the total [flops] of different prediction horizon settings, see
Table I.

In Table I, the derived execution time in theory that can be regarded as
an execution-time certificate, is assumed to perform on 1 Gflop/s com-
puting processor, and the execution time in practice is obtained from a
contemporary MacBook Pro with 2.7 GHz 4-core Intel Core i7 proces-
sors and 16 GB RAM. Since 2.7 GHz 4-core Intel Core i7 processor can-
not put all its computing power for this calculation (occupied by other
PC’s tasks), its execution time is still faster than a 1 Gflop/s computing
processor from Table I. The execution time in theory (on 1 Gflop/s com-
puting processor) among different prediction horizon settings are all
smaller than the sampling time Δt = 50 ms, which are execution-time
certificates.

All closed-loop simulation results among different prediction hori-
zon settings share almost the same closed-loop performance, as shown
in Fig. 1. The outputs y1 and y2 track the reference well while the inputs
u1 and u2 never go beyond [−25, 25].

Fig. 1. Closed-loop performance of input-constrained MPC for AFTI-
16 among different prediction horizons (T = 5, 10, 15, 20).

V. CONCLUSION

This technical note presents a direct optimization algorithm with
only dimension-dependent (data-independent), simple-calculated and
exact ⎡

⎢⎢⎢
log( 2n

ε
)

−2 log(
√
2n√

2n+
√
2−1 )

⎤
⎥⎥⎥+ 1

number of iterations for certifying the execution time of input-
constrained linear MPC problems in real-time closed-loop. The com-
putation complexity of our direct optimization algorithm is only
dimension-dependent and simple-calculated features, making it triv-
ially certifying the execution time of nonlinear MPC problems via
Koopman operator or RTI scheme, see our recent paper [32] and [33],
respectively. This capability sets our algorithm apart from previous
algorithms. One may argue that our algorithm is of very limited use
since it targets input-constrained MPC problems. To dispel this concern,
our recent paper [34] extends our algorithm to encompass general MPC
problems with input and state constraints.

Future endeavors will focus on speeding up our execution-time-
certified algorithm (with smaller certified execution-time) and explor-
ing practical applications in fast dynamical systems, such as robotics
and electronics.
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